WO2019117454A1 - Medium additive for highly efficient cell transformation using cell organelle stress regulation factor - Google Patents

Medium additive for highly efficient cell transformation using cell organelle stress regulation factor Download PDF

Info

Publication number
WO2019117454A1
WO2019117454A1 PCT/KR2018/012822 KR2018012822W WO2019117454A1 WO 2019117454 A1 WO2019117454 A1 WO 2019117454A1 KR 2018012822 W KR2018012822 W KR 2018012822W WO 2019117454 A1 WO2019117454 A1 WO 2019117454A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
differentiation
sodium
butylated hydroxyanisole
Prior art date
Application number
PCT/KR2018/012822
Other languages
French (fr)
Korean (ko)
Inventor
이만열
한재석
Original Assignee
순천향대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180128419A external-priority patent/KR102137883B1/en
Priority claimed from KR1020180128485A external-priority patent/KR102137885B1/en
Priority claimed from KR1020180128467A external-priority patent/KR102137884B1/en
Application filed by 순천향대학교 산학협력단 filed Critical 순천향대학교 산학협력단
Publication of WO2019117454A1 publication Critical patent/WO2019117454A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/32Amino acids
    • C12N2500/33Amino acids other than alpha-amino carboxylic acids, e.g. beta-amino acids, taurine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/36Lipids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/78Cellulose

Definitions

  • the present invention relates to a cell transformation method for transforming cells by culturing the cells in a medium containing at least one selected from the group consisting of sodium phenylbutyanoate, taurourosoldioxycholinic acid and butylated hydroxyanisole, More specifically, the present invention relates to a novel regulator that can detect the homeostasis of cell organelles during cell transformation such as degeneration and control stress, and is composed of sodium phenylbutanoate, taururous dioxycholic acid, and butylated hydroxyanisole
  • the present invention relates to a cell switching method capable of high-throughput / high-performance cell switching by applying at least one selected from the group of cells to cell culturing.
  • pluripotent pluripotent stem cells Since the first degenerate pluripotent stem cells have been reported, many researchers have developed various low-molecular compounds, vectors, and signaling mechanisms to improve the differentiation efficiency. Recently, miR-302 clusters), or a method of introducing a recombinant protein or synthesized mRNA into the medium. However, the production efficiency of the pluripotent pluripotent pluripotent stem cells is still very low.
  • somatic cells When four factors are introduced into somatic cells, it is possible to observe a population of cells constituting a cluster after about 14 days. About 90 to 95% of the initial cell clusters are incompletely degenerated cells, It is known that the differentiated cells do not undergo spontaneous regeneration according to the passage of time, but also have remarkably low pre-differentiation-specific gene expression. Therefore, it is anticipated that it will be possible to obtain more excellent and complete stem cell treatment resources based on deep research and understanding of the many imperfect degenerated stem cell emerging in this degeneration process. Until now, however, understanding and study of the incompletely degenerate cell group at the intermediate stage of de-differentiation has been lacking, and domestic studies on cell organelles have been insufficient.
  • Cell transduction based on cross-differentiation technology in various cases is advantageous in that the time required for producing target cells is short and the cost is relatively low, because it induces cross-differentiation into specific somatic cells without going through an osmotic step due to the nature of the technology.
  • the time required for cross-differentiation is usually 1 to 3 weeks, and the purity of the produced cells is relatively high, so that it is possible to produce high-efficiency target cells in a short period of time as compared with the degeneration technique which requires at least two steps.
  • UPR Unfolded Protein Response
  • the stemness of the stem cell is remarkably reduced. For example, when ER stress occurs, the expression of markers of stem cells of a stem cell is significantly reduced, and the stem cell signature of these cells is lost.
  • endoplasmic reticulum stress plays an important role in cell differentiation and cell conversion process.
  • studies have been studied mainly in the developmental process of the somatic and disease models, and there is no study on the stress of the cell organelles that may occur during somatic cell degeneration or cross-differentiation process.
  • the present invention has been conceived in order to solve the above-mentioned problems, and it is an object of the present invention to provide a method for detecting a cell organelle change and a stress inducing mechanism, The present inventors have completed the present invention based on this finding.
  • An object of the present invention is to provide a medium additive for suppressing ER stress, which comprises at least one selected from the group consisting of sodium phenylbutanoate, taurourosoldioxycholinic acid and butylated hydroxyanisole .
  • Another object of the present invention is to provide a medium composition for inducing the differentiation into induced pluripotent stem cells, which comprises the above-mentioned medium additive.
  • a media additive for suppressing ER stress which comprises at least one selected from the group consisting of sodium benzoate, sodium phenylbutanoate, taururous dioxycholic acid, and butylated hydroxyanisole.
  • the culture medium additive may be added to the medium at a concentration of 1 to 100 [mu] M.
  • the present invention provides a culture medium composition for inducing the differentiation into an inducible pluripotent stem cell comprising the culture medium additive.
  • the somatic cell may be one in which a dedifferentiation inducing factor is introduced.
  • the de-differentiation inducing factor may be selected from the group consisting of Oct4, Sox2, Klf4 and c-Myc.
  • the present invention also provides cells differentiated by the above method.
  • the present invention also relates to a method of treating a subject suffering from endothelial dysfunction, comprising the step of treating somatic cells or incompletely degenerated cells with at least one selected from the group consisting of sodium phenylbutyanoate, taururous dioxycholinic acid and butylated hydroxyanisole, ER stress. ≪ / RTI >
  • the present invention by adding at least one selected from the group consisting of sodium phenylbutanoate, taurousdioxycholinic acid and butylated hydroxyanisole to the culturing process for cell conversion, And the time required to induce cell conversion can be drastically reduced.
  • Sodium phenylbutanoate, taururous dioxycholinic acid or butylated hydroxyanisole inhibits aging induction and oxidative stress that occur during induction of cell transformation, induces cell proliferation and promotes mitochondrial activity, Effectively improving the condition.
  • the present invention relates to a process for producing pluripotent stem cells derived from a small amount of patient-specific somatic cells obtained from various sources, a process for producing patient-specific somatic cells having different functions from patient-specific somatic cells, This will contribute to optimizing the manufacturing process, thereby greatly improving the development process of a custom-made stem cell cell therapeutic agent and clinical drug development, and accelerating the practical use time.
  • the present invention is expected to be useful for developing a system capable of culturing a large number of desired cells at the time of cell transformation.
  • FIG. 1A shows the results of confirming the de-differentiation efficiency by using the dedifferentiation markers SSEA4 and TRA1-60 in partially reprogrammed cells treated with sodium phenylbutyanoate.
  • FIG. 1B shows the results of confirming the expression of the de-differentiation-specific marker in a partially reprogrammed cell treated with sodium phenylbutyanoate.
  • FIG. 1C shows the results of confirming the de-differentiation efficiency using SSEA4 and TRA1-60, which are dedifferentiation markers, in partially reprogrammed cells treated with taururous dioxycholinic acid.
  • FIG. 1D shows the results of confirming the dedifferentiation efficiency using the degeneration markers SSEA4 and TRA1-60 in partially reprogrammed cells treated with butylated hydroxyanisole.
  • FIG. 1E shows the results of confirming the dedifferentiation efficiency by using SSEA4 and TRA1-60, which are degeneration markers, in iPSC derived from human fibroblast cells treated with sodium phenylbutyanoate.
  • Fig. 1F shows the results of confirming the de-differentiation efficiency using iPSC derived from human fibroblast cells by treatment with tauroloxodioxycholate, using SSEA4 and TRA1-60, which are degeneration markers.
  • Fig. 1G shows the results of confirming the dedifferentiation efficiency using iPSC derived from human fibroblast cells by treatment with butylated hydroxyanisole using SSEA4 and TRA1-60, which are degeneration markers.
  • FIG. 2A shows the result of confirming the de-differentiation efficiency through positive reaction in the Alkaline Phosphatase (AP) staining of iPSC derived from human fibroblast cells according to sodium phenylbutyanoate treatment.
  • AP Alkaline Phosphatase
  • FIG. 2B shows the result of confirming the de-differentiation efficiency through positive reaction in the iPSC-induced Alkaline Phosphatase (AP) staining of human fibroblast cells following treatment with tauroloxodoxycholic acid.
  • AP Alkaline Phosphatase
  • FIG. 2C shows the result of confirming the reverse-differentiation efficiency through positive reaction in the iPSC-induced Alkaline Phosphatase (AP) staining from human fibroblast cells according to the treatment with butylated hydroxyanisole.
  • AP Alkaline Phosphatase
  • FIG. 3A shows the results of qRT-PCR for ER-stress-related gene expression by sodium phenylbutyrate treatment at different concentrations when inducing differentiation using human fibroblast cells.
  • FIG. 3B shows the results of qRT-PCR for ER-stress-related gene expression following treatment with tauroloxo-dioxycholic acid at different concentrations when inducing differentiation using human fibroblast cells.
  • FIG. 3c shows the results of qRT-PCR for expression of ER-stress-related genes following treatment with butylated hydroxyanisole at different concentrations when inducing differentiation using human fibroblast cells.
  • the present inventors have studied efficient cell transformation and found that cell organelle stress plays an important role in the cell differentiation and cell transformation process. In searching for control factors and exploring cell organelle changes and stress inducing mechanisms, The present inventors have completed the present invention by confirming the activity of inhibiting cell organelle stress of sodium phenylbutanoate, taururous deoxycholic acid, and butylated hydroxyanisole.
  • the present invention relates to a medium additive for suppressing ER stress, which comprises at least one selected from the group consisting of sodium phenylbutanoate, taurourosoldioxycholinic acid and butylated hydroxyanisole,
  • the present invention provides a medium composition for inducing the differentiation into induced pluripotent stem cells.
  • sodium phenylbutyrate is a compound represented by the following formula (1), which is an aromatic fatty acid salt of 4-phenylbutyrate (4-PBA) or 4-phenylbutyric acid.
  • tauroursodeoxycholic acid is a compound represented by the following formula (2), and the compound is named 2 - [[(4R) -4 - [(3R, 5S, 7S, 8R, 9S, 13R, 14S, 17R) -3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetra Decahydro-1H-cyclopenta [a] phenanthren-17-yl] pentanoyl] amino] ethanesulfonic acid or 3?, 7? -Dihydroxy-5? -Colanoyl taurine. It is a kind of bile acid. It is produced from liver by using cholesterol as a precursor. It may exist in various salt forms, pharmaceutically acceptable salt forms, and may exist in the form of alkali metal salts such as sodium and potassium.
  • butylated hydroxyanisole is a compound represented by the following general formula (3), wherein 2-tertiary-butyl-4-hydroxyanisole represented by the following general formula (4) - tertiary-butyl-4-hydroxyanisole.
  • cell transformation is intended to include spontaneous differentiation of embryonic stem cells, reprogramming and direct conversion of dedifferentiated pluripotent stem cells, and somatic cell nuclear transfer (SCNT) ) Establishment process.
  • the natural differentiation is to differentiate stem cells into somatic cells or progenitor cells, and the de-differentiation is to dedifferentiate somatic or progenitor cells into stem cells, and the cross-differentiation is to cross-differentiate somatic cells into different somatic cells or progenitor cells Can be
  • the stem cell may be selected from any and all without limitation, and may be derived from adult cells such as all known tissues and cells derived from mammals, including humans, preferably from humans. For example, Cord blood, placenta (or placental tissue cells), fat (or adipose tissue cells), and the like.
  • the stem cells are restricted from bone marrow, adipose tissue, muscle tissue, ex vivo cultured autologous mesenchymal stem cells, allogeneic mesenchymal stem cells, umbilical cord blood, embryonic sac, placenta, cord, periosteum, fetal and pubic skin, And may be embryonic stem cells, stem cells immediately after birth or from an adult.
  • the stem cells may be, for example, embryonic stem cells, inducible pluripotent stem cells, placental stem cells, cord blood stem cells, peripheral blood stem cells and bone marrow stem cells, neural stem cells, hematopoietic stem cells, A stem cell, a vascular endothelial progenitor cell, and an mesenchymal stem cell.
  • embryonic stem cells inducible pluripotent stem cells
  • placental stem cells cord blood stem cells
  • peripheral blood stem cells and bone marrow stem cells neural stem cells
  • hematopoietic stem cells hematopoietic stem cells
  • a stem cell a vascular endothelial progenitor cell
  • mesenchymal stem cell mesenchymal stem cell.
  • the present invention is not limited thereto.
  • the somatic cell may be a fibroblast, an epithelial cell, a muscle cell, a neural cell, a gastric mucosa cell, a germ cell, a G cell, a B cell, a hippocampus, an astrocyte, a blood cell, Vascular endothelial cells, and vascular endothelial cells.
  • the somatic cell may be any cell except for germ cells, and examples thereof include fibroblasts, muscle cells, nerve cells, gastric mucosal cells, goblet cells, G cells, pericyte, astrocyte ), B cells, blood cells, epithelial cell neural stem cells, hematopoietic stem cells, mesenchymal stem cells, umbilical cord blood-derived hematopoietic stem cells, vascular endothelial cells or cord blood stem cells.
  • cross-differentiation is not limited to the above, as the starting cells can be applied to somatic cells regardless of whether they are specific tissue cells or not.
  • the term “differentiation” refers to a phenomenon in which the structure or function of a cell is specialized while cells are divided and proliferated and the entire individual grows. In other words, it refers to a process in which cells, tissues, etc. of a living organism are changed into appropriate forms and functions to perform their respective roles.
  • pluripotent stem cells such as embryonic stem cells are differentiated into ectoderm, mesoderm, and endoderm cells, and narrowly, the processes in which hematopoietic stem cells change into red blood cells, white blood cells, platelets, etc. are also differentiated. It may also be referred to as "natural differentiation ".
  • differentiated cell used in the present invention refers to a cell that has undergone the differentiation process and has a certain form and function.
  • the differentiated cells of the present invention are not particularly limited, but are preferably germ cells, somatic cells, or progenitor cells. It is also preferably a human-derived cell
  • de-differentiation refers to a process by which differentiated cells can be restored to a state having the potential of a new type of differentiation.
  • the de-differentiation is used in the same sense as the cell reprogramming in the present invention.
  • the de-differentiation mechanism of these cells is to establish a different set of welfare genetic markers after deletion of the marking in the nucleus (the DNA state associated with the genetic change in function without changes in the nucleotide sequence) in the nucleus . While differentiation and growth of multicellular organisms, different cells and tissues acquire different gene expression programs.
  • high-efficiency cell conversion means that the cell conversion process occurs rapidly or the efficiency of cell conversion is increased in the process of cell conversion. That is, it means that the efficiency of cell conversion is improved in terms of rate or ratio.
  • dedifferentiation inducing factor is a substance that induces finally differentiated cells to reverse differentiate into induced pluripotent stem cells having a potential for a new type of differentiation.
  • the dedifferentiation factor may be any substance that induces the differentiation of the finally differentiated cells, and may be selected depending on the type of cells to be differentiated.
  • direct reprogramming / direct conversion / transdifferentiation is intended to encompass mature (differentiated) cells with totally different cell types in higher organisms Unlike the process of reprogramming into Induced Pluripotent Stem Cells (iPSCs) and regenerating them into desired cells, it is a process of inducing the conversion. It is expected that cross-differentiation will be used for disease modeling and drug discovery, and it will be applied to gene therapy and regenerative medicine in the future.
  • the term "somatic cell” refers to all cells that have undergone differentiation constituting an animal or plant, excluding germ cells, and that the chromosome maintains 2n.
  • progenitor cell refers to a parent cell that does not express a differentiation trait but has a differentiation fate when it is found that a cell corresponding to a progeny expresses a specific differentiation trait.
  • neurons neuron hepatocytes
  • myocytes correspond to progenitor cells for canaliculus cells
  • pluripotent stem cell refers to a pluripotent or totipotent self-renewal capable of differentiating into cells of all tissues of the individual And includes, but is not limited to, embryonic stem cells and induced pluripotent stem cells.
  • the pluripotent stem cells include pluripotent stem cells derived from all of human, monkey, pig, horse, cattle, sheep, dog, cat, mouse, rabbit and the like, but preferably human pluripotent stem cells .
  • embryonic stem cell used in the present invention refers to a cell obtained by extracting an inner cell mass from a blastocyst embryo immediately before fertilization of the embryo into the uterus of a mother and culturing the same in vitro, Pluripotent, or omnipotent, self-renewal cells, and broadly includes embryoid bodies derived from embryonic stem cells.
  • the embryonic stem cells of the present invention include all embryonic stem cells derived from human, monkey, pig, horse, cattle, sheep, dog, cat, mouse, rabbit and the like, but are preferably human-derived embryonic stem cells.
  • induced pluripotent stem cells refers to cells induced to have pluripotential differentiation ability through artificial reprogramming from differentiated cells, which is also referred to as induced pluripotent stem cells (iPSCs) do.
  • An artificial reprogramming process may be performed by introduction of a non-viral-mediated reprogramming factor using virus-mediated or non-viral vector utilization, retroviruses and lentiviruses, proteins and cell extracts, or by stem cell extracts, And includes a de-differentiation process.
  • Induced pluripotent stem cells have almost the same characteristics as embryonic stem cells, specifically showing similar cell shapes, similar in gene and protein expression pattern, and in vitro and in vivo, , Which forms a teratoma and is inserted into a blastocyst of a mouse to form a chimera mouse and enable germline transmission of the gene.
  • the term "vector” refers to an expression vector capable of expressing a target protein in a host cell, which gene construct comprises an essential regulatory element operably linked to the expression of the gene insert.
  • the vector may include a signal sequence or a leader sequence for membrane targeting or secretion in addition to an expression regulatory element such as a promoter, an operator, an initiation codon, a stop codon, a polyadenylation signal, an enhancer, and the like.
  • the promoter of the vector may be constitutive or inducible.
  • the expression vector includes a selectable marker for selecting a host cell containing the vector, and in the case of a replicable expression vector, a replication origin.
  • the vector may be self-replicating or integrated into the host DNA.
  • culture media means a medium capable of supporting stem cell growth and survival in vitro, and includes a culture medium, .
  • the medium used for the culture is preferably a cell culture minimum medium (CCMM), which generally contains a carbon source, a nitrogen source and a trace element component.
  • CCMM cell culture minimum medium
  • DMEM Dulbecco's Modified Eagle's Medium
  • MEM Minimal Essential Medium
  • BME Base Medium Eagle
  • RPMI1640 F-10, F-12
  • aMEM Glasgow's Minimal Essential Medium aMEM Glasgow's Minimal Essential Medium
  • Iscove's Modified Dulbecco's Medium may include antibiotics such as penicillin, streptomycin, and gentamicin.
  • a nucleic acid molecule encoding any one or more proteins selected from the group consisting of Oct4, Sox2, KlF4, c-Myc, Nanog, Lin-28 and Rex1 is operably linked to an expression vector May be delivered into the cell, or may be delivered into the cell in a form that is inserted into the chromosome of the host cell.
  • cell therapeutic agent used in the present invention is a medicament (US FDA regulation) used for the purpose of treatment, diagnosis and prevention with cells and tissues prepared by isolation, refers to a drug used for therapeutic, diagnostic, and prophylactic purposes through a series of actions, such as alive, homologous, or xenogeneic cell propagation, screening, or otherwise altering the biological characteristics of a cell .
  • most of the cells are partially reprogrammed cells by inducing the differentiation of human mononuclear cells using a differentiation inducing factor.
  • a differentiation inducing factor sodium phenylbutanoate , Taururous dioxycholinic acid, or butylated hydroxyanisole, respectively, and then subjected to FACS analysis to quantitatively analyze the de-differentiation efficiency.
  • FACS analysis FACS analysis to quantitatively analyze the de-differentiation efficiency.
  • human fibroblasts were observed from the beginning After treatment of sodium phenylbutanoate, taururous dioxycholinic acid, or butylated hydroxyanisole according to the invention, respectively, Were quantitatively analyzed. As a result, it was confirmed that ER-stress was inhibited by treatment with sodium phenylbutanoate, taururous dioxycholinic acid, or butylated hydroxyanisole, respectively, , And Alkaline Phosphatase (AP) staining revealed that AP-positive colonies were formed at a level similar to that of the control group (see Examples 1 and 2).
  • AP Alkaline Phosphatase
  • ER-stress related genes ATF3, ATF4, ATF6, GADD34, CHOP (SEQ ID NO: , BIP, tXBP1, and SxBP1)
  • the expression of ER-stress related genes was reduced by treatment with sodium phenylbutanoate, taururous dioxycholate, or butylated hydroxyanisole (See Example 3).
  • the present invention includes a step of treating somatic cells or incompletely degenerated cells with at least one selected from the group consisting of sodium phenylbutanoate, taurourus deoxycholic acid, and butylated hydroxyanisole Induced pluripotent stem cells. ≪ / RTI >
  • partially reprogrammed cell used in the present invention means that when four inducers (Yamanaka factor: OCT4, SOX2, KLF4, c-MYC) are introduced into somatic cells to induce the initial de- differentiation, After 14 days, a population of cells forming a colony can be observed. At this time, about 90 to 95% of the emerging cell clusters are incompletely degenerated cells (negative for TRA1-60 marker), and the incompletely degenerated cells are spontaneously degenerated (TRA1-60 positive) Refers to a cell that is known to exhibit a significantly lower pre-differentiation-specific gene expression as well as a lesser degree of expression. Thus, incomplete degenerated cells are de-differentiated mesenchymal cells that can be transferred into fully degenerated cells when new intracellular signal stimuli are present.
  • inducers Yamamanaka factor: OCT4, SOX2, KLF4, c-MYC
  • the somatic cell when somatic cells are treated with somatic cells selected from the group consisting of sodium phenylbutanoate, taururous dioxycholinic acid and butylated hydroxyanisole, the somatic cell may be one in which a differentiation inducing factor is introduced
  • the method of introducing the dedifferentiation inducing factor into a somatic cell may be any method of providing a nucleic acid molecule or a protein to a cell commonly used in the art without limitation.
  • the regeneration inducing factor is added to a culture medium of the differentiated cells
  • a method of directly injecting a differentiation inducing factor into a differentiated cell, or a method of infecting a cell differentiated with a virus obtained from a packaging cell transfected with a virus vector into which a gene of a differentiation inducing factor is inserted Method can be used.
  • the method of directly injecting the dedifferentiation inducing factor into the differentiated cells may be selected from any method known in the art and may be performed by a variety of methods including, but not limited to, microinjection, electroporation, Particle bombardment, direct muscle injection, insulator, and transposon.
  • the reprogramming inducing factor may be selected according to the type of cell to be reprogrammed, and is preferably selected from the group consisting of Oct4, Sox2, KlF4, c-Myc, Nanog, Lin-28, microRNA-302 clusters, or any one or more nucleic acid molecules that encode these proteins. More preferably, the nucleic acid molecule may encode an Oct4 protein or a nucleic acid molecule encoding the protein. , Oct4, Sox2, KlF4 and c-Myc proteins or nucleic acid molecules encoding these proteins.
  • the packaging cells may be selected from various cells known in the art depending on the viral vector used, and preferably, GP2-293 packaging cells can be used.
  • the viral vector may be a retroviruses such as human immunodeficiency virus (HIV), murine leukemia virus (MLV), Avian sarcoma / leukosis (ASLV), Spleen necrosis virus (SNV), Rous sarcoma virus , mouse mammary tumor virus (mMTV), lentiviruses, adenovirus, adeno-associated virus, herpes simplex virus, Sendai virus, An episomal vector, and the like.
  • HIV human immunodeficiency virus
  • MMV murine leukemia virus
  • ASLV Avian sarcoma / leukosis
  • SNV Spleen necrosis virus
  • mMTV mouse mammary tumor virus
  • lentiviruses lentiviruses
  • adenovirus adeno-associated virus
  • herpes simplex virus Sendai virus
  • Sendai virus Sendai virus
  • An episomal vector and the like.
  • the present invention provides a cell differentiated by the above method.
  • the degenerated pluripotent stem cells prepared by the cell transformation method may include all cell cultures in vitro obtained by treating the differentiated cells with sodium phenylbutanoate and a dedifferentiation inducer.
  • the cell culture may include various cells in the differentiation process, various proteins and enzymes obtained in the culturing thereof, transcripts and a culture solution containing the same.
  • the cells are differentiated from the differentiated pluripotent stem cells cultured in the culture medium containing the sodium phenylbutyanoate, and the cell growth and proliferation are promoted ,
  • the cell death is suppressed, the mitochondrial activity is enhanced, the aging is suppressed, the oxidative stress is reduced, the p53 signaling is inhibited, the dedifferentiation induction time is shortened, and the dedifferentiation inducing efficiency is enhanced Respectively.
  • the delivery and incubation steps may be performed simultaneously, sequentially or in reverse order.
  • the cell transformation method of the present invention may comprise the following steps:
  • step (b) culturing the incomplete degenerated cells obtained in the step (a) in a medium containing sodium phenylbutanoate.
  • introduction of the cross-differentiation factor may use a vector.
  • the cross-differentiation factor may be selected from the group consisting of OCT4, SOX1, SOX2, SOX10, OLIG2, NKX2.2, NKX6.2, Hnf4a, Foxa1, Foxa3, Gata4, Hnf1a, FLT1 (Friend leukemia virus integration 1), ETV variant gene 2 GATA1, TAL1, LMO2, KLF1, and RUNX1
  • the OCT4, SOX1, SOX2, SOX10, OLIG2, NKX2.2, and NKX6.2 genes may be provided in the form of a nucleic acid encoding a protein or a protein thereof, wherein the protein is human, mouse, horse, sheep, pig, Camel, nutrition, dog, and the like.
  • the OCT4, SOX1, SOX2, SOX10, OLIG2, NKX2.2, and NKX6.2 proteins used in the present invention include protein variants of respective genes as well as proteins having a wild type amino acid sequence thereof.
  • a variant of the protein means a protein having a sequence which differs from the native amino acid sequence of the protein by one or more amino acid residues by deletion, insertion, non-conservative or conservative substitution, or a combination thereof.
  • the mutant may be a functional equivalent exhibiting the same biological activity as the natural protein or may be a mutant in which the physicochemical properties of the protein are modified as needed and may be a mutant having increased structural stability against physiological or chemical environment or increased physiological activity have.
  • nucleic acid encoding the protein may be a wild-type or a nucleotide sequence encoding a protein in the mutant form as described above, wherein one or more bases may be mutated by substitution, deletion, insertion, or a combination thereof, Can be prepared by chemical synthesis.
  • the nucleic acid having the nucleotide sequence encoding the above-mentioned protein may be short or double-stranded, and may be a DNA molecule (genomic DNA, cDNA) or an RNA molecule.
  • the nucleic acid molecule encoding the OCT4, SOX1, SOX2, SOX10, OLIG2, NKX2.2, NKX6.2 protein in the present invention is a vector expressing a protein comprising a nucleic acid encoding each protein .
  • Vectors usable in the present invention include a plasmid vector, a cosmid vector, a viral vector, and an episomal vector.
  • it may be a viral vector.
  • the viral vectors may be selected from the group consisting of lentivirus vectors, retroviruses, human immunodeficiency virus (HIV), murine leukemia virus (MLV), Avian sarcoma / leukosis (ASLV), Spleen necrosis virus (SNV), Rous sarcoma virus , Mouse mammary tumor virus (MMTV), etc., adenovirus, adeno-associated virus, herpes simplex virus, Sendai virus and episomal vector. But are not limited to, one vector.
  • the vector may be a pMX-based retroviral vector expressing OCT4
  • nucleic acid encoding the protein may be introduced into cells by known methods in the art, for example, naked DNA in vector form, or introduced into cells using liposome, cationic polymer, or the like .
  • the liposome is a phospholipid membrane prepared by mixing a cationic phospholipid such as DOTMA or DOTAP for gene transfer.
  • a cationic liposome and an anionic nucleic acid are mixed at a certain ratio, a nucleic acid-liposome complex is formed and introduced into cells .
  • the nucleic acid molecule encoding the protein is contained in a vector produced to express each gene by transforming and infecting a viral vector containing a nucleic acid encoding the protein with a packaging cell, and a virus And introduced into somatic cells.
  • viruses include, but are not limited to, retroviruses, adenoviruses, adeno-associated viruses, herpes simplex viruses and the like.
  • the medium is not particularly limited and conventionally known media can be used.
  • the medium include dexamethasone, ascorbic acid, insulin, transferrin, L-alanyl-L-glutamine, glycerol 2-phosphate, fibroblast growth factor bFGF) and selenium salts, and the insulin, transferrin, and selenium salts may be commercially available ITS (Gibco, USA).
  • the medium may further comprise, if desired, fetal bovine serum (FBS) and antibiotics, for example, about 10% FBS, about 1% penicillin-streptomycin.
  • FBS fetal bovine serum
  • antibiotics for example, about 10% FBS, about 1% penicillin-streptomycin.
  • the cells include all the cells derived from human, monkey, pig, horse, cattle, sheep, dog, cat, mouse, rabbit and the like, but are preferably human-derived cells.
  • the culture may be carried out on conventional culture plates in pellet culture form, for example, it is incubated at 37 °C, conditions of 5% CO 2.
  • the incubation period is not particularly limited, but can be carried out for about three weeks, for example.
  • the cells are obtained in the form of pellets and can be separated by removing the medium.
  • the culture may also be a number of continuous passages.
  • iPSCs induced pluripotent stem cells
  • the human fibroblast cell line (BJ1) was cultured in a DMEM medium containing 10% FBS, and then transfected with Sendai virus (cytotune-iPS reprogramming (Oct4, Sox2, Klf4, c-Myc) was introduced into the culture medium using the above-mentioned culture medium for 4 days.
  • Sendai virus cytotune-iPS reprogramming (Oct4, Sox2, Klf4, c-Myc
  • MEF mouse embryonic fibroblast
  • hESC-exclusive or mTesR-E8 medium after transferring to a culture dish or Vitronectin-coated culture dish.
  • de-differentiation factor (Yamanaka factor; Oct4, Sox2, Klf4, c-Myc) a process of human fibroblasts (BJ1) 5x10 4/24 wells 10, 50 and 100 uM of the phenyl-butyric acid, sodium tauro-low Russo deoxy After 14 days of regeneration was induced in E8 medium (Vitronectin-coated culture dish) containing cholinic acid or butylated hydroxyanisole, cells expressing the early degeneration marker SSEA4 and the final degeneration marker TRA1-60 Were analyzed by fluorescence-activated cell sorting (FACS).
  • FACS fluorescence-activated cell sorting
  • MMC treatment -MEF 5x10 to prepare the 4/24 wells de-differentiation factor (Yamanaka factor; Oct4, Sox2, Klf4, c-Myc) of the the treatment of human fibroblasts (BJ1) 2.5x10 4/24 wells 10 and 100 uM
  • de-differentiation factor Yamamoto factor
  • BJ1 human fibroblasts
  • BJ1 human fibroblasts
  • Alkaline Phosphatase (AP) staining was performed according to the manufacturer's protocol Respectively.
  • ER-stress related gene in the cell degeneration process by sodium phenylbutyanoate, taururodioxycholinic acid, or butylated hydroxyanisole according to the present invention was examined.
  • the treatment concentration (10, 50) is determined for each of sodium phenylbutylate, taururous dioxycholinic acid, or butylated hydroxyanisole, Expression of ER-stress related genes (ATF3, ATF4, ATF6, GADD34, CHOP, BIP, tXBP1, SxBP1) was confirmed by qRT-PCR.
  • embryonic stem cell specific Markers SSEA4 and TRA1-60, were used to quantify the dedifferentiation efficiency. The results were as follows.
  • the de-differentiation was significantly reduced by the ER-stress inducer, TG, but it was confirmed that the de-differentiation was significantly increased by the treatment with sodium phenylbutyrate according to the present invention .
  • the de-differentiation was significantly reduced by the ER-stress inducer, TG, but the depletion was significantly increased by the treatment with tauroloxodoxycholic acid according to the present invention.
  • I could confirm. More specifically, the expression of SSA4 was significantly increased by taurosuronic deoxycholic acid, but the expression of TRA1-60 induced a simple increase.
  • the de-differentiation was significantly decreased by TG which is an ER-stress inducer, but it was confirmed that the degeneration was significantly increased by the butylated hydroxyanisole treatment according to the present invention I could. More specifically, butylated hydroxyanisole induced a simple increase in SSEA4 and TRA1-60.
  • Example 1-3 the reprogramming efficiency according to each concentration was positive in the hESC-specific factor Alkaline Phosphatase (AP) staining. The number of stained colonies was counted, and the phenylbutyl The dedifferentiation efficiency by treatment with sodium acid, taururous dioxycholinic acid, or butylated hydroxyanisol was quantified.
  • AP Alkaline Phosphatase
  • AP-positive colony was formed at 10 mu M of sodium phenylbutanoate at the same level as control, and as shown in Fig. 2B, 10 mu M of taurosuronic deoxycholic acid As shown in FIG. 2C, AP-positive colony was formed at 10 uM of butylated hydroxyanisole as compared with the control, and AP-positive colony was formed at 10 uM of butylated hydroxyanisole .
  • sodium phenylbutylate, taururous dioxycholinic acid, or butylated hydroxyanisole treatment of the present invention sodium phenylbutylate, tau Expression of ER-stress related genes (ATF3, ATF4, ATF6, GADD34, CHOP, BIP, tXBP1, SxBP1) following treatment with rou- rodeoxycholic acid or butylated hydroxyanisole was confirmed, same.
  • the present invention by adding at least one selected from the group consisting of sodium phenylbutanoate, taurousdioxycholinic acid and butylated hydroxyanisole to the culturing process for cell conversion, And the time required to induce cell conversion can be drastically reduced.
  • Sodium phenylbutanoate, taururous dioxycholinic acid or butylated hydroxyanisole inhibits aging induction and oxidative stress that occur during induction of cell transformation, induces cell proliferation and promotes mitochondrial activity, Effectively improving the condition.
  • the present invention relates to a process for producing pluripotent stem cells derived from a small amount of patient-specific somatic cells obtained from various sources, a process for producing patient-specific somatic cells having different functions from patient-specific somatic cells, This will contribute to optimizing the manufacturing process, thereby greatly improving the development process of a custom-made stem cell cell therapeutic agent and clinical drug development, and accelerating the practical use time.
  • the present invention is expected to be useful for developing a system capable of culturing a large number of desired cells at the time of cell transformation.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a cell transformation method that enables highly efficient and functional cell transformation by applying sodium phenylbutyrate, tauroursodeoxycholic acid, or butylated hydroxyanisole, which are new regulation factors which can be used to explore cell organelle homeostasis during dedifferentiation and to control stress, during culturing. More particularly, according to the present invention, the addition of at least one selected from the group consisting of sodium phenylbutyrate, tauroursodeoxycholic acid, and butylated hydroxyanisole in the culturing process for cell transformation can not only promote cell transformation induction efficiency, but also dramatically reduces the time required to induce cell transformation. At such time, the sodium phenylbutyrate, tauroursodeoxycholic acid, or butylated hydroxyanisole inhibit ageing induction and oxidization stress that occur during the cell transformation induction process, and induces a cell proliferation and mitochondrial activity promotion effect, thereby effectively improving cell transformation inducing culture conditions.

