WO2019216667A1 - Method for generating induced neural stem cells directly reprogrammed from non-neural cells by using sox2 and c-myc - Google Patents

Method for generating induced neural stem cells directly reprogrammed from non-neural cells by using sox2 and c-myc Download PDF

Info

Publication number
WO2019216667A1
WO2019216667A1 PCT/KR2019/005566 KR2019005566W WO2019216667A1 WO 2019216667 A1 WO2019216667 A1 WO 2019216667A1 KR 2019005566 W KR2019005566 W KR 2019005566W WO 2019216667 A1 WO2019216667 A1 WO 2019216667A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
neural stem
stem cells
myc
sox2
Prior art date
Application number
PCT/KR2019/005566
Other languages
French (fr)
Korean (ko)
Other versions
WO2019216667A9 (en
Inventor
강경선
서광원
권대기
지민준
한미정
안희진
Original Assignee
주식회사 강스템바이오텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 강스템바이오텍 filed Critical 주식회사 강스템바이오텍
Publication of WO2019216667A1 publication Critical patent/WO2019216667A1/en
Publication of WO2019216667A9 publication Critical patent/WO2019216667A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5058Neurological cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention relates to a method for producing neural stem cells derived from non-neuronal cells via direct reprogramming and use thereof.
  • Fertilized egg cells are an example of pluripotent stem cells.
  • Pluripotent stem cells produce any cell type in the body derived from the three main germ layers or the embryo itself.
  • Pluripotent stem cells such as embryonic stem cells (ESC) can be useful for cell transplantation treatments because they proliferate rapidly while maintaining pluripotency, ie the ability to differentiate into various cell types.
  • pluripotent stem cells have been produced mainly by nuclear transplantation and cell fusion (Philos Trans R Soc Lond B Biol Sci. 363 (1500): 2079-2087).
  • nuclear transplantation and cell fusion Philos Trans R Soc Lond B Biol Sci. 363 (1500): 2079-2087.
  • both methods use embryonic stem cells, an ethical dilemma arises for both research and treatment.
  • iPSC induced pluripotent stem cells
  • iPSCs are cells that exhibit properties similar to embryonic stem cells (ESCs). Induced pluripotent stem cells expressed expression of defined factors from mouse fibroblasts (Cell 126: 663-676 (2006) in 2006) and human fibroblasts (Science 318: 1917-1920 (2007), in 2007). was first created by augmenting These studies included Oct-3 / 4, Sox2, Klf4 and c-Myc to initiate reprogramming of mature somatic cells into iPSCs; Oct4, Sox2, Nanog and Lin28 were used.
  • iPSC has a limitation in that it does not control the differentiation of cells into teratoma as well as differentiation when transplanted into a living body, as in embryonic stem cells.
  • the present inventors have made diligent efforts to develop a method for producing induced neuronal stem cells that are genetically safe and have an excellent differentiation ability.
  • the present invention precisely regulates the MOI of a virus including Sox2 and c-Myc, thereby inducing only the introduction of Sox2 and c-Myc. It has been found that neural stem cells can be prepared, and the present invention has been completed by confirming the stability and differentiation ability of the induced neural stem cells.
  • One object of the invention is (a) introducing Sox2 and c-Myc into isolated cells; And (b) culturing the cells of step (a) to induce direct reprogramming from the isolated cells to the cells into which the strain is converted.
  • Another object of the present invention to provide a neural stem cell prepared according to the above method.
  • Still another object of the present invention is to provide a cell therapy agent comprising the neural stem cells prepared according to the above method as an active ingredient.
  • Still another object of the present invention is to provide a pharmaceutical composition for treating or preventing neurological diseases, including neural stem cells prepared according to the above method as an active ingredient.
  • Another object of the present invention comprises the step of identifying a therapeutic agent for neurological diseases tailored to the individual from which the neural stem cells are derived, by treating a candidate material with neural stem cells or neural cells differentiated therefrom prepared according to the above method. Methods of screening for personalized neurological disease therapies are provided.
  • induced neural stem cells of the present invention since induced neural stem cells can be produced from non-neuronal cells using only two inducers of Sox2 and c-Myc as inducers, there are four factors and five inducers. Induced neural stem cells can be produced more efficiently than the production method using the induced neural stem cells prepared by the method is excellent in the differentiation and proliferative capacity, it can be used for future therapeutic purposes.
  • Figure 1 shows a retroviral vector for the overexpression of hc-Myc and hSox-2 and its manufacturing process.
  • 1A is a schematic diagram of a structure in which hc-Myc and hSox2 are introduced into a pMX vector.
  • Figures 1b, 1c, 1d is a schematic of the retroviral vector production and titer adjustment process for introducing hSox2 and hc-Myc into human fibroblasts (hDF).
  • FIG. 2 shows the results of treatment of hSox2 and hc-Myc in human fibroblasts (hDF).
  • FIG. 2A shows the number of transduced cells over time after treatment of hSox2 retroviruses with MOI 1 and hc-Myc retroviruses with MOI 1, 5, and 10, respectively. As compared with the case where the MOI is 5 or 10, it can be seen that the number of cells increased significantly when the MOI was 1.
  • Figure 2b shows the morphology of the hDF when treated with 1 MOI of hSox2 and hc-Myc retroviral vector in hDF. As a result, it was confirmed that reprogramming occurred in a form similar to induced nerve stem cells (iNSC).
  • iNSC induced nerve stem cells
  • Figure 2c is the result of culturing iNSC (hDF-iNSC) prepared by treating hSox2 and hc-Myc with MOI 1 in hDF. It can be seen that the culture is possible in both the attached culture (attached culture), or the suspension culture (suspension culture).
  • Figure 2d is the result of thawing again after freezing hDF-iNSC. It is confirmed that iNSC maintains its specific morphology and proliferative capacity even after freezing and thawing.
  • Figure 2e shows the results of gene fingerprint analysis of hDF-iNSC. As a result of genetic fingerprint analysis, it can be confirmed that the manufactured iNSC is derived from the hDF used for the production.
  • Figure 2f is the result of analyzing the ratio of cells positive for CD133, a marker of neural stem cells. As a result of comparative analysis of direct cross-differentiation efficiency, it can be seen that there is a difference of 0.2-0.5% by hDF batch.
  • FIG. 3 measures the expression level of p53 according to the change in the MOI value of hSox2 and hc-Myc.
  • FIG. 3A is a graph showing the transcription level of p53. In the case of MOI 1, the expression level of p53 was not significantly increased compared to the control group, whereas in the case of MOI 5 and MOI 10, the expression levels were significantly increased.
  • Figure 3b is an experimental result of measuring the expression level of p53 protein, indicating that the p53 protein expression amount is increased in proportion to the MOI.
  • Figure 4 confirms that the manufactured iNSC does not have pluripotency.
  • Figure 4a is a graph confirming the amount of Oct4 expression of hDF-iNSC. It can be seen that the amount of transcription and expression of Oct4 is lower than that of human induced pluripotent stem cells (hiPSC). (P ⁇ 0.01) By confirming the low expression level of Oct4, a representative pluripotency marker, it can be seen that direct cross-differentiation occurred without going through a step having pluripotency.
  • Figure 4b is a result of culturing cells in the gene in the presence of Oct4 (O), Sox-2 (S), c-Myc (M), Klf-4 (K) factors that are used in the preparation of iPSC.
  • Figure 5 confirms the neural stem cell characteristics, proliferative capacity and differentiation capacity of the prepared hDF-iNSC.
  • 5a and 5b confirm that overexpression of neuronal stem cell specific markers Sox2, Nestin and Pax6 at the transcription level (5a) and protein level (5b). This confirms that hDF-iNSC is reprogrammed into neural stem cells.
  • Figure 5c is a measure of the doubling time (doubling time) of the prepared hDF-iNSC.
  • the prepared hDF-iNSC shows a doubling time of about 21.3 h, and it can be seen that the cells multiply.
  • Figure 5d is a measure of the amount of MAP2, GFAP and Olig1 expression of the prepared hDF-iNSC.
  • MAP2 is a neurite
  • GFAP is a central nervous system (CNS) cell including astrocytes and Ependymal cells
  • Olig1 is a gene involved in the formation of oligodendrocytes
  • Figure 6 shows the results of treatment of Sox2 and c-Myc with MOI 1 in human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC).
  • Figure 6a confirms the marker pattern of hUCB-MSC used in the experiment. It can be confirmed that hUCB-MSC has the properties of mesoderm stem cells.
  • FIG. 6B shows the morphology of hUCB-MSC when hSox2 and hc-Myc were treated with MOI 1 in hUCB-MSC.
  • hUCB-MSC is similar to iNSC and reprogramming can be seen.
  • Figure 6c confirms the direct cross-differentiation efficiency of the produced hUCBMSC-iNSC.
  • Figure 6d confirms the expression of the neural stem cell markers Sox2, Nestin, Pax6 in the manufactured hUCBMSC-iNSC, it can be confirmed that reprogramming to the neural stem cells.
  • 6E is a result of observing that hUCBMSC-iNSC is differentiated into a neuronal form. This can confirm the differentiation capacity of hUCBMSC-iNSC.
  • FIG. 7 shows the results of treatment of Sox2 and c-Myc with MOI 1 in human Niemann-Pick Type C disease derived dermal fibroblasts (hNPCDF).
  • FIG. Figure 7a shows the position of the genetic mutation of the hNPCDF used in the experiment compared to the normal hDF.
  • 7b shows that hSox2 and hc-Myc are treated with MOI 1 in hNPCDF to show a similar form to iNSC. This confirms that reprogramming to neural stem cells occurs.
  • Figure 7c shows the colony formation rate of hNPCDF-iNSC, it can be seen that the direct cross-differentiation efficiency is about 1.3%.
  • hNPCDF-iNSC like H9NSC, a neural stem cell, had a high relative expression level of neuronal markers and a low expression level of fibroblast markers.
  • Figure 7f confirms the differentiation capacity of the prepared hNPCDF-iNSC.
  • Tuj 1 Alexa 594 is an antibody that specifically binds to nerves, indicating that the prepared iNPCDF-iNSC differentiated into neurons.
  • Figure 8 shows the experimental results verifying the genetic stability of the prepared hDF-iNSC.
  • Figure 8a is the result of analyzing the karyotype of the prepared hDF-iNSC. In the same form as the general karyotype, it can be seen that the prepared hDF-iNSC is genetically stable from a macroscopic point of view.
  • Figure 8b is the result of PCR amplification of p53 genomic DNA in the prepared hDF-iNSC. It shows the same level of amplification as normal hDF, and it can be confirmed that the number of p53 alleles is normal.
  • 8C and 8D show the results of sequencing sites where mutations of the p53 gene occur frequently and comparing them with normal cells (hDF). This confirms that p53 mutation did not occur in hDF-iNSC.
  • One aspect for achieving the object of the present invention comprises the steps of (a) introducing Sox2 and c-Myc into isolated cells; And (b) culturing the cells of step (a) to induce direct reprogramming from the isolated cells to the cells into which the strain is converted.
  • step (a) is a step of introducing Sox2 and c-Myc into the isolated cells.
  • isolated cell of the present invention is not particularly limited, and specifically, may be a cell in which lineage is already specified, such as a somatic cell, a germ cell or a progenitor cell, and an adult stem.
  • Cells, bone marrow cells, mesoderm stem cells, etc. may be a stem cell with limited differentiation capacity.
  • Isolated cells of the present invention may include both cells in vivo or ex vivo, and specifically, may be cells isolated from the body.
  • "somatic cells” refers to all cells that complete differentiation constituting plants and plants except germ cells, somatic cells of the present invention may be somatic cells except neurons.
  • progenitor cell refers to a parent cell that does not express a differentiation trait but has a differentiation fate when it is found that a cell corresponding to the progeny expresses a specific differentiation trait.
  • adult stem cells refers to stem cells appearing in the stage of development or adult formation of each organ of the embryo as the process of development, which is generally limited to cells constituting specific tissues.
  • adult stem cells may be derived from the group consisting of breast, bone marrow, umbilical cord blood, blood, liver, skin, gastrointestinal tract, placenta, and uterus, and adult stem cells of the present invention may be adult stem cells other than neural stem cells. Can be.
  • the adult stem cells may be mesenchymal stem cells, but is not limited thereto.
  • "Mesenchymal stem cells” of the present invention is a cell that helps to create cartilage, bone, fat, myeloid epilepsy, muscle, nerves, skin, etc., in adults generally stay in the bone marrow, but umbilical cord, cord blood, peripheral blood, other tissues It means a cell which can also be obtained from the back. Specifically, it may be derived from a cell selected from the group consisting of umbilical cord, umbilical cord blood, bone marrow, fat, muscle, skin, amniotic membrane, and placenta, but is not limited thereto.
  • the mesenchymal stem cells of the present invention may be cord blood mesenchymal stem cells. May be, but is not limited thereto.
  • the isolated cells may be non-neuronal cells.
  • non-neuronal cell includes all differentiated or undifferentiated cells which are not neurons, and serve as target cells of the present invention.
  • the non-neuronal cells of the present invention may be cells derived from various animals such as humans, monkeys, pigs, horses, cows, sheep, dogs, cats, mice, and rabbits, and specifically, may be cells derived from humans, This does not limit the cells that can be reprogrammed to induced neural stem cells.
  • Sox2 and c- in non-neuronal fibroblasts (Example 1), Niemann-Pick disease-derived fibroblasts and cord blood-derived mesenchymal stem cells (Example 2) Neural stem cells were prepared by introducing Myc.
  • fibroblasts are representative examples of somatic cells
  • cord blood-derived mesenchymal stem cells are representative examples of adult stem cells
  • Sox2 and c-Myc are reprogramming inducers. It is shown that adult stem cells as well as somatic cells can be effectively reprogrammed into induced neural stem cells.
  • Sox2 gene of the present invention also called SRY (Sex determining region Y) -box2 gene, is known as a transcription factor essential for maintaining pluripotency in undifferentiated embryonic stem cells, and is a gene involved in self-replication of neural stem cells. Known.
  • the "c-Myc” gene of the present invention is one of the prototype cancer genes that encode DNA binding proteins in the nucleus and is involved in cell proliferation.
  • Sox2 gene and c-Myc gene or a protein expressed therefrom of the present invention includes all SOX2 and c-Myc derived from an animal such as human or rat, specifically may be Sox2 and c-Myc derived from human.
  • the protein expressed from the Sox2 and c-Myc genes of the present invention may include not only proteins having amino acid sequences of their wild type but also variants thereof.
  • Variants of Sox2 and c-Myc proteins include proteins whose sequences differ from the natural amino acid sequence of SOX2 and c-Myc and one or more amino acid residues by deletion, insertion, non-conservative or conservative substitution, or a combination thereof.
  • the variant may be a functional equivalent that exhibits the same biological activity as a natural protein or a variant in which the physical and chemical properties of the protein are modified as necessary, and may be a variant in which the structural stability to the physical and chemical environment is increased or the physiological activity is increased. .
  • Sox2 or c-Myc gene is a nucleotide sequence encoding a Sox2 or c-Myc protein in the form of a wild type of Sox2 or c-Myc protein or a variant as described above, one or more bases are substituted, deleted Can be mutated by means of insertion, insertion, or a combination thereof, and can be isolated from nature or prepared using chemical synthesis.
  • Sox2 and c-Myc genes are transcription factors that are very important in the production of induced pluripotent stem cells (iPSC), but the combination of Sox2 and c-Myc has not yet been used in the study of induced neural stem cell production through direct reprogramming. There is no successful case for the production of neural stem cells.
  • the nucleic acid molecule encoding the Sox2 protein and the nucleic acid molecule encoding the c-Myc protein of the present invention may each independently have a form contained in the expression vector.
  • the Sox2 protein or c-Myc protein may be a protein of a form expressed from a cell line in vitro using an expression vector comprising a nucleic acid molecule encoding them.
  • the expression vector may include a viral vector, a non-viral vector, a plasmid vector, a cosmid vector, and the expression vector may include a Baculovirus expression vector, a Mammalian expression vector, or a Bacterial expression vector. Mammalian cell lines or bacterial cell lines may be used, but this does not limit the expression vectors and cell lines available in the present invention.
  • expression vector refers to a gene construct that is capable of expressing a protein of interest in a suitable host cell and comprises an essential regulatory element operably linked to express the gene insert.
  • the expression vector of the present invention includes a signal sequence or leader sequence for membrane targeting or secretion in addition to expression control elements such as a promoter, an operator, an initiation codon, a termination codon, a polyadenylation signal, an enhancer, and may be variously prepared according to the purpose. .
  • the promoter of the expression vector may be constitutive or inducible.
  • the expression vector includes a selectable marker for selecting a host cell containing the vector and, in the case of a replicable expression vector, a replication origin. Expression vectors can be self-replicating or integrated into host DNA.
  • the viral vector may be a retrovirus, a lentivirus, for example, HIV (Human immunodeficiency virus), MLV (Murineleukemia virus), ASLV (Avian sarcoma / Leukosis), SNV (Spleen necrosis virus), Derived from RSV (Rous sarcoma virus), MMTV (Mouse mammary tumor virus), Adenovirus, Adeno-associated virus, Herpes simplex virus, Sendai virus, etc. It can contain one vector. In addition, more specifically, it may be an RNA-based viral vector, but is not limited thereto.
  • operably linked refers to the functional linkage of a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein of interest to perform a general function. Operative linkage with recombinant vectors can be prepared using genetic recombination techniques well known in the art, and site-specific DNA cleavage and ligation uses enzymes commonly known in the art and the like.
  • the nucleic acid molecule encoding the Sox2 or c-Myc protein may be messenger RNA (mRNA).
  • mRNA messenger RNA
  • the "step of introducing Sox2 and c-Myc” refers to an expression vector, mRNA encoding Sox2 or c-Myc protein, genetic modification, foreign expression gene introduction, treatment of a substance having an expression inducing effect, etc. It may be a method of increasing the expression level of the Sox2 and c-Myc genes and proteins expressed therefrom, but is not limited so long as it increases the expression level of the genes and proteins. In particular, introducing the gene may be a method of inducing expression of the gene under a desired time and condition.
  • the method of introducing the gene of step (a) into the cell can be used without limitation to provide nucleic acid molecules (DNA or RNA) to cells commonly used in the art.
  • a nucleic acid molecule encoding Sox2 and / or c-Myc protein can be operably linked in an expression vector and transferred into the cell, and can be delivered into the cell in the form of being inserted into the chromosome of the host cell.
  • the method of administering the Sox2 and / or c-Myc to the culture of the isolated cells or the method of direct injection into the isolated cells, the method of directly injecting mRNA encoding the Sox2 or c-Myc protein into the isolated cells, etc. May be used, but is not limited thereto.
  • the method of directly injecting the Sox2 and / or c-Myc into the isolated cells can be used by selecting any method known in the art, but is not limited thereto, microinjection (microinjection), electroporation (electroporation) ), Particle bombardment, direct muscle injection, insulator, and transposon method may be appropriately selected and applied.
  • a method of introducing Sox2 and / or c-Myc into an isolated cell may be by using a virus, and specifically, a virus in which a nucleic acid molecule encoding Sox2 protein and a nucleic acid molecule encoding c-Myc protein are respectively inserted.
  • the virus obtained from the packaging cells transformed with the vector may be introduced into Sox2 and / or c-Myc through a process of treating the culture medium of the isolated cells, but is not limited thereto.
  • the viral vector may be a vector derived from a retrovirus, lentivirus, adenovirus, adeno-associated virus, herpes simplex virus, Sendai virus, and the like, but is not limited thereto, and specifically, a retroviral vector may be used.
  • the packaging cells can be used to select a variety of cells known in the art depending on the viral vector used.
  • the method of introducing the virus may be a method of treating with a certain level of MOI.
  • MOI Multiplicity of infection
  • MOI represents the ratio of the inoculated virus amount to the number of cells inoculated with the virus, ie, the average number of virus particles infecting a single cell.
  • the use of this term is not limited to cases involving transduction, but instead includes the introduction of the vector into the host by means such as lipofection, microinjection, calcium phosphate precipitation, and electroporation.
  • the MOI value used to introduce Sox2 and c-Myc is greater than 0 to less than 20, greater than 0 to less than 15, greater than 0 to less than 10, greater than 0 to less than 5, greater than 0.5 to less than 10, greater than 0.5 and less than 5 , More than 0.5, less than 4, more than 0.5, less than 3, or more than 0.5, less than 2, MOI, specifically 1 MOI, but is not limited so long as it is within the range causing direct cross-differentiation into neural stem cells.
  • neural stem cells were prepared by treating the fibroblasts with c-Myc and Sox-2-encoding retroviral cells with MOI 1 (Example 1).
  • the method of introducing Sox2 and / or c-Myc into an isolated cell may be by using a non-viral vector, and specifically, a non-viral epi containing a nucleic acid molecule of Sox2 and / or c-Myc.
  • the som vector may be introduced into isolated cells.
  • the non-viral episomal vector of the present invention is a non-viral non-insertable vector and is known to have a characteristic of expressing a gene included in the vector without being inserted into a chromosome.
  • cells comprising episomal vectors include both cases where the episomal vector is inserted into the genome or is present in the cell without being inserted into the genome.
  • the method of introducing Sox2 and / or c-Myc into isolated cells may be to directly introduce mRNA of Sox2 or c-Myc into isolated cells.
  • the method of directly introducing the mRNA into an isolated cell can be used by selecting any method known in the art, but is not limited thereto.
  • step (b) of the present invention is a method of producing neural stem cells by inducing direct reprogramming from cells isolated from cells separated from cells by culturing the cells of step (a).
  • the term "lineage-converted cell” refers to a cell in which the intrinsic lineage characteristic of the cell has been changed into a cell type having a different lineage characteristic by changing genetically or artificially. To convert to a cell having a characteristic of a cell type that is completely different from the characteristic.
  • the present invention may be neural stem cells converted from non-neuronal cells through reprogramming.
  • reprogramming refers to a method of converting a cell into a desired cell by controlling a global gene expression pattern of a specific cell.
  • reprogramming refers to a method of artificially manipulating the fate of a cell and converting it into a cell having completely different characteristics.
  • the reprogramming is a vector containing a foreign gene or RNA or DNA. May be performed by introducing into a cell.
  • reprogramming may include, but is not limited to, dedifferentiation of cells, direct reprogramming or direct conversion, or direct cross-differentiation.
  • reprogramming factor refers to a gene (or polynucleotide encoding it), or a protein that can be finally or partially introduced into differentiated cells to induce reprogramming.
  • the reprogramming factor may vary depending on the cell of interest to which reprogramming is intended, and on the type of isolated cell from which reprogramming is induced. For example, in one embodiment of the present invention, by introducing only Sox2 and c-Myc, the initial cells were reprogrammed into induced neuronal stem cells, which are target cells, but the scope of the present invention is not limited to the reprogramming factor, and thus, neural stem cells are prepared. Reprogramming factors introduced when Sox2, c-Myc.
  • the reprogramming factor can be used to induce direct reprogramming into neural stem cells. Reprogramming using reprogramming genes regulates the entire gene expression pattern of the cells and induces the conversion to the cells of interest. Therefore, the reprogramming genes are introduced into the cells, and the cells are cultured for a certain period of time. The initial cell can be reprogrammed with the target cell having the gene expression pattern of the cell.
  • the "direct reprogramming" of the present invention is differentiated from the technology of producing induced pluripotent stem cells having pluripotency through the reprogramming process, and is a technology of directly inducing direct conversion to a desired target cell through reprogramming culture.
  • Existing somatic cell nuclear transfer has the disadvantage of using an egg, which is less useful than other cell reprogramming techniques, and when induced pluripotent stem cell reprogramming technology is inherently passed through pluripotent stem cells, There is a disadvantage that it needs to be verified whether or not it remains and ensures safety.
  • the present invention is expected to provide an alternative that can overcome the problems of the above technology, such as production time, cost, efficiency and safety by directly producing neural stem cells, which are target cells, through direct reprogramming.
  • direct reprogramming may be mixed with direct dedifferentiation, direct differentiation, direct conversion, direct cross-differentiation, cross-differentiation and the like.
  • direct reprogramming may refer to direct reverse differentiation or cross differentiation into neural stem cells.
  • the "induced neural stem cell (iNSC)" of the present invention is similar to neural stem cells using reprogramming from differentiated cells existing in different aspects, such as non-differentiating cells or cells with partial differentiation ability. It includes cells made in such a way as to establish undifferentiated stem cells with the same multipotency. Induced neural stem cells have the same or similar characteristics as neural stem cells, specifically, show similar cell morphology, gene and protein expression patterns are similar, and may have multipotent ability in and out of the body. Therefore, the induced neural stem cells of the present invention may be capable of differentiating into various neurons such as neurons (nerve cells), astroglia (astrocytes), oligodendrocytes, GABA-like neurons or dopaminergic neurons.
  • the term “nerve stem cell” of the present invention has the same meaning as "derived neural stem cell” unless otherwise indicated, and has been used interchangeably.
  • neural stem cells prepared according to the method of the present invention can differentiate into neurons, astrocytes and oligodendrocytes (Example 1).
  • safety was confirmed through the mutation of the p53 gene did not occur in the prepared neural stem cells (Example 3).
  • neural stem cell prepared according to the above method.
  • the neural stem cells are as described above.
  • Neural stem cells prepared in the present invention may be differentiated into one or more neurons selected from the group consisting of neurons, astrocytes and oligodendrocytes, but is not limited thereto.
  • Another aspect of the present invention provides a cell therapeutic agent comprising the neural stem cells prepared according to the above method as an active ingredient.
  • the neural stem cells are as described above.
  • the term "cell therapeutic agent” refers to a medicine (US FDA regulation) used for the purpose of treatment, diagnosis, and prevention of cells and tissues prepared through isolation, culture, and special manipulation from an individual. Means a medicine used for the purpose of treatment, diagnosis and prevention through a series of actions, such as proliferating and screening the living autologous, allogeneic, or heterologous cells in vitro or by altering the biological characteristics of the cells in order to restore.
  • the cell therapy agent of the present invention may include, but is not limited to, 1.0 ⁇ 10 to 1.0 ⁇ 10 9 cells per ml.
  • the cell therapy of the invention can be used unfrozen or frozen for future use. If it is to be frozen, standard cryopreservatives (eg DMSO, glycerol, Epilife cell freezing medium (Cascade Biologics)) can be added to the cell population before freezing.
  • standard cryopreservatives eg DMSO, glycerol, Epilife cell freezing medium (Cascade Biologics)
  • the cell therapy agent may be administered in a unit dosage form suitable for administration in the body of a patient according to a conventional method in the pharmaceutical field, and the agent may be administered in an effective dosage by one or several administrations. Include.
  • Suitable formulations for this purpose can be used as parenteral formulations, injections such as ampoules for injection, injections such as infusion bags, sprays such as aerosol formulations and the like.
  • the injection ampoule may be mixed with the injection solution immediately before use, and physiological saline, glucose, mannitol, Ringer's solution, etc. may be used as the injection solution.
  • Infusion bags may also be made of polyvinyl chloride or polyethylene, and include Baxter, Becton ickinson, Medcep, National Hospital Products, or Terumo.
  • the injection bag of the yarn can be illustrated.
  • the cell therapy product includes one or more pharmaceutically acceptable conventional inert carriers such as preservatives, analgesics, solubilizers or stabilizers in the case of injections, and in the case of formulations for topical administration , Excipients, lubricants or preservatives.
  • pharmaceutically acceptable conventional inert carriers such as preservatives, analgesics, solubilizers or stabilizers in the case of injections, and in the case of formulations for topical administration , Excipients, lubricants or preservatives.
  • the cell therapeutic agent of the present invention thus prepared may be administered with other stem cells used for transplantation and other uses or in the form of a mixture with such stem cells using administration methods commonly used in the art. It is possible, but not limited to, to engraft or implant directly at the disease site of the patient in need or to implant or inject directly into the abdominal cavity.
  • the administration can be both non-surgical administration using a catheter and surgical administration methods such as injection or transplantation after dissection of the disease site.
  • parenteral administration for example, in addition to direct lesions, transplantation by intravascular injection, which is a general method of hematopoietic stem cell transplantation, is also possible according to a conventional method.
  • the cell therapy agent may be administered once or in divided doses.
  • the actual dosage of the active ingredient should be determined in light of several relevant factors such as the disease to be treated, the severity of the disease, the route of administration, the patient's weight, age and gender, and therefore, the dosage may be It does not limit the scope of the present invention in terms of aspects.
  • prophylaxis includes all actions of inhibiting or delaying the onset of neuronal damage disease by administration of the composition.
  • treatment includes all actions that improve or benefit from the symptoms of neuronal cell damage by administration of the composition.
  • Another aspect of the invention provides a pharmaceutical composition for preventing or treating neuronal cell damage disease, comprising the neural stem cells prepared according to the above method as an active ingredient.
  • the neural stem cells are as described above.
  • neuronal cell damage disease is a disease caused by neuronal transformation, loss, and the like, Parkinson's disease, Alzheimer's disease, Pick's disease, Huntington's disease (Huntington's disease), muscular dystrophy ( amyotriophiclateral sclerosis, ischemic brain disease, stroke, demyelinating disease, multiple sclerosis, epilepsy, neurodegenerative disease, spinal cord injury, etc., but are not limited to the above examples.
  • composition may comprise a pharmaceutically acceptable carrier.
  • the "pharmaceutically acceptable carrier” may refer to a carrier or diluent that does not interfere with the biological activity and properties of the compound to be injected without stimulating the organism.
  • the kind of the carrier usable in the present invention is not particularly limited, and any carrier can be used as long as it is a conventionally used and pharmaceutically acceptable carrier in the art.
  • Non-limiting examples of the carrier include saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol and the like. These may be used alone or in combination of two or more thereof.
  • composition comprising a pharmaceutically acceptable carrier may be in various oral or parenteral formulations.
  • diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrating agents, and surfactants are usually used.
  • solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and such solid preparations include at least one excipient such as starch, calcium carbonate, sucrose, lactose in the compound. , Gelatin and the like can be mixed.
  • excipients such as starch, calcium carbonate, sucrose, lactose in the compound. , Gelatin and the like can be mixed.
  • lubricants such as magnesium stearate, talc can also be used.
  • Oral liquid preparations include suspensions, solvents, emulsions, and syrups.In addition to commonly used simple diluents such as water and liquid paraffin, various excipients such as wetting agents, sweeteners, fragrances, and preservatives may be included. have.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations and suppositories.
  • non-aqueous solvent and suspending agent propylene glycol, polyethylene glycol, vegetable oils such as olive oil, injectable esters such as ethyl oleate and the like can be used.
  • base of the suppository utopsol, macrogol, tween 61, cacao butter, laurin butter, glycerogelatin and the like can be used.
  • the present invention provides a method for preventing or treating a neuronal cell damage disease, comprising administering the pharmaceutical composition for preventing or treating the neuronal cell disease.
  • the neural stem cells are as described above.
  • composition may be administered in a pharmaceutically effective amount.
  • the "pharmaceutically effective amount” means an amount sufficient to treat the disease at a reasonable benefit / risk ratio applicable to medical treatment, and the effective dose level is the type of subject and its severity, age, sex, type of virus infected, drug Activity, sensitivity to drug, time of administration, route of administration and rate of release, duration of treatment, factors including concurrent use of drugs, and other factors well known in the medical arts.
  • the administration means introducing the composition of the present invention to the patient in any suitable way, and the route of administration of the composition can be administered via any general route as long as it can reach the target tissue.
  • Intraperitoneal administration intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, intranasal administration, but is not limited thereto.
  • composition of the present invention may be administered daily or intermittently, and the number of administrations per day may be administered once or divided into two or three times.
  • the frequency of administration in the case where the two active ingredients are single drugs may be the same or different times.
  • the compositions of the present invention can be used alone or in combination with other drug treatments for the prevention or treatment of neuronal cell damage diseases. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect in a minimum amount without side effects, and can be easily determined by those skilled in the art.
  • the subject includes all humans, including monkeys, cows, horses, sheep, pigs, chickens, turkeys, quails, cats, dogs, mice, rats, rabbits or guinea pigs, who may or may have developed neuronal cell disease. Means. If the pharmaceutical composition of the present invention can be effectively prevented or treated by administering to the subject, any kind of subject is included without limitation.
  • the neural stem cells produced by direct reprogramming can be differentiated into various kinds of neurons
  • the neural stem cells of the present invention can be used as a therapeutic agent for various neuronal cell damage diseases have.
  • the neural stem cells or neural cells differentiated therefrom prepared according to the method of the candidate material by treating the neural stem cells or neural cells differentiated therefrom prepared according to the method of the candidate material, identifying a therapeutic agent for neurological diseases tailored to the individual from which the neural stem cells are derived.
  • identifying a therapeutic agent for neurological diseases tailored to the individual from which the neural stem cells are derived to provide a method for screening a therapeutic agent for personalized neurological diseases.
  • a personalized neurological disease treatment agent in order to select a personalized neurological disease treatment agent according to the constitution or environment of an individual patient, by treating a candidate substance to a neural stem cell or a differentiated neuronal cell prepared by the method of the present invention, By confirming the change in the mechanism and the expression change of the protein and the like, it is possible to confirm and verify whether the isolated cells used to generate the neural stem cells can be a customized neurological disease treatment agent for the individual from which the stem cells are derived. .
  • Retroviruses for overexpressing hc-Myc and hSox-2 in somatic cells were prepared.
  • hcMyc and hSOX-2 were introduced into a pMX retroviral vector, a retroviral expression vector, to prepare pMXs-hc-MYC and pMXs-hSOX2, respectively (FIG. 1A).
  • hcMyc or hSOX-2 retroviruses for the introduction of hcMyc or hSOX-2 were prepared using the pMXs-hc-MYC and pMXs-hSOX2 vectors prepared above. Specifically, 24 ul Convoy, pMXs-hc-Myc or pMXs-hSox-2 4 ug, VSV-G 2 ug and Gag-Pol 2 ug were mixed in phosphate buffered saline (PBS) and allowed to stand at room temperature for 10 minutes. . The mixture was then added to 2 ⁇ 10 6 293FT cells attached to a 100 mm cell culture dish and transfected at 37 ° C. 5% CO 2 conditions for one day. In addition, the pMXs-GFP vector was transfected under the same conditions for titration. Virus soup generated after transfection was collected at 24, 48 and 72 hours after transfection, respectively, and stored at 4 ° C.
  • Retro-X concentrator (Clontech) was added to 1/3 of the virus soup and incubated at 4 °C for one day. After 24 hours the mixture was centrifuged at 4,000 rpm at 4 ° C. for 60 minutes. After centrifugation, the soup was discarded, the retroviral pellet was suspended in PBS, aliquoted, and stored at -80 ° C until use.
  • GFP retroviruses enriched in 5 ⁇ 10 5 293FT cells seeded in 6-well plates were transduced overnight (50, 5, 0.5, 0 ul, respectively). Two days later, the percentage of GFP expressing cells in the cells was analyzed using a flow cytometer. Titers were calculated by introducing them into the formula shown in FIG. 1D using results within 1-20% (FIGS. 1B-1D).
  • Example 1-2 Confirmation of the production of induced neural stem cells according to the difference in the MOI value of Sox2 and c-Myc retrovirus
  • Example 1-1 By Sox2 and c-Myc retroviruses prepared in Example 1-1 it was confirmed whether the induced neural stem cells can be prepared using human fibroblasts.
  • Example 1-1 the hSOX-2 introduction retrovirus prepared in Example 1-1 was treated with MOI 1, and the hcMyc introduction retroviruses were prepared with MOI 1, 5 and 10, respectively, in order to prepare induced nerve stem cells (iNSC). Treatment with blasts induced direct reprogramming.
  • MOI 1 induced nerve stem cells
  • Example 1-1 Specifically, 1.25 ⁇ 10 4 human fibroblasts were plated on 24-well tissue culture plates the day before retroviral transduction. The next day, Sox2 and c-Myc retroviruses prepared in Example 1-1 were added to the cells with a defined MOI and spinfected at 800xg for 60 minutes at 20 ° C. After spinfection, the cells were cultured in DMEM / F12 containing 20% (v / v) FBS (fetal bovine serum) and 1X primocin.
  • DMEM / F12 20% (v / v) FBS (fetal bovine serum) and 1X primocin.
  • the cells were seeded by 5 10 3 cells in a 6-well plate coated with poly L-ornithine / Fibronectin. After seeding, the cells were attached to the plate on day 5 and replaced with iNSC medium (1X supplement, 1X primocin, 20 ng / ml bFGF, Stempro NSC medium with 20 ng / ml EGF). Medium exchange was performed every 2 days. On 14-21 days after starting the culture in the iNSC medium, the iNSC colonies were mechanically picked to continue the culture on the poly L-ornithine / Fibronectin coated plate. The iNSC in culture in the attached state for neurosphere culture was detached using accutase and suspended in Petri dish to form neurosphere.
  • direct cross-differentiation efficiency was analyzed by the proportion of cells positive for CD133, an NSC marker. Specifically, 1 ⁇ 10 5 to 1 ⁇ 10 6 cells were suspended in 100 ul of PBS. Then, after mixing 3 ul of antibody with Fluorescein isothiocyanate (FITC) bound to the cells, binding was induced for 30 minutes at room temperature in a light-blocked space. The antibody used is anti-CD133 / 1-VioBright / FITC (Miltenyi Biotec). After washing with 3 ml of PBS, the cells were subjected to flow cytometry using MACSQuant VYB (Miltenyi Biotec). As a result, the difference was 0.2-0.5% for each batch of hDF (FIG. 2F).
  • FITC Fluorescein isothiocyanate
  • qRT-PCT was performed to confirm the transcriptional expression level of p53.
  • mRNA was isolated from the cell pellet using PureLink RNA Mini Kit (Invitrogen), and cDNA was synthesized from the mRNA isolated using AccuPower RT Premix (Bioneer).
  • the cDNA, PowerUp SYBR Green Master Mix (Appliedbiosystems), p53 forward and reverse primers (SEQ ID NOs: 19 and 20) and distilled water were mixed to make 20 ul, and the PCR reaction was performed using Quant Studio3 (Appliedbiosystems), p53 gene. The relative fold value of was calculated.
  • Example 1-3 Direct Cross-Differentiation Confirmation Without Steps Having Starch Capacity
  • the reprogramming factor was introduced in four combinations except one of hOct-4, hSox-2, hc-Myc and hKlf-4. Thereafter, the cells were incubated in DMEM / F12 containing 20% (v / v) FBS for 3 days. On day 3, STO feeder cells were passaged to seeded tissue culture plates. Thereafter, the medium was changed daily with iPSC medium (DMEM / F12, 20% serum replacement, 1 ⁇ primocin, 4 ng / ml bFGF) until 5-21 days. Alkaline phosphatase staining was performed on day 21 and the reprogramming efficiency was quantified by counting the number of alkaline phosphatase positive colonies.
  • DMEM / F12 20% serum replacement, 1 ⁇ primocin, 4 ng / ml bFGF
  • alkaline phosphatase-positive colonies were cultured under iPSC reprogramming conditions in which cells containing any combination of one of the reprogramming 4 factors (hOct-4, hSox-2, hc-Myc, and hKlf-4; OSMK) were introduced under iPSC reprogramming conditions.
  • hOct-4, hSox-2, hc-Myc, and hKlf-4; OSMK reprogramming 4 factors
  • Example 1-4 Confirmation of multipotency of the prepared induced stem cells
  • hDF-iNSC prepared by the method of the present invention has neural stem cell characteristics, and the proliferative and differentiating ability of the cells was confirmed.
  • Example 1-2 Specifically, through the qRT-PCR experiment described in Example 1-2, the hDF-iNSC prepared in Example 1-2 overexpressed the neural stem cell specific markers endogenous Sox2, Nestin, Pax6 at the transcription level It was confirmed (FIG. 5A).
  • the immunostaining method was confirmed that neural stem cell specific markers are overexpressed at the protein level.
  • the immunostaining method was performed by the following procedure. First, anti-Nestin (Abcam) and anti-PAX6 (BioLegent) primary antibodies (1: 100), respectively, for the purpose of experiments on the hDF-iNSC, which have been fixed, permeabilized, and blocked. Was treated at 4 ° C. for one day. The next day, after washing with PBS, Alex Fluor 488 goat anti-mouse (Invitrogen), Alex Fluor 594 goat anti-mouse (Invitrogen), Alex Fluor 594 goat anti-rabbit (Invitrogen) secondary antibody (1 each) : 1,000) was treated for 2 hours at room temperature.
  • the cells prepared in the present invention are reprogrammed into neural stem cells.
  • the proliferative and differentiating ability of the prepared hDF-iNSC was measured. Specifically, spontaneous differentiation of iNSC was induced by culturing for 3 weeks in bFGF / EGF-free iNSC medium. Medium exchange was performed every 2-3 days, the culture was performed at 37 °C 5% CO 2 conditions. The differentiated cells were confirmed the transcription level of MAP2, GFAP and Olig1 by the qRT-PCR method described in Example 1-1. As a result, the prepared hDF-iNSC showed self-renewal with a doubling time of about 21.3 h, and neurons and glial cells (astroglia and oligodendrocytes) by spontaneous differentiation. It was confirmed that it has a multipotential which can be differentiated into (FIGS. 5C and 5D).
  • Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC) to confirm whether the somatic-derived induced neural stem cell manufacturing method identified in Example 1 can be generally applied to various somatic cells in addition to human fibroblasts.
  • human Niemann-Pick Type C disease derived dermal fibroblasts hNPCDF.
  • anti-HLA-ABC anti-HLA-DR
  • anti-CD34 anti-CD34
  • anti-CD45 anti-CD73
  • flow cytometry performed in Examples 1-2 using anti-CD105 (BD) antibodies.
  • the hUCB-MSC showed a typical MSC specific marker expression pattern with HLA-ABC +, HLA-DR-, CD34-, CD45-, CD73 +, and CD105 + (FIG. 6A). It was confirmed that the mesenchymal stem cells have the characteristics.
  • Example 1-1 by performing the qRT-PCR experiment described in Example 1-1, it was confirmed that the hUCB-MSC-iNSC prepared above expressed NSC-specific markers endogenous Sox2, Nestin, Pax6, and differentiated into neuron-like forms. 6 (d) and 6e), the cells were reprogrammed directly into induced neuronal stem cells and have differentiation potential into neurons.
  • Example 1 the induced neural stem cell manufacturing method of Example 1 is also applied to hUCB-MSC.
  • the hNPCDF which is the subject of experiment, has a point mutation in the NPC1 gene, and isoleucine of the NPC1 protein is replaced with threonine (FIG. 7A). That is, somatic cells in which mutations exist in a gene of human fibroblasts.
  • Example 2 As a result of treating retroviruses with MOI 1 as in Example 1 for introducing hc-Myc and hSox-2 into the cells, the hNPCDFs were directly cross-differentiated with an efficiency of about 1.3% to give a morphology similar to that of neural stem cells ( 7b and 7c).
  • the qRT-PCR experiments described in Example 1-2 confirmed that hNPCDF-iNSC expressed NSC-specific markers Nestin and Pax6, and conversely, fibroblast markers COL1A2 and S100A4 did not. 7d and 7e), which confirmed that hNPCDF can also be reprogrammed into neural stem cells and its efficiency.
  • the prepared hNPCDF-iNSC was differentiated through an immunostaining method (described in Examples 1-3) using anti-Olig2 (Millipore) and anti-Tuj 1 (Abcam) primary antibodies (1: 100, respectively). As a result, it was confirmed that the neuron and glia (oligodendrocyte) differentiation (Fig. 7f), the hNPCDF-iNSC also has a differentiation capacity.
  • Example 3 verification of the stability of the prepared induced stem cells
  • gDNA was isolated from hDF-iNSC using AccuPrep Genomic DNA Extraction Kit (Bioneer). PCR amplification was performed using AccuPower PCR Premix (Bioneer), p53 forward and reverse primers shown in Table 1 (SEQ ID NOs: 19 and 20), and Genetouch Thermal Cycler (Hanzhou bioer technology) as a template. After the PCR was confirmed whether the gene amplification by gel electrophoresis (Mupid) (Fig. 8b), the PCR product was purified using a MEGAquick-spin plus fragment DNA purification kit (iNtRON). The purified PCR product was sequencing in macrogen (Seoul, Korea) with the forward primer (SEQ ID NO: 19) used for PCR (Fig. 8c).
  • iNtRON MEGAquick-spin plus fragment DNA purification kit
  • PCR products were cloned using TOPcloner TA Kit (Enzynomics), and transformed into DH5a chemically competent E. coli (Enzynomics) using a heat shock method.
  • the transformed E. coli was plated on LB Agar LOP plate (Narae biotech) and incubated at 37 ° C. for one day. The next day 10 colonies were incubated for one day at 37 ° C. in LB broth (Gibco). Thereafter, plasmids were isolated from E. coli grown using AccuPrep Plasmid Mini Extraction Kit (Bioneer), and sequencing was performed in macrogen (Seoul, Korea). As a result, no mutation of the p53 gene was observed in all 10 individually sequenced sequences (FIG. 8D).
  • the induced neural stem cells produced by the method of the present invention is genetically stable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Neurology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Neurosurgery (AREA)
  • Developmental Biology & Embryology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • General Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Pathology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention relates to a method for generating neural stem cells induced from non-neural cells through direct reprogramming and a use thereof. Because the method for generating induced neural stem cells according to the present invention allows the generation of induced neural stem cells from non-neural cells even when only the two inducing factors Sox2 and c-Myc are used, the method can generate induced neural stem cells more effectively than conventional generation methods using four or five inducing factors. The induced neural stem cells generated by the method exhibit excellent differentiation potency and proliferation activity and thus can be applied to therapeutic purposes in future.

