WO2019216070A1 - 電磁クラッチ - Google Patents

電磁クラッチ Download PDF

Info

Publication number
WO2019216070A1
WO2019216070A1 PCT/JP2019/014981 JP2019014981W WO2019216070A1 WO 2019216070 A1 WO2019216070 A1 WO 2019216070A1 JP 2019014981 W JP2019014981 W JP 2019014981W WO 2019216070 A1 WO2019216070 A1 WO 2019216070A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
outer plate
inner hub
electromagnetic clutch
driving body
Prior art date
Application number
PCT/JP2019/014981
Other languages
English (en)
French (fr)
Inventor
茂圭 櫻場
敏弘 林
黒畑 清
俊宏 小西
和真 橘
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201980031309.8A priority Critical patent/CN112105831B/zh
Priority to DE112019002413.2T priority patent/DE112019002413T5/de
Priority to KR1020207027838A priority patent/KR102476896B1/ko
Publication of WO2019216070A1 publication Critical patent/WO2019216070A1/ja
Priority to US17/071,051 priority patent/US11519466B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/10Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings
    • F16D27/108Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members
    • F16D27/112Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with an electromagnet not rotating with a clutching member, i.e. without collecting rings with axially movable clutching members with flat friction surfaces, e.g. discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/76Friction clutches specially adapted to incorporate with other transmission parts, i.e. at least one of the clutch parts also having another function, e.g. being the disc of a pulley
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/02Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with electromagnets incorporated in the clutch, i.e. with collecting rings
    • F16D27/04Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with electromagnets incorporated in the clutch, i.e. with collecting rings with axially-movable friction surfaces
    • F16D27/06Magnetically- or electrically- actuated clutches; Control or electric circuits therefor with electromagnets incorporated in the clutch, i.e. with collecting rings with axially-movable friction surfaces with friction surfaces arranged within the flux
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D27/14Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D27/00Magnetically- or electrically- actuated clutches; Control or electric circuits therefor
    • F16D2027/008Details relating to the magnetic circuit, or to the shape of the clutch parts to achieve a certain magnetic path
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/20Electric or magnetic using electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2127/00Auxiliary mechanisms
    • F16D2127/02Release mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0056Elastomers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/08Details or arrangements of sealings not provided for in group F16D3/84
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/14Clutches which are normally open, i.e. not engaged in released state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/22Vibration damping

