WO2019216371A1 - 移動通信システム、中継ノード、及び基地局 - Google Patents

移動通信システム、中継ノード、及び基地局 Download PDF

Info

Publication number
WO2019216371A1
WO2019216371A1 PCT/JP2019/018527 JP2019018527W WO2019216371A1 WO 2019216371 A1 WO2019216371 A1 WO 2019216371A1 JP 2019018527 W JP2019018527 W JP 2019018527W WO 2019216371 A1 WO2019216371 A1 WO 2019216371A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
gnb
relay node
iab node
function
Prior art date
Application number
PCT/JP2019/018527
Other languages
English (en)
French (fr)
Inventor
真人 藤代
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2020518332A priority Critical patent/JP6920551B2/ja
Priority to EP19799391.8A priority patent/EP3780901B1/en
Priority to EP22195577.6A priority patent/EP4124115A1/en
Publication of WO2019216371A1 publication Critical patent/WO2019216371A1/ja
Priority to US17/093,035 priority patent/US11350467B2/en
Priority to US17/661,433 priority patent/US20220264665A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • the present disclosure relates to a mobile communication system, a relay node, and a base station.
  • a new relay node called IAB (Integrated Access and Backhaul) node is being studied.
  • IAB Integrated Access and Backhaul
  • One or a plurality of relay nodes intervene in communication between the base station and the user equipment, and relay this communication.
  • Such a relay node has a user equipment function and a base station function, performs wireless communication with an upper node (base station or upper relay node) using the user equipment function, and uses a base station function to Wireless communication is performed with a node (user equipment or a lower relay node).
  • Non-Patent Document 1 dynamically switches the relay route by integrating and multiplexing access link data communication and backhaul link data communication in layer 2 and dynamically allocating radio resources to the backhaul link. A method is described.
  • a mobile communication system has a base station, a user equipment function and a base station function, and a relay node that establishes a first wireless connection with the base station using the user equipment function; Is provided.
  • the base station transmits a message to the relay node to establish a second radio connection for the base station function between the relay node and the base station while maintaining the first radio connection. .
  • a relay node is a relay node having a user equipment function and a base station function, and a controller configured to establish a first wireless connection with a base station using the user equipment function;
  • a reception unit that receives a message for establishing a second wireless connection for the base station function between the relay node and the base station from the base station while maintaining one wireless connection.
  • the base station includes a control unit that establishes a first wireless connection with a relay node having a user equipment function and a base station function, and the base station function while maintaining the first wireless connection. And a transmitter that transmits a message for establishing a second wireless connection between the relay node and the base station to the relay node.
  • FIG. 1 is a diagram showing a configuration of a mobile communication system 1 according to the present embodiment.
  • the mobile communication system 1 is a fifth generation (5G) mobile communication system based on the 3GPP standard.
  • the radio access scheme in the mobile communication system 1 is NR, which is a 5G radio access scheme.
  • LTE Long Term Evolution
  • LTE Long Term Evolution
  • the mobile communication system 1 includes a 5G core network (5GC) 10, a user equipment (UE) 100, a base station (referred to as gNB) 200, and an IAB node 300.
  • 5GC 5G core network
  • UE user equipment
  • gNB base station
  • IAB node 300 IAB node 300.
  • the base station may be an LTE base station (that is, an eNB).
  • the 5GC10 is provided with AMF (Access and Mobility Management Function) 11 and UPF (User Plane Function) 12.
  • the AMF 11 is a device that performs various mobility controls on the UE 100.
  • the AMF 11 manages information on the area where the UE 100 is located by communicating with the UE 100 using NAS (Non-Access Stratum) signaling.
  • the UPF 12 is a device that performs transfer control of user data.
  • the gNB 200 is connected to the 5GC 10 via an interface called an NG interface. In FIG. 1, three gNB200-1 to gNB200-3 connected to the 5GC 10 are illustrated.
  • the gNB 200 is a fixed wireless communication device that performs wireless communication with the UE 100. When the gNB 200 has a donor function, the gNB 200 may perform wireless communication with an IAB node that is connected to the gNB 200 wirelessly.
  • the gNB 200 is connected to another gNB 200 in an adjacent relationship via an interface between base stations called an Xn interface.
  • FIG. 1 shows an example in which gNB 200-1 is connected to gNB 200-2 and gNB 200-2.
  • Each gNB 200 manages one or a plurality of cells.
  • a cell is used as a term indicating a minimum unit of a wireless communication area.
  • the cell may be used as a term indicating a function or resource for performing wireless communication with the UE 100.
  • One cell belongs to one carrier frequency.
  • the UE 100 is a movable wireless communication device that performs wireless communication with gNB 200.
  • the UE 100 may perform radio communication with the IAB node 300.
  • the UE 100 may be any device as long as it performs wireless communication with the gNB 200 or the IAB node 300.
  • the UE 100 is provided in a mobile phone terminal, a tablet terminal, a notebook PC, a sensor, or a sensor.
  • Device a vehicle, or a device provided in the vehicle.
  • FIG. 1 shows an example in which UE 100-1 is wirelessly connected to gNB 200-1, UE 100-2 is wirelessly connected to IAB node 300-1, and UE 100-3 is wirelessly connected to IAB node 300-2. ing.
  • the UE 100-1 directly communicates with the gNB 200-1.
  • the UE 100-2 indirectly communicates with the gNB 200-1 via the IAB node 300-1.
  • the UE 100-3 indirectly communicates with the gNB 200-1 via the IAB node 300-1 and the IAB node 300-2.
  • the IAB node 300 is an apparatus (relay node) that intervenes in communication between the eNB 200 and the UE 100 and relays this communication.
  • FIG. 1 shows an example in which the IAB node 300-1 is wirelessly connected to the donor gNB 200-1 and the IAB node 300-2 is wirelessly connected to the IAB node 300-1.
  • Each IAB node 300 manages a cell.
  • the cell ID of the cell managed by the IAB node 300 may be the same as or different from the cell ID of the cell of the donor gNB 200-1.
  • the IAB node 300 has a UE function (user equipment function) and a gNB function (base station function).
  • the IAB node 300 performs radio communication with an upper node (gNB 200 or upper IAB node 300) using the UE function, and performs radio communication with a lower node (UE 100 or lower IAB node 300) using the gNB function.
  • the UE function means at least a part of the functions of the UE 100, and the IAB node 300 does not necessarily have all the functions of the UE 100.
  • the gNB function means at least a part of the functions of the gNB 200, and the IAB node 300 does not necessarily have all the functions of the gNB 200.
  • the wireless section between the UE 100 and the IAB node 300 or gNB 200 may be referred to as an access link (or Uu).
  • a radio section between the IAB node 300 and the gNB 200 or another IAB node 300 may be referred to as a backhaul link (or Un).
  • Such a backhaul link may be referred to as a fronthaul link.
  • a millimeter wave band may be used for the access link and the backhaul link.
  • the access link and the backhaul link may be multiplexed by time division and / or frequency division.
  • FIG. 2 is a diagram showing the configuration of gNB200.
  • the gNB 200 includes a wireless communication unit 210, a network communication unit 220, and a control unit 230.
  • the wireless communication unit 210 is used for wireless communication with the UE 100 and wireless communication with the IAB node 300.
  • the wireless communication unit 210 includes a reception unit 211 and a transmission unit 212.
  • the receiving unit 211 performs various types of reception under the control of the control unit 230.
  • the reception unit 211 includes an antenna, converts a radio signal received by the antenna into a baseband signal (reception signal), and outputs the baseband signal to the control unit 230.
  • the transmission unit 212 performs various transmissions under the control of the control unit 230.
  • the transmission unit 212 includes an antenna, converts a baseband signal (transmission signal) output from the control unit 230 into a radio signal, and transmits the radio signal from the antenna.
  • the network communication unit 220 is used for wired communication (or wireless communication) with the 5GC 10 and wired communication (or wireless communication) with another adjacent gNB 200.
  • the network communication unit 220 includes a reception unit 221 and a transmission unit 222.
  • the receiving unit 221 performs various types of reception under the control of the control unit 230.
  • the receiving unit 221 receives a signal from the outside and outputs the received signal to the control unit 230.
  • the transmission unit 222 performs various transmissions under the control of the control unit 230.
  • the transmission unit 222 transmits the transmission signal output from the control unit 230 to the outside.
  • the control unit 230 performs various controls in the gNB 200.
  • the control unit 230 includes at least one processor and at least one memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU.
  • the baseband processor performs modulation / demodulation and encoding / decoding of the baseband signal.
  • the CPU performs various processes by executing programs stored in the memory.
  • the processor executes processing to be described later.
  • FIG. 3 is a diagram illustrating a configuration of the IAB node 300.
  • the IAB node 300 includes a wireless communication unit 310 and a control unit 320.
  • the wireless communication unit 310 is used for wireless communication (backhaul link) with the gNB 200 and wireless communication (access link) with the UE 100.
  • the wireless communication unit 310 includes a reception unit 311 and a transmission unit 312.
  • the receiving unit 311 performs various types of reception under the control of the control unit 320.
  • the reception unit 311 includes an antenna, converts a radio signal received by the antenna into a baseband signal (reception signal), and outputs the baseband signal to the control unit 320.
  • the transmission unit 312 performs various transmissions under the control of the control unit 320.
  • the transmission unit 312 includes an antenna, converts a baseband signal (transmission signal) output from the control unit 320 into a radio signal, and transmits the radio signal from the antenna.
  • the control unit 320 performs various controls in the IAB node 300.
  • the control unit 320 includes at least one processor and at least one memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU.
  • the baseband processor performs modulation / demodulation and encoding / decoding of the baseband signal.
  • the CPU performs various processes by executing programs stored in the memory.
  • the processor executes processing to be described later.
  • FIG. 4 is a diagram illustrating a configuration of the UE 100. As illustrated in FIG. As illustrated in FIG. 4, the UE 100 includes a radio communication unit 110 and a control unit 120.
  • the wireless communication unit 110 is used for wireless communication in the access link, that is, wireless communication with the gNB 200 and wireless communication with the IAB node 300.
  • the wireless communication unit 110 includes a reception unit 111 and a transmission unit 112.
  • the receiving unit 111 performs various types of reception under the control of the control unit 120.
  • the reception unit 111 includes an antenna, converts a radio signal received by the antenna into a baseband signal (reception signal), and outputs the baseband signal to the control unit 120.
  • the transmission unit 112 performs various transmissions under the control of the control unit 120.
  • the transmission unit 112 includes an antenna, converts a baseband signal (transmission signal) output from the control unit 120 into a radio signal, and transmits the radio signal from the antenna.
  • the control unit 120 performs various controls in the UE 100.
  • the control unit 120 includes at least one processor and at least one memory.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU.
  • the baseband processor performs modulation / demodulation and encoding / decoding of the baseband signal.
  • the CPU performs various processes by executing programs stored in the memory.
  • the processor executes processing to be described later.
  • FIG. 5 is a diagram illustrating an example of a protocol stack configuration of the user plane.
  • an example of a protocol stack configuration related to user data transmission between the UE 100-3 and the UPF 12 of the 5GC 10 illustrated in FIG. 1 will be described.
  • UPF 12 includes GTP-U (GPRS Tunneling Protocol for User Plane), UDP (User Datagram Protocol), IP (Internet Protocol), and Layer 1 / Layer 2 (L1 / L2).
  • GTP-U GPRS Tunneling Protocol for User Plane
  • UDP User Datagram Protocol
  • IP Internet Protocol
  • L1 / L2 Layer 1 / Layer 2
  • the gNB 200-1 includes an aggregation unit (CU: Central Unit) and a distribution unit (DU: Distributed Unit).
  • CU Central Unit
  • DU Distributed Unit
  • the CU has each layer above PDCP (Packet Data Convergence Protocol) in the protocol stack of the radio interface, and the DU has each layer below RLC (Radio Link Control) through an interface called F1 interface.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • the CU includes SDAP (Service Data Adaptation Protocol), PDCP, IP, and L1 / L2.
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Control Protocol
  • IP Packet Control Protocol
  • L1 / L2 Low-power Packet Control Protocol
  • the SDAP and PDCP of the CU communicate with the SDAP and PDCP of the UE 100 via the DU, the IAB node 300-1, and the IAB node 300-2.
  • the DU includes an RLC, an adaptation layer (Adapt), a MAC (Medium Access Control), and a PHY (Physical layer) in the protocol stack of the radio interface.