Description

Sox2, c-Myc를 이용하여 비신경 세포로부터 직접 리프로그래밍된 유도신경줄기세포를 제조하는 방법Method for preparing induced neuronal stem cells directly reprogrammed from non-neuronal cells using Sox2, c-Myc
본 발명은 직접 리프로그래밍을 통한 비신경 세포로부터 유도된 신경줄기세포 제조 방법 및 이의 용도에 관한 것이다.The present invention relates to a method for producing neural stem cells derived from non-neuronal cells via direct reprogramming and use thereof.
전체로 분화능을 갖는 세포로서, 이는 신체에서 상이한 세포 유형 모두를 생성시킬 수 있다. 수정란 세포는 전능줄기세포의 일례이다. 만능줄기세포는 3개의 주요 배엽 또는 배아 그 자체로부터 유래하는 신체에서 임의의 세포 유형을 생성시킨다.As a cell with a totally differentiating capacity, it can produce all of the different cell types in the body. Fertilized egg cells are an example of pluripotent stem cells. Pluripotent stem cells produce any cell type in the body derived from the three main germ layers or the embryo itself.
배아줄기세포(ESC)와 같은 만능줄기세포는 만능성, 즉 다양한 세포 유형으로 분화하는 능력을 유지하면서 신속히 증식하기 때문에 상기 배아줄기세포는 세포 이식 치료에 대해 유용하게 이용될 수 있다. 지금까지 만능줄기세포는 주로 핵 이식 및 세포 융합에 의해 생성되었다(Philos Trans R Soc Lond B Biol Sci. 363(1500): 2079-2087). 그러나, 상기 두 방법 모두는 배아줄기세포를 사용하기 때문에 연구 및 치료용 모두에 있어서 윤리적 딜레마(ethical dilemma)가 제기된다. Pluripotent stem cells such as embryonic stem cells (ESC) can be useful for cell transplantation treatments because they proliferate rapidly while maintaining pluripotency, ie the ability to differentiate into various cell types. To date, pluripotent stem cells have been produced mainly by nuclear transplantation and cell fusion (Philos Trans R Soc Lond B Biol Sci. 363 (1500): 2079-2087). However, because both methods use embryonic stem cells, an ethical dilemma arises for both research and treatment.
최근 유도 만능줄기세포(induced, pluripotent stem cell, iPSC)를 발견함에 따라 배아줄기세포를 사용함에 따른 이러한 문제점을 극복할 수 있게 되었다. "유도 만능줄기세포(iPSC)"는 배아줄기세포(ESCs)와 비슷한 특성을 나타내는 세포이다. 유도 만능줄기세포는 2006년에 마우스 섬유아세포(Cell 126: 663-676 (2006)) 및 2007년에는 인간 섬유아세포(Science 318: 1917-1920 (2007),)로부터 지정 인자(defined factor)들의 발현을 증대시킴으로써 최초로 생성되었다. 이들 연구에서는 성숙한 체세포의 iPSC로의 리프로그래밍을 개시하기 위해 Oct-3/4, Sox2, Klf4 및 c-Myc를 포함하고; Oct4, Sox2, Nanog 및 Lin28을 사용하였다. 그러나, iPSC는 배아줄기세포에서처럼 테라토마(teratoma)라는 암이 발생함과 동시에 생체에 이식시 분화조절이 잘 되질 않아, 원하는 세포로의 생체 내 전환이 되지 않는다는 한계를 가지고 있다.Recently, the discovery of induced pluripotent stem cells (iPSC) has been able to overcome these problems by using embryonic stem cells. "Induced pluripotent stem cells (iPSCs)" are cells that exhibit properties similar to embryonic stem cells (ESCs). Induced pluripotent stem cells expressed expression of defined factors from mouse fibroblasts (Cell 126: 663-676 (2006) in 2006) and human fibroblasts (Science 318: 1917-1920 (2007), in 2007). Was first created by augmenting These studies included Oct-3 / 4, Sox2, Klf4 and c-Myc to initiate reprogramming of mature somatic cells into iPSCs; Oct4, Sox2, Nanog and Lin28 were used. However, iPSC has a limitation in that it does not control the differentiation of cells into teratoma as well as differentiation when transplanted into a living body, as in embryonic stem cells.
따라서, 이러한 한계를 극복하기 위해 최근에는 직접적인 유도법 또는 직접 리프로그래밍법(Direct Conversion/reprograming)을 통해 특정 lineage의 세포로 분화시키는 기술이 주목받고 있다. 해당 기술은 완전히 분화가 끝난 세포, 즉, 섬유아세포에 특정 lineage 특이 유전자 등을 도입하여 전분화능(pluripotent) 상태를 거치지 않고 직접 특정세포를 유도하는 기술로 전분화능 세포의 종양 형성(teratoma) 위험을 배제할 수 있는 기술이다.Therefore, in order to overcome these limitations, recently, a technique for differentiating cells of a specific lineage through direct induction or direct reprogramming has been attracting attention. This technology introduces specific lineage-specific genes into fully differentiated cells, ie, fibroblasts, and directly induces specific cells without undergoing a pluripotent state, thereby reducing the risk of teratoma in pluripotent cells. It is a technology that can be excluded.
특히 한번 손상되면 영구적인 데미지를 받을 수 있는 신경세포의 경우 세계 여러 연구진들이 활발하게 직접 리프로그래밍을 시도하였다. 하지만 자기재생능 없는 유도 신경세포(induced neurons)는 체외에서 일정기간 이상 배양이 어렵고 따라서 충분한 양의 세포를 확보할 수 없기 때문에 직접 리프로그래밍에 관여하는 분자 세포학적 메커니즘을 비롯하여 세포치료에 필요한 충분한 양의 세포를 얻어내는 것이 현실적으로 불가능하다. Especially in the case of neurons that can be permanently damaged once damaged, researchers around the world have actively tried to reprogram them. However, induced neurons without self-renewal are difficult to cultivate in vitro for a certain period of time and thus cannot obtain a sufficient amount of cells, and thus sufficient amounts for cell therapy, including molecular cytological mechanisms involved in direct reprogramming. It is practically impossible to obtain cells.
본 발명자들은 유전적으로 안전하면서도 우수한 분화능을 갖는 유도신경줄기세포를 제조하는 방법을 개발하고자 예의 노력한 결과, Sox2 및 c-Myc가 포함된 바이러스의 MOI를 정밀하게 조절하여 Sox2 및 c-Myc의 도입만으로도 유도신경줄기세포를 제조할 수 있다는 사실을 발견하였으며, 제조된 유도신경줄기세포의 안정성 및 분화능을 확인함으로써 본 발명을 완성하였다.The present inventors have made diligent efforts to develop a method for producing induced neuronal stem cells that are genetically safe and have an excellent differentiation ability. Thus, the present invention precisely regulates the MOI of a virus including Sox2 and c-Myc, thereby inducing only the introduction of Sox2 and c-Myc. It has been found that neural stem cells can be prepared, and the present invention has been completed by confirming the stability and differentiation ability of the induced neural stem cells.
본 발명의 하나의 목적은 (a) 분리된 세포에 Sox2 및 c-Myc을 도입하는 단계; 및 (b) 상기 (a)단계의 세포를 배양하여 분리된 세포로부터 계통이 전환된 세포로 직접 리프로그래밍을 유도하는 단계를 포함하는, 신경줄기세포 제조방법을 제공하는 것이다.One object of the invention is (a) introducing Sox2 and c-Myc into isolated cells; And (b) culturing the cells of step (a) to induce direct reprogramming from the isolated cells to the cells into which the strain is converted.
본 발명의 다른 목적은 상기 방법에 따라 제조된 신경줄기세포를 제공하는 것이다.Another object of the present invention to provide a neural stem cell prepared according to the above method.
본 발명의 또 다른 목적은 상기 방법에 따라 제조된 신경줄기세포를 유효성분으로 포함하는, 세포치료제를 제공하는 것이다.Still another object of the present invention is to provide a cell therapy agent comprising the neural stem cells prepared according to the above method as an active ingredient.
본 발명의 또 다른 목적은 상기 방법에 따라 제조된 신경줄기세포를 유효성분으로 포함하는, 신경계질환 치료 또는 예방용 약학적 조성물을 제공하는 것이다.Still another object of the present invention is to provide a pharmaceutical composition for treating or preventing neurological diseases, including neural stem cells prepared according to the above method as an active ingredient.
본 발명의 또 다른 목적은 상기 방법에 따라 제조된 신경줄기세포 또는 이로부터 분화된 신경세포에 후보물질을 처리하여, 상기 신경줄기세포가 유래된 개체에 맞춤형인 신경계질환 치료제를 확인하는 단계를 포함하는, 개인 맞춤형 신경계 질환 치료제의 스크리닝 방법을 제공한다.Another object of the present invention comprises the step of identifying a therapeutic agent for neurological diseases tailored to the individual from which the neural stem cells are derived, by treating a candidate material with neural stem cells or neural cells differentiated therefrom prepared according to the above method. Methods of screening for personalized neurological disease therapies are provided.
본 발명의 유도신경줄기세포의 생산 방법은 유도 인자로서 Sox2와 c-Myc의 2개 유도인자만을 이용하여도 비신경 세포로부터 유도 신경줄기세포를 제작할 수 있기 때문에, 기존의 4개의 인자, 5개의 유도인자를 이용한 생산 방법보다 더 효율적으로 유도 신경 줄기세포를 제작할 수 있으며, 상기 방법으로 제조된 유도신경줄기세포는 분화능 및 증식능이 우수한 바, 이를 향후 치료목적으로 활용할 수 있다.In the method of producing induced neuronal stem cells of the present invention, since induced neural stem cells can be produced from non-neuronal cells using only two inducers of Sox2 and c-Myc as inducers, there are four factors and five inducers. Induced neural stem cells can be produced more efficiently than the production method using the induced neural stem cells prepared by the method is excellent in the differentiation and proliferative capacity, it can be used for future therapeutic purposes.
도 1은 hc-Myc 및 hSox-2를 과발현시키기 위한 레트로바이러스 벡터 및 그 제작 과정을 나타낸 것이다. 도 1a는 pMX 벡터에 hc-Myc 및 hSox2를 도입한 구조를 도식화한 것이다. 도 1b, 1c, 1d는 인간 섬유아세포(hDF)에 hSox2 및 hc-Myc를 도입하기 위한 레트로바이러스 벡터 제작 및 그 역가 조정 과정을 도식화한 것이다.Figure 1 shows a retroviral vector for the overexpression of hc-Myc and hSox-2 and its manufacturing process. 1A is a schematic diagram of a structure in which hc-Myc and hSox2 are introduced into a pMX vector. Figures 1b, 1c, 1d is a schematic of the retroviral vector production and titer adjustment process for introducing hSox2 and hc-Myc into human fibroblasts (hDF).
도 2는 인간 섬유아세포(hDF)에 hSox2 및 hc-Myc를 처리한 결과를 나타낸 것이다. 도 2a는 hDF에 hSox2 레트로바이러스를 MOI 1로 처리하고, hc-Myc 레트로바이러스를 MOI를 각각 1, 5, 및 10으로 처리한 후 시간의 경과에 따라 형질도입된 세포의 수를 측정한 것이다. MOI가 5 또는 10인 경우에 비교하여, MOI가 1인 경우 세포의 수가 크게 증가한 것을 확인할 수 있다. 도 2b는 hDF에 hSox2 및 hc-Myc 레트로바이러스 벡터의 MOI를 1로 처리한 경우 hDF의 형태를 관찰한 것이다. 그 결과 유도신경줄기세포(iNSC)와 유사한 형태를 보이며 리프로그래밍이 일어났음을 확인할 수 있다. 도 2c는 hDF에 hSox2 및 hc-Myc를 MOI 1로 처리하여 제작된 iNSC(hDF-iNSC)를 배양한 결과이다. 부착시켜 배양하거나(attached culture), 배양액에 부유시키는 경우(suspension culture) 모두에서 배양이 가능한 것을 확인할 수 있다. 도 2d는 hDF-iNSC를 동결시킨 후, 다시 해동시킨 결과이다. 동결 및 해동 이후에도 iNSC의 특이적인 형태와 증식능을 유지하고 있음을 확인할 수 있다. 도 2e는 hDF-iNSC의 유전자 지문 분석 결과를 나타낸 것이다. 유전자 지문 분석 결과, 제작된 iNSC가 제작에 사용한 hDF로부터 유래하였음을 확인할 수 있다. 도 2f는 신경줄기세포의 마커인 CD133이 양성인 세포의 비율을 분석한 결과이다. 직접교차분화 효율을 비교분석한 결과 hDF 배치(batch) 별로 0.2-0.5% 의 차이를 보임을 확인할 수 있다.Figure 2 shows the results of treatment of hSox2 and hc-Myc in human fibroblasts (hDF). FIG. 2A shows the number of transduced cells over time after treatment of hSox2 retroviruses with MOI 1 and hc-Myc retroviruses with MOI 1, 5, and 10, respectively. As compared with the case where the MOI is 5 or 10, it can be seen that the number of cells increased significantly when the MOI was 1. Figure 2b shows the morphology of the hDF when treated with 1 MOI of hSox2 and hc-Myc retroviral vector in hDF. As a result, it was confirmed that reprogramming occurred in a form similar to induced nerve stem cells (iNSC). Figure 2c is the result of culturing iNSC (hDF-iNSC) prepared by treating hSox2 and hc-Myc with MOI 1 in hDF. It can be seen that the culture is possible in both the attached culture (attached culture), or the suspension culture (suspension culture). Figure 2d is the result of thawing again after freezing hDF-iNSC. It is confirmed that iNSC maintains its specific morphology and proliferative capacity even after freezing and thawing. Figure 2e shows the results of gene fingerprint analysis of hDF-iNSC. As a result of genetic fingerprint analysis, it can be confirmed that the manufactured iNSC is derived from the hDF used for the production. Figure 2f is the result of analyzing the ratio of cells positive for CD133, a marker of neural stem cells. As a result of comparative analysis of direct cross-differentiation efficiency, it can be seen that there is a difference of 0.2-0.5% by hDF batch.
도 3은 hSox2 및 hc-Myc의 MOI 값 변화에 따른 p53의 발현량을 측정한 것이다. 도 3a는 p53의 전사(transcription)수준을 나타낸 그래프로, MOI 1인 경우 대조군에 비해 p53의 발현량이 유의하게 증가하지 않는 반면, MOI 5 및 MOI 10인 경우 발현량이 유의하게 증가한 결과를 나타내고 있다. 도 3b는 p53 단백질의 발현 수준을 측정한 실험 결과로, p53 단백질 발현량이 MOI에 비례하여 증가하고 있음을 나타낸다.Figure 3 measures the expression level of p53 according to the change in the MOI value of hSox2 and hc-Myc. FIG. 3A is a graph showing the transcription level of p53. In the case of MOI 1, the expression level of p53 was not significantly increased compared to the control group, whereas in the case of MOI 5 and MOI 10, the expression levels were significantly increased. Figure 3b is an experimental result of measuring the expression level of p53 protein, indicating that the p53 protein expression amount is increased in proportion to the MOI.
도 4는 제작된 iNSC가 전분화능을 갖지 않음을 확인한 것이다. 도 4a는 hDF-iNSC의 Oct4 발현량을 확인한 그래프이다. Oct4의 전사 및 발현량이 인간 유도만능줄기세포(hiPSC)에 비해 낮은 것을 확인할 수 있다. (P < 0.01) 대표적인 전분화능 마커인 Oct4의 낮은 발현량을 확인함으로써, 전분화능을 갖는 단계를 거치지 않고 직접교차분화가 일어났음을 알 수 있다. 도 4b는 유전자를 도입한 세포를 iPSC 제조 시 이용되는 인자인 Oct4(O), Sox-2(S), c-Myc(M), Klf-4(K)의 존재 하에 배양한 결과이다. 본 연구팀의 실험 조건에서는 OSMK 중 1개라도 제외되면, 유전자가 도입된 세포를 iPSC 리프로그래밍이 일어나기 유리한 조건에서 배양하더라도 alkaline phosphatase positive colony가 전혀 형성되지 않았다. OSMK 중 hSox-2만 제외한 OMK 유전자를 체세포에 도입하였을때는 colony가 다수 형성되었지만 모두 alkaline phosphatase negative colony였다.4 confirms that the manufactured iNSC does not have pluripotency. Figure 4a is a graph confirming the amount of Oct4 expression of hDF-iNSC. It can be seen that the amount of transcription and expression of Oct4 is lower than that of human induced pluripotent stem cells (hiPSC). (P <0.01) By confirming the low expression level of Oct4, a representative pluripotency marker, it can be seen that direct cross-differentiation occurred without going through a step having pluripotency. Figure 4b is a result of culturing cells in the gene in the presence of Oct4 (O), Sox-2 (S), c-Myc (M), Klf-4 (K) factors that are used in the preparation of iPSC. When one of the OSMKs was excluded from the experimental conditions of the team, alkaline phosphatase positive colony was not formed at all even if the cells into which the gene was introduced were cultured under favorable conditions for iPSC reprogramming. When the OMK gene, except for hSox-2, was introduced into the somatic cells, many colonies were formed, but all were alkaline phosphatase negative colony.
도 5는 제조된 hDF-iNSC의 신경줄기세포 특성과 증식능 및 분화능을 확인한 것이다. 도 5a 및 5b는 신경줄기세포 특이적 마커인 Sox2, Nestin 및 Pax6을 전사 수준(5a) 및 단백질 수준(5b)에서 과발현하고 있음을 확인한 것이다. 이를 통해 hDF-iNSC가 신경줄기세포로 리프로그래밍되었음을 확인할 수 있다. 도 5c는 제조된 hDF-iNSC의 배가 시간(doubling time)을 측정한 것이다. 제조된 hDF-iNSC는 약 21.3h의 배가 시간을 보이며 자가 증식함을 확인할 수 있다. 도 5d는 제조된 hDF-iNSC의 MAP2, GFAP 및 Olig1 발현량을 측정한 것이다. MAP2는 신경돌기, GFAP는 성상세포 및 뇌실막세포(Ependymal cell)를 포함하는 중추신경계(CNS) 세포, Olig1은 희소돌기아교세포의 형성에 관여하는 유전자로, 제조된 hDF-iNSC의 다분화능(multipotency)을 확인할 수 있다.Figure 5 confirms the neural stem cell characteristics, proliferative capacity and differentiation capacity of the prepared hDF-iNSC. 5a and 5b confirm that overexpression of neuronal stem cell specific markers Sox2, Nestin and Pax6 at the transcription level (5a) and protein level (5b). This confirms that hDF-iNSC is reprogrammed into neural stem cells. Figure 5c is a measure of the doubling time (doubling time) of the prepared hDF-iNSC. The prepared hDF-iNSC shows a doubling time of about 21.3 h, and it can be seen that the cells multiply. Figure 5d is a measure of the amount of MAP2, GFAP and Olig1 expression of the prepared hDF-iNSC. MAP2 is a neurite, GFAP is a central nervous system (CNS) cell including astrocytes and Ependymal cells, Olig1 is a gene involved in the formation of oligodendrocytes, and the multipotency of the prepared hDF-iNSC )can confirm.
도 6은 인간 제대혈 유래 중간엽 줄기세포(human umbilical cord blood-derived mesenchymal stem cells: hUCB-MSC)에 Sox2 및 c-Myc를 MOI 1로 처리한 결과를 나타낸 것이다. 도 6a는 실험에 사용한 hUCB-MSC의 마커 패턴을 확인한 것이다. hUCB-MSC가 중배엽 줄기세포의 특성을 갖는다는 것을 확인할 수 있다. 도 6b는 hUCB-MSC에 hSox2 및 hc-Myc를 MOI 1로 처리한 경우 hUCB-MSC의 형태를 관찰한 것이다. hUCB-MSC가 iNSC와 유사한 형태를 보이며 리프로그래밍이 일어남을 확인할 수 있다. 도 6c는 제작된 hUCBMSC-iNSC의 직접교차분화 효율을 확인한 것이다. 1.0-2.4% 정도의 효율로 직접교차분화가 일어남을 확인할 수 있다. 도 6d는 제작된 hUCBMSC-iNSC에서 신경줄기세포 마커인 Sox2, Nestin, Pax6의 발현을 확인한 것으로, 신경줄기세포로 리프로그래밍이 일어났음을 확인할 수 있다. 도 6e는 hUCBMSC-iNSC가 뉴런 형태로 분화되고 있는 것을 관찰한 결과이다. 이를 통해 hUCBMSC-iNSC의 분화능을 확인할 수 있다.Figure 6 shows the results of treatment of Sox2 and c-Myc with MOI 1 in human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC). Figure 6a confirms the marker pattern of hUCB-MSC used in the experiment. It can be confirmed that hUCB-MSC has the properties of mesoderm stem cells. FIG. 6B shows the morphology of hUCB-MSC when hSox2 and hc-Myc were treated with MOI 1 in hUCB-MSC. hUCB-MSC is similar to iNSC and reprogramming can be seen. Figure 6c confirms the direct cross-differentiation efficiency of the produced hUCBMSC-iNSC. Direct cross-differentiation can be seen with an efficiency of 1.0-2.4%. Figure 6d confirms the expression of the neural stem cell markers Sox2, Nestin, Pax6 in the manufactured hUCBMSC-iNSC, it can be confirmed that reprogramming to the neural stem cells. 6E is a result of observing that hUCBMSC-iNSC is differentiated into a neuronal form. This can confirm the differentiation capacity of hUCBMSC-iNSC.
도 7은 인간 니만 피크병 C형 유래 피부 섬유아세포(Human Niemann-Pick Type C disease derived dermal fibroblasts: hNPCDF)에 Sox2 및 c-Myc를 MOI 1로 처리한 결과를 나타낸 것이다. 도 7a는 정상 hDF와 비교하여 실험에 사용한 hNPCDF의 유전자 변이 위치를 나타낸 것이다. 도 7b는 hNPCDF에 hSox2 및 hc-Myc를 MOI 1로 처리하여 iNSC와 유사한 형태를 나타냄을 확인한 것이다. 이를 통해 신경줄기세포로 리프로그래밍이 일어났음을 확인할 수 있다. 도 7c는 hNPCDF-iNSC의 콜로니 형성 비율을 나타낸 것으로, 직접교차분화 효율이 약 1.3%임을 확인할 수 있다. 도 7d 및 7e는 hNPCDF-iNSC에서 신경세포 특이적 마커인 Nestin과 Pax6의 발현량(도 7d) 및 섬유아세포 마커인 COL1A2 및 S100A4의 발현량(도 7e)를 확인한 것이다. hNPCDF-iNSC는 신경줄기세포인 H9NSC와 마찬가지로 신경세포 특이적 마커의 상대적 발현량은 높으면서도, 섬유아세포 마커의 상대적 발현량은 낮게 나타났다. 도 7f는 제조된 hNPCDF-iNSC의 분화능을 확인한 것이다. Tuj 1(Alexa 594)은 신경에 특이적으로 결합하는 항체로, 제조된 iNPCDF-iNSC가 신경세포로 분화하였음을 나타낸다. 또한 신경세포 분화에 관여하는 Olig2의 발현을 통해 제조된 iNPCDF-iNSC의 분화능을 확인할 수 있다.FIG. 7 shows the results of treatment of Sox2 and c-Myc with MOI 1 in human Niemann-Pick Type C disease derived dermal fibroblasts (hNPCDF). FIG. Figure 7a shows the position of the genetic mutation of the hNPCDF used in the experiment compared to the normal hDF. 7b shows that hSox2 and hc-Myc are treated with MOI 1 in hNPCDF to show a similar form to iNSC. This confirms that reprogramming to neural stem cells occurs. Figure 7c shows the colony formation rate of hNPCDF-iNSC, it can be seen that the direct cross-differentiation efficiency is about 1.3%. 7d and 7e confirm the expression levels of nestin and Pax6, which are neuronal markers (FIG. 7d), and the expression levels of COL1A2 and S100A4, which are fibroblast markers (FIG. 7e), in hNPCDF-iNSC. hNPCDF-iNSC, like H9NSC, a neural stem cell, had a high relative expression level of neuronal markers and a low expression level of fibroblast markers. Figure 7f confirms the differentiation capacity of the prepared hNPCDF-iNSC. Tuj 1 (Alexa 594) is an antibody that specifically binds to nerves, indicating that the prepared iNPCDF-iNSC differentiated into neurons. In addition, it is possible to confirm the differentiation ability of the prepared iNPCDF-iNSC through the expression of Olig2 involved in neuronal differentiation.
도 8은 제조된 hDF-iNSC의 유전적 안정성을 검증한 실험 결과를 나타낸 것이다. 도 8a는 제조된 hDF-iNSC의 핵형을 분석한 결과이다. 일반적인 핵형과 동일한 형태로, 이를 통해 제조된 hDF-iNSC가 거시적인 관점에서 유전적으로 안정함을 알 수 있다. 도 8b는 제조된 hDF-iNSC에서의 p53 genomic DNA의 PCR 증폭 결과이다. 일반 hDF와 동일한 증폭 정도를 보이고 있으며, 이를 통해 p53 대립유전자의 개수가 정상적임을 확인할 수 있다. 도 8c 및 도 8d는 p53 유전자의 돌연변이가 자주 일어나는 부위를 시퀀싱하여 정상 세포(hDF)와 비교한 결과이다. 이를 통해 hDF-iNSC에서 p53 돌연변이가 발생하지 않았음을 확인할 수 있다.Figure 8 shows the experimental results verifying the genetic stability of the prepared hDF-iNSC. Figure 8a is the result of analyzing the karyotype of the prepared hDF-iNSC. In the same form as the general karyotype, it can be seen that the prepared hDF-iNSC is genetically stable from a macroscopic point of view. Figure 8b is the result of PCR amplification of p53 genomic DNA in the prepared hDF-iNSC. It shows the same level of amplification as normal hDF, and it can be confirmed that the number of p53 alleles is normal. 8C and 8D show the results of sequencing sites where mutations of the p53 gene occur frequently and comparing them with normal cells (hDF). This confirms that p53 mutation did not occur in hDF-iNSC.
