WO2019214718A1 - 随机接入资源的选择方法、装置及设备、存储介质 - Google Patents

随机接入资源的选择方法、装置及设备、存储介质 Download PDF

Info

Publication number
WO2019214718A1
WO2019214718A1 PCT/CN2019/086429 CN2019086429W WO2019214718A1 WO 2019214718 A1 WO2019214718 A1 WO 2019214718A1 CN 2019086429 W CN2019086429 W CN 2019086429W WO 2019214718 A1 WO2019214718 A1 WO 2019214718A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
random access
rsrq
rsrp
fluctuation
Prior art date
Application number
PCT/CN2019/086429
Other languages
English (en)
French (fr)
Inventor
高明刚
倪庆瑜
王雅静
丁雪梅
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/054,481 priority Critical patent/US11596002B2/en
Publication of WO2019214718A1 publication Critical patent/WO2019214718A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present disclosure relates to, but is not limited to, the field of communication technology.
  • the 3rd Generation Partnership Project (3GPP) is researching a new access system to provide a low complexity, low throughput wireless access technology to address the needs of wireless IoT It is called the Narrow Band Internet of Things (NB-IoT).
  • NB-IoT Narrow Band Internet of Things
  • NB-IoT uses different uplink power configurations and preamble resource parameter configurations according to the classification of downlink signal strength.
  • the current protocol only uses a single Reference Signal Receiving Power (RSRP) to estimate, and there are problems such as waste of channel resources and high probability of initial access failure.
  • RSRP Reference Signal Receiving Power
  • a method for selecting a random access resource includes: measuring an RSRP value, a Reference Signal Receiving Quality (RSRQ) value, and a path loss (Path Loss, PL) of a downlink channel.
  • RSRQ Reference Signal Receiving Quality
  • PL path loss
  • the RSRP value, the RSRQ value, and the PL value in the table select a Coverage Enhancement Level (CEL) in the second configuration table, and determine a random access resource according to the selected CEL.
  • CEL Coverage Enhancement Level
  • an apparatus for selecting a random access resource includes a measurement module, a calculation module, a comparison module, and a selection module, where the measurement module is configured to measure an RSRP value, an RSRQ value, and a downlink channel. a PL value, the calculation module is configured to calculate a RSRP fluctuation value, an RSRQ fluctuation value, and a PL fluctuation value according to the measured RSRP value, the RSRQ value, and the PL value, and the RSRP value, the RSRQ value, and the PL value in the first configuration table.
  • the comparison module is configured to compare the fluctuation value of the RSRP, the fluctuation value of the RSRQ, and the fluctuation value of the PL with respective preset thresholds, and the fluctuation value of the RSRP, the fluctuation value of the RSRQ, and the fluctuation value of the PL are not exceeded.
  • the selecting module selects a CEL in the second configuration table according to the RSRP value, the RSRQ value, and the PL value in the first configuration table, and determines a random access resource according to the selected CEL.
  • an apparatus for selecting a random access resource comprising a memory and a processor, wherein a computer program is stored on the memory, the computer program being executed by the processor
  • the processor performs a method of selecting a random access resource in accordance with the present disclosure.
  • a computer readable storage medium having stored thereon a computer program, the processor executing a selective random access resource according to the present disclosure, when executed by a processor Methods.
  • FIG. 1A and FIG. 1B are schematic diagrams showing the structure of a base station and a terminal with different cell coverage and PL;
  • FIG. 2 is a schematic structural diagram of a base station and a terminal with co-channel interference
  • FIG. 3 is a schematic flowchart of a method for selecting a random access resource according to an embodiment of the present disclosure
  • FIG. 4 is another schematic flowchart of a method for selecting a random access resource according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of an apparatus for selecting a random access resource according to an embodiment of the present disclosure
  • FIG. 7 is another schematic diagram of an apparatus for selecting a random access resource according to an embodiment of the present disclosure.