  • RLC Radio Link Control
  • Adapt adaptation layer
  • MAC Medium Access Control
  • PHY Physical layer
  • the IAB node 300-1 is provided with a protocol stack ST1 for UE corresponding to these. Further, the IAB node 300-1 is provided with a protocol stack ST2 for gNB.
  • the protocol stack ST1 and the protocol stack ST2 are each composed of layers (sublayers) below layer 2. That is, the IAB node 300-1 is a layer 2 relay node that relays user data using each layer below layer 2.
  • the IAB node 300-1 performs data relay without using a layer of layer 3 or higher (specifically, a layer of PDCP or higher).
  • the IAB node 300-2 has a protocol stack configuration similar to that of the IAB node 300-1.
  • each of the gNB 200-1, the IAB node 300-1, the IAB node 300-2, and the UE 100-3 includes an RRC (Radio Resource Control) corresponding to layer 3.
  • RRC Radio Resource Control
  • An RRC connection is established between the RRC of the gNB 200-1 (donor gNB) and the RRC of the IAB node 300-1, and RRC messages are transmitted and received using this RRC connection. Also, an RRC connection is established between the RRC of the gNB 200-1 and the RRC of the IAB node 300-2, and RRC messages are transmitted / received using this RRC connection. Furthermore, an RRC connection is established between the RRC of the gNB 200-1 and the RRC of the UE 100-3, and an RRC message is transmitted / received using this RRC connection.
  • the IAB node 300-1 establishes an access link connection (first wireless connection) with the gNB 200-1 using the UE function.
  • the IAB node 300-1 behaves as the UE 100 and establishes an access link connection with the gNB 200-1.
  • Establishing an access link connection includes establishing an RRC connection.
  • the gNB 200-1 maintains a backhaul link connection (second radio connection) for the gNB function of the IAB node 300-1 between the IAB node 300-1 and the gNB 200-1 while maintaining the access link connection.
  • a message to be established in between is transmitted to the IAB node 300-1.
  • this message is an RRC reconfiguration message transmitted and received using an RRC connection.
  • the backhaul link connection is established between the IAB node 300-1 and the gNB 200-1, the backhaul link communication can be appropriately started between the IAB node 300-1 and the gNB 200-1. can do.
  • the RRC reconfiguration message for establishing the backhaul link connection includes the setting information of the bearer (or L2 link) configuring the backhaul link connection and the cell ID (specifically, the cell ID) to be transmitted by the IAB node 300-1. (Reference signal and synchronization signal transmission setting) associated with each other.
  • this RRC reconfiguration message is referred to as an IAB node configuration message.
  • the IAB node configuration message may include default bearer (or default link) configuration information.
  • the default bearer (or default link) is, for example, a bearer (or link) for performing SIB relay or Msg3 relay from the UE.
  • the IAB node setting message may include stack setting information on the donor gNB 200-1 side and, optionally, stack setting information on the IAB node 300-2 (or UE 100) side.
  • the setting information of the stack on the IAB node 300-2 (or UE 100) side may be reused from the setting group that is implicitly broadcast in the SIB of the donor gNB 200-1, or from the operator (OAM) (in advance) ) May be set.
  • the setting contents in the IAB node setting message basically all the settings included in the RRC reconfiguration message can be targeted, but the operation mode such as RLC setting (AM: Acknowledged Mode / UM: Unknown mode / TM: Transparent Mode), etc. , LCP (Logical Channel Priority) parameters, etc.), MAC settings (BSR: Buffer Status Report / TAG: Timing Advance Group / PHR: Power Headroom parameters, DRX: DiscontinueY settings, etc.)
  • RLC setting AM: Acknowledged Mode / UM: Unknown mode / TM: Transparent Mode
  • LCP Logical Channel Priority
  • MAC settings BSR: Buffer Status Report / TAG: Timing Advance Group / PHR: Power Headroom parameters
  • DRX DiscontinueY settings, etc.
  • the setting contents in the IAB node setting message may include adaptation layer settings (lower side or upper side logical channel mapping (routing) setting, priority setting, etc.).
  • the setting contents in the IAB node setting message may include the (virtual) IP address (that is, the L3 address) of the IAB node 300-1 as necessary. This is because, for example, in order to establish the F1 interface on the L2 link, the protocol stack of F1 assumes SCTP over IP.
  • the setting content in the IAB node setting message is not limited to the setting information of the NR protocol but may be setting information of the LTE protocol (RLC, MAC, PHY).
  • the IAB node 300-1 has the function of the IAB node (that is, the layer 2 relay function) or requests establishment of the backhaul link connection before establishing the backhaul link connection. May be transmitted to the gNB 200-1. This allows the gNB 200-1 to properly start a procedure for establishing a backhaul link connection.
  • indication is referred to as IAB indication.
  • the IAB indication may include information indicating an intention or capability of preparing a link protocol stack for the UE function in the IAB node 300-1 in LTE, preparing in NR, or both.
  • the IAB node 300-1 may send an IAB indication after establishing an access link connection with the gNB 200-1, or send an IAB indication during a procedure for establishing an access link connection with the gNB 200-1. May be.
  • condition for enabling transmission of the IAB indication to the gNB there may be a condition that an SIB including a donor function identifier indicating that the donor function is provided is received from the gNB.
  • the IAB node 300-1 transmits an IAB indication to the gNB 200-1 only when the donor function identifier is received from the gNB 200-1 by the SIB.
  • the gNB 200-1 when the gNB 200-1 has a donor function for establishing a backhaul link connection with the IAB node 300-1, the gNB 200-1 receives the IAB indication from the IAB node 300-1 and then receives the IAB node. A setting message is transmitted to the IAB node 300-1.
  • the gNB 200-1 when the gNB 200-1 does not have a donor function, the gNB 200-1 receives an IAB indication from the IAB node 300-1, and then transmits an IAB node setting message to the IAB node 300-1.
  • a handover request for requesting handover of the IAB node 300-1 may be transmitted to another gNB.
  • the gNB 200-1 preferably stores information on other gNBs having a donor function in advance.
  • the gNB 200-1 may acquire information on another gNB having a donor function from the IAB node 300-1.
  • the IAB node 300-1 acquires information from 5GC10 (core network) or obtains information on other gNBs (neighboring cells) having a donor function by confirming SIB (donor function identifier) of neighboring cells, The acquired information is notified to the gNB 200-1.
  • the gNB 200-1 transmits a handover request to another gNB having a donor function based on the stored information or information obtained from the IAB node 300-1.
  • the IAB node 300-1 can establish a backhaul link connection with the other gNB.
  • the IAB node 300-1 requests the 5GC 10 to perform handover to the cell having the donor function (gNB), and the 5GC 10 performs processing related to the handover. Also good.
  • the gNB 200-1 may transmit the measurement setting for setting the wireless measurement to the IAB node 300-1 in response to receiving the IAB indication from the IAB node 300-1.
  • the IAB node 300-1 After receiving the measurement setting from the gNB 200-1, the IAB node 300-1 transmits a measurement report including the radio measurement result to the gNB 200-1.
  • the gNB 200-1 determines whether itself (gNB 200-1) is an appropriate donor gNB or another gNB is an appropriate donor gNB. For example, the gNB 200-1 is based on the measurement report when the measurement result for the other gNB is better than the measurement result for itself (gNB 200-1) and the difference between these measurement reports is larger than the threshold value. Determine that other gNBs are appropriate donor gNBs. Otherwise, gNB 200-1 determines that it is an appropriate donor gNB.
  • the gNB 200-1 If it is determined that itself (gNB 200-1) is an appropriate donor gNB 200-1, the gNB 200-1 transmits an IAB node setting message to the IAB node 300-1. On the other hand, if it is determined that the other gNB is an appropriate donor gNB, the gNB 200-1 requests a handover of the IAB node 300-1 instead of sending an IAB node setting message to the IAB node 300-1. A handover request is transmitted to the other gNB. As a result, the IAB node 300-1 can be handed over to another gNB with better radio condition, and the IAB node 300-1 can establish a backhaul link connection with the other gNB.
  • the gNB 200-1 may transmit the context information regarding the IAB node 300-1 to another gNB after the establishment of the backhaul link connection.
  • This context information includes AS-side connection settings on the wireless side (contents of RRC reconfiguration), PDU session resource settings on the network side (UE ID of AMF or RAN, session ID, QoS / slice settings, etc.), and other related information ( It includes history information such as IAB node behavior and communication, preference information, and the like.
  • the gNB 200-1 transmits context information related to the IAB node 300-1 to other gNBs in advance even if it has not made a decision to hand over the IAB node 300-1 to another gNB.
  • the gNB 200-1 transmits context information related to the IAB node 300-1 to other gNBs in advance even if it has not made a decision to hand over the IAB node 300-1 to another gNB.
  • the wireless state between the gNB 200-1 and the IAB node 300-1 deteriorates and the IAB node 300-1 re-establishes a wireless connection with another gNB
  • the previously shared context information is used. Rapid re-establishment can be performed.
  • the gNB 200-1 holds a table that associates the IAB node 300-1 with the donor gNB candidates of the IAB node 300-1.
  • the gNB 200-1 transmits context information to other gNBs that are candidates in the table. As a result, the gNB 200-1 can share the context information with other appropriate gNBs.
  • FIG. 6 is a diagram showing an example of a normal operation sequence in the mobile communication system 1 according to this embodiment.
  • the IAB node 300-1 establishes an access link connection (RRC connection) with the gNB 200-1, for example, by performing a random access procedure for the gNB 200-1.
  • the IAB node 300-1 may include an IAB indication in a message (eg, Msg3) transmitted to the gNB 200-1 during the random access procedure.
  • the gNB 200-1 acquires context information regarding the IAB node 300-1 in step S101.
  • the IAB node 300-1 performs an attach procedure for 5GC10 (specifically, AMF11) via the gNB 200-1.
  • the IAB node 300-1 may notify the AMF 11 of a notification such as an IAB indication (that is, a notification indicating that it wants to operate as an IAB node).
  • the IAB node 300-1 may obtain from the AMF 11 routing information such as the candidate list of donor gNB (cell), presence / absence of lower nodes, and other management information.
  • the AMF 11 may notify each candidate of the donor gNB that the IAB node 300-1 is attached and context information such as routing information of the IAB node 300-1.
  • step S102 the attach process in step S102 can be omitted.
  • the IAB node 300-1 performs the attach process when the connection with the donor gNB has to be reestablished due to some error occurrence, such as RRC reestablishment (Reestablishment). Omitted.
  • the IAB node 300-1 transmits an IAB indication to the gNB 200-1.
  • the IAB node 300-1 may transmit an IAB indication triggered by one or more of the following events being satisfied.
  • connection with gNB When connection with gNB is established (Msg5 or later may be used. For example, when the first RRC reconfiguration is performed).
  • the IAB node 300-1 includes an IAB indication in, for example, an RRC message transmitted to the gNB 200-1.
  • Such an RRC message may be a “UE Capability Information” message indicating the capability of the UE.
  • step S103 can be omitted.
  • the IAB indication may be notified from the AMF 11 to the gNB 200-1 in the form of a PDU session resource change.
  • the AMF may be an AMF for IAB management (dedicated).
  • gNB200-1 has a donor capability. Based on the IAB indication, the gNB 200-1 determines that the backhaul link connection needs to be established with the IAB node 300-1.
  • the gNB 200-1 transmits a measurement setting for setting the wireless measurement to the IAB node 300-1.
  • the IAB node 300-1 performs radio measurement based on the measurement setting. For example, the IAB node 300-1 measures the received power (the received power of the cell-specific reference signal) for the gNB 200-1 cell serving as the current serving cell and the gNB 200-2 cell serving as the adjacent cell.
  • step S105 the IAB node 300-1 transmits a measurement report including the result of the wireless measurement to the gNB 200-1. Based on the measurement report, the gNB 200-1 determines whether it (gNB 200-1) is an appropriate donor gNB or another gNB is an appropriate donor gNB. Here, the description will be made assuming that gNB 200-1 has determined that itself (gNB 200-1) is an appropriate donor gNB. Note that the processing of step S104 and step S105 is not essential and may be omitted.
  • the gNB 200-1 transmits an IAB node setting message (RRC reconfiguration message) to the IAB node 300-1.
  • the IAB node setup message may include a handover instruction that designates the gNB 200-1 cell (that is, the current serving cell of the IAB node 300-1) as a handover destination.
  • the IAB node 300-1 performs processing for establishing a backhaul link connection with the gNB 200-1 based on the IAB node setting message.
  • Such establishment processing includes processing for generating a protocol stack (adaptation / RLC / MAC / PHY entity) for backhaul link and setting parameters based on the setting information in the IAB node setting message.
  • Such establishment processing may include processing for preparing a protocol stack on the UE side (for the access link) and starting transmission of a synchronization signal or a cell-specific reference signal (or processing for preparing to start).