Definitions

  • the present disclosure relates to an electromagnetic clutch that transmits torque from a driving body to a driven body.
  • An electromagnetic clutch described in Patent Document 1 includes an armature that faces a rotor as a driving body, an inner hub that is fixed to a shaft included in a compressor as a driven body, and a metal that connects the armature and the inner hub.
  • a leaf spring member made of metal is provided. The leaf spring member is biased in a direction in which the rotor and the armature are separated.
  • This electromagnetic clutch is configured such that the leaf spring member elastically deforms both in the rotational axis direction and in the circumferential direction when the rotor and the armature approach each other due to the magnetic attractive force generated by the coil provided inside the rotor. Yes. Therefore, the urging force of the leaf spring member increases nonlinearly with respect to the amount of displacement of the armature, and the collision speed between the rotor and the armature decreases. Therefore, this electromagnetic clutch can reduce the collision sound (that is, clutch sound) between the armature and the driving body.
  • the electromagnetic clutch described in Patent Literature 2 includes an armature provided opposite to the rotor, an inner hub fixed to a shaft included in the compressor, and a hub plate and inner hub fixed to the armature in the radial direction.
  • a rubber member is provided for connection.
  • This electromagnetic clutch can dampen fluctuations in torsion torque between the outer plate and armature and the inner hub that occur during torque transmission by the elastic force of the rubber member. Therefore, this electromagnetic clutch can reduce noise vibration during torque transmission.
  • JP 2000-179582 A Japanese Utility Model Publication No. 62-167936
  • This disclosure is intended to provide an electromagnetic clutch capable of reducing the operating noise at the start of torque transmission and the operating noise during torque transmission.
  • an electromagnetic clutch that transmits torque from a driving body to a driven body, An armature provided so as to be able to come into contact with the driving body by a magnetic attractive force; An outer plate that is fixed to the armature on the opposite side of the driver and rotates with the armature; An inner hub provided between the armature and the outer plate so as to be movable in the rotational axis direction, locked in the rotational direction with respect to the armature or the outer plate, and fixed to the driven body; A rubber member that is provided between the inner hub and the outer plate and applies a biasing force in a direction away from the inner hub and the outer plate; The biasing force of the rubber member is configured to increase nonlinearly as the driving body and the armature approach the magnetic attraction force.
  • this electromagnetic clutch can reduce a collision sound (that is, a clutch sound) between the armature and the driving body that is generated when torque transmission is started.
  • this electromagnetic clutch can dampen fluctuations in torsion torque between the outer plate and armature and the inner hub that occur during torque transmission by the elastic force of the rubber member. Therefore, this electromagnetic clutch can also reduce noise vibration during torque transmission.
  • the electromagnetic clutch transmits torque from the driving body to the driven body, An armature provided so as to be able to come into contact with the driving body by a magnetic attractive force; An outer plate that is fixed to the armature on the opposite side of the driver and rotates with the armature; An inner hub provided between the armature and the outer plate so as to be movable in the rotational axis direction, locked in the rotational direction with respect to the armature or the outer plate, and fixed to the driven body; A rubber member that is provided between the inner hub and the outer plate and applies a biasing force in a direction away from the inner hub and the outer plate; The rubber member A thin-walled portion that forms a clearance between the inner hub or the outer plate in a state before the magnetic attractive force is generated between the driving body and the armature; It has a seal portion that protrudes from the thin portion and abuts against the inner hub or the outer plate and prevents water from entering the inside via a clearance from the outside.
  • the electromagnetic clutch transmits torque from the driving body to the driven body, An armature provided so as to be able to come into contact with the driving body by a magnetic attractive force; An outer plate that is fixed to the armature on the opposite side of the driver and rotates with the armature; An inner hub provided between the armature and the outer plate so as to be movable in the rotational axis direction, locked in the rotational direction with respect to the armature or the outer plate, and fixed to the driven body; A rubber member that is provided between the inner hub and the outer plate and applies a biasing force in a direction away from the inner hub and the outer plate; A flange portion extending annularly radially outward from between the armature and the outer plate and covering a gap between the driving body and the armature.
  • this electromagnetic clutch can prevent so-called clutch slipping and can improve the reliability of torque transmission from the driving body to the driven body.
  • FIG. 1 is an overall configuration diagram of a refrigeration cycle to which an electromagnetic clutch according to a first embodiment is applied. It is a disassembled perspective view of the electromagnetic clutch and rotor which concern on 1st Embodiment. It is a top view of the electromagnetic clutch which concerns on 1st Embodiment.
  • FIG. 4 is a cross-sectional view of an electromagnetic clutch, a rotor, and the like taken along line IV-IV in FIG. 3. It is a top view of an outer plate with which an electromagnetic clutch concerning a 1st embodiment is provided. It is a top view of the inner hub with which the electromagnetic clutch which concerns on 1st Embodiment is provided. It is a top view of the rubber member with which the electromagnetic clutch which concerns on 1st Embodiment is provided.
  • the electromagnetic clutch 1 of this embodiment is a torque transmission device for intermittently transmitting torque from a rotor 70 as a driving body to a compressor 110 as a driven body.
  • the refrigeration cycle 100 in which the compressor 110 as a follower is used will be described.
  • the refrigeration cycle 100 is used in a vehicle air conditioner (not shown) that performs air conditioning in a vehicle interior or a compartment.
  • the refrigeration cycle 100 is configured as a closed circuit in which a compressor 110, a radiator 101, an expansion valve 102, and an evaporator 103 are annularly connected by a refrigerant pipe 104.
  • the compressor 110 compresses and discharges the refrigerant sucked from the refrigerant pipe 104 on the evaporator 103 side.
  • the radiator 101 is a heat exchanger that radiates the refrigerant discharged from the compressor 110 to the outside air.
  • the expansion valve 102 decompresses and expands the refrigerant that has flowed out of the radiator 101.
  • the evaporator 103 is a heat exchanger that evaporates the refrigerant decompressed and expanded by the expansion valve 102 by heat exchange with the air blown into the vehicle interior or the interior of the compartment.
  • the compressor 110 for example, a fixed capacity type compressor such as a scroll type or a vane type, or a variable capacity type compressor such as a swash plate type is adopted.
  • a rotor 70 as a driving body is provided on one end side of the compressor 110. The rotor 70 is provided so as to be rotatable relative to the housing or the like of the compressor 110.
  • the vehicle is provided with an engine 105 as a power generation source.
  • the engine 105 is a power generation source for the compressor 110 and is also used as a power generation source for vehicle travel.
  • a pulley 106 provided on the drive shaft of the engine 105 and the rotor 70 are connected by a belt 107 for power transmission. Torque output from the engine 105 is transmitted from the pulley 106 to the rotor 70 via the belt 107. Therefore, the rotor 70 rotates together with the engine 105.
  • the electromagnetic clutch 1 is provided on the opposite side of the rotor 70 from the compressor 110. Torque transmitted from the engine 105 to the rotor 70 is configured to be transmitted to the shaft of the compressor 110 via the electromagnetic clutch 1.
  • the rotor 70 is made of a ferromagnetic material such as iron.
  • a V-groove portion 72 having a plurality of grooves having a V-shaped cross section is formed in a portion 71 on the outer peripheral side of the rotor 70.
  • a belt 107 for transmitting torque output from the engine 105 is stretched over the V groove 72.
  • An outer ring 81 of a bearing 80 is fixed to a portion 73 on the inner peripheral side of the rotor 70.
  • the inner ring 82 of the bearing 80 is fixed to a cylindrical portion 112 protruding in a cylindrical shape from the housing of the compressor 110.
  • the rotor 70 is provided so as to be rotatable relative to the housing of the compressor 110.
  • the end surface 74 of the rotor 70 opposite to the compressor 110 is a friction surface in contact with the armature 11 provided in the electromagnetic clutch 1.
  • the friction surface is referred to as an end surface 74 of the rotor 70.
  • a friction member for increasing the friction coefficient is disposed on a part of the end surface 74 of the rotor 70.
  • a non-magnetic material such as a material obtained by solidifying alumina with a resin or a sintered body of metal powder such as aluminum is employed.
  • a stator 90 is provided inside the rotor 70.
  • the stator 90 has a stator housing 91 and a coil 92.
  • the stator housing 91 is formed in an annular shape from a ferromagnetic material such as iron.
  • the coil 92 is fixed inside the stator housing 91 in a state where it is molded with an insulating resin material.
  • a magnetic flux flows through a magnetic circuit formed by the stator housing 91, the rotor 70, and the armature 11 provided in the electromagnetic clutch 1 described later.
  • the stator 90 generates a magnetic attractive force that pulls the armature 11 toward the rotor 70.
  • the electromagnetic clutch 1 includes an armature 11, an outer plate 20, an inner hub 30, a rubber member 40, and the like.
  • the armature 11 is formed in an annular shape from a ferromagnetic material such as iron and is disposed so as to face the end surface 74 of the rotor 70.
  • a predetermined gap (for example, about 0.5 mm) is formed between the armature 11 and the end surface 74 of the rotor 70 in a state where the coil 92 of the stator 90 is not energized.
  • the gap between the armature 11 and the rotor 70 is shown relatively large for explanation.
  • the armature 11 is attracted to the rotor 70 side by the magnetic attractive force generated by the stator 90 and comes into contact with the rotor 70.
  • the armature 11 is joined to the end surface 74 of the rotor 70 by a frictional force.
  • the electromagnetic clutch 1 rotates together with the rotor 70.
  • the rotating shaft of the electromagnetic clutch 1 is indicated by a one-dot chain line denoted by reference symbol O.
  • a magnetic shielding groove 12 extending in an arc shape in the circumferential direction of the armature 11 is provided at a radial intermediate portion of the armature 11.
  • the outer plate 20 is fixed to the outer peripheral portion of the armature 11 by a fastening member such as a rivet 13.
  • the outer plate 20 rotates together with the armature 11.
  • the outer plate 20 includes a substrate portion 21 formed along the armature 11, an outer standing plate portion 22 rising from the substrate portion 21 in the rotation axis direction, and the outer standing plate portion 22 on the side opposite to the substrate portion 21. It has integrally the top plate parts 24 and 25 provided in an edge part.
  • the top plates 24 and 25 are provided substantially parallel to the armature 11.
  • the top plate portions 24 and 25 are provided with + symbol-like openings 27 when viewed from the axial direction.
  • the outer standing plate portion 22 and the top plate portions 24 and 25 are shaped so as to border the + symbol-like opening 27.
  • a portion of the top plate portions 24, 25 that is provided radially outside the + symbol-like opening 27 is referred to as an outer top plate portion 24, and is fan-shaped radially inward from the outer top plate portion 24.
  • the part provided on the inside is called the inner top plate part 25. That is, the top plate portions 24 and 25 have an outer top plate portion 24 and an inner top plate portion 25.
  • the inner hub 30 includes a cylindrical boss portion 31 and a plate portion 32 that extends radially outward from an end portion of the boss portion 31.
  • the radially inner portion and the boss portion 31 are made of metal.
  • a portion of the plate portion 32 on the outer side in the radial direction is made of resin.
  • the metal part and the resin part are integrally formed by insert molding. Specifically, in the inner hub 30, the metal part and the resin part are firmly fixed by the resin part entering the hole or the unevenness formed in the metal part.
  • a female screw 33 is formed on the inner periphery of the boss 31.
  • the inner hub 30 is fixed to the end portion of the shaft 111 of the compressor 110 by screwing a female screw 33 formed on the inner periphery of the boss portion 31 and a male screw 113 formed on the outer periphery of the shaft 111 of the compressor 110. Is done.
  • the plate portion 32 of the inner hub 30 is provided between the top plate portions 24 and 25 of the outer plate 20 and the armature 11 inside the outer vertical plate portion 22 of the outer plate 20. Therefore, the plate portion 32 of the inner hub 30 is formed in a substantially + symbol shape.
  • the inner hub 30 is provided to be movable relative to the outer plate 20 and the armature 11 in the rotation axis direction.
  • the plate portion 32 of the inner hub 30 integrally includes a bottom plate portion 34 formed in parallel with the armature 11 and an inner vertical plate portion 35 rising from the bottom plate portion 34 in the rotation axis direction.
  • the inner standing plate portion 35 of the inner hub 30 is provided along the outer standing plate portion 22 inside the outer standing plate portion 22 of the outer plate 20. Therefore, the inner hub 30 is locked in the rotational direction with respect to the outer plate 20 and rotates together with the outer plate 20 and the armature 11.
  • the plate portion 32 of the inner hub 30 is provided at a position facing the outer rubber receiving portion 36 provided at a position facing the outer top plate portion 24 of the outer plate 20 and an inner top plate portion 25 of the outer plate 20.
  • An inner rubber receiving portion 37 is provided.
  • a predetermined gap is provided between the outer rubber receiving portion 36 of the inner hub 30 and the outer top plate portion 24 of the outer plate 20.
  • a predetermined interval is also formed between the inner rubber receiving portion 37 of the inner hub 30 and the inner top plate portion 25 of the outer plate 20.
  • a predetermined interval is also provided between the inner standing plate portion 35 of the inner hub 30 and the outer standing plate portion 22 of the outer plate 20.
  • the rubber member 40 is formed in a shape corresponding to the space between the inner hub 30 and the outer plate 20.
  • the rubber member 40 is fitted in a compressed state between the inner hub 30 and the outer plate 20. Therefore, the rubber member 40 applies an urging force to the inner hub 30 and the outer plate 20 in directions away from each other by a predetermined elastic force. Therefore, as shown in FIG. 4, the armature 11 is separated from the end surface 74 of the rotor 70 when the coil 92 of the stator 90 is not energized.
  • the rubber member 40 has a thick part 41, a thin part 42, and a standing rubber part 43 integrally.
  • the thick portion 41 is fitted between the outer rubber receiving portion 36 of the inner hub 30 and the outer top plate portion 24 of the outer plate 20.
  • the thick portion 41 is in contact with both the outer rubber receiving portion 36 of the inner hub 30 and the outer top plate portion 24 of the outer plate 20 in a state where the energization is off. That is, the thick portion 41 is in contact with both the outer rubber receiving portion 36 of the inner hub 30 and the outer top plate portion 24 of the outer plate 20 from the energized off state to the energized on state.
  • a biasing force is continuously applied to the plate 20 in a direction away from each other.
  • the thin portion 42 is provided between the inner rubber receiving portion 37 of the inner hub 30 and the inner top plate portion 25 of the outer plate 20. With the power off, the thickness of the thin portion 42 in the rotation axis direction is smaller than the distance between the inner rubber receiving portion 37 and the inner top plate portion 25. Therefore, a predetermined clearance 44 is formed between the inner rubber receiving portion 37 and the thin portion 42 when the power is off. A distance C of the clearance 44 between the inner rubber receiving portion 37 and the thin portion 42 is set to be smaller than a distance G between the rotor 70 and the armature 11.
  • the thin portion 42 comes into contact with both the inner rubber receiving portion 37 of the inner hub 30 and the inner top plate portion 25 of the outer plate 20 while the rotor 70 and the armature 11 are approaching. Therefore, the thin portion 42 gives an urging force in a direction away from the inner hub 30 and the outer plate 20 from the time of contact.
  • the standing rubber portion 43 is fitted between the inner standing plate portion 35 of the inner hub 30 and the outer standing plate portion 22 of the outer plate 20.
  • the standing rubber portion 43 absorbs torque fluctuation between the inner hub 30 and the outer plate 20 and transmits torque from the outer plate 20 to the inner hub 30 in a buffering manner during torque transmission from the rotor 70 to the compressor 110. . Therefore, when the rotor 70 rotates in the energized state, torque is transmitted in the order of the rotor 70 ⁇ the armature 11 ⁇ the outer plate 20 ⁇ the rubber member 40 ⁇ the inner hub 30 ⁇ the shaft 111.
  • a predetermined clearance 44 is formed between the inner rubber receiving portion 37 and the thin portion 42 of the inner hub 30 in a state where the power is off.
  • the rotor 70 and the armature 11 approach each other due to the magnetic attractive force.
  • the clearance 44 between the inner rubber receiving portion 37 and the thin portion 42 disappears while the rotor 70 and the armature 11 are approaching, and the thin portion 42 is the inner rubber of the inner hub 30. It contacts both the receiving portion 37 and the inner top plate portion 25 of the outer plate 20.
  • the thin portion 42 is compressed in the direction of the rotation axis until the rotor 70 and the armature 11 come into contact with each other. Therefore, the thin portion 42 gives a biasing force in a direction away from the inner hub 30 and the outer plate 20.
  • the thick portion 41 extends from the energized off state to the state in which the rotor 70 and the armature 11 are in contact with each other, and the outer rubber receiving portion 36 of the inner hub 30 and the outer top plate portion of the outer plate 20. 24 is in contact with both. Therefore, the thick portion 41 is compressed in the direction of the rotation axis and continuously applies a biasing force to the inner hub 30 and the outer plate 20 in a direction away from each other.
  • FIG. 11 is a characteristic diagram showing an example of the relationship between the amount of displacement of the armature 11 and the urging force of the rubber member 40 from when the energization to the coil 92 is started until the rotor 70 and the armature 11 come into contact with each other.
  • a broken line B in FIG. 11 shows a change in urging force when the rubber member 40 has only the thick portion 41 and does not have the thin portion 42.
  • the urging force of the rubber member 40 suddenly increases from the energization start position P0 to the position P1 at which the initial change of the thick portion 41 is completed, and the position P3 where the rotor 70 and the armature 11 abut from that position P1. Until now, it is increased substantially linearly with respect to the amount of displacement of the armature 11.