  • RACH-ConfigCommon-NB The cell is used to define a general parameter of a Random Access Channel (RACH), and includes at least one of the following parameters (these parameters may also be referred to as cells): preambleTransMax-CE, Indicates the maximum number of transmissions of the preamble sequence; powerRampingParameters, which includes a power boost step powerRampingStep and a preamble sequence initial receive target power preambleInitialReceivedTargetPower and a rach-InfoList, including a set of ra-ResponseWindowSize indicating a random access response window size and a conflict resolution time mac -ContentionResolutionTimer.
  • preambleTransMax-CE Indicates the maximum number of transmissions of the preamble sequence
  • powerRampingParameters which includes a power boost step powerRampingStep and a preamble sequence initial receive target power preambleInitialReceivedTargetPower and a rach-InfoList
  • the RACH-ConfigCommon-NB may also include other general parameters for defining random access.
  • NPRACH-ConfigSIB-NB The cell is used to define a configuration of a NB-IoT physical random access channel (PRACH), for example, a Narrowband Physical Random Access Channel (NPRACH),
  • PRACH physical random access channel
  • NPRACH Narrowband Physical Random Access Channel
  • the cell includes at least one of the following parameters: nprach-CP-Length, which indicates the NPRACH transmission cyclic prefix length; rsrp-ThresholdsPrachInfoList, which indicates that the user equipment (User Equipment, UE) selects the NPRACH resource criterion and the nprach-ParametersList, which is a group
  • the NPRACH resources are respectively configured with NPRACH parameters.
  • NPRACH-ParametersList The cell configures an NPRACH parameter for a group of NPRACH resources, and includes at least one of the following parameters: nprach-Periodicity, which is used to indicate an NPRACH resource period, and nprach-StartTime, which is used to indicate an NPRACH resource in one cycle.
  • nprach-SubcarrierOffset which is used to indicate the frequency domain location of the NPRACH resource
  • nprach-NumSubcarriers which is used to indicate the number of subcarriers included in one NPRACH resource
  • nprach-SubcarrierMSG3-RangeStart which is used to calculate the reserved
  • the UE is used to indicate the starting subcarrier number of the NPRACH subcarrier that supports the multi-carrier Msg3 transmission
  • the maxNumPreambleAttemptCE is used to indicate the maximum number of transmissions of the preamble sequence on each NPRACH resource
  • numRepetitionsPerPreambleAttempt which is used to indicate that the preamble sequence is sent on each NPRACH resource.
  • npdcch-NumRepetitions-RA which is used to indicate RAR, Msg3 retransmission, and Msg4 related NPDCCH Common Search Space (CSS) maximum number of repetitions
  • npdcch-StartSF-CSS-RA which is used to indicate RAR, Msg3 retransmission and Msg4 related narrowband physical downlink control channel (Na Rrow Physical Downlink Control Channel, NPDCCH) a starting subframe configuration of a common search space
  • npdcch-Offset-RA for indicating a partial period offset of a starting subframe of the NPDCCH common search space.
  • the NPRACH-ParametersList may contain other parameters for configuring the NPRACH but not directly included in the NPRACH-ConfigSIB-NB, in addition to the one or more parameters listed.
  • rsrp-ThresholdsPrachInfoList determines the CEL, and selects the PRACH resource nprach-ParametersList corresponding to the determined CEL.
  • the level of CEL is incremented from 0, and numRepetitionsPerPreambleAttempt is also incremented.
  • the user terminal selects a corresponding CEL value (for example, one of 0 to 3).
  • Each CEL value corresponds to a series of RACH resource parameter sets. For example, numRepetitionsPerPreambleAttempt-r13 and npdcch-NumRepetitions-RA in Table 1 below, as the value of the RSRP is reduced, the value can be increased by the number of repetitions. Great to improve the success rate.
  • the problem with this scheme is that using only RSRP to measure the CEL value does not reflect the distance of the base station from the UE more realistically. It reflects the path coupling loss of the uplink channel and does not reflect the signal quality of the downlink channel. In the case of high RSRP and high interference, the success rate of access will also be low. The success rate of access depends more on the Reference Signal Receiving Quality (RSRQ) and Path Loss (PL).
  • RSS Reference Signal Receiving Quality
  • PL Path Loss
  • FIG. 1A and FIG. 1B are schematic diagrams showing the structure of a base station and a terminal with different cell coverage and PL.