본 출원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 출원에서 개시된 다양한 요소들의 모든 조합이 본 출원의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 출원의 범주가 제한된다고 볼 수 없다.Each description and embodiment disclosed in the present application may also apply to each other description and embodiment. That is, all combinations of the various elements disclosed in this application are within the scope of the present application. In addition, the scope of the present application is not to be limited by the specific description described below.
본 발명의 목적을 달성하기 위한 하나의 양태는 (a) 분리된 세포에 Sox2 및 c-Myc을 도입하는 단계; 및 (b) 상기 (a) 단계의 세포를 배양하여 분리된 세포로부터 계통이 전환된 세포로 직접 리프로그래밍을 유도하는 단계를 포함하는, 신경줄기세포 제조방법을 제공하는 것이다.One aspect for achieving the object of the present invention comprises the steps of (a) introducing Sox2 and c-Myc into isolated cells; And (b) culturing the cells of step (a) to induce direct reprogramming from the isolated cells to the cells into which the strain is converted.
본 발명에서 (a) 단계는 분리된 세포에 Sox2 및 c-Myc를 도입하는 단계이다. In the present invention, step (a) is a step of introducing Sox2 and c-Myc into the isolated cells.
본 발명의 용어, "분리된 세포"는 특별한 제한은 없으며, 구체적으로는 체세포(Somatic cell), 생식세포 또는 전구세포(Progenitor cell) 등 이미 계통(Lineage)이 특정된 세포일 수 있으며, 성체줄기세포, 골수세포, 중배엽 줄기세포 등 분화능이 한정된 줄기세포일 수 있다. The term "isolated cell" of the present invention is not particularly limited, and specifically, may be a cell in which lineage is already specified, such as a somatic cell, a germ cell or a progenitor cell, and an adult stem. Cells, bone marrow cells, mesoderm stem cells, etc. may be a stem cell with limited differentiation capacity.
본 발명의 분리된 세포에는 생체내 또는 생체외의 세포가 모두 포함될 수 있으며, 구체적으로, 생체에서 분리된 세포일 수 있다. 본 발명에서 "체세포"는 생식세포를 제외한 동·식물을 구성하는 분화가 완결된 모든 세포를 뜻하며, 본 발명의 체세포는 신경세포를 제외한 체세포일 수 있다.Isolated cells of the present invention may include both cells in vivo or ex vivo, and specifically, may be cells isolated from the body. In the present invention, "somatic cells" refers to all cells that complete differentiation constituting plants and plants except germ cells, somatic cells of the present invention may be somatic cells except neurons.
또한, 상기 "전구세포"는 자손에 해당하는 세포가 특정 분화 형질을 발현하는 것으로 밝혀진 경우, 분화 형질을 발현하지 않으나, 그 분화 운명(Fate)을 가지고 있는 모세포를 말한다.In addition, the "progenitor cell" refers to a parent cell that does not express a differentiation trait but has a differentiation fate when it is found that a cell corresponding to the progeny expresses a specific differentiation trait.
본 발명의 "성체줄기세포"는 발생과정이 진행되어 배아의 각 장기가 형성되는 단계 혹은 성체단계에서 나타나는 줄기세포를 의미하며, 이는 그 분화능이 일반적으로 특정 조직을 구성하는 세포로만 한정된다. 구체적으로, 성체줄기세포는 유방, 골수, 제대혈, 혈액, 간, 피부, 위장관, 태반, 및 자궁 등으로 구성된 군에서 유래할 수 있으며, 본 발명의 성체줄기세포는 신경줄기세포를 제외한 성체줄기세포일 수 있다."Adult stem cells" of the present invention refers to stem cells appearing in the stage of development or adult formation of each organ of the embryo as the process of development, which is generally limited to cells constituting specific tissues. Specifically, adult stem cells may be derived from the group consisting of breast, bone marrow, umbilical cord blood, blood, liver, skin, gastrointestinal tract, placenta, and uterus, and adult stem cells of the present invention may be adult stem cells other than neural stem cells. Can be.
또한, 상기 성체줄기세포는 중간엽 줄기세포일 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 "중간엽 줄기세포"란 연골, 뼈, 지방, 골수간질, 근육, 신경, 피부 등을 만드는데 원조가 되는 세포로서, 성인에서는 일반적으로 골수에 머물러 있지만 제대, 제대혈, 말초혈액, 기타 조직 등으로부터도 수득할 수 있는 세포를 의미한다. 구체적으로는 제대, 제대혈, 골수, 지방, 근육, 피부, 양막 및 태반으로 구성된 군에서 선택되는 세포 유래인 것일 수 있으나 이에 제한되는 것은 아니며, 본 발명의 중간엽 줄기세포는 제대혈 중간엽 줄기세포일 수 있으나, 이에 제한되는 것은 아니다.In addition, the adult stem cells may be mesenchymal stem cells, but is not limited thereto. "Mesenchymal stem cells" of the present invention is a cell that helps to create cartilage, bone, fat, myeloid epilepsy, muscle, nerves, skin, etc., in adults generally stay in the bone marrow, but umbilical cord, cord blood, peripheral blood, other tissues It means a cell which can also be obtained from the back. Specifically, it may be derived from a cell selected from the group consisting of umbilical cord, umbilical cord blood, bone marrow, fat, muscle, skin, amniotic membrane, and placenta, but is not limited thereto. The mesenchymal stem cells of the present invention may be cord blood mesenchymal stem cells. May be, but is not limited thereto.
또한, 상기 분리된 세포는 비신경 세포일 수 있다. 본 발명에서 "비신경 세포"는 신경세포가 아닌 모든 분화 또는 미분화된 세포를 포함하며, 본 발명의 표적세포 역할을 한다. 본 발명의 비신경 세포는 인간, 원숭이, 돼지, 말, 소, 양, 개, 고양이, 생쥐 및 토끼 등의 다양한 동물로부터 유래한 세포일 수 있으며, 구체적으로는 인간으로부터 유래한 세포일 수 있으나, 이에 의하여 유도 신경줄기세포로 리프로그래밍시킬 수 있는 세포가 제한되는 것은 아니다.In addition, the isolated cells may be non-neuronal cells. In the present invention, "non-neuronal cell" includes all differentiated or undifferentiated cells which are not neurons, and serve as target cells of the present invention. The non-neuronal cells of the present invention may be cells derived from various animals such as humans, monkeys, pigs, horses, cows, sheep, dogs, cats, mice, and rabbits, and specifically, may be cells derived from humans, This does not limit the cells that can be reprogrammed to induced neural stem cells.
본 발명의 일 실시예에서는, 비신경 세포인 섬유아세포(실시예 1), 니만-피크병(Niemann-Pick disease) 유래 섬유아세포 및 제대혈 유래 중간엽줄기세포(실시예 2)에 Sox2 및 c-Myc를 도입하여 신경줄기세포를 제작하였다. In one embodiment of the present invention, Sox2 and c- in non-neuronal fibroblasts (Example 1), Niemann-Pick disease-derived fibroblasts and cord blood-derived mesenchymal stem cells (Example 2) Neural stem cells were prepared by introducing Myc.
본 발명에서 사용된 비신경세포로서, 섬유아세포는 체세포의 대표적인 실시예이며, 제대혈 유래 중간엽줄기세포는 성체줄기세포의 대표적인 실시예인 바, 이러한 결과는 Sox2 및 c-Myc를 리프로그래밍 유도인자로서 사용하여 체세포뿐만 아니라 성체줄기세포 역시 유도 신경줄기세포로 효과적으로 리프로그래밍시킬 수 있음을 나타낸다.As the non-neuronal cells used in the present invention, fibroblasts are representative examples of somatic cells, cord blood-derived mesenchymal stem cells are representative examples of adult stem cells, and these results indicate that Sox2 and c-Myc are reprogramming inducers. It is shown that adult stem cells as well as somatic cells can be effectively reprogrammed into induced neural stem cells.
본 발명의 "Sox2" 유전자는 SRY(Sex determining region Y)-box2 유전자라고도 하며, 미분화된 배아줄기 세포에서 전분화능을 유지하는 데 필수적인 전사인자로 알려져 있고, 신경줄기세포의 자기복제에 관여하는 유전자로 알려져 있다.The "Sox2" gene of the present invention, also called SRY (Sex determining region Y) -box2 gene, is known as a transcription factor essential for maintaining pluripotency in undifferentiated embryonic stem cells, and is a gene involved in self-replication of neural stem cells. Known.
본 발명의 "c-Myc" 유전자는 핵 내 DNA 결합 단백질을 코딩하는 원형 암 유전자의 하나로, 세포 증식에 관여한다.The "c-Myc" gene of the present invention is one of the prototype cancer genes that encode DNA binding proteins in the nucleus and is involved in cell proliferation.
본 발명의 Sox2 유전자 및 c-Myc 유전자 또는 이로부터 발현되는 단백질은 인간 또는 쥐 등 동물 유래의 모든 SOX2 및 c-Myc를 포함하며, 구체적으로는 인간으로부터 유래된 Sox2 및 c-Myc일 수 있다. 또한, 본 발명의 Sox2 및 c-Myc 유전자 로부터 발현되는 단백질은 이의 야생형의 아미노산 서열을 갖는 단백질뿐만 아니라 이의 변이체도 포함할 수 있다. Sox2 및 c-Myc 단백질의 변이체란 SOX2 및 c-Myc의 천연 아미노산 서열과 하나 이상의 아미노산 잔기가 결실, 삽입, 비보전적 또는 보전적 치환, 또는 이들의 조합에 의하여 상이한 서열을 가지는 단백질을 포함한다. 상기 변이체는 천연 단백질과 동일한 생물학적 활성을 나타내는 기능적 등가물이거나 필요에 의해서 단백질의 물리·화학적 성질이 변형된 변이체로서, 물리·화학적 환경에 대한 구조적 안정성이 증대되거나 생리학적 활성이 증대된 변이체일 수 있다.Sox2 gene and c-Myc gene or a protein expressed therefrom of the present invention includes all SOX2 and c-Myc derived from an animal such as human or rat, specifically may be Sox2 and c-Myc derived from human. In addition, the protein expressed from the Sox2 and c-Myc genes of the present invention may include not only proteins having amino acid sequences of their wild type but also variants thereof. Variants of Sox2 and c-Myc proteins include proteins whose sequences differ from the natural amino acid sequence of SOX2 and c-Myc and one or more amino acid residues by deletion, insertion, non-conservative or conservative substitution, or a combination thereof. The variant may be a functional equivalent that exhibits the same biological activity as a natural protein or a variant in which the physical and chemical properties of the protein are modified as necessary, and may be a variant in which the structural stability to the physical and chemical environment is increased or the physiological activity is increased. .
또한, 본 발명에서 "Sox2 또는 c-Myc 유전자"는 Sox2 또는 c-Myc 단백질의 야생형 또는 상기한 바와 같은 변이체 형태의 Sox2 또는 c-Myc 단백질을 코딩하는 뉴클레오티드 서열로서, 하나 이상의 염기가 치환, 결실, 삽입, 또는 이들의 조합에 의해 변이될 수 있으며, 천연에서 분리되거나 화학적 합성법을 이용하여 제조할 수 있다.In addition, in the present invention, "Sox2 or c-Myc gene" is a nucleotide sequence encoding a Sox2 or c-Myc protein in the form of a wild type of Sox2 or c-Myc protein or a variant as described above, one or more bases are substituted, deleted Can be mutated by means of insertion, insertion, or a combination thereof, and can be isolated from nature or prepared using chemical synthesis.
상기 Sox2 및 c-Myc 유전자는 유도만능줄기세포(iPSC) 제작에서 매우 중요하게 활용되고 있는 전사인자이지만, 직접 리프로그래밍을 통한 유도신경줄기세포 제작 연구에 있어서는 아직까지 Sox2 및 c-Myc의 조합을 이용하여 신경줄기세포의 제작에 성공한 사례가 없다.The Sox2 and c-Myc genes are transcription factors that are very important in the production of induced pluripotent stem cells (iPSC), but the combination of Sox2 and c-Myc has not yet been used in the study of induced neural stem cell production through direct reprogramming. There is no successful case for the production of neural stem cells.
본 발명의 상기 Sox2 단백질을 코딩하는 핵산분자 및 c-Myc 단백질을 코딩하는 핵산분자는 각각 독립적으로 발현벡터에 포함된 형태를 가질 수 있다.The nucleic acid molecule encoding the Sox2 protein and the nucleic acid molecule encoding the c-Myc protein of the present invention may each independently have a form contained in the expression vector.
구체적으로, 상기 Sox2 단백질 또는 c-Myc 단백질은, 이들을 코딩하는 핵산분자를 포함하는 발현벡터를 이용하여 시험관 내에서 세포주로부터 발현된 형태의 단백질일 수 있다. 상기 발현벡터는 바이러스 벡터, 비바이러스성 벡터, 플라스미드 벡터, 코즈미드 벡터를 포함할 수 있고, 상기 발현벡터는 Baculovirus 발현벡터, Mammalian 발현벡터 또는 Bacterial 발현벡터를 이용할 수 있으며, 상기 세포주는 곤충세포주, 포유동물 세포주 또는 박테리아 세포주를 이용할 수 있으나, 이에 의하여 본 발명에서 이용 가능한 발현벡터 및 세포주가 제한되는 것은 아니다.Specifically, the Sox2 protein or c-Myc protein may be a protein of a form expressed from a cell line in vitro using an expression vector comprising a nucleic acid molecule encoding them. The expression vector may include a viral vector, a non-viral vector, a plasmid vector, a cosmid vector, and the expression vector may include a Baculovirus expression vector, a Mammalian expression vector, or a Bacterial expression vector. Mammalian cell lines or bacterial cell lines may be used, but this does not limit the expression vectors and cell lines available in the present invention.
본 발명의 용어 "발현벡터"는, 적당한 숙주세포에서 목적 단백질을 발현할 수 있는 벡터로서, 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 말한다.The term "expression vector" of the present invention refers to a gene construct that is capable of expressing a protein of interest in a suitable host cell and comprises an essential regulatory element operably linked to express the gene insert.
본 발명의 발현벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화시그널, 인핸서 같은 발현 조절 요소 외에도 막 표적화 또는 분비를 위한 신호 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 발현벡터의 프로모터는 구성적 또는 유도성일 수 있다. 또한, 발현벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택성 마커를 포함하고, 복제 가능한 발현벡터인 경우 복제 기원을 포함한다. 발현벡터는 자가 복제하거나 숙주 DNA에 통합될 수 있다.The expression vector of the present invention includes a signal sequence or leader sequence for membrane targeting or secretion in addition to expression control elements such as a promoter, an operator, an initiation codon, a termination codon, a polyadenylation signal, an enhancer, and may be variously prepared according to the purpose. . The promoter of the expression vector may be constitutive or inducible. In addition, the expression vector includes a selectable marker for selecting a host cell containing the vector and, in the case of a replicable expression vector, a replication origin. Expression vectors can be self-replicating or integrated into host DNA.
구체적으로, 상기 바이러스 벡터는 레트로바이러스(Retrovirus), 렌티바이러스(lentivirus), 예를 들어 HIV(Human immunodeficiency virus), MLV(Murineleukemia virus), ASLV(Avian sarcoma/Leukosis), SNV(Spleen necrosis virus), RSV(Rous sarcoma virus), MMTV(Mouse mammary tumor virus) 등, 아데노바이러스(Adenovirus), 아데노 관련 바이러스(Adeno-associated virus), 헤르페스 심플렉스 바이러스(Herpes simplex virus), 센다이 바이러스(Sendai virus) 등에서 유래한 벡터를 포함할 수 있다. 또한, 더욱 구체적으로 RNA 기반 바이러스 벡터일 수 있으나, 이에 제한되지 않는다.Specifically, the viral vector may be a retrovirus, a lentivirus, for example, HIV (Human immunodeficiency virus), MLV (Murineleukemia virus), ASLV (Avian sarcoma / Leukosis), SNV (Spleen necrosis virus), Derived from RSV (Rous sarcoma virus), MMTV (Mouse mammary tumor virus), Adenovirus, Adeno-associated virus, Herpes simplex virus, Sendai virus, etc. It can contain one vector. In addition, more specifically, it may be an RNA-based viral vector, but is not limited thereto.
본 발명의 용어 "작동가능하게 연결된(Operably linked)"은 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질을 코딩하는 핵산 서열이 기능적으로 연결(Functional linkage)되어 있는 것을 말한다. 재조합 벡터와의 작동적 연결은 당해 기술 분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용한다.The term "operably linked" of the present invention refers to the functional linkage of a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein of interest to perform a general function. Operative linkage with recombinant vectors can be prepared using genetic recombination techniques well known in the art, and site-specific DNA cleavage and ligation uses enzymes commonly known in the art and the like.
상기 Sox2 또는 c-Myc 단백질을 코딩하는 핵산분자는 messenger RNA(mRNA)일수 있다.The nucleic acid molecule encoding the Sox2 or c-Myc protein may be messenger RNA (mRNA).
본 발명에서 "Sox2 및 c-Myc를 도입하는 단계"는 발현벡터, Sox2 또는 c-Myc 단백질을 코딩하는 mRNA, 유전자 변형, 외래 발현 유전자 도입, 발현 유도 효과를 가지는 물질의 처리 등을 통하여 세포 내에 존재하는 Sox2 및 c-Myc 유전자 및 이로부터 발현되는 단백질의 발현 수준을 증가시키는 방법일 수 있으나, 상기 유전자 및 단백질의 발현 수준을 증가시키는 한 제한되지 않는다. 특히, 상기 유전자를 도입하는 단계는 원하는 시간 및 조건 하에서 상기 유전자의 발현을 유도하는 방법일 수 있다.In the present invention, the "step of introducing Sox2 and c-Myc" refers to an expression vector, mRNA encoding Sox2 or c-Myc protein, genetic modification, foreign expression gene introduction, treatment of a substance having an expression inducing effect, etc. It may be a method of increasing the expression level of the Sox2 and c-Myc genes and proteins expressed therefrom, but is not limited so long as it increases the expression level of the genes and proteins. In particular, introducing the gene may be a method of inducing expression of the gene under a desired time and condition.
구체적으로, 상기 (a) 단계의 유전자를 세포에 도입하는 방법은 당업계에서 통상적으로 사용되는 세포에 핵산분자(DNA 또는 RNA)를 제공하는 데에 제한 없이 사용할 수 있다. 예를 들어, Sox2 및/또는 c-Myc 단백질을 코딩하는 핵산분자가 발현벡터 안에 작동 가능하게 연결되어 세포 내로 전달될 수 있으며, 숙주 세포의 염색체 내로 삽입되는 형태로 세포 내로 전달될 수 있다. 또한, 상기 Sox2 및/또는 c-Myc을 분리된 세포의 배양액에 투여하는 방법 또는 분리된 세포에 직접 주입하는 방법, Sox2 또는 c-Myc 단백질을 코딩하는 mRNA을 분리된 세포에 직접 주입하는 방법 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.Specifically, the method of introducing the gene of step (a) into the cell can be used without limitation to provide nucleic acid molecules (DNA or RNA) to cells commonly used in the art. For example, a nucleic acid molecule encoding Sox2 and / or c-Myc protein can be operably linked in an expression vector and transferred into the cell, and can be delivered into the cell in the form of being inserted into the chromosome of the host cell. In addition, the method of administering the Sox2 and / or c-Myc to the culture of the isolated cells or the method of direct injection into the isolated cells, the method of directly injecting mRNA encoding the Sox2 or c-Myc protein into the isolated cells, etc. May be used, but is not limited thereto.
상기 Sox2 및/또는 c-Myc를 분리된 세포에 직접 주입하는 방법은 당업계에 공지된 임의의 방법을 선택하여 사용할 수 있으며, 이에 제한되지는 않으나, 미세주입법(microinjection), 전기천공법(electroporation), 입자 분사법(particle bombardment), 직접근육주입법, 인슐레이터(insulator) 및 트랜스포존을 이용한 방법 중에서 적절하게 선택하여 적용할 수 있다.The method of directly injecting the Sox2 and / or c-Myc into the isolated cells can be used by selecting any method known in the art, but is not limited thereto, microinjection (microinjection), electroporation (electroporation) ), Particle bombardment, direct muscle injection, insulator, and transposon method may be appropriately selected and applied.
본 발명에서 Sox2 및/또는 c-Myc를 분리된 세포에 도입하는 방법은 바이러스를 이용하는 것일 수 있고, 구체적으로 Sox2 단백질을 코딩하는 핵산분자 및 c-Myc 단백질을 코딩하는 핵산분자를 각각 삽입한 바이러스 벡터로 형질전환시킨 패키징 세포로부터 수득한 바이러스를 분리된 세포의 배양액에 처리하는 과정을 통해 Sox2 및/또는 c-Myc을 도입하는 것일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, a method of introducing Sox2 and / or c-Myc into an isolated cell may be by using a virus, and specifically, a virus in which a nucleic acid molecule encoding Sox2 protein and a nucleic acid molecule encoding c-Myc protein are respectively inserted. The virus obtained from the packaging cells transformed with the vector may be introduced into Sox2 and / or c-Myc through a process of treating the culture medium of the isolated cells, but is not limited thereto.
상기 바이러스 벡터는 레트로바이러스, 렌티바이러스, 아데노바이러스, 아데노-관련 바이러스, 헤르페스 심플렉스바이러스, 센다이 바이러스 등에서 유래한 벡터를 사용할 수 있으며, 이에 제한되지는 않으나, 구체적으로는 레트로바이러스 벡터를 사용할 수 있다. 또한, 상기 패키징 세포는 사용된 바이러스 벡터에 따라 당업계에 공지된 다양한 세포를 선택하여 사용할 수 있다.The viral vector may be a vector derived from a retrovirus, lentivirus, adenovirus, adeno-associated virus, herpes simplex virus, Sendai virus, and the like, but is not limited thereto, and specifically, a retroviral vector may be used. . In addition, the packaging cells can be used to select a variety of cells known in the art depending on the viral vector used.
본 발명에서 상기 바이러스를 이용하여 도입하는 방법은 일정 수준의 MOI로 처리하는 방법일 수 있다.In the present invention, the method of introducing the virus may be a method of treating with a certain level of MOI.
본 발명의 용어 "MOI"는 "감염 다중도"를 의미하는 "Multiplicity of infection"의 약자이다. 예를 들어, 만약 1,000,000개의 벡터가 100,000개의 숙주 세포들을 형질도입하기 위해 사용되었다면, MOI는 10이다. 바이러스성 벡터를 이용하는 경우, MOI는 바이러스를 접종시킨 세포 수에 대한 접종 바이러스양의 비율을 나타내며, 즉 단일 세포를 감염시키는 바이러스 입자의 평균 수를 의미한다. 이 용어의 사용은 형질도입에 관련된 경우에 제한되지 않고, 대신 리포펙션, 미세주입법, 칼슘 인산 침전법, 및 전기천공법과 같은 수단에 의한 숙주 안으로의 벡터의 도입을 포함한다.The term "MOI" in the present invention stands for "Multiplicity of infection" which means "multiplicity of infection". For example, if 1,000,000 vectors were used to transduce 100,000 host cells, the MOI is 10. When using a viral vector, MOI represents the ratio of the inoculated virus amount to the number of cells inoculated with the virus, ie, the average number of virus particles infecting a single cell. The use of this term is not limited to cases involving transduction, but instead includes the introduction of the vector into the host by means such as lipofection, microinjection, calcium phosphate precipitation, and electroporation.