Description

세포 소기관 스트레스 조절 인자를 이용하는 고효율 세포전환용 배지 첨가제High-efficiency cell culture medium additives using cell organelle stress modulator
본 발명은 페닐부틸산나트륨, 타우로우루소디옥시콜린산 및 부틸화하이드록시아니솔로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는 배지에서 세포를 배양함으로써 세포를 전환시키는 세포전환방법에 관한 것으로서, 더욱 상세하게는 역분화와 같은 세포전환 시 발생하는 세포 소기관의 항상성을 탐색하고 스트레스를 제어할 수 있는 새로운 조절인자인 페닐부틸산나트륨, 타우로우루소디옥시콜린산 및 부틸화하이드록시아니솔로 이루어진 군으로부터 선택되는 어느 하나 이상을 세포 배양시 적용함으로써 고효율·고기능 세포전환이 가능한 세포전환 방법에 관한 것이다.The present invention relates to a cell transformation method for transforming cells by culturing the cells in a medium containing at least one selected from the group consisting of sodium phenylbutyanoate, taurourosoldioxycholinic acid and butylated hydroxyanisole, More specifically, the present invention relates to a novel regulator that can detect the homeostasis of cell organelles during cell transformation such as degeneration and control stress, and is composed of sodium phenylbutanoate, taururous dioxycholic acid, and butylated hydroxyanisole The present invention relates to a cell switching method capable of high-throughput / high-performance cell switching by applying at least one selected from the group of cells to cell culturing.
종래의 세포전환 기술 연구는 세포핵에서 일어나는 변화에 많은 연구와 관심이 집중되어 왔다. 그럼에도 불구하고, 여전히 세포전환 효율이 매우 낮고 세포 운명 결정 기저에 관한 많은 의문이 존재한다. 이와 같은 원인은 세포핵을 중심으로 일어나는 세포운명 전환 기전과 세포질 내 수많은 세포 소기관의 변화가 충분히 동반되지 못했기 때문이며, 특히 미토콘드리아 대사/변화 및 소포체 스트레스에 대한 이해와 연구가 거의 없기 때문이다.Conventional cell switching technology research has been focused on the changes occurring in the nucleus. Nevertheless, there is still a very low cell conversion efficiency and there are many questions about the basis of cell fate determination. The reason for this is that the mechanism of cell fate, which is centered on the nucleus of the nucleus, and the change of numerous cytoplasmic organelles in the cytoplasm are not fully accompanied by the understanding and study of mitochondrial metabolism / change and endoplasmic reticulum stress.
이러한 기존의 세포전환 기술은 하기와 같은 문제점에 직면해 있다:These existing cell switching techniques face the following problems:
배아줄기세포를 이용하여 특정 표적세포로 분화하는 전통적인 자연분화 기술은 분화 효율이 낮고, 미분화 줄기세포에 의한 종양형성 가능성이 높으며, 임상적용에 있어서 면역 거부 문제나 염색체 이상 문제를 비롯한 다양한 윤리적인 문제들이 존재한다. 표적세포로의 분화 과정상 심근세포의 경우 ~3주, 신경 및 신경줄기세포의 경우 1~2주, 간세포의 경우 ~4주 이상 걸리는 등 소요시간이 상대적으로 길고 각 단계별 효율이 매우 낮다. 또한, 종양 형성 위험성이 없는 정제된 세포를 얻기가 매우 힘들고, 배아줄기세포를 배양 및 표적세포로 분화하는데 비용이 많이 들어가는 특성으로 인해 저효율·고비용의 한계를 지니고 있다.Traditional natural differentiation techniques using embryonic stem cells to differentiate into specific target cells have low efficiency of differentiation, high possibility of tumor formation by undifferentiated stem cells, and various clinical and ethical issues including immune rejection problem and chromosomal abnormality Lt; / RTI > In the process of differentiation into target cells, the time required for ~ 3 weeks for myocardial cells, 1 ~ 2 weeks for neurons and neural stem cells, ~ 4 weeks for hepatocytes is relatively long and the efficiency of each step is very low. In addition, it is very difficult to obtain purified cells without the risk of tumor formation, and there are limitations on low efficiency and high cost due to the characteristic that embryonic stem cells are costly to cultivate and differentiate into target cells.
최초 역분화 만능줄기세포가 보고된 이후 많은 연구자들에 의해서 역분화 효율을 높이기 위한 다양한 저분자 화합물, 벡터의 개발, 그리고 신호기전 연구 등이 이루어지고 있으며, 또한 최근에는 논-코딩 RNA인 마이크로RNA (miR-302 클러스터)를 이용하거나 조합 단백질 또는 합성된 mRNA 등을 매개하는 도입 방법 등이 고안되었으나, 여전히 역분화 유도만능줄기세포 생산 효율이 매우 낮다는 문제점을 가지고 있다.Since the first degenerate pluripotent stem cells have been reported, many researchers have developed various low-molecular compounds, vectors, and signaling mechanisms to improve the differentiation efficiency. Recently, miR-302 clusters), or a method of introducing a recombinant protein or synthesized mRNA into the medium. However, the production efficiency of the pluripotent pluripotent pluripotent stem cells is still very low.
역분화 유도 4개 인자를 체세포에 도입하면, 약 14일 후에 군집을 이루는 세포 집단을 관찰할 수 있는데, 최초 출현한 세포 군집의 약 90~95% 이상은 불완전 역분화 세포이며, 이와 같은 불완전 역분화 세포는 시간의 경과에 따라서 자발적인 역분화가 일어나지 않을 뿐만 아니라 전분화능 특이 유전자 발현이 현저히 낮은 것으로 알려져 있다. 따라서 이 역분화 과정 속에서 출현하는 수많은 불완전 역분화 줄기세포에 대하여 깊이 있는 연구와 이해를 바탕으로 보다 우수하고 완벽한 줄기세포 치료 자원을 확보할 수 있을 것으로 기대된다. 그러나 현재까지 아쉽게도 이러한 역분화 중간 단계의 불완전 역분화 세포 집단에 대한 이해와 연구가 부족할 뿐 아니라 세포 소기관에 관한 국내 연구가 매우 미진한 상태이다.When four factors are introduced into somatic cells, it is possible to observe a population of cells constituting a cluster after about 14 days. About 90 to 95% of the initial cell clusters are incompletely degenerated cells, It is known that the differentiated cells do not undergo spontaneous regeneration according to the passage of time, but also have remarkably low pre-differentiation-specific gene expression. Therefore, it is anticipated that it will be possible to obtain more excellent and complete stem cell treatment resources based on deep research and understanding of the many imperfect degenerated stem cell emerging in this degeneration process. Until now, however, understanding and study of the incompletely degenerate cell group at the intermediate stage of de-differentiation has been lacking, and domestic studies on cell organelles have been insufficient.
다양한 사례의 교차분화기술 기반의 세포전환은 기술의 특성상 전능성단계를 거치지 않고 특정체세포로 교차분화를 유도하기 때문에 표적세포를 생산 시 소요시간이 짧고 상대적으로 적은 비용이 드는 장점을 갖는다. 일반적으로 교차분화에 소요되는 시간은 보통 1~3주 정도이며 생산되는 세포의 순도도 상대적으로 높아 최소 2단계가 소요되는 역분화 기법에 비해 단기간에 고효율의 표적 세포 생산이 가능하다. 그러나 최근 연구결과(Cell Stem Cell 2012)에 따르면 교차분화 방법으로 확립된 세포들이 세포 특이 표시인자의 발현과 체외 및 체내 기능성 부분에서 체내세포 (primary cell)와 유사하다고 알려져 있는 것과 달리, 전반적인 유전자 발현양상을 비롯한 게놈-와이드한 분석 결과는 여전히 체내 유래의 세포와는 큰 차이점을 보인다. 이러한 차이는 교차 분화된 세포가 향후 임상적 중개연구에 활용되기 위해서 반드시 개선되어야 하며, 대부분 세포에서 교차분화 효율이 여전히 낮은 편이기 때문에 교차분화 기전연구를 통해 교차분화의 효율을 극대화 할 수 있는 원천기술의 개발이 필요하다.Cell transduction based on cross-differentiation technology in various cases is advantageous in that the time required for producing target cells is short and the cost is relatively low, because it induces cross-differentiation into specific somatic cells without going through an osmotic step due to the nature of the technology. Generally, the time required for cross-differentiation is usually 1 to 3 weeks, and the purity of the produced cells is relatively high, so that it is possible to produce high-efficiency target cells in a short period of time as compared with the degeneration technique which requires at least two steps. However, according to a recent study (Cell Stem Cell 2012), it is known that the cells established by the cross-differentiation method are similar to the primary cells in the expression of cell-specific markers and in vitro and in the functional part of the body, The results of the genome-wide analysis, including aspects, still differ significantly from those of cells derived from the body. These differences are due to the fact that crossed differentiated cells must be improved in order to be used in clinical intervention studies in the future and the cross-differentiation efficiency is still low in most cells. Therefore, a cross-differentiation mechanism study is needed to maximize the cross- Technology development is required.
현재까지 세포핵에서 일어나는 변화(transcriptome and epigenome)에 많은 연구와 관심이 집중되어 왔음에도 불구하고, 여전히 세포전환 효율이 매우 낮고 세포 운명 결정 기전에 관한 많은 의문이 존재한다. 이러한 이유는 세포핵을 중심으로 일어나는 세포운명 전환 기전과 세포질 내 수많은 세포 소기관의 변화가 충분히 동반되지 못했기 때문이며, 특히 미토콘드리아 대사·변화 및 소포체 스트레스에 대한 이해와 연구는 거의 이루어지고 있지 않다.Although much research and attention has been focused on transcriptome and epigenome, there is still a very low cell conversion efficiency and there are many questions about the mechanism of cell fate determination. The reason for this is that the mechanism of cell fate, which is centered on the nucleus of the cell, and the change of numerous cytoplasmic organelles in the cytoplasm are not sufficiently accompanied, and understanding and research on mitochondrial metabolism, change and endoplasmic reticulum are rarely conducted.
현재 소포체 스트레스 존재 유무 및 그 영향에 대한 연구는 주로 개체 발생 과정 또는 세포 분화의 과정에 나타나는 것에 집중되어 있으며, 체세포 역분화 과정 또는 교차분화 과정 중에 나타날 수 있는 세포 소기관의 스트레스 특히 소포체 스트레스에 대한 연구는 전무한 실정이다.Currently, studies on the presence or effect of the presence of stress on the endoplasmic reticulum are mainly focused on the development of the somatic or cell differentiation process, and the study on the stress of the cell organelle, especially the endoplasmic reticulum, .
암 발생 혹은 대사성 질환의 발병에 있어서 전체적인 유전자 발현이나 후생학적 변화뿐만 아니라 세포 소기관의 문제가 되어 발병하는 경우가 많다고 알려지고 있다. 즉, 세포가 제대로 기능을 하기 위해서는 세포 소기관의 항상성 유지가 매우 중요한 것으로 알려져 있으나, 아직까지 세포전환 시 변화되는 세포 소기관의 변화 양상 및 항상성 조절 기전에 대해선 거의 밝혀진 바가 없다.It is known that in the onset of cancer or metabolic diseases, not only the whole gene expression and the morphological change, but also the problem of the cell organelle become more frequent. In other words, it is known that the homeostasis of cell organelles is very important for the proper function of cells. However, there is little information about the change of cell organelles and the mechanism of homeostasis.
일련의 연구 결과에 따르면 개체의 정상적인 발생과정에서 여러 종류의 특정 막 단백질 및 분비 단백질들이 소포체에서 만들어지며, 이에 따라 소포체 내에 단백질의 이상 합성에 의한 스트레스(ER stress)가 발생하였다.According to a series of studies, various kinds of specific membrane proteins and secretory proteins are produced in the endoplasmic reticulum during the normal development of the subject, resulting in ER stress due to abnormal synthesis of proteins in the endoplasmic reticulum.
케라티노사이트의 분화 과정에서 역시 미분화 세포의 경우 UPR(Unfolded Protein Response) 발현이 매우 낮지만, 케라티노사이트로의 분화 과정에서 BiP, ATF6, HRD1, PDI, CHOP 등의 ER 스트레스 마커(stress marker) 유전자들의 발현이 현저히 증가함이 보고되었다.In the differentiation process of keratinocytes, UPR (Unfolded Protein Response) expression is very low in the undifferentiated cells. However, ER stress markers such as BiP, ATF6, HRD1, PDI, and CHOP in keratinocyte differentiation process, Significant increases in the expression of genes have been reported.
세포의 분화 과정에서 역시 이러한 ER 스트레스를 제대로 해소하지 못할 경우 줄기세포의 분화능(stemness)이 현저하게 감소하게 된다. 예를 들어 ER 스트레스가 발생할 경우, 내장줄기세포의 여러 줄기세포의 마커의 발현이 현저히 감소하며, 결국 이들 세포의 줄기세포로서의 특징(signature)이 사라지게 된다.If the ER stress is not resolved properly in the cell differentiation process, the stemness of the stem cell is remarkably reduced. For example, when ER stress occurs, the expression of markers of stem cells of a stem cell is significantly reduced, and the stem cell signature of these cells is lost.
이러한 연구결과를 바탕으로 소포체 스트레스가 세포의 분화 및 세포전환과정에서 중요한 역할을 하고 있다는 것을 알 수 있다. 그러나, 아직까지 이와 같은 연구가 주로 개체 발생과정 및 질환 발병 모델에서 연구되어 왔으며, 체세포 역분화 과정이나 교차분화 과정 중에서 일어날 수 있는 세포 소기관의 스트레스에 대한 연구는 전무하다.Based on these results, it can be seen that endoplasmic reticulum stress plays an important role in cell differentiation and cell conversion process. However, such studies have been studied mainly in the developmental process of the somatic and disease models, and there is no study on the stress of the cell organelles that may occur during somatic cell degeneration or cross-differentiation process.
상기와 같이 역분화/교차분화 개발 이후, 새로운 세포전환 기술을 개발하고자 다양한 기술이 시도되었으나, 많은 연구와 노력에도 불구하고 (한국특허출원 10-2013-0132270), 여전히 낮은 효율성과 저급한 기능성의 문제를 극복하지 못하였다.Although various techniques have been attempted to develop a new cell switching technology after the development of de-differentiation / cross-differentiation as described above, despite many researches and efforts (Korean Patent Application No. 10-2013-0132270), still low efficiency and low functionality .
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 세포 소기관 변화와 스트레스 유발 기전을 탐색하고 제어 인자를 탐색하던 중, 페닐부틸산나트륨, 타우로우루소디옥시콜린산 및 부틸화하이드록시아니솔의 세포 소기관 스트레스 억제 활성을 확인하였는바, 이에 기초하여 본 발명을 완성하였다.DISCLOSURE Technical Problem The present invention has been conceived in order to solve the above-mentioned problems, and it is an object of the present invention to provide a method for detecting a cell organelle change and a stress inducing mechanism, The present inventors have completed the present invention based on this finding.
본 발명의 목적은 페닐부틸산나트륨, 타우로우루소디옥시콜린산 및 부틸화하이드록시아니솔로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는, 소포체 스트레스 (ER stress) 억제용 배지 첨가제를 제공하는 것이다.An object of the present invention is to provide a medium additive for suppressing ER stress, which comprises at least one selected from the group consisting of sodium phenylbutanoate, taurourosoldioxycholinic acid and butylated hydroxyanisole .
본 발명의 다른 목적은 상기 배지 첨가제를 포함하는, 유도만능줄기세포로의 역분화 유도용 배지 조성물을 제공하는 것이다.Another object of the present invention is to provide a medium composition for inducing the differentiation into induced pluripotent stem cells, which comprises the above-mentioned medium additive.
본 발명의 또 다른 목적은 페닐부틸산나트륨, 타우로우루소디옥시콜린산 및 부틸화하이드록시아니솔로 이루어진 군으로부터 선택되는 어느 하나 이상을 체세포 또는 불완전 역분화 세포에 처리하는 단계를 포함하는, 유도만능줄기세포로의 역분화 유도 방법을 제공하는 것이다.It is still another object of the present invention to provide a method for inducing an induction, comprising the step of treating somatic cells or incompletely degenerated cells with at least one selected from the group consisting of sodium phenylbutanoate, taurourosoldioxycholinic acid and butylated hydroxyanisole Thereby providing a method of inducing the differentiation into pluripotent stem cells.
본 발명의 또 다른 목적은 상기 방법으로 분화된 세포를 제공하는 것이다.It is yet another object of the present invention to provide cells differentiated by the above method.
본 발명의 또 다른 목적은 페닐부틸산나트륨, 타우로우루소디옥시콜린산 및 부틸화하이드록시아니솔로 이루어진 군으로부터 선택되는 어느 하나 이상을 체세포 또는 불완전 역분화 세포에 처리하는 단계를 포함하는, 소포체 스트레스 (ER stress) 억제 방법을 제공하는 것이다.It is still another object of the present invention to provide a method of treating a somatic cell or an incompletely degenerated cell, which comprises treating at least one selected from the group consisting of sodium phenylbutanoate, taurourosoldioxycholinic acid and butylated hydroxyanisole, And to provide a method for inhibiting stress (ER stress).
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다. However, the technical problem to be solved by the present invention is not limited to the above-mentioned problems, and other matters not mentioned can be clearly understood by those skilled in the art from the following description.
상기 목적을 달성하기 위하여, 본 발명은In order to achieve the above object,
페닐부틸산나트륨, 타우로우루소디옥시콜린산 및 부틸화하이드록시아니솔로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는, 소포체 스트레스 (ER stress) 억제용 배지 첨가제를 제공한다.(EN) Disclosed is a media additive for suppressing ER stress, which comprises at least one selected from the group consisting of sodium benzoate, sodium phenylbutanoate, taururous dioxycholic acid, and butylated hydroxyanisole.
본 발명의 일 구현예로 상기 배지 첨가제는 배지에 1∼100 μM의 농도로 첨가될 수 있다.In one embodiment of the present invention, the culture medium additive may be added to the medium at a concentration of 1 to 100 [mu] M.
또한, 본 발명은 상기 배지 첨가제를 포함하는, 유도만능줄기세포로의 역분화 유도용 배지 조성물을 제공한다.In addition, the present invention provides a culture medium composition for inducing the differentiation into an inducible pluripotent stem cell comprising the culture medium additive.
또한, 본 발명은 페닐부틸산나트륨, 타우로우루소디옥시콜린산 및 부틸화하이드록시아니솔로 이루어진 군으로부터 선택되는 어느 하나 이상을 체세포 또는 불완전 역분화 세포에 처리하는 단계를 포함하는, 유도만능줄기세포로의 역분화 유도 방법을 제공한다.The present invention also relates to a method for producing an inducible pluripotent stem, comprising the step of treating somatic cells or incompletely degenerated cells with at least one selected from the group consisting of sodium phenylbutanoate, taurourosoldioxycholinic acid and butylated hydroxyanisole, Lt; RTI ID = 0.0 > cell. ≪ / RTI >
본 발명의 일 구현예로 상기 체세포는 역분화 유도인자가 도입된 것일 수 있다.In one embodiment of the present invention, the somatic cell may be one in which a dedifferentiation inducing factor is introduced.
본 발명의 다른 구현예로 상기 역분화 유도인자는 Oct4, Sox2, Klf4 및 c-Myc로 이루어진 군으로부터 선택될 수 있다.In another embodiment of the present invention, the de-differentiation inducing factor may be selected from the group consisting of Oct4, Sox2, Klf4 and c-Myc.
또한, 본 발명은 상기 방법으로 분화된 세포를 제공한다.The present invention also provides cells differentiated by the above method.