  • step S107 the IAB node 300-1 transmits a completion notification message indicating that the IAB node setting including the establishment of the backhaul link connection is completed to the gNB 200-1.
  • the IAB node 300-1 does not behave as a UE for the gNB 200-1, but behaves as an IAB node.
  • step S108 the gNB 200-1 transfers the context information acquired in step S101 to the gNB 200-2 over the Xn interface.
  • the gNB 200-1 holds a table that associates the IAB node 300-1 with the donor gNB candidate of the IAB node 300-1, and determines a context transfer destination with reference to this table. In this way, if the gNB 200-1 transfers the context to other gNBs in advance, when the wireless connection state with the gNB connected to the IAB node 300-1 deteriorates, immediately, A reconnection with the other gNB can be established.
  • FIG. 7 is a diagram illustrating an example of a table for determining a context transfer destination. Such a table is preset for each gNB by an operator, for example.
  • the donor gNB candidate is associated with each IAB node in the table.
  • the identifier of the candidate of the donor gNB is associated with each identifier related to the IAB node.
  • a gNB that is geographically close to an IAB node is set as a candidate for the donor gNB of that IAB node.
  • matching with cell ID may be sufficient.
  • the cell ID may be a physical layer cell ID or a global cell ID.
  • the gNB 200-1 may determine the gNB 200-1 geographically close to the IAB node 300-1 as a donor candidate based on the measurement report received from the IAB node 300-1. Based on the determined donor candidate, the gNB 200-1 may create a table associating the IAB node 300-1 with the donor gNB candidate of the IAB node 300-1 or update an existing table.
  • step S109 the gNB 200-1 transmits to the 5GC 10 a notification indicating that the backhaul link connection with the IAB node 300-1 has been established.
  • the gNB 200-1 may transmit a request for establishing a PDU session for the IAB node to the 5GC 10.
  • the PDU session establishment request may be transmitted from the AMF 11 to the gNB 200-1 prior to or in step S109.
  • FIG. 8 is a diagram showing an example of an exception operation sequence in the mobile communication system 1 according to this embodiment.
  • the gNB 200-1 hands over the IAB node 300-1 to the gNB 200-2.
  • the IAB node 300-1 establishes an access link connection (RRC connection) with the gNB 200-1 by performing a random access procedure for the gNB 200-1, for example.
  • the IAB node 300-1 may include an IAB indication in a message (eg, Msg3) transmitted to the gNB 200-1 during the random access procedure.
  • the gNB 200-1 acquires context information regarding the IAB node 300-1 in step S201.
  • step S202 the IAB node 300-1 performs an attach procedure for 5GC10 (specifically, AMF11) via the gNB 200-1.
  • 5GC10 specifically, AMF11
  • step S203 the IAB node 300-1 transmits an IAB indication to the gNB 200-1.
  • the IAB node 300-1 includes an IAB indication in an RRC message transmitted to the gNB 200-1.
  • Such an RRC message may be a “UE Capability Information” message indicating the capability of the UE.
  • step S203 can be omitted.
  • step S204 the gNB 200-1 determines whether or not it has donor ability. When gNB200-1 does not have donor capability (step S204: NO), gNB200-1 advances the process to step S208.
  • step S205 the gNB 200-1 transmits a measurement setting for setting radio measurement to the IAB node 300-1.
  • the IAB node 300-1 performs radio measurement based on the measurement setting. For example, the IAB node 300-1 measures the received power (the received power of the cell-specific reference signal) for the gNB 200-1 cell serving as the current serving cell and the gNB 200-2 cell serving as the adjacent cell.
  • step S206 the IAB node 300-1 transmits a measurement report including the result of the wireless measurement to the gNB 200-1.
  • step S207 the gNB 200-1 determines whether itself (gNB 200-1) is an appropriate donor gNB or another gNB is an appropriate donor gNB based on the measurement report.
  • the gNB 200-1 advances the process to step S106 of the normal operation sequence (see FIG. 6).
  • step S207 NO
  • the gNB 200-1 advances the process to step S208.
  • the gNB 200-1 transfers the handover request message including the IAB indication received from the IAB node 300-1 to the gNB 200-2 over the Xn interface.
  • the gNB 200-1 may include the context information acquired in step S201 in the handover request message.
  • the gNB 200-1 may transmit the handover request message including information indicating that the IAB node 300-1 requests the gNB to function as the donor gNB instead of including the IAB indication. Good.
  • the gNB 200-1 may transfer the handover request message to the gNB 200-2 over the Xn interface after determining that the gNB 200-2 has the donor capability.
  • the gNB 200-1 determines that the gNB 200-2 is associated with the IAB node 300-1 as a donor candidate in the table shown in FIG. May be transferred. In this case, since the possibility that the gNB 200-2 rejects the handover request is reduced, the handover of the IAB node 300-1 can be executed more quickly.
  • information regarding its own donor capability may be shared in advance between a plurality of gNBs 200 adjacent to each other via the Xn interface. As a result, the gNB 200-1 can specify the adjacent gNB 200 having the donor capability, and can transfer the handover request message to the specified adjacent gNB 200.
  • the gNB 200-2 determines whether to accept the handover of the IAB node 300-1 in consideration of the IAB indication included in the handover request message.
  • the gNB 200-2 may reject the handover request if it does not have donor capability.
  • the description will proceed assuming that the gNB 200-2 has decided to accept the handover of the IAB node 300-1.
  • step S209 the gNB 200-2 transmits a handover acknowledgment message to the gNB 200-1 over the Xn interface.
  • step S210 the gNB 200-1 transmits a handover instruction message (RRC reconfiguration message) to the IAB node 300-1 based on the handover acknowledgment message from the gNB 200-2.
  • the handover instruction message includes information for designating the gNB 200-2 (cell) of the handover destination.
  • step S211 the IAB node 300-1 performs handover to the gNB 200-2 based on the handover instruction message from the gNB 200.
  • FIG. 9 is a diagram showing an example of a multihop connection sequence in the mobile communication system 1 according to the present embodiment.
  • the multi-hop connection sequence is used when the IAB node 300-2 or the UE 100-2 is connected to the IAB node 300-1 after the backhaul link connection is connected between the IAB node 300-1 and the gNB 200-1. It is a sequence.
  • the case where the IAB node 300-2 is connected to the IAB node 300-1 will be mainly described, but the IAB node 300-2 may be appropriately replaced with the UE 100-2.
  • the description overlapping “(1) normal operation sequence” described above is omitted.
  • the IAB node 300-2 performs a random access procedure for the gNB 200-1 via the IAB node 300-1, thereby connecting the access link (RRC) with the gNB 200-1. Connection).
  • the IAB node 300-2 may include the IAB indication in a message (eg, Msg3) that is sent to the gNB 200-1 during the random access procedure.
  • the gNB 200-1 acquires context information regarding the IAB node 300-2 in step S301.
  • the IAB node 300-2 performs an attach procedure for the 5GC 10 (specifically, the AMF 11) via the IAB node 300-2 and the gNB 200-1.
  • the IAB node 300-2 may notify the AMF 11 of a notification such as an IAB indication (that is, a notification indicating that it wants to operate as an IAB node).
  • the IAB node 300-2 may obtain from the AMF 11 routing information such as a candidate list of donor gNB (cell), presence / absence of lower nodes, and other management information.
  • the AMF 11 may notify each candidate of the donor gNB that the IAB node 300-2 is attached and context information such as routing information of the IAB node 300-2.
  • the attach process in step S302 can be omitted. Specifically, the IAB node 300-2 omits the attach process when the connection with the donor gNB has to be reestablished due to some error occurrence, such as RRC reestablishment (Reestablishment).
  • RRC reestablishment Reestablishment
  • step S303 the IAB node 300-2 transmits an IAB indication to the gNB 200-1 via the IAB node 300-1.
  • the IAB node 300-2 may transmit an IAB indication in response to a trigger similar to the trigger described in step S103 of “(1) normal operation sequence” described above.
  • the IAB node 300-2 includes an IAB indication in an RRC message transmitted to, for example, the gNB 200-1.
  • Such an RRC message may be a “UE Capability Information” message indicating the capability of the UE.
  • step S303 can be omitted.
  • the IAB indication may be notified from the AMF 11 to the gNB 200-1 in the form of a PDU session resource change.
  • the AMF may be an AMF for IAB management (dedicated).
  • gNB200-1 since it is assumed that gNB200-1 has a donor capability, gNB200-1 sets backhaul link connection to IAB node 300-1 and IAB node 300-2 based on IAB indication. It is determined that it needs to be established during
  • step S304 the gNB 200-1 transmits a measurement setting for setting the wireless measurement to the IAB node 300-2.
  • the IAB node 300-2 performs wireless measurement based on the measurement setting.
  • step S305 the IAB node 300-2 transmits a measurement report including the result of the wireless measurement to the gNB 200-1 via the IAB node 300-1. Based on the measurement report, the gNB 200-1 determines whether it (gNB 200-1) is an appropriate donor gNB or another gNB is an appropriate donor gNB. Here, the description will be made assuming that gNB 200-1 has determined that itself (gNB 200-1) is an appropriate donor gNB. Note that the processing of step S304 and step S305 is not essential and may be omitted.
  • the gNB 200-1 transmits an IAB node setting message (RRC reconfiguration message) to the IAB node 300-2.
  • the IAB node 300-2 performs processing for establishing a backhaul link connection with the IAB node 300-1 based on the IAB node setting message.
  • Such establishment processing includes processing for generating a protocol stack (adaptation / RLC / MAC / PHY entity) for backhaul link and setting parameters based on the setting information in the IAB node setting message.
  • Such establishment processing may include processing for preparing a protocol stack on the UE side (for the access link) and starting transmission of a synchronization signal or a cell-specific reference signal (or processing for preparing to start).
  • step S307 the gNB 200-1 transmits an RRC reconfiguration message to the IAB node 300-1.
  • the RRC reconfiguration message is a message for changing the setting in the IAB node 300-1 with the addition of the IAB node 300-2.
  • the RRC reconfiguration message includes, for example, mapping information indicating a correspondence between the logical channel of the IAB node 300-2 and the logical channel of the backhaul link of the IAB node 300-1. Note that step S307 may be performed before step S306, or may be performed simultaneously with step S306.
  • step S308 the IAB node 300-2 transmits a completion notification message indicating that the IAB node setting including the establishment of the backhaul link connection with the IAB node 300-1 is completed to the gNB 200-1.
  • the IAB node 300-2 does not behave as a UE for the gNB 200-1, but behaves as an IAB node.
  • step S309 the IAB node 300-1 transmits a completion notification message indicating that the setting change accompanying the establishment of the backhaul link connection with the IAB node 300-2 is completed to the gNB 200-1. Note that step S309 may be performed before step S308 or may be performed simultaneously with step S308.
  • step S310 the gNB 200-1 transfers the context information of the IAB node 300-2 acquired in step S301 to the gNB 200-2 over the Xn interface.
  • step S311 the gNB 200-1 transmits to the 5GC 10 a notification indicating that the backhaul link connection of the IAB node 300-2 has been established.
  • the gNB 200-1 may transmit a PDU session establishment request for the IAB node 300-2 to the 5GC 10.
  • the PDU session establishment request may be transmitted from the AMF 11 to the gNB 200-1 before the step S311 or in the step S311.
  • the gNB 200 having a donor capability broadcasts information indicating that it has a donor capability in a system information block (SIB). Based on the SIB, the IAB node 300-1 selects the gNB 200 that is the connection destination. The IAB node 300-1 may select the gNB 200 as a connection destination when the gNB 200 has a donor capability and the received power from the gNB 200 is equal to or greater than a threshold value. Alternatively, if the gNB 200 does not have the donor capability, the IAB node 300-1 may reselect another gNB 200 in response to receiving the SIB transmitted from the gNB 200. Thereafter, when the SIB transmitted from the other gNB 200 indicates that the other gNB 200 has the donor capability, the IAB node 300-1 performs the random access procedure with the other gNB 200 as the connection destination. An IAB indication may be sent.
  • SIB system information block
  • the base station in the mobile communication system 1 may be an eNB.
  • the core network in the mobile communication system 1 may be an EPC (Evolved Packet Core).
  • EPC Evolved Packet Core
  • the gNB can be connected to the EPC
  • the eNB can be connected to the 5GC
  • the gNB and the eNB can be connected via an interface between base stations (Xn interface, X2 interface).
  • a program for causing a computer to execute each process according to the above-described embodiment may be provided.
  • the program may be recorded on a computer readable medium. If a computer-readable medium is used, a program can be installed in the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be a recording medium such as a CD-ROM or a DVD-ROM.
  • a chip set including a memory that stores a program for executing each process performed by the UE 100 and the eNB 200 and a processor that executes the program stored in the memory may be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