본 발명에서 Sox2 및 c-Myc 도입에 사용되는 MOI 값은, 0초과 내지 20 미만, 0 초과 내지 15 미만, 0 초과 내지 10 미만, 0 초과 내지 5 미만, 0.5 초과 내지 10 미만, 0.5 초과 5 미만, 0.5 초과 4 미만, 0.5 초과 3 미만 또는 0.5 초과 2 미만의 MOI일 수 있고, 구체적으로는 1 MOI일 수 있으나, 신경줄기세포로의 직접교차분화를 일으키는 범위 이내인 한, 제한되지 않는다.In the present invention, the MOI value used to introduce Sox2 and c-Myc is greater than 0 to less than 20, greater than 0 to less than 15, greater than 0 to less than 10, greater than 0 to less than 5, greater than 0.5 to less than 10, greater than 0.5 and less than 5 , More than 0.5, less than 4, more than 0.5, less than 3, or more than 0.5, less than 2, MOI, specifically 1 MOI, but is not limited so long as it is within the range causing direct cross-differentiation into neural stem cells.
본 발명의 일 실시예에서는 c-Myc과 Sox-2를 코딩하는 레트로바이러스 벡터를 MOI 1로 섬유아세포에 처리하여 신경줄기세포가 제조되었음을 확인하였다(실시예 1).In one embodiment of the present invention, it was confirmed that neural stem cells were prepared by treating the fibroblasts with c-Myc and Sox-2-encoding retroviral cells with MOI 1 (Example 1).
또한, 본 발명에서 Sox2 및/또는 c-Myc를 분리된 세포에 도입하는 방법은 비바이러스성 벡터를 이용하는 것일 수 있고, 구체적으로 Sox2 및/또는 c-Myc의 핵산분자가 포함된 비바이러스성 에피솜 벡터를 분리된 세포에 도입하는 것일 수 있다.In addition, in the present invention, the method of introducing Sox2 and / or c-Myc into an isolated cell may be by using a non-viral vector, and specifically, a non-viral epi containing a nucleic acid molecule of Sox2 and / or c-Myc. The som vector may be introduced into isolated cells.
본 발명의 비바이러스성 에피솜 벡터(Episomal vector)는 비바이러스성 비삽입성 벡터로서, 염색체 내에 삽입되지 않고 벡터에 포함된 유전자를 발현시킬 수 있는 특성을 가지는 것으로 알려져 있다. 본 발명의 목적상 에피솜 벡터를 포함하는 세포는, 에피솜 벡터가 유전체 내에 삽입되거나, 또는 유전체 내에 삽입되지 않은 상태로 세포 내 존재하는 경우를 모두 포함한다. The non-viral episomal vector of the present invention is a non-viral non-insertable vector and is known to have a characteristic of expressing a gene included in the vector without being inserted into a chromosome. For the purposes of the present invention, cells comprising episomal vectors include both cases where the episomal vector is inserted into the genome or is present in the cell without being inserted into the genome.
또한, 본 발명에서 Sox2 및/또는 c-Myc를 분리된 세포에 도입하는 방법은 Sox2 또는 c-Myc의 mRNA를 분리된 세포에 직접 도입하는 것일 수 있다. 상기 mRNA를 분리된 세포에 직접 도입하는 방법은 당업계에 공지된 임의의 방법을 선택하여 사용할 수 있으며, 이에 제한되지는 않는다.In addition, in the present invention, the method of introducing Sox2 and / or c-Myc into isolated cells may be to directly introduce mRNA of Sox2 or c-Myc into isolated cells. The method of directly introducing the mRNA into an isolated cell can be used by selecting any method known in the art, but is not limited thereto.
다음으로, 본 발명의 (b)단계는 상기 (a) 단계의 세포를 배양하여 분리된 세포로부터 계통이 전환된 세포로 직접 리프로그래밍을 유도하여, 신경줄기세포를 제조하는 방법이다.Next, step (b) of the present invention is a method of producing neural stem cells by inducing direct reprogramming from cells isolated from cells separated from cells by culturing the cells of step (a).
본 발명에서 용어, "계통이 전환된 세포"란, 세포가 가지고 있던 고유의 계통 특성이 발생학적으로 또는 인위적인 방법으로 바뀌어 다른 계통 특성을 가진 세포유형으로 전환된 세포로서, 전환되기 전의 세포 유형의 특성과는 전혀 다른 세포 유형의 특성을 가지는 세포로 전환되는 것을 말한다. 구체적으로 본 발명에서는 리프로그래밍을 통해 비신경세포로부터 전환된 신경줄기세포일 수 있다.As used herein, the term "lineage-converted cell" refers to a cell in which the intrinsic lineage characteristic of the cell has been changed into a cell type having a different lineage characteristic by changing genetically or artificially. To convert to a cell having a characteristic of a cell type that is completely different from the characteristic. Specifically, the present invention may be neural stem cells converted from non-neuronal cells through reprogramming.
본 발명에서 용어, "리프로그래밍(Reprogramming)"은 특정 세포가 가지는 전체 유전자 발현 패턴 (Global gene expression pattern) 등을 조절하여, 목적하는 세포로 전환시키는 방법을 의미한다. 다시 말해서, 본 발명에서 리프로그래밍은 세포의 운명을 인위적으로 조작하여 전혀 다른 특성을 가지는 세포로 전환시키는 방법을 의미하며, 본 발명의 목적상 상기 리프로그래밍은 외래 유전자 혹은 RNA 또는 DNA를 포함하는 벡터를 세포에 도입함으로써 수행되는 것일 수 있다. 일례로, 리프로그래밍은 세포의 역분화(Dedifferentiation), 직접 리프로그래밍 (Direct reprogramming 또는 Direct conversion), 또는 직접 교차분화(Trans-differentiation)을 포함할 수 있으나, 이에 제한되는 것은 아니다.As used herein, the term "reprogramming" refers to a method of converting a cell into a desired cell by controlling a global gene expression pattern of a specific cell. In other words, in the present invention, reprogramming refers to a method of artificially manipulating the fate of a cell and converting it into a cell having completely different characteristics. For the purpose of the present invention, the reprogramming is a vector containing a foreign gene or RNA or DNA. May be performed by introducing into a cell. In one example, reprogramming may include, but is not limited to, dedifferentiation of cells, direct reprogramming or direct conversion, or direct cross-differentiation.
본 발명에서 용어, "리프로그래밍 인자(Reprogramming factor)"는 최종적으로 또는 일정부분 분화된 세포에 도입되어 리프로그래밍을 유도할 수 있는 유전자(혹은 이를 코딩하는 폴리뉴클레오티드), 또는 단백질을 의미한다. 상기 리프로그래밍 인자는 리프로그래밍을 유도하고자 하는 그 목적 세포에 따라, 그리고 리프로그래밍이 유도되는 분리된 세포의 종류에 따라 달라질 수 있다. 예컨대, 본 발명의 일 실시예에서는 Sox2 및 c-Myc만을 도입함으로써 초기 세포를 목적 세포인 유도신경줄기세포로 리프로그래밍시켰으나, 본 발명의 범위가 상기 리프로그래밍 인자에 제한되는 것은 아니며, 신경줄기세포를 제조하는 경우 도입되는 리프로그래밍 인자는 Sox2, c-Myc. Lin28, Asc11, Pitx3, Nurr1, Lmx1a, Nanog, Oct3, Oct4 및 Klf4로 이루어진 군에서 선택된 하나 이상의 인자를 포함하는 것일 수 있다. 그 외에도 Sox21의 과발현을 유도하고, 신경외배엽 계통 유전자인 Tapa1, Atbf1, NeuroD1, Mash1, Hes1, Hes6, Id2의 과발현을 유도하는 인자를 포함할 수 있으며, 신경줄기세포를 제조할 수 있는 것으로 당업계에 공지된 모든 인자를 포함할 수 있다. 또한, 상기 리프로그래밍 인자를 이용하여 신경줄기세포로의 직접 리프로그래밍을 유도할 수 있다. 리프로그래밍 유전인자를 이용한 리프로그래밍은 세포가 가지는 전체 유전자 발현 패턴을 조절하여 목적 세포로의 전환을 유도하는 것이므로, 상기 리프로그래밍 유전 인자가 세포에 도입되고, 세포를 일정 기간 배양함으로써 목적하는 종류의 세포의 유전자 발현 패턴을 가지는 목적 세포로 초기 세포를 리프로그래밍시킬 수 있다. As used herein, the term "reprogramming factor" refers to a gene (or polynucleotide encoding it), or a protein that can be finally or partially introduced into differentiated cells to induce reprogramming. The reprogramming factor may vary depending on the cell of interest to which reprogramming is intended, and on the type of isolated cell from which reprogramming is induced. For example, in one embodiment of the present invention, by introducing only Sox2 and c-Myc, the initial cells were reprogrammed into induced neuronal stem cells, which are target cells, but the scope of the present invention is not limited to the reprogramming factor, and thus, neural stem cells are prepared. Reprogramming factors introduced when Sox2, c-Myc. It may include one or more factors selected from the group consisting of Lin28, Asc11, Pitx3, Nurr1, Lmx1a, Nanog, Oct3, Oct4 and Klf4. In addition, it may include factors that induce overexpression of Sox21 and induce overexpression of the neuroectodermal lineage genes Tapa1, Atbf1, NeuroD1, Mash1, Hes1, Hes6, Id2, and can produce neural stem cells. All known factors may be included. In addition, the reprogramming factor can be used to induce direct reprogramming into neural stem cells. Reprogramming using reprogramming genes regulates the entire gene expression pattern of the cells and induces the conversion to the cells of interest. Therefore, the reprogramming genes are introduced into the cells, and the cells are cultured for a certain period of time. The initial cell can be reprogrammed with the target cell having the gene expression pattern of the cell.
본 발명의"직접 리프로그래밍"은 리프로그래밍 과정을 통해 전분화능을 가진 유도 만능 줄기세포를 제작하는 기술과는 차별화되며, 리프로그래밍 배양을 통해 직접적으로 원하는 목적 세포로의 직접 전환을 유도하는 기술이다. 기존 체세포 핵이식은 난자를 사용해야 하는 단점이 있어 다른 세포 리프로그래밍 기술에 비해 활용가능성이 낮으며, 유도 만능 줄기세포 리프로그래밍 기술을 이용하는 경우 태생적으로 전분화능 줄기세포를 경유하기 때문에, 미분화 세포의 잔류 여부 및 안전성 확보 여부가 검증되어야 한다는 단점이 있다. 하지만, 본 발명은 직접 리프로그래밍을 통해 목적 세포인 신경줄기세포를 초기 세포로부터 직접 생산함으로써, 생산 시간, 비용, 효율, 안전성 등 상기 기술의 문제점을 극복할 수 있는 대안을 제공할 수 있을 것으로 기대된다. 본 발명의 목적상 직접 리프로그래밍은 직접 역분화, 직접 분화, 직접 전환, 직접교차분화, 교차분화 등과 혼용될 수 있다. 본 발명에서 직접 리프로그래밍은 신경줄기세포로의 직접 역분화 또는 교차분화를 의미할 수 있다.The "direct reprogramming" of the present invention is differentiated from the technology of producing induced pluripotent stem cells having pluripotency through the reprogramming process, and is a technology of directly inducing direct conversion to a desired target cell through reprogramming culture. . Existing somatic cell nuclear transfer has the disadvantage of using an egg, which is less useful than other cell reprogramming techniques, and when induced pluripotent stem cell reprogramming technology is inherently passed through pluripotent stem cells, There is a disadvantage that it needs to be verified whether or not it remains and ensures safety. However, the present invention is expected to provide an alternative that can overcome the problems of the above technology, such as production time, cost, efficiency and safety by directly producing neural stem cells, which are target cells, through direct reprogramming. . For the purposes of the present invention, direct reprogramming may be mixed with direct dedifferentiation, direct differentiation, direct conversion, direct cross-differentiation, cross-differentiation and the like. In the present invention, direct reprogramming may refer to direct reverse differentiation or cross differentiation into neural stem cells.
본 발명의 "유도 신경줄기세포(induced neural stem cell, iNSC)"는 분화능이 없는 세포 또는 일정부분 분화능이 있는 세포 등 서로 다른 양태로 존재하는 분화된 세포로부터 리프로그래밍 기술을 이용하여 신경줄기세포와 유사 또는 동일한 다분화능(multipotency)을 가진 미분화 상태의 줄기세포를 확립하는 방식으로 만들어진 세포들을 포함한다. 유도 신경줄기세포는 신경줄기세포와 동일 또는 유사한 특성을 가지고 있는데, 구체적으로는 비슷한 세포형태를 보여주고, 유전자 및 단백질 발현 패턴이 유사하며, 생체 내외에서 다분화능을 가질 수 있다. 따라서 본 발명의 유도 신경줄기세포는 뉴런(신경세포), 별아교세포(astrocyte), 희소돌기아교세포(oligodendrocyte), GABA성 신경 세포 또는 도파민성 신경 세포 등 다양한 신경세포로 분화가능한 것일 수 있다. 본 발명의 용어"신경줄기세포"는 달리 지시되지 않는 한 "유도 신경줄기세포"와 동일한 의미를 갖는 것으로서, 상호 교환적으로 사용되었다.The "induced neural stem cell (iNSC)" of the present invention is similar to neural stem cells using reprogramming from differentiated cells existing in different aspects, such as non-differentiating cells or cells with partial differentiation ability. It includes cells made in such a way as to establish undifferentiated stem cells with the same multipotency. Induced neural stem cells have the same or similar characteristics as neural stem cells, specifically, show similar cell morphology, gene and protein expression patterns are similar, and may have multipotent ability in and out of the body. Therefore, the induced neural stem cells of the present invention may be capable of differentiating into various neurons such as neurons (nerve cells), astroglia (astrocytes), oligodendrocytes, GABA-like neurons or dopaminergic neurons. The term "nerve stem cell" of the present invention has the same meaning as "derived neural stem cell" unless otherwise indicated, and has been used interchangeably.
본 발명의 실시예에서는, 본 발명의 방법에 따라 제조된 신경줄기세포가 뉴런, 성상교세포 및 희소돌기아교세포로 분화할 수 있음을 확인하였다(실시예 1). 또한 제조된 신경줄기세포에서 p53 유전자의 돌연변이가 일어나지 않았음을 통해 안전성을 확인하였다(실시예 3).In the embodiment of the present invention, it was confirmed that neural stem cells prepared according to the method of the present invention can differentiate into neurons, astrocytes and oligodendrocytes (Example 1). In addition, safety was confirmed through the mutation of the p53 gene did not occur in the prepared neural stem cells (Example 3).
본 발명의 다른 양태는, 상기 방법에 따라 제조된 신경줄기세포를 제공한다. 상기 신경줄기세포는 전술한 바와 같다. 본 발명에서 제조된 신경줄기세포는 뉴런, 성상교세포 및 희소돌기아교세포로 이루어진 군에서 선택되는 하나 이상의 신경세포로 분화될 수 있으나, 이에 제한되는 것은 아니다.Another aspect of the present invention provides a neural stem cell prepared according to the above method. The neural stem cells are as described above. Neural stem cells prepared in the present invention may be differentiated into one or more neurons selected from the group consisting of neurons, astrocytes and oligodendrocytes, but is not limited thereto.
본 발명의 또 다른 양태는, 상기 방법에 따라 제조된 신경줄기세포를 유효성분으로 포함하는 세포 치료제를 제공한다. 상기 신경줄기세포는 전술한 바와 같다.Another aspect of the present invention provides a cell therapeutic agent comprising the neural stem cells prepared according to the above method as an active ingredient. The neural stem cells are as described above.
본 발명의 용어, "세포 치료제"는 개체로부터 분리, 배양 및 특수한 조작을 통해 제조된 세포 및 조직으로 치료, 진단 및 예방의 목적으로 사용되는 의약품(미국 FDA 규정)으로서, 세포 혹은 조직의 기능을 복원시키기 위하여 살아있는 자가, 동종, 또는 이종 세포를 체외에서 증식 선별하거나 다른 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통하여 치료, 진단 및 예방의 목적으로 사용되는 의약품을 의미한다.As used herein, the term "cell therapeutic agent" refers to a medicine (US FDA regulation) used for the purpose of treatment, diagnosis, and prevention of cells and tissues prepared through isolation, culture, and special manipulation from an individual. Means a medicine used for the purpose of treatment, diagnosis and prevention through a series of actions, such as proliferating and screening the living autologous, allogeneic, or heterologous cells in vitro or by altering the biological characteristics of the cells in order to restore.
본 발명의 세포치료제는 1ml 당 1.0Х10개 내지 1.0Х109개의 세포를 포함할 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 세포치료제는 동결되지 않은 채 사용되거나 차후 사용을 위해 동결될 수 있다. 동결되어야 할 경우, 표준 냉동보존제 (예를 들어 DMSO, 글리세롤, 에피라이프 (Epilife) 세포 동결 배지 (Cascade Biologics))가 동결 전 세포 집단에 첨가될 수 있다. 또한, 상기 세포치료제는 약학적 분야에서 통상의 방법에 따라 환자의 신체 내 투여에 적합한 단위투여형의 제제로 제형화시켜 투여할 수 있으며, 상기 제제는 1회 또는 수회 투여에 의해 효과적인 투여량을 포함한다. 이러한 목적에 적합한 제형으로는 비경구투여 제제로서 주사용 앰플과 같은 주사제, 주입 백과 같은 주입제, 및 에어로졸 제제와 같은 분무제 등이 이용될 수 있다. 상기 주사용 앰플은 사용 직전에 주사액과 혼합 조제할 수 있으며, 주사액으로는 생리 식염수, 포도당, 만니톨, 링거액 등을 사용할 수 있다. 또한, 주입 백은 염화폴리비닐 또는 폴리에틸렌 재질의 것을 사용할 수 있으며, 박스터 (Baxter), 벡톤 디킨슨 (Becton ickinson), 메드셉(Medcep), 내셔날 호스피탈 프로덕츠 (National Hospital Products) 또는 테루모 (Terumo) 사의 주입 백을 예시할 수 있다.The cell therapy agent of the present invention may include, but is not limited to, 1.0Х10 to 1.0Х10 9 cells per ml. The cell therapy of the invention can be used unfrozen or frozen for future use. If it is to be frozen, standard cryopreservatives (eg DMSO, glycerol, Epilife cell freezing medium (Cascade Biologics)) can be added to the cell population before freezing. In addition, the cell therapy agent may be administered in a unit dosage form suitable for administration in the body of a patient according to a conventional method in the pharmaceutical field, and the agent may be administered in an effective dosage by one or several administrations. Include. Suitable formulations for this purpose can be used as parenteral formulations, injections such as ampoules for injection, injections such as infusion bags, sprays such as aerosol formulations and the like. The injection ampoule may be mixed with the injection solution immediately before use, and physiological saline, glucose, mannitol, Ringer's solution, etc. may be used as the injection solution. Infusion bags may also be made of polyvinyl chloride or polyethylene, and include Baxter, Becton ickinson, Medcep, National Hospital Products, or Terumo. The injection bag of the yarn can be illustrated.
상기 세포치료제에는 하나 또는 그 이상의 약학적으로 허용가능한 통상의 불활성 담체, 예를 들어, 주사제의 경우에는 보존제, 무통화제, 가용화제 또는 안정화제 등을, 국소 투여용 제제의 경우에는 기제(base), 부형제, 윤활제 또는 보존제 등을 추가로 포함할 수 있다.The cell therapy product includes one or more pharmaceutically acceptable conventional inert carriers such as preservatives, analgesics, solubilizers or stabilizers in the case of injections, and in the case of formulations for topical administration , Excipients, lubricants or preservatives.
이렇게 제조된 본 발명의 세포치료제는 당업계에서 통상적으로 사용하는 투여방법을 이용하여 이식 및 기타 용도에 사용되는 다른 줄기세포와 함께 또는 그러한 줄기세포와의 혼합물의 형태로 투여될 수 있으며, 치료가 필요한 환자의 질환 부위에 직접 생착 또는 이식하거나 복강에 직접 이식 또는 주입하는 것이 가능하나 이에 한정되지는 않는다. 또한, 상기 투여는 카테터를 이용한 비외과적 투여 및 질환부위 절개 후 주입 또는 이식 등 외과적 투여방법 모두 가능하다. 또한 통상의 방법에 따라 비경구적으로, 예를 들면 직접 병변에 투여하는 것 외에 조혈계 줄기세포 이식의 일반적 방법인 혈관 내 주입에 의한 이식도 가능하다.The cell therapeutic agent of the present invention thus prepared may be administered with other stem cells used for transplantation and other uses or in the form of a mixture with such stem cells using administration methods commonly used in the art. It is possible, but not limited to, to engraft or implant directly at the disease site of the patient in need or to implant or inject directly into the abdominal cavity. In addition, the administration can be both non-surgical administration using a catheter and surgical administration methods such as injection or transplantation after dissection of the disease site. In addition to parenteral administration, for example, in addition to direct lesions, transplantation by intravascular injection, which is a general method of hematopoietic stem cell transplantation, is also possible according to a conventional method.
상기 세포치료제는 1회 또는 수회로 나누어 투여할 수 있다. 그러나, 유효성분의 실제 투여량은 치료하고자 하는 질환, 질환의 중증도, 투여경로, 환자의 체중, 연령 및 성별 등의 여러 관련 인자에 비추어 결정되어야 하는 것으로 이해되어야 하며, 따라서, 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다.The cell therapy agent may be administered once or in divided doses. However, it should be understood that the actual dosage of the active ingredient should be determined in light of several relevant factors such as the disease to be treated, the severity of the disease, the route of administration, the patient's weight, age and gender, and therefore, the dosage may be It does not limit the scope of the present invention in terms of aspects.
본 발명에서 "예방"은 상기 조성물의 투여로 신경세포 손상 질환의 발병을 억제 또는 지연시키는 모든 행위를 포함한다.In the present invention, "prophylaxis" includes all actions of inhibiting or delaying the onset of neuronal damage disease by administration of the composition.
본 발명에서 "치료"는 상기 조성물의 투여로 신경세포 손상 질환의 증세가 호전되거나 이롭게 되는 모든 행위를 포함한다.In the present invention, "treatment" includes all actions that improve or benefit from the symptoms of neuronal cell damage by administration of the composition.
본 발명의 또 다른 양태는, 상기 방법에 따라 제조된 신경줄기세포를 유효성분으로 포함하는, 신경세포 손상 질환 예방 또는 치료용 약학적 조성물을 제공한다. 상기 신경줄기세포는 전술한 바와 같다.Another aspect of the invention provides a pharmaceutical composition for preventing or treating neuronal cell damage disease, comprising the neural stem cells prepared according to the above method as an active ingredient. The neural stem cells are as described above.
본 발명에서 "신경세포 손상질환"은 신경세포의 변형, 손실 등이 원인이 되어 발생하는 질환으로, 파킨슨씨병, 알츠하이머, 피크병(Pick's disease), 헌팅톤병(Huntington's disease), 근위축성 측면 경화증(amyotriophiclateral sclerosis), 허혈성 뇌질환(stroke), 탈수초질환(demyelinating disease), 다발성 경화증, 간질, 퇴행성 신경질환, 척추 손상(spinal cord injury) 등을 포함할 수 있으나, 상기 예에 제한되지 않는다.In the present invention, "neuronal cell damage disease" is a disease caused by neuronal transformation, loss, and the like, Parkinson's disease, Alzheimer's disease, Pick's disease, Huntington's disease (Huntington's disease), muscular dystrophy ( amyotriophiclateral sclerosis, ischemic brain disease, stroke, demyelinating disease, multiple sclerosis, epilepsy, neurodegenerative disease, spinal cord injury, etc., but are not limited to the above examples.