또한, 본 발명은 페닐부틸산나트륨, 타우로우루소디옥시콜린산 및 부틸화하이드록시아니솔로 이루어진 군으로부터 선택되는 어느 하나 이상을 체세포 또는 불완전 역분화 세포에 처리하는 단계를 포함하는, 소포체 스트레스 (ER stress) 억제 방법을 제공한다.The present invention also relates to a method of treating a subject suffering from endothelial dysfunction, comprising the step of treating somatic cells or incompletely degenerated cells with at least one selected from the group consisting of sodium phenylbutyanoate, taururous dioxycholinic acid and butylated hydroxyanisole, ER stress. ≪ / RTI >
본 발명에 의하면, 세포전환을 위한 배양과정에 페닐부틸산나트륨, 타우로우루소디옥시콜린산 및 부틸화하이드록시아니솔로 이루어진 군으로부터 선택되는 어느 하나 이상을 첨가함으로써, 세포전환 유도 효율을 증진시킬 수 있을 뿐만 아니라 세포전환 유도에 소요되는 시간을 획기적으로 줄일 수 있다. 페닐부틸산나트륨, 타우로우루소디옥시콜린산 또는 부틸화하이드록시아니솔은 세포전환 유도 과정 중에서 발생하는 노화 유도와 산화 스트레스를 억제하고, 세포 증식 및 미토콘드리아 활동 증진 효과를 유도함으로써 세포전환 유도 배양조건을 효과적으로 개선한다. According to the present invention, by adding at least one selected from the group consisting of sodium phenylbutanoate, taurousdioxycholinic acid and butylated hydroxyanisole to the culturing process for cell conversion, And the time required to induce cell conversion can be drastically reduced. Sodium phenylbutanoate, taururous dioxycholinic acid or butylated hydroxyanisole inhibits aging induction and oxidative stress that occur during induction of cell transformation, induces cell proliferation and promotes mitochondrial activity, Effectively improving the condition.
본 발명은 다양한 소스에서 확보된 적은 양의 환자-특이적 체세포로부터 유도만능줄기세포의 제작과정, 환자-특이적 체세포로부터 다른 기능을 갖는 환자-특이적 체세포의 제작과정, 줄기세포에서 체세포로의 제작과정을 최적화하는데 기여할 수 있고, 이로써 임상적용 가능한 개인 맞춤형 줄기세포 세포 치료제 개발 및 신약개발과정을 획기적으로 개선하고, 실용화 시기를 앞당기는데 기여할 수 있을 것으로 기대된다. The present invention relates to a process for producing pluripotent stem cells derived from a small amount of patient-specific somatic cells obtained from various sources, a process for producing patient-specific somatic cells having different functions from patient-specific somatic cells, This will contribute to optimizing the manufacturing process, thereby greatly improving the development process of a custom-made stem cell cell therapeutic agent and clinical drug development, and accelerating the practical use time.
또한, 본 발명은 세포전환시 목적하는 세포들을 대량으로 배양가능한 시스템을 개발하는데 유용하게 활용될 수 있을 것으로 기대된다.In addition, the present invention is expected to be useful for developing a system capable of culturing a large number of desired cells at the time of cell transformation.
도 1a는 페닐부틸산나트륨 처리에 따른 partially reprogrammed cell에서 역분화 마커인 SSEA4 및 TRA1-60을 이용하여 역분화 효율을 확인한 결과이다.FIG. 1A shows the results of confirming the de-differentiation efficiency by using the dedifferentiation markers SSEA4 and TRA1-60 in partially reprogrammed cells treated with sodium phenylbutyanoate.
도 1b는 페닐부틸산나트륨 처리에 따른 partially reprogrammed cell에서 역분화 특이 마커의 발현을 확인한 결과이다.FIG. 1B shows the results of confirming the expression of the de-differentiation-specific marker in a partially reprogrammed cell treated with sodium phenylbutyanoate.
도 1c는 타우로우루소디옥시콜린산 처리에 따른 partially reprogrammed cell에서 역분화 마커인 SSEA4 및 TRA1-60을 이용하여 역분화 효율을 확인한 결과이다.FIG. 1C shows the results of confirming the de-differentiation efficiency using SSEA4 and TRA1-60, which are dedifferentiation markers, in partially reprogrammed cells treated with taururous dioxycholinic acid.
도 1d는 부틸화하이드록시아니솔 처리에 따른 partially reprogrammed cell에서 역분화 마커인 SSEA4 및 TRA1-60을 이용하여 역분화 효율을 확인한 결과이다.FIG. 1D shows the results of confirming the dedifferentiation efficiency using the degeneration markers SSEA4 and TRA1-60 in partially reprogrammed cells treated with butylated hydroxyanisole.
도 1e는 페닐부틸산나트륨 처리에 따른 인간 섬유아세포 (Fibroblast cell)로부터 유도된 iPSC에서 역분화 마커인 SSEA4 및 TRA1-60을 이용하여 역분화 효율을 확인한 결과이다.FIG. 1E shows the results of confirming the dedifferentiation efficiency by using SSEA4 and TRA1-60, which are degeneration markers, in iPSC derived from human fibroblast cells treated with sodium phenylbutyanoate.
도 1f는 타우로우루소디옥시콜린산 처리에 따른 인간 섬유아세포 (Fibroblast cell)로부터 유도된 iPSC에서 역분화 마커인 SSEA4 및 TRA1-60을 이용하여 역분화 효율을 확인한 결과이다.Fig. 1F shows the results of confirming the de-differentiation efficiency using iPSC derived from human fibroblast cells by treatment with tauroloxodioxycholate, using SSEA4 and TRA1-60, which are degeneration markers.
도 1g는 부틸화하이드록시아니솔 처리에 따른 인간 섬유아세포 (Fibroblast cell)로부터 유도된 iPSC에서 역분화 마커인 SSEA4 및 TRA1-60을 이용하여 역분화 효율을 확인한 결과이다.Fig. 1G shows the results of confirming the dedifferentiation efficiency using iPSC derived from human fibroblast cells by treatment with butylated hydroxyanisole using SSEA4 and TRA1-60, which are degeneration markers.
도 2a는 페닐부틸산나트륨 처리에 따른 인간 섬유아세포 (Fibroblast cell)로부터 유도된 iPSC에 대한 Alkaline Phosphatase (AP) 염색에서 양성 반응을 통해 역분화 효율을 확인한 결과이다.FIG. 2A shows the result of confirming the de-differentiation efficiency through positive reaction in the Alkaline Phosphatase (AP) staining of iPSC derived from human fibroblast cells according to sodium phenylbutyanoate treatment.
도 2b는 타우로우루소디옥시콜린산 처리에 따른 인간 섬유아세포 (Fibroblast cell)로부터 유도된 iPSC에 대한 Alkaline Phosphatase (AP) 염색에서 양성 반응을 통해 역분화 효율을 확인한 결과이다.FIG. 2B shows the result of confirming the de-differentiation efficiency through positive reaction in the iPSC-induced Alkaline Phosphatase (AP) staining of human fibroblast cells following treatment with tauroloxodoxycholic acid.
도 2c는 부틸화하이드록시아니솔 처리에 따른 인간 섬유아세포 (Fibroblast cell)로부터 유도된 iPSC에 대한 Alkaline Phosphatase (AP) 염색에서 양성 반응을 통해 역분화 효율을 확인한 결과이다.FIG. 2C shows the result of confirming the reverse-differentiation efficiency through positive reaction in the iPSC-induced Alkaline Phosphatase (AP) staining from human fibroblast cells according to the treatment with butylated hydroxyanisole.
도 3a는 인간 섬유아세포 (Fibroblast cell)를 이용하여 역분화를 유도할 때, 농도 별 페닐부틸산나트륨 처리에 따른 ER-stress 관련 유전자 발현을 qRT-PCR로 확인한 결과이다.FIG. 3A shows the results of qRT-PCR for ER-stress-related gene expression by sodium phenylbutyrate treatment at different concentrations when inducing differentiation using human fibroblast cells.
도 3b는 인간 섬유아세포 (Fibroblast cell)를 이용하여 역분화를 유도할 때, 농도 별 타우로우루소디옥시콜린산 처리에 따른 ER-stress 관련 유전자 발현을 qRT-PCR로 확인한 결과이다.FIG. 3B shows the results of qRT-PCR for ER-stress-related gene expression following treatment with tauroloxo-dioxycholic acid at different concentrations when inducing differentiation using human fibroblast cells.
도 3c는 인간 섬유아세포 (Fibroblast cell)를 이용하여 역분화를 유도할 때, 농도 별 부틸화하이드록시아니솔 처리에 따른 ER-stress 관련 유전자 발현을 qRT-PCR로 확인한 결과이다.FIG. 3c shows the results of qRT-PCR for expression of ER-stress-related genes following treatment with butylated hydroxyanisole at different concentrations when inducing differentiation using human fibroblast cells.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명자들은 효율적인 세포전환에 대해서 연구한 결과, 세포 소기관 스트레스가 세포의 분화 및 세포전환과정에서 중요한 역할을 하고 있다는 점을 근거로 세포 소기관 변화와 스트레스 유발 기전을 탐색하고 제어 인자를 탐색하던 중, 페닐부틸산나트륨, 타우로우루소디옥시콜린산 및 부틸화하이드록시아니솔의 세포 소기관 스트레스 억제 활성을 확인함으로써, 본 발명을 완성하였다.The present inventors have studied efficient cell transformation and found that cell organelle stress plays an important role in the cell differentiation and cell transformation process. In searching for control factors and exploring cell organelle changes and stress inducing mechanisms, The present inventors have completed the present invention by confirming the activity of inhibiting cell organelle stress of sodium phenylbutanoate, taururous deoxycholic acid, and butylated hydroxyanisole.
이에, 본 발명은 페닐부틸산나트륨, 타우로우루소디옥시콜린산 및 부틸화하이드록시아니솔로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는, 소포체 스트레스 (ER stress) 억제용 배지 첨가제 및 상기 배지 첨가제를 포함하는 유도만능줄기세포로의 역분화 유도용 배지 조성물을 제공한다.Accordingly, the present invention relates to a medium additive for suppressing ER stress, which comprises at least one selected from the group consisting of sodium phenylbutanoate, taurourosoldioxycholinic acid and butylated hydroxyanisole, The present invention provides a medium composition for inducing the differentiation into induced pluripotent stem cells.
본 발명에서 페닐부틸산나트륨은 하기 화학식 1로 표시되는 화합물로서, 방향족 지방산인 4-페닐부티레이트 (4-PBA)의 염 또는 4-페닐부티르산의 염이다.In the present invention, sodium phenylbutyrate is a compound represented by the following formula (1), which is an aromatic fatty acid salt of 4-phenylbutyrate (4-PBA) or 4-phenylbutyric acid.
[화학식 1][Chemical Formula 1]
Figure PCTKR2018012822-appb-I000001
Figure PCTKR2018012822-appb-I000001
본 발명에서 타우로우루소디옥시콜린산(Tauroursodeoxycholic acid)은 하기 화학식 2로 표시되는 화합물로서, 화합물명은 2-[[(4R)-4-[(3R,5S,7S,8R,9S,10S,13R,14S,17R)-3,7-디히드록시-10,13-디메틸-2,3,4,5,6,7,8,9,11,12,14,15,16,17-테트라데카히드로-1H-시클로펜타[a]페난트렌-17-일]펜타노일]아미노]에탄설폰산 또는 3α,7β-디히드록시-5β-콜라노일타우린이다. 이는 담즙산의 일종으로 콜레스테롤을 전구체로 하여 간으로부터 생성되는 것으로, 다양한 염 형태, 약학적으로 허용가능한 염 형태로 존재할 수 있으며, 예를 들어, 소듐, 칼륨 등의 알칼리 금속염 형태로 존재할 수 있다.In the present invention, tauroursodeoxycholic acid is a compound represented by the following formula (2), and the compound is named 2 - [[(4R) -4 - [(3R, 5S, 7S, 8R, 9S, 13R, 14S, 17R) -3,7-dihydroxy-10,13-dimethyl-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetra Decahydro-1H-cyclopenta [a] phenanthren-17-yl] pentanoyl] amino] ethanesulfonic acid or 3?, 7? -Dihydroxy-5? -Colanoyl taurine. It is a kind of bile acid. It is produced from liver by using cholesterol as a precursor. It may exist in various salt forms, pharmaceutically acceptable salt forms, and may exist in the form of alkali metal salts such as sodium and potassium.
[화학식 2](2)
Figure PCTKR2018012822-appb-I000002
Figure PCTKR2018012822-appb-I000002
본 발명에서 부틸화하이드록시아니솔(Butylated hydroxyanisole)은 하기 화학식 3으로 표시되는 화합물로서, 하기 화학식 4로 표시되는 2-터셔리-부틸-4-히드록시아니솔과 하기 화학식 5로 표시되는 3-터셔리-부틸-4-히드록시아니솔의 두 이성체의 혼합물로 존재한다.In the present invention, butylated hydroxyanisole is a compound represented by the following general formula (3), wherein 2-tertiary-butyl-4-hydroxyanisole represented by the following general formula (4) - tertiary-butyl-4-hydroxyanisole.
[화학식 3](3)
Figure PCTKR2018012822-appb-I000003
Figure PCTKR2018012822-appb-I000003
[화학식 4][Chemical Formula 4]
Figure PCTKR2018012822-appb-I000004
Figure PCTKR2018012822-appb-I000004
[화학식 5][Chemical Formula 5]
Figure PCTKR2018012822-appb-I000005
Figure PCTKR2018012822-appb-I000005
본 발명에서 사용되는 용어, "세포전환"이란 배아줄기세포의 자연분화법 (spontaneous differentiation), 역분화 유도만능줄기세포 전환 (reprogramming)과 교차분화 (direct conversion), 그리고 체세포 핵이식 줄기세포 (SCNT) 확립 과정을 포괄하는 세포전환 기술을 의미한다.As used herein, the term "cell transformation" is intended to include spontaneous differentiation of embryonic stem cells, reprogramming and direct conversion of dedifferentiated pluripotent stem cells, and somatic cell nuclear transfer (SCNT) ) Establishment process.
상기 자연분화는 줄기세포를 체세포 또는 전구세포로 분화시키는 것이고, 상기 역분화는 체세포 또는 전구세포를 줄기세포로 역분화시키는 것이며, 상기 교차분화는 체세포를 다른 기능의 체세포 또는 전구세포로 교차분화시키는 것일 수 있다The natural differentiation is to differentiate stem cells into somatic cells or progenitor cells, and the de-differentiation is to dedifferentiate somatic or progenitor cells into stem cells, and the cross-differentiation is to cross-differentiate somatic cells into different somatic cells or progenitor cells Can be
상기 줄기세포는 목적에 따라 적절히 제한 없이 선택될 수 있으며, 인간을 포함한 포유동물, 바람직하게는 인간으로부터 유래된 공지된 모든 조직, 세포 등의 성체 세포로부터 유래할 수 있으며, 예를 들어, 골수, 제대혈, 태반(또는 태반 조직세포), 지방(또는 지방조직 세포) 등으로부터 유래할 수 있다.The stem cell may be selected from any and all without limitation, and may be derived from adult cells such as all known tissues and cells derived from mammals, including humans, preferably from humans. For example, Cord blood, placenta (or placental tissue cells), fat (or adipose tissue cells), and the like.
예컨대, 상기 줄기세포는 골수, 지방 조직, 근육 조직, ex vivo 배양된 자기조직 간엽 줄기 세포, 동종 이계 간엽 줄기 세포, 제대혈, 배 난황낭, 태반, 제대, 골막, 태아 및 사춘기 피부, 그리고 혈액으로부터 제한없이 얻어지는 줄기세포일 수 있으며, 태아 또는 출생직후 또는 성인으로부터 유래된 줄기세포일 수 있다.For example, the stem cells are restricted from bone marrow, adipose tissue, muscle tissue, ex vivo cultured autologous mesenchymal stem cells, allogeneic mesenchymal stem cells, umbilical cord blood, embryonic sac, placenta, cord, periosteum, fetal and pubic skin, And may be embryonic stem cells, stem cells immediately after birth or from an adult.
상기 줄기세포는, 예를 들어 배아줄기세포, 유도만능줄기세포, 태반줄기세포, 제대혈줄기세포, 말초혈줄기세포 및 골수줄기세포, 신경줄기세포, 조혈모줄기세포, 유도배반엽 상피줄기세포, 지방줄기세포, 혈관내피전구세포 및 중간엽줄기세포로 이루어진 군으로부터 선택되는 어느 하나의 세포일 수 있으나, 이에 제한되지는 않는다.The stem cells may be, for example, embryonic stem cells, inducible pluripotent stem cells, placental stem cells, cord blood stem cells, peripheral blood stem cells and bone marrow stem cells, neural stem cells, hematopoietic stem cells, A stem cell, a vascular endothelial progenitor cell, and an mesenchymal stem cell. However, the present invention is not limited thereto.
상기 체세포는 섬유아세포(fibroblst), 상피세포, 근육세포, 신경세포, 위점막세포, 배상세포, G세포, B세포, 주피세포, 성상교세포(astrocyte), 혈액세포, 제대혈유래 조혈모줄기세포 및 혈관내피세포로 이루어진 군에서 선택되는 어느 하나의 세포일 수 있다. 상기 체세포는, 생식세포를 제외한 모든 세포를 의미할 수 있는 것으로, 예를 들어, 섬유아세포, 근육세포, 신경세포, 위점막세포, 배상세포, G세포, 주피세포(pericyte), 성상교세포(astrocyte), B세포, 혈액세포, 상피세포 신경줄기세포, 조혈모세포, 중간엽줄기세포, 제대혈유래 조혈모줄기세포, 혈관내피세포 또는 제대혈 줄기세포 등도 사용할 수 있다. 그러나, 교차분화는 시작세포가 체세포이면 특정 조직세포 여부에 상관없이 적용할 수 있으므로, 상기에 제한되지 않는다.The somatic cell may be a fibroblast, an epithelial cell, a muscle cell, a neural cell, a gastric mucosa cell, a germ cell, a G cell, a B cell, a hippocampus, an astrocyte, a blood cell, Vascular endothelial cells, and vascular endothelial cells. The somatic cell may be any cell except for germ cells, and examples thereof include fibroblasts, muscle cells, nerve cells, gastric mucosal cells, goblet cells, G cells, pericyte, astrocyte ), B cells, blood cells, epithelial cell neural stem cells, hematopoietic stem cells, mesenchymal stem cells, umbilical cord blood-derived hematopoietic stem cells, vascular endothelial cells or cord blood stem cells. However, cross-differentiation is not limited to the above, as the starting cells can be applied to somatic cells regardless of whether they are specific tissue cells or not.
본 발명에서 사용되는 용어 "분화"란 세포가 분열하여 증식하며 전체 개체가 성장하는 동안에 세포의 구조나 기능이 특수화되는 현상을 말한다. 즉, 생물의 세포, 조직 등이 각각에게 주어지는 역할을 수행하기 위해 적합한 형태 및 기능으로 변하는 과정을 말한다. 예를 들어, 배아줄기세포와 같은 전능성 줄기세포는 외배엽, 중배엽, 및 내배엽 세포로 변하는 과정도 분화이며, 좁게는 조혈모세포가 적혈구, 백혈구, 혈소판 등으로 변하는 과정도 분화에 해당된다. 또한, "자연분화"라 칭하기도 한다.As used herein, the term "differentiation" refers to a phenomenon in which the structure or function of a cell is specialized while cells are divided and proliferated and the entire individual grows. In other words, it refers to a process in which cells, tissues, etc. of a living organism are changed into appropriate forms and functions to perform their respective roles. For example, pluripotent stem cells such as embryonic stem cells are differentiated into ectoderm, mesoderm, and endoderm cells, and narrowly, the processes in which hematopoietic stem cells change into red blood cells, white blood cells, platelets, etc. are also differentiated. It may also be referred to as "natural differentiation ".
본 발명에서 사용되는 용어 "분화된 세포"란 상기 분화과정이 진행되어 일정 형태 및 기능을 가지게 된 세포를 말한다. 본 발명의 분화된 세포는 특별한 제한은 없으나 바람직하게는 생식세포, 체세포 (somatic cell) 또는 전구세포 (progenitor cell)이다. 또한, 바람직하게는 인간에게서 유래한 세포이다The term "differentiated cell" used in the present invention refers to a cell that has undergone the differentiation process and has a certain form and function. The differentiated cells of the present invention are not particularly limited, but are preferably germ cells, somatic cells, or progenitor cells. It is also preferably a human-derived cell
본 발명에서 사용되는 용어 "역분화 (de-differentiation)"는 분화된 세포가 새로운 유형의 분화되는 잠재력을 갖는 상태로 복원될 수 있는 프로세스를 의미한다. 또한, 상기 역분화는 본 발명에서 세포 리프로그래밍과 동일한 의미로 사용된다. 이러한 세포의 역분화 기작은 핵 내의 후생유전학 (뉴클레오타이드 서열에서의 변화없이 기능에서의 유전적 변화를 일으키는 것과 관련된 DNA 상태)적 마크가 삭제된 후, 상이한 세트의 후생유전학적 마크를 수립하는 것을 의미하는데, 다세포 생물이 분화 및 성장하는 동안, 상이한 세포 및 조직은 상이한 유전자 발현 프로그램을 획득한다.As used herein, the term " de-differentiation "refers to a process by which differentiated cells can be restored to a state having the potential of a new type of differentiation. In addition, the de-differentiation is used in the same sense as the cell reprogramming in the present invention. The de-differentiation mechanism of these cells is to establish a different set of welfare genetic markers after deletion of the marking in the nucleus (the DNA state associated with the genetic change in function without changes in the nucleotide sequence) in the nucleus . While differentiation and growth of multicellular organisms, different cells and tissues acquire different gene expression programs.