移動通信システムは、gNB200-1とIABノード300-1とを備える。IABノード300-1は、UE機能とgNB機能とを有し、UE機能を用いてgNB200-1との第1の無線接続を確立する。gNB200-1は、第1の無線接続を維持しつつ、IABノード300-1のgNB機能のための第2の無線接続をIABノード300-1とgNB200-1との間に確立させるメッセージをIABノード300-1に送信する。

Description

移動通信システム、中継ノード、及び基地局
 本開示は、移動通信システム、中継ノード、及び基地局に関する。
 移動通信システムの標準化プロジェクトである3GPP(3rd Generation Partnership Project)において、IAB(Integrated Access and Backhaul)ノードと称される新たな中継ノードが検討されている。1又は複数の中継ノードが基地局とユーザ機器との間の通信に介在し、この通信に対する中継を行う。かかる中継ノードは、ユーザ機器機能及び基地局機能を有しており、ユーザ機器機能を用いて上位ノード(基地局又は上位の中継ノード)との無線通信を行うとともに、基地局機能を用いて下位ノード(ユーザ機器又は下位の中継ノード)との無線通信を行う。
 ユーザ機器と、中継ノード又は基地局との間の無線区間は、アクセスリンクと称されることがある。中継ノードと、基地局又は他の中継ノードとの間の無線区間は、バックホールリンクと称されることがある。非特許文献1には、アクセスリンクのデータ通信及びバックホールリンクのデータ通信をレイヤ2において統合及び多重化し、バックホールリンクに動的に無線リソースを割り当てることにより、中継の経路を動的に切り替える方法が記載されている。
3GPP寄書 RP-170217 、「Motivation for Study on Integrated Access and Backhaul for NR」、[online]、[平成30年5月1日検索]、インターネット<1525835583096_0.zip>
 一実施形態に係る移動通信システムは、基地局と、ユーザ機器機能と基地局機能とを有し、前記ユーザ機器機能を用いて前記基地局との第1の無線接続を確立する中継ノードと、を備える。前記基地局は、前記第1の無線接続を維持しつつ、前記基地局機能のための第2の無線接続を前記中継ノードと前記基地局との間に確立させるメッセージを前記中継ノードに送信する。
 一実施形態に係る中継ノードは、ユーザ機器機能と基地局機能とを有する中継ノードであって、前記ユーザ機器機能を用いて基地局との第1の無線接続を確立する制御部と、前記第1の無線接続を維持しつつ、前記基地局機能のための第2の無線接続を前記中継ノードと前記基地局との間に確立させるメッセージを前記基地局から受信する受信部と、を備える。
 一実施形態に係る基地局は、ユーザ機器機能と基地局機能とを有する中継ノードとの第1の無線接続を確立する制御部と、前記第1の無線接続を維持しつつ、前記基地局機能のための第2の無線接続を前記中継ノードと前記基地局との間に確立させるメッセージを前記中継ノードに送信する送信部と、を備える。
実施形態に係る移動通信システムの構成を示す図である。 実施形態に係る基地局(gNB)の構成を示す図である。 実施形態に係る中継ノード(IABノード)の構成を示す図である。 実施形態に係るユーザ機器(UE)の構成を示す図である。 実施形態に係る移動通信システムにおけるユーザプレーンのプロトコルスタック構成の一例を示す図である。 実施形態に係る移動通信システムにおける通常動作シーケンスの一例を示す図である。 実施形態に係るコンテキスト転送先を決定するためのテーブルの一例を示す図である。 実施形態に係る移動通信システムにおける例外動作シーケンスの一例を示す図である。 実施形態に係る移動通信システムにおけるマルチホップ接続シーケンスの一例を示す図である。
 図面を参照しながら、一実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (移動通信システムの構成)
 本実施形態に係る移動通信システムの構成について説明する。図1は、本実施形態に係る移動通信システム1の構成を示す図である。移動通信システム1は、3GPP規格に基づく第5世代(5G)移動通信システムである。具体的には、移動通信システム1における無線アクセス方式は、5Gの無線アクセス方式であるNRである。但し、移動通信システム1には、LTE(Long Term Evolution)が少なくとも部分的に適用されてもよい。
 図1に示すように、移動通信システム1は、5Gコアネットワーク(5GC)10と、ユーザ機器(UE)100と、基地局(gNBと称される)200と、IABノード300とを備える。本実施形態において、基地局がNR基地局である一例について主として説明するが、基地局がLTE基地局(すなわち、eNB)であってもよい。
 5GC10は、AMF(Access and Mobility Management Function)11及びUPF(User Plane Function)12を備える。AMF11は、UE100に対する各種モビリティ制御等を行う装置である。AMF11は、NAS(Non-Access Stratum)シグナリングを用いてUE100と通信することにより、UE100が在圏するエリアの情報を管理する。UPF12は、ユーザデータの転送制御等を行う装置である。
 gNB200は、NGインターフェイスと称されるインターフェイスを介して、5GC10に接続される。図1において、5GC10に接続された3つのgNB200-1~gNB200-3を例示している。gNB200は、UE100との無線通信を行う固定の無線通信装置である。gNB200がドナー機能を有する場合、gNB200は、自身に無線で接続するIABノードとの無線通信を行ってもよい。
 gNB200は、Xnインターフェイスと称される基地局間インターフェイスを介して、隣接関係にある他のgNB200と接続される。図1において、gNB200-1がgNB200-2及びgNB200-2に接続される一例を示している。
 各gNB200は、1又は複数のセルを管理する。セルは、無線通信エリアの最小単位を示す用語として用いられる。セルは、UE100との無線通信を行う機能又はリソースを示す用語として用いられることがある。1つのセルは1つのキャリア周波数に属する。
 UE100は、gNB200との無線通信を行う移動可能な無線通信装置である。UE100は、IABノード300との無線通信を行ってもよい。UE100は、gNB200又はIABノード300との無線通信を行う装置であればどのような装置であっても構わないが、例えば、UE100は、携帯電話端末やタブレット端末、ノートPC、センサ若しくはセンサに設けられる装置、車両若しくは車両に設けられる装置である。
 図1において、UE100-1がgNB200-1に無線で接続され、UE100-2がIABノード300-1に無線で接続され、UE100-3がIABノード300-2に無線で接続される一例を示している。UE100-1は、gNB200-1との通信を直接的に行う。UE100-2は、IABノード300-1を介してgNB200-1との通信を間接的に行う。UE100-3は、IABノード300-1及びIABノード300-2を介してgNB200-1との通信を間接的に行う。
 IABノード300は、eNB200とUE100との間の通信に介在し、この通信に対する中継を行う装置(中継ノード)である。図1において、IABノード300-1がドナーであるgNB200-1に無線で接続され、IABノード300-2がIABノード300-1に無線で接続される一例を示している。各IABノード300は、セルを管理する。IABノード300が管理するセルのセルIDは、ドナーgNB200-1のセルのセルIDと同じであってもよいし、異なっていてもよい。
 IABノード300は、UE機能(ユーザ機器機能)及びgNB機能(基地局機能)を有する。IABノード300は、UE機能を用いて上位ノード(gNB200又は上位のIABノード300)との無線通信を行うとともに、gNB機能を用いて下位ノード(UE100又は下位のIABノード300)との無線通信を行う。なお、UE機能とは、UE100が有する機能のうち少なくとも一部の機能を意味し、必ずしもUE100の全ての機能をIABノード300が有していなくてもよい。gNB機能とは、gNB200の機能のうち少なくとも一部の機能を意味し、必ずしもgNB200の全ての機能をIABノード300が有していなくてもよい。
 UE100と、IABノード300又はgNB200との間の無線区間は、アクセスリンク(或いは、Uu)と称されることがある。IABノード300と、gNB200又は他のIABノード300との間の無線区間は、バックホールリンク(或いは、Un)と称されることがある。かかるバックホールリンクは、フロントホールリンクと称されてもよい。
 アクセスリンクのデータ通信及びバックホールリンクのデータ通信をレイヤ2において統合及び多重化し、バックホールリンクのデータ通信に動的に無線リソースを割り当て、中継の経路を動的に切り替えることが可能である。なお、アクセスリンク及びバックホールリンクには、ミリ波帯が用いられてもよい。また、アクセスリンク及びバックホールリンクは、時分割及び/又は周波数分割により多重化されてもよい。
 (gNBの構成)
 本実施形態に係るgNB200の構成について説明する。図2は、gNB200の構成を示す図である。図2に示すように、gNB200は、無線通信部210と、ネットワーク通信部220と、制御部230とを備える。
 無線通信部210は、UE100との無線通信及びIABノード300との無線通信に用いられる。無線通信部210は、受信部211及び送信部212を備える。受信部211は、制御部230の制御下で各種の受信を行う。受信部211はアンテナを含み、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部230に出力する。送信部212は、制御部230の制御下で各種の送信を行う。送信部212はアンテナを含み、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 ネットワーク通信部220は、5GC10との有線通信(又は無線通信)及び隣接する他のgNB200との有線通信(又は無線通信)に用いられる。ネットワーク通信部220は、受信部221及び送信部222を備える。受信部221は、制御部230の制御下で各種の受信を行う。受信部221は、外部から信号を受信して受信信号を制御部230に出力する。送信部222は、制御部230の制御下で各種の送信を行う。送信部222は、制御部230が出力する送信信号を外部に送信する。
 制御部230は、gNB200における各種の制御を行う。制御部230は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサとCPUとを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、後述する処理を実行する。
 (IABノードの構成)
 本実施形態に係るIABノード300の構成について説明する。図3は、IABノード300の構成を示す図である。図2に示すように、IABノード300は、無線通信部310と、制御部320とを備える。
 無線通信部310は、gNB200との無線通信(バックホールリンク)及びUE100との無線通信(アクセスリンク)に用いられる。無線通信部310は、受信部311及び送信部312を備える。受信部311は、制御部320の制御下で各種の受信を行う。受信部311はアンテナを含み、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部320に出力する。送信部312は、制御部320の制御下で各種の送信を行う。送信部312はアンテナを含み、制御部320が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 制御部320は、IABノード300における各種の制御を行う。制御部320は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサ及びCPUを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、後述する処理を実行する。
 (UEの構成)
 本実施形態に係るUE100の構成について説明する。図4は、UE100の構成を示す図である。図4に示すように、UE100は、無線通信部110と、制御部120とを備える。