상기 조성물은 약학적으로 허용 가능한 담체를 포함할 수 있다. The composition may comprise a pharmaceutically acceptable carrier.
상기 "약학적으로 허용 가능한 담체"란 생물체를 자극하지 않으면서, 주입되는 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 의미할 수 있다. 본 발명에 사용 가능한 상기 담체의 종류는 특별히 제한되지 아니하며 당해 기술 분야에서 통상적으로 사용되고 약학적으로 허용되는 담체라면 어느 것이든 사용할 수 있다. 상기 담체의 비제한적인 예로는, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사 용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 등을 들 수 있다. 이들은 단독으로 사용되거나 2 종 이상을 혼합하여 사용될 수 있다.The "pharmaceutically acceptable carrier" may refer to a carrier or diluent that does not interfere with the biological activity and properties of the compound to be injected without stimulating the organism. The kind of the carrier usable in the present invention is not particularly limited, and any carrier can be used as long as it is a conventionally used and pharmaceutically acceptable carrier in the art. Non-limiting examples of the carrier include saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol and the like. These may be used alone or in combination of two or more thereof.
약학적으로 허용 가능한 담체를 포함하는 상기 조성물은 경구 또는 비경구의 여러 가지 제형일 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다.The composition comprising a pharmaceutically acceptable carrier may be in various oral or parenteral formulations. When formulated, diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrating agents, and surfactants are usually used.
상세하게는, 경구 투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 화합물에 적어도 하나 이상의 부형제, 예를 들면, 전분, 칼슘카보네이트, 수크로오스, 락토오스, 젤라틴 등을 섞어 조제될 수 있다. 또한, 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제들도 사용될 수 있다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데, 흔히 사용되는 단순 희석제인 물, 액체 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제 및 좌제가 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 오일, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔, 마크로골, 트윈 61, 카카오지, 라우린지, 글리세로젤라틴 등이 사용될 수 있다.Specifically, solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and such solid preparations include at least one excipient such as starch, calcium carbonate, sucrose, lactose in the compound. , Gelatin and the like can be mixed. In addition to simple excipients, lubricants such as magnesium stearate, talc can also be used. Oral liquid preparations include suspensions, solvents, emulsions, and syrups.In addition to commonly used simple diluents such as water and liquid paraffin, various excipients such as wetting agents, sweeteners, fragrances, and preservatives may be included. have. Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations and suppositories. As the non-aqueous solvent and suspending agent, propylene glycol, polyethylene glycol, vegetable oils such as olive oil, injectable esters such as ethyl oleate and the like can be used. As the base of the suppository, utopsol, macrogol, tween 61, cacao butter, laurin butter, glycerogelatin and the like can be used.
본 발명의 또 다른 양태로, 상기 신경세포 손상 질환 예방 또는 치료용 약학적 조성물을 투여하는 단계를 포함하는 신경세포 손상 질환 예방 또는 치료 방법을 제공한다. 상기 신경줄기세포는 전술한 바와 같다.In another aspect, the present invention provides a method for preventing or treating a neuronal cell damage disease, comprising administering the pharmaceutical composition for preventing or treating the neuronal cell disease. The neural stem cells are as described above.
상기 조성물은 약학적으로 유효한 양으로 투여할 수 있다. The composition may be administered in a pharmaceutically effective amount.
상기 "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 개체 종류 및 중증도, 연령, 성별, 감염된 바이러스 종류, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. The "pharmaceutically effective amount" means an amount sufficient to treat the disease at a reasonable benefit / risk ratio applicable to medical treatment, and the effective dose level is the type of subject and its severity, age, sex, type of virus infected, drug Activity, sensitivity to drug, time of administration, route of administration and rate of release, duration of treatment, factors including concurrent use of drugs, and other factors well known in the medical arts.
상기 투여는 어떠한 적절한 방법으로 환자에게 본 발명의 조성물을 도입하는 것을 의미하며, 상기 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 복강 내 투여, 정맥 내 투여, 근육 내 투여, 피하 투여, 피내 투여, 경구 투여, 국소 투여, 비 내 투여될 수 있으나, 이에 제한되지는 않는다.The administration means introducing the composition of the present invention to the patient in any suitable way, and the route of administration of the composition can be administered via any general route as long as it can reach the target tissue. Intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, intranasal administration, but is not limited thereto.
본 발명의 조성물을 매일 투여 또는 간헐적으로 투여해도 좋고, 1일당 투여 횟수는 1회 또는 2~3회로 나누어 투여하는 것이 가능하다. 두 유효성분이 각각 단제인 경우의 투여횟수는 같은 횟수여도 좋고, 다른 횟수로 해도 된다. 또한, 본 발명의 조성물은 신경세포 손상 질환의 예방 또는 치료를 위하여 단독으로, 또는 다른 약물 치료와 병용하여 사용할 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 당업자에 의해 용이하게 결정될 수 있다.The composition of the present invention may be administered daily or intermittently, and the number of administrations per day may be administered once or divided into two or three times. The frequency of administration in the case where the two active ingredients are single drugs may be the same or different times. In addition, the compositions of the present invention can be used alone or in combination with other drug treatments for the prevention or treatment of neuronal cell damage diseases. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect in a minimum amount without side effects, and can be easily determined by those skilled in the art.
상기 개체란, 신경 세포 손상 질환이 발병하였거나 발병할 수 있는 인간과, 원숭이, 소, 말, 양, 돼지, 닭, 칠면조, 메추라기, 고양이, 개, 마우스, 쥐, 토끼 또는 기니아 피그를 포함한 모든 동물을 의미한다. 본 발명의 약학적 조성물을 개체에게 투여함으로써 상기 질환을 효과적으로 예방 또는 치료할 수 있다면 개체의 종류는 제한없이 포함된다. The subject includes all humans, including monkeys, cows, horses, sheep, pigs, chickens, turkeys, quails, cats, dogs, mice, rats, rabbits or guinea pigs, who may or may have developed neuronal cell disease. Means. If the pharmaceutical composition of the present invention can be effectively prevented or treated by administering to the subject, any kind of subject is included without limitation.
본 발명의 구체적인 실시예에서는, 직접 리프로그래밍에 의해 제조된 신경줄기세포가 다양한 종류의 신경세포로 분화 가능하다는 점을 확인하였는 바, 본 발명의 신경줄기세포는 다양한 신경 세포 손상 질환의 치료제로서 이용될 수 있다.In a specific embodiment of the present invention, it was confirmed that the neural stem cells produced by direct reprogramming can be differentiated into various kinds of neurons, the neural stem cells of the present invention can be used as a therapeutic agent for various neuronal cell damage diseases have.
본 발명의 또 다른 양태로, 상기 방법에 따라 제조된 신경줄기세포 또는 이로부터 분화된 신경세포에 후보물질을 처리하여, 상기 신경줄기세포가 유래된 개체에 맞춤형인 신경계질환 치료제를 확인하는 단계를 포함하는, 개인 맞춤형 신경계 질환 치료제의 스크리닝 방법을 제공한다.In another aspect of the present invention, by treating the neural stem cells or neural cells differentiated therefrom prepared according to the method of the candidate material, identifying a therapeutic agent for neurological diseases tailored to the individual from which the neural stem cells are derived. To provide a method for screening a therapeutic agent for personalized neurological diseases.
구체적으로, 환자 개인의 체질이나 환경에 따른 개인 맞춤형 신경계질환 치료제를 선별하기 위하여, 본 발명의 방법으로 제조된 신경줄기세포 또는 이로부터 분화된 신경세포에 후보물질을 처리하여, 신경계 질환의 치료와 관련된 메커니즘의 변화 및 이와 연관된 단백질 등의 발현변화 등을 확인함으로써, 상기 신경줄기세포를 생성하기 위하여 사용된 분리된 세포가 유래된 개체에 대한 맞춤형 신경계 질환 치료제가 될 수 있는지 여부를 확인 및 검증할 수 있다.Specifically, in order to select a personalized neurological disease treatment agent according to the constitution or environment of an individual patient, by treating a candidate substance to a neural stem cell or a differentiated neuronal cell prepared by the method of the present invention, By confirming the change in the mechanism and the expression change of the protein and the like, it is possible to confirm and verify whether the isolated cells used to generate the neural stem cells can be a customized neurological disease treatment agent for the individual from which the stem cells are derived. .
이하 본 발명을 실시예 및 실험예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예 및 실험예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예 및 실험예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. However, these Examples and Experimental Examples are for illustrative purposes only and the scope of the present invention is not limited to these Examples and Experimental Examples.
실시예 1: 인간 섬유아세포(hDF)로부터 Sox2, c-Myc 과발현 조절을 통한 iNSC 제조Example 1 Preparation of iNSC from Sox2, c-Myc Overexpression Control from Human Fibroblasts (hDF)
실시예 1-1: Sox2, c-Myc 레트로바이러스 벡터 제조Example 1-1 Preparation of Sox2, c-Myc Retrovirus Vector
hc-Myc과 hSox-2를 체세포에서 과발현시키기 위한 레트로바이러스를 제작하였다.Retroviruses for overexpressing hc-Myc and hSox-2 in somatic cells were prepared.
먼저, 레트로바이러스 발현 벡터인 pMX 레트로바이러스 벡터에 hcMyc 및 hSOX-2를 도입시켜 pMXs-hc-MYC 및 pMXs-hSOX2를 각각 제작하였다(도 1a).First, hcMyc and hSOX-2 were introduced into a pMX retroviral vector, a retroviral expression vector, to prepare pMXs-hc-MYC and pMXs-hSOX2, respectively (FIG. 1A).
그 후, 상기에서 제작한 pMXs-hc-MYC 및 pMXs-hSOX2 벡터를 이용하여 hcMyc 또는 hSOX-2의 도입을 위한 hcMyc 또는 hSOX-2 레트로바이러스를 제작하였다. 구체적으로, Convoy 24 ul, pMXs-hc-Myc 또는 pMXs-hSox-2 4 ug, VSV-G 2 ug 및 Gag-Pol 2 ug을 PBS(phosphate buffered saline)에 혼합한 뒤, 10분간 상온에서 정치하였다. 그 후, 상기 혼합물을 100 mm 세포배양접시에 부착된 2Х106 개의 293FT 세포에 첨가하여 37℃ 5% CO2 조건에서 하루동안 트랜스펙션(transfection) 하였다. 또한, 적정을 위해 pMXs-GFP 벡터도 동일한 조건으로 트랜스펙션 하였다. 트랜스펙션 후 생성된 바이러스 soup는 트렌스펙션 후 각각 24, 48, 72시간 뒤에 모아 4℃에서 보관하였다.Thereafter, hcMyc or hSOX-2 retroviruses for the introduction of hcMyc or hSOX-2 were prepared using the pMXs-hc-MYC and pMXs-hSOX2 vectors prepared above. Specifically, 24 ul Convoy, pMXs-hc-Myc or pMXs-hSox-2 4 ug, VSV-G 2 ug and Gag-Pol 2 ug were mixed in phosphate buffered saline (PBS) and allowed to stand at room temperature for 10 minutes. . The mixture was then added to 2Х10 6 293FT cells attached to a 100 mm cell culture dish and transfected at 37 ° C. 5% CO 2 conditions for one day. In addition, the pMXs-GFP vector was transfected under the same conditions for titration. Virus soup generated after transfection was collected at 24, 48 and 72 hours after transfection, respectively, and stored at 4 ° C.
상기 바이러스의 농축을 위해 상기 바이러스 soup를 0.45 um로 여과시킨 뒤, Retro-X concentrator (Clontech)를 바이러스 soup의 1/3 부피로 첨가한 뒤 4℃ 에서 하룻동안 인큐베이션 하였다. 24시간 뒤 상기 혼합물을 60분 동안 4℃에서 4,000rpm으로 원심분리 하였다. 원심분리 후, soup을 버리고, 레트로바이러스 펠렛을 PBS로 현탁한 뒤 분주하였고, 사용시까지 -80℃에 보관하였다. After filtering the virus soup to 0.45 um for the concentration of the virus, Retro-X concentrator (Clontech) was added to 1/3 of the virus soup and incubated at 4 ℃ for one day. After 24 hours the mixture was centrifuged at 4,000 rpm at 4 ° C. for 60 minutes. After centrifugation, the soup was discarded, the retroviral pellet was suspended in PBS, aliquoted, and stored at -80 ° C until use.
상기 바이러스의 적정을 위해 6-웰 플레이트에 시딩한 5Х105 개의 293FT 세포에 농축된 GFP 레트로바이러스를 각각 50, 5, 0.5, 0 ul로 하루동안 형질도입(overnight transduction) 하였다. 2일 뒤 세포 중 GFP 발현 세포의 비율을 유세포 분석기를 이용하여 분석하였다. 1-20% 이내의 결과값을 이용하여 도 1D에 제시된 계산식에 도입하여 역가(titer)를 계산하였다(도 1b 내지 1d).For the titration of the virus, GFP retroviruses enriched in 5Х10 5 293FT cells seeded in 6-well plates were transduced overnight (50, 5, 0.5, 0 ul, respectively). Two days later, the percentage of GFP expressing cells in the cells was analyzed using a flow cytometer. Titers were calculated by introducing them into the formula shown in FIG. 1D using results within 1-20% (FIGS. 1B-1D).
실시예 1-2: Sox2 및 c-Myc 레트로바이러스의 MOI값의 차이에 따른 유도신경줄기세포 제조 여부 확인Example 1-2: Confirmation of the production of induced neural stem cells according to the difference in the MOI value of Sox2 and c-Myc retrovirus
상기 실시예 1-1에서 제조한 Sox2 및 c-Myc 레트로바이러스에 의해 인간 섬유아세포를 이용하여 유도신경줄기세포를 제조할 수 있는지 확인하였다.By Sox2 and c-Myc retroviruses prepared in Example 1-1 it was confirmed whether the induced neural stem cells can be prepared using human fibroblasts.
먼저, 유도신경줄기세포(iNSC)을 제조하기 위해 실시예 1-1에서 제조한 hSOX-2 도입용 레트로바이러스는 MOI 1로 처리하고, hcMyc 도입용 레트로 바이러스는 각각 MOI 1, 5 및 10으로 인간 섬유아세포에 처리하여 직접 리프로그래밍을 유도하였다.First, the hSOX-2 introduction retrovirus prepared in Example 1-1 was treated with MOI 1, and the hcMyc introduction retroviruses were prepared with MOI 1, 5 and 10, respectively, in order to prepare induced nerve stem cells (iNSC). Treatment with blasts induced direct reprogramming.
구체적으로, 레트로바이러스 형질도입 전날 24-웰 조직 배양 플레이트에 1.25 Х 104개 인간섬유아세포를 플레이팅 하였다. 다음날 실시예 1-1에서 제조한 Sox2 및 c-Myc 레트로바이러스를 정해진 MOI로 세포에 첨가한 뒤 20℃에서 60분 동안 800xg로 spinfection 하였다. Spinfection 후 20% (v/v) FBS(fetal bovine serum) 과 1X primocin이 포함된 DMEM/F12 에서 배양하였다.Specifically, 1.25 Х 10 4 human fibroblasts were plated on 24-well tissue culture plates the day before retroviral transduction. The next day, Sox2 and c-Myc retroviruses prepared in Example 1-1 were added to the cells with a defined MOI and spinfected at 800xg for 60 minutes at 20 ° C. After spinfection, the cells were cultured in DMEM / F12 containing 20% (v / v) FBS (fetal bovine serum) and 1X primocin.
2일차의 세포 수를 비교한 결과, hcMyc 도입용 레트로 바이러스를 MOI 1로 처리한 경우의 세포 수가 MOI 5 혹은 10에 비해 유의하게 증가되었다(P < 0.01) (도 2a).As a result of comparing the number of cells on the second day, the number of cells when the retrovirus for introducing hcMyc was treated with MOI 1 was significantly increased compared to MOI 5 or 10 (P <0.01) (FIG. 2A).
또한, 상기와 같이 Sox2 및 c-Myc 레트로바이러스를 형질전환 시킨 후 3일째에 poly L-ornithine/Fibronectin이 코팅된 6-웰 플레이트에 상기 형질전환된 세포를 5 Х 103개씩 시딩하였다. 시딩 후, 5일째에 상기 세포가 플레이트에 부착된 것을 확인한 뒤 iNSC 배지(1X supplement, 1X primocin, 20 ng/ml bFGF, 20 ng/ml EGF이 첨가된 Stempro NSC 배지)로 교체하였다. 배지교환은 2일에 한번씩 하였다. 상기 iNSC 배지에서 배양을 시작한 후 14-21일째에, iNSC 콜로니를 mechanical picking하여 poly L-ornithine/Fibronectin이 코팅된 플레이트에서 배양을 계속하였다. 신경구(Neurosphere) 배양를 위해 부착된 상태로 배양중인 iNSC를 accutase를 이용하여 떼어낸 뒤 페트리디쉬에 현탁하여 신경구를 형성하였다.In addition, 3 days after transformation of Sox2 and c-Myc retrovirus as described above, the cells were seeded by 5 10 3 cells in a 6-well plate coated with poly L-ornithine / Fibronectin. After seeding, the cells were attached to the plate on day 5 and replaced with iNSC medium (1X supplement, 1X primocin, 20 ng / ml bFGF, Stempro NSC medium with 20 ng / ml EGF). Medium exchange was performed every 2 days. On 14-21 days after starting the culture in the iNSC medium, the iNSC colonies were mechanically picked to continue the culture on the poly L-ornithine / Fibronectin coated plate. The iNSC in culture in the attached state for neurosphere culture was detached using accutase and suspended in Petri dish to form neurosphere.
상기 실험결과, hcMyc 도입용 레트로 바이러스를 MOI 1로 레트로바이러스를 처리한 경우 유도신경줄기세포와 유사한 형태를 보이며 직접교차분화된 것을 확인할 수 있었고(도 2b), 부착시켜 배양하거나(attached culture), 배양액에 부유시키는 경우(suspension culture) 모두에서 배양이 가능한 것을 확인하였으며(도 2c), 5% DMSO가 첨가된 iNSC 배지를 이용하여 천천히 동결시킨 후 37℃ 수조에서 천천히 다시 해동하였음에도 불구하고 제조된 유도신경줄기세포가 특이적인 형태와 증식능을 유지하는 것을 확인하였다(도 2d). 그러나 MOI를 5 이상으로 처리한 경우에서는 유도신경줄기세포와 유사한 형태가 관찰되지 않았다(도 2b).As a result of the experiment, when the retrovirus for hcMyc introduction retrovirus treatment with MOI 1 showed a similar form to induced neuronal stem cells and directly cross-divided (Fig. 2b), attached culture (attached culture), culture medium In suspension culture (suspension culture) it was confirmed that the culture is possible in all (Fig. 2c), after slowly freezing using iNSC medium added with 5% DMSO and thawed slowly in a 37 ℃ water tank prepared induction It was confirmed that the stromal cells maintain their specific morphology and proliferative capacity (FIG. 2D). However, when the MOI was treated with 5 or more, no morphology similar to induced neural stem cells was observed (FIG. 2B).
상기 제조된 hDF-iNSC가 사용한 hDF로부터 유래한 것인지 확인하기 위해 유전자 지문 분석(fingerprinting)을 수행한 결과, parental hDF origin임이 확인되었다(도 2e). Genetic fingerprinting was performed to confirm whether the prepared hDF-iNSC was derived from the used hDF. As a result, it was confirmed that the parental hDF origin was used (FIG. 2E).
또한, NSC 마커인 CD133이 양성인 세포 비율로 직접교차분화 효율을 비교 분석하였다. 구체적으로, 1x105 내지 1x106 개의 세포를 PBS 100 ul에 현탁하였다. 그 후, 상기 세포에 Fluorescein isothiocyanate(FITC)가 결합된 항체 3 ul를 혼합한 뒤, 빛을 차단시킨 공간에서 실온에서 30분 동안 결합을 유도하였다. 사용한 항체는 anti-CD133/1-VioBright/FITC (Miltenyi Biotec)이다. 그 후, PBS 3ml을 첨가하여 워싱한 뒤 상기 세포를 MACSQuant VYB (Miltenyi Biotec)을 이용하여 유세포 분석을 하였다. 그 결과, hDF 배치(batch) 별로 0.2-0.5% 의 차이를 보였다(도 2f).In addition, direct cross-differentiation efficiency was analyzed by the proportion of cells positive for CD133, an NSC marker. Specifically, 1 × 10 5 to 1 × 10 6 cells were suspended in 100 ul of PBS. Then, after mixing 3 ul of antibody with Fluorescein isothiocyanate (FITC) bound to the cells, binding was induced for 30 minutes at room temperature in a light-blocked space. The antibody used is anti-CD133 / 1-VioBright / FITC (Miltenyi Biotec). After washing with 3 ml of PBS, the cells were subjected to flow cytometry using MACSQuant VYB (Miltenyi Biotec). As a result, the difference was 0.2-0.5% for each batch of hDF (FIG. 2F).
또한, hDF에 처리하는 Sox2 및 c-Myc 레트로바이러스의 MOI가 증가함에 따라, 리프로그래밍에 장애물로 작용하는 주요한 요소인 p53의 전사 및 p53 단백질의 발현양을 확인하기 위해 하기와 같은 실험을 수행하였다.In addition, as the MOI of Sox2 and c-Myc retroviruses treated with hDF increases, the following experiments were performed to confirm the expression of p53 transcription and p53 protein, which are major factors that interfere with reprogramming. .
구체적으로, p53의 전사 발현양을 확인하기 위해 qRT-PCT을 수행하였다. 상기 qRT-PCT을 수행하기 위해 PureLink RNA Mini Kit (Invitrogen)를 이용하여 세포 펠렛으로부터 mRNA를 분리하였고, AccuPower RT Premix(Bioneer)를 이용하여 분리된 mRNA로부터 cDNA를 합성하였다. 상기 cDNA, PowerUp SYBR Green Master Mix (Appliedbiosystems), p53 정방향 및 역방향 프라이머(서열번호 19 및 20) 및 증류수를 혼합하여 20 ul로 만들고, Quant Studio3 (Appliedbiosystems) 를 이용하여 PCR 반응을 수행하여, p53 유전자의 상대적인 배수 값을 계산하였다.Specifically, qRT-PCT was performed to confirm the transcriptional expression level of p53. To perform the qRT-PCT, mRNA was isolated from the cell pellet using PureLink RNA Mini Kit (Invitrogen), and cDNA was synthesized from the mRNA isolated using AccuPower RT Premix (Bioneer). The cDNA, PowerUp SYBR Green Master Mix (Appliedbiosystems), p53 forward and reverse primers (SEQ ID NOs: 19 and 20) and distilled water were mixed to make 20 ul, and the PCR reaction was performed using Quant Studio3 (Appliedbiosystems), p53 gene. The relative fold value of was calculated.
p53 뿐만 아니라 이후의 실시예에서 사용하는 프라이머는 하기 표 1에 기재하였다.The primers used in the following examples as well as p53 are listed in Table 1 below.
Figure PCTKR2019005566-appb-T000001
Figure PCTKR2019005566-appb-T000001