본 발명에서 사용되는 용어 "고효율 세포전환"이란 세포전환이 일어나는 과정에서 세포전환의 과정이 빠르게 일어나게 하거나, 세포전환되는 효율이 증가된 것을 말한다. 곧, 세포전환의 효율을 속도 또는 비율면에서 증진한다는 의미를 포함한다.As used herein, the term " high-efficiency cell conversion "means that the cell conversion process occurs rapidly or the efficiency of cell conversion is increased in the process of cell conversion. That is, it means that the efficiency of cell conversion is improved in terms of rate or ratio.
본 발명에서 사용되는 용어 "역분화 유도인자"란 최종적으로 분화된 세포가 새로운 유형의 분화되는 잠재력을 갖는 유도만능줄기세포로 역분화 되도록 유도하는 물질이다. 상기 역분화 유도인자는 최종적으로 분화된 세포의 역분화를 유도하는 물질이면 제한 없이 포함할 수 있으며, 분화시키려는 세포의 종류에 따라 선택할 수 있다. 이에 제한되지는 않으나, 바람직하게는 역분화 유도인자로서 Oct4, Sox2, KlF4, c-Myc, Nanog, Lin-28 및 Rex1로 이루어진 군으로부터 선택되는 단백질 또는 이들 단백질을 코딩하는 핵산분자를 추가로 포함할 수 있고, 보다 바람직하게는 Oct4 단백질 또는 이들 단백질을 코딩하는 핵산분자를 포함할 수 있으며, Oct4, Sox2, KlF4 및 c-Myc 단백질 또는 이들 단백질을 코딩하는 핵산분자를 포함할 수 있다.The term " dedifferentiation inducing factor "as used herein is a substance that induces finally differentiated cells to reverse differentiate into induced pluripotent stem cells having a potential for a new type of differentiation. The dedifferentiation factor may be any substance that induces the differentiation of the finally differentiated cells, and may be selected depending on the type of cells to be differentiated. But are not limited thereto, preferably further comprise a protein selected from the group consisting of Oct4, Sox2, KlF4, c-Myc, Nanog, Lin-28 and Rex1 or a nucleic acid molecule encoding these proteins More preferably an Oct4 protein or a nucleic acid molecule encoding these proteins, and may include Oct4, Sox2, KlF4 and c-Myc proteins or nucleic acid molecules encoding these proteins.
본 발명에서 사용되는 용어 "교차분화 (또는 이하, "직접교차분화(Direct Reprogramming/Direct Conversion/Transdifferentiation)라 칭하기도 함)"는 고등생물에서 전혀 다른 세포타입을 가지는 성숙한 (분화가 끝난) 세포 간의 전환을 유도하는 과정으로서, 이는 유도만능줄기세포 (Induced Pluripotent Stem Cells, iPSCs)로 리프로그래밍하고 이를 재분화하여 목적하는 세포로 만들어야 하는 과정과 달리, 유도만능줄기세포단계를 거치지 않고 바로 목적하는 세포로의 전환을 유도한다는 점에서 차이를 가진다. 현재 교차분화는 질병모델링과 신약 발굴 등에 이용될 가능성을 인정받고 있으며, 미래에는 유전자 치료 그리고 재생의학 등에도 응용될 수 있을 것이라 기대된다. The term "direct reprogramming / direct conversion / transdifferentiation ", as used herein, is intended to encompass mature (differentiated) cells with totally different cell types in higher organisms Unlike the process of reprogramming into Induced Pluripotent Stem Cells (iPSCs) and regenerating them into desired cells, it is a process of inducing the conversion. It is expected that cross-differentiation will be used for disease modeling and drug discovery, and it will be applied to gene therapy and regenerative medicine in the future.
본 발명에서 사용되는 용어 "체세포"는 생식세포를 제외한 동식물을 구성하는 분화가 완결된 모든 세포를 뜻하며, 염색체가 2n을 유지한다는 특성이 있다.As used herein, the term "somatic cell" refers to all cells that have undergone differentiation constituting an animal or plant, excluding germ cells, and that the chromosome maintains 2n.
본 발명에서 사용되는 용어 "전구세포"는 자손에 해당하는 세포가 특정 분화 형질을 발현하는 것으로 밝혀진 경우, 분화 형질을 발현하지 않으나, 그 분화운명 (fate)을 가지고 있는 부모세포를 말한다. 예를 들면, 신경세포 (뉴런)에 대해서는 신경아세포 (뉴런간세포)가 전구세포에 해당하고, 근관세포에 대해서는 근아세포가 전구세포에 해당한다The term "progenitor cell" used in the present invention refers to a parent cell that does not express a differentiation trait but has a differentiation fate when it is found that a cell corresponding to a progeny expresses a specific differentiation trait. For example, neurons (neuron hepatocytes) correspond to progenitor cells for neurons (neurons), and myocytes correspond to progenitor cells for canaliculus cells
본 발명에서 사용되는 용어 "다능성 줄기세포 (pluripotent stem cell)"란 개체의 모든 조직의 세포로 분화할 수 있는 다능성 (pluripotent)이거나 전능성 (totipotent)이 있는 자가재생산능 (self-renewal)을 갖는 줄기세포를 말하며, 배아줄기세포와 유도만능줄기세포를 포함하나, 이것에 한정되는 것은 아니다. 해당 다능성 줄기세포로는 인간, 원숭이, 돼지, 말, 소, 양, 개, 고양이, 생쥐, 토끼 등의 모든 유래의 다능성 줄기세포를 포함하나, 바람직하게는 인간 유래의 다능성 줄기세포이다.As used herein, the term "pluripotent stem cell" refers to a pluripotent or totipotent self-renewal capable of differentiating into cells of all tissues of the individual And includes, but is not limited to, embryonic stem cells and induced pluripotent stem cells. The pluripotent stem cells include pluripotent stem cells derived from all of human, monkey, pig, horse, cattle, sheep, dog, cat, mouse, rabbit and the like, but preferably human pluripotent stem cells .
본 발명에서 사용되는 용어 "배아줄기세포"란, 수정란이 모체의 자궁에 착상하기 직전인 포배기 배아에서 내세포괴(inner cell mass)를 추출하여 체외에서 배양한 것으로서, 개체의 모든 조직의 세포로 분화할 수 있는 다능성이거나 전능성이 있는 자가재생산능(self-renewal)을 갖는 세포를 의미하며, 넓은 의미로는 배아줄기세포로부터 유래한 배아체(embryoid bodies)도 포함한다. 본 발명의 배아줄기세포로는 인간, 원숭이, 돼지, 말, 소, 양, 개, 고양이, 생쥐, 토끼 등의 모든 유래의 배아줄기세포를 포함하나, 바람직하게는 인간 유래의 배아줄기세포이다.The term "embryonic stem cell" used in the present invention refers to a cell obtained by extracting an inner cell mass from a blastocyst embryo immediately before fertilization of the embryo into the uterus of a mother and culturing the same in vitro, Pluripotent, or omnipotent, self-renewal cells, and broadly includes embryoid bodies derived from embryonic stem cells. The embryonic stem cells of the present invention include all embryonic stem cells derived from human, monkey, pig, horse, cattle, sheep, dog, cat, mouse, rabbit and the like, but are preferably human-derived embryonic stem cells.
본 발명에서 사용되는 용어 "유도만능줄기세포"란, 분화된 세포들로부터 인위적인 역분화 과정을 통해 다능성 분화능을 가지도록 유도된 세포들을 일컫는 말로서 유도만능줄기세포 (iPSCs: induced pluripotent stem cells)라고도 한다. 인위적인 역분화 과정은 레트로바이러스 및 렌티바이러스를 이용한 바이러스-매개 또는 비바이러스성 벡터 이용, 단백질 및 세포 추출물 등을 이용하는 비바이러스-매개 역분화 인자의 도입에 의해 수행되거나, 줄기 세포 추출물, 화합물 등에 의한 역분화 과정을 포함한다. 유도만능줄기세포는 배아줄기세포와 거의 같은 특성을 가지며, 구체적으로는 비슷한 세포 모양을 보여주며, 유전자, 단백질 발현 패턴이 유사하며, 인 비트로 (in vitro) 및 인 비보 (in vivo)에서 전분화능을 가지며, 테라토마 (teratoma)를 형성하고, 생쥐의 배반포 (blastocyst)에 삽입시켰을 때, 키메라 (chimera) 생쥐를 형성하고, 유전자의 생식선 전이 (germline transmission)가 가능하다.As used herein, the term "induced pluripotent stem cells" refers to cells induced to have pluripotential differentiation ability through artificial reprogramming from differentiated cells, which is also referred to as induced pluripotent stem cells (iPSCs) do. An artificial reprogramming process may be performed by introduction of a non-viral-mediated reprogramming factor using virus-mediated or non-viral vector utilization, retroviruses and lentiviruses, proteins and cell extracts, or by stem cell extracts, And includes a de-differentiation process. Induced pluripotent stem cells have almost the same characteristics as embryonic stem cells, specifically showing similar cell shapes, similar in gene and protein expression pattern, and in vitro and in vivo, , Which forms a teratoma and is inserted into a blastocyst of a mouse to form a chimera mouse and enable germline transmission of the gene.
본 발명에서 사용되는 용어 "벡터"란 숙주세포에서 목표 단백질을 발현할 수 있는 발현 벡터로서, 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 의미할 수 있다. 상기 벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널, 인핸서 같은 발현 조절 요소 외에도 막 표적화 또는 분비를 위한 신호 서열 또는 리더 서열을 포함하며 목적에 따라 다양하게 제조될 수 있다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다. 또한, 발현벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택성 마커를 포함하고, 복제 가능한 발현 벡터인 경우, 복제 기원을 포함한다. 벡터는 자가 복제하거나 숙주 DNA에 통합될 수 있다.As used herein, the term "vector" refers to an expression vector capable of expressing a target protein in a host cell, which gene construct comprises an essential regulatory element operably linked to the expression of the gene insert. The vector may include a signal sequence or a leader sequence for membrane targeting or secretion in addition to an expression regulatory element such as a promoter, an operator, an initiation codon, a stop codon, a polyadenylation signal, an enhancer, and the like. The promoter of the vector may be constitutive or inducible. In addition, the expression vector includes a selectable marker for selecting a host cell containing the vector, and in the case of a replicable expression vector, a replication origin. The vector may be self-replicating or integrated into the host DNA.
본 발명에서 사용되는 용어 "배지 (culture media)"는 시험관내 (in vitro)에서 줄기세포 성장 및 생존을 지지할 수 있게 하는 배지를 의미하고, 세포의 배양에 적절한 당 분야에서 사용되는 통상의 배지를 모두 포함한다. 세포의 종류에 따라 배지와 배양 조건을 선택할 수 있다. 배양에 사용되는 배지는 바람직하게는 세포 배양 최소 배지 (cell culture minimum medium: CCMM)로, 일반적으로 탄소원, 질소원 및 미량원소 성분을 포함한다. 이런 세포 배양 최소 배지에는 예들 들어, DMEM (Dulbecco's Modified Eagle's Medium), MEM (Minimal essential Medium), BME (Basal Medium Eagle), RPMI1640, F-10, F-12, aMEM (a Minimal essential Medium), GMEM (Glasgow's Minimal essential Medium), Iscove's Modified Dulbecco's Medium 등이 있으나, 이에 제한되지는 않는다. 또한, 상기 배지는 페니실린 (penicillin), 스트렙토마이신 (streptomycin), 겐타마이신 (gentamicin) 등의 항생제를 포함할 수 있다.The term "culture media " as used in the present invention means a medium capable of supporting stem cell growth and survival in vitro, and includes a culture medium, . Depending on the type of cells, medium and culture conditions can be selected. The medium used for the culture is preferably a cell culture minimum medium (CCMM), which generally contains a carbon source, a nitrogen source and a trace element component. For example, DMEM (Dulbecco's Modified Eagle's Medium), MEM (Minimal Essential Medium), BME (Basal Medium Eagle), RPMI1640, F-10, F-12, aMEM Glasgow's Minimal Essential Medium, and Iscove's Modified Dulbecco's Medium. In addition, the medium may include antibiotics such as penicillin, streptomycin, and gentamicin.
본 발명에서 사용되는 용어 "단백질을 코딩하는 핵산분자"는 세포 내에 전달되면 그 자체로 해당 단백질을 발현할 수 있도록 프로모터 등에 작동 가능하게 연결된 형태일 수 있으며, 또한, 세포 내 염색체에 삽입되어 해당 단백질을 발현할 수 있는 핵산 분자를 폭넓게 포함한다. 예를 들어, 역분화 유도인자로서 Oct4, Sox2, KlF4, c-Myc, Nanog, Lin-28 및 Rex1로 이루어진 군으로부터 선택되는 어느 하나 이상의 단백질을 코딩하는 핵산분자가 발현벡터 안에 작동 가능하게 연결되어 세포 내로 전달될 수도 있으며, 숙주 세포의 염색체 내로 삽입되는 형태로 세포 내로 전달될 수도 있다.As used herein, the term "nucleic acid molecule encoding a protein" refers to a nucleic acid molecule that is operatively linked to a promoter or the like so that the protein can be expressed therein, Lt; RTI ID = 0.0 > nucleic acid < / RTI > molecules. For example, a nucleic acid molecule encoding any one or more proteins selected from the group consisting of Oct4, Sox2, KlF4, c-Myc, Nanog, Lin-28 and Rex1 is operably linked to an expression vector May be delivered into the cell, or may be delivered into the cell in a form that is inserted into the chromosome of the host cell.
본 발명에서 사용되는 용어 "세포치료제"는 사람으로부터 분리, 배양 및 특수한 저작을 통해 제조된 세포 및 조직으로 치료, 진단 및 예방의 목적으로 사용되는 의약품 (미국 FDA규정)으로서, 세포 혹은 조직의 기능을 복원시키기 위하여 살아있는 자가, 동종, 또는 이종세포를 체외에서 증식, 선별하거나 다른 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통하여 치료, 진단 및 예방의 목적으로 사용되는 의약품을 지칭한다.The term "cell therapeutic agent" used in the present invention is a medicament (US FDA regulation) used for the purpose of treatment, diagnosis and prevention with cells and tissues prepared by isolation, Refers to a drug used for therapeutic, diagnostic, and prophylactic purposes through a series of actions, such as alive, homologous, or xenogeneic cell propagation, screening, or otherwise altering the biological characteristics of a cell .
본 발명의 일실시예에서는 인간 혈액세포 (human mononuclear cell)에 역분화 유도 인자를 이용하여 역분화를 유도하면 대다수 불완전 역분화 세포 (partially reprogrammed cell)로 출현하는데, 본 발명에 따른 페닐부틸산나트륨, 타우로우루소디옥시콜린산, 또는 부틸화하이드록시아니솔을 각각 처리한 뒤, FACS 분석을 통해 역분화 효율을 정량적으로 분석한 결과, 페닐부틸산나트륨, 타우로우루소디옥시콜린산, 또는 부틸화하이드록시아니솔을 처리에 따라 ER-stress가 억제되어 역분화가 유의적으로 증가되는 것을 구체적으로 확인하였으며, 또한 인간 섬유아세포를 역분화 유도 인자를 이용하여 역분화가 유도되는 초기부터 본 발명에 따른 페닐부틸산나트륨, 타우로우루소디옥시콜린산, 또는 부틸화하이드록시아니솔을 각각 처리한 뒤, FACS 분석을 통해 역분화 효율을 정량적으로 분석한 결과, 페닐부틸산나트륨, 타우로우루소디옥시콜린산, 또는 부틸화하이드록시아니솔을 각각 처리에 따라 ER-stress가 억제되어 역분화가 유의적으로 증가되는 것을 구체적으로 확인하였고, Alkaline Phosphatase (AP) 염색을 진행한 결과, AP 양성 콜로니가 대조군과 유사한 수준에서 형성되는 것을 확인할 수 있었다 (실시예 1 및 2 참조).In one embodiment of the present invention, most of the cells are partially reprogrammed cells by inducing the differentiation of human mononuclear cells using a differentiation inducing factor. In the present invention, sodium phenylbutanoate , Taururous dioxycholinic acid, or butylated hydroxyanisole, respectively, and then subjected to FACS analysis to quantitatively analyze the de-differentiation efficiency. As a result, it was found that sodium phenylbutanoate, taururous dioxycholinic acid, or It was confirmed that ER-stress was inhibited by treatment with butylated hydroxyanisole, and that the de-differentiation was significantly increased. Also, human fibroblasts were observed from the beginning After treatment of sodium phenylbutanoate, taururous dioxycholinic acid, or butylated hydroxyanisole according to the invention, respectively, Were quantitatively analyzed. As a result, it was confirmed that ER-stress was inhibited by treatment with sodium phenylbutanoate, taururous dioxycholinic acid, or butylated hydroxyanisole, respectively, , And Alkaline Phosphatase (AP) staining revealed that AP-positive colonies were formed at a level similar to that of the control group (see Examples 1 and 2).
또한, 본 발명의 다른 일실시예에서는 페닐부틸산나트륨, 타우로우루소디옥시콜린산, 또는 부틸화하이드록시아니솔을 각각 처리에 따른 ER-stress 관련 유전자 (ATF3 ,ATF4, ATF6, GADD34, CHOP, BIP, tXBP1, SxBP1)의 발현 여부를 확인한 결과, 페닐부틸산나트륨, 타우로우루소디옥시콜린산, 또는 부틸화하이드록시아니솔 처리에 의해 ER-stress 관련 유전자의 발현이 경감되는 것을 확인할 수 있었다 (실시예 3 참조).In another embodiment of the present invention, ER-stress related genes (ATF3, ATF4, ATF6, GADD34, CHOP (SEQ ID NO: , BIP, tXBP1, and SxBP1), the expression of ER-stress related genes was reduced by treatment with sodium phenylbutanoate, taururous dioxycholate, or butylated hydroxyanisole (See Example 3).
상기 결과에 따라 페닐부틸산나트륨, 타우로우루소디옥시콜린산 및 부틸화하이드록시아니솔에 의한 세포 소기관 스트레스의 효율적인 억제 및 그에 따른 역분화 효율 향상 효과를 확인하였는바, 세포전환시 목적하는 세포들을 대량으로 배양하는 세포 전환기술로써 유용하게 이용될 수 있음을 시사한다.Based on the above results, it was confirmed that the effects of sodium phenylbutyanoate, taururodioxycholinic acid, and butylated hydroxyanisole on the cell organelle stress were effectively inhibited and the effect of improving the reprogramming efficiency was improved. As a result, Suggesting that it can be usefully used as a cell transformation technology to cultivate a large amount of cells.
본 발명의 다른 양태로서, 본 발명은 페닐부틸산나트륨, 타우로우루소디옥시콜린산 및 부틸화하이드록시아니솔로 이루어진 군으로부터 선택되는 어느 하나 이상을 체세포 또는 불완전 역분화 세포에 처리하는 단계를 포함하는, 유도만능줄기세포로의 역분화 유도 방법을 제공한다.In another aspect of the present invention, the present invention includes a step of treating somatic cells or incompletely degenerated cells with at least one selected from the group consisting of sodium phenylbutanoate, taurourus deoxycholic acid, and butylated hydroxyanisole Induced pluripotent stem cells. ≪ / RTI >
본 발명에서 사용되는 용어 "불완전 역분화 세포 (partially reprogrammed cell)"란 최초 역분화를 유도하기 위하여 4가지 유도인자 (Yamanaka factor; OCT4, SOX2, KLF4, c-MYC)를 체세포에 도입하면, 약 14일 후에 군집 (colony)을 이루는 세포 집단을 관찰할 수 있다. 이 때, 출현한 세포 군집의 약 90~95% 이상은 불완전 역분화 세포 (TRA1-60 표지 인자 음성)이며, 이와 같은 불완전 역분화 세포는 시간의 경과에 따라서 자발적인 역분화 (TRA1-60 양성)가 일어나지 않을 뿐만 아니라 전분화능 특이 유전자 발현이 현저히 낮은 것으로 알려진 세포를 말한다. 따라서 불완전 역분화 세포는 새로운 세포 내 신호 자극이 있을 때 완전 역분화 세포로 이행될 수 있는 역분화 중간 단계 세포이다. The term " partially reprogrammed cell "used in the present invention means that when four inducers (Yamanaka factor: OCT4, SOX2, KLF4, c-MYC) are introduced into somatic cells to induce the initial de- differentiation, After 14 days, a population of cells forming a colony can be observed. At this time, about 90 to 95% of the emerging cell clusters are incompletely degenerated cells (negative for TRA1-60 marker), and the incompletely degenerated cells are spontaneously degenerated (TRA1-60 positive) Refers to a cell that is known to exhibit a significantly lower pre-differentiation-specific gene expression as well as a lesser degree of expression. Thus, incomplete degenerated cells are de-differentiated mesenchymal cells that can be transferred into fully degenerated cells when new intracellular signal stimuli are present.
