WO2021107234A1 - Customized ccr5/cxcr4-gene simultaneous knockout hematopoietic stem cells for treatment or prevention of hiv infection, and preparation method therefor - Google Patents

Customized ccr5/cxcr4-gene simultaneous knockout hematopoietic stem cells for treatment or prevention of hiv infection, and preparation method therefor Download PDF

Info

Publication number
WO2021107234A1
WO2021107234A1 PCT/KR2019/016796 KR2019016796W WO2021107234A1 WO 2021107234 A1 WO2021107234 A1 WO 2021107234A1 KR 2019016796 W KR2019016796 W KR 2019016796W WO 2021107234 A1 WO2021107234 A1 WO 2021107234A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem cells
hematopoietic stem
cells
ccr5
cxcr4
Prior art date
Application number
PCT/KR2019/016796
Other languages
French (fr)
Korean (ko)
Inventor
강경선
서광원
권대기
한미정
Original Assignee
주식회사 강스템바이오텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 강스템바이오텍 filed Critical 주식회사 강스템바이오텍
Priority to PCT/KR2019/016796 priority Critical patent/WO2021107234A1/en
Publication of WO2021107234A1 publication Critical patent/WO2021107234A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present invention relates to a method for producing a patient-specific hematopoietic stem cell for simultaneous knockout of the CCR5/CXCR4 gene using the CRISPR/Cas9 system, a pharmaceutical composition for treating or preventing HIV virus infection containing the hematopoietic stem cell, and a cell therapy agent.
  • HIV Human Immunodeficiency Virus
  • AIDS Acquired Immune Deficiency Syndrome
  • CD4 T cells helper T cells
  • the infection Repeatedly, the number of helper T cells in the patient's body is extremely reduced, which eventually leads to the loss of the patient's immune function, leading to the death of HIV-infected patients from opportunistic infections or cancer.
  • HIV is a single-stranded RNA virus that has reverse transcriptase and uses the surface gp120 protein to co-receptor with CD4 receptor on the surface of helper T cells, CC chemokine receptor type 5 (CCR5; CD195) or CXC chemokine receptor type 4 ( Infects helper T cells through a mechanism that interacts with CXCR4; CD184).
  • HIV is divided into two types according to the co-receptor used when infecting helper T cells. HIV using CCR5 is called R5 type, and HIV using CXCR4 is called X4 type.
  • the CRISPR/Cas9 system is the most recently developed third-generation gene scissors and is a technology that is being actively used worldwide to knock out cellular genes.
  • the CRISPR/Cas9 system consists of a guide RNA (gRNA) and a Cas9 nuclease, and when the gRNA introduced into the cell binds to the site to be knocked out on the genomic DNA, the Cas9 nuclease recognizes this and cuts the genomic DNA site. gene can be knocked out. Therefore, using the CRISPR/Cas9 system seems to be able to simultaneously knock out CCR5 and CXCR4 in the patient's somatic cells.
  • gRNA guide RNA
  • Cas9 nuclease recognizes this and cuts the genomic DNA site. gene can be knocked out. Therefore, using the CRISPR/Cas9 system seems to be able to simultaneously knock out CCR5 and CXCR4 in the patient's somatic cells.
  • the present inventors have developed an expression vector capable of simultaneously knocking out CCR5 and CXCR4 genes using the CRISPR/Cas9 system and a composition comprising the same, and using this, CCR5 and CXCR4 genes are knocked out hematopoietic stem cells. It was confirmed that it can be manufactured.
  • the present invention was completed by confirming that the engraftment ability of the differentiated cells was improved by using the serum-free / xeno-free / gene-free method in the differentiation stage and culturing the stem cells by adding an antioxidant to the medium.
  • One object of the present invention is to (a) reducing the expression level of CCR5 and CXCR4 in an isolated cell compared to the intrinsic expression level using a gene editing technique; and (b) culturing the isolated cells of step (a) in serum-free, xeno-free and gene-free methods to differentiate them into hematopoietic stem cells. It is to provide a method for producing hematopoietic stem cells comprising a.
  • Another object of the present invention is to differentiate into hematopoietic stem cells through direct reprogramming from (a) isolated somatic cells; and (b) reducing the CCR5 and CXCR4 expression levels of the hematopoietic stem cells of step (a) compared to the intrinsic expression level, to provide a method for producing hematopoietic stem cells.
  • Another object of the present invention is to provide hematopoietic stem cells, prepared by the above method.
  • Another object of the present invention is to provide a pharmaceutical composition for the treatment or prevention of HIV virus infection, comprising the hematopoietic stem cells as an active ingredient.
  • Another object of the present invention is to provide a cell therapy agent comprising the hematopoietic stem cells as an active ingredient.
  • Another object of the present invention is to improve the engraftment ability of stem cells by culturing stem cells in serum-free, xeno-free and gene-free methods. to provide a way
  • Another object of the present invention is to provide a method for improving the engraftment ability of stem cells by culturing the stem cells in a medium containing an antioxidant.
  • the method for producing hematopoietic stem cells of the present invention can efficiently produce hematopoietic stem cells in which the CCR5 and CXCR4 genes are simultaneously knocked out, and the hematopoietic stem cells prepared therefrom can be used as pharmaceutical compositions and cell therapies for the treatment or prevention of HIV virus infection.
  • FIG. 1 is a diagram schematically illustrating a guide RNA design process targeting CCR5 and CXCR4 genes.
  • Figure 2 is a diagram showing the experimental results of establishing electroporation conditions for the introduction of the CRISRPR / Cas9 vector.
  • FIG. 3 is a view confirming that the CCR5 and CXCR4 genes are knocked out using the CRISRPR/Cas9 system of the present invention.
  • iPSCs induced pluripotent stem cells
  • FIG. 7 is a view confirming the pluripotency of CCR5/CXCR4 simultaneous knockout-induced pluripotent stem cells of the present invention.
  • FIG. 8 is a diagram showing that CCR5/CXCR4 simultaneous knockout-induced pluripotent stem cells of the present invention can be differentiated into hematopoietic stem cells in vitro.
  • FIG. 9 is a diagram showing that CCR5/CXCR4 simultaneous knockout-induced pluripotent stem cells of the present invention can be differentiated into hematopoietic stem cells in vivo.
  • FIG. 10 is a diagram showing that the CCR5/CXCR4 simultaneous knockout-induced pluripotent stem cells of the present invention can be differentiated into hematopoietic stem cells in a serum-free/xeno-free/gene-free manner in vitro.
  • FIG. 11 shows bone marrow, spleen, and peripheral blood when CCR5/CXCR4 simultaneous knockout-induced pluripotent stem cell-derived hematopoietic stem cells prepared in a serum-free / xeno-free / gene-free method are transplanted into a nude mouse.
  • Peripheral blood is a diagram showing that it can be engrafted.
  • FIG. 12 shows that when CCR5/CXCR4 simultaneous knockout-induced pluripotent stem cells are differentiated into hematopoietic stem cells in vitro in a serum-free / xeno-free / gene-free manner, when treated with ginsenoside Rg1, a strong reactive oxygen species, the It is a diagram showing that engraftment ability can be dramatically improved.
  • the present inventors identified guide RNA target positions for CCR5 and CXCR4 genes, which can be targets of gene scissors, to treat HIV (Human Immunodeficiency Virus) infection using the CRISPR/Cas9 system, a programmable nuclease. . Accordingly, hematopoietic stem cells in which both CCR5/CXCR4 are knocked out can be prepared by cutting the guide RNA target site with gene scissors, and HIV infection can be effectively treated using this.
  • HIV Human Immunodeficiency Virus
  • One aspect of the present invention for achieving the above object (a) reducing the expression level of CCR5 and CXCR4 in the isolated cell compared to the intrinsic expression level using a gene editing technique; and (b) culturing the cells isolated in step (a) using serum-free, xeno-free and gene-free methods to differentiate them into hematopoietic stem cells.
  • hematopoietic stem cell is a cell that produces blood cells such as white blood cells, red blood cells, and platelets through self-replication and differentiation in the bone marrow.
  • Hematopoietic stem cells also called hematopoietic stem cells, are found in the bone marrow in adults.
  • hematopoietic stem cells have the ability to self-replicate, even if blood cells are generated from hematopoietic stem cells and go out to the peripheral blood, the bone marrow cell fidelity (cell number change, morphology) of a normal person is ) is kept constant.
  • hematopoietic stem cells have an instinct to visit the bone marrow, that is, to return home, and these characteristics enable transplantation of hematopoietic stem cells.
  • the hematopoietic stem cells are cells with differentiation capacity, a type of stem cell It is also classified as
  • CCR5 C-C chemokine receptor type 5
  • R5 HIV using CCR5 as a co-receptor
  • CXCR4 C-X-C chemokine receptor type 4
  • CCR5 C-X-C chemokine receptor type 4
  • the CXCR4 serves as a co-receptor when HIV is infected with helper T cells and helps in HIV infection, and HIV using CXCR4 as a co-receptor is referred to as an X4 type.
  • the term "isolated cell” is not particularly limited, and specifically, it may be a cell whose lineage has already been specified, such as a somatic cell, a germ cell or a progenitor cell, and induced pluripotency.
  • Stem cells, adult stem cells, bone marrow cells, mesenchymal stem cells, etc. may be stem cells with limited differentiation ability, specifically, the isolated cell of the present invention may be an induced pluripotent stem cell (iPSC) or a somatic cell, but is not limited thereto.
  • iPSC induced pluripotent stem cell
  • the isolated cells of the present invention may include both in vivo and ex vivo cells, and specifically, may be cells isolated in vivo.
  • “somatic cell” means all cells that have completed differentiation constituting animals and plants except for germ cells
  • the “progenitor cell” refers to a cell corresponding to a progeny that expresses a specific differentiation trait when it is found to express a specific differentiation trait. Refers to parental cells that do not express , but have the differentiation fate (Fate).
  • adult stem cells refers to stem cells that appear at the stage of formation of each organ of the embryo or at the stage of adulthood through the development process, which is generally limited to cells constituting a specific tissue.
  • adult stem cells may be derived from the group consisting of breast, bone marrow, brain, spinal cord, umbilical cord blood, blood, liver, skin, gastrointestinal tract, placenta, and uterus.
  • iPSC induced pluripotent stem cell
  • CCR5 and CXCR4 genes of induced pluripotent stem cells after knocking out the CCR5 and CXCR4 genes of induced pluripotent stem cells, they were differentiated into hematopoietic stem cells, and CCR5/CXCR4 knockout hematopoietic stem cells were prepared.
  • the term "expression level is reduced compared to the endogenous expression level” means that the gene encoding the polypeptide is not expressed, or shows a specific decrease in gene expression compared to the natural state or state before modification, or is expressed even if functional means not to produce the corresponding polypeptide.
  • gene inactivation is either complete (knockout) or partial (e.g., the product of a mutant gene that exhibits a partial decrease in the activity it affects or is a hypomorph that exhibits less than the intrinsic expression level of the gene. ) can be
  • a polynucleotide encoding an endogenous target protein in a chromosome is replaced with a polynucleotide or a marker gene in which a part of the nucleic acid sequence is deleted through a vector for inserting the chromosome into a cell. It can be done by The "part” is different depending on the type of polynucleotide, but is specifically 1 to 300, more specifically 1 to 100, and more specifically 1 to 50.
  • the method of modifying the expression control sequence to reduce the expression of the polynucleotide is not particularly limited thereto, but the nucleic acid sequence is deleted, inserted, non-conservative or conservative to further weaken the activity of the expression control sequence. It can be carried out by inducing a mutation in the expression control sequence by substitution or a combination thereof, or by replacing the nucleic acid sequence with a weaker activity.
  • the expression control sequence may include, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence regulating the termination of transcription and translation.
  • the method of modifying the polynucleotide sequence on the chromosome is performed by inducing a mutation in the sequence by deleting, inserting, non-conservative or conservative substitution of the polynucleotide sequence, or a combination thereof to further weaken the activity of the protein, or It can be carried out by replacing the modified polynucleotide sequence with a weaker activity, but is not limited thereto.
  • gene scissors can be used to reduce CCR5 and CXCR4 expression levels compared to intrinsic expression levels.
  • the term "gene scissors” is an artificial enzyme used to cut a specific DNA region by binding to an animal or plant gene, and may refer to a gene editing technology that solves a problem by removing a specific gene region.
  • the gene editing technology includes a first-generation zinc finger nuclease (ZFN), a second-generation Transcriptor Activator-Like Effector Nucleases: TALEN, and a third-generation CRISPR (clustered regularly interspaced short palindromic repeats: CRISPR). ) may be included.
  • the zinc finger nuclease is a first-generation gene scissors in which a zinc finger and 3 to 4 nucleases are combined, and the nuclease uses a restriction enzyme called 'Fok1'.
  • Talen is a second-generation gene scissors derived from the plant pathogen Xanthmonas. Since the amino acid sequence constituting the Talen matches the base sequence of the DNA to be cut, if the amino acid sequence of the Talen is changed, the base sequence of the DNA to be bound can also be changed, which makes it much easier to customize the protein. 'Fokl' is used as an enzyme that cuts DNA like the first.
  • CRISPR is a type of immune system that is built with third-generation gene scissors to prevent viruses, the natural enemy of bacteria, and consists of a small palindromic structure.
  • the most widely used CRISPR system is CRISPR/Cas9, where guide RNA complementarily binds to 20 base sequences of the target DNA, and Cas9 (CRISPR associated protein 9) recognizes a specific base sequence of DNA immediately following. cutting method.
  • CRISPR/Cpf1 has been used as the fourth-generation gene scissors.
  • the expression level of CCR5 and CXCR4 using the CRISPR/Cas9 system including an expression vector containing both CCR5 and CXCR4 gene guide RNAs or a combination of expression vectors containing separately CCR5 and CXCR4 gene guide RNAs. may be reduced compared to the endogenous expression level, and the reduction may be to simultaneously knockout the CCR5 and CXCR4 genes, but is not limited thereto.
  • the step of reducing the expression level of CCR5 and CXCR4 in the cells isolated in step (a) compared to the intrinsic expression level may be characterized by using a composition for knockout of CCR5 and CXCR4, and the CCR5 and
  • the composition for CXCR4 knockout includes (a) an expression vector comprising an isolated polynucleotide encoding a guide RNA consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence complementary thereto; and (b) an expression vector comprising an isolated polynucleotide encoding a guide RNA comprising the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence complementary thereto.
  • the guide RNA consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence complementary thereto targets the CCR5 gene, which is one of the co-receptors that help HIV infection, and the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence complementary thereto
  • the guide RNA consisting of CXCR4 gene, which is another co-receptor, is targeted.
  • hematopoietic stem cells in which both the CCR5 and CXCR4 genes, which are co-receptors that help HIV infection, are knocked out were prepared.
  • the hematopoietic stem cells are both CCR5 and CXCR4 genes knocked out. Since immune cells such as T cells can be made, it becomes resistant to HIV infection, and thus it is possible to treat AIDS, etc. caused by HIV.
  • RNA-guided nuclease refers to a nuclease capable of recognizing and cleaving a specific position on a desired genome, particularly a nuclease having target specificity by a guide RNA.
  • the RNA-guided nuclease is not limited thereto, but specifically Cas9 (CRISPR-Associated Protein 9) nuclease derived from CRISPR, which is a microbial immune system, and its variants, Cas9 nickase and Cpf1 nucleases.
  • Cas protein is a major protein component of the CRISPR/Cas system, and is a protein that can act as an activated endonuclease.
  • the Cas protein may form a complex with crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA) to exhibit its activity.
  • the Cas9 nuclease causes a double strand break (DSB) by recognizing a specific nucleotide sequence in the genome of animal and plant cells including human cells.
  • the double helix cutting includes cutting the double helix of DNA to make a blunt end or a cohesive end.
  • DSBs are efficiently repaired in cells by homologous recombination or non-homologous end-joining (NHEJ) mechanisms. In this process, researchers can introduce desired mutations into target sites.
  • NHEJ non-homologous end-joining
  • the RNA-guided nuclease may be artificial or engineered non-naturally occurring.
  • the Cas9 nickase comprises at least one mutation in one of the catalytic domains of a Cas9 nuclease, wherein the at least one mutation is selected from the group consisting of D10A, E762A and D986A in the RuvC domain, or The one or more mutations are selected from the group consisting of H840A, N854A and N863A in the HNH domain.
  • the Cas9 nickase may have a D10A mutation, but is not limited thereto.
  • the Cas9 nickase causes a single strand break unlike Cas9 nucleases.
  • the Cas9 kinase requires two guide RNAs to function and function as a pair. The two guide RNAs direct sequence-specific binding of the CRISPR complex to each target sequence and direct cleavage of one strand of the DNA duplex near each target sequence, resulting in two nicks in different DNA strands. can induce
  • Cas protein or gene information can be obtained from a known database such as GenBank of the National Center for Biotechnology Information (NCBI).
  • the Cas protein may be a Cas9 protein.
  • the Cas protein is Staphylococcus genus, Streptococcus genus, Neisseria genus, Pasteurella genus, Francisella genus, Campylobacter) It may be a Cas protein derived from the genus, but the present invention is not limited to the examples described above.
  • Cpf1 nuclease of the present invention is derived from Francisella novicida , and may form a complex with crRNA to exhibit its activity.
  • the structure of the Cpf1 protein is different from that of the Cas9 protein, and the length of the binding RNA is short, making it easy to manufacture and excellent in accuracy.
  • the Cpf1 protein or gene information can be obtained from a known database such as GenBank of the National Center for Biotechnology Information (NCBI).
  • the present inventors identified the target sequence of exon 3 of each of the CCR5 gene and the CXCR4 gene in order to prepare CCR5/CXCR4 simultaneous knockout hematopoietic stem cells for treating the human immunodeficiency virus (HIV) infection ( FIG. 1 ).
  • the target position identified in the present invention has the nucleotide sequence of SEQ ID NO: 1 in the case of the CCR5 gene and the nucleotide sequence of SEQ ID NO: 2 in the case of the CXCR4 gene.
  • the polynucleotide consisting of SEQ ID NO: 1 or a nucleotide sequence complementary thereto encodes a guide RNA for the CCR5 gene
  • the polynucleotide consisting of SEQ ID NO: 2 or a nucleotide sequence complementary thereto encodes a guide RNA for the CXCR4 gene and can be used to prepare a guide RNA using the polynucleotide.
  • the expression vector of the present invention may additionally encode a Cas9 nuclease, a Cas9 nickase or a Cpf1 nuclease. That is, when the Cas9 protein or Cpf1 protein and the guide RNA exist together, the target DNA can be cut, so that the polynucleotide encoding the Cas9 protein or Cpf1 protein is included in the guide RNA and one vector. Alternatively, separate expression vectors encoding Cas9 protein or Cpf1 protein may be used.
  • the vector may be a viral vector, a plasmid vector, or an Agrobacterium vector, but is not limited thereto.
  • An expression vector comprising a polynucleotide encoding the guide RNA and/or a polynucleotide encoding a Cas9 protein or a Cpf1 protein may be prepared by performing a cloning method known in the art, and the method is particularly limited it's not going to be
  • the step of differentiating the isolated cells with reduced expression levels of CCR5 and CXCR4 compared to the intrinsic expression level of the step (a) of the present invention into hematopoietic stem cells differs depending on whether the isolated cells are induced pluripotent stem cells or somatic cells. method can be used.
  • hematopoietic stem cells can be differentiated in vitro or in vivo.
  • hematopoietic stem cells can be prepared by culturing the isolated cells in a medium for hematopoietic stem cell differentiation. When the cells were cultured, it was confirmed that the hematopoietic stem cell differentiation efficiency was excellent (Example 3-1).
  • another in vitro method is a method of co-culturing the isolated cells using OP9 cells, which are bone marrow stromal cells, as a feeder cell, and it was confirmed that hematopoietic stem cells can be prepared through the method. (Example 3-1).
  • step (i) forming a teratoma tissue by implanting the cells isolated in step (a) subcutaneously in a mouse; and (ii) isolating hematopoietic stem cells from the teratoma tissue formed in step (i).
  • CCR5/CXCR4 simultaneous knockout-induced pluripotent stem cells obtained by accutase treatment to form teratoma tissue were mixed with Matrigel and subcutaneously injected into nude mice to form teratoma tissue.
  • CD34+ cells were isolated to prepare hematopoietic stem cells (Example 3-2).
  • CCR5/CXCR4 knockout-induced pluripotent stem cells are prepared through reprogramming, and then the above-mentioned It is possible to differentiate the hematopoietic stem cells in an in vitro method or in an in vivo method, or may further include the step of inducing the somatic cells through direct reprogramming.
  • reprogramming refers to a method of converting a target cell by controlling the global gene expression pattern of a specific cell.
  • reprogramming refers to a method of artificially manipulating the fate of a cell to convert it into a cell having completely different characteristics, and for the purpose of the present invention, the reprogramming is a foreign gene or vector containing RNA or DNA. It may be carried out by introducing into the cell.
  • the reprogramming may include, but is not limited to, dedifferentiation of cells, direct reprogramming or direct conversion, or direct trans-differentiation.
  • the term "reprogramming factor” refers to a gene (or a polynucleotide encoding the same) or protein that can be finally or partially introduced into differentiated cells to induce reprogramming.
  • the reprogramming factor may vary depending on the target cell to induce reprogramming and the type of isolated cell from which reprogramming is induced.
  • the reprogramming factor may include one or more factors selected from the group consisting of Lin28, Asc11, Pitx3, Nurr1, Lmx1a, Nanog, Oct3, Oct4, Sox2, Klf4 and Myc.
  • hematopoietic stem cells may include all factors known in the art to be capable of producing hematopoietic stem cells.
  • direct reprogramming into hematopoietic stem cells can be induced by using the reprogramming factor.
  • the direct reprogramming methodology there is a method of using a reprogramming genetic factor.
  • a person skilled in the art can select an appropriate factor according to the target cell and the type of cell before reprogramming, which are all within the range known in the art. It is included in the scope of, it is not particularly limited to the type.
  • the reprogramming genetic factors are introduced into cells and culturing the cells for a certain period of time to obtain the desired type. It is possible to reprogram the initial cell to a target cell having the gene expression pattern of the cell.
  • the term "direct reprogramming" is differentiated from the technology of producing induced pluripotent stem cells with pluripotency through the reprogramming process, and direct conversion to the desired target cell through reprogramming culture is used. it's technology
  • Existing somatic cell nuclear transfer has the disadvantage of using an egg, so its applicability is low compared to other cell reprogramming technologies.
  • the induced pluripotent stem cell reprogramming technology it naturally passes through pluripotent stem cells. There is a disadvantage in that the residual and safety must be verified.
  • the present invention is expected to be able to provide an alternative that can overcome the problems of the above technology, such as production time, cost, efficiency, safety, etc., by directly producing hematopoietic stem cells, which are target cells, from initial cells through direct reprogramming.
  • direct reprogramming may be used interchangeably with direct dedifferentiation, direct differentiation, direct conversion, direct cross-differentiation, cross-differentiation, and the like.
  • direct reprogramming may refer to direct dedifferentiation or cross-differentiation into hematopoietic stem cells.
  • the cells isolated in step (a) can be differentiated into hematopoietic stem cells by culturing them by any one method selected from serum-free, xeno-free, and gene-free methods.
  • the “free” method refers to a method of culturing cells without using a medium or a specific technique that does not contain a specific component or substance when culturing the cells.
  • the “serum-free” method may refer to culturing cells in a medium that does not contain serum and/or plasma. In one embodiment, it may include culturing the cells using a substance having a specified component (eg, albumin) that can replace it instead of serum (serum) of which the component is not specified.
  • a substance having a specified component eg, albumin
  • the “xeno-free” method may mean culturing cells in a medium that does not contain animal-derived materials. In one embodiment, it may include culturing using a medium such as STEMdiff hematopoietic basal medium (STEMCELL) that does not contain animal-derived components instead of OP9 cells, which are mouse cells.
  • a medium such as STEMdiff hematopoietic basal medium (STEMCELL) that does not contain animal-derived components instead of OP9 cells, which are mouse cells.
  • the “gene-free” method may refer to culturing cells without using a gene introduction method that may cause genetic changes in cells. In one embodiment, it may include culturing using a medium such as STEMdiff hematopoietic basal medium (STEMCELL).
  • a medium such as STEMdiff hematopoietic basal medium (STEMCELL).
  • hematopoietic stem cells when hematopoietic stem cells are produced using serum-free, xeno-free and gene-free methods, the consistency of experimental results is improved, unnecessary immune responses caused by animal-derived substances are excluded during transplantation in the body, and It can block the possibility of cancerous cells caused by
  • the cells isolated in step (a) can be differentiated by culturing in a medium containing an antioxidant.
  • the antioxidant may include without limitation a composition capable of enhancing the engraftment ability of differentiated cells. Specifically, selenium, vitamin E, catechin, lycopene, beta-carotene, coenzyme Q-10, EPA (eicosapentaenoic acid), DHA (docosahexanoic acid), tocopherol, vitamin C, L-lipoic acid, retinoic acid, vinpocetine, picamilon, It may be any one or more of quinic acid, adenine dinucleotide, acetyl-L-carnitine, dimethylanimo ethanol, C-MED 100, Trolox, GSH, protopanaxadiol, and ginsenoside. More specifically, it may be a ginsenoside.
  • the ginsenoside is included without limitation as long as it has antioxidant activity, for example, ginsenoside Rg1, ginsenoside Rb1, ginsenoside Rc, ginsenoside Rd, ginsenoside Re, etc., but this is limited to this as an example doesn't happen Specifically, the ginsenoside may be ginsenoside Rg1, but is not limited thereto.
  • the antioxidant may be included in a concentration of more than 0 and 100 uM or less in the medium. Specifically, it may be 0.1 nM or more, 1 nM or more, 10 nM or more, 100 nM or more. Alternatively, 1 nM or more and 100 uM or less, 100 nM or more and 100 uM or less, 500 nM or more and 50 uM or less, but is not limited thereto.
  • the culture method may be used to enhance cell engraftment ability.
  • engraftment ability refers to the ability of the transplanted stem cells to replace the differentiated subsequent cells, the cells produced in the body after transplantation, or the injected cells to replace the lost or damaged cells. According to the enhancement of engraftment ability, for example, it can have advantages of reducing the number of effective transplanted stem cells, shortening the in vitro culture period of stem cells, increasing the safety of stem cells, and reducing manufacturing costs.
  • the engraftment ability of the differentiated cells was improved by culturing the prepared pluripotent stem cells into hematopoietic stem cells in a serum-free, xeno-free and gene-free manner.
  • Another aspect provides a method for improving the engraftment ability of differentiated cells by culturing stem cells in a serum-free, xeno-free, and gene-free manner.
  • the stem cells include all of pluripotent stem cells, pluripotent stem cells, and multipotent stem cells, and include induced pluripotent stem cells, adult stem cells, bone marrow cells, and mesoderm stem cells. As well as stem cells with limited differentiation ability, etc., as long as they have differentiation ability, they may be included without limitation.
  • Another aspect of the present invention comprises the steps of (a) differentiating into hematopoietic stem cells through direct reprogramming from the isolated somatic cells; and (b) reducing the CCR5 and CXCR4 expression levels of the hematopoietic stem cells of step (a) compared to the intrinsic expression level, providing a method for producing hematopoietic stem cells.
  • Isolated cells, hematopoietic stem cells, direct reprogramming, CCR5, CXCR4 and the step of decreasing compared to the intrinsic expression level is as described above.
  • Another aspect of the present invention provides a hematopoietic stem cell produced by the method for producing a hematopoietic stem cell.
  • the hematopoietic stem cells are as described above.
  • Another aspect of the present invention provides a pharmaceutical composition for treating or preventing HIV virus infection, comprising the hematopoietic stem cells as an active ingredient.
  • the HIV virus infection may specifically be acquired immune deficiency syndrome (AIDS), but is not limited thereto.
  • AIDS acquired immune deficiency syndrome
  • prevention refers to any action that suppresses or delays the development of HIV infection by administering the composition.
  • treatment refers to any action in which symptoms caused by HIV infection are improved or beneficially changed by administration of the composition.
  • composition may include a pharmaceutically acceptable carrier.
  • the "pharmaceutically acceptable carrier” may mean a carrier or diluent that does not inhibit the biological activity and properties of the injected compound without irritating the organism.
  • the type of carrier usable in the present invention is not particularly limited, and any carrier commonly used in the art and pharmaceutically acceptable may be used.
  • Non-limiting examples of the carrier include saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol, and the like. These may be used alone or in mixture of two or more.
  • composition comprising a pharmaceutically acceptable carrier may be in various oral or parenteral formulations.
  • formulation it is prepared using diluents or excipients such as commonly used fillers, extenders, binders, wetting agents, disintegrants, and surfactants.
  • solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and such solid preparations include at least one excipient to the compound, for example, starch, calcium carbonate, sucrose, lactose. , gelatin, etc. may be mixed and prepared.
  • excipients for example, starch, calcium carbonate, sucrose, lactose. , gelatin, etc.
  • lubricants such as magnesium stearate and talc may also be used.
  • Liquid formulations for oral use include suspensions, solutions, emulsions, and syrups.
  • various excipients such as wetting agents, sweeteners, fragrances, and preservatives may be included. have.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized formulations and suppositories.
  • Non-aqueous solvents and suspending agents include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate.
  • Witepsol, Macrogol, Tween 61, cacao butter, laurin fat, glycerogelatin, etc. may be used as the base of the suppository.
  • composition may be administered in a pharmaceutically effective amount.
  • the "pharmaceutically effective amount” means an amount sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is dependent on the individual type and severity, age, sex, type of virus infected, and drug. Activity, sensitivity to drug, time of administration, route of administration and excretion rate, duration of treatment, factors including concomitant drugs, and other factors well known in the medical field.
  • the composition or a pharmaceutically acceptable salt thereof may be administered at 0.0001 to 1000 mg/kg per day, preferably 0.001 to 100 mg/kg, respectively.
  • Intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, may be administered intranasally, but is not limited thereto.
  • composition of the present invention may be administered daily or intermittently, and the number of administrations per day may be administered once or divided into two to three times. When the two active ingredients are each single agent, the number of administrations may be the same or different.
  • the composition of the present invention may be used alone or in combination with other drug treatments for the prevention or treatment of cancer. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect with a minimum amount without side effects, and can be easily determined by those skilled in the art.
  • the subject means any animal, including humans, monkeys, cows, horses, sheep, pigs, chickens, turkeys, quails, cats, dogs, mice, rats, rabbits or guinea pigs that have or can develop cancer. . If the disease can be effectively prevented or treated by administering the pharmaceutical composition of the present invention to the subject, the type of subject is included without limitation.
  • Another aspect of the present invention provides a cell therapy agent comprising the hematopoietic stem cells as an active ingredient.
  • the hematopoietic stem cells are as described above.
  • cell therapeutic refers to cells and tissues manufactured through isolation, culture, and special manipulation from an individual, and is a drug used for treatment, diagnosis, and prevention purposes (US FDA regulations), and the function of cells or tissues is reduced. It refers to a drug used for the purpose of treatment, diagnosis, and prevention through a series of actions such as proliferating and selecting living autologous, allogeneic, or xenogeneic cells in vitro or changing the biological properties of cells in other ways to restore them.
  • Another aspect of the present invention provides a method for preventing or treating cancer, comprising administering the pharmaceutical composition or cell therapy to an individual in need thereof.
  • Another aspect of the present invention is to improve the engraftment ability of stem cells by culturing stem cells in serum-free, xeno-free and gene-free methods. provide a way
  • Another aspect of the present invention provides a method for improving the engraftment ability of stem cells, comprising culturing the stem cells in a medium containing an antioxidant.
  • the stem cells may be specifically iPSC-derived cells, and more specifically iPSC-derived hematopoietic stem cells. In one embodiment, it may be a hematopoietic stem cell, prepared through the method for producing hematopoietic stem cells of the present invention, but is not limited thereto.
  • the antioxidant and stem cells were cultured in a serum-free, xeno-free and gene-free manner as described above.
  • the colony-forming ability of the stem cells, the engraftment ability of the stem cells, etc. may be improved.
  • the culturing method may impart desirable characteristics of other stem cells.
  • Example 1 CRISPR/Cas9 construction for CCR5 and CXCR4 gene knockout
  • Example 1-1 CCR5 and CXCR4 target location selection and guide RNA production
  • a guide RNA was designed by targeting a specific sequence of exon 3 of the CCR5 or CXCR4 gene (Fig. 1a), and among the candidate guide RNA sequences, CCR5-1 and CXCR4-1, which are guide RNAs with excellent knockout efficiency, were used, respectively. It was selected as a guide RNA for knockout of CCR5 and CXCR4 genes ( FIGS. 1b and c ).
  • vectors containing the guide RNA for knockout of CCR5 and CXCR4 genes, respectively were prepared. Specifically, 0.8 ul of two restriction enzymes (BamH1 and BsmB1) were mixed with 1 ug of the pCas-guide plasmid vector, respectively, and treated at 37° C. for 3 hours for cleavage, and self-linking through dephosphorylation of the cleaved vector was inhibited. 1ul of Antarctic phosphatase was added and incubated for 30 minutes at 37°C. Thereafter, the cleaved vector was purified using a gel purification column, eluted in 10 mM Tris buffer, and the synthesized guide RNA sequence was ligated to the cleaved vector.
  • BamH1 and BsmB1 restriction enzymes
  • Example 1-2 CCR5 and CXCR4 gene knockout confirmation using CRISPR/Cas9 system
  • Example 1-1 In order to confirm that the CRISPR/Cas9 vector for CCR5 and CXCR4 knockout prepared in Example 1-1 can actually inhibit the expression of CCR5 and CXCR5 genes, the following experiment was performed.
  • the transformation efficiency was confirmed by introducing the vector into cells in various ways. Specifically, as a result of transformation using Lipopectamine 3000, Convoy, and an electroporation method, it was confirmed that the best efficiency was achieved when transformation was performed by the electroporation method (FIG. 2a). In addition, in order to establish electroporation conditions with excellent CRISPR/Cas9 vector introduction efficiency, transformation was performed under various conditions using a CRISPR/Cas9 vector containing GFP to confirm the GFP expression level ( FIGS. 2b and c ).
  • CRISPR/Cas9 for CCR5 and CXCR4 knockout prepared in Example 1-1 was introduced into cells by electroporation, and then the CCR5 and CXCR4 genes were knocked out.
  • a PCR reaction was performed using the primers in Table 2 (FIG. 2a), and the knockout of the CCR5 and CXCR4 genes was confirmed through sequence analysis of the PCR product obtained therefrom.
  • gDNA was isolated from cells into which CCR5 and CXCR4 knockout vectors were introduced using the AccuPrep Genomic DNA Extraction Kit (Bioneer).
  • PCR amplification was performed using the gDNA isolated using AccuPower PCR Premix (Bioneer), CCR5 and CXCR4 forward and reverse primers (Table 2), and Genetouch Thermal Cycler (Hanzhou bioer technology) as a template.
  • PCR was completed, it was confirmed whether the gene was amplified through gel electrophoresis (Mupid) (FIG. 3a), and the PCR product was purified using MEGAquick-spin plus fragment DNA purification kit (iNtRON).
  • the purified PCR product was sequenced in Macrogen (Seoul, Korea) together with the forward primer used for PCR (FIGS. 3b and c).
  • Example 2 Construction of iPSCs in which CCR5 and CXCR4 genes are knocked out
  • iPSCs induced pluripotent stem cells
  • iPSCs were prepared by introducing Yamanaka factors (Oct3/4, Sox2, Klf4 and c-Myc) into adult skin fibroblasts at Multiplicity of infection (MOI) 5, 10, and 20, and culturing them.
  • the prepared iPSC had a typical colony shape, and it was confirmed that Oct4 and Nanog, which are pluripotency markers, were overexpressed ( FIG. 5 ).
  • qRT-PCR was performed to confirm the transcriptional expression levels of Oct4 and Nanog.
  • mRNA was isolated from the cell pellet using PureLink RNA Mini Kit (Invitrogen) to perform the qRT-PCR, and AccuPower cDNA was synthesized from the isolated mRNA using RT Premix (Bioneer).
  • the cDNA, PowerUp SYBR Green Master Mix (Appliedbiosystems), Oct4 and Nanog forward and reverse primers (Table 3) and distilled water were mixed to make 20 ul, and PCR reaction was performed using Quant Studio3 (Appliedbiosystems), Oct4 and Nanog The relative fold values of the genes were calculated.
  • Example 1-2 after introducing the CRISPR/Cas9 vector prepared in Example 1-1 into the iPSC, in order to confirm that the CCR5 and CXCR4 genes were knocked out, as in Example 1-2, the CCR5 and CXCR4 gene regions were PCR After amplification, the sequence of the amplified PCR product was analyzed.
  • CCR5 -/- CXCR4 -/- iPSCs are pluripotency marker
  • the expression levels of Oct4, Sox2, Nanog, and TRA-1-60 were confirmed by immunostaining.
  • the immunostaining method was performed as follows. First, Alexa Fluor 488 conjugated anti-Oct4 (Millipore), Cy3 to the WT-iPSC and CCR5 -/- CXCR4 -/- iPSC after fixation, permeabilization and blocking are completed for the purpose of the experiment Conjugated anti-Sox2 (Millipore), Alexa Fluor 488 conjugated anti-Nanog (Millipore), and Cy3 conjugated anti-TRA-1-60 (Millipore) primary antibodies (each 1:100) were treated at 4°C for one day. The next day, after washing with PBS, the stained cells were observed using a Nikon ECLIPSE Ti-U microscope (Nikon).
  • Excitation/emission wavelengths were 488/525 nm for Alex Fluor 488 and 594/617 nm for Cy3.
  • Oct4, Sox2, Nanog, and TRA-1-60 were overexpressed at the protein level in WT-iPSCs (FIG. 7a).
  • the CCR5 - / - CXCR4 - / - iPSC that was confirmed to be differentiated into 3-germ layer from the in vivo (Fig. 7b), CCR5 - / - CXCR4 - / - in which differentiation of iPSC cells typical markers of hematopoietic stem cells As it was confirmed through RT-PCR that CD34 is expressed ( FIG. 7c ), it can be seen that the CCR5/CXCR4 knockout iPSC prepared in the present invention has pluripotency even in vivo.
  • Example 3 Construction of CCR5 and CXCR4 knockout hematopoietic stem cells
  • Example 3-1 Production of hematopoietic stem cells using an in vitro method
  • iPSC spontaneous differentiation medium [DMEM/F12+GlutaMAX-I (Gibco) 500 ml + Primocin (Invivogen) 1 ml + Knockout SR (Gibco) 125 ml] and HSC culture medium [Stempro] -34 SFM SFM (1X) (Gibco) 500 ml + Stempro-34 Nutrient Supplement (Gibco) 13 ml + Glutamax-I (Gibco) 5 ml + Primocin (Invivogen) 1 ml + SCF (R&D) 100 ng/ml + IL-3 (Gibco) 50 ng/ml + GM-CSF (Gibco) 25 ng/ml] was mixed at 1:1 (v/v), and CCR5 ⁇ / ⁇ CXCR4 ⁇ / ⁇ iPSCs prepared in Example 2 were cultured (embryoiPSCs prepared in Example 2 were cultured (embryoiPSCs
  • the CCR5/CXCR4 knockout iPSC prepared in the present invention can be differentiated into hematopoietic stem cells using an in vitro method.
  • Example 3-2 Production of hematopoietic stem cells using in vivo method
  • CCR5 / CXCR4 knockout iPSC CCR5 -/- CXCR4 -/- iPSC
  • the CCR5 -/- CXCR4 -/- iPSC was injected into nude mice to form a teratoma, the teratoma was separated using a mechanical/chemical method, and a CD34 antibody was bound to the separated teratoma, followed by MACS sorting, followed by CD34 + cell differentiated CCR5 -/- CXCR4 -/- hematopoietic stem cells were obtained (FIG. 9a).
  • the teratoma-derived CCR5/CXCR4 simultaneous knockout iPSC showed a CD34 expression rate at a similar rate to that of hematopoietic stem cells isolated from bone marrow ( FIG. 9c ). It can be seen that parent cells can be prepared.
  • Example 3-3 Production of hematopoietic stem cells using in vitro method (serum-free / xeno-free / gene-free method)
  • CCR5/CXCR4 knockout iPSC CCR5-/- CXCR4-/- iPSC prepared in Example 2 as a cell therapy agent
  • hematopoietic stem cells hematopoietic stem cells
  • serum-free / xeno-free / gene-free method serum-free / xeno-free / gene-free method
  • the undifferentiated cells in the iPSC culture medium [DMEM/F12+GlutaMAX-I (Gibco) 500 ml + Primocin (Invivogen) 1 ml + Knockout SR (Gibco) 125 ml + bFGF 4ng/ml] for 5-7 days in an adherent state)
  • the iPSCs were mechanically detached and seeded in a 12 well culture plate.
  • a 12-well culture plate was used after coating for 2 hours at room temperature with matrigel (BD) diluted 1/45 in PBS.
  • the number of iPSC aggregates seeded in a 12 well culture plate was about 10 (2-3/cm 2 ) [(Manufacturer's conditions are 40-80 per well (10-20/cm 2 )) .
  • the reason for precisely controlling the seeding density of the iPSC aggregate to 2-3 pieces/cm 2 is to prevent a sudden change in pH during the hematopoietic stem cell differentiation process to produce healthy hematopoietic stem cells that maintain their engraftment ability.
  • CCR5/CXCR4 knockout iPSCs were induced for 3 days in an adherent state in a differentiation medium mixed with STEMdiff hematopoietic basal medium (STEMCELL) 45ml, Primocin 90ul, and STEMdiff hematopoietic supplement A (STEMCELL) 225ul. did.
  • the differentiation was induced with CCR5/CXCR4 knockout iPSCs in an adherent state in a differentiation medium mixed with 75ml of STEMdiff hematopoietic basal medium (STEMCELL), 180ul of Primocin, and 375ul of STEMdiff hematopoietic supplement B (STEMCELL).
  • Hematopoietic stem cell differentiation was performed under 21% oxygen (normoixa) or 1-5% oxygen (hypoxia) for 12 days.
  • hematopoietic stem cells expressing 90% or more of CD34, a hematopoietic stem cell marker, were prepared (Fig. 10a). These hematopoietic stem cells could be differentiated into CD14-expressing monocytes (Fig. 10b, 10c) and CD44-expressing macrophages (Fig. 10d). When maintained in the iPSC iPSC aggregate seeding during differentiation in hematopoietic stem cells with low density (2-3 gae / cm 2), which should make the differentiation into monocytes well on stem cell since compared to high density (10-20 gae / cm 2) became (Fig. 10e).
  • the CCR5/CXCR4 knockout iPSC prepared in the present invention can be differentiated into hematopoietic stem cells in a serum-free / xeno-free / gene-free manner.
  • Example 4 Verification of in vivo engraftment ability of hematopoietic stem cells prepared by serum-free / xeno-free / gene-free method
  • CCR5/CXCR4 knockout iPSC CCR5-/- CXCR4-/- iPSC prepared in Example 3-3 as a cell therapy agent
  • CCR5-/- CXCR4-/- iPSC CCR5-/- CXCR4-/- iPSC
  • conditioning was performed to remove hematopoietic stem cells from the body of the mouse by injecting an anticancer agent (Busulfan, 50ug/g) intraperitoneally twice at 24 hour intervals.
  • an anticancer agent Busulfan, 50ug/g
  • hematopoietic stem cells derived from CCR5/CXCR4 knockout iPSCs CCR5-/- CXCR4-/- iPSCs
  • CCR5-/- CXCR4-/- iPSCs CCR5-/- CXCR4-/- iPSCs
  • the CCR5/CXCR4 knockout iPSC-derived hematopoietic stem cells prepared in the serum-free / xeno-free / gene-free method prepared in the present invention can be engrafted in vivo.
  • Example 5 Verification of enhancement of in vivo engraftment ability of hematopoietic stem cells by antioxidant
  • Example 3-3 In order to enhance the engraftment ability of the hematopoietic stem cells derived from the CCR5/CXCR4 knockout iPSC (CCR5-/- CXCR4-/- iPSC) prepared in Example 3-3, the engraftment ability of hematopoietic stem cells during the differentiation process from iPSC to hematopoietic stem cells was evaluated.
  • a screening for potent antioxidants was performed as follows.
  • iPSC culture medium [DMEM/F12+GlutaMAX-I (Gibco) 500 ml + Primocin (Invivogen) 1 ml + Knockout SR (Gibco) 125 ml + bFGF 4ng/ml] attached for 5-7 days)
  • the iPSCs were mechanically detached and seeded in a 12 well culture plate.
  • a 12-well culture plate was used after coating for 2 hours at room temperature with matrigel (BD) diluted 1/45 in PBS.
  • the number of iPSC aggregates seeded in a 12 well culture plate was about 10 (2-3 pieces/cm 2 ).
  • ginsenoside Rg1 (0nM, 1nM, 10nM, 100 nM, 1 uM, 10 uM) was added to induce differentiation of CCR5/CXCR4 knockout iPSCs in an adherent state for 3 days.
  • hematopoietic stem cells capable of forming hematopoietic colonies of various lineages in vitro were prepared, and the largest number of colonies was obtained at the concentration of Rg1 1uM (Fig. 12a).
  • Rg1 1uM showed the best colony forming ability (Fig. 12b).
  • Example 5-2 Confirmation of enhancement of hematopoietic stem cell engraftment ability by the addition of antioxidants
  • CCR5/CXCR4 knockout iPSC CCR5-/- CXCR4-/- iPSC prepared in Example 5-1 as a cell therapy agent
  • CCR5-/- CXCR4-/- iPSC CCR5-/- CXCR4-/- iPSC
  • conditioning was performed to remove hematopoietic stem cells from the body of the mouse by injecting an anticancer agent (Busulfan, 50ug/g) intraperitoneally twice at 24 hour intervals.
  • an anticancer agent Busulfan, 50ug/g
  • hematopoietic stem cells derived from CCR5/CXCR4 knockout iPSCs CCR5-/- CXCR4-/- iPSCs
  • CCR5-/- CXCR4-/- iPSCs CCR5-/- CXCR4-/- iPSCs
  • the CCR5/CXCR4 knockout iPSC-derived hematopoietic stem cells prepared in the present invention show a very high engraftment ability in vivo.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Veterinary Medicine (AREA)
  • Wood Science & Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Developmental Biology & Embryology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • AIDS & HIV (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Microbiology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention relates to a method for preparing customized CCR5/CXCR4-gene simultaneous knockout hematopoietic stem cells by using a CRISPR/Cas9 system, and a pharmaceutical composition and a cell therapeutic agent for treating or preventing HIV infection, comprising the hematopoietic stem cells. The method for preparing a hematopoietic stem cell, of the present invention, can efficiently prepare hematopoietic stem cells in which CCR5 and CXCR4 genes are simultaneously knocked out, and thus hematopoietic stem cells prepared thereby can be used as a pharmaceutical composition and cell therapeutic agent for treating or preventing HIV infection.