  • a solid line A indicates a change in urging force when the rubber member 40 has a thick portion 41, a thin portion 42, and a standing rubber portion 43.
  • the urging force of the rubber member 40 suddenly increases from the position P0 at the start of energization to the position P1 at which the initial change of the thick portion 41 is completed.
  • it is almost linearly large.
  • the urging force of the rubber member 40 increases rapidly in a non-linear manner from the predetermined position P2 to the position P3 where the rotor 70 and the armature 11 abut.
  • the thin portion 42 of the rubber member 40 is in the vicinity of the predetermined position P2 in the middle of the approach of the rotor 70 and the armature 11, and the inner rubber receiving portion 37 of the inner hub 30 and the inner top plate portion 25 of the outer plate 20. This is to contact both of them, and then apply a biasing force to them. Accordingly, since both the thin portion 42 and the thick portion 41 are compressed in the rotation axis direction from the predetermined position P2 in the middle of the displacement of the armature 11 to the position P3 where the rotor 70 and the armature 11 abut, the rubber member 40 The biasing force increases rapidly and nonlinearly after the predetermined position P2.
  • the electromagnetic clutch 1 of this embodiment described above has the following operational effects.
  • the urging force of the rubber member 40 is configured to increase nonlinearly as the rotor 70 and the armature 11 approach the magnetic attractive force. According to this, since the urging force of the rubber member 40 becomes a resistance against the magnetic attractive force, the collision speed between the rotor 70 and the armature 11 is reduced before the contact between the rotor 70 and the armature 11. Therefore, the electromagnetic clutch 1 can reduce a collision sound (that is, a clutch sound) between the armature 11 and the rotor 70 generated at the start of torque transmission.
  • a collision sound that is, a clutch sound
  • the standing rubber portion 43 of the rubber member 40 is fitted between the inner standing plate portion 35 of the inner hub 30 and the outer standing plate portion 22 of the outer plate 20.
  • An urging force is applied to the plate 20 in the rotational direction. Therefore, the electromagnetic clutch 1 can attenuate the fluctuation of the torsion torque between the outer plate 20 and the armature 11 and the inner hub 30 generated during torque transmission by the elastic force of the standing rubber portion 43. Therefore, the electromagnetic clutch 1 can reduce noise vibration during torque transmission.
  • the rubber member 40 has a thick portion 41 and a thin portion 42.
  • the thick-walled portion 41 is in contact with the inner hub 30 and the outer plate 20 continuously from the energized off state.
  • the thin portion 42 contacts the inner hub 30 and the outer plate 20 immediately before the rotor 70 and the armature 11 contact each other.
  • the rubber member 40 is in contact with the inner hub 30 and the outer plate 20 immediately before the contact between the rotor 70 and the armature 11 rather than the area in contact with the inner hub 30 and the outer plate 20 when the power is off. Is configured to increase.
  • the electromagnetic clutch 1 can increase the urging force of the rubber member 40 in a non-linear manner in accordance with the amount of displacement of the armature 11.
  • the distance C of the clearance 44 between the inner rubber receiving portion 37 of the inner hub 30 and the thin portion 42 is smaller than the distance G between the rotor 70 and the armature 11 when the power is off.
  • the clearance 44 between the inner rubber receiving portion 37 and the thin portion 42 of the inner hub 30 can be eliminated while the rotor 70 and the armature 11 are approaching.
  • the thin-walled portion 42 of the rubber member 40 is in contact with the inner rubber receiving portion 37 of the inner hub 30 in a state where the power is off. Therefore, in the second embodiment, a predetermined clearance 44 is formed between the inner top plate portion 25 and the thin portion 42 of the outer plate 20. In the second embodiment, the distance C of the clearance 44 is set to be smaller than the distance G between the rotor 70 and the armature 11 as in the first embodiment.
  • the outer plate 20 has a convex portion 26 that protrudes from the inner top plate portion 25 toward the thin portion 42.
  • the convex portion 26 of the outer plate 20 is referred to as the outer plate convex portion 26.
  • the outer plate convex portion 26 is provided so as to enter the clearance 44 between the inner top plate portion 25 and the thin portion 42 from the inner top plate portion 25.
  • the outer plate convex portion 26 is in contact with the thin portion 42 in a state where the energization is off.
  • the outer plate convex portions 26 are provided in two rows over the circumferential direction of the inner top plate portion 25.
  • the urging force of the rubber member 40 increases nonlinearly as the rotor 70 and the armature 11 approach each other due to the magnetic attractive force.
  • this electromagnetic clutch 1 can reduce the clutch sound produced at the time of torque transmission start.
  • the outer plate convex portion 26 causes external water to pass through the clearance 44. It is possible to prevent intrusion into the inside. Therefore, the occurrence of rust on the rotor 70 and the armature 11 is suppressed. Therefore, the electromagnetic clutch 1 can prevent so-called clutch slipping and increase the reliability of torque transmission.
  • the inner hub 30 has the convex part 38 which protrudes from the inner side rubber receiving part 37 to the thin part 42 side.
  • the convex portion 38 of the inner hub 30 is referred to as an inner hub convex portion 38.
  • the inner hub convex portion 38 is provided so as to enter the clearance 44 between the inner rubber receiving portion 37 and the thin portion 42 from the inner rubber receiving portion 37.
  • the inner hub convex portion 38 is in contact with the thin portion 42 in a state where the power is off.
  • the inner hub protrusions 38 are provided in two rows along the circumferential direction of the inner rubber receiving portion 37.
  • the urging force of the rubber member 40 increases nonlinearly as the rotor 70 and the armature 11 come closer to the magnetic attractive force.
  • the electromagnetic clutch 1 of the third embodiment can also prevent so-called clutch slip and increase the reliability of torque transmission.
  • 4th Embodiment changes the shape of the rubber member 40 with respect to 1st Embodiment etc., Since it is the same as that of 1st Embodiment etc. about others, only about a different part from 1st Embodiment etc. explain.
  • the shape of the thick portion 41 of the rubber member 40 is different from that of the first embodiment or the like. Specifically, when the energization is off, the thick portion 41 of the rubber member 40 has a long side 45 on the outer rubber receiving portion 36 side and a side on the outer top plate portion 24 side in a cross-sectional view parallel to the rotation axis. 46 is formed in a short trapezoidal shape. The thick portion 41 of the rubber member 40 is in contact with both the outer rubber receiving portion 36 and the outer top plate portion 24 from the energization off state to the energization on state. In the fourth embodiment, the rubber member 40 may not include the thin portion 42.
  • the thick portion 41 of the rubber member 40 is inclined toward the outer rubber receiving portion 36 side of the inner hub 30 in a cross-sectional view parallel to the rotation axis when the power is off. It has a surface 47.
  • the inclined surface 47 of the rubber member 40 is formed so as to gradually move away from the outer rubber receiving portion 36 toward the radially outer side from a portion in contact with the outer rubber receiving portion 36 of the inner hub 30.
  • the inclined surface 47 of the rubber member 40 is formed such that the farthest distance F between the outer rubber receiving portion 36 and the inclined surface 47 is larger than the distance G between the rotor 70 and the armature 11.
  • the rubber member 40 may not include the thin portion 42.
  • the energization of the coil 92 is started, and the contact area between the outer rubber receiving portion 36 of the inner hub 30 and the inclined surface 47 of the rubber member 40 as the rotor 70 and the armature 11 approach each other by the magnetic attractive force. Gradually grows. Therefore, the urging force of the rubber member 40 increases nonlinearly, and the collision speed between the rotor 70 and the armature 11 decreases. Therefore, also in the fifth embodiment, it is possible to reduce the clutch sound generated at the start of torque transmission.
  • the thick portion 41 of the rubber member 40 is inclined toward the outer top plate portion 24 side of the outer plate 20 in a cross-sectional view parallel to the rotation axis in a state where the power is off. It has a surface 48.
  • the inclined surface 48 of the rubber member 40 is formed so as to gradually move away from the outer top plate portion 24 inward in the radial direction from a portion in contact with the outer top plate portion 24 of the outer plate 20.
  • the inclined surface 48 of the rubber member 40 is formed such that the farthest distance F between the outer top plate portion 24 and the inclined surface 48 is larger than the distance G between the rotor 70 and the armature 11.
  • the rubber member 40 does not have to include the thin portion 42.
  • the seventh embodiment is obtained by changing a part of the configuration of the rubber member 40 with respect to the first embodiment and the like, and is otherwise the same as the first embodiment, and thus different from the first embodiment. Only the part will be described.
  • the rubber member 40 has a seal portion 49 that protrudes from the thin portion 42 toward the inner rubber receiving portion 37 side.
  • the seal portion 49 is provided so as to enter the clearance 44 between the thin portion 42 and the inner rubber receiving portion 37 from the thin portion 42.
  • the seal portion 49 is in contact with the inner rubber receiving portion 37 in a state where the power is off.
  • the seal portion 49 is provided over the circumferential direction of the thin portion 42. Thereby, the seal portion 49 can prevent water from entering the inside via the clearance 44 from the outside.
  • a path through which water may enter from the outside of the electromagnetic clutch 1 is indicated by a dashed arrow W.
  • the seal portion 49 prevents water from entering the inside via the clearance 44 from the outside, so that the occurrence of rust on the rotor 70 and the armature 11 is suppressed. Therefore, the seventh embodiment can prevent clutch slippage and increase the reliability of torque transmission, similarly to the second and third embodiments.
  • this electromagnetic clutch 1 can reduce the clutch sound produced at the time of torque transmission start.
  • the electromagnetic clutch 1 of the eighth embodiment includes a flange portion 50 that extends annularly radially outward from between the armature 11 and the outer plate 20.
  • the flange portion 50 is made of rubber.
  • the flange portion 50 is provided on the entire circumference of the electromagnetic clutch 1 and covers the gap between the rotor 70 and the armature 11. Therefore, the flange portion 50 can prevent water from entering between the rotor 70 and the armature 11.
  • the flange portion 50 may be formed integrally with the rubber member 40 described in the first to seventh embodiments, or may be configured as a separate member from the rubber member 40.
  • the configuration of the eighth embodiment can also prevent so-called clutch slip and increase the reliability of torque transmission.
  • the inner hub 30 is configured to be locked in the rotational direction with respect to the outer plate 20, but the present invention is not limited thereto.
  • the inner hub 30 may be configured to be locked in the rotation direction with respect to the armature 11.
  • the rubber member 40 is integrally formed with the thick portion 41, the thin portion 42, and the standing rubber portion 43, but is not limited thereto.
  • the rubber member 40 may have the thick part 41, the thin part 42, and the standing rubber part 43 as separate members.
  • the rubber member 40 has the thick portion 41 disposed on the radially outer side of the electromagnetic clutch 1 and the thin portion 42 disposed on the radially inner side thereof, but this is not limitative.
  • the rubber member 40 may exchange the arrangement of the thick part 41 and the thin part 42.
  • the electromagnetic clutch that transmits torque from the driving body to the driven body includes an armature, an outer plate, an inner hub, and a rubber member.
  • the armature is provided so as to be able to contact the driving body by a magnetic attraction force.
  • the outer plate is fixed to the armature on the side opposite to the driving body and rotates together with the armature.
  • the inner hub is provided so as to be movable in the rotational axis direction between the armature and the outer plate, is locked in the rotational direction with respect to the armature or the outer plate, and is fixed to the driven body.
  • the rubber member is provided between the inner hub and the outer plate, and applies a biasing force in a direction away from the inner hub and the outer plate.
  • the electromagnetic clutch is configured such that the urging force of the rubber member increases nonlinearly as the rotor and the armature approach the magnetic attractive force.
  • the rubber member is in contact with the inner hub and the outer plate from the state before the magnetic attractive force is generated between the driving body and the armature to the state where the driving body and the armature are in contact with each other.
  • the area in contact with the inner hub and the outer plate is increased immediately before the drive body and the armature contact each other.
  • the contact area between the inner hub and the outer plate and the rubber member is increased immediately before the driving body and the armature contact each other, so that the urging force of the rubber member increases nonlinearly. Since the urging force of the rubber member acts as a drag against the magnetic attractive force between the driving body and the armature, the collision speed between the driving body and the armature is reduced before the contact between the driving body and the armature. Therefore, this electromagnetic clutch can reduce the clutch sound generated at the start of torque transmission.
  • the rubber member has a thick part and a thin part.
  • the thick portion continuously contacts the inner hub and the outer plate from the state before the magnetic attractive force is generated between the driving body and the armature to the state where the driving body and the armature are in contact.
  • the thin part forms a clearance between the inner hub or the outer plate before the magnetic attractive force is generated between the driving body and the armature, and the clearance is in the middle of the approach between the driving body and the armature. It is configured to disappear.
  • the thick wall portion mainly has a magnetic force between the driving body and the armature until the driving body and the armature approach each other. Generates a drag against the suction force.
  • both the thick portion and the thin portion are located between the driving body and the armature.
  • this electromagnetic clutch can reduce the clutch sound generated at the start of torque transmission.
  • the clearance distance formed between the inner hub or the outer plate and the thin portion is Less than the distance to the armature.
  • it further includes a convex portion protruding from the inner hub or the outer plate toward the thin portion so as to enter the clearance between the inner hub or the outer plate and the thin portion.
  • this electromagnetic clutch can improve the reliability of torque transmission from the driving body to the driven body.
  • the rubber member further has a seal portion that protrudes from the thin portion and abuts against the inner hub or the outer plate, and prevents water from entering the inside via a clearance from the outside.
  • the seal portion can prevent external water from entering the inside via the clearance. Therefore, it can suppress that rust generate
  • the rubber member in a state in which no magnetic attractive force is generated between the driving body and the armature, has one of the inner hub side and the outer plate side in a sectional view parallel to the rotation axis. It has a trapezoidal shape with a long side and a short side.
  • this electromagnetic clutch can reduce the clutch sound generated at the start of torque transmission.
  • the rubber member has an inclined surface in a cross-sectional view parallel to the rotation axis in a state where no magnetic attractive force is generated between the driving body and the armature.
  • the inclined surface is formed so as to gradually move away from the inner hub or the outer plate in a predetermined direction from a portion in contact with the inner hub or the outer plate.
  • the farthest distance between the inner hub or outer plate and the inclined surface of the rubber member is larger than the distance between the driving body and the armature.
  • this electromagnetic clutch can reduce the clutch sound generated at the start of torque transmission.
  • the apparatus further includes a flange portion that extends annularly outwardly between the armature and the outer plate and covers a gap between the driving body and the armature.
  • this electromagnetic clutch can prevent so-called clutch slipping and can improve the reliability of torque transmission from the driving body to the driven body.
  • the electromagnetic clutch that transmits torque from the driving body to the driven body includes an armature, an outer plate, an inner hub, and a rubber member.
  • the armature is provided so as to be able to contact the driving body by a magnetic attraction force.
  • the outer plate is fixed to the armature on the side opposite to the driving body and rotates together with the armature.
  • the inner hub is provided so as to be movable in the rotation axis direction between the armature and the outer plate, is locked in the rotation direction with respect to the armature or the outer plate, and is fixed to the driven body.
  • the rubber member is provided between the inner hub and the outer plate, and applies a biasing force in a direction away from the inner hub and the outer plate.
  • the rubber member has a thin portion and a seal portion.
  • the thin-walled portion forms a clearance between the inner hub or the outer plate in a state before the magnetic attractive force is generated between the driving body and the armature.
  • the seal portion protrudes from the thin portion and comes into contact with the inner hub or the outer plate, thereby preventing water from entering the inside via a clearance from the outside.
  • this electromagnetic clutch can prevent so-called clutch slipping and can improve the reliability of torque transmission from the driving body to the driven body.
  • the electromagnetic clutch that transmits torque from the driving body to the driven body includes an armature, an outer plate, an inner hub, a rubber member, and a flange portion.
  • the armature is provided so as to be able to contact the driving body by a magnetic attraction force.
  • the outer plate is fixed to the armature on the side opposite to the driving body and rotates together with the armature.
  • the inner hub is provided so as to be movable in the rotational axis direction between the armature and the outer plate, is locked in the rotational direction with respect to the armature or the outer plate, and is fixed to the driven body.
  • the rubber member is provided between the inner hub and the outer plate, and applies a biasing force in a direction away from the inner hub and the outer plate.
  • the flange portion extends annularly radially outward from between the armature and the outer plate, and covers the gap between the driving body and the armature.
  • this electromagnetic clutch can prevent so-called clutch slipping and can improve the reliability of torque transmission from the driving body to the driven body.