이 때, 페닐부틸산나트륨, 타우로우루소디옥시콜린산 및 부틸화하이드록시아니솔로 이루어진 군으로부터 선택되는 어느 하나 이상을 체세포에 처리할 경우, 상기 체세포는 역분화 유도인자가 도입된 것일 수 있으며, 상기 역분화 유도인자를 체세포에 도입하는 방법은 당업계에서 통상적으로 사용되는 세포에 핵산분자 또는 단백질을 제공하는 방법을 제한없이 사용할 수 있으나, 바람직하게는 역분화 유도인자를 분화된 세포의 배양액에 투여하는 방법, 역분화 유도인자를 분화된 세포에 직접 주입하는 방법 또는 역분화 유도인자의 유전자를 삽입한 바이러스 벡터로 트랜스펙션시킨 패키징 세포로부터 수득한 바이러스로 분화된 세포를 감염시키는 것인 방법을 사용할 수 있다.At this time, when somatic cells are treated with somatic cells selected from the group consisting of sodium phenylbutanoate, taururous dioxycholinic acid and butylated hydroxyanisole, the somatic cell may be one in which a differentiation inducing factor is introduced The method of introducing the dedifferentiation inducing factor into a somatic cell may be any method of providing a nucleic acid molecule or a protein to a cell commonly used in the art without limitation. Preferably, the regeneration inducing factor is added to a culture medium of the differentiated cells A method of directly injecting a differentiation inducing factor into a differentiated cell, or a method of infecting a cell differentiated with a virus obtained from a packaging cell transfected with a virus vector into which a gene of a differentiation inducing factor is inserted Method can be used.
상기 역분화 유도인자를 분화된 세포에 직접 주입하는 방법은 당업계에 공지된 임의의 방법을 선택하여 사용할 수 있으며, 이에 제한되지는 않으나, 미세주입법(microijection), 전기천공법(electroporation), 입자 분사법(particle bombardment), 직접근육주입법, 인슐레이터(insulator) 및 트랜스포존을 이용한 방법 중에서 적절하게 선택하여 적용할 수 있다.The method of directly injecting the dedifferentiation inducing factor into the differentiated cells may be selected from any method known in the art and may be performed by a variety of methods including, but not limited to, microinjection, electroporation, Particle bombardment, direct muscle injection, insulator, and transposon.
본 발명에 있어서, 상기 역분화 유도인자는 역분화시키려는 세포의 종류에 따라 선택할 수 있으며, 이에 제한되지는 않으나, 바람직하게는 Oct4, Sox2, KlF4, c-Myc, Nanog, Lin-28, Rex1 및 microRNA-302 cluster로 이루어진 군으로부터 선택되는 어느 하나 이상의 단백질 또는 이들 단백질을 코딩하는 어느 하나 이상의 핵산분자를 더 포함할 수 있고, 보다 바람직하게는 Oct4 단백질 또는 이들 단백질을 코딩하는 핵산분자를 포함할 수 있으며, Oct4, Sox2, KlF4 및 c-Myc 단백질 또는 이들 단백질을 코딩하는 핵산분자를 포함할 수 있다.In the present invention, the reprogramming inducing factor may be selected according to the type of cell to be reprogrammed, and is preferably selected from the group consisting of Oct4, Sox2, KlF4, c-Myc, Nanog, Lin-28, microRNA-302 clusters, or any one or more nucleic acid molecules that encode these proteins. More preferably, the nucleic acid molecule may encode an Oct4 protein or a nucleic acid molecule encoding the protein. , Oct4, Sox2, KlF4 and c-Myc proteins or nucleic acid molecules encoding these proteins.
본 발명에 있어서, 상기 패키징 세포는 사용된 바이러스 벡터에 따라 당업계에 공지된 다양한 세포를 선택하여 사용할 수 있으며, 이에 제한되지는 않으나, 바람직하게는 GP2-293 패키징 세포를 사용할 수 있다.In the present invention, the packaging cells may be selected from various cells known in the art depending on the viral vector used, and preferably, GP2-293 packaging cells can be used.
또한, 상기 바이러스 벡터는 레트로바이러스(Retroviruses), 예를 들어 HIV(Human immunodeficiency virus), MLV(Murine leukemia virus), ASLV(Avian sarcoma/leukosis), SNV(Spleen necrosis virus), RSV(Rous sarcoma virus), mMTV(Mouse mammary tumor virus) 등, 렌티바이러스(Lentiviruses), 아데노바이러스(Adenovirus), 아데노-관련 바이러스(Adeno-associated virus), 헤르페스 심플렉스바이러스(Herpes simplex virus), 센다이 바이러스(Sendai virus) 및 에피조말(episomal) 벡터 등에서 유래한 벡터를 포함할 수 있으며, 이에 제한되지는 않으나, 바람직하게는 레트로바이러스 벡터를 사용할 수 있고, 보다 바람직하게는 레트로바이러스 벡터 pMXs를 사용할 수 있다.In addition, the viral vector may be a retroviruses such as human immunodeficiency virus (HIV), murine leukemia virus (MLV), Avian sarcoma / leukosis (ASLV), Spleen necrosis virus (SNV), Rous sarcoma virus , mouse mammary tumor virus (mMTV), lentiviruses, adenovirus, adeno-associated virus, herpes simplex virus, Sendai virus, An episomal vector, and the like. However, it is preferable to use a retroviral vector, and more preferably, a retroviral vector pMXs can be used.
본 발명의 또 다른 양태로서, 본 발명은 상기 방법으로 분화된 세포를 제공한다.In another aspect of the present invention, the present invention provides a cell differentiated by the above method.
상기 세포전환방법을 통해 제조되는 역분화된 다능성 줄기세포는, 분화된 세포에 페닐부틸산나트륨과 역분화 유도인자를 처리하여 얻어지는 시험관 내 모든 세포 배양물을 포함할 수 있다. 상기 세포 배양물은 역분화 과정에 있는 각종 세포들과 이를 배양하는 과정에서 얻어지는 각종 단백질 및 효소, 전사체들과 이를 함유하는 배양액까지 포함할 수 있다.The degenerated pluripotent stem cells prepared by the cell transformation method may include all cell cultures in vitro obtained by treating the differentiated cells with sodium phenylbutanoate and a dedifferentiation inducer. The cell culture may include various cells in the differentiation process, various proteins and enzymes obtained in the culturing thereof, transcripts and a culture solution containing the same.
본 발명의 바람직한 일실시예에서는, 역분화 유도인자를 형질도입하고, 페닐부틸산나트륨이 포함된 배양액에서 배양한 역분화된 다능성 줄기세포가 분화된 세포에 대비하여 세포성장 및 증식이 증진되며, 세포사멸이 억제되고, 미토콘드리아 활성이 증진되며, 노화가 억제되고, 산화스트레스가 감소되며, p53 신호전달이 억제되고, 역분화 유도 시간이 단축되며, 역분화 유도 효율이 증진되는 특징을 보이는 것을 확인하였다.In a preferred embodiment of the present invention, the cells are differentiated from the differentiated pluripotent stem cells cultured in the culture medium containing the sodium phenylbutyanoate, and the cell growth and proliferation are promoted , The cell death is suppressed, the mitochondrial activity is enhanced, the aging is suppressed, the oxidative stress is reduced, the p53 signaling is inhibited, the dedifferentiation induction time is shortened, and the dedifferentiation inducing efficiency is enhanced Respectively.
상기 전달 단계 및 배양 단계는 동시, 순차적 또는 역순으로 수행될 수 있다.The delivery and incubation steps may be performed simultaneously, sequentially or in reverse order.
상기 세포전환이 교차분화인 경우, 본 발명의 세포전환방법은 하기의 단계를 포함할 수 있다:When the cell transformation is cross-differentiation, the cell transformation method of the present invention may comprise the following steps:
(a) 체세포에 교차분화인자를 도입하는 단계; 및(a) introducing a cross-differentiation factor into somatic cells; And
(b) 상기 (a) 단계에서 얻어진 불완전 역분화 세포를 페닐부틸산나트륨을 포함하는 배지에서 배양하는 단계.(b) culturing the incomplete degenerated cells obtained in the step (a) in a medium containing sodium phenylbutanoate.
상기 (a) 단계에서 교차분화인자의 도입은 벡터를 이용할 수 있다.In the step (a), introduction of the cross-differentiation factor may use a vector.
상기 교차분화인자는 OCT4, SOX1, SOX2, SOX10, OLIG2, NKX2.2, NKX6.2, Hnf4a, Foxa1, Foxa3, Gata4, Hnf1a, FLI1 (Friend leukemia virus integration 1), ETV2 (Ets variant gene 2), GATA1, TAL1, LMO2, KLF1 및 RUNX1로 이루어진 군에서 선택되는 어느 하나 이상일 수 있다The cross-differentiation factor may be selected from the group consisting of OCT4, SOX1, SOX2, SOX10, OLIG2, NKX2.2, NKX6.2, Hnf4a, Foxa1, Foxa3, Gata4, Hnf1a, FLT1 (Friend leukemia virus integration 1), ETV variant gene 2 GATA1, TAL1, LMO2, KLF1, and RUNX1
상기 OCT4, SOX1, SOX2, SOX10, OLIG2, NKX2.2, NKX6.2 유전자는 단백질 또는 이의 단백질을 코딩하는 핵산의 형태로 제공될 수 있는데, 단백질은 인간과 마우스, 말, 양, 돼지, 염소, 낙타, 영양, 개 등의 동물 유래의 모든 단백질을 포함할 수 있다. 또한, 본 발명에 사용되는 OCT4, SOX1, SOX2, SOX10, OLIG2, NKX2.2,NKX6.2 단백질은 이의 야생형(wild type)의 아미노산 서열을 갖는 단백질 뿐만 아니라 각 유전자의 단백질 변이체를 포함한다.The OCT4, SOX1, SOX2, SOX10, OLIG2, NKX2.2, and NKX6.2 genes may be provided in the form of a nucleic acid encoding a protein or a protein thereof, wherein the protein is human, mouse, horse, sheep, pig, Camel, nutrition, dog, and the like. In addition, the OCT4, SOX1, SOX2, SOX10, OLIG2, NKX2.2, and NKX6.2 proteins used in the present invention include protein variants of respective genes as well as proteins having a wild type amino acid sequence thereof.
상기 단백질의 변이체란, 상기 단백질의 천연 아미노산 서열과 하나 이상의 아미노산 잔기가 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합에 의하여 상이한 서열을 가지는 단백질을 의미한다. 상기 변이체는 천연 단백질과 동일한 생물학적 활성을 나타내는 기능적 등가물이거나 필요에 의해서 단백질의 물리 화학적 성질이 변형된 변이체일 수 있고, 물리, 화학적 환경에 대한 구조적 안정성이 증대되거나 생리학적 활성이 증대된 변이체일 수 있다.A variant of the protein means a protein having a sequence which differs from the native amino acid sequence of the protein by one or more amino acid residues by deletion, insertion, non-conservative or conservative substitution, or a combination thereof. The mutant may be a functional equivalent exhibiting the same biological activity as the natural protein or may be a mutant in which the physicochemical properties of the protein are modified as needed and may be a mutant having increased structural stability against physiological or chemical environment or increased physiological activity have.
또한, 상기 단백질을 코딩하는 핵산은 야생형 또는 상기한 바와 같은 변이체 형태의 단백질을 코딩하는 염기서열로서, 하나 이상의 염기가 치환, 결실, 삽입 또는 이들의 조합에 의해 변이될 수 있으며, 천연에서 분리되거나 화학적 합성법을 이용하여 제조할 수 있다. 상기한 단백질을 코딩하는 염기서열을 갖는 핵산은 단쇄 또는 이중쇄일 수 있으며, DNA 분자(genomic DNA, cDNA) 또는 RNA 분자일 수 있다.In addition, the nucleic acid encoding the protein may be a wild-type or a nucleotide sequence encoding a protein in the mutant form as described above, wherein one or more bases may be mutated by substitution, deletion, insertion, or a combination thereof, Can be prepared by chemical synthesis. The nucleic acid having the nucleotide sequence encoding the above-mentioned protein may be short or double-stranded, and may be a DNA molecule (genomic DNA, cDNA) or an RNA molecule.
본 발명의 일 구체예로서, 본 발명에서 OCT4, SOX1, SOX2, SOX10, OLIG2, NKX2.2, NKX6.2 단백질을 코딩하는 핵산분자는 각 단백질을 코딩하는 핵산을 포함하는 단백질을 발현하는 벡터일 수 있다.In one embodiment of the present invention, the nucleic acid molecule encoding the OCT4, SOX1, SOX2, SOX10, OLIG2, NKX2.2, NKX6.2 protein in the present invention is a vector expressing a protein comprising a nucleic acid encoding each protein .
본 발명에서 사용가능한 벡터는 플라스미드 벡터, 코즈미드 벡터, 바이러스 벡터 및 에피조말(episomal) 벡터 등을 포함한다. 바람직하게는, 바이러스 벡터일 수 있다. 바이러스 벡터는 렌티바이러스 벡터, 레트로바이러스 (Retrovirus), 예를 들어 HIV(Human immunodeficiency virus), MLV(Murineleukemia virus), ASLV(Avian sarcoma/leukosis), SNV(Spleen necrosis virus), RSV(Rous sarcoma virus), MMTV(Mouse mammary tumor virus) 등, 아데노바이러스 (Adenovirus), 아데노 관련 바이러스(Adeno-associatedvirus), 헤르페스 심플렉스 바이러스(Herpes simplex virus), 센다이 바이러스(Sendai virus) 및 에피조말 (episomal) 벡터 등에서 유래한 벡터를 포함하나, 이에 제한되지 않는다. 이러한 벡터 시스템은 특정 세포에 관련된 유전자를 체세포에서 과발현시켜 교차분화를 유도하는 목적을 위해 사용하는 것으로서 어떠한 벡터 시스템을 사용하더라도 본 발명의 효과를 나타낼 수 있다. 본 발명의 일구체예에서, 상기 벡터는 OCT4를 발현하는 pMX 기반의 레트로바이러스 벡터일 수 있다Vectors usable in the present invention include a plasmid vector, a cosmid vector, a viral vector, and an episomal vector. Preferably, it may be a viral vector. The viral vectors may be selected from the group consisting of lentivirus vectors, retroviruses, human immunodeficiency virus (HIV), murine leukemia virus (MLV), Avian sarcoma / leukosis (ASLV), Spleen necrosis virus (SNV), Rous sarcoma virus , Mouse mammary tumor virus (MMTV), etc., adenovirus, adeno-associated virus, herpes simplex virus, Sendai virus and episomal vector. But are not limited to, one vector. Such a vector system is used for the purpose of inducing cross-differentiation by overexpressing a gene related to a specific cell in a somatic cell, and any vector system can be used to exhibit the effect of the present invention. In one embodiment of the invention, the vector may be a pMX-based retroviral vector expressing OCT4
또한, 상기 단백질을 암호화하는 핵산은 당 분야의 공지 방법, 예를 들어 벡터 형태의 네이키드 DNA로 세포내로 전달하거나, 리포좀 (Liposome), 양이온성 고분자 (Cationic polymer)등을 이용하여 세포 내로 도입할 수 있다.In addition, the nucleic acid encoding the protein may be introduced into cells by known methods in the art, for example, naked DNA in vector form, or introduced into cells using liposome, cationic polymer, or the like .
상기 리포좀은 유전자 전달을 위하여 DOTMA나 DOTAP 등의 양이온성 인지질을 혼합하여 제조한 인지질 막으로, 양이온성의 리포좀과 음이온성의 핵산이 일정 비율로 혼합하면 핵산-리포좀 복합체를 형성하여 세포 내로 도입될 수 있다.The liposome is a phospholipid membrane prepared by mixing a cationic phospholipid such as DOTMA or DOTAP for gene transfer. When a cationic liposome and an anionic nucleic acid are mixed at a certain ratio, a nucleic acid-liposome complex is formed and introduced into cells .
구체적으로, 본 발명에서 상기 단백질을 암호화하는 핵산분자는, 상기 단백질을 암호화하는 핵산을 포함하는 바이러스 벡터를 패키징(packaging) 세포로 형질전환 및 감염시켜 각 유전자를 발현하도록 제작한 벡터 및 바이러스에 포함되어 체세포 내로 도입될 수 있다. 상기 바이러스는 레트로바이러스, 아데노바이러스, 아데노 관련 바이러스, 헤르페스 심플렉스 바이러스 등을 포함하며 이에 제한되지 않는다.Specifically, in the present invention, the nucleic acid molecule encoding the protein is contained in a vector produced to express each gene by transforming and infecting a viral vector containing a nucleic acid encoding the protein with a packaging cell, and a virus And introduced into somatic cells. Such viruses include, but are not limited to, retroviruses, adenoviruses, adeno-associated viruses, herpes simplex viruses and the like.
상기 배지는 특별히 제한되지 않으며, 종래에 알려져 있는 배지를 사용할 수 있으며, 그 구체예로서 덱사메타손, 아스코르브산, 인슐린, 트랜스페린, L-알라닐-L-글루타민, 글리세롤 2-포스페이트, 섬유아세포 성장 인자(bFGF) 및 셀레늄염으로 이루어진 군으로부터 선택되는 화합물을 포함하는 DMEM(Dulbeco’s Modified Eagle’s Media) 배지일 수 있으며, 상기 인슐린, 트랜스페린, 및 셀레늄 염은 상업적으로 시판되는 ITS (Gibco, USA)를 사용할 수도 있다. 또한, 상기 배지는 필요에 따라, 우태아혈청(FBS) 및 항생제를 추가로 포함할 수 있으며, 예를 들어, 약 10%의 FBS, 약 1%페니실린-스트렙토마이신을 포함할 수 있다.The medium is not particularly limited and conventionally known media can be used. Examples of the medium include dexamethasone, ascorbic acid, insulin, transferrin, L-alanyl-L-glutamine, glycerol 2-phosphate, fibroblast growth factor bFGF) and selenium salts, and the insulin, transferrin, and selenium salts may be commercially available ITS (Gibco, USA). . In addition, the medium may further comprise, if desired, fetal bovine serum (FBS) and antibiotics, for example, about 10% FBS, about 1% penicillin-streptomycin.
상기 세포는 인간, 원숭이, 돼지, 말, 소, 양, 개, 고양이, 생쥐, 토끼 등의 모든 유래의 세포를 포함하나, 바람직하게는 인간 유래의 세포이다.The cells include all the cells derived from human, monkey, pig, horse, cattle, sheep, dog, cat, mouse, rabbit and the like, but are preferably human-derived cells.
상기 배양은 펠렛 배양 형태로 통상의 배양 플레이트 상에서 수행될 수 있으며, 예를 들어 37℃, 5% CO2의 조건에서 배양될 수 있다. 배양기간은 특별히 제한되는 것은 아니나, 예를 들어 약 3주간 동안 수행될 수 있다. 배양 완료 후, 세포는 펠렛 형태로 얻어지게 되며, 배지를 제거함으로써 분리할 수 있다.The culture may be carried out on conventional culture plates in pellet culture form, for example, it is incubated at 37 ℃, conditions of 5% CO 2. The incubation period is not particularly limited, but can be carried out for about three weeks, for example. After completion of the culture, the cells are obtained in the form of pellets and can be separated by removing the medium.
또한, 상기 배양은 다수의 연속 계대 배양일 수 있다.The culture may also be a number of continuous passages.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described in order to facilitate understanding of the present invention. However, the following examples are provided only for the purpose of easier understanding of the present invention, and the present invention is not limited by the following examples.
[실시예][Example]
실시예 1. 실험준비 및 실험방법Example 1. Experimental Preparation and Experimental Method
1-1. 유도만능줄기세포 (induced pluripotent stem cell, iPSC)의 배양1-1. Culture of induced pluripotent stem cells (iPSCs)
역분화 과정에서 페닐부틸산나트륨, 타우로우루소디옥시콜린산, 또는 부틸화하이드록시아니솔의 효율을 확인하기 위해서, 인간 혈액 세포 유래 불완전 역분화 세포 (partially reprogrammed cell) 및 섬유아세포 (fibroblast cell)를 배양하였다.In order to confirm the efficiency of sodium phenylbutanoate, taururodioxycholinic acid, or butylated hydroxyanisole in the differentiation process, human blood cell-derived partially reprogrammed cells and fibroblast cells ) Were cultured.
먼저, Partially reprogrammed cell을 배양하기 위해서, 환자 혈액 10 ㎖를 병원으로부터 수득하여 Ficoll-paque를 사용하여 mononucleocytes를 확보하였으며, SCF, TPO, Flt3, IL-6, 및 IL-3를 함유한 RPMI1640 배지에서 약 6 일간 배양을 진행하였다. 이 후, Sendai virus (cytotune-iPS reprogramming kit, Invitrogen)를 사용하여 역분화 인자 (Yamanaka factor; Oct4, Sox2, Klf4, c-Myc) 도입하였으며, 이 후, 상기 배양액으로 4 일간 배양을 진행한 뒤, 배양이 완료되면 비트로넥틴 (Vitronectin)으로 코팅된 배양접시로 옮긴 후, mTesR-E8 배지에서 배양을 진행하였다.First, to cultivate the partially reprogrammed cells, 10 ml of patient blood was obtained from the hospital, mononucleocytes were obtained using Ficoll-paque, and RPMI1640 medium containing SCF, TPO, Flt3, IL-6 and IL-3 The culture was continued for about 6 days. Subsequently, the Yamanaka factor (Oct4, Sox2, Klf4, c-Myc) was introduced using Sendai virus (cytotune-iPS reprogramming kit, Invitrogen). After that, the cells were cultured for 4 days When the culture was completed, the cells were transferred to a Vitronectin-coated culture dish and cultured in mTesR-E8 medium.
일정 기간 배양 후, fully reprogrammed iPS 세포 및 partially reprogrammed 세포를 수득하였다.After a period of incubation, fully reprogrammed iPS cells and partially reprogrammed cells were obtained.