Description

HIV 감염 치료 또는 예방을 위한 CCR5/CXCR4 유전자 동시 넉아웃 환자맞춤형 조혈모세포 및 이의 제조방법Simultaneous knockout of CCR5/CXCR4 gene for treatment or prevention of HIV infection, patient-specific hematopoietic stem cells and manufacturing method thereof
본 발명은 CRISPR/Cas9 시스템을 이용한 CCR5/CXCR4 유전자 동시 넉아웃 환자맞춤형 조혈모세포 제조방법, 상기 조혈모세포를 포함하는 HIV 바이러스 감염 치료 또는 예방용 약학적 조성물 및 세포치료제에 관한 것이다.The present invention relates to a method for producing a patient-specific hematopoietic stem cell for simultaneous knockout of the CCR5/CXCR4 gene using the CRISPR/Cas9 system, a pharmaceutical composition for treating or preventing HIV virus infection containing the hematopoietic stem cell, and a cell therapy agent.
인간면역결핍바이러스(Human Immunodeficiency Virus: HIV)는 후천성 면역결핍증인 AIDS (Acquired Immune Deficiency Syndrome) 를 일으키는 바이러스로서, HIV는 도움 T 세포(CD4 T 세포)에 감염되어 상기 세포를 파괴시키고, 이러한 감염이 반복되면 환자 체내의 도움 T 세포의 수치가 극도로 감소하여 이로 인해 결국 환자의 면역기능이 상실됨으로서, HIV에 감염된 환자는 기회감염이나 암으로 인해 사망하게 된다.Human Immunodeficiency Virus (HIV) is a virus that causes Acquired Immune Deficiency Syndrome (AIDS), an acquired immunodeficiency syndrome. HIV infects and destroys helper T cells (CD4 T cells), and the infection Repeatedly, the number of helper T cells in the patient's body is extremely reduced, which eventually leads to the loss of the patient's immune function, leading to the death of HIV-infected patients from opportunistic infections or cancer.
AIDS는 1981년 미국에서 첫 환자가 발견된 이래로 매년 감염자가 폭발적으로 증가하여 현재 전세계적으로 약 3500만명의 감염자가 있을 것으로 추정되며, 미국에서만 매년 50,000 여명의 신규감염환자가 발생하고 있고, 국내에는 약 1만여명의 감염자가 있는 것으로 추정된다.Since the first case of AIDS was discovered in the United States in 1981, the number of infections has exploded every year, and it is estimated that there are currently about 35 million people worldwide. It is estimated that about 10,000 people are infected.
HIV는 단일가닥 RNA 바이러스로, 역전사효소를 가지고 있고, 표면의 gp120 단백질을 이용하여 도움 T 세포 표면의 CD4 수용체와 공-수용체인 C-C chemokine receptor type 5 (CCR5; CD195) 또는 C-X-C chemokine receptor type 4 (CXCR4; CD184)와 상호결합하는 기전을 통해 도움 T 세포에 감염된다.HIV is a single-stranded RNA virus that has reverse transcriptase and uses the surface gp120 protein to co-receptor with CD4 receptor on the surface of helper T cells, CC chemokine receptor type 5 (CCR5; CD195) or CXC chemokine receptor type 4 ( Infects helper T cells through a mechanism that interacts with CXCR4; CD184).
또한, HIV는 도움 T 세포에 감염될 때 사용하는 공-수용체에 따라 2가지 유형으로 나뉘는데, CCR5를 이용하는 HIV를 R5 유형, CXCR4를 이용하는 HIV를 X4 유형이라고 한다.In addition, HIV is divided into two types according to the co-receptor used when infecting helper T cells. HIV using CCR5 is called R5 type, and HIV using CXCR4 is called X4 type.
현재, HIV 감염 시 약물치료는 HIV에 존재하는 역전사효소를 억제하는 약제를 병용하는 칵테일 요법이 주로 활용되고 있다. 그러나, HIV의 변이가 심하여 약물요법으로는 완치가 불가능하고, 매년 늘어나는 HIV 감염환자들 (전세계 연간 210만 여명), 항바이러스제를 투여함에도 사망하고 있는 환자들 (전세계 연간 110만 여명), 낮아지고 있는 HIV 감염연령 (평균 37세), 높은 의료비 (연간 1인당 2,000여 만원) 등으로 인해 AIDS를 근본적으로 치료할 수 있는 방법은 반드시 필요하다.Currently, for drug treatment of HIV infection, cocktail therapy using a drug that inhibits the reverse transcriptase present in HIV is mainly used. However, the mutation of HIV is so severe that it is impossible to cure it with drug therapy, and the number of HIV-infected patients is increasing every year (2.1 million people around the world every year), and the number of people dying even though they are taking antiviral drugs (1.1 million people around the world every year) is getting lower and lower. Due to the high age of HIV infection (average age of 37) and high medical expenses (about 20 million won per person per year), a method that can fundamentally treat AIDS is essential.
현재까지 HIV 감염에서 완치된 사례는 1건이 보고되었다. 이 완치된 환자는 베를린에서 치료받았다는 의미로 '베를린 환자'로 명명되었다. 이 환자는 HIV 감염 이후 추가로 백혈병에 걸렸고, 백혈병을 치료하기 위해 타인의 조혈모세포 (hematopoietic stem cells; HSC) 를 이식 받았는데, 이러한 조혈모세포 이식과정을 통해 HIV 감염으로부터 완치되었다고 보고되었다.To date, there has been one reported case of cure for HIV infection. This cured patient was named 'Berlin patient', meaning that he was treated in Berlin. This patient had additional leukemia after infection with HIV, and it was reported that he received another person's hematopoietic stem cells (HSC) to treat leukemia, and it was reported that he was cured from HIV infection through this hematopoietic stem cell transplantation process.
후향적 연구 결과 '베를린 환자'가 이식 받은 조혈모세포는 HIV가 도움 T 세포에 감염되는데 필요한 공-수용체인 CCR5가 선천적으로 돌연변이된 상태였기 때문에, 상기 CCR5가 돌연변이된 조혈모세포로부터 HIV에 저항성을 띄는 도움 T 세포를 만들어서, 이를 통해 AIDS가 완치된 것으로 확인되었다.A retrospective study showed that the hematopoietic stem cells transplanted from the 'Berlin patient' were innately mutated in CCR5, a co-receptor required for HIV to infect helper T cells, so that the CCR5 mutated hematopoietic stem cells were HIV-resistant. By making helper T cells, it was confirmed that AIDS was cured.
다만, CCR5가 돌연변이된 조혈모세포를 이식받았음에도 AIDS로부터 완치되지 못하고 사망한 사례도 보고된 바 있으나, 이 환자는 R5 및 X4 유형의 HIV가 동시에 감염된 환자였기 때문에 완치가 되지 않고 사망한 것으로 보인다.However, there have been reports of cases where hematopoietic stem cells with mutated CCR5 were transplanted, but died without being cured of AIDS. However, it seems that this patient died without being cured because he was infected with both R5 and X4 types of HIV.
한편, CRISPR/Cas9 시스템은 가장 최근에 개발된 3세대 유전자 가위로 세포의 유전자를 넉아웃 하기 위해 전세계적으로 활발하게 활용되고 있는 기술이다. CRISPR/Cas9 시스템은 가이드 RNA(gRNA) 와 Cas9 뉴클레아제로 구성되어 있고, 세포 내에 도입된 gRNA가 genomic DNA 상의 넉아웃 시킬 부위와 결합하면 이것을 Cas9 뉴클레아제가 인식하여 genomic DNA 부위를 절단하는 기전을 통해 유전자를 넉아웃시킬 수 있다. 따라서, 상기 CRISPR/Cas9 시스템을 이용하면 환자의 체세포에서 CCR5와 CXCR4를 동시에 넉아웃할 수 있을 것으로 보인다.On the other hand, the CRISPR/Cas9 system is the most recently developed third-generation gene scissors and is a technology that is being actively used worldwide to knock out cellular genes. The CRISPR/Cas9 system consists of a guide RNA (gRNA) and a Cas9 nuclease, and when the gRNA introduced into the cell binds to the site to be knocked out on the genomic DNA, the Cas9 nuclease recognizes this and cuts the genomic DNA site. gene can be knocked out. Therefore, using the CRISPR/Cas9 system seems to be able to simultaneously knock out CCR5 and CXCR4 in the patient's somatic cells.
이러한 배경 하에, 본 발명자들은 CRISPR/Cas9 시스템을 이용하여 CCR5 및 CXCR4 유전자를 동시에 넉아웃시킬 수 있는 발현 벡터 및 이를 포함하는 조성물을 개발하였고, 이를 이용하여 CCR5 및 CXCR4 유전자가 넉아웃된 조혈모세포를 제조할 수 있음을 확인하였다. 또한 분화단계에서 Serum-free / xeno-free / gene-free 방식을 사용하고, 항산화제를 배지에 첨가하여 줄기세포를 배양하여 분화된 세포의 생착능이 향상된 것을 확인하여 본 발명을 완성하였다.Under this background, the present inventors have developed an expression vector capable of simultaneously knocking out CCR5 and CXCR4 genes using the CRISPR/Cas9 system and a composition comprising the same, and using this, CCR5 and CXCR4 genes are knocked out hematopoietic stem cells. It was confirmed that it can be manufactured. In addition, the present invention was completed by confirming that the engraftment ability of the differentiated cells was improved by using the serum-free / xeno-free / gene-free method in the differentiation stage and culturing the stem cells by adding an antioxidant to the medium.
본 발명의 하나의 목적은 (a) 분리된 세포의 CCR5 및 CXCR4 발현수준을 유전자 가위 기술을 이용하여 내재적 발현 수준에 비하여 감소시키는 단계; 및 (b) 상기 (a) 단계의 분리된 세포를 세럼-프리(serum-free), 제노-프리(xeno-free) 및 진-프리(gene-free) 방법으로 배양하여 조혈모세포로 분화시키는 단계를 포함하는, 조혈모세포 제조방법을 제공하는 것이다.One object of the present invention is to (a) reducing the expression level of CCR5 and CXCR4 in an isolated cell compared to the intrinsic expression level using a gene editing technique; and (b) culturing the isolated cells of step (a) in serum-free, xeno-free and gene-free methods to differentiate them into hematopoietic stem cells. It is to provide a method for producing hematopoietic stem cells comprising a.
본 발명의 다른 하나의 목적은 (a) 분리된 체세포로부터 직접 리프로그래밍을 통해 조혈모세포로 분화시키는 단계; 및 (b) 상기 (a) 단계의 조혈모세포의 CCR5 및 CXCR4 발현수준을 내재적 발현 수준에 비하여 감소시키는 단계를 포함하는, 조혈모세포 제조방법을 제공하는 것이다.Another object of the present invention is to differentiate into hematopoietic stem cells through direct reprogramming from (a) isolated somatic cells; and (b) reducing the CCR5 and CXCR4 expression levels of the hematopoietic stem cells of step (a) compared to the intrinsic expression level, to provide a method for producing hematopoietic stem cells.
본 발명의 또 다른 하나의 목적은 상기 방법에 의해 제조된, 조혈모세포를 제공하는 것이다.Another object of the present invention is to provide hematopoietic stem cells, prepared by the above method.
본 발명의 또 다른 하나의 목적은 상기 조혈모세포를 유효성분으로 포함하는, HIV 바이러스 감염 치료 또는 예방용 약학적 조성물을 제공하는 것이다.Another object of the present invention is to provide a pharmaceutical composition for the treatment or prevention of HIV virus infection, comprising the hematopoietic stem cells as an active ingredient.
본 발명의 또 다른 하나의 목적은 상기 조혈모세포를 유효성분으로 포함하는, 세포치료제를 제공하는 것이다.Another object of the present invention is to provide a cell therapy agent comprising the hematopoietic stem cells as an active ingredient.
본 발명의 또 다른 하나의 목적은 줄기세포를 세럼-프리(serum-free), 제노-프리(xeno-free) 및 진-프리(gene-free) 방식으로 배양하여 줄기세포의 생착능을 향상시키는 방법을 제공하는 것이다.Another object of the present invention is to improve the engraftment ability of stem cells by culturing stem cells in serum-free, xeno-free and gene-free methods. to provide a way
본 발명의 또 다른 하나의 목적은 줄기세포를 항산화제를 포함하는 배지에서 배양하여 줄기세포의 생착능을 향상시키는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for improving the engraftment ability of stem cells by culturing the stem cells in a medium containing an antioxidant.
본 발명의 조혈모세포 제조방법은 CCR5 및 CXCR4 유전자가 동시에 넉아웃된 조혈모세포를 효율적으로 제조할 수 있는 바, 이로부터 제조된 조혈모세포를 HIV 바이러스 감염 치료 또는 예방용 약학적 조성물 및 세포치료제로 이용할 수 있다.The method for producing hematopoietic stem cells of the present invention can efficiently produce hematopoietic stem cells in which the CCR5 and CXCR4 genes are simultaneously knocked out, and the hematopoietic stem cells prepared therefrom can be used as pharmaceutical compositions and cell therapies for the treatment or prevention of HIV virus infection. can
도 1은 CCR5 및 CXCR4 유전자를 표적으로 하는 가이드 RNA 설계 과정을 간략히 나타내는 도면이다.1 is a diagram schematically illustrating a guide RNA design process targeting CCR5 and CXCR4 genes.
도 2는 CRISRPR/Cas9 벡터의 도입을 위한 전기천공법 조건 확립 실험 결과를 나타낸 도면이다.Figure 2 is a diagram showing the experimental results of establishing electroporation conditions for the introduction of the CRISRPR / Cas9 vector.
도 3은 본 발명의 CRISRPR/Cas9 시스템을 이용하여 CCR5 및 CXCR4 유전자가 넉아웃된 것을 확인한 도면이다.3 is a view confirming that the CCR5 and CXCR4 genes are knocked out using the CRISRPR/Cas9 system of the present invention.
도 4는 본 발명의 CRISRPR/Cas9 시스템을 이용하여 CXCR4 유전자가 monoallelic 및 biallelic 넉아웃된 것을 확인한 도면이다.4 is a view confirming that monoallelic and biallelic knockout of the CXCR4 gene using the CRISRPR/Cas9 system of the present invention.
도 5는 유도만능줄기세포(iPSC)의 제조를 확인한 도면이다5 is a view confirming the production of induced pluripotent stem cells (iPSCs);
도 6은 CCR5/CXCR4 동시 넉아웃 유도만능줄기세포의 제조를 확인한 도면이다.6 is a view confirming the production of CCR5/CXCR4 simultaneous knockout-induced pluripotent stem cells.
도 7은 본 발명의 CCR5/CXCR4 동시 넉아웃 유도만능줄기세포의 전분화능을 확인한 도면이다.7 is a view confirming the pluripotency of CCR5/CXCR4 simultaneous knockout-induced pluripotent stem cells of the present invention.
도 8은 본 발명의 CCR5/CXCR4 동시 넉아웃 유도만능줄기세포가 in vitro 에서 조혈모세포로 분화될 수 있음을 보여주는 도면이다.8 is a diagram showing that CCR5/CXCR4 simultaneous knockout-induced pluripotent stem cells of the present invention can be differentiated into hematopoietic stem cells in vitro.
도 9는 본 발명의 CCR5/CXCR4 동시 넉아웃 유도만능줄기세포가 in vivo 에서 조혈모세포로 분화될 수 있음을 보여주는 도면이다.9 is a diagram showing that CCR5/CXCR4 simultaneous knockout-induced pluripotent stem cells of the present invention can be differentiated into hematopoietic stem cells in vivo.
도 10은 본 발명의 CCR5/CXCR4 동시 넉아웃 유도만능줄기세포가 in vitro에서 serum free / xeno-free / gene-free 방식으로 조혈모세포로 분화될 수 있음을 보여주는 도면이다.10 is a diagram showing that the CCR5/CXCR4 simultaneous knockout-induced pluripotent stem cells of the present invention can be differentiated into hematopoietic stem cells in a serum-free/xeno-free/gene-free manner in vitro.
도 11은 serum free / xeno-free / gene-free 방식으로 제작된 CCR5/CXCR4 동시 넉아웃 유도만능줄기세포 유래 조혈모세포가 nude mouse에 이식되었을 때 골수 (bone marrow), 지라 (spleen), 말초혈액 (peripheral blood) 에 생착될 수 있음을 보여주는 도면이다.11 shows bone marrow, spleen, and peripheral blood when CCR5/CXCR4 simultaneous knockout-induced pluripotent stem cell-derived hematopoietic stem cells prepared in a serum-free / xeno-free / gene-free method are transplanted into a nude mouse. (Peripheral blood) is a diagram showing that it can be engrafted.
도 12는 CCR5/CXCR4 동시 넉아웃 유도만능줄기세포를 in vitro에서 serum free / xeno-free / gene-free 방식으로 조혈모세포로 분화시킬 때 강력한 활성산소 제거제인 진세노사이드 Rg1을 처리하면 조혈모세포의 생착능이 비약적으로 향상될 수 있음을 보여주는 도면이다.FIG. 12 shows that when CCR5/CXCR4 simultaneous knockout-induced pluripotent stem cells are differentiated into hematopoietic stem cells in vitro in a serum-free / xeno-free / gene-free manner, when treated with ginsenoside Rg1, a strong reactive oxygen species, the It is a diagram showing that engraftment ability can be dramatically improved.
본 발명자들은 유전자 가위(programmable nuclease)인 CRISPR/Cas9 시스템을 이용하여 HIV(Human Immunodeficiency Virus) 감염을 치료하기 위해, 유전자 가위의 표적이 될 수 있는 CCR5 및 CXCR4 유전자에 대한 가이드 RNA 표적 위치를 규명하였다. 이에, 상기 가이드 RNA 표적 위치를 유전자 가위로 절단함으로써 CCR5/CXCR4가 모두 넉아웃된 조혈모세포를 제조할 수 있고, 이를 이용하여 HIV 감염을 효과적으로 치료할 수 있다.The present inventors identified guide RNA target positions for CCR5 and CXCR4 genes, which can be targets of gene scissors, to treat HIV (Human Immunodeficiency Virus) infection using the CRISPR/Cas9 system, a programmable nuclease. . Accordingly, hematopoietic stem cells in which both CCR5/CXCR4 are knocked out can be prepared by cutting the guide RNA target site with gene scissors, and HIV infection can be effectively treated using this.
이를 구체적으로 설명하면 다음과 같으며, 본 발명에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 발명에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술된 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 볼 수 없다.If it is described in detail as follows, each description and embodiment disclosed in the present invention may be applied to each other description and embodiment. That is, all combinations of the various elements disclosed herein fall within the scope of the present invention. In addition, it cannot be considered that the scope of the present invention is limited by the specific descriptions described below.
상기 목적을 달성하기 위한 본 발명의 하나의 양태는, (a) 분리된 세포의 CCR5 및 CXCR4 발현수준을 유전자 가위 기술을 이용하여 내재적 발현 수준에 비하여 감소시키는 단계; 및 (b) 상기 (a) 단계의 분리된 세포를 serum-free, xeno-free 및 gene-free 방법으로 배양하여 조혈모세포로 분화시키는 단계를 포함하는, 조혈모세포 제조방법을 제공하는 것이다.One aspect of the present invention for achieving the above object, (a) reducing the expression level of CCR5 and CXCR4 in the isolated cell compared to the intrinsic expression level using a gene editing technique; and (b) culturing the cells isolated in step (a) using serum-free, xeno-free and gene-free methods to differentiate them into hematopoietic stem cells.
본 발명의 용어 "조혈모세포(hematopoietic stem cell: HSC)는 골수에서 자가 복제 및 분화를 통해 백혈구, 적혈구 및 혈소판 등의 혈액세포를 만들어 내는 세포이다. 조혈줄기세포라고도 불리우는 조혈모세포는 성인에서는 골수에 약 1% 정도의 적은 수로 존재하며 말초혈액에서도 소수로 존재한다. 조혈모세포는 자가 복제능력을 지녔기 때문에 조혈모세포에서 혈구가 생성되어 말초혈액으로 나간다 해도 정상인의 골수 세포충실도(세포의 수적변화, 형태)는 일정하게 유지된다. 또한 조혈모세포는 골수를 찾아가는, 즉 귀향하는 본능이 있는데 이러한 특성이 있어서 조혈모세포의 이식을 가능하게 한다. 한편, 상기 조혈모세포는 분화능을 갖는 세포로, 줄기세포의 일종으로 분류되기도 한다.As used herein, the term "hematopoietic stem cell (HSC) is a cell that produces blood cells such as white blood cells, red blood cells, and platelets through self-replication and differentiation in the bone marrow. Hematopoietic stem cells, also called hematopoietic stem cells, are found in the bone marrow in adults. It is present in a small number of about 1% and is also present in a small number in peripheral blood.Because hematopoietic stem cells have the ability to self-replicate, even if blood cells are generated from hematopoietic stem cells and go out to the peripheral blood, the bone marrow cell fidelity (cell number change, morphology) of a normal person is ) is kept constant.In addition, hematopoietic stem cells have an instinct to visit the bone marrow, that is, to return home, and these characteristics enable transplantation of hematopoietic stem cells.On the other hand, the hematopoietic stem cells are cells with differentiation capacity, a type of stem cell It is also classified as
본 발명의 용어, "CCR5(C-C chemokine receptor type 5)"는 도움 T 세포 표면 상에 존재하는 막관통 단백질 중 하나로서, CD195로도 불리운다. 상기 CCR5는 HIV가 도움 T 세포에 감염될 때 공-수용체 역할을 하여 HIV 감염에 도움을 주고, 상기 CCR5를 공-수용체로 이용하는 HIV를 R5 타입이라 한다. As used herein, the term "CCR5 (C-C chemokine receptor type 5)" is one of the transmembrane proteins present on the helper T cell surface, also called CD195. The CCR5 serves as a co-receptor when HIV is infected with helper T cells to help HIV infection, and HIV using CCR5 as a co-receptor is referred to as R5 type.
본 발명의 용어, "CXCR4(C-X-C chemokine receptor type 4)"는 CCR5와 같이 도움 T 세포 표면 상에 존재하는 막관통 단백질 중 하나로서, CD184로도 불리운다. 상기 CXCR4는 HIV가 도움 T 세포에 감염될 때 공-수용체 역할을 하여 HIV 감염에 도움을 주고, 상기 CXCR4를 공-수용체로 이용하는 HIV를 X4 타입이라 한다.As used herein, the term "CXCR4 (C-X-C chemokine receptor type 4)" is one of the transmembrane proteins present on the surface of helper T cells, such as CCR5, also called CD184. The CXCR4 serves as a co-receptor when HIV is infected with helper T cells and helps in HIV infection, and HIV using CXCR4 as a co-receptor is referred to as an X4 type.
본 발명의 용어, "분리된 세포"는 특별한 제한은 없으며, 구체적으로는 체세포(Somatic cell), 생식세포 또는 전구세포(Progenitor cell) 등 이미 계통(Lineage)이 특정된 세포일 수 있으며, 유도만능줄기세포, 성체줄기세포, 골수세포, 중배엽 줄기세포 등 분화능이 한정된 줄기세포일 수 있고, 구체적으로 본 발명의 분리된 세포는 유도만능줄기세포(iPSC) 또는 체세포일 수 있으나, 이에 제한되는 것은 아니다. 본 발명의 분리된 세포에는 생체내 또는 생체외의 세포가 모두 포함될 수 있으며, 구체적으로, 생체에서 분리된 세포일 수 있다.As used herein, the term "isolated cell" is not particularly limited, and specifically, it may be a cell whose lineage has already been specified, such as a somatic cell, a germ cell or a progenitor cell, and induced pluripotency. Stem cells, adult stem cells, bone marrow cells, mesenchymal stem cells, etc. may be stem cells with limited differentiation ability, specifically, the isolated cell of the present invention may be an induced pluripotent stem cell (iPSC) or a somatic cell, but is not limited thereto. . The isolated cells of the present invention may include both in vivo and ex vivo cells, and specifically, may be cells isolated in vivo.
본 발명에서 "체세포"는 생식세포를 제외한 동·식물을 구성하는 분화가 완결된 모든 세포를 뜻하며, 상기 "전구세포"는 자손에 해당하는 세포가 특정 분화 형질을 발현하는 것으로 밝혀진 경우, 분화 형질을 발현하지 않으나, 그 분화 운명(Fate)을 가지고 있는 모세포를 말한다.In the present invention, "somatic cell" means all cells that have completed differentiation constituting animals and plants except for germ cells, and the "progenitor cell" refers to a cell corresponding to a progeny that expresses a specific differentiation trait when it is found to express a specific differentiation trait. Refers to parental cells that do not express , but have the differentiation fate (Fate).
본 발명에서 "성체줄기세포"는 발생과정이 진행되어 배아의 각 장기가 형성되는 단계 혹은 성체단계에서 나타나는 줄기세포를 의미하며, 이는 그 분화능이 일반적으로 특정 조직을 구성하는 세포로만 한정된다. 구체적으로, 성체줄기세포는 유방, 골수, 뇌, 척수, 제대혈, 혈액, 간, 피부, 위장관, 태반, 및 자궁 등으로 구성된 군에서 유래할 수 있다.In the present invention, "adult stem cells" refers to stem cells that appear at the stage of formation of each organ of the embryo or at the stage of adulthood through the development process, which is generally limited to cells constituting a specific tissue. Specifically, adult stem cells may be derived from the group consisting of breast, bone marrow, brain, spinal cord, umbilical cord blood, blood, liver, skin, gastrointestinal tract, placenta, and uterus.