또한, p53 단백질 발현양을 확인하기 위해 웨스턴 블랏팅을 수행하였다. 상기 실험을 수행하기 위해, Sox2 및 c-Myc 레트로바이러스를 세포에 도입하고 6일째에 세포에 용해 완충액(lysis buffer)를 처리하여 세포로부터 단백질을 분리하였고, 가열 과정을 통해 단백질을 변성시키는 과정을 통해 샘플링하였다. 그 후, 상기 준비된 샘플을 SDS-PAGE 겔(Bio-Rad, Hercules, CA, USA)에서 전기영동을 수행하였고, 상기 겔의 단백질을 polyvinylidene fluoride (Bio-Rad)막에 트랜스퍼(transfer) 한 뒤, 탈지분유를 이용하여 상기 막을 블락킹 하였다. 그 후, 상기 막에 항-p53 항체(1:1,000; Santacruz)를 4℃에서 하루동안 처리하였다. 다음날 워싱 후, HRP가 접합된 2차 항체(1:1,000; Santacruz)를 실온에서 1시간 동안 처리하고, 워싱 후 상기 막을 ECL solution (iNTRON)으로 현상하여, p53 단백질의 발현량을 확인하였다.In addition, Western blotting was performed to confirm the amount of p53 protein expression. In order to perform the experiment, Sox2 and c-Myc retroviruses were introduced into the cells, and on day 6, the cells were lysed with lysis buffer to separate proteins from the cells, and the process of denaturing the proteins by heating was performed. Sampling through. Thereafter, the prepared sample was subjected to electrophoresis on an SDS-PAGE gel (Bio-Rad, Hercules, CA, USA), and the protein of the gel was transferred to a polyvinylidene fluoride (Bio-Rad) membrane. The membrane was blocked using skim milk powder. The membrane was then treated with anti-p53 antibody (1: 1,000; Santacruz) at 4 ° C. for one day. After washing the next day, HRP conjugated secondary antibody (1: 1,000; Santacruz) was treated for 1 hour at room temperature, and after washing, the membrane was developed with ECL solution (iNTRON) to confirm the expression level of p53 protein.
상기 qRT-PCR 및 웨스턴블랏 결과, p53의 전사 및 p53 단백질의 발현양이 MOI에 비례하여 유의하게 증가하는 것을 확인하였다(P < 0.05 및 P < 0.01) (도 3a 및 b). As a result of the qRT-PCR and Western blot, it was confirmed that the transcription of p53 and the expression of p53 protein were significantly increased in proportion to MOI (P <0.05 and P <0.01) (FIGS. 3A and B).
상기 결과를 토대로, 인간 섬유아세포에 처리하는 Sox2, c-Myc 레트로바이러스의 MOI 값이 높을수록 유도신경줄기세포로의 리프로그래밍을 유발하기 어려우며, MOI 5 미만으로 처리하는 경우 hDF 세포를 유도신경줄기세포로 리프로그래밍 시킬 수 있다는 점을 확인하였다.Based on the above results, the higher MOI values of Sox2 and c-Myc retroviruses treated with human fibroblasts, the more difficult it is to induce reprogramming to induced neuronal stem cells, and when treated with less than MOI 5, hDF cells to induced neuronal stem cells We confirmed that we could reprogram it.
실시예 1-3: 전분화능을 갖는 단계를 거치지 않는 직접교차분화 확인Example 1-3: Direct Cross-Differentiation Confirmation Without Steps Having Starch Capacity
실시예 1-2에 기재된 qRT-PCR 실험을 통해 hDF-iNSC의 Oct4 발현량을 확인한 결과, Oct4의 전사 및 발현량이 인간 유도만능줄기세포에 비해 낮은 것을 확인하였다(P < 0.01)(도 4a). 대표적인 전분화능 마커인 Oct4의 낮은 발현량을 확인함으로써, 전분화능을 갖는 단계를 거치지 않고 직접교차분화가 일어났음을 확인할 수 있었다.As a result of confirming Oct4 expression amount of hDF-iNSC through qRT-PCR experiment described in Example 1-2, it was confirmed that the transcription and expression amount of Oct4 is lower than that of human induced pluripotent stem cells (P <0.01) (FIG. 4A). . By confirming the low expression level of Oct4, a representative pluripotency marker, it was confirmed that direct cross-differentiation occurred without the step having pluripotency.
또한, 본 연구팀의 실험 조건에서는 iPSC 기술의 리프로그래밍 4 인자(hOct-4, hSox-2, hc-Myc, 및 hKlf-4; OSMK) 중 1개라도 제외된 경우의 전능성을 확인하기 위해 하기와 같은 실험을 수행하였다.In addition, the experimental conditions of the team to determine the omnipotence of any one of the reprogramming 4 factors (hOct-4, hSox-2, hc-Myc, and hKlf-4; OSMK) of the iPSC technology is The same experiment was performed.
구체적으로, 실시예 1-1에 기재된 레트로바이러스 형질도입 과정과 같이, hOct-4, hSox-2, hc-Myc 및 hKlf-4 중 1개씩 제외된 4개의 조합으로 리프로그래밍 인자를 도입하였다. 그 후, 3일간 20%(v/v) FBS가 포함된 DMEM/F12 에서 배양하였다. 3일째에 STO feeder 세포가 시딩된 조직배양 플레이트에 계대하였다. 그 후, 5-21일까지 iPSC 배지(DMEM/F12, 20% serum replacement, 1x primocin, 4ng/ml bFGF)으로 매일 배지를 교환하였다. 21일째에 alkaline phosphatase 염색을 하였고, alkaline phosphatase 양성 콜로니의 숫자를 계수하여 리프로그래밍 효율을 정량화하였다.Specifically, as in the retroviral transduction procedure described in Example 1-1, the reprogramming factor was introduced in four combinations except one of hOct-4, hSox-2, hc-Myc and hKlf-4. Thereafter, the cells were incubated in DMEM / F12 containing 20% (v / v) FBS for 3 days. On day 3, STO feeder cells were passaged to seeded tissue culture plates. Thereafter, the medium was changed daily with iPSC medium (DMEM / F12, 20% serum replacement, 1 × primocin, 4 ng / ml bFGF) until 5-21 days. Alkaline phosphatase staining was performed on day 21 and the reprogramming efficiency was quantified by counting the number of alkaline phosphatase positive colonies.
그 결과, 리프로그래밍 4 인자(hOct-4, hSox-2, hc-Myc, 및 hKlf-4; OSMK) 중 1개라도 제외된 조합이 도입된 세포를 iPSC 리프로그래밍 조건에서 배양하더라도 alkaline phosphatase 양성 콜로니가 전혀 형성되지 않았다. 흥미롭게도 OSMK 중 hSox-2만 제외한 OMK 유전자를 체세포에 도입하였을때는 colony가 다수 형성되었지만 모두 alkaline phosphatase 음성 콜로니였다(도 4b).As a result, alkaline phosphatase-positive colonies were cultured under iPSC reprogramming conditions in which cells containing any combination of one of the reprogramming 4 factors (hOct-4, hSox-2, hc-Myc, and hKlf-4; OSMK) were introduced under iPSC reprogramming conditions. Was not formed at all. Interestingly, when the OMK gene except for hSox-2 of OSMK was introduced into somatic cells, colony was formed in large numbers, but all were alkaline phosphatase negative colonies (FIG. 4B).
실시예 1-4: 제조된 유도신경줄기세포의 다분화능(multipotency) 확인Example 1-4: Confirmation of multipotency of the prepared induced stem cells
본 발명의 방법으로 제조된 hDF-iNSC가 신경줄기세포 특성을 갖는지 확인하고, 상기 세포의 증식능 및 분화능을 확인하였다.It was confirmed whether hDF-iNSC prepared by the method of the present invention has neural stem cell characteristics, and the proliferative and differentiating ability of the cells was confirmed.
먼저, 상기 hDF-iNSC가 신경줄기세포 특성을 갖는지 확인하기 위해 신경줄기세포 특이적 마커의 발현 양상을 확인하였다.First, in order to confirm whether the hDF-iNSC has neural stem cell characteristics, expression patterns of neural stem cell specific markers were confirmed.
구체적으로, 실시예 1-2에 기재된 qRT-PCR 실험을 통해, 상기 실시예 1-2에서 제조된 hDF-iNSC은 신경줄기세포 특이적 마커인 내인성 Sox2, Nestin, Pax6 를 전사 수준에서 과발현하고 있음을 확인하였다(도 5a).Specifically, through the qRT-PCR experiment described in Example 1-2, the hDF-iNSC prepared in Example 1-2 overexpressed the neural stem cell specific markers endogenous Sox2, Nestin, Pax6 at the transcription level It was confirmed (FIG. 5A).
또한, 면역 염색법을 이용하여 신경줄기세포 특이적 마커가 단백질 수준에서 과발현하고 있음을 확인하였다. 상기 면역 염색법은 하기와 같은 과정으로 수행하였다. 먼저, 고정(Fixation), 투과(permeabilization) 및 블락킹(blocking)이 완료된 상기 hDF-iNSC에 실험목적에 맞게 항-Nestin (Abcam), 항-PAX6 (BioLegent) 1차 항체 (각각 1:100) 를 4℃에서 하루동안 처리하였다. 다음날 PBS로 워싱 후 1차 항체의 유래에 맞춰서 Alex Fluor 488 염소 항-마우스 (Invitrogen), Alex Fluor 594 염소 항-마우스 (Invitrogen), Alex Fluor 594 염소 항-토끼 (Invitrogen) 2차 항체(각각 1:1,000)를 실온에서 2시간 처리하였다. 그 후, 여분의 2차 항체를 PBS로 워싱하여 제거한 뒤, DAPI(4`,6`-Diamidino-2-Phenylindole, Dihydrochloride)로 세포핵을 염색하였다. 염색된 세포의 관찰은 Nikon ECLIPSE Ti-U 현미경 (Nikon)을 이용하였다. Excitation/emission wavelength는 DAPI가 358/461 nm, Alex Fluor 488이 488/525 nm, Alex Fluor 594가 594/617 nm 였다. 상기 면역염색 결과 Nestin, Pax6은 단백질 수준에서 과발현 하고 있음을 확인하였다(도 5b).In addition, the immunostaining method was confirmed that neural stem cell specific markers are overexpressed at the protein level. The immunostaining method was performed by the following procedure. First, anti-Nestin (Abcam) and anti-PAX6 (BioLegent) primary antibodies (1: 100), respectively, for the purpose of experiments on the hDF-iNSC, which have been fixed, permeabilized, and blocked. Was treated at 4 ° C. for one day. The next day, after washing with PBS, Alex Fluor 488 goat anti-mouse (Invitrogen), Alex Fluor 594 goat anti-mouse (Invitrogen), Alex Fluor 594 goat anti-rabbit (Invitrogen) secondary antibody (1 each) : 1,000) was treated for 2 hours at room temperature. Subsequently, the extra secondary antibody was washed with PBS, removed, and the cell nuclei were stained with DAPI (4 ′, 6′-Diamidino-2-Phenylindole, Dihydrochloride). Observation of the stained cells using a Nikon ECLIPSE Ti-U microscope (Nikon). Excitation / emission wavelength was 358/461 nm for DAPI, 488/525 nm for Alex Fluor 488 and 594/617 nm for Alex Fluor 594. As a result of immunostaining, it was confirmed that Nestin and Pax6 were overexpressed at the protein level (FIG. 5B).
이를 통해, 본 발명에서 제조된 세포가 신경줄기세포로 리프로그래밍되었음을 확인하였다.Through this, it was confirmed that the cells prepared in the present invention are reprogrammed into neural stem cells.
또한, 제조된 hDF-iNSC의 증식능 및 분화능을 측정하였다. 구체적으로, bFGF/EGF 미첨가 iNSC 배지로 3주간 배양하여 iNSC의 자발적인 분화(spontaneous differentiation)을 유도하였다. 배지교환은 2-3 일에 한번씩 하였고, 상기 배양은 37℃ 5% CO2 조건에서 수행하였다. 분화가 완료된 세포는 실시예 1-1에 기재된 qRT-PCR 방법으로 MAP2, GFAP 및 Olig1의 전사 수준을 확인하였다. 그 결과, 제조된 hDF-iNSC는 약 21.3h의 배가 시간(doubling time)을 보이며 자가 증식(self-renewal)하였고, 자발적인 분화(spontaneous differentiation)에 의해 뉴런 및 교세포(성상교세포 및 희소돌기아교세포)로 분화될 수 있는 다분화능을 가지고 있음을 확인하였다(도 5c 및 5d).In addition, the proliferative and differentiating ability of the prepared hDF-iNSC was measured. Specifically, spontaneous differentiation of iNSC was induced by culturing for 3 weeks in bFGF / EGF-free iNSC medium. Medium exchange was performed every 2-3 days, the culture was performed at 37 5% CO 2 conditions. The differentiated cells were confirmed the transcription level of MAP2, GFAP and Olig1 by the qRT-PCR method described in Example 1-1. As a result, the prepared hDF-iNSC showed self-renewal with a doubling time of about 21.3 h, and neurons and glial cells (astroglia and oligodendrocytes) by spontaneous differentiation. It was confirmed that it has a multipotential which can be differentiated into (FIGS. 5C and 5D).
실시예 2: 다양한 체세포 유래의 iNSC 제조Example 2: Preparation of iNSCs from Various Somatic Cells
실시예 1에서 확인한 체세포 유래 유도신경줄기세포 제조 방법이 인간 섬유아세포 외에 다양한 체세포에서도 일반적으로 적용할 수 있는지 확인하기 위해 인간 제대혈 유래 중간엽 줄기세포(human umbilical cord blood-derived mesenchymal stem cells: hUCB-MSC) 및 인간 니만 피크병 C형 유래 피부 섬유아세포(Human Niemann-Pick Type C disease derived dermal fibroblasts: hNPCDF)에서 하기와 같은 실험을 수행하였다.Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC) to confirm whether the somatic-derived induced neural stem cell manufacturing method identified in Example 1 can be generally applied to various somatic cells in addition to human fibroblasts. ) And human Niemann-Pick Type C disease derived dermal fibroblasts (hNPCDF).
실시예 2-1: hUCB-MSC를 이용한 iNSC제조Example 2-1: iNSC Preparation Using hUCB-MSC
먼저, 전형적인 MSC 특이적 마커 발현 패턴을 확인하기 위해, 항-HLA-ABC (BD), 항-HLA-DR (BD), 항-CD34 (BD), 항-CD45 (BD), 항-CD73 (BD), 항-CD105 (BD) 항체를 이용하여 실시예 1-2에서 수행한 유세포 분석을 수행하였다. 그 결과, hUCB-MSC가 HLA-ABC+, HLA-DR-, CD34-, CD45-, CD73+, CD105+로 전형적인 MSC 특이적 마커 발현 패턴을 보였는바(도 6a), 이를 통해 실험에 사용한 hUCB-MSC가 중배엽줄기세포의 특성을 갖는다는 것을 확인하였다.First, to identify typical MSC specific marker expression patterns, anti-HLA-ABC (BD), anti-HLA-DR (BD), anti-CD34 (BD), anti-CD45 (BD), anti-CD73 ( BD), flow cytometry performed in Examples 1-2 using anti-CD105 (BD) antibodies. As a result, the hUCB-MSC showed a typical MSC specific marker expression pattern with HLA-ABC +, HLA-DR-, CD34-, CD45-, CD73 +, and CD105 + (FIG. 6A). It was confirmed that the mesenchymal stem cells have the characteristics.
상기 세포에 hc-Myc 및 hSox-2의 도입을 위해 실시예 1과 같이 레트로바이러스를 MOI 1로 처리한 결과, iNSC 특이적인 부착 콜로니 형태(attached colony morphology)를 보임을 확인하였고(도 6B), 항-CD133/1-VioBright/FITC (Miltenyi Biotec) 항체를 이용하여 실시예 1-2에 기재된 유세포 분석을 수행한 결과, 2가지 종류의 hUCB-MSC 각각에서 약 1.0-2.4%의 효율로 직접교차분화가 일어난다는 것을 확인하였다 (도 6c). When the retrovirus was treated with MOI 1 as in Example 1 to introduce hc-Myc and hSox-2 into the cells, it was confirmed that iNSC-specific attached colony morphology was shown (FIG. 6B). Flow cytometry described in Examples 1-2 using anti-CD133 / 1-VioBright / FITC (Miltenyi Biotec) antibody showed direct crossover at an efficiency of about 1.0-2.4% in each of the two types of hUCB-MSCs. It was confirmed that differentiation occurs (FIG. 6C).
또한, 실시예 1-1에 기재된 qRT-PCR 실험을 수행하여, 상기에서 제조된 hUCB-MSC-iNSC는 NSC 특이적 마커인 내인성 Sox2, Nestin, Pax6를 발현하였고, 뉴런 유사 형태로 분화됨을 확인하였는 바(도 6d 및 6e), 상기 세포가 유도신경줄기세포로 직접 리프로그래밍 되었고, 신경세포로의 분화능이 있음을 알 수 있다.In addition, by performing the qRT-PCR experiment described in Example 1-1, it was confirmed that the hUCB-MSC-iNSC prepared above expressed NSC-specific markers endogenous Sox2, Nestin, Pax6, and differentiated into neuron-like forms. 6 (d) and 6e), the cells were reprogrammed directly into induced neuronal stem cells and have differentiation potential into neurons.
이를 통해, 실시예 1의 유도신경줄기세포 제조 방법이 hUCB-MSC에서도 적용됨을 알 수 있다.Through this, it can be seen that the induced neural stem cell manufacturing method of Example 1 is also applied to hUCB-MSC.
실시예 2-2: hNPCDF를 이용한 iNSC 제조Example 2-2: iNSC Preparation Using hNPCDF
실험 대상이 된 hNPCDF 는 NPC1 유전자에 점돌연변이를 가지고 있어서 NPC1 단백질의 이소류신(isoleucine)이 트레오닌(threonine)으로 치환되어 있다(도 7a). 즉, 인간 섬유아세포의 한 유전자에 돌연변이가 존재하는 체세포이다.The hNPCDF, which is the subject of experiment, has a point mutation in the NPC1 gene, and isoleucine of the NPC1 protein is replaced with threonine (FIG. 7A). That is, somatic cells in which mutations exist in a gene of human fibroblasts.
상기 세포에 hc-Myc 및 hSox-2의 도입을 위해 실시예 1과 같이 레트로바이러스를 MOI 1로 처리한 결과, 상기 hNPCDF는 약 1.3%의 효율로 직접교차분화하여 신경줄기세포와 유사한 형태를 나타냈다(도 7b 및 7c). 또한, 실시예 1-2에 기재된 qRT-PCR 실험을 통해, hNPCDF-iNSC는 NSC 특이적 마커인 Nestin, Pax6를 발현하였고, 반대로 섬유아세포 마커인 COL1A2, S100A4는 발현하지 않는 것을 확인하였는 바(도 7d 및 7e), 이를 통해 hNPCDF 또한 신경줄기세포로 리프로그래밍 될 수 있다는 것과 그 효율을 확인하였다.As a result of treating retroviruses with MOI 1 as in Example 1 for introducing hc-Myc and hSox-2 into the cells, the hNPCDFs were directly cross-differentiated with an efficiency of about 1.3% to give a morphology similar to that of neural stem cells ( 7b and 7c). In addition, the qRT-PCR experiments described in Example 1-2 confirmed that hNPCDF-iNSC expressed NSC-specific markers Nestin and Pax6, and conversely, fibroblast markers COL1A2 and S100A4 did not. 7d and 7e), which confirmed that hNPCDF can also be reprogrammed into neural stem cells and its efficiency.
또한, 항-Olig2(Millipore), 항-Tuj 1(Abcam) 1차 항체(각각 1:100)를 이용한 면역염색 방법(실시예 1-3에 기재)을 통해, 상기 제조된 hNPCDF-iNSC를 분화시킨 결과 neuron과 glia (oligodendrocyte)로 분화됨을 확인하였는 바(도 7f), 상기 hNPCDF-iNSC 또한 분화능이 있음을 알 수 있다.In addition, the prepared hNPCDF-iNSC was differentiated through an immunostaining method (described in Examples 1-3) using anti-Olig2 (Millipore) and anti-Tuj 1 (Abcam) primary antibodies (1: 100, respectively). As a result, it was confirmed that the neuron and glia (oligodendrocyte) differentiation (Fig. 7f), the hNPCDF-iNSC also has a differentiation capacity.
실시예 3: 제조된 유도신경줄기세포의 안정성 검증Example 3: verification of the stability of the prepared induced stem cells
본 발명에서 제조된 유도신경줄기세포의 안정성을 검증하기 위해서, 하기와 같은 실험을 수행하였다.In order to verify the stability of the induced nerve stem cells prepared in the present invention, the following experiment was performed.
구체적으로, 본 발명에서 제조된 hDF-iNSC의 핵형을 확인한 결과, 일반적인 핵형(46, XX)을 나타낸 것을 확인하였고, 이를 통해 본 발명에서 제조된 유도신경줄기세포가 거시적인 관점에서 유전적으로 안정함을 확인하였다(도 8a).Specifically, as a result of confirming the karyotype of hDF-iNSC prepared in the present invention, it was confirmed that the general karyotype (46, XX) was shown, through which the induced neuronal stem cells produced in the present invention is genetically stable from a macroscopic perspective It was confirmed (FIG. 8A).
또한, 암세포화를 막는데에 가장 중요하다고 알려진 p53에 돌연변이가 발생했는지 여부를 검증하기 위해, 하기와 같은 실험을 수행하였다.In addition, the following experiments were performed to verify whether mutations occurred in p53, which is known to be the most important to prevent cancer cellization.
구체적으로, AccuPrep Genomic DNA Extraction Kit (Bioneer)를 이용하여 hDF-iNSC에서 gDNA를 분리하였다. AccuPower PCR Premix (Bioneer), 표 1에 제시된 p53 정방향 및 역방향 프라이머(서열번호 19 및 20), Genetouch Thermal Cycler(Hanzhou bioer technology)를 이용하여 분리된 gDNA를 주형으로 하여 PCR 증폭을 수행하였다. PCR이 끝난뒤 겔 전기영동(Mupid)를 통해 유전자 증폭 여부를 확인하였으며(도 8b), 상기 PCR product를 MEGAquick-spin plus fragment DNA purification kit(iNtRON) 를 이용하여 정제하였다. 상기 정제된 PCR product는 PCR에 사용한 정방향 프라이머(서열번호 19)와 함께 마크로젠(Seoul, Korea)에서 sequencing을 진행하였다(도 8c).Specifically, gDNA was isolated from hDF-iNSC using AccuPrep Genomic DNA Extraction Kit (Bioneer). PCR amplification was performed using AccuPower PCR Premix (Bioneer), p53 forward and reverse primers shown in Table 1 (SEQ ID NOs: 19 and 20), and Genetouch Thermal Cycler (Hanzhou bioer technology) as a template. After the PCR was confirmed whether the gene amplification by gel electrophoresis (Mupid) (Fig. 8b), the PCR product was purified using a MEGAquick-spin plus fragment DNA purification kit (iNtRON). The purified PCR product was sequencing in macrogen (Seoul, Korea) with the forward primer (SEQ ID NO: 19) used for PCR (Fig. 8c).
그 결과, p53 유전자의 돌연변이가 자주 일어나는 부위(mutation hotspot) 6군데 모두에서 돌연변이가 관찰되지 않았다(도 8c).As a result, no mutation was observed in all six mutation hotspots where the mutation of the p53 gene occurs frequently (FIG. 8C).
또한, 극히 일부의 세포에서라도 p53 유전자가 변이되었을 가능성을 완전히 배제하기 위해, 하기와 같은 실험을 수행하였다. In addition, in order to completely exclude the possibility that the p53 gene was mutated even in a few cells, the following experiment was performed.
구체적으로, In-depth genotyping을 위해서는 PCR product를 TOPcloner TA Kit (Enzynomics)을 이용하여 클로닝하였고, 이를 열 충격 방법을 이용하여 DH5a chemically competent E.coli(Enzynomics)에 형질전환하였다. 상기 형질전환된 E.coli를 LB Agar LOP plate(Narae biotech)에 도말하여 37℃ 에서 하루동안 인큐베이션 하였다. 다음날 10개의 콜로니를 LB broth (Gibco)에서 37℃ 에서 하루동안 인큐베이션 하였다. 그 후, AccuPrep Plasmid Mini Extraction Kit (Bioneer)를 이용하여 증식한 E.coli에서 플라스미드를 분리하였고, 이를 이용하여 마크로젠(Seoul, Korea)에서 sequencing을 진행하였다. 그 결과, 10개를 개별적으로 시퀀싱한 결과 모두에서 p53 유전자의 돌연변이가 관찰되지 않았다(도 8d). Specifically, for in-depth genotyping, PCR products were cloned using TOPcloner TA Kit (Enzynomics), and transformed into DH5a chemically competent E. coli (Enzynomics) using a heat shock method. The transformed E. coli was plated on LB Agar LOP plate (Narae biotech) and incubated at 37 ° C. for one day. The next day 10 colonies were incubated for one day at 37 ° C. in LB broth (Gibco). Thereafter, plasmids were isolated from E. coli grown using AccuPrep Plasmid Mini Extraction Kit (Bioneer), and sequencing was performed in macrogen (Seoul, Korea). As a result, no mutation of the p53 gene was observed in all 10 individually sequenced sequences (FIG. 8D).
상기 결과를 통해, 본 발명의 방법을 통해 제조된 유도신경줄기세포가 유전적으로 안정하다는 것을 확인하였다.Through the above results, it was confirmed that the induced neural stem cells produced by the method of the present invention is genetically stable.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art will appreciate that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. In this regard, it should be understood that the embodiments described above are exemplary in all respects and not limiting. The scope of the present invention should be construed that all changes or modifications derived from the meaning and scope of the following claims and equivalent concepts rather than the detailed description are included in the scope of the present invention.