다음으로, 인간 섬유아세포 (Fibroblast cell)를 이용한 유도만능줄기세포 배양하기 위해서, 인간 섬유아세포주 (BJ1)를 10 % FBS를 함유한 DMEM 배지에서 배양을 진행한 후, Sendai virus (cytotune-iPS reprogramming kit, Invitrogen)를 사용하여 역분화 인자 (Oct4, Sox2, Klf4, c-Myc) 도입하였으며, 이 후, 상기 배양액으로 4 일간 배양을 진행한 뒤, 배양이 완료되면 MEF (Mouse embryonic fibroblst)가 있는 배양접시 또는 비트로넥틴 (Vitronectin)으로 코팅된 배양접시로 옮긴 후, hESC 전용 또는 mTesR-E8 배지에서 배양을 진행하였다.Next, in order to culture induced pluripotent stem cells using human fibroblast cells, the human fibroblast cell line (BJ1) was cultured in a DMEM medium containing 10% FBS, and then transfected with Sendai virus (cytotune-iPS reprogramming (Oct4, Sox2, Klf4, c-Myc) was introduced into the culture medium using the above-mentioned culture medium for 4 days. After completion of the culture, MEF (mouse embryonic fibroblast) And cultured in hESC-exclusive or mTesR-E8 medium after transferring to a culture dish or Vitronectin-coated culture dish.
1-2. FACS (Fluorescence-activated cell sorting) 분석1-2. Fluorescence-activated cell sorting (FACS) analysis
상기 실시예 1-1로부터 수득한 Partially reprogrammed cell 5x104/24 wells에 50 uM의 페닐부틸산나트륨, 타우로우루소디옥시콜린산, 또는 부틸화하이드록시아니솔을 각각 6 일간 처리한 후, 초기 역분화 마커인 SSEA4 및 최종 역분화 마커인 TRA1-60을 발현하는 세포를 FACS (Fluorescence-activated cell sorting)를 이용하여 분석하였다.After the above-described embodiment 1-1 Partially reprogrammed cell 5x10 4/24 wells phenyl-butyric acid, sodium tauro-low Russo deoxy choline acid, or butylated hydroxy anisole in 50 uM each in treatment 6 days obtained from the initial Cells expressing the dedifferentiation marker SSEA4 and the final degeneration marker TRA1-60 were analyzed by fluorescence-activated cell sorting (FACS).
마찬가지로 역분화 인자 (Yamanaka factor; Oct4, Sox2, Klf4, c-Myc)가 처리된 인간 섬유아세포 (BJ1) 5x104/24 wells에 10, 50 및 100 uM의 페닐부틸산나트륨, 타우로우루소디옥시콜린산, 또는 부틸화하이드록시아니솔이 각각 들어간 E8 배양액 (Vitronectin 코팅된 배양접시)에서 14 일간 역분화를 유도한 후, 초기 역분화 마커인 SSEA4 및 최종 역분화 마커인 TRA1-60을 발현하는 세포를 FACS (Fluorescence-activated cell sorting)를 이용하여 분석하였다.Similarly, de-differentiation factor (Yamanaka factor; Oct4, Sox2, Klf4, c-Myc) a process of human fibroblasts (BJ1) 5x10 4/24 wells 10, 50 and 100 uM of the phenyl-butyric acid, sodium tauro-low Russo deoxy After 14 days of regeneration was induced in E8 medium (Vitronectin-coated culture dish) containing cholinic acid or butylated hydroxyanisole, cells expressing the early degeneration marker SSEA4 and the final degeneration marker TRA1-60 Were analyzed by fluorescence-activated cell sorting (FACS).
1-3. 콜로니 형성률 확인 (Alkaline Phosphatase staining)1-3. Determination of the colony formation rate (Alkaline Phosphatase staining)
MMC 처리-MEF 5x104/24 wells를 준비하여 역분화 인자 (Yamanaka factor; Oct4, Sox2, Klf4, c-Myc)가 처리된 인간 섬유아세포 (BJ1) 2.5x104/24 wells를 10 및 100 uM의 페닐부틸산나트륨, 타우로우루소디옥시콜린산, 또는 부틸화하이드록시아니솔이 각각 들어간 hESC 배양액에서 14 일간 역분화를 유도한 후, 제조사 프로토콜에 따라 Alkaline Phosphatase (AP) 염색 (Staemgent 사)을 수행하였다.MMC treatment -MEF 5x10 to prepare the 4/24 wells de-differentiation factor (Yamanaka factor; Oct4, Sox2, Klf4, c-Myc) of the the treatment of human fibroblasts (BJ1) 2.5x10 4/24 wells 10 and 100 uM After induction of the differentiation in hESC culture medium containing sodium phenylbutylate, taururous dioxycholinic acid, or butylated hydroxyanisole for 14 days, Alkaline Phosphatase (AP) staining (Staemgent) was performed according to the manufacturer's protocol Respectively.
1-4. ER-stress 관련 유전 발현 확인 (qRT-PCR)1-4. Identification of ER-stress related gene expression (qRT-PCR)
본 발명에 따른 페닐부틸산나트륨, 타우로우루소디옥시콜린산, 또는 부틸화하이드록시아니솔에 의한 세포의 역분화 과정에서 ER-stress 관련 유전자의 발현 변화를 확인하고자 하였다.The expression of ER-stress related gene in the cell degeneration process by sodium phenylbutyanoate, taururodioxycholinic acid, or butylated hydroxyanisole according to the present invention was examined.
보다 구체적으로, 인간 섬유아세포 (Fibroblast cell)를 이용하여 역분화를 유도할 때, 페닐부틸산나트륨, 타우로우루소디옥시콜린산, 또는 부틸화하이드록시아니솔 각각에 대하여 처리 농도 (10, 50 및 100 uM)에 따른 ER-stress 관련 유전자 (ATF3 ,ATF4, ATF6, GADD34, CHOP, BIP, tXBP1, SxBP1)의 발현을 qRT-PCR를 수행하여 확인하였다.More specifically, when dedifferentiation is induced by using human fibroblast cells, the treatment concentration (10, 50) is determined for each of sodium phenylbutylate, taururous dioxycholinic acid, or butylated hydroxyanisole, Expression of ER-stress related genes (ATF3, ATF4, ATF6, GADD34, CHOP, BIP, tXBP1, SxBP1) was confirmed by qRT-PCR.
실시예 2. 페닐부틸산나트륨 처리에 따른 세포 전환 효율 확인Example 2. Confirmation of cell conversion efficiency by treatment with sodium phenylbutyrate
2-1. Partially reprogrammed cell의 역분화 효율 확인2-1. Identify the reprogramming efficiency of partially reprogrammed cells
본 발명의 페닐부틸산나트륨, 타우로우루소디옥시콜린산, 또는 부틸화하이드록시아니솔 처리에 따른 Partially reprogrammed cell의 역분화 효율을 확인하기 위해서, 상기 실시예 1-2에 따라 배아줄기세포 특이 마커인 SSEA4 및 TRA1-60을 이용하여 역분화 효율을 정량하였으며, 그 결과는 하기와 같다.In order to confirm the reprogramming efficiency of the partially reprogrammed cells according to the treatment with sodium phenylbutyanoate, taururodioxycholinic acid, or butylated hydroxyanisole of the present invention, embryonic stem cell specific Markers, SSEA4 and TRA1-60, were used to quantify the dedifferentiation efficiency. The results were as follows.
페닐부틸산나트륨 처리에 따른 Partially reprogrammed cell의 역분화 효율:Degradation Efficiency of Partially Reprogrammed Cells by Sodium Phenylbutyrate Treatment:
도 1a에 나타낸 바와 같이, ER-stress 유도제인 TG에 의해서는 역분화가 유의적으로 감소하였으나, 본 발명에 따른 페닐부틸산나트륨 처리에 의해서 역분화가 유의적으로 증가하는 것을 구체적으로 확인할 수 있었다.As shown in FIG. 1A, the de-differentiation was significantly reduced by the ER-stress inducer, TG, but it was confirmed that the de-differentiation was significantly increased by the treatment with sodium phenylbutyrate according to the present invention .
또한, 도 1b에 나타낸 바와 같이, 페닐부틸산나트륨 처리에 의해서, SSEA4 및 TRA1-60의 발현을 구체적으로 확인할 수 있었다.In addition, as shown in Fig. 1B, the expression of SSEA4 and TRA1-60 could be specifically confirmed by treatment with sodium phenylbutyrate.
타우로우루소디옥시콜린산 처리에 따른 Partially reprogrammed cell의 역분화 효율:Degradation Efficiency of Partially Reprogrammed Cells by Treatment with Taururous Dioxycholinic Acid:
도 1c에 나타낸 바와 같이, ER-stress 유도제인 TG에 의해서는 역분화가 유의적으로 감소하였으나, 본 발명에 따른 타우로우루소디옥시콜린산 처리에 의해서 역분화가 유의적으로 증가하는 것을 구체적으로 확인할 수 있었다. 보다 구체적으로, 타우로우루소디옥시콜린산은 SSEA4의 발현을 유의적으로 증가시켰으나 TRA1-60의 발현은 단순 증가를 유도하였다.As shown in FIG. 1C, the de-differentiation was significantly reduced by the ER-stress inducer, TG, but the depletion was significantly increased by the treatment with tauroloxodoxycholic acid according to the present invention. Specifically, I could confirm. More specifically, the expression of SSA4 was significantly increased by taurosuronic deoxycholic acid, but the expression of TRA1-60 induced a simple increase.
부틸화하이드록시아니솔 처리에 따른 Partially reprogrammed cell의 역분화 효율Degradation efficiency of partially reprogrammed cells by treatment with butylated hydroxyanisole
도 1d에 나타낸 바와 같이, ER-stress 유도제인 TG에 의해서는 역분화가 유의적으로 감소하였으나, 본 발명에 따른 부틸화하이드록시아니솔 처리에 의해서 역분화가 유의적으로 증가하는 것을 구체적으로 확인할 수 있었다. 보다 구체적으로, 부틸화하이드록시아니솔은 SSEA4 및 TRA1-60의 단순 증가를 유도하였다.As shown in FIG. 1D, the de-differentiation was significantly decreased by TG which is an ER-stress inducer, but it was confirmed that the degeneration was significantly increased by the butylated hydroxyanisole treatment according to the present invention I could. More specifically, butylated hydroxyanisole induced a simple increase in SSEA4 and TRA1-60.
2-2. 인간 섬유아세포 (Fibroblast cell)로부터 유도된 iPSC의 역분화 효율 확인2-2. Identification of iPSC dedifferentiation efficiency from human fibroblast cells
본 발명의 페닐부틸산나트륨, 타우로우루소디옥시콜린산, 또는 부틸화하이드록시아니솔 처리에 따른 인간 섬유아세포 (Fibroblast cell)로부터 유도된 iPSC의 역분화 효율을 확인하기 위해서, 상기 실시예 1-2에 따라 배아줄기세포 특이 마커인 SSEA4 및 TRA1-60을 이용하여 역분화 효율을 정량하였으며, 그 결과는 하기와 같다.In order to confirm the dedifferential efficiency of iPSC derived from human fibroblast cells according to the treatment with sodium phenylbutylate, taururodioxycholinic acid, or butylated hydroxyanisole of the present invention, -2, the dedifferentiation efficiency was quantified using SSEA4 and TRA1-60, which are embryonic stem cell-specific markers, and the results are as follows.
페닐부틸산나트륨 처리에 따른 인간 섬유아세포 (Fibroblast cell)로부터 유도된 iPSC의 역분화 효율:Degradation efficiency of iPSC derived from human fibroblast cells by treatment with sodium phenylbutanoate:
도 1e에 나타낸 바와 같이, 역분화 최종 마커 (TRA1-60)의 발현 차이는 거의 없었으나, 페닐부틸산나트륨 처리 농도에 따라 역분화 초기 마커 (SSEA4)는 유의적으로 증가하는 것을 확인할 수 있다. As shown in FIG. 1E, there was almost no difference in the expression of the dedifferentiation end marker (TRA1-60), but it can be confirmed that the initial differentiation early marker (SSEA4) was significantly increased depending on the concentration of sodium phenylbutanoate treatment.
타우로우루소디옥시콜린산 처리에 따른 인간 섬유아세포 (Fibroblast cell)로부터 유도된 iPSC의 역분화 효율:Degradation Efficiency of iPSC Derived from Human Fibroblast Cells Following Treatment with Taururous Dioxycholinic Acid:
도 1f에 나타낸 바와 같이, 역분화 최종 마커 (TRA1-60)의 발현 차이는 거의 없었으나, 타우로우루소디옥시콜린산 처리 농도에 따라 역분화 초기 마커 (SSEA4)는 유의적으로 증가하는 것을 확인할 수 있다. As shown in FIG. 1F, there was almost no difference in the expression of the dedifferentiation end marker (TRA1-60), but it was confirmed that the initial stage of dedifferentiation marker (SSEA4) was significantly increased according to the concentration of tauroloxodioxycholine acid treatment .
부틸화하이드록시아니솔 처리에 따른 인간 섬유아세포 (Fibroblast cell)로부터 유도된 iPSC의 역분화 효율:Degradation Efficiency of iPSC Derived from Human Fibroblast Cells Following Treatment with Butylated Hydroxy Anisole:
도 1g에 나타낸 바와 같이, 역분화 최종 마커 (TRA1-60)의 발현 차이는 거의 없었으나, 부틸화하이드록시아니솔 처리 농도에 따라 역분화 초기 마커 (SSEA4)는 유의적으로 증가하는 것을 확인할 수 있다. As shown in FIG. 1G, there was almost no difference in the expression of the dedifferentiation end marker (TRA1-60), but it was confirmed that the initial differentiation early marker (SSEA4) was significantly increased according to the concentration of butylated hydroxyanisole treatment have.
2-3. 인간 섬유아세포 (Fibroblast cell)로부터 유도된 iPSC의 Alkaline Phosphatase (AP) 염색에서 양성 반응 확인2-3. Positive response to iPSC-induced Alkaline Phosphatase (AP) staining from human fibroblast cells
다음으로, 상기 실시예 1-3에 따라 각 농도에 따른 역분화 효율은 hESC-특이 인자인 Alkaline Phosphatase (AP) 염색에서 양성 반응을 나타내는바, 염색된 콜로니 수를 카운트하여 본 발명에 따른 페닐부틸산나트륨, 타우로우루소디옥시콜린산, 또는 부틸화하이드록시아니솔 처리에 따른 역분화 효율 정량화하였다. Next, according to the above Example 1-3, the reprogramming efficiency according to each concentration was positive in the hESC-specific factor Alkaline Phosphatase (AP) staining. The number of stained colonies was counted, and the phenylbutyl The dedifferentiation efficiency by treatment with sodium acid, taururous dioxycholinic acid, or butylated hydroxyanisol was quantified.
그 결과, 도 2a에 나타낸 바와 같이, 페닐부틸산나트륨 10 uM에서 control과 같은 수준에서 AP 양성 콜로니가 형성되는 것을 확인할 수 있었으며, 도 2b에 나타낸 바와 같이, 타우로우루소디옥시콜린산 10 uM 및 100 uM 처리군에서 control에 비하여 유의적으로 AP 양성 콜로니가 형성되는 것을 확인할 수 있었고, 도 2c에 나타낸 바와 같이, 부틸화하이드록시아니솔 10 uM에서 control에 비하여 유의적으로 AP 양성 콜로니가 형성되는 것을 확인할 수 있었다.As a result, as shown in Fig. 2A, it was confirmed that AP-positive colony was formed at 10 mu M of sodium phenylbutanoate at the same level as control, and as shown in Fig. 2B, 10 mu M of taurosuronic deoxycholic acid As shown in FIG. 2C, AP-positive colony was formed at 10 uM of butylated hydroxyanisole as compared with the control, and AP-positive colony was formed at 10 uM of butylated hydroxyanisole .
실시예 3. 페닐부틸산나트륨 처리에 따른 ER-stress 경감 효과 확인Example 3. Confirmation of ER-stress relieving effect by treatment with sodium phenylbutyrate
본 발명의 페닐부틸산나트륨, 타우로우루소디옥시콜린산, 또는 부틸화하이드록시아니솔 처리에 따른 ER-stress 경감 효과를 확인하기 위해서, 상기 실시예 1-4에 따라 페닐부틸산나트륨, 타우로우루소디옥시콜린산, 또는 부틸화하이드록시아니솔 처리에 따른 ER-stress 관련 유전자 (ATF3 ,ATF4, ATF6, GADD34, CHOP, BIP, tXBP1, SxBP1)의 발현을 확인하였으며, 그 결과는 하기와 같다. In order to confirm the ER-stress relieving effect of the sodium phenylbutylate, taururous dioxycholinic acid, or butylated hydroxyanisole treatment of the present invention, sodium phenylbutylate, tau Expression of ER-stress related genes (ATF3, ATF4, ATF6, GADD34, CHOP, BIP, tXBP1, SxBP1) following treatment with rou- rodeoxycholic acid or butylated hydroxyanisole was confirmed, same.
페닐부틸산나트륨 처리에 따른 ER-stress 경감 효과 확인:Identification of ER-stress relief effect by treatment with sodium phenylbutyrate:
도 3a에 나타낸 바와 같이, 페닐부틸산나트륨 처리에 의해 ER-stress 관련 유전자의 발현이 경감되는 것을 확인할 수 있었다. 상기 결과로부터 페닐부틸산나트륨이 ER-stress를 직접적으로 제어함으로써 역분화 효율을 증가시킬 수 있음을 확인할 수 있었다.As shown in FIG. 3A, it was confirmed that the expression of the ER-stress related gene was alleviated by treatment with sodium phenylbutyrate. From the above results, it was confirmed that sodium phenylbutyrate can increase the de-differentiation efficiency by directly controlling ER-stress.
타우로우루소디옥시콜린산 처리에 따른 ER-stress 경감 효과 확인:Confirmation of ER-stress relief effect by treatment with taurolurso-dioxycholinic acid:
도 3b에 나타낸 바와 같이, 타우로우루소디옥시콜린산 처리에 의해 ER-stress 관련 유전자의 발현이 경감되는 것을 확인할 수 있었다. 상기 결과로부터 타우로우루소디옥시콜린산이 ER-stress를 직접적으로 제어함으로써 역분화 효율을 증가시킬 수 있음을 확인하였다.As shown in Fig. 3B, it was confirmed that the expression of the ER-stress related gene was alleviated by treatment with taurosulfite deoxycholic acid. From the above results, it was confirmed that taurosuronic deoxycholic acid can directly increase ERP-induced regeneration efficiency by directly controlling ER-stress.
부틸화하이드록시아니솔 처리에 따른 ER-stress 경감 효과 확인:Identification of ER-stress relief effect by butylated hydroxyanisole treatment:
도 3c에 나타낸 바와 같이, 부틸화하이드록시아니솔 처리에 의해 ER-stress 관련 유전자의 발현이 경감되는 것을 확인할 수 있었다. 상기 결과로부터 부틸화하이드록시아니솔이 ER-stress를 직접적으로 제어함으로써 역분화 효율을 증가시킬 수 있음을 확인하였다.As shown in Fig. 3C, it was confirmed that the expression of the ER-stress related gene was alleviated by the treatment with butylated hydroxyanisole. From the above results, it was confirmed that the butylated hydroxyanisole can increase the reprogramming efficiency by directly controlling ER-stress.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.It will be understood by those skilled in the art that the foregoing description of the present invention is for illustrative purposes only and that those of ordinary skill in the art can readily understand that various changes and modifications may be made without departing from the spirit or essential characteristics of the present invention. will be. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive.
본 발명에 의하면, 세포전환을 위한 배양과정에 페닐부틸산나트륨, 타우로우루소디옥시콜린산 및 부틸화하이드록시아니솔로 이루어진 군으로부터 선택되는 어느 하나 이상을 첨가함으로써, 세포전환 유도 효율을 증진시킬 수 있을 뿐만 아니라 세포전환 유도에 소요되는 시간을 획기적으로 줄일 수 있다. 페닐부틸산나트륨, 타우로우루소디옥시콜린산 또는 부틸화하이드록시아니솔은 세포전환 유도 과정 중에서 발생하는 노화 유도와 산화 스트레스를 억제하고, 세포 증식 및 미토콘드리아 활동 증진 효과를 유도함으로써 세포전환 유도 배양조건을 효과적으로 개선한다. According to the present invention, by adding at least one selected from the group consisting of sodium phenylbutanoate, taurousdioxycholinic acid and butylated hydroxyanisole to the culturing process for cell conversion, And the time required to induce cell conversion can be drastically reduced. Sodium phenylbutanoate, taururous dioxycholinic acid or butylated hydroxyanisole inhibits aging induction and oxidative stress that occur during induction of cell transformation, induces cell proliferation and promotes mitochondrial activity, Effectively improving the condition.
본 발명은 다양한 소스에서 확보된 적은 양의 환자-특이적 체세포로부터 유도만능줄기세포의 제작과정, 환자-특이적 체세포로부터 다른 기능을 갖는 환자-특이적 체세포의 제작과정, 줄기세포에서 체세포로의 제작과정을 최적화하는데 기여할 수 있고, 이로써 임상적용 가능한 개인 맞춤형 줄기세포 세포 치료제 개발 및 신약개발과정을 획기적으로 개선하고, 실용화 시기를 앞당기는데 기여할 수 있을 것으로 기대된다. The present invention relates to a process for producing pluripotent stem cells derived from a small amount of patient-specific somatic cells obtained from various sources, a process for producing patient-specific somatic cells having different functions from patient-specific somatic cells, This will contribute to optimizing the manufacturing process, thereby greatly improving the development process of a custom-made stem cell cell therapeutic agent and clinical drug development, and accelerating the practical use time.
또한, 본 발명은 세포전환시 목적하는 세포들을 대량으로 배양가능한 시스템을 개발하는데 유용하게 활용될 수 있을 것으로 기대된다.In addition, the present invention is expected to be useful for developing a system capable of culturing a large number of desired cells at the time of cell transformation.