또한, 본 발명에서 "유도만능줄기세포(induced pluripotent stem cell: iPSC)"는 특정한 유전자를 인위적으로 발현시켜 비만능세포인 성체체세포를 유도하여 인공적으로 만들어진 만능줄기세포로서, 배아줄기세포와 같은 자연적인 만능줄기세포와 많은 면이 비슷하다.In addition, in the present invention, "induced pluripotent stem cell (iPSC)" is an artificially created pluripotent stem cell by artificially expressing a specific gene to induce adult cells, which are mast cells, and is It is similar to pluripotent stem cells in many respects.
본 발명에서는 유도만능줄기세포의 CCR5 및 CXCR4 유전자를 넉아웃시킨 후, 이를 조혈모세포로 분화시켜, CCR5/CXCR4 넉아웃 조혈모세포를 제조하였다.In the present invention, after knocking out the CCR5 and CXCR4 genes of induced pluripotent stem cells, they were differentiated into hematopoietic stem cells, and CCR5/CXCR4 knockout hematopoietic stem cells were prepared.
본 발명의 용어, "발현 수준이 내재적 발현 수준에 비하여 감소"란, 해당 폴리펩티드를 코딩하는 유전자가 발현되지 않거나, 유전자 발현에 있어 자연적 상태 또는 변형 전의 상태보다 특정의 감소를 나타내거나, 발현되더라도 기능성이 있는 해당 폴리펩티드를 생산하지 않는 것을 의미한다.As used herein, the term "expression level is reduced compared to the endogenous expression level" means that the gene encoding the polypeptide is not expressed, or shows a specific decrease in gene expression compared to the natural state or state before modification, or is expressed even if functional means not to produce the corresponding polypeptide.
또한, 해당 폴리펩티드를 코딩하는 유전자가 완전하게 불활성화되어 있는 것뿐만 아니라 그 발현 수준이 내재적 발현 수준에 비하여 약화되거나 현저하게 낮아 실질적으로 발현되지 않는 것도 포함되는 의미이다. 따라서, 유전자 불활성화는 완전(넉아웃)하거나 부분적(예를 들면, 유전자가 내재적 발현 수준 미만을 나타내는 저차형유전자(hypomorph)이거나 이것이 영향을 미치는 활성에 있어서 부분적인 감소를 나타내는 돌연변이체 유전자의 생성물)일 수 있다.In addition, it includes not only that the gene encoding the polypeptide is completely inactivated, but also that the expression level is weakened or significantly lower than the intrinsic expression level and is not substantially expressed. Thus, gene inactivation is either complete (knockout) or partial (e.g., the product of a mutant gene that exhibits a partial decrease in the activity it affects or is a hypomorph that exhibits less than the intrinsic expression level of the gene. ) can be
구체적으로, 본 발명에서 CCR5 또는 CXCR4의 불활성화는,Specifically, in the present invention, the inactivation of CCR5 or CXCR4,
1) 상기 단백질을 코딩하는 폴리뉴클레오티드의 일부 또는 전체의 결실,1) deletion of a part or all of the polynucleotide encoding the protein;
2) 상기 폴리뉴클레오티드의 발현이 감소하도록 발현조절 서열의 변형,2) modification of the expression control sequence to reduce the expression of the polynucleotide,
3) 상기 단백질의 활성이 약화되도록 염색체 상의 상기 폴리뉴클레오티드 서열의 변형, 또는3) modification of the polynucleotide sequence on the chromosome such that the activity of the protein is weakened, or
4) 이의 조합 등을 사용하여 수행될 수 있으나, 특별히 이에 제한되지는 않는다.4) It may be carried out using a combination thereof, etc., but is not particularly limited thereto.
1) 상기 단백질을 코딩하는 폴리뉴클레오티드의 일부 또는 전체를 결실하는 방법은 세포 내 염색체 삽입용 벡터를 통해 염색체 내 내재적 목적 단백질을 암호화하는 폴리뉴클레오티드를 일부 핵산 서열이 결실된 폴리뉴클레오티드 또는 마커 유전자로 교체함으로써 수행될 수 있다. 상기 "일부"란 폴리뉴클레오티드의 종류에 따라서 상이하지만, 구체적으로는 1 내지 300개, 더 구체적으로는 1 내지 100개, 보다 구체적으로는 1 내지 50개이다.1) In the method of deleting part or all of the polynucleotide encoding the protein, a polynucleotide encoding an endogenous target protein in a chromosome is replaced with a polynucleotide or a marker gene in which a part of the nucleic acid sequence is deleted through a vector for inserting the chromosome into a cell. It can be done by The "part" is different depending on the type of polynucleotide, but is specifically 1 to 300, more specifically 1 to 100, and more specifically 1 to 50.
다음으로, 2) 상기 폴리뉴클레오티드의 발현이 감소하도록 발현조절 서열을 변형하는 방법은, 특별히 이에 한정되지 않으나, 상기 발현조절 서열의 활성을 더욱 약화하도록 핵산 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 발현조절 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖는 핵산 서열로 교체함으로써 수행할 수 있다. 상기 발현조절 서열에는 프로모터, 오퍼레이터 서열, 리보좀 결합 부위를 코딩하는 서열, 및 전사와 해독의 종결을 조절하는 서열을 포함할 수 있으며, 이에 한정되지 않는다.Next, 2) the method of modifying the expression control sequence to reduce the expression of the polynucleotide is not particularly limited thereto, but the nucleic acid sequence is deleted, inserted, non-conservative or conservative to further weaken the activity of the expression control sequence. It can be carried out by inducing a mutation in the expression control sequence by substitution or a combination thereof, or by replacing the nucleic acid sequence with a weaker activity. The expression control sequence may include, but is not limited to, a promoter, an operator sequence, a sequence encoding a ribosome binding site, and a sequence regulating the termination of transcription and translation.
아울러, 3) 염색체 상의 폴리뉴클레오티드 서열을 변형하는 방법은 상기 단백질의 활성을 더욱 약화하도록 폴리뉴클레오티드 서열을 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합으로 서열상의 변이를 유도하여 수행하거나, 더욱 약한 활성을 갖도록 개량된 폴리뉴클레오티드 서열로 교체함으로써 수행할 수 있으며, 이에 한정되지 않는다.In addition, 3) the method of modifying the polynucleotide sequence on the chromosome is performed by inducing a mutation in the sequence by deleting, inserting, non-conservative or conservative substitution of the polynucleotide sequence, or a combination thereof to further weaken the activity of the protein, or It can be carried out by replacing the modified polynucleotide sequence with a weaker activity, but is not limited thereto.
본 발명에서는 CCR5 및 CXCR4 발현수준을 내재적 발현 수준에 비해 감소시키기 위해 유전자 가위를 이용할 수 있다.In the present invention, gene scissors can be used to reduce CCR5 and CXCR4 expression levels compared to intrinsic expression levels.
본 발명에서 용어 "유전자 가위"는 동식물 유전자에 결합해 특정 DNA 부위를 자르는데 사용하는 인공 효소로서, 특정 유전자 영역을 제거해 문제를 해결하는 유전자 편집 (Genome Editing) 기술을 의미하는 것일 수 있다. 상기 유전자 가위 기술에는 1세대인 징크핑거 뉴클레이즈(Zinc Finger Nuclease: ZFN), 2세대인 탈렌(Transcriptor Activator-Like Effector Nucleases: TALEN) 및 3세대인 크리스퍼(clustered regularly interspaced short palindromic repeats: CRISPR)을 포함될 수 있다.In the present invention, the term "gene scissors" is an artificial enzyme used to cut a specific DNA region by binding to an animal or plant gene, and may refer to a gene editing technology that solves a problem by removing a specific gene region. The gene editing technology includes a first-generation zinc finger nuclease (ZFN), a second-generation Transcriptor Activator-Like Effector Nucleases: TALEN, and a third-generation CRISPR (clustered regularly interspaced short palindromic repeats: CRISPR). ) may be included.
징크핑거 뉴클레아제는 1세대 유전자 가위로 징크핑거와 3~4개의 뉴클레아제가 결합하여 있으며, 상기 뉴클레아제는 'Fok1'이라는 제한효소를 이용한다.The zinc finger nuclease is a first-generation gene scissors in which a zinc finger and 3 to 4 nucleases are combined, and the nuclease uses a restriction enzyme called 'Fok1'.
탈렌은 2세대 유전자 가위로 식물성 병원체인 잔토모나스(Xanthmonas)로부터 유래 되었다. 탈렌을 구성하는 아미노산 서열은 절단하는 DNA의 염기서열과 일치하기 때문에 탈렌의 아미노산 서열을 변경하면 결합 대상인 DNA의 염기서열도 달리할 수 있어 단백질을 맞춤식으로 변형하기가 훨씬 수월하며, 징크핑거 뉴클레아제와 마찬가지로 DNA를 절단하는 효소로 'Fokl'을 사용한다.Talen is a second-generation gene scissors derived from the plant pathogen Xanthmonas. Since the amino acid sequence constituting the Talen matches the base sequence of the DNA to be cut, if the amino acid sequence of the Talen is changed, the base sequence of the DNA to be bound can also be changed, which makes it much easier to customize the protein. 'Fokl' is used as an enzyme that cuts DNA like the first.
크리스퍼는 3세대 유전자 가위로 세균의 천적인 바이러스를 막기 위해 구축한 일종의 면역 체계로서 작은 회문구조로 이루어져 있다. 가장 널리 사용되고 있는 CRISPR 시스템은 CRISPR/Cas9으로서 가이드 RNA가 표적하고자 하는 DNA의 20개 염기서열에 상보적으로 결합하고 Cas9(CRISPR associated protein 9) 단백질이 바로 뒤에 존재하는 DNA의 특정 염기서열을 인식하여 절단하는 방식이다. 최근에서는 4세대 유전자 가위로서 CRISPR/Cpf1이 이용되고 있다.CRISPR is a type of immune system that is built with third-generation gene scissors to prevent viruses, the natural enemy of bacteria, and consists of a small palindromic structure. The most widely used CRISPR system is CRISPR/Cas9, where guide RNA complementarily binds to 20 base sequences of the target DNA, and Cas9 (CRISPR associated protein 9) recognizes a specific base sequence of DNA immediately following. cutting method. Recently, CRISPR/Cpf1 has been used as the fourth-generation gene scissors.
또한, 상기 유전자 가위와 표적 서열과 유사한 주형(template) DNA를 동시에 세포에 도입하여 표적 서열 부위에 도입된 주형 DNA가 상동성 재조합(homologous recombination)으로 넉인되는 방식을 이용하여, 표적 서열을 넉아웃 시킬 수 있다.In addition, using a method in which the gene scissors and a template DNA similar to the target sequence are simultaneously introduced into cells, and the template DNA introduced into the target sequence site is knocked in by homologous recombination, the target sequence is knocked out can do it
구체적으로 본 발명에서는 CCR5 및 CXCR4 유전자 가이드 RNA가 함께 포함된 발현 벡터 또는 CCR5 및 CXCR4 유전자 가이드 RNA가 각각 별개로 포함된 발현 벡터의 조합을 포함하는 CRISPR/Cas9 시스템을 이용하여 CCR5 및 CXCR4의 발현수준을 내재적 발현 수준에 비하여 감소시킬 수 있고, 상기 감소는 CCR5 및 CXCR4 유전자를 동시에 넉아웃시키는 것일 수 있으나, 이에 제한되는 것은 아니다.Specifically, in the present invention, the expression level of CCR5 and CXCR4 using the CRISPR/Cas9 system including an expression vector containing both CCR5 and CXCR4 gene guide RNAs or a combination of expression vectors containing separately CCR5 and CXCR4 gene guide RNAs. may be reduced compared to the endogenous expression level, and the reduction may be to simultaneously knockout the CCR5 and CXCR4 genes, but is not limited thereto.
또한, 본 발명에서 (a) 단계에서 분리된 세포에 CCR5 및 CXCR4의 발현수준을 내재적 발현 수준에 비하여 감소시키는 단계는 CCR5 및 CXCR4 넉아웃용 조성물을 이용하는 것을 특징으로 하는 것일 수 있고, 상기 CCR5 및 CXCR4 넉아웃용 조성물은 (a) 서열번호 1의 염기서열 또는 이와 상보적인 염기서열로 이루어진 가이드 RNA를 암호화하는 분리된 폴리뉴클레오티드를 포함하는 발현 벡터; 및 (b) 서열번호 2의 염기서열 또는 이와 상보적인 염기서열로 이루어진 가이드 RNA를 암호화하는 분리된 폴리뉴클레오티드를 포함하는 발현벡터를 포함하는 것일 수 있다.In addition, in the present invention, the step of reducing the expression level of CCR5 and CXCR4 in the cells isolated in step (a) compared to the intrinsic expression level may be characterized by using a composition for knockout of CCR5 and CXCR4, and the CCR5 and The composition for CXCR4 knockout includes (a) an expression vector comprising an isolated polynucleotide encoding a guide RNA consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence complementary thereto; and (b) an expression vector comprising an isolated polynucleotide encoding a guide RNA comprising the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence complementary thereto.
상기 서열번호 1의 염기서열 또는 이와 상보적인 염기서열로 이루어진 가이드 RNA는 HIV 감염에 도움을 주는 공-수용체 중 하나인 CCR5 유전자를 표적으로 하고, 상기 서열번호 2의 염기서열 또는 이와 상보적인 염기서열로 이루어진 가이드 RNA는 또 다른 공-수용체인 CXCR4 유전자를 표적으로 한다.The guide RNA consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence complementary thereto targets the CCR5 gene, which is one of the co-receptors that help HIV infection, and the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence complementary thereto The guide RNA consisting of CXCR4 gene, which is another co-receptor, is targeted.
본 발명에서는 HIV 감염에 도움을 주는 공-수용체인 CCR5 및 CXCR4 유전자가 모두 넉아웃된 조혈모세포를 제조하였는 바, 이를 HIV가 감염된 환자에게 이식하면 상기 조혈모세포는 CCR5 및 CXCR4 유전자가 모두 넉아웃된 T 세포 등의 면역세포를 만들 수 있으므로, HIV 감염에 저항성을 가지게 되어 HIV에 의해 유발된 AIDS 등을 치료할 수 있게 된다.In the present invention, hematopoietic stem cells in which both the CCR5 and CXCR4 genes, which are co-receptors that help HIV infection, are knocked out were prepared. When transplanted into an HIV-infected patient, the hematopoietic stem cells are both CCR5 and CXCR4 genes knocked out. Since immune cells such as T cells can be made, it becomes resistant to HIV infection, and thus it is possible to treat AIDS, etc. caused by HIV.
본 발명에서 용어, “RNA-가이드 뉴클레아제”는 목적하는 유전체 상의 특정위치를 인식하여 절단할 수 있는 뉴클레아제로서, 특히 가이드 RNA에 의해 표적 특이성을 갖는 뉴클레아제를 말한다. 상기 RNA-가이드 뉴클레아제는 이에 제한되는 것은 아니나, 구체적으로 미생물 면역체계인 CRISPR에서 유래한 Cas9 (CRISPR-Associated Protein 9) 뉴클레아제 (nuclease), 이의 변이체인 Cas9 니케이즈 (nickase) 및 Cpf1 뉴클레아제를 포함할 수 있다.As used herein, the term “RNA-guided nuclease” refers to a nuclease capable of recognizing and cleaving a specific position on a desired genome, particularly a nuclease having target specificity by a guide RNA. The RNA-guided nuclease is not limited thereto, but specifically Cas9 (CRISPR-Associated Protein 9) nuclease derived from CRISPR, which is a microbial immune system, and its variants, Cas9 nickase and Cpf1 nucleases.
본 발명에서 용어, "Cas 단백질"은 CRISPR/Cas 시스템의 주요 단백질 구성요소로, 활성화된 엔도뉴클레아제로 작용할 수 있는 단백질이다. 상기 Cas 단백질은 crRNA (CRISPR RNA) 및 tracrRNA (trans-activating crRNA)와 복합체를 형성하여 이의 활성을 나타낼 수 있다.As used herein, the term "Cas protein" is a major protein component of the CRISPR/Cas system, and is a protein that can act as an activated endonuclease. The Cas protein may form a complex with crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA) to exhibit its activity.
상기 Cas9 뉴클레아제는 인간 세포를 비롯한 동식물 세포의 유전체에서 특정 염기서열을 인식해 이중나선절단 (double strand break, DSB)을 일으킨다. 상기 이중나선절단은 DNA의 이중 나선을 잘라 둔단 (blunt end) 또는 점착종단 (cohesive end)을 만드는 것을 모두 포함한다. DSB는 세포 내에서 상동재조합 (homologous recombination) 또는 비상동재접합 (non-homologous end-joining, NHEJ) 기작에 의해 효율적으로 수선되는데 이 과정에 연구자가 원하는 변이를 표적 장소에 도입할 수 있다. 상기 RNA-가이드 뉴클레아제는 인공적인, 혹은 조작된 비자연적으로 발생된 (non-naturally occurring)것일 수 있다.The Cas9 nuclease causes a double strand break (DSB) by recognizing a specific nucleotide sequence in the genome of animal and plant cells including human cells. The double helix cutting includes cutting the double helix of DNA to make a blunt end or a cohesive end. DSBs are efficiently repaired in cells by homologous recombination or non-homologous end-joining (NHEJ) mechanisms. In this process, researchers can introduce desired mutations into target sites. The RNA-guided nuclease may be artificial or engineered non-naturally occurring.
상기 Cas9 니케이즈는 Cas9 뉴클레아제의 촉매적 도메인들 중 1개에 돌연변이 1개 이상을 포함하는데, 여기서 상기 돌연변이 1개 이상은 RuvC 도메인 내 D10A, E762A 및 D986A로 이루어진 군으로부터 선택되거나, 또는 상기 돌연변이 1개 이상은 HNH 도메인 내 H840A, N854A 및 N863A로 이루어진 군으로부터 선택된다.The Cas9 nickase comprises at least one mutation in one of the catalytic domains of a Cas9 nuclease, wherein the at least one mutation is selected from the group consisting of D10A, E762A and D986A in the RuvC domain, or The one or more mutations are selected from the group consisting of H840A, N854A and N863A in the HNH domain.
본 발명에서 상기 Cas9 니케이즈는 D10A 돌연변이를 가지는 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 Cas9 니케이즈는 Cas9 뉴클레아제와는 달리 단일가닥 절단 (single strand break)을 일으킨다. 따라서, Cas9 니케이즈가 작동하기 위해서는 두 개의 가이드 RNA를 필요로 하며, 쌍 (pair)으로서 기능한다. 상기 두 개의 가이드 RNA는 각각의 표적 서열에 대해 CRISPR 복합체의 서열 특이적 결합을 지시하고, 각 표적 서열 근처의 DNA 듀플렉스의 한 가닥의 절단을 지시하여, 서로 다른 DNA 가닥에 두 개의 틈 (nick)을 유도할 수 있다.In the present invention, the Cas9 nickase may have a D10A mutation, but is not limited thereto. The Cas9 nickase causes a single strand break unlike Cas9 nucleases. Thus, the Cas9 kinase requires two guide RNAs to function and function as a pair. The two guide RNAs direct sequence-specific binding of the CRISPR complex to each target sequence and direct cleavage of one strand of the DNA duplex near each target sequence, resulting in two nicks in different DNA strands. can induce
Cas 단백질 또는 유전자 정보는 NCBI (National Center for Biotechnology Information)의 GenBank와 같은 공지의 데이터 베이스에서 얻을 수 있다. 구체적으로, 상기 Cas 단백질은 Cas9 단백질일 수 있다. 또한, 상기 Cas 단백질은 스타필로코커스 (Staphylococcus) 속, 스트렙토코커스(Streptococcus) 속, 네이세리아 (Neisseria) 속, 파스테우렐라 (Pasteurella) 속, 프란시셀라 (Francisella) 속, 캄필로박터 (Campylobacter) 속 유래의 Cas 단백질일 수 있으나, 상기 기술된 예에 본 발명이 제한되는 것은 아니다. Cas protein or gene information can be obtained from a known database such as GenBank of the National Center for Biotechnology Information (NCBI). Specifically, the Cas protein may be a Cas9 protein. In addition, the Cas protein is Staphylococcus genus, Streptococcus genus, Neisseria genus, Pasteurella genus, Francisella genus, Campylobacter) It may be a Cas protein derived from the genus, but the present invention is not limited to the examples described above.
또한, 본 발명의 용어 "Cpf1 뉴클레아제"는 Francisella novicida에서 유래된 것으로, crRNA과 복합체를 형성하여 이의 활성을 나타낼 수 있다. 또한, Cpf1 단백질의 구조는 Cas9 단백질과 달라 결합하는 RNA의 길이가 짧아 제작이 수월하며 정확성이 우수하다. 상기 Cpf1 단백질 또는 유전자 정보는 NCBI (National Center for Biotechnology Information)의 GenBank와 같은 공지의 데이터 베이스에서 얻을 수 있다.In addition, the term "Cpf1 nuclease" of the present invention is derived from Francisella novicida , and may form a complex with crRNA to exhibit its activity. In addition, the structure of the Cpf1 protein is different from that of the Cas9 protein, and the length of the binding RNA is short, making it easy to manufacture and excellent in accuracy. The Cpf1 protein or gene information can be obtained from a known database such as GenBank of the National Center for Biotechnology Information (NCBI).
본 발명자들은 상기 HIV(Human immunodeficiency virus) 감염을 치료하기 위한 CCR5/CXCR4 동시 넉아웃 조혈모세포를 제조하기 위해, CCR5 유전자 및 CXCR4 유전자 각각의 엑손 3의 표적 서열을 규명하였다(도 1). 본 발명에서 규명된 표적 위치는 CCR5 유전자의 경우 서열번호 1의 염기서열, CXCR4 유전자의 경우 서열번호 2의 염기서열을 가진다. 이에, 상기 서열번호 1 또는 이와 상보적인 염기서열로 이루어진 폴리뉴클레오티드는 CCR5 유전자에 대한 가이드 RNA를 암호화하고, 상기 서열번호 2 또는 이와 상보적인 염기서열로 이루어진 폴리뉴클레오티드는 CXCR4 유전자에 대한 가이드 RNA를 암호화하는 것일 수 있으며, 상기 폴리뉴클레오티드를 이용하여 가이드 RNA를 제조할 수 있다.The present inventors identified the target sequence of exon 3 of each of the CCR5 gene and the CXCR4 gene in order to prepare CCR5/CXCR4 simultaneous knockout hematopoietic stem cells for treating the human immunodeficiency virus (HIV) infection ( FIG. 1 ). The target position identified in the present invention has the nucleotide sequence of SEQ ID NO: 1 in the case of the CCR5 gene and the nucleotide sequence of SEQ ID NO: 2 in the case of the CXCR4 gene. Accordingly, the polynucleotide consisting of SEQ ID NO: 1 or a nucleotide sequence complementary thereto encodes a guide RNA for the CCR5 gene, and the polynucleotide consisting of SEQ ID NO: 2 or a nucleotide sequence complementary thereto encodes a guide RNA for the CXCR4 gene and can be used to prepare a guide RNA using the polynucleotide.
본 발명의 발현벡터는 추가적으로 Cas9 뉴클레아제, Cas9 니케이즈 또는 Cpf1 뉴클레아제를 암호화하는 것일 수 있다. 즉, Cas9 단백질 또는 Cpf1 단백질과 가이드 RNA가 함께 존재하는 경우에 표적 대상의 DNA를 절단할 수 있으므로, Cas9 단백질 또는 Cpf1 단백질을 암호화하는 폴리뉴클레오티드가 가이드 RNA와 하나의 벡터에 포함되는 형태로 이용될 수 있고, 또는 Cas9 단백질 또는 Cpf1 단백질을 암호화하는 별개의 발현 벡터를 이용할 수도 있다. 상기 벡터는 바이러스 벡터, 플라스미드 벡터, 또는 아그로박테리움 (agrobacterium) 벡터일 수 있으나, 이에 제한되는 것은 아니다. 상기 가이드 RNA를 암호화하는 폴리뉴클레오티드 및/또는 Cas9 단백질 또는 Cpf1 단백질을 암호화하는 폴리뉴클레오티드를 포함하는 발현 벡터는 당업계에 공지된 클로닝 (clonning) 방법을 수행하여 제조될 수 있으며, 그 방법에 특별히 제한되는 것은 아니다.The expression vector of the present invention may additionally encode a Cas9 nuclease, a Cas9 nickase or a Cpf1 nuclease. That is, when the Cas9 protein or Cpf1 protein and the guide RNA exist together, the target DNA can be cut, so that the polynucleotide encoding the Cas9 protein or Cpf1 protein is included in the guide RNA and one vector. Alternatively, separate expression vectors encoding Cas9 protein or Cpf1 protein may be used. The vector may be a viral vector, a plasmid vector, or an Agrobacterium vector, but is not limited thereto. An expression vector comprising a polynucleotide encoding the guide RNA and/or a polynucleotide encoding a Cas9 protein or a Cpf1 protein may be prepared by performing a cloning method known in the art, and the method is particularly limited it's not going to be
본 발명의 상기 (a) 단계의 CCR5 및 CXCR4의 발현수준을 내재적 발현 수준에 비하여 감소된 분리된 세포를 조혈모세포로 분화시키는 단계는 상기 분리된 세포가 유도만능줄기세포인지 또는 체세포인지에 따라 다른 방법이 이용될 수 있다.The step of differentiating the isolated cells with reduced expression levels of CCR5 and CXCR4 compared to the intrinsic expression level of the step (a) of the present invention into hematopoietic stem cells differs depending on whether the isolated cells are induced pluripotent stem cells or somatic cells. method can be used.