  • the base station A shown in FIG. 1A is a high-power, wide-coverage base station with a power of 50 dBm.
  • the PL of the base station A to the NB-IoT user terminal A is 140 dBm.
  • the RSRP of the NB-IoT user terminal A is -90 dBm. It can be seen from Table 1 above that the CEL value is 0, and the number of uplink repetitions corresponding to the CEL value of 0 is selected to be 1. However, due to insufficient repetition, the uplink demodulation may fail, and random access fails.
  • the base station B shown in FIG. 1B is a low power, small coverage base station with a power of 20 dBm.
  • the PL of the base station B to the NB-IoT user terminal B is 120 dBm.
  • the RSRP of the NB-IoT user terminal B is -100 dBm. It can be known from Table 1 above that the CEL value is 1, and the number of uplink repetitions corresponding to the CEL value of 1 is selected to be 4. In fact, since the NB-IoT user terminal B is relatively close to the base station B, it is sufficient to repeat it once, and repeated 4 times will result in waste of resources.
  • FIG. 2 is a schematic structural diagram of a base station and a terminal with co-channel interference.
  • the power of the base station C shown in FIG. 2 is 20 dBm
  • the PLs of the base station C to the NB-IoT user terminal C1 and the NB-IoT user terminal C2 are both 120 dBm, but the NB-IoT user terminal C1 receives the noise of 10 dBm.
  • the NB-IoT user terminal C2 receives a noise of 3 dBm.
  • the RSRP of the NB-IoT user terminal C1 is -90 dBm
  • the RSRP of the NB-IoT user terminal C2 is -97 dBm.
  • the CEL value of the NB-IoT user terminal C1 is 0, and the number of uplink repetitions is 1; the CEL value of the NB-IoT user terminal C2 is 1, and the number of uplink repetitions is 4. It can be seen from the figure that due to the extensive deployment of NB-IoT user terminals, the interference status of industrial or civilian equipment is different between different locations, and higher interference will result in higher RSRP, but the actual signal quality is lower. . If only the RSRP is used to measure the CEL value, the user terminal adopts a lower CEL value for the first time, that is, selects fewer repetition times, thereby reducing the success rate of the initial access.
  • FIG. 3 is a flow diagram of a method of selecting a random access resource according to an embodiment of the present disclosure.
  • a method of selecting a random access resource includes steps S11 to S14.
  • step S11 the RSRP value, the RSRQ value, and the PL value of the downlink channel are measured.
  • step S12 the fluctuation value of the RSRP, the fluctuation value of the RSRQ, and the fluctuation value of the PL are calculated based on the measured RSRP value, the RSRQ value, and the PL value and the RSRP value, the RSRQ value, and the PL value in the first configuration table.
  • the first configuration table may store the RSRP value, the RSRQ value, and the PL value of the configuration in which the random access has been successfully performed.
  • Table 2 exemplarily shows the format of the first configuration table.
  • PL 120.5
  • RSRQ -3
  • RSRP -90
  • the CEL value is 0, which may be the parameter value of the configuration at the time of the previous successful random access.
  • the fluctuation value of the RSRP may be the absolute value of the difference between the PL value in Table 2 and the measured PL value, the fluctuation value of the RSRQ, and the fluctuation value of the PL. Similar to this.
  • step S13 the fluctuation value of the RSRP, the fluctuation value of the RSRQ, and the fluctuation value of the PL are compared with the respective preset thresholds.
  • step S14 in response to the fluctuation value of the RSRP, the fluctuation value of the RSRQ, and the fluctuation value of the PL, the corresponding preset threshold is not exceeded, according to the RSRP value, the RSRQ value, and the PL value in the first configuration table in the second configuration table.
  • the CEL is selected and the random access resource is determined according to the selected CEL.
  • the preset threshold may include an RSRP fluctuation threshold, an RSRQ fluctuation threshold, and a PL fluctuation threshold. If the fluctuation value of the RSRP calculated in step S12, the fluctuation value of the RSRQ, and the fluctuation value of the PL do not exceed the respective preset thresholds (ie, the RSRP fluctuation threshold, the RSRQ fluctuation threshold, and the PL fluctuation threshold), the first The RSRP value, the RSRQ value, and the PL value in a configuration table are used to select a CEL value.