Abstract

アーマチャ(11)は、駆動体(70)に対し磁気吸引力により当接可能に設けられる。アウタープレート(20)は、アーマチャ(11)に対し駆動体(70)とは反対側に固定され、アーマチャと共に回転する。インナーハブ(30)は、アーマチャ(11)とアウタープレート(20)との間で回転軸方向に移動可能に設けられ、アーマチャ(11)またはアウタープレート(20)に対し回転方向に係止されると共に、従動体(110)に固定される。ゴム部材(40)は、インナーハブ(30)とアウタープレート(20)との間に設けられ、インナーハブ(30)とアウタープレート(20)に対し互いに離れる方向に付勢力を与える。この電磁クラッチは、駆動体(70)とアーマチャ(11)とが磁気吸引力により近づくに従って、ゴム部材(40)の付勢力が非線形に増大するように構成されている。

Description

電磁クラッチ 関連出願への相互参照
 本出願は、2018年5月11日に出願された日本特許出願番号2018-92158号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、駆動体から従動体へトルクを伝達する電磁クラッチに関するものである。
 近年、車両の低騒音化のニーズの高まりにより、電磁クラッチの作動音の低減が求められている。
 特許文献1に記載の電磁クラッチは、駆動体としてのロータに対向してけられるアーマチャ、従動体としての圧縮機が備えるシャフトに固定されるインナーハブ、および、そのアーマチャとインナーハブとを接続する金属製の板バネ部材を備えている。板バネ部材は、ロータとアーマチャとが離れる方向に付勢している。
 この電磁クラッチは、ロータの内側に設けられたコイルに通電されると、そのコイルが発生する磁気吸引力により、板バネ部材の付勢力に抗して、アーマチャがロータ側へ引き寄せられ、ロータとアーマチャとが摩擦力により接合される。そして、電磁クラッチは、ロータと共に回転し、ロータから圧縮機にトルクを伝達する。一方、コイルへの通電が停止されて磁気吸引力が消滅すると、板バネ部材の付勢力により、ロータからアーマチャが離れ、ロータから圧縮機へのトルク伝達が停止される。
 この電磁クラッチは、ロータの内側に設けられたコイルが発生する磁気吸引力により、ロータとアーマチャとが近づくと、板バネ部材が回転軸方向と周方向の両方に弾性変形するように構成されている。そのため、アーマチャの変位量に対して板バネ部材の付勢力が非線形に増大し、ロータとアーマチャとの衝突速度が低減する。したがって、この電磁クラッチは、アーマチャと駆動体との衝突音(すなわち、クラッチ音)を低減することが可能である。
 一方、特許文献2に記載の電磁クラッチは、ロータに対向して設けられるアーマチャ、圧縮機が備えるシャフトに固定されるインナーハブ、および、そのアーマチャに固定されたハブプレートとインナーハブとを径方向に接続するゴム部材を備えている。
 この電磁クラッチも、ロータの内側に設けられたコイルに通電されると、そのコイルが発生する磁気吸引力により、ゴム部材の付勢力に抗して、アーマチャがロータ側へ引き寄せられ、ロータとアーマチャとが摩擦力により接合される。そして、電磁クラッチは、ロータと共に回転し、ロータから圧縮機にトルクを伝達する。一方、コイルへの通電が停止されて磁気吸引力が消滅すると、ゴム部材の付勢力により、ロータからアーマチャが離れ、ロータから圧縮機へのトルク伝達が停止される。
 この電磁クラッチは、トルク伝達中に生じるアウタープレートおよびアーマチャとインナーハブとの間の捩じりトルクの変動を、ゴム部材の弾性力により減衰することが可能である。そのため、この電磁クラッチは、トルク伝達中のノイズバイブレーションを低減することができる。
特開2000-179582号公報 実開昭62-167936号公報
 しかしながら、特許文献1に記載の電磁クラッチは、アーマチャとインナーハブとを板バネ部材により接続している。そのため、この電磁クラッチは、トルク伝達中に生じるアーマチャおよびアウタープレートとインナーハブとの間の捩じりトルクの変動を、その板バネ部材により吸収することが困難である。したがって、この電磁クラッチは、トルク伝達中のノイズバイブレーションが大きくなることが懸念される。
 一方、特許文献2に記載の電磁クラッチは、アーマチャに固定されたハブプレートとインナーハブとをゴム部材により径方向に接続しているので、コイルへの通電時にロータとアーマチャとの距離が近づく際、ゴム部材の付勢力は線形に増大する。そのため、この電磁クラッチは、ロータとアーマチャとの衝突速度を低減することができず、クラッチ音が大きくなるおそれがある。
 本開示は、トルク伝達開始時の作動音およびトルク伝達中の作動音を低減することの可能な電磁クラッチを提供することを目的とする。
 本開示の1つの観点によれば、駆動体から従動体へトルクを伝達する電磁クラッチであって、
 駆動体に対し磁気吸引力により当接可能に設けられるアーマチャと、
 アーマチャに対し駆動体とは反対側に固定され、アーマチャと共に回転するアウタープレートと、
 アーマチャとアウタープレートとの間で回転軸方向に移動可能に設けられ、アーマチャまたはアウタープレートに対し回転方向に係止されると共に、従動体に固定されるインナーハブと、
 インナーハブとアウタープレートとの間に設けられ、インナーハブとアウタープレートに対し互いに離れる方向に付勢力を与えるゴム部材と、を備え、
 駆動体とアーマチャとが磁気吸引力により近づくに従って、ゴム部材の付勢力が非線形に増大するように構成されている。
 これによれば、駆動体とアーマチャとの間に磁気吸引力が発生すると、ゴム部材の付勢力に抗して、アーマチャが駆動体に吸引される。その際、アーマチャと駆動体とが近づくに従い、ゴム部材の付勢力が非線形に増大する。そのため、駆動体とアーマチャとの接触前に、駆動体とアーマチャとの衝突速度が低減する。したがって、この電磁クラッチは、トルク伝達開始時に生じるアーマチャと駆動体との衝突音(すなわち、クラッチ音)を低減することができる。
 また、この電磁クラッチは、トルク伝達中に生じるアウタープレートおよびアーマチャとインナーハブとの間の捩じりトルクの変動を、ゴム部材の弾性力により減衰することが可能である。そのため、この電磁クラッチは、トルク伝達中のノイズバイブレーションも低減することができる。
 また、別の観点によれば、駆動体から従動体へトルクを伝達する電磁クラッチであって、
 駆動体に対し磁気吸引力により当接可能に設けられるアーマチャと、
 アーマチャに対し駆動体とは反対側に固定され、アーマチャと共に回転するアウタープレートと、
 アーマチャとアウタープレートとの間で回転軸方向に移動可能に設けられ、アーマチャまたはアウタープレートに対し回転方向に係止されると共に、従動体に固定されるインナーハブと、
 インナーハブとアウタープレートとの間に設けられ、インナーハブとアウタープレートに対し互いに離れる方向に付勢力を与えるゴム部材と、を備え、
 ゴム部材は、
 駆動体とアーマチャとの間に磁気吸引力が発生する前の状態でインナーハブまたはアウタープレートとの間にクリアランスを形成する薄肉部と、
 薄肉部から突出してインナーハブまたはアウタープレートに当接し、外部からクリアランスを経由して内部へ水が浸入することを防ぐシール部とを有する。
 ところで、インナーハブまたはアウタープレートと薄肉部との間にクリアランスを形成した場合、外部の水がそのクリアランスを経由して内部へ浸入することが考えられる。その水が電磁クラッチの内部を通り、駆動体およびアーマチャが被水して錆が発生すると、いわゆるクラッチ滑りが発生し、電磁クラッチのトルク伝達性能が低下するおそれがある。
 そこで、別の観点では、ゴム部材にシール部を設けることで、インナーハブまたはアウタープレートと薄肉部との間にクリアランスを形成した場合でも、外部の水がそのクリアランスを経由して内部へ浸入することを防ぐことが可能である。そのため、駆動体およびアーマチャなどに錆が発生することを抑制することができる。したがって、この電磁クラッチは、いわゆるクラッチ滑りを防ぎ、駆動体から従動体へのトルク伝達の信頼性を高めることができる。
 さらに、別の観点によれば、駆動体から従動体へトルクを伝達する電磁クラッチであって、
 駆動体に対し磁気吸引力により当接可能に設けられるアーマチャと、
 アーマチャに対し駆動体とは反対側に固定され、アーマチャと共に回転するアウタープレートと、
 アーマチャとアウタープレートとの間で回転軸方向に移動可能に設けられ、アーマチャまたはアウタープレートに対し回転方向に係止されると共に、従動体に固定されるインナーハブと、
 インナーハブとアウタープレートとの間に設けられ、インナーハブとアウタープレートに対し互いに離れる方向に付勢力を与えるゴム部材と、
 アーマチャとアウタープレートとの間から径方向外側に環状に延出し、駆動体とアーマチャとの隙間を覆うフランジ部と、を備える。
 これによれば、フランジ部により、電磁クラッチの径方向外側から駆動体とアーマチャとの隙間に水が浸入することが防がれる。そのため、駆動体およびアーマチャなどに錆が発生することが抑制される。したがって、この電磁クラッチは、いわゆるクラッチ滑りを防ぎ、駆動体から従動体へのトルク伝達の信頼性を高めることができる。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態に係る電磁クラッチが適用される冷凍サイクルの全体構成図である。 第1実施形態に係る電磁クラッチとロータの分解斜視図である。 第1実施形態に係る電磁クラッチの平面図である。 図3のIV―IV線における電磁クラッチおよびロータ等の断面図である。 第1実施形態に係る電磁クラッチが備えるアウタープレートの平面図である。 第1実施形態に係る電磁クラッチが備えるインナーハブの平面図である。 第1実施形態に係る電磁クラッチが備えるゴム部材の平面図である。 第1実施形態に係る電磁クラッチの動作を説明するための説明図である。 第1実施形態に係る電磁クラッチの動作を説明するための説明図である。 第1実施形態に係る電磁クラッチの動作を説明するための説明図である。 第1実施形態に係る電磁クラッチが備えるゴム部材の付勢力とアーマチャの変位量との関係を示す特性図である。 第2実施形態に係る電磁クラッチの断面図である。 図12のXIII部分の拡大図である。 第2実施形態に係る電磁クラッチの平面図である。 第3実施形態に係る電磁クラッチの断面図である。 図15のXVI部分の拡大図である。 第3実施形態に係る電磁クラッチが備えるインナーハブの平面図である。 第4実施形態に係る電磁クラッチ等の一部を示す断面図である。 第5実施形態に係る電磁クラッチ等の一部を示す断面図である。 第6実施形態に係る電磁クラッチ等の一部を示す断面図である。 第7実施形態に係る電磁クラッチの断面図である。 図21のXXII部分の拡大図である。 第7実施形態に係る電磁クラッチが備えるゴム部材の平面図である。 第8実施形態に係る電磁クラッチの平面図である。 図24のXXV―XXV線における電磁クラッチ等の一部を示す断面図である。
 以下、本開示の実施形態について図面を参照しつつ説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付し、その説明を省略する。
 (第1実施形態)
 第1実施形態について説明する。図1に示すように、本実施形態の電磁クラッチ1は、駆動体としてのロータ70から従動体としての圧縮機110へトルクを断続的に伝達するためのトルク伝達装置である。
 まず、従動体としての圧縮機110が用いられる冷凍サイクル100について説明する。冷凍サイクル100は、車室内または庫内等の空調を行う図示しない車両用空調装置に使用される。冷凍サイクル100は、圧縮機110、放熱器101、膨張弁102、および蒸発器103が冷媒配管104により環状に接続された閉回路として構成されている。圧縮機110は、蒸発器103側の冷媒配管104から吸入した冷媒を圧縮して吐き出す。放熱器101は、圧縮機110から吐き出された冷媒を外気に放熱させる熱交換器である。膨張弁102は、放熱器101から流出した冷媒を減圧膨張させる。蒸発器103は、膨張弁102で減圧膨張された冷媒を、車室内または庫内等に送風する空気との熱交換により蒸発させる熱交換器である。
 圧縮機110として、例えば、スクロール式またはベーン式などの固定容量型圧縮機、または、斜板式などの可変容量型圧縮機が採用される。圧縮機110の一端側には、駆動体としてのロータ70が設けられている。ロータ70は、圧縮機110のハウジング等に対して相対回転可能に設けられている。