먼저, 상기 분리된 세포가 유도만능줄기세포인 경우 in vitro 방식 또는 in vivo 방식으로 조혈모세포를 분화시킬 수 있다.First, when the isolated cells are induced pluripotent stem cells, hematopoietic stem cells can be differentiated in vitro or in vivo.
in vitro 방식의 경우에는 상기 분리된 세포를 조혈모세포 분화용 배지에서 배양하여 조혈모세포를 제조할 수 있으며, 본 발명자들은 iPSC spontaneous differentiation 배지 및 HSC 배양배지가 1:1로 혼합된 배지에서 상기 분리된 세포를 배양하는 경우 조혈모세포 분화 효율이 우수한 것을 확인하였다(실시예 3-1). 또한, 다른 in vitro 방식은 상기 분리된 세포를 골수기질세포(Bone marrow stromal cell)인 OP9 세포를 feeder cell로 사용하여 공배양하는 방식으로서, 상기 방식을 통해 조혈모세포를 제조할 수 있음을 확인하였다(실시예 3-1).In the case of the in vitro method, hematopoietic stem cells can be prepared by culturing the isolated cells in a medium for hematopoietic stem cell differentiation. When the cells were cultured, it was confirmed that the hematopoietic stem cell differentiation efficiency was excellent (Example 3-1). In addition, another in vitro method is a method of co-culturing the isolated cells using OP9 cells, which are bone marrow stromal cells, as a feeder cell, and it was confirmed that hematopoietic stem cells can be prepared through the method. (Example 3-1).
In vivo 방식의 경우에는, (i) 상기 (a) 단계의 분리된 세포를 마우스의 피하에 이식하여 테라토마(teratoma) 조직을 형성하는 단계; 및 (ii) 상기 (i) 단계에서 형성된 테라토마(teratoma) 조직에서 조혈모세포를 분리하는 단계를 포함하는 방법으로 조혈모세포를 분화시켜 제조할 수 있다. In the case of the in vivo method, (i) forming a teratoma tissue by implanting the cells isolated in step (a) subcutaneously in a mouse; and (ii) isolating hematopoietic stem cells from the teratoma tissue formed in step (i).
본 발명의 일 실시예를 살펴보면 테라토마 조직을 형성하기 위해 accutase 처리로 수득한 CCR5/CXCR4 동시 넉아웃 유도만능줄기세포를 마트리겔과 혼합하여 누드 마우스의 피하에 주입하는 방법을 통해 테라토마 조직을 형성하였고, 이 중 CD34+ 세포를 분리하여 조혈모세포를 제조하였다(실시예 3-2).Looking at an embodiment of the present invention, CCR5/CXCR4 simultaneous knockout-induced pluripotent stem cells obtained by accutase treatment to form teratoma tissue were mixed with Matrigel and subcutaneously injected into nude mice to form teratoma tissue. , Among them, CD34+ cells were isolated to prepare hematopoietic stem cells (Example 3-2).
또한, 상기 (a) 단계의 CCR5 및 CXCR4의 발현수준이 내재적 발현 수준에 비하여 감소된 분리된 세포가 체세포인 경우, 리프로그래밍을 통해 CCR5/CXCR4 넉아웃 유도만능줄기세포를 제조한 후, 상기 전술한 in vitro 방식 또는 in vivo 방식으로 조혈모세포를 분화시킬 수 있으며, 또는 직접 리프로그래밍을 통해 상기 체세포를 유도조혈모세포 유도하는 단계를 추가로 포함할 수 있다. In addition, when the isolated cells in which the expression levels of CCR5 and CXCR4 in step (a) are reduced compared to the intrinsic expression level are somatic cells, CCR5/CXCR4 knockout-induced pluripotent stem cells are prepared through reprogramming, and then the above-mentioned It is possible to differentiate the hematopoietic stem cells in an in vitro method or in an in vivo method, or may further include the step of inducing the somatic cells through direct reprogramming.
본 발명에서 용어, "리프로그래밍(Reprogramming)"은 특정 세포가 가지는 전체 유전자 발현 패턴 (Global gene expression pattern) 등을 조절하여, 목적하는 세포로 전환시키는 방법을 의미한다. 다시 말해서, 본 발명에서 리프로그래밍은 세포의 운명을 인위적으로 조작하여 전혀 다른 특성을 가지는 세포로 전환시키는 방법을 의미하며, 본 발명의 목적상 상기 리프로그래밍은 외래 유전자 혹은 RNA 또는 DNA를 포함하는 벡터를 세포에 도입함으로써 수행되는 것일 수 있다. 일례로, 리프로그래밍은 세포의 역분화(Dedifferentiation), 직접 리프로그래밍 (Direct reprogramming 또는 Direct conversion), 또는 직접 교차분화(Trans-differentiation)을 포함할 수 있으나, 이에 제한되는 것은 아니다.As used herein, the term "reprogramming" refers to a method of converting a target cell by controlling the global gene expression pattern of a specific cell. In other words, in the present invention, reprogramming refers to a method of artificially manipulating the fate of a cell to convert it into a cell having completely different characteristics, and for the purpose of the present invention, the reprogramming is a foreign gene or vector containing RNA or DNA. It may be carried out by introducing into the cell. For example, the reprogramming may include, but is not limited to, dedifferentiation of cells, direct reprogramming or direct conversion, or direct trans-differentiation.
본 발명에서 용어, "리프로그래밍 인자(Reprogramming factor)"는 최종적으로 또는 일정부분 분화된 세포에 도입되어 리프로그래밍을 유도할 수 있는 유전자(혹은 이를 코딩하는 폴리뉴클레오티드), 또는 단백질을 의미한다. 상기 리프로그래밍 인자는 리프로그래밍을 유도하고자 하는 그 목적 세포에 따라, 그리고 리프로그래밍이 유도되는 분리된 세포의 종류에 따라 달라질 수 있다. 예컨대, 조혈모세포를 제조하는 경우에 있어서 리프로그래밍 인자는, Lin28, Asc11, Pitx3, Nurr1, Lmx1a, Nanog, Oct3, Oct4, Sox2, Klf4 및 Myc으로 이루어진 군에서 선택된 하나 이상의 인자를 포함하는 것일 수 있으며, 그 외에도 조혈모세포를 제조할 수 있는 것으로 당업계에 공지된 모든 인자를 포함할 수 있다. 또한, 상기 리프로그래밍 인자를 이용하여 조혈모세포로의 직접 리프로그래밍을 유도할 수 있다. 직접 리프로그래밍 방법론에서 리프로그래밍 유전 인자를 이용하는 방법이 있는데, 당업자는 그 목적 세포 및 리프로그래밍되기 전의 세포의 종류에 따라 적절한 인자를 선택할 수 있고, 이는 당업계에 공지된 범위 내에서라면 모두 본 발명의 범위에 포함되는 것으로, 그 종류에 특별히 제한되지 않는다. 리프로그래밍 유전인자를 이용한 리르로그래밍은 세포가 가지는 전체 유전자 발현 패턴을 조절하여 목적 세포로의 전환을 유도하는 것이므로, 상기 리프로그래밍 유전 인자가 세포에 도입되고, 세포를 일정 기간 배양함으로써 목적하는 종류의 세포의 유전자 발현 패턴을 가지는 목적 세포로 초기 세포를 리프로그래밍시킬 수 있다.As used herein, the term "reprogramming factor" refers to a gene (or a polynucleotide encoding the same) or protein that can be finally or partially introduced into differentiated cells to induce reprogramming. The reprogramming factor may vary depending on the target cell to induce reprogramming and the type of isolated cell from which reprogramming is induced. For example, in the case of producing hematopoietic stem cells, the reprogramming factor may include one or more factors selected from the group consisting of Lin28, Asc11, Pitx3, Nurr1, Lmx1a, Nanog, Oct3, Oct4, Sox2, Klf4 and Myc. , and in addition, it may include all factors known in the art to be capable of producing hematopoietic stem cells. In addition, direct reprogramming into hematopoietic stem cells can be induced by using the reprogramming factor. In the direct reprogramming methodology, there is a method of using a reprogramming genetic factor. A person skilled in the art can select an appropriate factor according to the target cell and the type of cell before reprogramming, which are all within the range known in the art. It is included in the scope of, it is not particularly limited to the type. Since reprogramming using reprogramming genetic factors induces conversion to target cells by regulating the entire gene expression pattern of cells, the reprogramming genetic factors are introduced into cells and culturing the cells for a certain period of time to obtain the desired type. It is possible to reprogram the initial cell to a target cell having the gene expression pattern of the cell.
본 발명에서 용어, "직접 리프로그래밍"은 리프로그래밍 과정을 통해 전분화능을 가진 유도 만능 줄기세포를 제작하는 기술과는 차별화되며, 리프로그래밍 배양을 통해 직접적으로 원하는 목적 세포로의 직접 전환을 유도하는 기술이다. 기존 체세포 핵이식은 난자를 사용해야 하는 단점이 있어 다른 세포 리프로그래밍 기술에 비해 활용가능성이 낮으며, 유도 만능 줄기세포 리프로그래밍 기술을 이용하는 경우 태생적으로 전분화능 줄기세포를 경유하기 때문에, 미분화 세포의 잔류 여부 및 안전성 확보 여부가 검증되어야 한다는 단점이 있다. 하지만, 본 발명은 직접 리프로그래밍을 통해 목적 세포인 조혈모세포를 초기 세포로부터 직접 생산함으로써, 생산 시간, 비용, 효율, 안전성 등 상기 기술의 문제점을 극복할 수 있는 대안을 제공할 수 있을 것으로 기대된다. 본 발명의 목적상 직접 리프로그래밍은 직접 역분화, 직접 분화, 직접 전환, 직접교차분화, 교차분화 등과 혼용될 수 있다. 본 발명에서 직접 리프로그래밍은 조혈모세포로의 직접 역분화 또는 교차분화를 의미할 수 있다.As used herein, the term "direct reprogramming" is differentiated from the technology of producing induced pluripotent stem cells with pluripotency through the reprogramming process, and direct conversion to the desired target cell through reprogramming culture is used. it's technology Existing somatic cell nuclear transfer has the disadvantage of using an egg, so its applicability is low compared to other cell reprogramming technologies. In the case of using the induced pluripotent stem cell reprogramming technology, it naturally passes through pluripotent stem cells. There is a disadvantage in that the residual and safety must be verified. However, the present invention is expected to be able to provide an alternative that can overcome the problems of the above technology, such as production time, cost, efficiency, safety, etc., by directly producing hematopoietic stem cells, which are target cells, from initial cells through direct reprogramming. . For the purposes of the present invention, direct reprogramming may be used interchangeably with direct dedifferentiation, direct differentiation, direct conversion, direct cross-differentiation, cross-differentiation, and the like. In the present invention, direct reprogramming may refer to direct dedifferentiation or cross-differentiation into hematopoietic stem cells.
본 발명에서 상기 (a) 단계에서 분리된 세포는, serum-free, xeno-free, 및 gene-free 방식 중 선택된 어느 하나의 방법으로 배양하여 조혈모세포로 분화시킬 수 있다.In the present invention, the cells isolated in step (a) can be differentiated into hematopoietic stem cells by culturing them by any one method selected from serum-free, xeno-free, and gene-free methods.
본 발명에서 말하는 “프리(free)” 방식이란, 세포를 배양 시 특정 성분 또는 물질을 포함하지 않은 배지나 특정 기법을 사용하지 않고 세포를 배양하는 방식을 의미한다. As used herein, the “free” method refers to a method of culturing cells without using a medium or a specific technique that does not contain a specific component or substance when culturing the cells.
“세럼-프리(serum-free)” 방식이란, 혈청 및/또는 혈장을 포함하지 않은 배지에서 세포를 배양하는 것을 의미할 수 있다. 일 구현예로 성분이 특정되지 않은 혈청 (serum) 대신 이를 대체할 수 있는 성분이 특정된 물질 (예: 알부민) 을 사용하여 세포를 배양하는 것을 포함할 수 있다. The “serum-free” method may refer to culturing cells in a medium that does not contain serum and/or plasma. In one embodiment, it may include culturing the cells using a substance having a specified component (eg, albumin) that can replace it instead of serum (serum) of which the component is not specified.
“제노-프리(xeno-free)” 방식이란, 동물 유래 물질이 포함되지 않은 배지에서 세포를 배양하는 것을 의미할 수 있다. 일 구현예로, 마우스 세포인 OP9 세포 대신 동물유래 성분이 포함되어 있지 않은 STEMdiff hematopoietic basal medium (STEMCELL) 등의 배지를 사용하여 배양하는 것을 포함할 수 있다. The “xeno-free” method may mean culturing cells in a medium that does not contain animal-derived materials. In one embodiment, it may include culturing using a medium such as STEMdiff hematopoietic basal medium (STEMCELL) that does not contain animal-derived components instead of OP9 cells, which are mouse cells.
“진-프리(gene-free)” 방식이란, 세포에 유전적 변화를 가져올 수 있는 유전자 도입 방법을 사용하지 않고 세포를 배양하는 것을 의미할 수 있다. 일 구현예로, STEMdiff hematopoietic basal medium (STEMCELL) 등의 배지를 사용하여 배양하는 것을 포함할 수 있다. The “gene-free” method may refer to culturing cells without using a gene introduction method that may cause genetic changes in cells. In one embodiment, it may include culturing using a medium such as STEMdiff hematopoietic basal medium (STEMCELL).
본 발명에서는 Serum-free, xeno-free 및 gene-free 방식을 사용하여 조혈모세포를 제작하면, 실험결과의 일관성을 증진시키고, 체내 이식시 동물 유래 물질에 의한 불필요한 면역반응을 배제시키며, 외래 유전자에 의한 세포의 암화 가능성을 차단시킬 수 있다. In the present invention, when hematopoietic stem cells are produced using serum-free, xeno-free and gene-free methods, the consistency of experimental results is improved, unnecessary immune responses caused by animal-derived substances are excluded during transplantation in the body, and It can block the possibility of cancerous cells caused by
본 발명에서, 상기 (a) 단계에서 분리된 세포는, 항산화제를 포함하는 배지에서 배양하여 분화시킬 수 있다.In the present invention, the cells isolated in step (a) can be differentiated by culturing in a medium containing an antioxidant.
상기 항산화제는 분화된 세포의 생착능을 증진시킬 수 있는 구성은 제한없이 포함할 수 있다. 구체적으로, 셀레늄, 비타민 E, 카테킨, 라이코펜, 베타카로틴, 코엔자임 Q-10, EPA(eicosapentaenoic acid), DHA(docosahexanoic acid), 토코페롤, 비타민 C, L-리포산, 레티노산, 빈포세틴, 피카밀론, 퀸산, 아데닌 디뉴클레오티드, 아세틸-L-카르니틴, 디메틸아니모 에탄올, C-MED 100, Trolox, GSH, 프로토파낙사디올(protopanaxadiol), 및 진세노사이드 중 어느 하나 이상일 수 있다. 보다 구체적으로는, 진세노사이드 일 수 있다.The antioxidant may include without limitation a composition capable of enhancing the engraftment ability of differentiated cells. Specifically, selenium, vitamin E, catechin, lycopene, beta-carotene, coenzyme Q-10, EPA (eicosapentaenoic acid), DHA (docosahexanoic acid), tocopherol, vitamin C, L-lipoic acid, retinoic acid, vinpocetine, picamilon, It may be any one or more of quinic acid, adenine dinucleotide, acetyl-L-carnitine, dimethylanimo ethanol, C-MED 100, Trolox, GSH, protopanaxadiol, and ginsenoside. More specifically, it may be a ginsenoside.
상기 진세노사이드는 항산화 활성을 갖는 것이면 제한 없이 포함되며, 예를 들어 진세노사이드 Rg1, 진세노사이드 Rb1, 진세노사이드 Rc, 진세노사이드 Rd, 진세노사이드 Re 등이 있으나 이는 예시로서 이에 제한되지 않는다. 구체적으로는, 상기 진세노사이드는 진세노사이드 Rg1일 수 있으나, 이에 제한되지 않는다,The ginsenoside is included without limitation as long as it has antioxidant activity, for example, ginsenoside Rg1, ginsenoside Rb1, ginsenoside Rc, ginsenoside Rd, ginsenoside Re, etc., but this is limited to this as an example doesn't happen Specifically, the ginsenoside may be ginsenoside Rg1, but is not limited thereto.
상기 항산화제는 배지 내에 0 초과 100 uM 이하의 농도로 포함 될 수 있다. 구체적으로 0.1 nM 이상, 1 nM 이상, 10 nM 이상, 100 nM 이상 일 수 있다. 또는, 1nM 이상 100uM 이하, 100nM 이상 100uM 이하, 500nM 이상 50uM 이하 일 수 있으나, 이에 제한 되지는 않는다. The antioxidant may be included in a concentration of more than 0 and 100 uM or less in the medium. Specifically, it may be 0.1 nM or more, 1 nM or more, 10 nM or more, 100 nM or more. Alternatively, 1 nM or more and 100 uM or less, 100 nM or more and 100 uM or less, 500 nM or more and 50 uM or less, but is not limited thereto.
상기 배양 방법은 세포 생착능을 증진시키기 위해 사용될 수 있다.The culture method may be used to enhance cell engraftment ability.
본 발명에서 “생착능”이란 이식된 줄기세포가 분화된 후속세포, 이식된 후 체내에서 생산한 세포 또는 주입된 세포가 손실 혹은 손상된 세포를 대체할 수 있는 능력을 말한다. 생착능 증진에 따라 예컨대 유효 이식 줄기세포 수의 절감, 이에 따른 줄기세포 체외 배양 기간 단축 및 줄기세포의 안전성 증가와 제조원가 절감의 장점을 가질 수 있다.In the present invention, "engraftment ability" refers to the ability of the transplanted stem cells to replace the differentiated subsequent cells, the cells produced in the body after transplantation, or the injected cells to replace the lost or damaged cells. According to the enhancement of engraftment ability, for example, it can have advantages of reducing the number of effective transplanted stem cells, shortening the in vitro culture period of stem cells, increasing the safety of stem cells, and reducing manufacturing costs.
본 발명의 일 구현예에서는 제조된 유도만능줄기세포를 조혈모세포로 분화하는 단계에서 serum-free, xeno-free 및 gene-free 방식으로 배양함으로써 분화된 세포의 생착능이 향상된 것을 확인하였는 바, 본 발명의 다른 하나의 양태는 줄기세포를 serum-free, xeno-free, 및 gene-free 방식으로 배양하여 분화된 세포의 생착능을 향상시키는 방법을 제공한다. In one embodiment of the present invention, it was confirmed that the engraftment ability of the differentiated cells was improved by culturing the prepared pluripotent stem cells into hematopoietic stem cells in a serum-free, xeno-free and gene-free manner. Another aspect provides a method for improving the engraftment ability of differentiated cells by culturing stem cells in a serum-free, xeno-free, and gene-free manner.
상기 줄기세포는 만능 줄기 세포(totipotent stem cell), 전분화능 줄기세포 (pluripotent stem cell), 다분화능 줄기세포(multipotent stem cell) 모두 포함하며 유도만능줄기세포, 성체줄기세포, 골수세포, 중배엽 줄기세포 등 분화능이 한정된 줄기세포 뿐 아니라 분화능을 갖는 것이면 제한없이 포함할 수 있다.The stem cells include all of pluripotent stem cells, pluripotent stem cells, and multipotent stem cells, and include induced pluripotent stem cells, adult stem cells, bone marrow cells, and mesoderm stem cells. As well as stem cells with limited differentiation ability, etc., as long as they have differentiation ability, they may be included without limitation.
본 발명의 다른 양태는 (a) 분리된 체세포로부터 직접 리프로그래밍을 통해 조혈모세포로 분화시키는 단계; 및 (b) 상기 (a) 단계의 조혈모세포의 CCR5 및 CXCR4 발현수준을 내재적 발현 수준에 비하여 감소시키는 단계를 포함하는, 조혈모세포 제조방법을 제공한다.Another aspect of the present invention comprises the steps of (a) differentiating into hematopoietic stem cells through direct reprogramming from the isolated somatic cells; and (b) reducing the CCR5 and CXCR4 expression levels of the hematopoietic stem cells of step (a) compared to the intrinsic expression level, providing a method for producing hematopoietic stem cells.
분리된 세포, 조혈모세포, 직접 리프로그래밍, CCR5, CXCR4 및 내재적 발현수준에 비하여 감소하는 단계에 대해서는 상기 설명한 바와 같다.Isolated cells, hematopoietic stem cells, direct reprogramming, CCR5, CXCR4 and the step of decreasing compared to the intrinsic expression level is as described above.
본 발명의 또 다른 양태는, 상기 조혈모세포 제조방법에 의해 제조된 조혈모세포를 제공한다.Another aspect of the present invention provides a hematopoietic stem cell produced by the method for producing a hematopoietic stem cell.
조혈모세포에 대해서는 상기 설명한 바와 같다.The hematopoietic stem cells are as described above.
본 발명의 또 다른 양태는, 상기 조혈모세포를 유효성분으로 포함하는, HIV 바이러스 감염 치료 또는 예방용 약학적 조성물을 제공한다.Another aspect of the present invention provides a pharmaceutical composition for treating or preventing HIV virus infection, comprising the hematopoietic stem cells as an active ingredient.
상기 HIV 바이러스 감염은 구체적으로 후천적면역결핍증(acquired immune deficiency syndrome: AIDS)일 수 있으나, 이에 제한되는 것은 아니다.The HIV virus infection may specifically be acquired immune deficiency syndrome (AIDS), but is not limited thereto.
본 발명의 용어 "예방"은 상기 조성물의 투여에 의해 HIV 감염을 억제시키거나 발생을 지연시키는 모든 행위를 의미한다. As used herein, the term “prevention” refers to any action that suppresses or delays the development of HIV infection by administering the composition.
본 발명의 용어, "치료"는 상기 조성물의 투여에 의해 HIV 감염에 의한 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다. As used herein, the term “treatment” refers to any action in which symptoms caused by HIV infection are improved or beneficially changed by administration of the composition.
상기 조성물은 약학적으로 허용 가능한 담체를 포함할 수 있다. The composition may include a pharmaceutically acceptable carrier.
상기 "약학적으로 허용 가능한 담체"란 생물체를 자극하지 않으면서, 주입되는 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 의미할 수 있다. 본 발명에 사용 가능한 상기 담체의 종류는 특별히 제한되지 아니하며 당해 기술 분야에서 통상적으로 사용되고 약학적으로 허용되는 담체라면 어느 것이든 사용할 수 있다. 상기 담체의 비제한적인 예로는, 식염수, 멸균수, 링거액, 완충 식염수, 알부민 주사 용액, 덱스트로즈 용액, 말토 덱스트린 용액, 글리세롤, 에탄올 등을 들 수 있다. 이들은 단독으로 사용되거나 2 종 이상을 혼합하여 사용될 수 있다.The "pharmaceutically acceptable carrier" may mean a carrier or diluent that does not inhibit the biological activity and properties of the injected compound without irritating the organism. The type of carrier usable in the present invention is not particularly limited, and any carrier commonly used in the art and pharmaceutically acceptable may be used. Non-limiting examples of the carrier include saline, sterile water, Ringer's solution, buffered saline, albumin injection solution, dextrose solution, maltodextrin solution, glycerol, ethanol, and the like. These may be used alone or in mixture of two or more.
약학적으로 허용 가능한 담체를 포함하는 상기 조성물은 경구 또는 비경구의 여러 가지 제형일 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다.The composition comprising a pharmaceutically acceptable carrier may be in various oral or parenteral formulations. In the case of formulation, it is prepared using diluents or excipients such as commonly used fillers, extenders, binders, wetting agents, disintegrants, and surfactants.
상세하게는, 경구 투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 화합물에 적어도 하나 이상의 부형제, 예를 들면, 전분, 칼슘카보네이트, 수크로오스, 락토오스, 젤라틴 등을 섞어 조제될 수 있다. 또한, 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제들도 사용될 수 있다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데, 흔히 사용되는 단순 희석제인 물, 액체 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제 및 좌제가 포함된다. 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 오일, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔, 마크로골, 트윈 61, 카카오지, 라우린지, 글리세로젤라틴 등이 사용될 수 있다.Specifically, solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and such solid preparations include at least one excipient to the compound, for example, starch, calcium carbonate, sucrose, lactose. , gelatin, etc. may be mixed and prepared. In addition to simple excipients, lubricants such as magnesium stearate and talc may also be used. Liquid formulations for oral use include suspensions, solutions, emulsions, and syrups. In addition to water and liquid paraffin, which are commonly used simple diluents, various excipients such as wetting agents, sweeteners, fragrances, and preservatives may be included. have. Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized formulations and suppositories. Non-aqueous solvents and suspending agents include propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable esters such as ethyl oleate. As the base of the suppository, Witepsol, Macrogol, Tween 61, cacao butter, laurin fat, glycerogelatin, etc. may be used.