Claims (8)

  1. 페닐부틸산나트륨, 타우로우루소디옥시콜린산 및 부틸화하이드록시아니솔로 이루어진 군으로부터 선택되는 어느 하나 이상을 포함하는, 소포체 스트레스 (ER stress) 억제용 배지 첨가제.Wherein the medium contains at least one selected from the group consisting of sodium phenylbutanoate, taururous dioxycholic acid, and butylated hydroxyanisole.
  2. 제1항에 있어서, 상기 배지 첨가제는 배지에 1∼100 μM의 농도로 첨가되는 것을 특징으로 하는, 배지 첨가제.The media additive of claim 1, wherein the medium additive is added to the medium at a concentration of 1 to 100 μM.
  3. 제1항의 배지 첨가제를 포함하는, 유도만능줄기세포로의 역분화 유도용 배지 조성물.A medium composition for inducing the differentiation into induced pluripotent stem cells, comprising the culture medium additive of claim 1.
  4. 페닐부틸산나트륨, 타우로우루소디옥시콜린산 및 부틸화하이드록시아니솔로 이루어진 군으로부터 선택되는 어느 하나 이상을 체세포 또는 불완전 역분화 세포에 처리하는 단계를 포함하는, 유도만능줄기세포로의 역분화 유도 방법.Comprising treating the somatic cells or the incompletely degenerated cells with at least one member selected from the group consisting of sodium carboxymethylcellulose, sodium carboxymethylcellulose, sodium carboxymethylcellulose, sodium phenylbutylate, taururous dioxycholy acid and butylated hydroxyanisole, Induction method.
  5. 제4항에 있어서, 상기 체세포는 역분화 유도인자가 도입된 것을 특징으로 하는, 방법.5. The method of claim 4, wherein the somatic cell is introduced with a dedifferentiation inducing factor.
  6. 제5항에 있어서, 상기 역분화 유도인자는 Oct4, Sox2, Klf4 및 c-Myc로 이루어진 군으로부터 선택되는 것을 특징으로 하는, 방법.6. The method of claim 5, wherein the de-differentiation inducing factor is selected from the group consisting of Oct4, Sox2, Klf4, and c-Myc.
  7. 제4항의 방법으로 분화된 세포.A cell differentiated by the method of claim 4.
  8. 페닐부틸산나트륨, 타우로우루소디옥시콜린산 및 부틸화하이드록시아니솔로 이루어진 군으로부터 선택되는 어느 하나 이상을 체세포 또는 불완전 역분화 세포에 처리하는 단계를 포함하는, 소포체 스트레스 (ER stress) 억제 방법.A method for inhibiting ER stress, comprising the step of treating somatic cells or incompletely degenerated cells with at least one selected from the group consisting of sodium phenylbutanoate, taururous dioxycholinic acid and butylated hydroxyanisole .
PCT/KR2018/012822 2017-12-12 2018-10-26 Medium additive for highly efficient cell transformation using cell organelle stress regulation factor WO2019117454A1 (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
KR10-2017-0170588 2017-12-12
KR20170170606 2017-12-12
KR20170170592 2017-12-12
KR10-2017-0170592 2017-12-12
KR10-2017-0170606 2017-12-12
KR20170170588 2017-12-12
KR1020180128419A KR102137883B1 (en) 2017-12-12 2018-10-25 High-efficiency cell culture medium additive including sodium phenylbutyrate
KR1020180128485A KR102137885B1 (en) 2017-12-12 2018-10-25 High-efficiency cell culture medium additive including butylated hydroxyanisole
KR1020180128467A KR102137884B1 (en) 2017-12-12 2018-10-25 High-efficiency cell culture medium additive including tauroursodeoxycholic acid
KR10-2018-0128419 2018-10-25
KR10-2018-0128485 2018-10-25
KR10-2018-0128467 2018-10-25