 無線通信部110は、アクセスリンクにおける無線通信、すなわち、gNB200との無線通信及びIABノード300との無線通信に用いられる。無線通信部110は、受信部111及び送信部112を備える。受信部111は、制御部120の制御下で各種の受信を行う。受信部111はアンテナを含み、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換して制御部120に出力する。送信部112は、制御部120の制御下で各種の送信を行う。送信部112はアンテナを含み、制御部120が出力するベースバンド信号(送信信号)を無線信号に変換してアンテナから送信する。
 制御部120は、UE100における各種の制御を行う。制御部120は、少なくとも1つのプロセッサ及び少なくとも1つのメモリを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサ及びCPUを含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。プロセッサは、後述する処理を実行する。
 (プロトコルスタック構成の一例)
 本実施形態に係る移動通信システム1におけるプロトコルスタック構成の一例について説明する。図5は、ユーザプレーンのプロトコルスタック構成の一例を示す図である。ここでは、図1に示したUE100-3と5GC10のUPF12との間のユーザデータ伝送に関するプロトコルスタック構成の一例について説明する。
 図5に示すように、UPF12は、GTP-U(GPRS Tunneling Protocol for User Plane)と、UDP(User Datagram Protocol)と、IP(Internet Protocol)と、レイヤ1/レイヤ2(L1/L2)とを備える。gNB200-1(ドナーgNB)には、これらに対応するプロトコルスタックが設けられる。
 また、gNB200-1は、集約ユニット(CU:Central Unit)と分散ユニット(DU:Distributed Unit)とを備える。無線インターフェイスのプロトコルスタックのうちPDCP(Packet Data Convergence Protocol)以上の各レイヤをCUが有し、RLC(Radio Link Control)以下の各レイヤをDUが有し、F1インターフェイスと称されるインターフェイスを介してCU及びDUが接続される。
 具体的には、CUは、SDAP(Service Data Adaptation Protocol)と、PDCPと、IPと、L1/L2とを備える。CUのSDAP及びPDCPは、DUと、IABノード300-1と、IABノード300-2とを介して、UE100のSDAP及びPDCPとの通信を行う。
 また、DUは、無線インターフェイスのプロトコルスタックのうち、RLCと、アダプテーションレイヤ(Adapt)と、MAC(Medium Access Control)と、PHY(Physical layer)とを有する。これらのプロトコルスタックは、gNB向けのプロトコルスタックである。なお、アダプテーションレイヤ及びRLC(S-RLC)は上下関係が逆であってもよい。
 IABノード300-1には、これらに対応するUE向けのプロトコルスタックST1が設けられる。さらに、IABノード300-1には、gNB向けのプロトコルスタックST2が設けられる。プロトコルスタックST1及びプロトコルスタックST2は、何れもレイヤ2以下の各レイヤ(各サブレイヤ)からなる。すなわち、IABノード300-1は、レイヤ2以下の各レイヤを用いてユーザデータの中継を行うレイヤ2中継ノードである。IABノード300-1は、レイヤ3以上のレイヤ(具体的には、PDCP以上のレイヤ)を用いることなくデータ中継を行う。なお、IABノード300-2は、IABノード300-1と同様なプロトコルスタック構成を有する。
 ここではユーザプレーンにおけるプロトコルスタック構成について説明した。しかしながら、制御プレーンにおいて、gNB200-1、IABノード300-1、IABノード300-2、及びUE100-3のそれぞれは、レイヤ3に相当するRRC(Radio Resource Control)を備える。
 gNB200-1(ドナーgNB)のRRCとIABノード300-1のRRCとの間にRRC接続が確立され、このRRC接続を用いてRRCメッセージが送受信される。また、gNB200-1のRRCとIABノード300-2のRRCとの間にRRC接続が確立され、このRRC接続を用いてRRCメッセージが送受信される。さらに、gNB200-1のRRCとUE100-3のRRCとの間にRRC接続が確立され、このRRC接続を用いてRRCメッセージが送受信される。
 (移動通信システムにおける動作)
 本実施形態に係る移動通信システム1における動作について説明する。具体的には、IABノード300-1がgNB200-1(ドナーgNB)に無線で接続する場合の動作について説明する。
 かかる場合、最初に、IABノード300-1は、UE機能を用いてgNB200-1とのアクセスリンク接続(第1の無線接続)を確立する。言い換えると、IABノード300-1は、UE100として振る舞ってgNB200-1とのアクセスリンク接続を確立する。アクセスリンク接続の確立は、RRC接続の確立を含む。
 次に、gNB200-1は、アクセスリンク接続を維持しつつ、IABノード300-1のgNB機能のためのバックホールリンク接続(第2の無線接続)をIABノード300-1とgNB200-1との間に確立させるメッセージをIABノード300-1に送信する。本実施形態において、かかるメッセージは、RRC接続を用いて送受信されるRRC再設定(RRC Reconfiguration)メッセージである。
 その結果、バックホールリンク接続がIABノード300-1とgNB200-1との間に確立されるため、IABノード300-1とgNB200-1との間でバックホールリンクの通信を適切に開始可能とすることができる。
 バックホールリンク接続を確立させるRRC再設定メッセージは、バックホールリンク接続を構成するベアラ(又はL2リンク)の設定情報、及びIABノード300-1が送信するべきセルID(具体的には、セルIDに関連付けられた参照信号及び同期信号の送信設定)を含んでもよい。以下において、かかるRRC再設定メッセージをIABノード設定メッセージと称する。
 IABノード設定メッセージは、デフォルトベアラ(又はデフォルトリンク)の設定情報を含んでもよい。デフォルトベアラ(又はデフォルトリンク)は、例えば、SIBの中継やUEからのMsg3中継などを行うためのベアラ(又はリンク)である。
 IABノード設定メッセージは、ドナーgNB200-1側のスタックの設定情報と、オプションでIABノード300-2(又はUE100)側のスタックの設定情報とを含んでもよい。IABノード300-2(又はUE100)側のスタックの設定情報は、暗示的にドナーgNB200-1のSIBで報知されている設定群を再利用してもよいし、オペレータ(OAM)から(事前に)設定されてもよい。
 IABノード設定メッセージにおける設定内容としては、基本的にRRC再設定メッセージに含まれる設定全てが対象になり得るが、RLC設定(AM:Acknowledged Mode/UM:Unacknowledged Mode/TM:Transparent Mode等の動作モード、LCP(Logical Channel Prioritization)パラメータ等)、MAC設定(BSR:Buffer Status Report/TAG:Timing Advance Group/PHR:Power Headroomパラメータ、DRX:Discontinues Reception設定等)、PHY設定が含まれてもよい。
 また、IABノード設定メッセージにおける設定内容には、アダプテーションレイヤの設定(下位側又は上位側の論理チャネルのマッピング(ルーティング)設定、優先度設定等)が含まれてもよい。
 さらに、IABノード設定メッセージにおける設定内容には、必要に応じて、IABノード300-1の(仮想的な)IPアドレス(すなわち、L3アドレス)を含めてもよい。これは、例えばF1インターフェイスをL2リンク上に確立するために、F1のプロトコルスタックがSCTP over IPを想定しているためである。
 なお、IABノード設定メッセージにおける設定内容は、NRプロトコルの設定情報に限らず、LTEプロトコル(RLC、MAC、PHY)の設定情報であってもよい。
 本実施形態において、IABノード300-1は、バックホールリンク接続を確立するよりも前に、IABノードの機能(すなわち、レイヤ2中継機能)を有すること又はバックホールリンク接続の確立を要求することを示すインディケーションをgNB200-1に送信してもよい。これにより、gNB200-1は、バックホールリンク接続を確立するためのプロシージャを適切に開始できる。以下において、かかるインディケーションをIABインディケーションと称する。IABインディケーションは、IABノード300-1におけるUE機能向けリンクプロトコルスタックをLTEで準備するのか、NRで準備するのか、もしくはその両方か、という意図又は能力を示す情報を含んでもよい。
 なお、IABノード300-1は、gNB200-1とのアクセスリンク接続の確立後にIABインディケーションを送信してもよいし、gNB200-1とのアクセスリンク接続を確立するプロシージャ中にIABインディケーションを送信してもよい。
 また、IABインディケーションをgNBに送信可能とする条件として、このgNBから、ドナー機能を有することを示すドナー機能識別子を含むSIBを受信しているという条件があってもよい。かかる場合、IABノード300-1は、gNB200-1からSIBによりドナー機能識別子を受信している場合に限り、gNB200-1に対してIABインディケーションを送信する。
 本実施形態において、IABノード300-1とのバックホールリンク接続を確立するドナー機能をgNB200-1が有する場合、gNB200-1は、IABノード300-1からIABインディケーションを受信した後、IABノード設定メッセージをIABノード300-1に送信する。一方、ドナー機能をgNB200-1が有しない場合、gNB200-1は、IABノード300-1からIABインディケーションを受信した後、IABノード設定メッセージをIABノード300-1に送信することに代えて、IABノード300-1のハンドオーバを要求するハンドオーバ要求を他のgNBに送信してもよい。ここで、gNB200-1は、ドナー機能を有する他のgNBの情報を予め記憶していることが好ましい。gNB200-1は、ドナー機能を有する他のgNBの情報をIABノード300-1から取得してもよい。IABノード300-1は、5GC10(コアネットワーク)から情報を入手、もしくは隣接セルのSIB(ドナー機能識別子)を確認することにより、ドナー機能を有する他のgNB(隣接セル)の情報を取得し、取得した情報をgNB200-1に通知する。gNB200-1は、記憶している情報又はIABノード300-1から取得した情報に基づいて、ドナー機能を有する他のgNBに対してハンドオーバ要求を送信する。これにより、IABノード300-1を他のgNBにハンドオーバさせた後に、IABノード300-1が当該他のgNBとのバックホールリンク接続を確立できる。或いは、ドナー機能をgNB200-1が有しない場合、IABノード300-1は、5GC10に対して、ドナー機能を有するセル(gNB)へハンドオーバさせることを要求し、5GC10がハンドオーバに係る処理を行ってもよい。
 本実施形態において、gNB200-1は、IABノード300-1からIABインディケーションを受信したことに応じて、無線測定を設定する測定設定をIABノード300-1に送信してもよい。IABノード300-1は、gNB200-1から測定設定を受信した後、無線測定の結果を含む測定報告をgNB200-1に送信する。gNB200-1は、IABノード300-1からの測定報告に基づいて、自身(gNB200-1)が適切なドナーgNBであるか又は他のgNBが適切なドナーgNBであるかを判断する。例えば、gNB200-1は、測定報告に基づいて、自身(gNB200-1)に対する測定結果よりも他のgNBに対する測定結果が良好であり、かつ、これらの測定報告の差が閾値よりも大きい場合に、他のgNBが適切なドナーgNBであると判断する。そうでなければ、gNB200-1は、自身が適切なドナーgNBであると判断する。