상기 조성물은 약학적으로 유효한 양으로 투여할 수 있다. The composition may be administered in a pharmaceutically effective amount.
상기 "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효 용량 수준은 개체 종류 및 중증도, 연령, 성별, 감염된 바이러스 종류, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 예를 들어, 상기 조성물 또는 이들의 약학적으로 허용 가능한 염은 각각 1일 0.0001 내지 1000 mg/kg으로, 바람직하게는 0.001 내지 100 mg/kg으로 투여할 수 있다.The "pharmaceutically effective amount" means an amount sufficient to treat a disease with a reasonable benefit/risk ratio applicable to medical treatment, and the effective dose level is dependent on the individual type and severity, age, sex, type of virus infected, and drug. Activity, sensitivity to drug, time of administration, route of administration and excretion rate, duration of treatment, factors including concomitant drugs, and other factors well known in the medical field. For example, the composition or a pharmaceutically acceptable salt thereof may be administered at 0.0001 to 1000 mg/kg per day, preferably 0.001 to 100 mg/kg, respectively.
상기 투여는 어떠한 적절한 방법으로 환자에게 본 발명의 조성물을 도입하는 것을 의미하며, 상기 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 복강 내 투여, 정맥 내 투여, 근육 내 투여, 피하 투여, 피내 투여, 경구 투여, 국소 투여, 비 내 투여될 수 있으나, 이에 제한되지는 않는다.The administration means introducing the composition of the present invention to the patient by any suitable method, and the administration route of the composition may be administered through any general route as long as it can reach the target tissue. Intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, oral administration, topical administration, may be administered intranasally, but is not limited thereto.
본 발명의 조성물을 매일 투여 또는 간헐적으로 투여해도 좋고, 1일당 투여 횟수는 1회 또는 2~3회로 나누어 투여하는 것이 가능하다. 두 유효성분이 각각 단제인 경우의 투여횟수는 같은 횟수여도 좋고, 다른 횟수로 해도 된다. 또한, 본 발명의 조성물은 암의 예방 또는 치료를 위하여 단독으로, 또는 다른 약물 치료와 병용하여 사용할 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 당업자에 의해 용이하게 결정될 수 있다.The composition of the present invention may be administered daily or intermittently, and the number of administrations per day may be administered once or divided into two to three times. When the two active ingredients are each single agent, the number of administrations may be the same or different. In addition, the composition of the present invention may be used alone or in combination with other drug treatments for the prevention or treatment of cancer. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect with a minimum amount without side effects, and can be easily determined by those skilled in the art.
상기 개체란, 암이 발병하였거나 발병할 수 있는 인간과, 원숭이, 소, 말, 양, 돼지, 닭, 칠면조, 메추라기, 고양이, 개, 마우스, 쥐, 토끼 또는 기니아피그를 포함한 모든 동물을 의미한다. 본 발명의 약학적 조성물을 개체에게 투여함으로써 상기 질환을 효과적으로 예방 또는 치료할 수 있다면 개체의 종류는 제한없이 포함된다. The subject means any animal, including humans, monkeys, cows, horses, sheep, pigs, chickens, turkeys, quails, cats, dogs, mice, rats, rabbits or guinea pigs that have or can develop cancer. . If the disease can be effectively prevented or treated by administering the pharmaceutical composition of the present invention to the subject, the type of subject is included without limitation.
본 발명의 또 다른 양태는, 상기 조혈모세포를 유효성분으로 포함하는, 세포치료제를 제공한다.Another aspect of the present invention provides a cell therapy agent comprising the hematopoietic stem cells as an active ingredient.
조혈모세포에 대해서는 상기 설명한 바와 같다.The hematopoietic stem cells are as described above.
본 발명의 용어, "세포 치료제"는 개체로부터 분리, 배양 및 특수한 조작을 통해 제조된 세포 및 조직으로 치료, 진단 및 예방의 목적으로 사용되는 의약품(미국 FDA 규정)으로서, 세포 혹은 조직의 기능을 복원시키기 위하여 살아있는 자가, 동종, 또는 이종 세포를 체외에서 증식 선별하거나 다른 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통하여 치료, 진단 및 예방의 목적으로 사용되는 의약품을 의미한다.As used herein, the term "cell therapeutic" refers to cells and tissues manufactured through isolation, culture, and special manipulation from an individual, and is a drug used for treatment, diagnosis, and prevention purposes (US FDA regulations), and the function of cells or tissues is reduced. It refers to a drug used for the purpose of treatment, diagnosis, and prevention through a series of actions such as proliferating and selecting living autologous, allogeneic, or xenogeneic cells in vitro or changing the biological properties of cells in other ways to restore them.
본 발명의 다른 하나의 양태는, 상기 약학적 조성물 또는 세포치료제를 이를 필요로 하는 개체에게 투여하는 단계를 포함하는, 암의 예방 또는 치료방법을 제공한다. Another aspect of the present invention provides a method for preventing or treating cancer, comprising administering the pharmaceutical composition or cell therapy to an individual in need thereof.
상기 "개체", "투여", "암", 및 "치료"는 전술한 바와 같다.The “subject”, “administration”, “cancer”, and “treatment” are the same as described above.
본 발명의 다른 하나의 양태는, 줄기세포를 세럼-프리(serum-free), 제노-프리(xeno-free) 및 진-프리(gene-free) 방식으로 배양하여 줄기세포의 생착능을 향상시키는 방법을 제공한다.Another aspect of the present invention is to improve the engraftment ability of stem cells by culturing stem cells in serum-free, xeno-free and gene-free methods. provide a way
본 발명의 다른 하나의 양태는, 줄기세포를 항산화제를 포함하는 배지에서 배양하는 것을 포함하는, 줄기세포의 생착능을 향상시키는 방법을 제공한다.Another aspect of the present invention provides a method for improving the engraftment ability of stem cells, comprising culturing the stem cells in a medium containing an antioxidant.
상기 방법은, 조합하여 사용 할 수 있다.The above methods can be used in combination.
상기 줄기세포는, 구체적으로는 iPSC로부터 유래한 세포일 수 있고, 보다 구체적으로는 iPSC 유래 조혈모세포 일 수 있다. 일 구현예로서, 본 발명의 조혈모세포 제조방법을 통해 제조된, 조혈모세포일 수 있으나, 이에 제한되지 않는다.The stem cells may be specifically iPSC-derived cells, and more specifically iPSC-derived hematopoietic stem cells. In one embodiment, it may be a hematopoietic stem cell, prepared through the method for producing hematopoietic stem cells of the present invention, but is not limited thereto.
상기 항산화제, 줄기세포를 세럼-프리(serum-free), 제노-프리(xeno-free) 및 진-프리(gene-free) 방식 배양은 전술한 바와 같다.The antioxidant and stem cells were cultured in a serum-free, xeno-free and gene-free manner as described above.
상기 배양 방법을 이용하는 경우, 줄기세포의 콜로니 형성능, 줄기세포의 생착능 등이 향상 될 수 있다. 상기 배양 방법은 그 밖에 줄기세포의 바람직한 특성을 부여할 수 있다.When the culture method is used, the colony-forming ability of the stem cells, the engraftment ability of the stem cells, etc. may be improved. The culturing method may impart desirable characteristics of other stem cells.
이하, 실시예를 통하여 본 발명의 구성 및 효과를 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 실시예 및 실험예에 의해 제한되는 것은 아니다.Hereinafter, the configuration and effects of the present invention will be described in more detail through examples. These Examples are only for illustrating the present invention, and the scope of the present invention is not limited by the Examples and Experimental Examples.
실시예 1: CCR5 및 CXCR4 유전자 넉아웃 용도의 CRISPR/Cas9 제작Example 1: CRISPR/Cas9 construction for CCR5 and CXCR4 gene knockout
실시예 1-1: CCR5 및 CXCR4의 표적 위치 선정 및 가이드 RNA 제작Example 1-1: CCR5 and CXCR4 target location selection and guide RNA production
CRISPR/Cas9 시스템을 이용하여 CCR5 및 CXCR4 유전자를 넉아웃시키기 위해 상기 CCR5 및 CXCR4 유전자를 표적으로 하는 가이드 RNA를 제작하였다. 후보 가이드RNA 서열을 표 1에 기재하였다.In order to knock out the CCR5 and CXCR4 genes using the CRISPR/Cas9 system, guide RNAs targeting the CCR5 and CXCR4 genes were constructed. Candidate guide RNA sequences are listed in Table 1.
Figure PCTKR2019016796-appb-T000001
Figure PCTKR2019016796-appb-T000001
구체적으로, CCR5 또는 CXCR4 유전자의 엑손 3의 특정 서열을 표적으로 하여 가이드 RNA를 설계하였고(도 1a), 상기 후보 가이드 RNA 서열 중 넉아웃 효율이 우수한 가이드 RNA인 CCR5-1 및 CXCR4-1을 각각 CCR5 및 CXCR4 유전자 넉아웃을 위한 가이드 RNA로 선정하였다(도 1b 및 c).Specifically, a guide RNA was designed by targeting a specific sequence of exon 3 of the CCR5 or CXCR4 gene (Fig. 1a), and among the candidate guide RNA sequences, CCR5-1 and CXCR4-1, which are guide RNAs with excellent knockout efficiency, were used, respectively. It was selected as a guide RNA for knockout of CCR5 and CXCR4 genes ( FIGS. 1b and c ).
그 후, pCas-guide 벡터를 이용하여 상기 가이드 RNA가 포함된, 각각 CCR5 및 CXCR4 유전자 넉아웃 용도의 벡터를 제작하였다. 구체적으로, pCas-guide 플라스미드 벡터 1ug에 2개의 제한효소(BamH1 및 BsmB1) 을 각각 0.8ul씩 혼합하고 37℃에서 3시간 처리하여 절단하고, 상기 절단된 벡터의 탈인산화를 통한 자가-연결을 억제하기 위해 Antarctic phosphatase 1ul를 첨가한뒤 37℃에서 30분간 추가로 인큐베이션 하였다. 그 후, 겔 정제 칼럼을 이용하여 상기 절단된 벡터를 정제하여, 10mM Tris 완충액에 용출시키고, 상기에서 합성한 가이드 RNA 서열을 절단된 벡터에 연결시켜 제작하였다.Then, using the pCas-guide vector, vectors containing the guide RNA for knockout of CCR5 and CXCR4 genes, respectively, were prepared. Specifically, 0.8 ul of two restriction enzymes (BamH1 and BsmB1) were mixed with 1 ug of the pCas-guide plasmid vector, respectively, and treated at 37° C. for 3 hours for cleavage, and self-linking through dephosphorylation of the cleaved vector was inhibited. 1ul of Antarctic phosphatase was added and incubated for 30 minutes at 37°C. Thereafter, the cleaved vector was purified using a gel purification column, eluted in 10 mM Tris buffer, and the synthesized guide RNA sequence was ligated to the cleaved vector.
실시예 1-2: CRISPR/Cas9 시스템을 이용한 CCR5 및 CXCR4 유전자 넉아웃 확인Example 1-2: CCR5 and CXCR4 gene knockout confirmation using CRISPR/Cas9 system
상기 실시예 1-1에서 제작한 CCR5 및 CXCR4 넉아웃을 위한 CRISPR/Cas9 벡터가 실제로 CCR5 및 CXCR5 유전자의 발현을 억제할 수 있는지 확인하기 위해 하기와 같은 실험을 수행하였다.In order to confirm that the CRISPR/Cas9 vector for CCR5 and CXCR4 knockout prepared in Example 1-1 can actually inhibit the expression of CCR5 and CXCR5 genes, the following experiment was performed.
먼저, 상기 CRISPR/Cas9 벡터를 도입하기 위한 조건을 알아보기 위해, 다양한 방식으로 상기 벡터를 세포에 도입하여 형질전환 효율을 확인하였다. 구체적으로, Lipopectamine 3000, Convoy 및 전기천공법(electroporation) 방법을 이용하여 형질전환을 실시한 결과, 전기천공법으로 형질전환을 실시하였을 때 효율이 가장 우수한 것을 확인하였다(도 2a). 또한, CRISPR/Cas9 벡터 도입 효율이 우수한 전기천공법 조건을 확립하기 위해 GFP가 포함된 CRISPR/Cas9 벡터를 이용하여 다양한 조건으로 형질전환을 수행하여 GFP 발현량을 확인하였다(도 2b 및 c).First, in order to examine the conditions for introducing the CRISPR/Cas9 vector, the transformation efficiency was confirmed by introducing the vector into cells in various ways. Specifically, as a result of transformation using Lipopectamine 3000, Convoy, and an electroporation method, it was confirmed that the best efficiency was achieved when transformation was performed by the electroporation method (FIG. 2a). In addition, in order to establish electroporation conditions with excellent CRISPR/Cas9 vector introduction efficiency, transformation was performed under various conditions using a CRISPR/Cas9 vector containing GFP to confirm the GFP expression level ( FIGS. 2b and c ).
그 결과, Pulse voltage=1450, Pulse width=30, Pulse No.= 2인 경우 CRISPR/Cas9 벡터 도입 효율이 가장 우수한 것을 확인하였는 바, 이하의 실험에서는 상기 조건으로 전기천공법을 수행하였다.As a result, when Pulse voltage = 1450, Pulse width = 30, and Pulse No. = 2, it was confirmed that the CRISPR/Cas9 vector introduction efficiency was the best. In the following experiments, the electroporation method was performed under the above conditions.
그 후, 상기 실험결과를 토대로, 실시예 1-1에서 제작한 CCR5 및 CXCR4 넉아웃용 CRISPR/Cas9을 전기천공법을 이용하여 세포에 도입한 후 상기 CCR5 및 CXCR4 유전자의 넉아웃 여부를 확인하기 위해 CCR5 또는 CXCR4 유전자 부분을 증폭하기 위하여 표 2의 프라이머를 이용하여 PCR 반응을 수행하였고(도 2a), 이로부터 얻은 PCR 생산물의 서열 분석을 통해 CCR5 및 CXCR4 유전자의 넉아웃 여부를 확인하였다.After that, based on the experimental results, CRISPR/Cas9 for CCR5 and CXCR4 knockout prepared in Example 1-1 was introduced into cells by electroporation, and then the CCR5 and CXCR4 genes were knocked out. To amplify the CCR5 or CXCR4 gene portion, a PCR reaction was performed using the primers in Table 2 (FIG. 2a), and the knockout of the CCR5 and CXCR4 genes was confirmed through sequence analysis of the PCR product obtained therefrom.
구체적으로, AccuPrep Genomic DNA Extraction Kit (Bioneer)를 이용하여 CCR5 및 CXCR4 넉아웃용 벡터가 도입된 세포에서 gDNA를 분리하였다. AccuPower PCR Premix (Bioneer), CCR5 및 CXCR4 정방향 및 역방향 프라이머(표 2) 및 Genetouch Thermal Cycler(Hanzhou bioer technology)를 이용하여 분리된 gDNA를 주형으로 하여 PCR 증폭을 수행하였다. PCR이 끝난뒤 겔 전기영동(Mupid)를 통해 유전자 증폭 여부를 확인하였으며(도 3a), 상기 PCR 생산물을 MEGAquick-spin plus fragment DNA purification kit(iNtRON) 를 이용하여 정제하였다. 상기 정제된 PCR 생산물은 PCR에 사용한 정방향 프라이머와 함께 마크로젠(Seoul, Korea)에서 시퀀싱을 진행하였다(도 3b 및 c).Specifically, gDNA was isolated from cells into which CCR5 and CXCR4 knockout vectors were introduced using the AccuPrep Genomic DNA Extraction Kit (Bioneer). PCR amplification was performed using the gDNA isolated using AccuPower PCR Premix (Bioneer), CCR5 and CXCR4 forward and reverse primers (Table 2), and Genetouch Thermal Cycler (Hanzhou bioer technology) as a template. After PCR was completed, it was confirmed whether the gene was amplified through gel electrophoresis (Mupid) (FIG. 3a), and the PCR product was purified using MEGAquick-spin plus fragment DNA purification kit (iNtRON). The purified PCR product was sequenced in Macrogen (Seoul, Korea) together with the forward primer used for PCR (FIGS. 3b and c).
Figure PCTKR2019016796-appb-T000002
Figure PCTKR2019016796-appb-T000002
대조군 및 CRISPR/Cas9 벡터가 도입된 세포의 CCR5 유전자 부분이 증폭된 PCR 생산물의 서열 분석 결과, CRISPR/Cas9 벡터가 도입된 경우 CCR5 유전자 중 일부분이 결실된 것을 확인할 수 있었고(도 3b), 대조군 및 CRISPR/Cas9 벡터가 도입된 세포의 CXCR4 유전자 부분이 증폭된 PCR 생산물의 서열 분석 결과, CRISPR/Cas9 벡터가 도입된 경우 CXCR4 유전자 중 일부분이 결실된 것을 확인할 수 있었다(도 3c). 또한, 상기 CRISPR/Cas9 벡터가 도입된 경우, CXCR4 유전자가 monoallelic 및 biallelic 넉아웃됨을 확인하였다(도 4).As a result of sequence analysis of the PCR product in which the CCR5 gene portion of the control and CRISPR/Cas9 vector-introduced cells were amplified, it was confirmed that a portion of the CCR5 gene was deleted when the CRISPR/Cas9 vector was introduced ( FIG. 3b ), and the control and As a result of sequence analysis of the PCR product in which the CXCR4 gene portion of the CRISPR/Cas9 vector was introduced, it was confirmed that a portion of the CXCR4 gene was deleted when the CRISPR/Cas9 vector was introduced ( FIG. 3c ). In addition, when the CRISPR/Cas9 vector was introduced, it was confirmed that the CXCR4 gene was knocked out monoallelic and biallelic ( FIG. 4 ).
따라서, 상기 결과를 토대로 실시예 1-1에서 제작한 CRISPR/Cas9 벡터가 CCR5 및 CXCR4 유전자를 넉아웃시킴을 알 수 있다.Therefore, based on the above results, it can be seen that the CRISPR/Cas9 vector prepared in Example 1-1 knocked out the CCR5 and CXCR4 genes.
실시예 2: CCR5 및 CXCR4 유전자가 넉아웃된 iPSC 제작Example 2: Construction of iPSCs in which CCR5 and CXCR4 genes are knocked out
CCR5 및 CXCR4 유전자가 넉아웃된 유도만능줄기세포(iPSC)를 제작하기 위해 하기와 같은 실험을 수행하였다.The following experiment was performed to construct induced pluripotent stem cells (iPSCs) in which CCR5 and CXCR4 genes were knocked out.
구체적으로, 성인의 피부섬유아세포에 야마나카 인자(Oct3/4, Sox2, Klf4 및 c-Myc)을 Multiplicity of infection (MOI) 5, 10, 20으로 도입하고 이를 배양하여 iPSC를 제작하였다. 상기 제작된 iPSC는 전형적인 콜로니 형태를 띄었고, 전분화능(pluripotency) 마커인 Oct4와 Nanog가 과발현됨을 확인하였다(도 5).Specifically, iPSCs were prepared by introducing Yamanaka factors (Oct3/4, Sox2, Klf4 and c-Myc) into adult skin fibroblasts at Multiplicity of infection (MOI) 5, 10, and 20, and culturing them. The prepared iPSC had a typical colony shape, and it was confirmed that Oct4 and Nanog, which are pluripotency markers, were overexpressed ( FIG. 5 ).
또한, Oct4와 Nanog의 전사 발현양을 확인하기 위해 qRT-PCR을 수행하였다.구체적으로, 상기 qRT-PCR을 수행하기 위해 PureLink RNA Mini Kit (Invitrogen)를 이용하여 세포 펠렛으로부터 mRNA를 분리하였고, AccuPower RT Premix(Bioneer)를 이용하여 분리된 mRNA로부터 cDNA를 합성하였다. 상기 cDNA, PowerUp SYBR Green Master Mix (Appliedbiosystems), Oct4 및 Nanog 정방향 및 역방향 프라이머(표 3) 및 증류수를 혼합하여 20 ul로 만들고, Quant Studio3 (Appliedbiosystems) 를 이용하여 PCR 반응을 수행하여, Oct4 및 Nanog 유전자의 상대적인 배수 값을 계산하였다.In addition, qRT-PCR was performed to confirm the transcriptional expression levels of Oct4 and Nanog. Specifically, mRNA was isolated from the cell pellet using PureLink RNA Mini Kit (Invitrogen) to perform the qRT-PCR, and AccuPower cDNA was synthesized from the isolated mRNA using RT Premix (Bioneer). The cDNA, PowerUp SYBR Green Master Mix (Appliedbiosystems), Oct4 and Nanog forward and reverse primers (Table 3) and distilled water were mixed to make 20 ul, and PCR reaction was performed using Quant Studio3 (Appliedbiosystems), Oct4 and Nanog The relative fold values of the genes were calculated.
Figure PCTKR2019016796-appb-T000003
Figure PCTKR2019016796-appb-T000003
또한, 상기 iPSC에 실시예 1-1에서 제작한 CRISPR/Cas9 벡터를 도입한 후, CCR5 및 CXCR4 유전자가 넉아웃된 것을 확인하기 위해, 실시예 1-2와 같이, CCR5 및 CXCR4 유전자 부분을 PCR로 증폭한 후, 상기 증폭된 PCR 생산물의 서열을 분석하였다.In addition, after introducing the CRISPR/Cas9 vector prepared in Example 1-1 into the iPSC, in order to confirm that the CCR5 and CXCR4 genes were knocked out, as in Example 1-2, the CCR5 and CXCR4 gene regions were PCR After amplification, the sequence of the amplified PCR product was analyzed.
그 결과, CCR5 및 CXCR4 유전자가 biallelic 넉아웃된 것을 확인하였다(도 6).As a result, it was confirmed that the CCR5 and CXCR4 genes were knocked out biallelic ( FIG. 6 ).
상기 CCR5 및 CXCR4 유전자가 biallelic 넉아웃된 iPSC(CCR5-/- CXCR4-/- iPSC)가 유도만능줄기세포의 특성을 유지하고 있는지 확인하기 위해, CCR5-/- CXCR4-/- iPSC에서 전분화능 마커인 Oct4, Sox2, Nanog, TRA-1-60의 발현량을 면역 염색법을 이용하여 확인하였다. To determine whether the biallelic knockout iPSCs of the CCR5 and CXCR4 genes (CCR5 -/- CXCR4 -/- iPSCs) maintain the characteristics of induced pluripotent stem cells, CCR5 -/- CXCR4 -/- iPSCs are pluripotency marker The expression levels of Oct4, Sox2, Nanog, and TRA-1-60 were confirmed by immunostaining.
구체적으로, 상기 면역 염색법은 하기와 같은 과정으로 수행하였다. 먼저, 고정(Fixation), 투과(permeabilization) 및 블락킹(blocking)이 완료된 상기 WT-iPSC와 CCR5-/- CXCR4-/- iPSC에 실험목적에 맞게 Alexa Fluor 488 conjugated 항-Oct4 (Millipore), Cy3 conjugated 항-Sox2 (Millipore), Alexa Fluor 488 conjugated 항-Nanog (Millipore), Cy3 conjugated 항-TRA-1-60 (Millipore) 1차 항체 (각각 1:100) 를 4℃에서 하루 동안 처리하였다. 다음날 PBS로 워싱 후 염색된 세포의 관찰은 Nikon ECLIPSE Ti-U 현미경 (Nikon)을 이용하였다. Excitation/emission 파장은 Alex Fluor 488이 488/525 nm, Cy3가 594/617 nm 였다. 상기 면역염색 결과, WT-iPSC에서 Oct4, Sox2, Nanog, TRA-1-60는 단백질 수준에서 과발현하고 있음을 확인하였다(도 7a).Specifically, the immunostaining method was performed as follows. First, Alexa Fluor 488 conjugated anti-Oct4 (Millipore), Cy3 to the WT-iPSC and CCR5 -/- CXCR4 -/- iPSC after fixation, permeabilization and blocking are completed for the purpose of the experiment Conjugated anti-Sox2 (Millipore), Alexa Fluor 488 conjugated anti-Nanog (Millipore), and Cy3 conjugated anti-TRA-1-60 (Millipore) primary antibodies (each 1:100) were treated at 4°C for one day. The next day, after washing with PBS, the stained cells were observed using a Nikon ECLIPSE Ti-U microscope (Nikon). Excitation/emission wavelengths were 488/525 nm for Alex Fluor 488 and 594/617 nm for Cy3. As a result of the immunostaining, it was confirmed that Oct4, Sox2, Nanog, and TRA-1-60 were overexpressed at the protein level in WT-iPSCs (FIG. 7a).