Claims (12)

  1. (a) 분리된 세포에 Sox2 및 c-Myc을 도입하는 단계; 및(a) introducing Sox2 and c-Myc into the isolated cells; And
    (b) 상기 (a) 단계의 세포를 배양하여 분리된 세포로부터 계통이 전환된 세포로 직접 리프로그래밍을 유도하는 단계(b) culturing the cells of step (a) to induce direct reprogramming from the isolated cells to the cells whose lines are switched
    를 포함하는, 신경줄기세포 제조방법.Containing, neural stem cell manufacturing method.
  2. 제1항에 있어서, 상기 (a)단계의 Sox2 및 c-Myc을 도입하는 방법은 바이러스를 이용하는 것인, 신경줄기세포 제조방법.The method of claim 1, wherein the method of introducing Sox2 and c-Myc of step (a) is to use a virus.
  3. 제2항에 있어서, 상기 (a)단계에서 바이러스는 0 초과 내지 5 미만의 MOI로 처리하는 것인, 신경줄기세포 제조방법.The method of claim 2, wherein in step (a), the virus is treated with a MOI greater than 0 to less than 5, 4.
  4. 제1항에 있어서, 상기 (a)단계의 Sox2 및 c-Myc을 도입하는 방법은 비바이러스성 벡터를 이용하는 것인, 신경줄기세포 제조방법.The method of claim 1, wherein the method of introducing Sox2 and c-Myc in step (a) is using a non-viral vector.
  5. 제1항에 있어서, 상기 (a)단계의 Sox2 및 c-Myc을 도입하는 방법은 Sox2 또는 c-Myc의 mRNA를 분리된 세포에 직접 도입하는 것인, 신경줄기세포 제조방법.The method of claim 1, wherein the method of introducing Sox2 and c-Myc of step (a) is to introduce mRNA of Sox2 or c-Myc directly into the isolated cells, neural stem cell manufacturing method.
  6. 제1항에 있어서, 상기 분리된 세포는 신경세포를 제외한 체세포인 것인, 신경줄기세포 제조방법.The method of claim 1, wherein the isolated cells are somatic cells other than neurons.
  7. 제1항에 있어서, 상기 분리된 세포는 신경줄기세포를 제외한 성체줄기세포인 것인, 신경줄기세포 제조방법.The method of claim 1, wherein the isolated cells are adult stem cells other than neural stem cells.
  8. 제1항 내지 제7항 중 어느 한 항의 방법에 따라 제조된 신경줄기세포.Neural stem cells prepared according to the method of any one of claims 1 to 7.
  9. 제8항에 있어서, 상기 신경줄기세포는 뉴런, 성상교세포 및 희소돌기아교세포로 이루어진 군에서 선택되는 하나 이상의 신경세포로 분화될 수 있는 것인, 신경줄기세포.The neural stem cell of claim 8, wherein the neural stem cell can be differentiated into one or more neurons selected from the group consisting of neurons, astrocytes and oligodendrocytes.
  10. 제1항 내지 제7항 중 어느 한 항의 방법에 따라 제조된 신경줄기세포를 유효성분으로 포함하는, 세포치료제.Cell therapy comprising a neural stem cell prepared according to any one of claims 1 to 7 as an active ingredient.
  11. 제1항 내지 제7항 중 어느 한 항의 방법에 따라 제조된 신경줄기세포를 유효성분으로 포함하는, 신경세포 손상 질환 치료 또는 예방용 약학적 조성물.Claims 1 to 7, comprising a neural stem cell prepared according to any one of the methods as an active ingredient, neuronal cell damage disease treatment or prevention pharmaceutical composition.
  12. 제1항 내지 제7항 중 어느 한 항의 방법에 따라 제조된 신경줄기세포 또는 이로부터 분화된 신경세포에 후보물질을 처리하여, 상기 신경줄기세포가 유래된 개체에 맞춤형인 신경계질환 치료제를 확인하는 단계를 포함하는, 개인 맞춤형 신경계 질환 치료제의 스크리닝 방법.A method of identifying a therapeutic agent for neurological diseases tailored to an individual derived from the neural stem cells, by treating a candidate substance with the neural stem cells or the differentiated neural cells prepared according to the method of claim 1. A method for screening a personalized nervous system disease therapeutic agent, comprising.
PCT/KR2019/005566 2018-05-09 2019-05-09 Method for generating induced neural stem cells directly reprogrammed from non-neural cells by using sox2 and c-myc WO2019216667A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180053363A KR102167826B1 (en) 2018-05-09 2018-05-09 A method for producing directly reprogrammed induced neural stem cells from non-neuronal cells using Sox2 and c-Myc
KR10-2018-0053363 2018-05-09