 車両には、動力発生源としてのエンジン105が設けられている。エンジン105は、圧縮機110の動力発生源であると共に、車両走行用の動力発生源としても用いられる。エンジン105の駆動軸に設けられたプーリ106と、ロータ70とは、動力伝達用のベルト107により連結されている。エンジン105から出力されるトルクは、プーリ106からベルト107を介してロータ70に伝達される。そのため、ロータ70は、エンジン105と共に回転する。ロータ70に対して圧縮機110とは反対側に、電磁クラッチ1が設けられている。エンジン105からロータ70に伝達されるトルクは、電磁クラッチ1を介して圧縮機110のシャフトに伝達されるように構成されている。
 次に、ロータ70について、図2および図4を参照して説明する。ロータ70は、鉄等の強磁性材料で形成されている。ロータ70の外周側の部位71には、断面がV字状の複数の溝を有するV溝部72が形成されている。そのV溝部72に、エンジン105から出力されるトルクを伝えるためのベルト107が掛け渡される。ロータ70の内周側の部位73には、軸受80の外輪81が固定されている。一方、その軸受80の内輪82は、圧縮機110のハウジングから円筒状に突出する円筒部112に固定されている。これにより、ロータ70は、圧縮機110のハウジングに対して相対回転可能に設けられる。
 ロータ70のうち圧縮機110とは反対側の端面74は、電磁クラッチ1が備えるアーマチャ11と接する摩擦面となる。以下の説明では、その摩擦面を、ロータ70の端面74ということとする。なお、ロータ70の端面74の一部には、摩擦係数を増加させるための摩擦部材が配置される。その摩擦部材として、例えば、アルミナを樹脂で固めたものや、アルミニウム等の金属粉末の焼結体などの非磁性材料が採用される。
 ロータ70の内部には、ステータ90が設けられている。ステータ90は、ステータハウジング91、および、コイル92を有している。ステータハウジング91は、鉄などの強磁性材料により環状に形成されている。コイル92は、絶縁性の樹脂材料でモールディングされた状態でステータハウジング91の内側に固定されている。ステータ90のコイル92に通電されると、ステータハウジング91、ロータ70、および後述する電磁クラッチ1が備えるアーマチャ11より形成される磁気回路に磁束が流れる。これにより、ステータ90は、アーマチャ11をロータ70側に引き寄せる磁気吸引力を発生する。
 続いて、電磁クラッチ1について説明する。
 図2~図4に示すように、電磁クラッチ1は、アーマチャ11、アウタープレート20、インナーハブ30およびゴム部材40などを備えている。
 アーマチャ11は、鉄などの強磁性材料により円環状に形成され、ロータ70の端面74に向き合うように配置されている。ステータ90のコイル92に通電されていない状態で、アーマチャ11とロータ70の端面74との間には、所定の隙間(例えば0.5mm程度)が形成される。なお、図では、説明のために、アーマチャ11とロータ70との隙間を比較的大きく記載している。
 一方、ステータ90のコイル92に通電されると、アーマチャ11は、ステータ90が発生する磁気吸引力により、ロータ70側に引き寄せられ、ロータ70と当接する。そして、アーマチャ11は、ロータ70の端面74に対して摩擦力により接合される。その状態で、電磁クラッチ1はロータ70と共に回転する。図4では、電磁クラッチ1の回転軸を、符号Oを付した一点鎖線で示している。なお、アーマチャ11の径方向の中間部分には、アーマチャ11の周方向に円弧状に延びる磁気遮断用の溝部12が設けられている。
 図2~図5に示すように、アウタープレート20は、リベット13等の締結部材によりアーマチャ11の外周部に固定されている。アウタープレート20は、アーマチャ11と共に回転する。アウタープレート20は、アーマチャ11に沿って形成される基板部21と、その基板部21から回転軸方向に立ち上がる外側立板部22と、その外側立板部22の基板部21とは反対側の端部に設けられる天板部24、25とを一体に有している。
 天板部24、25は、アーマチャ11に対し略平行に設けられている。天板部24、25には、軸方向から見て+記号状の開口27が設けられている。外側立板部22と天板部24、25は、その+記号状の開口27を縁取るような形状となっている。以下の説明では、天板部24、25のうち、+記号状の開口27より径方向外側に設けられる部位を外側天板部24と呼び、その外側天板部24よりも径方向内側で扇状に設けられる部位を内側天板部25と呼ぶ。すなわち、天板部24、25は、外側天板部24および内側天板部25を有している。
 図3、図4および図6に示すように、インナーハブ30は、筒状のボス部31と、そのボス部31の端部から径方向外側に拡がるプレート部32を有している。プレート部32のうち径方向内側の部位とボス部31は、金属により形成されている。プレート部32のうち径方向外側の部位は、樹脂により形成されている。インナーハブ30は、その金属の部位と樹脂の部位とがインサート成形により一体に形成されている。具体的には、インナーハブ30は、金属の部位に形成された穴や凹凸に、樹脂の部位が入り込むことで、金属の部位と樹脂の部位とが強固に固定されている。
 ボス部31の内周には、雌ねじ33が形成されている。そのボス部31の内周に形成された雌ねじ33と、圧縮機110のシャフト111の外周に形成された雄ねじ113との螺合により、インナーハブ30は圧縮機110のシャフト111の端部に固定される。
 インナーハブ30のプレート部32は、アウタープレート20の外側立板部22の内側で、アウタープレート20の天板部24、25とアーマチャ11との間に設けられている。そのため、インナーハブ30のプレート部32は、略+記号状に形成されている。アウタープレート20およびアーマチャ11に対し、インナーハブ30は、回転軸方向に相対移動可能に設けられている。
 インナーハブ30のプレート部32は、アーマチャ11と平行に形成される底板部34と、その底板部34から回転軸方向に立ち上がる内側立板部35とを一体に有している。インナーハブ30の内側立板部35は、アウタープレート20の外側立板部22の内側で、外側立板部22に沿うように設けられている。そのため、インナーハブ30は、アウタープレート20に対し回転方向に係止され、アウタープレート20およびアーマチャ11と共に回転する。
 さらに、インナーハブ30のプレート部32は、アウタープレート20の外側天板部24に対向する位置に設けられる外側ゴム受部36と、アウタープレート20の内側天板部25に対向する位置に設けられる内側ゴム受部37を有している。
 インナーハブ30の外側ゴム受部36と、アウタープレート20の外側天板部24との間には、所定の間隔が設けられる。インナーハブ30の内側ゴム受部37と、アウタープレート20の内側天板部25との間にも、所定の間隔が形成される。インナーハブ30の内側立板部35と、アウタープレート20の外側立板部22との間にも、所定の間隔が設けられる。
 図3、図4および図7に示すように、ゴム部材40は、インナーハブ30とアウタープレート20との間の空間に対応する形状に形成されている。ゴム部材40は、インナーハブ30とアウタープレート20との間に、圧縮された状態で嵌め込まれている。そのため、ゴム部材40は、所定の弾性力により、インナーハブ30とアウタープレート20に対し、互いに離れる方向に付勢力を与えている。したがって、図4に示すように、ステータ90のコイル92に通電されていない状態では、アーマチャ11がロータ70の端面74から離れた状態となる。これに対し、ステータ90のコイル92に通電がされた状態では、ステータ90が発生する磁気吸引力により、ゴム部材40の付勢力に抗してアーマチャ11がロータ70の端面74に引き寄せられる。なお、以下の説明では、ステータ90のコイル92に通電されていない状態を「通電オフの状態」といい、ステータ90のコイル92に通電がされた状態を「通電オンの状態」という。
 ゴム部材40は、厚肉部41と薄肉部42と立ゴム部43とを一体に有している。厚肉部41は、インナーハブ30の外側ゴム受部36と、アウタープレート20の外側天板部24との間に嵌め込まれている。厚肉部41は、通電オフの状態で、インナーハブ30の外側ゴム受部36と、アウタープレート20の外側天板部24の両方に接触している。すなわち、厚肉部41は、通電オフの状態から通電オンの状態に亘り、インナーハブ30の外側ゴム受部36とアウタープレート20の外側天板部24の両方に接触し、インナーハブ30とアウタープレート20に対して互いに離れる方向に継続して付勢力を与える。
 薄肉部42は、インナーハブ30の内側ゴム受部37と、アウタープレート20の内側天板部25との間に設けられている。通電オフの状態で、薄肉部42の回転軸方向の厚みは、内側ゴム受部37と内側天板部25との距離よりも小さい。そのため、通電オフの状態で、その内側ゴム受部37と薄肉部42との間には、所定のクリアランス44が形成されている。その内側ゴム受部37と薄肉部42との間のクリアランス44の距離Cは、ロータ70とアーマチャ11との距離Gよりも小さくなるように設定されている。これにより、ロータ70のコイル92への通電が開始され、磁気吸引力によりロータ70とアーマチャ11とが接近している途中で、内側ゴム受部37と薄肉部42との間のクリアランス44は無くなる。そのため、薄肉部42は、ロータ70とアーマチャ11とが接近している途中から、インナーハブ30の内側ゴム受部37と、アウタープレート20の内側天板部25の両方に接触する。したがって、薄肉部42は、その接触した時から、インナーハブ30とアウタープレート20に対して互いに離れる方向に付勢力を与える。
 立ゴム部43は、インナーハブ30の内側立板部35と、アウタープレート20の外側立板部22との間に嵌め込まれている。立ゴム部43は、ロータ70から圧縮機110へのトルク伝達時に、インナーハブ30とアウタープレート20と間でトルク変動を吸収しつつ、アウタープレート20からインナーハブ30にトルクを緩衝的に伝達する。したがって、通電オンの状態でロータ70が回転すると、ロータ70→アーマチャ11→アウタープレート20→ゴム部材40→インナーハブ30→シャフト111の順にトルクが伝達される。
 次に、通電オフの状態から通電オンの状態になるときの電磁クラッチ1の動作について、図8~図10を参照して説明する。
 図8に示すように、通電オフの状態で、インナーハブ30の内側ゴム受部37と薄肉部42との間には、所定のクリアランス44が形成されている。
 そして、ロータ70のコイル92への通電が開始されると、磁気吸引力によりロータ70とアーマチャ11とが接近する。図9に示すように、ロータ70とアーマチャ11とが接近している途中で、内側ゴム受部37と薄肉部42との間のクリアランス44は無くなり、薄肉部42は、インナーハブ30の内側ゴム受部37と、アウタープレート20の内側天板部25の両方に接触する。
 その後、図10に示すように、ロータ70とアーマチャ11とが当接するまで、薄肉部42は回転軸方向に圧縮される。そのため、薄肉部42は、インナーハブ30とアウタープレート20に対して互いに離れる方向に付勢力を与える。
 なお、図示していないが、厚肉部41は、通電オフの状態からロータ70とアーマチャ11とが当接する状態に亘り、インナーハブ30の外側ゴム受部36とアウタープレート20の外側天板部24の両方に接触する。そのため、厚肉部41は、回転軸方向に圧縮され、インナーハブ30とアウタープレート20に対し互いに離れる方向に継続して付勢力を与える。
 図11は、コイル92への通電が開始されてからロータ70とアーマチャ11とが当接するまでのアーマチャ11の変位量とゴム部材40の付勢力との関係の一例を示した特性図である。
 図11の破線Bは、仮に、ゴム部材40が厚肉部41のみを有し、薄肉部42を有していない構成とした場合の付勢力の変化を示している。この場合、ゴム部材40の付勢力は、通電開始の位置P0から厚肉部41の初期変化が完了する位置P1まで急激に大きくなり、その位置P1からロータ70とアーマチャ11とが当接する位置P3まで、アーマチャ11の変位量に対し略線形に大きくなっている。これは、ゴム部材40の厚肉部41が、通電オフの状態からロータ70とアーマチャ11とが当接する状態に亘り、インナーハブ30の外側ゴム受部36とアウタープレート20の外側天板部24の両方に接触し、それらに対し継続して付勢力を与えている為である。