  • Table 3 exemplarily shows the RSRP fluctuation threshold, the RSRQ fluctuation threshold, and the PL fluctuation threshold.
  • the CEL and the random access resource corresponding to the CEL may be determined in the second configuration table according to the RSRP value, the RSRQ value, and the PL value in the first configuration table.
  • the second configuration table may include a segmentation threshold configuration table and a CEL and NPRACH channel parameter mapping relationship table.
  • Table 4 exemplarily shows a segmentation threshold configuration table.
  • Table 5 exemplarily shows a CEL and NPRACH channel parameter mapping relationship table.
  • FIG. 4 is another flow diagram of a method of selecting a random access resource according to an embodiment of the present disclosure.
  • the method before step S12, the method may further include step S115, and after step S14 the method may further include steps S15 to S18.
  • step S115 it is judged whether the first configuration table is valid, in response to the first configuration table being valid, step S12 is performed, and in response to the invalidity of the first configuration table, step S15 is performed.
  • step S15 in response to the fluctuation value of the RSRP, the fluctuation value of the RSRQ, and one or more of the fluctuation values of the PL exceeding a corresponding preset threshold, or in response to the invalidity of the first configuration table, deleting the first configuration table Data and perform the steps of random access evaluation.
  • the invalidation of the first configuration table includes at least two cases: 1.
  • the first configuration table has passed a predetermined duration after the last update, and the invalidation may be determined by step S115;
  • the difference between the measured RSRP value, the RSRQ value, and the PL value and the RSRP value, the RSRQ value, and the PL value in the first configuration table is large, so that the first configuration table is invalid.
  • step S16 random access is initiated according to the determined random access resource.
  • step S17 in response to the random access success, the RSRP value, the RSRQ value, and the PL value in the first configuration table are updated according to the measured RSRP value, the RSRQ value, and the PL value, and the effective time of the first configuration table is set.
  • step S18 in response to the random access failure, the next CEL is selected, and the random access resource is determined according to the selected CEL to continue to initiate random access until the random access is successful.
  • RSRP -95.
  • the RSRP value, the RSRQ value, and the PL value stored in the first configuration table are -90, -3, and 120.5, respectively (see Table 2).
  • the RSRP has a fluctuation value of 5
  • the RSRQ has a fluctuation value of 4
  • the PL has a fluctuation value of 13.5, which does not exceed the corresponding preset threshold (see Table 3).
  • the initiated random access procedure is monitored. If the random access is successful, the RSRP value, the RSRQ value, and the PL value in the first configuration table are updated according to the measured RSRP value -95, the RSRQ value -7, and the PL value 134. And a timer is started to set the effective time of the first configuration table (step S17).
  • the updated first configuration table is:
  • the next CEL is selected, and the random access resource is determined according to the selected CEL to continue to initiate random access until the random access is successful (step S18).
  • the updated first configuration table is:
  • a timer is started to set the effective time of the first configuration table.
  • FIG. 5 is a flow chart of the steps of random access evaluation in accordance with an embodiment of the present disclosure.
  • the step of random access evaluation may include the steps including steps S501 to S504.
  • step S501 a CEL is selected in the second configuration table according to the measured RSRP value, the RSRQ value, and the PL value, and the random access resource is determined according to the selected CEL.
  • step S502 random access is initiated according to the determined random access resource.
  • step S503 in response to the random access success, the RSRP value, the RSRQ value, and the PL value in the first configuration table are updated according to the measured RSRP value, the RSRQ value, and the PL value, and the effective time of the first configuration table is set.
  • step S504 in response to the random access failure, the next CEL is selected, and the random access resource is determined according to the selected CEL to continue to initiate random access until the random access is successful.
  • Step S501 is different from step S14 described above in that the measured RSRP value, the RSRQ value, and the PL value are used instead of the RSRP value, the RSRQ value, and the PL value in the first configuration table to determine the CLE value and the corresponding random access resource.