또한, 상기 CCR5-/- CXCR4-/- iPSC가 in vivo에서 3-germ layer로 분화되는 것을 확인하였고(도 7b), CCR5-/- CXCR4-/- iPSC를 분화시킨 세포에서 조혈모세포의 대표적 마커인 CD34가 발현하고 있음을 RT-PCR을 통해 확인하였는 바(도 7c), 본 발명에서 제조된 CCR5/CXCR4 넉아웃 iPSC는 in vivo에서도 전분화능을 갖는 것을 알 수 있다.In addition, the CCR5 - / - CXCR4 - / - iPSC that was confirmed to be differentiated into 3-germ layer from the in vivo (Fig. 7b), CCR5 - / - CXCR4 - / - in which differentiation of iPSC cells typical markers of hematopoietic stem cells As it was confirmed through RT-PCR that CD34 is expressed ( FIG. 7c ), it can be seen that the CCR5/CXCR4 knockout iPSC prepared in the present invention has pluripotency even in vivo.
실시예 3: CCR5 및 CXCR4가 넉아웃된 조혈모세포 제작Example 3: Construction of CCR5 and CXCR4 knockout hematopoietic stem cells
실시예 3-1: in vitro 방식을 이용한 조혈모세포 제작Example 3-1: Production of hematopoietic stem cells using an in vitro method
상기 실시예 2에서 제작된 CCR5/CXCR4 넉아웃 iPSC(CCR5-/- CXCR4-/- iPSC)를 in vitro 상에서 조혈모세포(hematopoietic stem cell)로 분화시키기 위해 하기와 같은 실험을 수행하였다.The following experiment was performed to differentiate the CCR5/CXCR4 knockout iPSC (CCR5 -/- CXCR4 -/- iPSC) prepared in Example 2 into hematopoietic stem cells in vitro.
먼저, 조혈모세포로 분화시키기 위한 배양 배지로서 iPSC spontaneous differentiation 배지[DMEM/F12+GlutaMAX-I (Gibco) 500 ml + Primocin (Invivogen) 1 ml + Knockout SR (Gibco) 125 ml] 및 HSC 배양배지[Stempro-34 SFM SFM (1X) (Gibco) 500 ml + Stempro-34 Nutrient Supplement (Gibco) 13ml + Glutamax-I (Gibco) 5 ml + Primocin (Invivogen) 1ml + SCF (R&D) 100 ng/ml + IL-3 (Gibco) 50 ng/ml + GM-CSF (Gibco) 25 ng/ml]를 1:1 (v/v) 로 혼합하였고, 상기 실시예 2에서 제조한 CCR5-/- CXCR4-/- iPSC를 배양체(embryoid body) 상태로 상기 혼합 배지에서 2주간 배양하였다.First, as a culture medium for differentiation into hematopoietic stem cells, iPSC spontaneous differentiation medium [DMEM/F12+GlutaMAX-I (Gibco) 500 ml + Primocin (Invivogen) 1 ml + Knockout SR (Gibco) 125 ml] and HSC culture medium [Stempro] -34 SFM SFM (1X) (Gibco) 500 ml + Stempro-34 Nutrient Supplement (Gibco) 13 ml + Glutamax-I (Gibco) 5 ml + Primocin (Invivogen) 1 ml + SCF (R&D) 100 ng/ml + IL-3 (Gibco) 50 ng/ml + GM-CSF (Gibco) 25 ng/ml] was mixed at 1:1 (v/v), and CCR5 −/− CXCR4 −/− iPSCs prepared in Example 2 were cultured (embryoid body) was cultured in the mixed medium for 2 weeks.
그 결과, 조혈모세포 마커인 CD34가 발현된 CD34+ 세포로의 분화가, 상기 혼합 배지로 분화시킨 경우 대조군(spontaneous differentiation)에 비해 약 20배 증가된 것을 확인하였는 바(도 8a), 조혈모세포로의 분화가 상기 혼합 배지 조건에서 증진됨을 확인하였다. As a result, it was confirmed that the differentiation into CD34 + cells expressing the hematopoietic stem cell marker CD34 was increased by about 20 times compared to the control (spontaneous differentiation) when differentiated with the mixed medium ( FIG. 8a ). It was confirmed that the differentiation of was enhanced in the mixed medium conditions.
또한, 골수기질세포(Bone marrow stromal cell)인 OP9 세포를 feeder cell로 사용하여 CCR5-/- CXCR4-/- iPSC를 분화시킨 결과, 조혈모세포의 형태를 가지면서(도 8b), 조혈모세포의 대표적인 마커인 CD34를 강하게 발현하고 있는 것을 확인하였다(도 8c). In addition, as a result of differentiating CCR5 -/- CXCR4 -/- iPSC using OP9 cells, which are bone marrow stromal cells, as a feeder cell, while having the form of hematopoietic stem cells (FIG. 8b), representative of hematopoietic stem cells It was confirmed that the marker CD34 was strongly expressed (FIG. 8c).
따라서, 이를 통해 본 발명에서 제조된 CCR5/CXCR4 넉아웃 iPSC이 in vitro 방식을 이용해서 조혈모세포로 분화될 수 있음을 알 수 있다.Therefore, it can be seen that the CCR5/CXCR4 knockout iPSC prepared in the present invention can be differentiated into hematopoietic stem cells using an in vitro method.
실시예 3-2: in vivo 방식을 이용한 조혈모세포 제작Example 3-2: Production of hematopoietic stem cells using in vivo method
상기 실시예 2에서 제작된 CCR5/CXCR4 넉아웃 iPSC(CCR5-/- CXCR4-/- iPSC)를 in vivo 상에서 조혈모세포(hematopoietic stem cell)로 분화시키기 위해, 상기 CCR5-/- CXCR4-/- iPSC를 누드 마우스에 주입하여 테라토마(teratoma)를 형성한 뒤, 상기 테라토마를 기계적/화학적 방법을 이용하여 분리시키고, 상기 분리된 테라토마에 CD34 항체를 결합시킨 뒤 MACS sorting 하여, CD34+ 세포인 분화된 CCR5-/- CXCR4-/- 조혈모세포를 수득하였다(도 9a).In order to differentiate the CCR5 / CXCR4 knockout iPSC (CCR5 -/- CXCR4 -/- iPSC) prepared in Example 2 into hematopoietic stem cells in vivo, the CCR5 -/- CXCR4 -/- iPSC was injected into nude mice to form a teratoma, the teratoma was separated using a mechanical/chemical method, and a CD34 antibody was bound to the separated teratoma, followed by MACS sorting, followed by CD34 + cell differentiated CCR5 -/- CXCR4 -/- hematopoietic stem cells were obtained (FIG. 9a).
구체적으로, 테라토마 형성을 위해 약 1x105 내지 5x105개의 CCR5/CXCR4 동시 넉아웃 iPSC를 accutase로 뗀 뒤, 100ul의 마트리겔(matrigel)과 혼합하여 Balb/c 누드 마우스의 피하에 이식한 결과, 8-12주 후에 100%의 테라토마 형성율을 보였다 (Wild type iPSC-2/2, 동시 넉아웃 iPSC-4/4)(도 9b).Specifically, for teratoma formation, about 1x10 5 to 5x10 5 CCR5/CXCR4 simultaneous knockout iPSCs were released with accutase, mixed with 100ul of matrigel, and implanted subcutaneously in Balb/c nude mice. After -12 weeks, it showed a teratoma formation rate of 100% (Wild type iPSC-2/2, simultaneous knockout iPSC-4/4) (FIG. 9b).
이는 기존의 일반적인 테라토마 형성율에 비해 비약적으로 향상된 결과로서, 일반적으로 테라토마 형성을 위해 마우스에 주입하는 iPSC 숫자인 1x106 내지 5x106개에 비해 약 10% 수준의 적은 양의 세포를 주입했음에도 불구하고 높은 테라토마 형성율을 보였다. 상기 결과는 iPSC 콜로니를 배양 접시에서 떼어낼 때 강하지 않은 프로테아제인 accutase를 사용하고, 세포를 떼어낸 직후 iPSC와 혼합한 100% 마트리겔의 시너지 효과 때문으로 판단된다.This is a dramatically improved result compared to the existing general teratoma formation rate. In general, the number of iPSCs injected into mice for teratoma formation is 1x10 6 to 5x10 6 In spite of injecting a small amount of cells at a level of about 10% compared to 1x10 6 to 5x10 6 It showed a high teratoma formation rate. The above result is considered to be due to the synergistic effect of 100% Matrigel mixed with iPSCs immediately after using accutase, a non-strong protease, when removing iPSC colonies from the culture dish, and immediately after removing the cells.
또한, 상기 테라토마 유래의 CCR5/CXCR4 동시 넉아웃 iPSC는 골수에서 분리한 조혈모세포와 비슷한 비율의 CD34 발현율을 보였는 바(도 9c), 본 발명에서 제조한 CCR5/CXCR4 동시 넉아웃 iPSC를 이용하여 조혈모세포를 제조할 수 있음을 알 수 있다.In addition, the teratoma-derived CCR5/CXCR4 simultaneous knockout iPSC showed a CD34 expression rate at a similar rate to that of hematopoietic stem cells isolated from bone marrow ( FIG. 9c ). It can be seen that parent cells can be prepared.
실시예 3-3: In vitro 방식을 이용한 조혈모세포 제작 (serum-free / xeno-free / gene-free 방식)Example 3-3: Production of hematopoietic stem cells using in vitro method (serum-free / xeno-free / gene-free method)
상기 실시예 2에서 제작된 CCR5/CXCR4 넉아웃 iPSC (CCR5-/- CXCR4-/- iPSC) 를 세포치료제로 활용하기 위해 serum-free / xeno-free / gene-free 방식으로 조혈모세포(hematopoietic stem cell)로 분화시키는 하기와 같은 실험을 수행하였다. In order to use the CCR5/CXCR4 knockout iPSC (CCR5-/- CXCR4-/- iPSC) prepared in Example 2 as a cell therapy agent, hematopoietic stem cells (hematopoietic stem cells) in a serum-free / xeno-free / gene-free method ) to differentiate into the following experiment was performed.
먼저, iPSC 배양 배지[DMEM/F12+GlutaMAX-I (Gibco) 500 ml + Primocin (Invivogen) 1 ml + Knockout SR (Gibco) 125 ml + bFGF 4ng/ml] 에서 5-7일간 부착상태로 배양중이던 미분화 iPSC를 메커니컬하게 detach하여 12 well culture plate에 시딩하였다. 12 well culture plate는 1/45로 PBS에 희석한 matrigel (BD) 로 상온에서 2시간 코팅한 뒤 사용하였다. 12 well culture plate에 seeding하는 iPSC aggregate의 개수를 약 10개 (2-3개/cm2) 로 하였다 [(Manufacturer가 제시하는 조건은 well당 40-80개 (10-20개/cm2)). iPSC aggregate의 seeding density를 2-3개/cm2로 정밀하게 조절한 이유는 조혈모세포 분화과정 중 급격한 pH 변화를 방지하여 생착능을 유지하는 건강한 조혈모세포를 제조하기 위해서이다. 하루 뒤, 조혈모세포로 분화시키기 위한 배지로서 STEMdiff hematopoietic basal medium (STEMCELL) 45ml, Primocin 90ul, STEMdiff hematopoietic supplement A (STEMCELL) 225ul가 섞인 분화배지에서 CCR5/CXCR4 넉아웃 iPSC를 부착상태로 3일간 분화 유도하였다. 분화 3일부터 12일째까지 STEMdiff hematopoietic basal medium (STEMCELL) 75ml, Primocin 180ul, STEMdiff hematopoietic supplement B (STEMCELL) 375ul가 섞인 분화배지에서 CCR5/CXCR4 넉아웃 iPSC를 부착상태로 9일간 분화 유도하였다. 조혈모세포 분화는 21% 산소 (normoixa) 혹은 1-5% 산소 (hypoxia) 조건에서 12일간 수행하였다. First, the undifferentiated cells in the iPSC culture medium [DMEM/F12+GlutaMAX-I (Gibco) 500 ml + Primocin (Invivogen) 1 ml + Knockout SR (Gibco) 125 ml + bFGF 4ng/ml] for 5-7 days in an adherent state) The iPSCs were mechanically detached and seeded in a 12 well culture plate. A 12-well culture plate was used after coating for 2 hours at room temperature with matrigel (BD) diluted 1/45 in PBS. The number of iPSC aggregates seeded in a 12 well culture plate was about 10 (2-3/cm 2 ) [(Manufacturer's conditions are 40-80 per well (10-20/cm 2 )) . The reason for precisely controlling the seeding density of the iPSC aggregate to 2-3 pieces/cm 2 is to prevent a sudden change in pH during the hematopoietic stem cell differentiation process to produce healthy hematopoietic stem cells that maintain their engraftment ability. One day later, as a medium for differentiation into hematopoietic stem cells, CCR5/CXCR4 knockout iPSCs were induced for 3 days in an adherent state in a differentiation medium mixed with STEMdiff hematopoietic basal medium (STEMCELL) 45ml, Primocin 90ul, and STEMdiff hematopoietic supplement A (STEMCELL) 225ul. did. From the 3rd to the 12th day of differentiation, the differentiation was induced with CCR5/CXCR4 knockout iPSCs in an adherent state in a differentiation medium mixed with 75ml of STEMdiff hematopoietic basal medium (STEMCELL), 180ul of Primocin, and 375ul of STEMdiff hematopoietic supplement B (STEMCELL). Hematopoietic stem cell differentiation was performed under 21% oxygen (normoixa) or 1-5% oxygen (hypoxia) for 12 days.
그 결과 조혈모세포 마커인 CD34가 90% 이상 발현하는 순수한 조혈모세포를 제작하였다 (도10a). 이 조혈모세포는 CD14를 발현하는 monocyte (도10b, 10c), CD44를 발현하는 macrophage로도 분화 될 수 있었다 (도10d). iPSC에서 조혈모세포로 분화 시 iPSC aggregate seeding을 low density (2-3개/cm2) 로 유지하였을 때 high density (10-20개/cm2) 에 비해 이후 조혈모세포에서 monocytes로의 분화가 원활하게 진행되었다 (도10e).As a result, pure hematopoietic stem cells expressing 90% or more of CD34, a hematopoietic stem cell marker, were prepared (Fig. 10a). These hematopoietic stem cells could be differentiated into CD14-expressing monocytes (Fig. 10b, 10c) and CD44-expressing macrophages (Fig. 10d). When maintained in the iPSC iPSC aggregate seeding during differentiation in hematopoietic stem cells with low density (2-3 gae / cm 2), which should make the differentiation into monocytes well on stem cell since compared to high density (10-20 gae / cm 2) became (Fig. 10e).
따라서, 이를 통해 본 발명에서 제조된 CCR5/CXCR4 넉아웃 iPSC가 serum-free / xeno-free / gene-free 방식으로 조혈모세포로 분화될 수 있음을 알 수 있다Therefore, it can be seen that the CCR5/CXCR4 knockout iPSC prepared in the present invention can be differentiated into hematopoietic stem cells in a serum-free / xeno-free / gene-free manner.
실시예 4: Serum-free / xeno-free / gene-free 방식으로 제작한 조혈모세포의 in vivo 생착능 검증Example 4: Verification of in vivo engraftment ability of hematopoietic stem cells prepared by serum-free / xeno-free / gene-free method
상기 실시예 3-3에서 제작된 CCR5/CXCR4 넉아웃 iPSC (CCR5-/- CXCR4-/- iPSC) 유래 조혈모세포를 세포치료제로 활용하기 위해 nude mouse의 생체 (bone marrow, spleen, peripheral blood) 에 조혈모세포(hematopoietic stem cell)를 이식하는 하기와 같은 실험을 수행하였다. In order to utilize the hematopoietic stem cells derived from CCR5/CXCR4 knockout iPSC (CCR5-/- CXCR4-/- iPSC) prepared in Example 3-3 as a cell therapy agent, in vivo (bone marrow, spleen, peripheral blood) of a nude mouse The following experiment for transplanting hematopoietic stem cells (hematopoietic stem cells) was performed.
먼저, 항암제 (Busulfan, 50ug/g) 를 24시간 간격으로 2번 복강내에 주입하여 mouse의 체내에서 조혈모세포를 제거하는 컨디셔닝을 수행하였다. 다음날 CCR5/CXCR4 넉아웃 iPSC (CCR5-/- CXCR4-/- iPSC) 유래 조혈모세포를 mouse당 5 x 104개 정맥주입하였다. 8주후, mouse의 bone marrow, spleen, peripheral blood 를 추출하여 PCR 방식으로 정맥주입한 세포의 존재여부를 확인하였다. First, conditioning was performed to remove hematopoietic stem cells from the body of the mouse by injecting an anticancer agent (Busulfan, 50ug/g) intraperitoneally twice at 24 hour intervals. The next day, hematopoietic stem cells derived from CCR5/CXCR4 knockout iPSCs (CCR5-/- CXCR4-/- iPSCs) were intravenously injected into 5 x 10 4 cells per mouse. After 8 weeks, mouse bone marrow, spleen, and peripheral blood were extracted and the presence of intravenously injected cells was checked by PCR.
그 결과 mouse bone marrow에서 human CCR5 genomic DNA와 서열이 일치하는 human cell이 존재함을 확인하였다 (도 11a). 이 세포에도 CCR5 넉아웃이 확인되었다 (도 11b). Spleen과 peripheral blood에서도 human cell의 존재가 확인되었다 (도 11c).As a result, it was confirmed that human cells having the same sequence as human CCR5 genomic DNA existed in mouse bone marrow (FIG. 11a). CCR5 knockout was also confirmed in these cells ( FIG. 11B ). The presence of human cells was also confirmed in spleen and peripheral blood (FIG. 11c).
따라서, 이를 통해 본 발명에서 제조된 serum-free / xeno-free / gene-free 방식으로 제조된 CCR5/CXCR4 넉아웃 iPSC 유래 조혈모세포가 in vivo에서 생착 가능함을 알 수 있다.Accordingly, it can be seen that the CCR5/CXCR4 knockout iPSC-derived hematopoietic stem cells prepared in the serum-free / xeno-free / gene-free method prepared in the present invention can be engrafted in vivo.
실시예 5: 항산화제에 의한 조혈모세포의 in vivo 생착능 증진 검증Example 5: Verification of enhancement of in vivo engraftment ability of hematopoietic stem cells by antioxidant
실시예 5-1: 항산화제 스크리닝Example 5-1: Antioxidant screening
상기 실시예 3-3에서 제작된 CCR5/CXCR4 넉아웃 iPSC (CCR5-/- CXCR4-/- iPSC) 유래 조혈모세포의 생착능을 증진시키기 위해 iPSC에서 조혈모세포로 분화 과정 중 조혈모세포의 생착능을 높일 수 있는 항산화제 스크리닝을 하기와 같이 수행하였다. In order to enhance the engraftment ability of the hematopoietic stem cells derived from the CCR5/CXCR4 knockout iPSC (CCR5-/- CXCR4-/- iPSC) prepared in Example 3-3, the engraftment ability of hematopoietic stem cells during the differentiation process from iPSC to hematopoietic stem cells was evaluated. A screening for potent antioxidants was performed as follows.
먼저, iPSC 배양 배지[DMEM/F12+GlutaMAX-I (Gibco) 500 ml + Primocin (Invivogen) 1 ml + Knockout SR (Gibco) 125 ml + bFGF 4ng/ml] 에서 5-7일간 부착상태로 배양중이던 미분화 iPSC를 메커니컬하게 detach하여 12 well culture plate에 시딩하였다. 12 well culture plate는 1/45로 PBS에 희석한 matrigel (BD) 로 상온에서 2시간 코팅한 뒤 사용하였다. 12 well culture plate에 seeding하는 iPSC aggregate의 개수를 약 10개 (2-3개/cm2) 로 하였다. First, undifferentiated in iPSC culture medium [DMEM/F12+GlutaMAX-I (Gibco) 500 ml + Primocin (Invivogen) 1 ml + Knockout SR (Gibco) 125 ml + bFGF 4ng/ml] attached for 5-7 days) The iPSCs were mechanically detached and seeded in a 12 well culture plate. A 12-well culture plate was used after coating for 2 hours at room temperature with matrigel (BD) diluted 1/45 in PBS. The number of iPSC aggregates seeded in a 12 well culture plate was about 10 (2-3 pieces/cm 2 ).
하루 뒤, 조혈모세포로 분화시키기 위한 배지로서 STEMdiff hematopoietic basal medium (STEMCELL) 45ml, Primocin 90ul, STEMdiff hematopoietic supplement A (STEMCELL) 225ul가 섞인 분화배지에 다양한 농도의 진세노사이드 Rg1 (0nM, 1nM, 10nM, 100nM, 1uM, 10uM) 을 첨가하여 CCR5/CXCR4 넉아웃 iPSC를 부착상태로 3일간 분화 유도하였다. 분화 3일부터 12일째까지 STEMdiff hematopoietic basal medium (STEMCELL) 75ml, Primocin 180ul, STEMdiff hematopoietic supplement B (STEMCELL) 375ul에 다양한 농도의 진세노사이드 Rg1 (0nM, 1nM, 10nM, 100nM, 1uM, 10uM) 이 섞인 분화배지에서 CCR5/CXCR4 넉아웃 iPSC를 부착상태로 9일간 분화 유도하였다. 조혈모세포 분화는 21% 산소 (normoixa) 혹은 1-5% 산소 (hypoxia) 조건에서 12일간 수행하였다. One day later, as a medium for differentiation into hematopoietic stem cells, various concentrations of ginsenoside Rg1 (0nM, 1nM, 10nM, 100 nM, 1 uM, 10 uM) was added to induce differentiation of CCR5/CXCR4 knockout iPSCs in an adherent state for 3 days. From the 3rd to the 12th day of differentiation, 75ml of STEMdiff hematopoietic basal medium (STEMCELL), 180ul of Primocin, and 375ul of STEMdiff hematopoietic supplement B (STEMCELL) were mixed with various concentrations of ginsenoside Rg1 (0nM, 1nM, 10nM, 100nM, 1uM, 10uM) Differentiation was induced for 9 days in an adherent state of CCR5/CXCR4 knockout iPSCs in the differentiation medium. Hematopoietic stem cell differentiation was performed under 21% oxygen (normoixa) or 1-5% oxygen (hypoxia) for 12 days.
그 결과 in vitro에서 다양한 lineage의 조혈계 콜로니를 형성할 수 있는 조혈모세포를 제작하였고, Rg1 1uM 농도에서 가장 많은 수의 콜로니를 얻을 수 있었다 (도12a). Rg1 이외 다양한 항산화제 (Vitamin C (Vc) 50ug/ml, selenium 50ng/ml, melatonin 10uM) 를 활용한 비교실험에서도 Rg1 1uM이 가장 우수한 콜로니 형성능을 보였다 (도12b).As a result, hematopoietic stem cells capable of forming hematopoietic colonies of various lineages in vitro were prepared, and the largest number of colonies was obtained at the concentration of Rg1 1uM (Fig. 12a). In a comparative experiment using various antioxidants other than Rg1 (Vitamin C (Vc) 50ug/ml, selenium 50ng/ml, melatonin 10uM), Rg1 1uM showed the best colony forming ability (Fig. 12b).
따라서, 이를 통해 iPSC 유래 조혈모세포 분화 과정 중 Rg1의 첨가가 분화된 조혈모세포의 질적인 향상을 가져옴을 알 수 있다.Therefore, it can be seen that the addition of Rg1 during the iPSC-derived hematopoietic stem cell differentiation process leads to qualitative improvement of the differentiated hematopoietic stem cells.
실시예 5-2: 항산화제 첨가에 의한 조혈모세포 생착능 증진 확인Example 5-2: Confirmation of enhancement of hematopoietic stem cell engraftment ability by the addition of antioxidants
상기 실시예 5-1에서 제작된 CCR5/CXCR4 넉아웃 iPSC (CCR5-/- CXCR4-/- iPSC) 유래 조혈모세포를 세포치료제로 활용하기 위해 nude mouse의 생체 (bone marrow, spleen, peripheral blood) 에 조혈모세포(hematopoietic stem cell)를 이식하는 하기와 같은 실험을 수행하였다. In order to utilize the hematopoietic stem cells derived from CCR5/CXCR4 knockout iPSC (CCR5-/- CXCR4-/- iPSC) prepared in Example 5-1 as a cell therapy agent, in vivo (bone marrow, spleen, peripheral blood) of a nude mouse The following experiment for transplanting hematopoietic stem cells (hematopoietic stem cells) was performed.
먼저, 항암제 (Busulfan, 50ug/g) 를 24시간 간격으로 2번 복강내에 주입하여 mouse의 체내에서 조혈모세포를 제거하는 컨디셔닝을 수행하였다. 다음날 CCR5/CXCR4 넉아웃 iPSC (CCR5-/- CXCR4-/- iPSC) 유래 조혈모세포를 mouse당 5 x 104개 정맥주입하였다. 8주후, mouse의 peripheral blood 를 추출하여 flow cytometry 방식으로 정맥주입한 세포의 존재여부를 확인하였다. First, conditioning was performed to remove hematopoietic stem cells from the body of the mouse by injecting an anticancer agent (Busulfan, 50ug/g) intraperitoneally twice at 24 hour intervals. The next day, hematopoietic stem cells derived from CCR5/CXCR4 knockout iPSCs (CCR5-/- CXCR4-/- iPSCs) were intravenously injected into 5 x 10 4 cells per mouse. After 8 weeks, the peripheral blood of the mouse was extracted and the presence of intravenously injected cells was checked by flow cytometry.
그 결과 mouse peripheral blood에서 human 조혈계세포에 공통적으로 존재하는 human CD45 단백질을 발현하는 세포가 28.7% (CCR5-/- CXCR4-/- iPSC 유래 조혈모세포 이식 그룹), 36.7% (Wild type iPSC 유래 조혈모세포 이식 그룹), 74.4% (Primary bone marrow 유래 조혈모세포 이식 그룹) 로 매우 높게 존재함을 확인하였다 (도 12c). As a result, in mouse peripheral blood, cells expressing human CD45 protein, which are common to human hematopoietic cells, were 28.7% (CCR5-/- CXCR4-/- iPSC-derived hematopoietic stem cell transplant group), 36.7% (Wild type iPSC-derived hematopoietic cells) hair cell transplant group), 74.4% (primary bone marrow-derived hematopoietic stem cell transplant group) was confirmed to be very high (FIG. 12c).
따라서, 이를 통해 본 발명에서 제조한 CCR5/CXCR4 넉아웃 iPSC 유래 조혈모세포가 in vivo에서 매우 높은 생착능을 보임을 알 수 있다.Therefore, it can be seen that the CCR5/CXCR4 knockout iPSC-derived hematopoietic stem cells prepared in the present invention show a very high engraftment ability in vivo.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art to which the present invention pertains will understand that the present invention may be embodied in other specific forms without changing the technical spirit or essential characteristics thereof. In this regard, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. The scope of the present invention should be construed as being included in the scope of the present invention, rather than the above detailed description, all changes or modifications derived from the meaning and scope of the following claims and their equivalents.