Publications (2)

Publication Number Publication Date
WO2019216667A1 true WO2019216667A1 (en) 2019-11-14
WO2019216667A9 WO2019216667A9 (en) 2020-08-13

Family

ID=68468154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005566 WO2019216667A1 (en) 2018-05-09 2019-05-09 Method for generating induced neural stem cells directly reprogrammed from non-neural cells by using sox2 and c-myc

Country Status (2)

Country Link
KR (1) KR102167826B1 (en)
WO (1) WO2019216667A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151181A (en) * 2021-04-14 2021-07-23 中山大学附属第七医院(深圳) Method for reprogramming adipose-derived stem cells into neurons and cell-adaptive hydrogel loaded with neurons for repairing spinal cord injury

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102249776B1 (en) * 2019-11-25 2021-05-10 연세대학교 산학협력단 Improved reprogramming system in vivo and a method for cell conversion using thereof
KR20230149646A (en) * 2022-04-20 2023-10-27 고려대학교 산학협력단 Direct conversion of human somatic cells to proliferative neural stem cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101773345B1 (en) * 2008-08-12 2017-08-31 셀룰러 다이내믹스 인터내셔널, 인코포레이티드 Methods for the production of iPS cells
JP6231253B2 (en) * 2007-12-14 2017-11-15 ビオエヌテヒ・アクチエンゲゼルシャフト Use of RNA to reprogram somatic cells
KR20180028094A (en) * 2016-09-07 2018-03-16 건국대학교 글로컬산학협력단 Composition for Improving or Treating Spinal Cord Injury Comprising Induced Neural Stem Cells

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140121317A (en) * 2013-04-06 2014-10-15 서울대학교산학협력단 Method for producing induced neural stem cell from non-neuronal cell, and induced neural stem cell produced by the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6231253B2 (en) * 2007-12-14 2017-11-15 ビオエヌテヒ・アクチエンゲゼルシャフト Use of RNA to reprogram somatic cells
KR101773345B1 (en) * 2008-08-12 2017-08-31 셀룰러 다이내믹스 인터내셔널, 인코포레이티드 Methods for the production of iPS cells
KR20180028094A (en) * 2016-09-07 2018-03-16 건국대학교 글로컬산학협력단 Composition for Improving or Treating Spinal Cord Injury Comprising Induced Neural Stem Cells

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOU: "SHAOPING Direct reprogramming of somatic cells into neural stem cells or neurons for neurological disorders", NEURAL REGENERATION RESEARCH, vol. 11, no. 1, 2016, pages 28 - 31, XP055653767 *
WINIECKA-KLIMEK, MARTA ET AL.: "SOX2 and SOX2-MYC reprogramming process of fibroblasts to the neural stem cells compromised by senescence", MATERIALS AND METHODS, vol. 10, no. 11, 2015, pages e0141688, XP055653766 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151181A (en) * 2021-04-14 2021-07-23 中山大学附属第七医院(深圳) Method for reprogramming adipose-derived stem cells into neurons and cell-adaptive hydrogel loaded with neurons for repairing spinal cord injury
CN113151181B (en) * 2021-04-14 2022-11-29 中山大学附属第七医院(深圳) Method for reprogramming adipose-derived stem cells into neurons and cell-adaptive hydrogel loaded with neurons for repairing spinal cord injury

Also Published As

Publication number Publication date
KR20190128961A (en) 2019-11-19
WO2019216667A9 (en) 2020-08-13
KR102167826B1 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2020197318A1 (en) Method for producing nk cells with car gene introduced thereto, and use thereof
WO2019216667A1 (en) Method for generating induced neural stem cells directly reprogrammed from non-neural cells by using sox2 and c-myc
AU2014250190B2 (en) Method for producing reprogrammed derivative neuronal stem cell from non-neuronal cell by using HMGA2
WO2011096728A2 (en) Method for proliferating stem cells by activating c-met/hgf signaling and notch signaling
WO2017135800A1 (en) Mesenchymal stem cell expressing trail and cd, and use thereof
US20200190535A1 (en) Adult stem cell line introduced with hepatocyte growth factor gene and neurogenic transcription factor gene with basic helix-loop-helix motif and uses thereof
WO2019147036A1 (en) Mesenchymal stem cells expressing brain-derived neurotrophic factor and use thereof
WO2012047037A2 (en) Embryonic stem cell-derived cardiomyocytes and cell therapy product using same as an active ingredient
Di Stefano et al. Efficient genetic reprogramming of unmodified somatic neural progenitors uncovers the essential requirement of Oct4 and Klf4
WO2019004533A1 (en) Method for directly reprogramming cells in urine into keratinocyte stem cells and method for preparing composition for promoting skin regeneration by using reprogrammed keratinocyte stem cells
WO2016076507A1 (en) Composition for reprogramming somatic cells into induced pluripotent stem cells, containing reptin, and method for reprogramming somatic cells into induced pluripotent stem cells by using same
WO2020209636A1 (en) Method for inducing direct reprogramming of urine cell into renal progenitor cell and pharmaceutical composition comprising renal progenitor cell reprogrammed by same method for preventing or treating renal cell injury disease
Rančić et al. Induced pluripotent Stem Cells: Where we are currently?
WO2021107234A1 (en) Customized ccr5/cxcr4-gene simultaneous knockout hematopoietic stem cells for treatment or prevention of hiv infection, and preparation method therefor
WO2019117454A1 (en) Medium additive for highly efficient cell transformation using cell organelle stress regulation factor
WO2021081721A1 (en) New induced pluripotent stem cells (ipscs) and applications thereof
WO2021251513A1 (en) Composition for inducing direct cross differentiation of somatic cell into motor neuron, and method for using same
WO2021125841A1 (en) Pharmaceutical composition for arterial administration, comprising adult stem cell line containing basic helix-loop-helix (bhlh) neurogenic transcription factor genes
WO2023211180A1 (en) Pluripotent stem cell-derived immune cell inducing chemotaxis for heterogeneous immune cells
TWI769410B (en) New induced pluripotent stem cells (ipscs) and applications thereof
Huang et al. Induced pluripotent stem cell technologies for tissue engineering
WO2024014721A1 (en) Anticancer composition comprising stem cell-derived exosomes and preparation method therefor
WO2021137641A1 (en) Composition and method for inducing differentiation into neuroglia of immune system, and use thereof
Tsai et al. Differentiation of blood T cells: reprogramming human induced pluripotent stem cells into neuronal cells
WO2022071753A1 (en) Composition including plgf for prevention or treatment of neuropsychologic disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799287

Country of ref document: EP

Kind code of ref document: A1