  • Steps S502 to S504 are substantially the same as steps S16 to S18 described above, and are not described herein again.
  • the random access evaluation process uses the RSRP value, the RSRQ value, and the PL value of the measured downlink channel, and selects a random access resource corresponding to the CEL to initiate random access.
  • a CEL and a corresponding random access resource may be selected by using RSRP, RSRQ, and PL to initiate random access, improve random access success rate, and reduce resource consumption, and enhance user experience.
  • FIG. 6 is a schematic structural diagram of an apparatus for selecting a random access resource according to an embodiment of the present disclosure.
  • the apparatus for selecting a random access resource includes a measurement module 21, a calculation module 22, a comparison module 23, and a selection module 24.
  • the measurement module 21 is configured to measure the RSRP value, the RSRQ value, and the PL value of the downlink channel (ie, perform step S11).
  • the calculating module 22 is configured to calculate a fluctuation value of the RSRP, a fluctuation value of the RSRQ, and a fluctuation value of the PL according to the measured RSRP value, the RSRQ value, and the PL value and the RSRP value, the RSRQ value, and the PL value in the first configuration table (ie, execute Step S12).
  • the comparison module 23 is configured to compare the fluctuation value of the RSRP, the fluctuation value of the RSRQ, and the fluctuation value of the PL with respective preset threshold values (ie, perform step S13).
  • the selection module 24 selects in the second configuration table according to the RSRP value, the RSRQ value, and the PL value in the first configuration table, in response to the fluctuation value of the RSRP, the fluctuation value of the RSRQ, and the fluctuation value of the PL not exceeding the corresponding preset threshold.
  • the enhancement level CEL is covered, and the random access resource is determined according to the selected CEL (ie, step S14 is performed).
  • FIG. 7 is another schematic structural diagram of an apparatus for selecting a random access resource according to an embodiment of the present disclosure.
  • the apparatus for selecting a random access resource may further include a determining module 25, a processing module 26, an access module 27, and an updating module 28.
  • the determining module 25 is configured to determine whether the first configuration table is valid (ie, execute step S115).
  • the calculation module 22 calculates the fluctuation value of the RSRP, the fluctuation value of the RSRQ, and the fluctuation value of the PL (ie, performing step S12); in response to the invalidity of the first configuration table, the processing module 26 deletes the first configuration table.
  • the data in and performs the step of random access evaluation (ie, step S15 is performed).
  • the processing module 26 deletes the data in the first configuration table and performs randomization in response to one or more of the fluctuation value of the RSRP, the fluctuation value of the RSRQ, and the fluctuation value of the PL exceeding a corresponding preset threshold.
  • the step of access evaluation ie, step S15 is performed).
  • the access module 27 initiates random access according to the determined random access resource (ie, performs step S16).
  • the update module 28 updates the RSRP value, the RSRQ value, and the PL value in the first configuration table according to the measured RSRP value, the RSRQ value, and the PL value, and sets the effective time of the first configuration table (ie, Step S17) is performed; in response to the random access failure, the selecting module 24 selects the next CEL, and determines the random access resource according to the selected CEL to continue to initiate random access until the random access is successful (ie, step S18 is performed) .
  • the step of random access evaluation includes: the selection module 24 selects a CEL in the second configuration table according to the measured RSRP value, the RSRQ value, and the PL value, and determines according to the selected CEL.
  • Random access resources ie, performing step S501
  • the access module 27 initiates random access according to the determined random access resources (ie, performing step S502)
  • the update module 28 utilizes the measured RSRP The value, the RSRQ value, and the PL value update the RSRP value, the RSRQ value, and the PL value in the first configuration table, and set the valid time of the first configuration table (ie, perform step S503); and in response to the random access failure,
  • the selection module 24 selects the next CEL and determines the random access resource according to the selected CEL to continue to initiate random access until the random access is successful (ie, step S504 is performed).
  • An apparatus for selecting a random access resource may select a CEL and a corresponding random access resource by using RSRP, RSRQ, and PL to initiate random access, improve random access success rate, and reduce resource consumption, and enhance user experience.