Claims (18)

  1. (a) 분리된 세포의 CCR5 및 CXCR4 발현수준을 유전자 가위 기술을 이용하여 내재적 발현 수준에 비하여 감소시키는 단계; 및(a) reducing the expression level of CCR5 and CXCR4 in the isolated cell compared to the intrinsic expression level using a gene editing technique; and
    (b) 상기 (a) 단계의 분리된 세포를 세럼-프리(serum-free), 제노-프리(xeno-free) 및 진-프리(gene-free) 방법으로 배양하여 조혈모세포로 분화시키는 단계를 포함하는, 조혈모세포 제조방법.(b) culturing the isolated cells of step (a) in serum-free, xeno-free and gene-free methods to differentiate them into hematopoietic stem cells; Including, hematopoietic stem cell production method.
  2. 제1항에 있어서, 상기 (a) 단계의 분리된 세포는 유도만능줄기세포(iPSC) 또는 체세포인 것인, 조혈모세포 제조방법.The method of claim 1, wherein the cells isolated in step (a) are induced pluripotent stem cells (iPSCs) or somatic cells.
  3. 제1항에 있어서, 상기 (b) 단계에서 세포를 배양하는 배지는 항산화제를 포함하는 것인, 조혈모세포 제조방법.The method of claim 1, wherein the medium for culturing the cells in step (b) contains an antioxidant.
  4. 제3항에 있어서, 상기 항산화제는 진세노사이드 Rg1인, 조혈모세포 제조방법.The method of claim 3, wherein the antioxidant is ginsenoside Rg1.
  5. 제4항에 있어서, 상기 진세노사이드 Rg1은 배지에 1nM 이상 10uM 이하의 농도로 포함되는 것인, 조혈모세포 제조방법.The method according to claim 4, wherein the ginsenoside Rg1 is contained in the medium at a concentration of 1 nM or more and 10 uM or less.
  6. 제1항에 있어서, 상기 유전자 가위 기술은 크리스퍼(CRISPR), 탈렌(TALEN) 또는 징크핑거(Zinc finger) 뉴클레아제 중 어느 하나인 것인, 조혈모세포 제조방법.The method of claim 1, wherein the gene editing technique is any one of CRISPR, TALEN, or Zinc finger nucleases.
  7. 제1항에 있어서, 상기 (a) 단계에서 분리된 세포에 CCR5 및 CXCR4의 발현수준을 내재적 발현 수준에 비하여 감소시키는 단계는 CCR5 및 CXCR4 넉아웃용 조성물을 이용하는 것을 특징으로 하는 것인, 조혈모세포 제조방법.According to claim 1, wherein the step of reducing the expression level of CCR5 and CXCR4 in the cells isolated in step (a) compared to the intrinsic expression level is characterized in that using a composition for knockout CCR5 and CXCR4, hematopoietic stem cells manufacturing method.
  8. 제7항에 있어서, 상기 CCR5 및 CXCR4 넉아웃용 조성물은The composition of claim 7, wherein the composition for knockout of CCR5 and CXCR4 is
    (a) 서열번호 1의 염기서열 또는 이와 상보적인 염기서열로 이루어진 가이드 RNA를 암호화하는 분리된 폴리뉴클레오티드를 포함하는 발현 벡터; 및(a) an expression vector comprising an isolated polynucleotide encoding a guide RNA consisting of the nucleotide sequence of SEQ ID NO: 1 or a nucleotide sequence complementary thereto; and
    (b) 서열번호 2의 염기서열 또는 이와 상보적인 염기서열로 이루어진 가이드 RNA를 암호화하는 분리된 폴리뉴클레오티드를 포함하는 발현벡터를 포함하는 것인, 조혈모세포 제조방법.(b) a method for producing hematopoietic stem cells comprising an expression vector comprising an isolated polynucleotide encoding a guide RNA consisting of the nucleotide sequence of SEQ ID NO: 2 or a nucleotide sequence complementary thereto.
  9. 제8항에 있어서, 상기 발현 벡터는 Cas9 뉴클레아제 (nuclease), Cas9 니케이즈 (nickase) 또는 Cpf1 뉴클레아제 (nuclease) 중 어느 하나를 암호화하는 폴리뉴클레오티드를 포함하는 것인, 조혈모세포 제조방법.The method of claim 8, wherein the expression vector comprises a polynucleotide encoding any one of Cas9 nuclease, Cas9 nickase, or Cpf1 nuclease. .
  10. (a) 분리된 체세포로부터 직접 리프로그래밍을 통해 조혈모세포로 분화시키는 단계; 및(a) differentiating the isolated somatic cells into hematopoietic stem cells through direct reprogramming; and
    (b) 상기 (a) 단계의 조혈모세포의 CCR5 및 CXCR4 발현수준을 내재적 발현 수준에 비하여 감소시키는 단계;(b) reducing the CCR5 and CXCR4 expression levels of the hematopoietic stem cells of step (a) compared to the intrinsic expression level;
    를 포함하는, 조혈모세포 제조방법.Including, hematopoietic stem cell production method.
  11. 제1항 내지 제10항 중 어느 한 항의 방법에 의해 제조된, 조혈모세포.A hematopoietic stem cell prepared by the method of any one of claims 1 to 10.
  12. 제11항의 조혈모세포를 유효성분으로 포함하는, HIV 바이러스 감염 치료 또는 예방용 약학적 조성물.A pharmaceutical composition for the treatment or prevention of HIV virus infection, comprising the hematopoietic stem cells of claim 11 as an active ingredient.
  13. 제11항의 조혈모세포를 유효성분으로 포함하는, 세포치료제.A cell therapy product comprising the hematopoietic stem cells of claim 11 as an active ingredient.
  14. 줄기세포를 세럼-프리(serum-free), 제노-프리(xeno-free) 및 진-프리(gene-free) 방식으로 배양하여, 줄기세포의 생착능을 향상시키는 방법. A method for improving the engraftment ability of stem cells by culturing stem cells in serum-free, xeno-free and gene-free methods.
  15. 제14항에 있어서, 상기 방법은 실험결과의 일관성을 증진시키고, 체내 이식시 동물 유래 물질에 의한 불필요한 면역반응을 배제시키며, 외래 유전자에 의한 세포의 암화 가능성을 차단시키는 것인, 방법.15. The method of claim 14, wherein the method improves the consistency of experimental results, excludes unnecessary immune responses caused by animal-derived substances during transplantation in the body, and blocks the possibility of cancerous cells caused by foreign genes.
  16. 항산화제를 포함하는 배지에서 줄기세포를 배양하는 것을 포함하는, 줄기세포의 생착능을 향상시키는 방법. A method for improving the engraftment capacity of stem cells, comprising culturing the stem cells in a medium containing an antioxidant.
  17. 제16항에 있어서, 상기 항산화제는 진세노사이드 Rg1인 것인, 줄기세포의 생착능을 향상시키는 방법.The method of claim 16, wherein the antioxidant is ginsenoside Rg1.
  18. 제16항에 있어서, 상기 줄기세포는 iPSC 유래 조혈모세포인 것인, 줄기세포의 생착능을 향상시키는 방법.The method of claim 16, wherein the stem cells are iPSC-derived hematopoietic stem cells.
PCT/KR2019/016796 2019-11-29 2019-11-29 Customized ccr5/cxcr4-gene simultaneous knockout hematopoietic stem cells for treatment or prevention of hiv infection, and preparation method therefor WO2021107234A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/016796 WO2021107234A1 (en) 2019-11-29 2019-11-29 Customized ccr5/cxcr4-gene simultaneous knockout hematopoietic stem cells for treatment or prevention of hiv infection, and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2019/016796 WO2021107234A1 (en) 2019-11-29 2019-11-29 Customized ccr5/cxcr4-gene simultaneous knockout hematopoietic stem cells for treatment or prevention of hiv infection, and preparation method therefor