 それに対し、実線Aは、ゴム部材40が、厚肉部41と薄肉部42と立ゴム部43を有している構成とした場合の付勢力の変化を示している。この場合、ゴム部材40の付勢力は、通電開始の位置P0から厚肉部41の初期変化が完了する位置P1まで急激に大きくなり、その位置P1から所定位置P2まで、アーマチャ11の変位量に対し略線形に大きくなっている。その後、ゴム部材40の付勢力は、その所定位置P2からロータ70とアーマチャ11とが当接する位置P3まで、非線形に急激に大きくなっている。これは、ゴム部材40の薄肉部42が、ロータ70とアーマチャ11とが接近している途中の所定位置P2付近で、インナーハブ30の内側ゴム受部37とアウタープレート20の内側天板部25の両方に接触し、その後、それらに対し付勢力を与える為である。したがって、アーマチャ11が変位する途中の所定位置P2からロータ70とアーマチャ11とが当接する位置P3まで、薄肉部42と厚肉部41の両方が回転軸方向に圧縮されるので、ゴム部材40の付勢力は所定位置P2以降、非線形に急激に大きくなっている。
 以上説明した本実施形態の電磁クラッチ1は、次の作用効果を奏するものである。
 (1)本実施形態では、ロータ70とアーマチャ11とが磁気吸引力により近づくに従って、ゴム部材40の付勢力が非線形に増大するように構成されている。これによれば、ゴム部材40の付勢力は、磁気吸引力に対する抗力となるので、ロータ70とアーマチャ11との接触前に、ロータ70とアーマチャ11との衝突速度が低減する。したがって、この電磁クラッチ1は、トルク伝達開始時に生じるアーマチャ11とロータ70との衝突音(すなわち、クラッチ音)を低減することができる。
 (2)本実施形態では、ゴム部材40の立ゴム部43は、インナーハブ30の内側立板部35と、アウタープレート20の外側立板部22との間に嵌め込まれ、インナーハブ30とアウタープレート20に対し回転方向に付勢力を与えている。そのため、電磁クラッチ1は、トルク伝達中に生じるアウタープレート20およびアーマチャ11とインナーハブ30との間の捩じりトルクの変動を、立ゴム部43の弾性力により減衰することが可能である。そのため、この電磁クラッチ1は、トルク伝達中のノイズバイブレーションを低減することができる。
 (3)本実施形態では、ゴム部材40が厚肉部41と薄肉部42を有している。その厚肉部41は、通電オフの状態から継続して、インナーハブ30およびアウタープレート20に接触する。一方、薄肉部42は、ロータ70とアーマチャ11とが当接する直前に、インナーハブ30およびアウタープレート20に接触する。このように、ゴム部材40は、通電オフの状態でインナーハブ30およびアウタープレート20に接触する面積よりも、ロータ70とアーマチャ11とが当接する直前にインナーハブ30およびアウタープレート20に接触する面積が大きくなる構成とされている。これにより、この電磁クラッチ1は、アーマチャ11の変位量に応じて、ゴム部材40の付勢力を非線形に増大させることができる。
 (4)本実施形態では、通電オフの状態でインナーハブ30の内側ゴム受部37と薄肉部42との間のクリアランス44の距離Cは、ロータ70とアーマチャ11との距離Gより小さい。これにより、インナーハブ30の内側ゴム受部37と薄肉部42との間のクリアランス44を、ロータ70とアーマチャ11とが接近している途中で無くすことが可能である。
 (第2実施形態)
 第2実施形態について説明する。第2実施形態は、第1実施形態に対してアウタープレート20とゴム部材40の構成の一部を変更したものであり、その他については第1実施形態と同様であるため、第1実施形態と異なる部分についてのみ説明する。
 図12~図14に示すように、第2実施形態では、通電オフの状態で、ゴム部材40の薄肉部42は、インナーハブ30の内側ゴム受部37に接触している。そのため、第2実施形態では、アウタープレート20の内側天板部25と薄肉部42との間に、所定のクリアランス44が形成されている。なお、第2実施形態においても、第1実施形態と同様に、クリアランス44の距離Cは、ロータ70とアーマチャ11との距離Gよりも小さくなるように設定されている。
 また、第2実施形態では、アウタープレート20は、内側天板部25から薄肉部42側へ突出する凸部26を有している。以下の説明では、アウタープレート20が有する凸部26を、アウタープレート凸部26と呼ぶこととする。アウタープレート凸部26は、内側天板部25から、内側天板部25と薄肉部42との間のクリアランス44に入り込むように設けられている。そして、通電オフの状態で、アウタープレート凸部26は、薄肉部42に接触している。また、アウタープレート凸部26は、内側天板部25の周方向に亘って二列設けられている。
 第2実施形態も、第1実施形態と同様に、ロータ70とアーマチャ11とが磁気吸引力により近づくに従って、ゴム部材40の付勢力が非線形に増大する。これにより、この電磁クラッチ1は、トルク伝達開始時に生じるクラッチ音を低減することができる。
 ところで、インナーハブ30またはアウタープレート20と薄肉部42との間にクリアランス44を形成した場合、外部の水がそのクリアランス44を経由して内部へ浸入することが考えられる。その水が電磁クラッチ1の内部を通り、ロータ70およびアーマチャ11が被水して錆が発生すると、いわゆるクラッチ滑りが発生し、電磁クラッチ1のトルク伝達性能が低下するおそれがある。なお、図12では、電磁クラッチ1の外部から水が浸入する可能性のある経路を、破線の矢印Wにて示している。
 そのような問題に対し、第2実施形態では、アウタープレート20と薄肉部42との間にクリアランス44を形成した場合でも、アウタープレート凸部26により、外部の水がそのクリアランス44を経由して内部へ浸入することを防ぐことが可能である。そのため、ロータ70およびアーマチャ11などに錆が発生することが抑制される。したがって、この電磁クラッチ1は、いわゆるクラッチ滑りを防ぎ、トルク伝達の信頼性を高めることができる。
 (第3実施形態)
 第3実施形態について説明する。第3実施形態は、第1実施形態等に対してインナープレートとゴム部材40の構成の一部を変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
 図15~図17に示すように、第3実施形態では、第1実施形態と同様に、通電オフの状態で、インナーハブ30の内側ゴム受部37とゴム部材40の薄肉部42との間に、所定のクリアランス44が形成されている。そして、第3実施形態では、インナーハブ30は、内側ゴム受部37から薄肉部42側へ突出する凸部38を有している。以下の説明では、インナーハブ30が有する凸部38を、インナーハブ凸部38と呼ぶこととする。インナーハブ凸部38は、内側ゴム受部37から、内側ゴム受部37と薄肉部42との間のクリアランス44に入り込むように設けられている。そして、通電オフの状態で、インナーハブ凸部38は、薄肉部42に接触している。また、インナーハブ凸部38は、内側ゴム受部37の周方向に亘って二列設けられている。
 第3実施形態も、第1実施形態と同様に、ロータ70とアーマチャ11とが磁気吸引力により近づくに従って、ゴム部材40の付勢力が非線形に増大する。これにより、この電磁クラッチ1は、トルク伝達開始時に生じるクラッチ音を低減することができる。
 また、第3実施形態では、インナーハブ30の内側ゴム受部37と薄肉部42との間にクリアランス44を形成した場合でも、インナーハブ凸部38により、外部の水がそのクリアランス44を経由して内部へ浸入することを防ぐことが可能である。そのため、ロータ70およびアーマチャ11などに錆が発生することが抑制される。したがって、第3実施形態の電磁クラッチ1も、第2実施形態と同様に、いわゆるクラッチ滑りを防ぎ、トルク伝達の信頼性を高めることができる。
 (第4実施形態)
 第4実施形態について説明する。第4実施形態は、第1実施形態等に対してゴム部材40の形状を変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
 図18に示すように、第4実施形態では、ゴム部材40の厚肉部41の形状が、第1実施形態等のものとは異なっている。具体的には、通電オフの状態で、ゴム部材40の厚肉部41は、回転軸に平行な断面視において、外側ゴム受部36側の辺45が長く、外側天板部24側の辺46が短い台形状に形成されている。ゴム部材40の厚肉部41は、通電オフの状態から通電オンの状態に亘り、外側ゴム受部36と外側天板部24の両方に接触している。なお、第4実施形態では、ゴム部材40は薄肉部42を備えていなくてもよい。
 第4実施形態では、コイル92への通電が開始され、ロータ70とアーマチャ11とが磁気吸引力によって近づくに従い、アウタープレート20の外側天板部24とゴム部材40の厚肉部41との接触面積が次第に大きくなる。そのため、ゴム部材40の付勢力が非線形に増大し、ロータ70とアーマチャ11との衝突速度が低減する。したがって、第4実施形態でも、トルク伝達開始時に生じるクラッチ音を低減することができる。
 (第5実施形態)
 第5実施形態について説明する。第5実施形態も、第4実施形態等に対してゴム部材40の形状を変更したものであり、その他については第4実施形態等と同様であるため、第4実施形態等と異なる部分についてのみ説明する。
 図19に示すように、第5実施形態では、通電オフの状態で、ゴム部材40の厚肉部41は、回転軸に平行な断面視において、インナーハブ30の外側ゴム受部36側に傾斜面47を有している。ゴム部材40の傾斜面47は、インナーハブ30の外側ゴム受部36に当接する部位から径方向外側に向かって外側ゴム受部36から次第に離れるように形成されている。ゴム部材40の傾斜面47は、外側ゴム受部36と傾斜面47との最遠距離Fが、ロータ70とアーマチャ11との距離Gより大きくなるように形成されている。なお、第5実施形態でも、ゴム部材40は薄肉部42を備えていなくてもよい。
 第5実施形態では、コイル92への通電が開始され、ロータ70とアーマチャ11とが磁気吸引力によって近づくに従い、インナーハブ30の外側ゴム受部36とゴム部材40の傾斜面47との接触面積が次第に大きくなる。そのため、ゴム部材40の付勢力が非線形に増大し、ロータ70とアーマチャ11との衝突速度が低減する。したがって、第5実施形態も、トルク伝達開始時に生じるクラッチ音を低減することができる。
 (第6実施形態)
 第6実施形態について説明する。第6実施形態も、第4実施形態等に対してゴム部材40の形状を変更したものであり、その他については第4実施形態等と同様であるため、第4実施形態等と異なる部分についてのみ説明する。
 図20に示すように、第6実施形態では、通電オフの状態で、ゴム部材40の厚肉部41は、回転軸に平行な断面視において、アウタープレート20の外側天板部24側に傾斜面48を有している。ゴム部材40の傾斜面48は、アウタープレート20の外側天板部24に当接する部位から径方向内側に向かって外側天板部24から次第に離れるように形成されている。ゴム部材40の傾斜面48は、外側天板部24と傾斜面48との最遠距離Fが、ロータ70とアーマチャ11との距離Gより大きくなるように形成されている。なお、第6実施形態でも、ゴム部材40は薄肉部42を備えていなくてもよい。
 第6実施形態では、コイル92への通電が開始され、ロータ70とアーマチャ11とが磁気吸引力によって近づくに従い、アウタープレート20の外側天板部24とゴム部材40の傾斜面48との接触面積が次第に大きくなる。そのため、ゴム部材40の付勢力が非線形に増大し、ロータ70とアーマチャ11との衝突速度が低減する。したがって、第6実施形態も、トルク伝達開始時に生じるクラッチ音を低減することができる。
 (第7実施形態)
 第7実施形態について説明する。第7実施形態は、第1実施形態等に対してゴム部材40の構成の一部を変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