 そして、自身(gNB200-1)が適切なドナーgNB200-1であると判断した場合、gNB200-1は、IABノード設定メッセージをIABノード300-1に送信する。一方、他のgNBが適切なドナーgNBであると判断した場合、gNB200-1は、IABノード設定メッセージをIABノード300-1に送信することに代えて、IABノード300-1のハンドオーバを要求するハンドオーバ要求を当該他のgNBに送信する。これにより、IABノード300-1をより無線状態の良好な他のgNBにハンドオーバさせて、IABノード300-1が当該他のgNBとのバックホールリンク接続を確立できる。
 本実施形態において、gNB200-1は、バックホールリンク接続の確立後、IABノード300-1に関するコンテキスト情報を他のgNBに送信してもよい。このコンテキスト情報は、無線側のASレイヤの接続設定(RRC再設定の内容)、ネットワーク側のPDUセッションリソース設定(AMF又はRANのUE ID、セッションID、QoS/スライス設定等)、その他関連情報(IABノードの挙動や通信などの履歴情報、プリファレンス情報などを含む。
 具体的には、gNB200-1は、IABノード300-1を他のgNBにハンドオーバさせるという判断を行っていなくても、IABノード300-1に関するコンテキスト情報を予め他のgNBに送信する。これにより、gNB200-1とIABノード300-1との間の無線状態が悪化し、IABノード300-1が他のgNBとの無線接続を再確立する場合に、予め共有したコンテキスト情報を用いて速やかな再確立を行うことができる。
 ここで、gNB200-1は、IABノード300-1とIABノード300-1のドナーgNBの候補とを対応付けるテーブルを保持していることが好ましい。gNB200-1は、テーブル中の候補である他のgNBに対してコンテキスト情報を送信する。これにより、gNB200-1は、コンテキスト情報を適切な他のgNBと共有できる。
 (1)通常動作シーケンスの一例
 図6は、本実施形態に係る移動通信システム1における通常動作シーケンスの一例を示す図である。
 図6に示すように、ステップS101において、IABノード300-1は、例えばgNB200-1に対してランダムアクセスプロシージャを行うことにより、gNB200-1とのアクセスリンク接続(RRC接続)を確立する。IABノード300-1は、ランダムアクセスプロシージャ中にgNB200-1に送信するメッセージ(例えば、Msg3)にIABインディケーションを含めてもよい。また、gNB200-1は、ステップS101において、IABノード300-1に関するコンテキスト情報を取得する。
 ステップS102において、IABノード300-1は、gNB200-1を介して、5GC10(具体的には、AMF11)に対するアタッチプロシージャを行う。ここで、IABノード300-1は、IABインディケーションのような通知(つまり、IABノードとして動作したいことを示す通知)をAMF11に通知してもよい。これにより、IABノード300-1は、AMF11から、ドナーgNB(セル)の候補リストや下位ノードの有無などのルーティング情報、その他管理情報などを入手してもよい。もしくは、AMF11からドナーgNBの各候補に対して、IABノード300-1のアタッチがあった旨や、IABノード300-1のルーティング情報などのコンテキスト情報を通知してもよい。なお、IABノード300-1が既にアタッチしている場合は、ステップS102におけるアタッチ処理を省略可能である。具体的には、IABノード300-1は、ステップS101において、RRC再確立(Reestablishment)などのように、何らかのエラー発生によってドナーgNBとの接続を再確立しなければならない場合などにおいて、アタッチ処理を省略する。
 ステップS103において、IABノード300-1は、IABインディケーションをgNB200-1に送信する。IABノード300-1は、次のイベントのうち1又は複数が満たされたことをトリガとしてIABインディケーションを送信してもよい。
 ・Msg5(RRC Complete)を送信する際。
 ・gNBとの接続が確立した際(Msg5以降でもよい。例えば最初のRRC再設定が行われた際)。
 ・AMFからIAB設定情報(上記参照)を入手した際(既にIAB設定情報を持っている場合も含む)。
 ・単純にIABノードとして動作したくなった際(上位レイヤからIABノードとして動作する指示を受信したことを含む)。
 ・下位のIABノード300-2又はUE100-3からIABノードとなるように要求された場合(その旨の要求を示す信号を下位のIABノード300-2又はUE100-3から受信した場合)。
 ・下位のIABノード300-2又はUE100-3が既に接続している場合。
 IABノード300-1は、例えばgNB200-1に送信するRRCメッセージにIABインディケーションを含める。かかるRRCメッセージは、UEとしての能力を示す「UE Capability Information」メッセージであってもよい。但し、ステップS101においてIABインディケーションを送信している場合、ステップS103は省略可能である。
 或いは、IABインディケーションは、AMF11からPDUセッションリソースの変更という形でgNB200-1に通知されてもよい。なお、AMFは、IAB管理用(専用)のAMFであってもよい。
 本通常動作シーケンスにおいては、gNB200-1がドナー能力を有すると仮定して説明を進める。gNB200-1は、IABインディケーションに基づいて、バックホールリンク接続をIABノード300-1に確立させる必要があると判断する。
 ステップS104において、gNB200-1は、無線測定を設定する測定設定をIABノード300-1に送信する。IABノード300-1は、測定設定に基づいて無線測定を行う。例えば、IABノード300-1は、現在のサービングセルであるgNB200-1のセルと、隣接セルであるgNB200-2のセルとに対して受信電力(セル固有参照信号の受信電力)の測定を行う。
 ステップS105において、IABノード300-1は、無線測定の結果を含む測定報告をgNB200-1に送信する。gNB200-1は、測定報告に基づいて、自身(gNB200-1)が適切なドナーgNBであるか又は他のgNBが適切なドナーgNBであるかを判断する。ここでは、gNB200-1が、自身(gNB200-1)が適切なドナーgNBであると判断したと仮定して説明を進める。なお、ステップS104及びステップS105の処理は必須ではなく、省略してもよい。
 ステップS106において、gNB200-1は、IABノード設定メッセージ(RRC再設定メッセージ)をIABノード300-1に送信する。IABノード設定メッセージは、gNB200-1のセル(すなわち、IABノード300-1の現在のサービングセル)をハンドオーバ先として指定するハンドオーバ指示を含んでもよい。IABノード300-1は、IABノード設定メッセージに基づいて、バックホールリンク接続をgNB200-1と確立する処理を行う。かかる確立処理は、IABノード設定メッセージ中の設定情報に基づいて、バックホールリンク用のプロトコルスタック(アダプテーション/RLC/MAC/PHYエンティティ)を生成したり、パラメータ設定したりする処理を含む。かかる確立処理は、UE側(のアクセスリンク用)のプロトコルスタックを準備して、同期信号やセル固有参照信号の送信を開始する処理(もしくは、開始する準備をする処理)を含んでもよい。
 ステップS107において、IABノード300-1は、バックホールリンク接続の確立を含むIABノード設定が完了したことを示す完了通知メッセージをgNB200-1に送信する。ステップS107以降は、IABノード300-1はgNB200-1に対してUEとして振る舞うのではなく、IABノードとして振る舞う。
 ステップS108において、gNB200-1は、ステップS101において取得したコンテキスト情報を、Xnインターフェイス上でgNB200-2に転送する。gNB200-1は、IABノード300-1とIABノード300-1のドナーgNBの候補とを対応付けるテーブルを保持しており、このテーブルを参照してコンテキスト転送先を決定する。このようにして、gNB200-1が、他のgNBに対してコンテキストを事前に転送しておけば、IABノード300-1と接続しているgNBとの無線接続状態が悪化した場合に、直ぐに、当該他のgNBとの再接続を確立することができる。図7は、コンテキスト転送先を決定するためのテーブルの一例を示す図である。かかるテーブルは、例えばオペレータにより各gNBに対して予め設定される。図7に示すように、テーブルにおいて、IABノードごとに、そのドナーgNBの候補が対応けられている。具体的には、IABノードに関する識別子ごとに、そのドナーgNBの候補の識別子が対応けられている。例えば、IABノードに地理的に近いgNBがそのIABノードのドナーgNBの候補として設定される。なお、gNBとの対応付けの例を示したが、セルIDとの対応付けであってもよい。セルIDは、物理レイヤセルIDでもよく、グローバルセルIDでもよい。なお、gNB200-1は、IABノード300-1から受信した測定報告に基づいて、IABノード300-1に地理的に近いgNB200-1をドナー候補として決定してもよい。gNB200-1は、当該決定したドナー候補に基づいて、IABノード300-1と当該IABノード300-1のドナーgNBの候補とを対応付けるテーブルを作成又は既存のテーブルを更新してもよい。
 ステップS109において、gNB200-1は、IABノード300-1とのバックホールリンク接続を確立したことを示す通知を5GC10に送信する。もしくは、gNB200-1は、IABノード用のPDUセッションの確立要求を5GC10に送信してもよい。なお、上述したように、PDUセッションの確立要求は、ステップS109よりも先に又はステップS109においてAMF11からgNB200-1に送信されてもよい。
 (2)例外動作シーケンスの一例
 図8は、本実施形態に係る移動通信システム1における例外動作シーケンスの一例を示す図である。例外動作シーケンスにおいて、gNB200-1は、IABノード300-1をgNB200-2にハンドオーバさせる。
 図8に示すように、ステップS201において、IABノード300-1は、例えばgNB200-1に対してランダムアクセスプロシージャを行うことにより、gNB200-1とのアクセスリンク接続(RRC接続)を確立する。IABノード300-1は、ランダムアクセスプロシージャ中にgNB200-1に送信するメッセージ(例えば、Msg3)にIABインディケーションを含めてもよい。また、gNB200-1は、ステップS201において、IABノード300-1に関するコンテキスト情報を取得する。
 ステップS202において、IABノード300-1は、gNB200-1を介して、5GC10(具体的には、AMF11)に対するアタッチプロシージャを行う。
 ステップS203において、IABノード300-1は、IABインディケーションをgNB200-1に送信する。IABノード300-1は、例えばgNB200-1に送信するRRCメッセージにIABインディケーションを含める。かかるRRCメッセージは、UEの能力を示す「UE Capability Information」メッセージであってもよい。但し、ステップS201においてIABインディケーションを送信している場合、ステップS203は省略可能である。
 ステップS204において、gNB200-1は、自身がドナー能力を有するか否かを判断する。gNB200-1がドナー能力を有しない場合(ステップS204:NO)、gNB200-1は、処理をステップS208に進める。
 gNB200-1がドナー能力を有する場合(ステップS204:YES)、ステップS205において、gNB200-1は、無線測定を設定する測定設定をIABノード300-1に送信する。IABノード300-1は、測定設定に基づいて無線測定を行う。例えば、IABノード300-1は、現在のサービングセルであるgNB200-1のセルと、隣接セルであるgNB200-2のセルとに対して受信電力(セル固有参照信号の受信電力)の測定を行う。
 ステップS206において、IABノード300-1は、無線測定の結果を含む測定報告をgNB200-1に送信する。
 ステップS207において、gNB200-1は、測定報告に基づいて、自身(gNB200-1)が適切なドナーgNBであるか又は他のgNBが適切なドナーgNBであるかを判断する。自身(gNB200-1)が適切なドナーgNBであると判断した場合(ステップS207:YES)、gNB200-1は、上述した通常動作シーケンス(図6参照)のステップS106に処理を進める。