Publications (1)

Publication Number Publication Date
WO2019117454A1 true WO2019117454A1 (en) 2019-06-20

Family

ID=66819334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/012822 WO2019117454A1 (en) 2017-12-12 2018-10-26 Medium additive for highly efficient cell transformation using cell organelle stress regulation factor

Country Status (1)

Country Link
WO (1) WO2019117454A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110367378A (en) * 2019-09-02 2019-10-25 集美大学 Feed addictive, preparation method, application and feed

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006031931A2 (en) * 2004-09-15 2006-03-23 The President And Fellows Of Harvard College Reducing er stress in the treatment of obesity and diabetes
KR20140055651A (en) * 2012-11-01 2014-05-09 충남대학교산학협력단 Medium compositions for oocytes maturation and embryo development of mammals and methods for oocytes maturation and embryo development of mammals using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006031931A2 (en) * 2004-09-15 2006-03-23 The President And Fellows Of Harvard College Reducing er stress in the treatment of obesity and diabetes
KR20140055651A (en) * 2012-11-01 2014-05-09 충남대학교산학협력단 Medium compositions for oocytes maturation and embryo development of mammals and methods for oocytes maturation and embryo development of mammals using the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CAO, S. S. ET AL.: "Endoplasmic Reticulum Stress and Oxidative Stress in Cell Fate Decision and Human Disease", ANTIOXIDANTS & REDOX SIGNALING, vol. 21, no. 3, 20 July 2014 (2014-07-20), pages 396 - 413, XP055617554 *
HEIJMANS, J. ET AL.: "ER Stress Causes Rapid Loss of Intestinal Epithelial Sternness through Activation of the Unfolded Protein Response", CELL REPORTS, vol. 3, no. 4, 25 April 2013 (2013-04-25), pages 1128 - 1139, XP055617556 *
JOHNO, H. ET AL.: "Pathological in Situ Reprogramming of Somatic Cells by the Unfolded Protein Response", THE AMERICAN JOURNAL OF PATHOLOGY, vol. 183, no. 3, September 2013 (2013-09-01), pages 644 - 654, XP055617559 *
KRATOCHVILOVA, K. ET AL.: "The Role of the Endoplasmic Reticulum Stress in Sternness, Pluripotency and Development", EUROPEAN JOURNAL OF CELL BIOLOGY, vol. 95, 2016, pages 115 - 123, XP029493445, doi:10.1016/j.ejcb.2016.02.002 *
TSANG, K. Y. ET AL.: "In Vivo Cellular Adaptation to ER Stress: Survival Strategies with Double-edged Consequences", JOURNAL OF CELL SCIENCE, vol. 123, no. 13, 2010, pages 2145 - 2154, XP055617553 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110367378A (en) * 2019-09-02 2019-10-25 集美大学 Feed addictive, preparation method, application and feed
CN110367378B (en) * 2019-09-02 2022-04-12 集美大学 Feed additive, preparation method and application thereof and feed

Similar Documents

Publication Publication Date Title
US20220025321A1 (en) Methods for reprograming non-pluripotent cells into pluripotent stem cells
Liu et al. Generation of endoderm-derived human induced pluripotent stem cells from primary hepatocytes
KR101874463B1 (en) Methods for reprogramming cells and uses thereof
US20100311170A1 (en) Method for reprogramming differentiated cells
EP2982747B1 (en) Method for producing reprogrammed derivative neuronal stem cell from non-neuronal cell by using hmga2
US9394523B2 (en) Induced pluripotent stem cells derived from human pancreatic beta cells
WO2012170995A2 (en) Avian induced pluripotent stem cells and their use
Zhu et al. Transient in vitro epigenetic reprogramming of skin fibroblasts into multipotent cells
WO2015016523A1 (en) Composition for maintaining chromosome stability of pluripotent stem cells, containing small-molecule compound
WO2013180395A1 (en) Metabolite for promoting pluripotent stem cell generation, maintenance, and proliferation, and composition and culturing method containing same
WO2012096552A2 (en) Cell reprogramming composition comprising rex1 and an induced pluripotent stem cell production method using the same
WO2019017691A9 (en) Method of differentiation of human induced pluripotent stem cell to dermal papilla precursor cell and use thereof
WO2019117454A1 (en) Medium additive for highly efficient cell transformation using cell organelle stress regulation factor
Tai et al. Generation of Arbas Cashmere goat induced pluripotent stem cells through fibroblast reprogramming
KR102137884B1 (en) High-efficiency cell culture medium additive including tauroursodeoxycholic acid
KR102137883B1 (en) High-efficiency cell culture medium additive including sodium phenylbutyrate
WO2020209636A1 (en) Method for inducing direct reprogramming of urine cell into renal progenitor cell and pharmaceutical composition comprising renal progenitor cell reprogrammed by same method for preventing or treating renal cell injury disease
WO2021125839A1 (en) Method of microglia differentiation capable of securing large quantity of microglia by using 3d organoids from human pluripotent stem cells
WO2021002554A1 (en) Composition for promoting proliferation of stem cells, containing, as active ingredient, cp1p or pharmaceutically acceptable salt thereof
US11898168B2 (en) Methods of promoting esophageal differentiation of pluripotent stem cells
KR102137885B1 (en) High-efficiency cell culture medium additive including butylated hydroxyanisole
WO2014119893A1 (en) Method for inducing tailored pluripotent stem cells using extract of plant stem cells or plant dedifferentiated stem cells, and pluripotent stem cells produced by means of the method
Petzendorfer et al. Induced pluripotent stem cells derived from amniotic fluid stem cells
WO2011037367A2 (en) Highly-efficient manufacturing method of induced pluripotent stem cells and induced pluripotent stem cells produced by the method
WO2016186346A1 (en) Method for inducing oligodendrocyte precursor cells from oct4-induced human somatic cells through direct reprogramming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888044

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18888044

Country of ref document: EP

Kind code of ref document: A1