 図21~図23に示すように、第7実施形態では、第1実施形態と同様に、通電オフの状態で、ゴム部材40の薄肉部42とインナーハブ30の内側ゴム受部37との間に、所定のクリアランス44が形成されている。そして、第7実施形態では、ゴム部材40は、薄肉部42から内側ゴム受部37側へ突出するシール部49を有している。シール部49は、薄肉部42から、薄肉部42と内側ゴム受部37との間のクリアランス44に入り込むように設けられている。通電オフの状態で、シール部49は、内側ゴム受部37に当接している。また、シール部49は、薄肉部42の周方向に亘って設けられている。これにより、シール部49は、外部からクリアランス44を経由して内部へ水が浸入することを防ぐことが可能である。なお、図21および図22では、電磁クラッチ1の外部から水が浸入する可能性のある経路を、破線の矢印Wにて示している。
 第7実施形態では、シール部49により、外部からクリアランス44を経由して内部へ水が浸入することが防がれるので、ロータ70およびアーマチャ11などに錆が発生することが抑制される。したがって、第7実施形態も、第2および第3実施形態と同様に、クラッチ滑りを防ぎ、トルク伝達の信頼性を高めることができる。
 なお、第7実施形態も、第1実施形態等と同様に、ロータ70とアーマチャ11との間に磁気吸引力が発生する際、ロータ70とアーマチャ11が近づくに従い、ゴム部材40の付勢力が非線形に増大する。これにより、この電磁クラッチ1は、トルク伝達開始時に生じるクラッチ音を低減することができる。
 (第8実施形態)
 第8実施形態について説明する。第8実施形態は、第1実施形態等に対して構成の一部を変更したものであり、その他については第1実施形態等と同様であるため、第1実施形態等と異なる部分についてのみ説明する。
 図24および図25に示すように、第8実施形態の電磁クラッチ1は、アーマチャ11とアウタープレート20との間から径方向外側に環状に延出するフランジ部50を備えている。フランジ部50は、ゴムにより形成されている。フランジ部50は、電磁クラッチ1の全周に設けられ、ロータ70とアーマチャ11との隙間を覆っている。そのため、フランジ部50は、ロータ70とアーマチャ11との間に水が浸入することを防ぐことが可能である。なお、フランジ部50は、第1~第7実施形態で説明したゴム部材40と一体に形成してもよく、または、ゴム部材40とは別部材として構成してもよい。
 第8実施形態では、フランジ部50により、外部からロータ70とアーマチャ11との隙間に水が浸入することが防がれるので、ロータ70およびアーマチャ11などに錆が発生することが抑制される。したがって、第8実施形態の構成によっても、いわゆるクラッチ滑りを防ぎ、トルク伝達の信頼性を高めることができる。
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。
 例えば、上記各実施形態では、インナーハブ30は、アウタープレート20に対し回転方向に係止されるように構成したが、これに限らない。インナーハブ30は、アーマチャ11に対し回転方向に係止されるように構成してもよい。
 例えば、上記各実施形態では、ゴム部材40は、厚肉部41と薄肉部42と立ゴム部43を一体に形成したが、これに限らない。ゴム部材40は、厚肉部41と薄肉部42と立ゴム部43をそれぞれ別部材としてもよい。
 例えば、上記各実施形態では、ゴム部材40は、電磁クラッチ1の径方向外側に厚肉部41を配置し、それより径方向内側に薄肉部42を配置したが、これに限らない。ゴム部材40は、厚肉部41と薄肉部42の配置を入れ替えてもよい。
 (まとめ)
 上記各実施形態の一部または全部で示された第1の観点によれば、駆動体から従動体へトルクを伝達する電磁クラッチは、アーマチャ、アウタープレート、インナーハブ、およびゴム部材を備える。アーマチャは、駆動体に対し磁気吸引力により当接可能に設けられる。アウタープレートは、アーマチャに対し駆動体とは反対側に固定され、アーマチャと共に回転する。インナーハブは、アーマチャとアウタープレートとの間で回転軸方向に移動可能に設けられ、アーマチャまたはアウタープレートに対し回転方向に係止されると共に、従動体に固定される。ゴム部材は、インナーハブとアウタープレートとの間に設けられ、インナーハブとアウタープレートに対し互いに離れる方向に付勢力を与える。この電磁クラッチは、ロータとアーマチャとが磁気吸引力により近づくに従って、ゴム部材の付勢力が非線形に増大するように構成されている。
 第2の観点によれば、ゴム部材は、駆動体とアーマチャとの間に磁気吸引力が発生する前の状態から駆動体とアーマチャとが当接する状態に亘りインナーハブおよびアウタープレートに接触する面積より、駆動体とアーマチャとが当接する直前にインナーハブおよびアウタープレートに接触する面積が大きくなるように構成されている。
 これによれば、駆動体とアーマチャとが当接する直前に、インナーハブおよびアウタープレートとゴム部材との接触面積が大きくなるので、ゴム部材の付勢力が非線形に増大する。ゴム部材の付勢力は、駆動体とアーマチャとの間の磁気吸引力に対する抗力となるので、駆動体とアーマチャとの接触前に、駆動体とアーマチャとの衝突速度が低減する。したがって、この電磁クラッチは、トルク伝達開始時に生じるクラッチ音を低減することができる。
 第3の観点によれば、ゴム部材は、厚肉部および薄肉部を有する。厚肉部は、駆動体とアーマチャとの間に磁気吸引力が発生する前の状態から駆動体とアーマチャとが当接する状態に亘りインナーハブおよびアウタープレートに継続して接触する。薄肉部は、駆動体とアーマチャとの間に磁気吸引力が発生する前の状態でインナーハブまたはアウタープレートとの間にクリアランスを形成し、駆動体とアーマチャとが接近している途中でクリアランスが無くなるように構成されている。
 これによれば、駆動体とアーマチャとの間に磁気吸引力が発生してから駆動体とアーマチャとが接近している途中まで、主に厚肉部が、駆動体とアーマチャとの間の磁気吸引力に対する抗力を発生する。そして、駆動体とアーマチャとが接近している途中で、インナーハブまたはアウタープレートと薄肉部との間のクリアランスが無くなると、厚肉部と薄肉部の両方が、駆動体とアーマチャとの間の磁気吸引力に対する抗力を発生する。そのため、駆動体とアーマチャとが接近している途中から駆動体とアーマチャとが当接するまで、駆動体とアーマチャとの間の磁気吸引力に対する抗力が非線形に増大する。したがって、この電磁クラッチは、トルク伝達開始時に生じるクラッチ音を低減することができる。
 第4の観点によれば、駆動体とアーマチャとの間に磁気吸引力が発生していない状態において、インナーハブまたはアウタープレートと薄肉部との間に形成されるクリアランスの距離は、駆動体とアーマチャとの距離より小さい。
 これによれば、インナーハブまたはアウタープレートと薄肉部との間に形成されるクリアランスを、駆動体とアーマチャとが接近している途中で無くすことが可能である。
 第5の観点によれば、インナーハブまたはアウタープレートと薄肉部との間のクリアランスに入り込むように、インナーハブまたはアウタープレートから薄肉部側へ突出する凸部をさらに備える。
 これによれば、インナーハブまたはアウタープレートと薄肉部との間にクリアランスを形成した場合でも、凸部により、外部の水がそのクリアランスを経由して内部へ浸入することを防ぐことが可能である。そのため、駆動体およびアーマチャなどに錆が発生することを抑制することができる。したがって、この電磁クラッチは、駆動体から従動体へのトルク伝達の信頼性を高めることができる。
 第6の観点によれば、ゴム部材は、薄肉部から突出してインナーハブまたはアウタープレートに当接し、外部からクリアランスを経由して内部へ水が浸入することを防ぐシール部をさらに有する。
 これによれば、インナーハブまたはアウタープレートと薄肉部との間にクリアランスを形成した場合でも、シール部により、外部の水がそのクリアランスを経由して内部へ浸入することを防ぐことが可能である。そのため、駆動体およびアーマチャなどに錆が発生することを抑制することができる。したがって、この電磁クラッチは、いわゆるクラッチ滑りを防ぎ、駆動体から従動体へのトルク伝達の信頼性を高めることができる。
 第7の観点によれば、駆動体とアーマチャとの間に磁気吸引力が発生していない状態で、ゴム部材は、回転軸に平行な断面視において、インナーハブ側またはアウタープレート側の一方の辺が長く他方の辺が短い台形状である。
 これによれば、駆動体とアーマチャとが磁気吸引力によって近づくに従い、インナーハブおよびアウタープレートと台形状のゴム部材との接触面積が次第に大きくなる。そのため、アーマチャの変位量に応じて、ゴム部材の付勢力が非線形に増大し、駆動体とアーマチャとの衝突速度が低減する。したがって、この電磁クラッチは、トルク伝達開始時に生じるクラッチ音を低減することができる。
 第8の観点によれば、駆動体とアーマチャとの間に磁気吸引力が発生していない状態で、ゴム部材は、回転軸に平行な断面視において、傾斜面を有する。その傾斜面は、インナーハブまたはアウタープレートに当接する部位から所定方向に向かってインナーハブまたはアウタープレートから次第に離れるように形成される。そして、インナーハブまたはアウタープレートとゴム部材の傾斜面との最遠距離は、駆動体とアーマチャとの距離より大きい。
 これによれば、駆動体とアーマチャとが磁気吸引力によって近づくに従い、インナーハブおよびアウタープレートとゴム部材との接触面積が次第に大きくなる。そのため、アーマチャの変位量に応じて、ゴム部材の付勢力が非線形に増大し、駆動体とアーマチャとの衝突速度が低減する。したがって、この電磁クラッチは、トルク伝達開始時に生じるクラッチ音を低減することができる。
 第9の観点によれば、アーマチャとアウタープレートとの間から径方向外側に環状に延出し、駆動体とアーマチャとの隙間を覆うフランジ部をさらに備える。
 これによれば、フランジ部により、電磁クラッチの径方向外側から駆動体とアーマチャとの隙間に水が浸入することが防がれる。そのため、駆動体およびアーマチャなどに錆が発生することが抑制される。したがって、この電磁クラッチは、いわゆるクラッチ滑りを防ぎ、駆動体から従動体へのトルク伝達の信頼性を高めることができる。
 第10の観点によれば、駆動体から従動体へトルクを伝達する電磁クラッチは、アーマチャ、アウタープレート、インナーハブ、およびゴム部材を備える。アーマチャは、駆動体に対し磁気吸引力により当接可能に設けられる。アウタープレートは、アーマチャに対し駆動体とは反対側に固定され、アーマチャと共に回転する。インナーハブは、アーマチャとアウタープレートとの間で回転軸方向に移動可能に設けられ、アーマチャまたはアウタープレートに対し回転方向に係止されると共に、従動体に固定される。ゴム部材は、インナーハブとアウタープレートとの間に設けられ、インナーハブとアウタープレートに対し互いに離れる方向に付勢力を与える。そのゴム部材は、薄肉部およびシール部を有する。薄肉部は、駆動体とアーマチャとの間に磁気吸引力が発生する前の状態でインナーハブまたはアウタープレートとの間にクリアランスを形成する。シール部は、薄肉部から突出してインナーハブまたはアウタープレートに当接し、外部からクリアランスを経由して内部へ水が浸入することを防ぐ。
 ゴム部材にシール部を設けることで、インナーハブまたはアウタープレートと薄肉部との間にクリアランスを形成した場合でも、外部の水がそのクリアランスを経由して内部へ浸入することを防ぐことが可能である。そのため、駆動体およびアーマチャなどに錆が発生することを抑制することができる。したがって、この電磁クラッチは、いわゆるクラッチ滑りを防ぎ、駆動体から従動体へのトルク伝達の信頼性を高めることができる。
 第11の観点によれば、駆動体から従動体へトルクを伝達する電磁クラッチは、アーマチャ、アウタープレート、インナーハブ、ゴム部材、およびフランジ部を備える。アーマチャは、駆動体に対し磁気吸引力により当接可能に設けられる。アウタープレートは、アーマチャに対し駆動体とは反対側に固定され、アーマチャと共に回転する。インナーハブは、アーマチャとアウタープレートとの間で回転軸方向に移動可能に設けられ、アーマチャまたはアウタープレートに対し回転方向に係止されると共に、従動体に固定される。ゴム部材は、インナーハブとアウタープレートとの間に設けられ、インナーハブとアウタープレートに対し互いに離れる方向に付勢力を与える。フランジ部は、アーマチャとアウタープレートとの間から径方向外側に環状に延出し、駆動体とアーマチャとの隙間を覆う。
 これによれば、フランジ部により、電磁クラッチの径方向外側から駆動体とアーマチャとの隙間に水が浸入することが防がれる。そのため、駆動体およびアーマチャなどに錆が発生することが抑制される。したがって、この電磁クラッチは、いわゆるクラッチ滑りを防ぎ、駆動体から従動体へのトルク伝達の信頼性を高めることができる。