  • an apparatus for selecting a random access resource comprising a memory and a processor, wherein a computer program is stored on the memory, and when the computer program is executed by the processor, the processor executes according to the present disclosure A method of selecting random access resources for various embodiments.
  • the device for selecting a random access resource may select a CEL and a corresponding random access resource through RSRP, RSRQ, and PL to initiate random access, improve random access success rate, and reduce resource consumption, and enhance user experience.
  • a computer readable storage medium having stored thereon a computer program, the processor executing a method of selecting a random access resource according to various embodiments of the present disclosure, when the computer program is executed by a processor .
  • a computer readable storage medium may select a CEL and a corresponding random access resource through RSRP, RSRQ, and PL to initiate random access, improve random access success rate, reduce resource consumption, and enhance user experience. .
  • the foregoing embodiment method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be implemented by hardware.
  • the technical solution of the present disclosure may be embodied in the form of a software product stored in a storage medium (such as a ROM/RAM, a magnetic disk, an optical disk), including a plurality of instructions for making a terminal.
  • the device (which may be a cell phone, computer, server, air conditioner, or network device, etc.) performs the methods described in various embodiments of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种随机接入资源的选择方法、装置及设备、计算机可读存储介质,该方法包括:测量下行信道的RSRP值、RSRQ值以及PL值;根据测量的RSRP值、RSRQ值以及PL值和第一配置表中的RSRP值、RSRQ值以及PL值计算RSRP的波动值、RSRQ的波动值以及PL的波动值;比较RSRP的波动值、RSRQ的波动值以及PL的波动值与各自相应的预设阈值;以及响应于RSRP的波动值、RSRQ的波动值以及PL的波动值均没有超过相应的预设阈值,根据第一配置表中的RSRP值、RSRQ值以及PL值在第二配置表中选择CEL,并根据选择的CEL确定随机接入资源。

Description

随机接入资源的选择方法、装置及设备、存储介质 技术领域
本公开涉及(但不限于)通信技术领域。
背景技术
随着物联网应用和物联网终端设备的广泛应用,需要提供一种适应于物联网通信的无线网络技术。第三代合作伙伴计划(The 3rd Generation Partnership Project,3GPP)研究一种新的接入系统,用于提供一种低复杂性、低吞吐量的无线接入技术来解决无线物联网所面临的需求,称为窄带物联网(Narrow Band Internet of Things,NB-IoT)。这种接入技术的特性包括支持低吞吐量的大量设备、低时延敏感度、超低设备成本,超低功耗和优化的网络架构。
由于要求在苛刻的环境下也能进行网络通讯,因此NB-IoT根据下行信号强度的分级采用不同的上行功率配置和前导资源参数配置。当前的协议仅仅通过单一的参考信号接收功率(Reference Signal Receiving Power,RSRP)来进行预估,存在信道资源的浪费、初次接入失败的概率较高等问题。
发明内容