 一方、他のgNBが適切なドナーgNBであると判断した場合(ステップS207:NO)、gNB200-1は、ステップS208に処理を進める。
 ステップS208において、gNB200-1は、IABノード300-1から受信したIABインディケーションを含むハンドオーバ要求メッセージをXnインターフェイス上でgNB200-2に転送する。gNB200-1は、ステップS201において取得したコンテキスト情報をハンドオーバ要求メッセージに含めてもよい。または、gNB200-1は、ハンドオーバ要求メッセージに、IABインディケーションを含める代わりに、IABノード300-1がgNBに対してドナーgNBとして機能することを要求する旨を示す情報を含めて送信してもよい。なお、ステップS208において、gNB200-1は、gNB200-2がドナー能力を有すると判断した上で、ハンドオーバ要求メッセージをXnインターフェイス上でgNB200-2に転送してもよい。具体的には、例えば、gNB200-1は、図7に示すテーブルにおいて、IABノード300-1にドナー候補としてgNB200-2が対応付けられていると判断した場合に、ハンドオーバ要求メッセージをgNB200-2に対して転送してもよい。この場合、gNB200-2がハンドオーバ要求を拒否する可能性が低減されるため、IABノード300-1のハンドオーバをより早急に実行することができる。または、互いに隣接する複数のgNB200間でXnインターフェイスを介して、自身のドナー能力に関する情報を事前に共有してもよい。これによって、gNB200-1は、ドナー能力を有する隣接のgNB200を特定することができ、当該特定した隣接のgNB200に対してハンドオーバ要求メッセージを転送することができる。
 gNB200-2は、ハンドオーバ要求メッセージに含まれるIABインディケーションも考慮して、IABノード300-1のハンドオーバを受け入れるか否かを判断する。gNB200-2は、自身がドナー能力を有しない場合には、ハンドオーバ要求を拒否してもよい。ここではgNB200-2がIABノード300-1のハンドオーバを受け入れると判断したと仮定して説明を進める。
 ステップS209において、gNB200-2は、ハンドオーバ肯定応答メッセージをXnインターフェイス上でgNB200-1に送信する。
 ステップS210において、gNB200-1は、gNB200-2からのハンドオーバ肯定応答メッセージに基づいて、ハンドオーバ指示メッセージ(RRC再設定メッセージ)をIABノード300-1に送信する。ハンドオーバ指示メッセージは、ハンドオーバ先のgNB200-2(のセル)を指定する情報を含む。
 ステップS211において、IABノード300-1は、gNB200からのハンドオーバ指示メッセージに基づいて、gNB200-2へのハンドオーバを行う。
 (3)マルチホップ接続シーケンスの一例
 図9は、本実施形態に係る移動通信システム1におけるマルチホップ接続シーケンスの一例を示す図である。マルチホップ接続シーケンスは、IABノード300-1とgNB200-1との間にバックホールリンク接続が接続された後において、IABノード300-1にIABノード300-2又はUE100-2が接続する場合のシーケンスである。ここではIABノード300-1にIABノード300-2が接続する場合について主として説明するが、IABノード300-2をUE100-2と適宜読み替えてもよい。また、上述した「(1)通常動作シーケンス」と重複する説明を省略する。
 図9に示すように、ステップS301において、IABノード300-2は、IABノード300-1を介してgNB200-1に対してランダムアクセスプロシージャを行うことにより、gNB200-1とのアクセスリンク接続(RRC接続)を確立する。IABノード300-2は、ランダムアクセスプロシージャ中にgNB200-1に送信するメッセージ(例えば、Msg3)にIABインディケーションを含めてもよい。また、gNB200-1は、ステップS301において、IABノード300-2に関するコンテキスト情報を取得する。
 ステップS302において、IABノード300-2は、IABノード300-2及びgNB200-1を介して、5GC10(具体的には、AMF11)に対するアタッチプロシージャを行う。ここで、IABノード300-2は、IABインディケーションのような通知(つまり、IABノードとして動作したいことを示す通知)をAMF11に通知してもよい。これにより、IABノード300-2は、AMF11から、ドナーgNB(セル)の候補リストや下位ノードの有無などのルーティング情報、その他管理情報などを入手してもよい。もしくは、AMF11からドナーgNBの各候補に対して、IABノード300-2のアタッチがあった旨や、IABノード300-2のルーティング情報などのコンテキスト情報を通知してもよい。なお、IABノード300-2が既にアタッチしている場合は、ステップS302におけるアタッチ処理を省略可能である。具体的には、IABノード300-2は、RRC再確立(Reestablishment)などのように、何らかのエラー発生によってドナーgNBとの接続を再確立しなければならない場合などにおいて、アタッチ処理を省略する。
 ステップS303において、IABノード300-2は、IABノード300-1を介してIABインディケーションをgNB200-1に送信する。IABノード300-2は、上述した「(1)通常動作シーケンス」のステップS103において説明したトリガと同様なトリガに応じてIABインディケーションを送信してもよい。
 IABノード300-2は、例えばgNB200-1に送信するRRCメッセージにIABインディケーションを含める。かかるRRCメッセージは、UEとしての能力を示す「UE Capability Information」メッセージであってもよい。但し、ステップS301においてIABインディケーションを送信している場合、ステップS303は省略可能である。
 或いは、IABインディケーションは、AMF11からPDUセッションリソースの変更という形でgNB200-1に通知されてもよい。なお、AMFは、IAB管理用(専用)のAMFであってもよい。
 本動作シーケンスにおいては、gNB200-1がドナー能力を有すると仮定しているため、gNB200-1は、IABインディケーションに基づいて、バックホールリンク接続をIABノード300-1とIABノード300-2との間に確立させる必要があると判断する。
 ステップS304において、gNB200-1は、無線測定を設定する測定設定をIABノード300-2に送信する。IABノード300-2は、測定設定に基づいて無線測定を行う。
 ステップS305において、IABノード300-2は、無線測定の結果を含む測定報告を、IABノード300-1を介してgNB200-1に送信する。gNB200-1は、測定報告に基づいて、自身(gNB200-1)が適切なドナーgNBであるか又は他のgNBが適切なドナーgNBであるかを判断する。ここでは、gNB200-1が、自身(gNB200-1)が適切なドナーgNBであると判断したと仮定して説明を進める。なお、ステップS304及びステップS305の処理は必須ではなく、省略してもよい。
 ステップS306において、gNB200-1は、IABノード設定メッセージ(RRC再設定メッセージ)をIABノード300-2に送信する。IABノード300-2は、IABノード設定メッセージに基づいて、バックホールリンク接続をIABノード300-1と確立する処理を行う。かかる確立処理は、IABノード設定メッセージ中の設定情報に基づいて、バックホールリンク用のプロトコルスタック(アダプテーション/RLC/MAC/PHYエンティティ)を生成したり、パラメータ設定したりする処理を含む。かかる確立処理は、UE側(のアクセスリンク用)のプロトコルスタックを準備して、同期信号やセル固有参照信号の送信を開始する処理(もしくは、開始する準備をする処理)を含んでもよい。
 ステップS307において、gNB200-1は、RRC再設定メッセージをIABノード300-1に送信する。かかるRRC再設定メッセージは、IABノード300-2の追加に伴ってIABノード300-1における設定を変更するためのメッセージである。かかるRRC再設定メッセージは、例えば、IABノード300-2の論理チャネルとIABノード300-1のバックホールリンクの論理チャネルとの対応付けを示すマッピング情報を含む。なお、ステップS307は、ステップS306の前であってもよいし、ステップS306と同時であってもよい。
 ステップS308において、IABノード300-2は、IABノード300-1とのバックホールリンク接続の確立を含むIABノード設定が完了したことを示す完了通知メッセージをgNB200-1に送信する。ステップS308以降は、IABノード300-2はgNB200-1に対してUEとして振る舞うのではなく、IABノードとして振る舞う。
 ステップS309において、IABノード300-1は、IABノード300-2とのバックホールリンク接続の確立に伴う設定変更が完了したことを示す完了通知メッセージをgNB200-1に送信する。なお、ステップS309は、ステップS308の前であってもよいし、ステップS308と同時であってもよい。
 ステップS310において、gNB200-1は、ステップS301において取得したIABノード300-2のコンテキスト情報を、Xnインターフェイス上でgNB200-2に転送する。
 ステップS311において、gNB200-1は、IABノード300-2のバックホールリンク接続を確立したことを示す通知を5GC10に送信する。もしくは、gNB200-1は、IABノード300-2用のPDUセッションの確立要求を5GC10に送信してもよい。なお、上述したように、PDUセッションの確立要求は、ステップS311よりも先に又はステップS311においてAMF11からgNB200-1に送信されてもよい。
 (その他の実施形態)
 上述した実施形態において、IABノード300-1がgNB200-1に無線で接続した後に、gNB200-1がドナー能力を有しないことに応じてIABノード300-1をハンドオーバさせる一例について説明した。しかしながら、各gNB200は、自身がドナー能力を有するか否かに関する情報をIABノード300-1に提供してもよい。これにより、IABノード300-1は、ドナー能力を有するgNB200を選択したうえで接続することが可能になる。
 例えば、ドナー能力を有するgNB200は、ドナー能力を有することを示す情報をシステム情報ブロック(SIB)に含めてブロードキャストする。IABノード300-1は、かかるSIBに基づいて、接続先とするgNB200を選択する。IABノード300-1は、ドナー能力を有するgNB200であって、且つ、このgNB200からの受信電力が閾値以上である場合に、このgNB200を接続先として選択してもよい。または、gNB200がドナー能力を有しない場合には、IABノード300-1は、gNB200から送信されたSIBを受信したことに応じて、他のgNB200を再選択してもよい。その後、他のgNB200から送信されたSIBにより当該他のgNB200がドナー能力を有することが示される場合には、IABノード300-1は、当該他のgNB200を接続先として、ランダムアクセスプロシージャを行うと共にIABインディケーションを送信してもよい。
 上述した実施形態において、移動通信システム1が5G移動通信システムである一例について主として説明した。しかしながら、移動通信システム1における基地局はeNBであってもよい。また、移動通信システム1におけるコアネットワークはEPC(Evolved Packet Core)であってもよい。さらに、gNBがEPCに接続することもでき、eNBが5GCに接続することもでき、gNBとeNBとが基地局間インターフェイス(Xnインターフェイス、X2インターフェイス)を介して接続されることもできる。
 なお、上述した実施形態に係る各処理をコンピュータに実行させるプログラムが提供されてもよい。また、プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。UE100及びeNB200が行う各処理を実行するためのプログラムを記憶するメモリ及びメモリに記憶されたプログラムを実行するプロセッサによって構成されるチップセットが提供されてもよい。
 なお、各図において示されるフローは、適宜組み合わされても良い。
 [相互参照]
 本願は、日本国特許出願第2018-90447号(2018年5月9日出願)の優先権を主張し、その内容のすべてが本願明細書に組み込まれている。