Publications (1)

Publication Number Publication Date
WO2021107234A1 true WO2021107234A1 (en) 2021-06-03

Family

ID=76130283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016796 WO2021107234A1 (en) 2019-11-29 2019-11-29 Customized ccr5/cxcr4-gene simultaneous knockout hematopoietic stem cells for treatment or prevention of hiv infection, and preparation method therefor

Country Status (1)

Country Link
WO (1) WO2021107234A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507640A (en) * 2022-03-25 2022-05-17 和携科技有限公司 Culture method and application of CIK cells with high proliferation capacity and high cytotoxicity

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080075959A (en) * 2007-02-14 2008-08-20 (주)프로스테믹스 Composition of the injectable agents for tissues repair including adipose derived stem cells and optimized culture media
US20120171771A1 (en) * 2009-07-08 2012-07-05 Cellular Dynamics International, Inc. Modified ips cells having a mutant form of a human immunodeficiency virus (hiv) cellular entry gene
KR20190135946A (en) * 2018-05-29 2019-12-09 주식회사 강스템바이오텍 A patient-specific CCR5/CXCR4 gene knockout hematopoietic stem cells for treatment or prevention of HIV infection and method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080075959A (en) * 2007-02-14 2008-08-20 (주)프로스테믹스 Composition of the injectable agents for tissues repair including adipose derived stem cells and optimized culture media
US20120171771A1 (en) * 2009-07-08 2012-07-05 Cellular Dynamics International, Inc. Modified ips cells having a mutant form of a human immunodeficiency virus (hiv) cellular entry gene
KR20190135946A (en) * 2018-05-29 2019-12-09 주식회사 강스템바이오텍 A patient-specific CCR5/CXCR4 gene knockout hematopoietic stem cells for treatment or prevention of HIV infection and method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LINDROOS BETTINA; BOUCHER SHAYNE; CHASE LUCAS; KUOKKANEN HANNU; HUHTALA HEINI; HAATAJA RIINA; VEMURI MOHAN; SUURONEN RIITTA; MIETT: "Serum-free, xeno-free culture media maintain the proliferation rate LINDROOS, B. et al. Serum-free, xeno-free culture media maintain the proliferation rate and multipotentiality of adipose stem cells in vitro", CYTOTHERAPY, vol. 11, no. 7, 2009, pages 958 - 972, XP009157099 *
PANPAN HOU; SHULIANG CHEN; SHILEI WANG; XIAO YU; YU CHEN; MENG JIANG; KE ZHUANG; WENZHE HO; WEI HOU; JIAN HUANG; DEYIN GUO: "Genome editing of CXCR4 by CRISPR/cas9 confers cells resistant to HIV-1 infection", SCIENTIFIC REPORTS, vol. 5, no. 1, 2015, pages 15577, XP055267475 *
YU SONGLIN, YAO YONGCHAO, XIAO HONGKUI, LI JIAOJIAO, LIU QUAN, YANG YIJUN, ADAH DICKSON, LU JUNNAN, ZHAO SITING, QIN LI, CHEN XIAO: "Simultaneous knockout of CXCR4 and CCR5 genes in CD 4+ T cells via CRISPR/Cas9 confers resistance to both X4-and R5-tropic human immunodeficiency vims type 1 infection", HUMAN GENE THERAPY, vol. 29, no. 1, 2018, pages 51 - 67, XP055832611 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507640A (en) * 2022-03-25 2022-05-17 和携科技有限公司 Culture method and application of CIK cells with high proliferation capacity and high cytotoxicity
CN114507640B (en) * 2022-03-25 2023-09-08 和携科技有限公司 Culture method and application of CIK cells with high proliferation capacity and high cytotoxicity

Similar Documents

Publication Publication Date Title
WO2020197318A1 (en) Method for producing nk cells with car gene introduced thereto, and use thereof
US9714280B2 (en) HLA G-modified cells and methods
WO2019231266A1 (en) Hla gene-deleted, human induced pluripotent stem cell-derived mesenchymal stem cell and preparation method therefor
WO2011096728A2 (en) Method for proliferating stem cells by activating c-met/hgf signaling and notch signaling
WO2019050071A1 (en) Composition for preventing or treating liver fibrosis, containing exosome or exosome-derived ribonucleic acid
WO2016048107A1 (en) Pharmaceutical composition for preventing or treating immune diseases or inflammatory diseases, comprising interferon-gamma or interleukin-1 beta treated stem cell or culture thereof
WO2018021879A1 (en) Method for producing mesenchymal stem cells that inhibit proliferation of cancer cells
WO2023282688A1 (en) Mesenchymal stem cell having oxidative stress resistance, preparation method therefor, and use thereof
WO2018048220A1 (en) Pharmaceutical composition comprising inflammation-stimulated mesenchymal stem cell for prevention or treatment of immune disease or inflammatory disease
Aldahmash et al. Teratoma formation in immunocompetent mice after syngeneic and allogeneic implantation of germline capable mouse embryonic stem cells
WO2019216667A1 (en) Method for generating induced neural stem cells directly reprogrammed from non-neural cells by using sox2 and c-myc
WO2021107234A1 (en) Customized ccr5/cxcr4-gene simultaneous knockout hematopoietic stem cells for treatment or prevention of hiv infection, and preparation method therefor
WO2012047037A2 (en) Embryonic stem cell-derived cardiomyocytes and cell therapy product using same as an active ingredient
WO2017146538A1 (en) Pharmaceutical composition for preventing or treating regulatory t cell-mediated diseases
WO2019050350A2 (en) Stem cell-derived sertoli-like cell, preparation method therefor, and use thereof
WO2021071289A2 (en) Composition for augmenting stemness and use thereof
WO2019017691A9 (en) Method of differentiation of human induced pluripotent stem cell to dermal papilla precursor cell and use thereof
WO2021006670A1 (en) Composition for increasing biological activity of stem cells using mixture 4f
WO2016117960A1 (en) Mesenchymal stem cells over-expressed by grim19 efficacious in treating immune disease, and use thereof
WO2015072708A1 (en) Method for preparing vascular endothelial cell by transformation (transdifferentiation) of adult fibroblast and use thereof
WO2015023165A1 (en) Inflammation-controlling composite and stabilized mesenchymal stem cells having optimized immunity control function by blocking stat3 signal molecule
WO2020209636A1 (en) Method for inducing direct reprogramming of urine cell into renal progenitor cell and pharmaceutical composition comprising renal progenitor cell reprogrammed by same method for preventing or treating renal cell injury disease
KR20190135946A (en) A patient-specific CCR5/CXCR4 gene knockout hematopoietic stem cells for treatment or prevention of HIV infection and method thereof
WO2020122498A1 (en) Pharmaceutical composition for treating pancreatitis, comprising clonal stem cells
WO2023167575A1 (en) Low immunogenic stem cells, low immunogenic cells differentiated or derived from stem cells, and production method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954291

Country of ref document: EP

Kind code of ref document: A1