Claims (11)

  1.  駆動体(70)から従動体(110)へトルクを伝達する電磁クラッチであって、
     前記駆動体に対し磁気吸引力により当接可能に設けられるアーマチャ(11)と、
     前記アーマチャに対し前記駆動体とは反対側に固定され、前記アーマチャと共に回転するアウタープレート(20)と、
     前記アーマチャと前記アウタープレートとの間で回転軸方向に移動可能に設けられ、前記アーマチャまたは前記アウタープレートに対し回転方向に係止されると共に、前記従動体に固定されるインナーハブ(30)と、
     前記インナーハブと前記アウタープレートとの間に設けられ、前記インナーハブと前記アウタープレートに対し互いに離れる方向に付勢力を与えるゴム部材(40)と、を備え、
     前記駆動体と前記アーマチャとが磁気吸引力により近づくに従って、前記ゴム部材の付勢力が非線形に増大するように構成されている、電磁クラッチ。
  2.  前記ゴム部材は、前記駆動体と前記アーマチャとの間に磁気吸引力が発生する前の状態から前記駆動体と前記アーマチャとが当接する状態に亘り前記インナーハブおよび前記アウタープレートに接触する面積より、前記駆動体と前記アーマチャとが当接する直前に前記インナーハブおよび前記アウタープレートに接触する面積が大きくなるように構成されている、請求項1に記載の電磁クラッチ。
  3.  前記ゴム部材は、
     前記駆動体と前記アーマチャとの間に磁気吸引力が発生する前の状態から前記駆動体と前記アーマチャとが当接する状態に亘り前記インナーハブおよび前記アウタープレートに継続して接触する厚肉部(41)と、
     前記駆動体と前記アーマチャとの間に磁気吸引力が発生する前の状態で前記インナーハブまたは前記アウタープレートとの間にクリアランス(44)を形成し、磁気吸引力により前記駆動体と前記アーマチャとが接近している途中で前記クリアランスが無くなるように構成される薄肉部(42)とを有する、請求項1または2に記載の電磁クラッチ。
  4.  前記駆動体と前記アーマチャとの間に磁気吸引力が発生していない状態において、前記インナーハブまたは前記アウタープレートと前記薄肉部との間に形成される前記クリアランスの距離(C)は、前記駆動体と前記アーマチャとの距離(G)より小さい、請求項3に記載の電磁クラッチ。
  5.  前記インナーハブまたは前記アウタープレートと前記薄肉部との間の前記クリアランスに入り込むように、前記インナーハブまたは前記アウタープレートから前記薄肉部側へ突出する凸部(26、38)をさらに備える、請求項3または4に記載の電磁クラッチ。
  6.  前記ゴム部材は、前記薄肉部から突出して前記インナーハブまたは前記アウタープレートに当接し、外部から前記クリアランスを経由して内部へ水が浸入することを防ぐシール部(49)をさらに有する、請求項3ないし5のいずれか1つに記載の電磁クラッチ。
  7.  前記駆動体と前記アーマチャとの間に磁気吸引力が発生していない状態で、前記ゴム部材は、回転軸に平行な断面視において、前記インナーハブ側または前記アウタープレート側の一方の辺(45)が長く他方の辺(46)が短い台形状である、請求項1ないし6のいずれか1つに記載の電磁クラッチ。
  8.  前記駆動体と前記アーマチャとの間に磁気吸引力が発生していない状態で、前記ゴム部材は、回転軸に平行な断面視において、前記インナーハブまたは前記アウタープレートに当接する部位から所定方向に向かって前記インナーハブまたは前記アウタープレートから次第に離れるように形成される傾斜面(47,48)を有し、
     前記インナーハブまたは前記アウタープレートと前記ゴム部材の前記傾斜面との最遠距離(F)は、前記駆動体と前記アーマチャとの距離(G)より大きい、請求項1ないし6のいずれか1つに記載の電磁クラッチ。
  9.  前記アーマチャと前記アウタープレートとの間から径方向外側に環状に延出し、前記駆動体と前記アーマチャとの隙間を覆うフランジ部(50)をさらに備える、請求項1ないし8のいずれか1つに記載の電磁クラッチ。
  10.  駆動体(70)から従動体(110)へトルクを伝達する電磁クラッチであって、
     前記駆動体に対し磁気吸引力により当接可能に設けられるアーマチャ(11)と、
     前記アーマチャに対し前記駆動体とは反対側に固定され、前記アーマチャと共に回転するアウタープレート(20)と、
     前記アーマチャと前記アウタープレートとの間で回転軸方向に移動可能に設けられ、前記アーマチャまたは前記アウタープレートに対し回転方向に係止されると共に、前記従動体に固定されるインナーハブ(30)と、
     前記インナーハブと前記アウタープレートとの間に設けられ、前記インナーハブと前記アウタープレートに対し互いに離れる方向に付勢力を与えるゴム部材(40)と、を備え、
     前記ゴム部材は、
     前記駆動体と前記アーマチャとの間に磁気吸引力が発生する前の状態で前記インナーハブまたは前記アウタープレートとの間にクリアランス(44)を形成する薄肉部(42)と、
     前記薄肉部から突出して前記インナーハブまたは前記アウタープレートに当接し、外部から前記クリアランスを経由して内部へ水が浸入することを防ぐシール部(49)とを有する、電磁クラッチ。
  11.  駆動体(70)から従動体(110)へトルクを伝達する電磁クラッチであって、
     前記駆動体に対し磁気吸引力により当接可能に設けられるアーマチャ(11)と、
     前記アーマチャに対し前記駆動体とは反対側に固定され、前記アーマチャと共に回転するアウタープレート(20)と、
     前記アーマチャと前記アウタープレートとの間で回転軸方向に移動可能に設けられ、前記アーマチャまたは前記アウタープレートに対し回転方向に係止されると共に、前記従動体に固定されるインナーハブ(30)と、
     前記インナーハブと前記アウタープレートとの間に設けられ、前記インナーハブと前記アウタープレートに対し互いに離れる方向に付勢力を与えるゴム部材(40)と、
     前記アーマチャと前記アウタープレートとの間から径方向外側に環状に延出し、前記駆動体と前記アーマチャとの隙間を覆うフランジ部(50)と、を備える電磁クラッチ。
     
PCT/JP2019/014981 2018-05-11 2019-04-04 電磁クラッチ WO2019216070A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980031309.8A CN112105831B (zh) 2018-05-11 2019-04-04 电磁离合器
DE112019002413.2T DE112019002413T5 (de) 2018-05-11 2019-04-04 Elektromagnetische Kupplung
KR1020207027838A KR102476896B1 (ko) 2018-05-11 2019-04-04 전자 클러치
US17/071,051 US11519466B2 (en) 2018-05-11 2020-10-15 Electromagnetic clutch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-092158 2018-05-11
JP2018092158A JP6927140B2 (ja) 2018-05-11 2018-05-11 電磁クラッチ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/071,051 Continuation US11519466B2 (en) 2018-05-11 2020-10-15 Electromagnetic clutch

Publications (1)

Publication Number Publication Date
WO2019216070A1 true WO2019216070A1 (ja) 2019-11-14

Family

ID=68467984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014981 WO2019216070A1 (ja) 2018-05-11 2019-04-04 電磁クラッチ

Country Status (6)

Country Link
US (1) US11519466B2 (ja)
JP (1) JP6927140B2 (ja)
KR (1) KR102476896B1 (ja)
CN (1) CN112105831B (ja)
DE (1) DE112019002413T5 (ja)
WO (1) WO2019216070A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102571471B1 (ko) 2018-10-22 2023-08-29 한온시스템 주식회사 클러치 및 이를 포함하는 압축기
CN114151463A (zh) * 2021-12-07 2022-03-08 南京立思辰智能设备有限公司 电磁离合器总成

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254335U (ja) * 1985-09-26 1987-04-04
JPH09210095A (ja) * 1996-02-05 1997-08-12 Ogura Clutch Co Ltd 電磁クラッチ
JPH10252783A (ja) * 1997-03-07 1998-09-22 Ogura Clutch Co Ltd 電磁クラッチ
JP2000120791A (ja) * 1998-10-13 2000-04-25 Nok Megulastik Co Ltd 電磁クラッチ用ダンパ装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689792B2 (ja) 1986-01-17 1994-11-14 ヤンマーディーゼル株式会社 船舶用油圧クラツチの嵌入検出装置
JPH043132Y2 (ja) 1986-04-15 1992-01-31
JPH0674257A (ja) * 1992-06-26 1994-03-15 Nippondenso Co Ltd 電磁クラッチ用ロータの製造方法
JP4174896B2 (ja) * 1998-09-22 2008-11-05 株式会社デンソー 電磁クラッチ
JP3911885B2 (ja) 1998-12-15 2007-05-09 株式会社デンソー 電磁クラッチ
JP4232155B2 (ja) * 2002-02-12 2009-03-04 株式会社ヴァレオサーマルシステムズ 電磁クラッチ
JP3912137B2 (ja) * 2002-02-26 2007-05-09 株式会社デンソー 電磁クラッチ
JP4623155B2 (ja) * 2008-07-24 2011-02-02 株式会社デンソー 動力伝達装置
JP4985749B2 (ja) 2009-11-30 2012-07-25 株式会社デンソー クラッチ機構
JP2016121760A (ja) * 2014-12-25 2016-07-07 株式会社デンソー 電磁クラッチ
JP2017214971A (ja) * 2016-05-31 2017-12-07 株式会社デンソー 電磁クラッチ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254335U (ja) * 1985-09-26 1987-04-04
JPH09210095A (ja) * 1996-02-05 1997-08-12 Ogura Clutch Co Ltd 電磁クラッチ
JPH10252783A (ja) * 1997-03-07 1998-09-22 Ogura Clutch Co Ltd 電磁クラッチ
JP2000120791A (ja) * 1998-10-13 2000-04-25 Nok Megulastik Co Ltd 電磁クラッチ用ダンパ装置

Also Published As

Publication number Publication date
US20210025462A1 (en) 2021-01-28
DE112019002413T5 (de) 2021-01-21
US11519466B2 (en) 2022-12-06
CN112105831A (zh) 2020-12-18
KR102476896B1 (ko) 2022-12-13
CN112105831B (zh) 2022-06-07
JP6927140B2 (ja) 2021-08-25
KR20200124282A (ko) 2020-11-02
JP2019196829A (ja) 2019-11-14

Similar Documents

Publication Publication Date Title
WO2019216070A1 (ja) 電磁クラッチ
WO2016103600A1 (ja) 電磁クラッチ
US7213695B2 (en) Electromagnetic clutch
KR100506166B1 (ko) 전자클러치
JP6645415B2 (ja) 動力伝達装置
JP6597746B2 (ja) 動力伝達装置
WO2015136912A1 (ja) 摩擦クラッチ
WO2022158206A1 (ja) 電磁クラッチ
JP4612544B2 (ja) 電磁クラッチ
JP6747399B2 (ja) 動力伝達装置
WO2018110167A1 (ja) 動力伝達装置
WO2018088234A1 (ja) 動力伝達装置
JPH06193653A (ja) 電磁クラッチ
WO2018235526A1 (ja) 動力伝達装置
JP7255528B2 (ja) トルク伝達装置
WO2019239837A1 (ja) 動力伝達装置
JP6569600B2 (ja) クラッチおよびその製造方法
WO2014080560A1 (ja) クラッチ機構
JP6606972B2 (ja) 動力伝達装置
WO2016103665A1 (ja) 電磁クラッチおよびその製造方法
JP2018132105A (ja) 動力伝達装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799087

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207027838

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19799087

Country of ref document: EP

Kind code of ref document: A1