Claims (11)

  1.  基地局と、
     ユーザ機器機能と基地局機能とを有し、前記ユーザ機器機能を用いて前記基地局との第1の無線接続を確立する中継ノードと、を備え、
     前記基地局は、前記第1の無線接続を維持しつつ、前記基地局機能のための第2の無線接続を前記中継ノードと前記基地局との間に確立させるメッセージを前記中継ノードに送信する、
     移動通信システム。
  2.  前記第1の無線接続は、RRCレイヤにおいて確立されるRRC接続を含み、
     前記メッセージは、前記RRC接続を用いて送受信されるRRC再設定メッセージである、
     請求項1に記載の移動通信システム。
  3.  前記中継ノードは、前記第2の無線接続を確立するよりも前に、前記中継ノードの機能を有すること又は前記第2の無線接続の確立を要求することを示すインディケーションを前記基地局に送信する、
     請求項1に記載の移動通信システム。
  4.  前記中継ノードとの前記第2の無線接続を確立するドナー機能を前記基地局が有する場合、前記基地局は、前記中継ノードから前記インディケーションを受信した後、前記メッセージを前記中継ノードに送信し、
     前記ドナー機能を前記基地局が有しない場合、前記基地局は、前記中継ノードから前記インディケーションを受信した後、前記メッセージを前記中継ノードに送信することに代えて、前記中継ノードのハンドオーバを要求するハンドオーバ要求を他の基地局に送信する、
     請求項3に記載の移動通信システム。
  5.  前記基地局は、前記中継ノードから前記インディケーションを受信したことに応じて、無線測定を設定する測定設定を前記中継ノードに送信し、
     前記中継ノードは、前記基地局から前記測定設定を受信した後、前記無線測定の結果を含む測定報告を前記基地局に送信し、
     前記基地局は、前記中継ノードからの前記測定報告に基づいて、前記基地局が適切なドナー基地局であるか又は他の基地局が適切なドナー基地局であるかを判断する、
     請求項3に記載の移動通信システム。
  6.  前記基地局が適切なドナー基地局であると判断した場合、前記基地局は、前記メッセージを前記中継ノードに送信し、
     前記他の基地局が適切なドナー基地局であると判断した場合、前記基地局は、前記メッセージを前記中継ノードに送信することに代えて、前記中継ノードのハンドオーバを要求するハンドオーバ要求を前記他の基地局に送信する、
     請求項5に記載の移動通信システム。
  7.  前記基地局は、前記第2の無線接続の確立後、前記中継ノードに関するコンテキスト情報を他の基地局に送信する、
     請求項1に記載の移動通信システム。
  8.  前記基地局は、前記中継ノードと前記中継ノードのドナー基地局の候補とを対応付けるテーブルを保持しており、
     前記基地局は、前記テーブル中の前記候補である前記他の基地局に対して前記コンテキスト情報を送信する、
     請求項7に記載の移動通信システム。
  9.  前記基地局が、前記中継ノードとの前記第2の無線接続を確立するドナー機能を前記基地局が有することを示す情報を送信し、
     前記中継ノードは、前記ドナー機能を前記基地局が有することを示す前記情報を受信した後、前記基地局との前記第1の無線接続を確立する、
     請求項1に記載の移動通信システム。
  10.  ユーザ機器機能と基地局機能とを有する中継ノードであって、
     前記ユーザ機器機能を用いて基地局との第1の無線接続を確立する制御部と、
     前記第1の無線接続を維持しつつ、前記基地局機能のための第2の無線接続を前記中継ノードと前記基地局との間に確立させるメッセージを前記基地局から受信する受信部と、を備える、
     中継ノード。
  11.  ユーザ機器機能と基地局機能とを有する中継ノードとの第1の無線接続を確立する制御部と、
     前記第1の無線接続を維持しつつ、前記基地局機能のための第2の無線接続を前記中継ノードと前記基地局との間に確立させるメッセージを前記中継ノードに送信する送信部と、を備える、
     基地局。
PCT/JP2019/018527 2018-05-09 2019-05-09 移動通信システム、中継ノード、及び基地局 WO2019216371A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020518332A JP6920551B2 (ja) 2018-05-09 2019-05-09 移動通信システム、中継ノード、及び基地局
EP19799391.8A EP3780901B1 (en) 2018-05-09 2019-05-09 Mobile communication system, relay node, and base station
EP22195577.6A EP4124115A1 (en) 2018-05-09 2019-05-09 Mobile communication system, relay node, and base station
US17/093,035 US11350467B2 (en) 2018-05-09 2020-11-09 Mobile communication system, relay node, and base station
US17/661,433 US20220264665A1 (en) 2018-05-09 2022-04-29 Mobile communication system, relay node, and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018090447 2018-05-09
JP2018-090447 2018-05-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/093,035 Continuation US11350467B2 (en) 2018-05-09 2020-11-09 Mobile communication system, relay node, and base station

Publications (1)

Publication Number Publication Date
WO2019216371A1 true WO2019216371A1 (ja) 2019-11-14

Family

ID=68467510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018527 WO2019216371A1 (ja) 2018-05-09 2019-05-09 移動通信システム、中継ノード、及び基地局

Country Status (4)

Country Link
US (2) US11350467B2 (ja)
EP (2) EP3780901B1 (ja)
JP (2) JP6920551B2 (ja)
WO (1) WO2019216371A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023507680A (ja) * 2020-03-13 2023-02-24 中興通訊股▲ふん▼有限公司 ドナー間の移行中にデータ伝送を更新する方法およびデバイス

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190349871A1 (en) * 2018-05-11 2019-11-14 At&T Intellectual Property I, L.P. Over the air synchronization for integrated access backhaul relay nodes
IL278242B2 (en) * 2018-06-21 2024-05-01 Google Llc Maintaining communication and signaling interfaces through the transfer of a contributing base station
CN112470542B (zh) * 2018-07-05 2023-02-28 联想(北京)有限公司 用于回程链路切换的方法及设备
JP7433600B2 (ja) * 2018-09-08 2024-02-20 オフィノ, エルエルシー バックホールリンク接続情報
US11076306B2 (en) * 2018-09-21 2021-07-27 Qualcomm Incorporated Relay nodes with multi-connected cellular backhaul
US11369005B2 (en) * 2020-02-06 2022-06-21 Qualcomm Incorporated IAB topology management based on synchronization capabilities of IAB-node
US20220022214A1 (en) * 2020-07-20 2022-01-20 Qualcomm Incorporated Scheduling bias for radio link control (rlc) channels in integrated access and backhaul networks
WO2022226986A1 (en) * 2021-04-30 2022-11-03 Lenovo (Beijing) Limited Method and apparatus for wireless communication
CN117295129A (zh) * 2022-06-20 2023-12-26 北京三星通信技术研究有限公司 节点执行的方法以及节点
WO2024035839A1 (en) * 2022-08-11 2024-02-15 Iinnopeak Technology, Inc. Apparatuses and communication methods
WO2024048212A1 (ja) * 2022-08-30 2024-03-07 京セラ株式会社 通信方法及びネットワークノード
WO2024171973A1 (ja) * 2023-02-13 2024-08-22 京セラ株式会社 通信方法及び中継装置
WO2024171971A1 (ja) * 2023-02-13 2024-08-22 京セラ株式会社 通信方法及び中継装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8305965B2 (en) * 2009-01-06 2012-11-06 Texas Instruments Incorporated Protocol stack and scheduler for L3 relay
US9609688B2 (en) * 2010-04-05 2017-03-28 Qualcomm Incorporated Methods and apparatus to facilitate relay startup and radio link failure (RLF) handling
US9258745B2 (en) * 2011-11-11 2016-02-09 Blackberry Limited Method and system for mobile relay enablement
ES2714006T3 (es) * 2014-01-30 2019-05-24 Intel Ip Corp UE MTC y método para la mejora de la cobertura utilizando una configuración de control de enlace de radio
WO2016133344A1 (en) * 2015-02-16 2016-08-25 Samsung Electronics Co., Ltd. Method for triggering transmission of user equipment (ue)-to-network relay indication
WO2016159000A1 (ja) * 2015-03-31 2016-10-06 株式会社Nttドコモ ユーザ装置、及び基地局
US10375707B2 (en) * 2016-08-04 2019-08-06 Qualcomm Incorporated Dynamic resource allocation in wireless network
WO2018026401A1 (en) * 2016-08-05 2018-02-08 Intel IP Corporation Ue capability signaling for make-before-break and rach-less handover
CN112040516B (zh) * 2016-08-12 2021-11-26 华为技术有限公司 切换方法、基站及通信系统
EP3520470A4 (en) * 2016-09-30 2020-05-20 Intel Corporation PDCP, RLC HANDLING IN A SHARED DC CARRIER
WO2020197214A1 (en) * 2019-03-22 2020-10-01 Samsung Electronics Co., Ltd. Method and device for recovering connection failure to network in next generation mobile communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Motivation for Study on Integrated Access and Backhaul for NR", 3GPP CONTRIBUTION RP-170217, 1 May 2018 (2018-05-01)
SAMSUNG: "Discussions on control plane protocol for IAB", 3GPP TSG RAN WG2 #101BIS R2-1804701, 5 April 2018 (2018-04-05), XP051414854, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_101bis/Docs/R2-1804701.zip> *
See also references of EP3780901A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023507680A (ja) * 2020-03-13 2023-02-24 中興通訊股▲ふん▼有限公司 ドナー間の移行中にデータ伝送を更新する方法およびデバイス
EP4104509A4 (en) * 2020-03-13 2023-04-12 ZTE Corporation METHODS AND DEVICES FOR UPDATING DATA TRANSMISSION DURING INTER-DONOR MIGRATION

Also Published As

Publication number Publication date
EP3780901A4 (en) 2021-06-09
JP6920551B2 (ja) 2021-08-18
JP2021170830A (ja) 2021-10-28
JP7212112B2 (ja) 2023-01-24
EP4124115A1 (en) 2023-01-25
US20220264665A1 (en) 2022-08-18
US11350467B2 (en) 2022-05-31
JPWO2019216371A1 (ja) 2021-02-12
EP3780901A1 (en) 2021-02-17
EP3780901B1 (en) 2022-09-28
US20210058985A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
JP7212112B2 (ja) 移動通信システム、中継ノード、及び基地局
EP3820242B1 (en) Relay device
US20210219368A1 (en) Relay apparatus
JP6815427B2 (ja) 基地局及びユーザ端末
EP3562182B1 (en) Communication path switching method
JP6566985B2 (ja) セルラ基地局、プロセッサ、及び方法
JP6162209B2 (ja) ユーザ端末、プロセッサ、及び移動通信システム
WO2016185967A1 (ja) 基地局及び無線端末
WO2015093560A1 (ja) 移動通信システム、無線通信装置、ネットワーク装置、及び無線端末
CN108184249B (zh) 回程链路的信息传输方法及系统、代理设备、接入设备
JP6773778B2 (ja) 無線端末及び基地局
JP2024116350A (ja) 通信制御方法、ユーザ装置、プロセッサ、移動通信システム及びプログラム
US20150341774A1 (en) Mobile communication system, user terminal, base station and processor
JP6538026B2 (ja) ネットワーク選択制御方法、基地局、及びユーザ端末
US10277300B2 (en) Communication control method, gateway apparatus, and user terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518332

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019799391

Country of ref document: EP

Effective date: 20201106