根据本公开实施例的一个方面,提供一种选择随机接入资源的方法,包括:测量下行信道的RSRP值、参考信号接收质量(Reference Signal Receiving Quality,RSRQ)值以及路径损耗(Path Loss,PL)值;根据测量的RSRP值、RSRQ值以及PL值和第一配置表中的RSRP值、RSRQ值以及PL值计算RSRP的波动值、RSRQ的波动值以及PL的波动值;比较RSRP的波动值、RSRQ的波动值以及PL的波动值与各自相应的预设阈值;以及响应于RSRP的波动值、RSRQ的波动值以及PL的波动值均没有超过相应的预设阈值,根据所述第一配置表中的RSRP值、RSRQ值以及PL值在第二配置表中选择覆盖增强等级(Coverage Enhancement level,CEL),并根据选择的CEL确定随 机接入资源。
根据本公开实施例的另一个方面,提供一种选择随机接入资源的装置,包括测量模块、计算模块、比较模块以及选择模块,所述测量模块用于测量下行信道的RSRP值、RSRQ值以及PL值,所述计算模块用于根据测量的RSRP值、RSRQ值以及PL值和第一配置表中的RSRP值、RSRQ值以及PL值计算RSRP的波动值、RSRQ的波动值以及PL的波动值,所述比较模块用于比较RSRP的波动值、RSRQ的波动值以及PL的波动值与各自相应的预设阈值,并且响应于RSRP的波动值、RSRQ的波动值以及PL的波动值均没有超过相应的预设阈值,所述选择模块根据所述第一配置表中的RSRP值、RSRQ值以及PL值在第二配置表中选择CEL,并根据选择的CEL确定随机接入资源。
根据本公开实施例的另一个方面,提供一种选择随机接入资源的设备,包括存储器和处理器,其中,在所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时,所述处理器执行根据本公开的选择随机接入资源的方法。
根据本公开实施例的另一个方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,所述处理器执行根据本公开的选择随机接入资源的方法。
附图说明
图1A和图1B为小区覆盖和PL不同的基站和终端结构示意图;
图2为具有同频干扰的基站和终端结构示意图;
图3为根据本公开实施例的选择随机接入资源的方法的流程示意图;
图4为根据本公开实施例的选择随机接入资源的方法的另一流程示意图;
图5为根据本公开实施例的随机接入评估的步骤的流程图;
图6为根据本公开实施例的选择随机接入资源的装置的结构示意图;以及
图7为根据本公开实施例的选择随机接入资源的装置的另一结 构示意图。
本公开目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
为了使本公开所要解决的技术问题、技术方案及有益效果更加清楚,以下结合附图和实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
在阐述本公开的实施例之前,对主要涉及的信元进行详细地说明。
RACH-ConfigCommon-NB:该信元用于定义随机接入信道(Random Access Channel,RACH)的一般参数,并且至少包括以下参数(这些参数也可称为信元)之一:preambleTransMax-CE,其指示前导序列的最大传输次数;powerRampingParameters,其包括功率提升步长powerRampingStep和前导序列初始接收目标功率preambleInitialReceivedTargetPower以及rach-InfoList,其包括一组指示随机接入应答窗大小的ra-ResponseWindowSize和冲突解决时间mac-ContentionResolutionTimer。
需要说明的是,RACH-ConfigCommon-NB除包含所列举的一个或多个参数外,还可能包含其他用于定义随机接入的一般参数。
NPRACH-ConfigSIB-NB:该信元用于定义NB-IoT物理随机接入信道(Physical Random Access Channel,PRACH)的配置,例如:窄带物理随机接入信道(Narrowband Physical Random Access Channel,NPRACH),该信元至少包括以下参数之一:nprach-CP-Length,其指示NPRACH传输循环前缀长度;rsrp-ThresholdsPrachInfoList,其指示用户终端(User Equipment,UE)选择NPRACH资源准则以及nprach-ParametersList,其为一组NPRACH资源分别配置NPRACH参数。
NPRACH-ParametersList:该信元为一组NPRACH资源分别配置 NPRACH参数,并且至少包括以下参数之一:nprach-Periodicity,其用于指示NPRACH资源周期;nprach-StartTime,其用于指示一个周期内NPRACH资源起始位置;nprach-SubcarrierOffset,其用于指示NPRACH资源频域位置;nprach-NumSubcarriers,其用于指示一个NPRACH资源中包含的子载波个数;nprach-SubcarrierMSG3-RangeStart,其用于计算预留给UE用于指示支持多载波Msg3传输的NPRACH子载波的起始子载波号;maxNumPreambleAttemptCE,其用于指示各NPRACH资源上前导序列的最大传输次数;numRepetitionsPerPreambleAttempt,其用于指示各NPRACH资源上发送前导序列的重复次数;npdcch-NumRepetitions-RA,其用于指示RAR、Msg3重传和Msg4相关的NPDCCH公共搜索空间(Common Search Space,CSS)最大重复次数;npdcch-StartSF-CSS-RA,其用于指示RAR、Msg3重传和Msg4相关的窄带物理下行控制信道(Narrow Physical Downlink Control Channel,NPDCCH)公共搜索空间的起始子帧配置;以及npdcch-Offset-RA,其用于指示NPDCCH公共搜索空间的起始子帧的部分周期偏移。需要说的是,NPRACH-ParametersList除包含所列举的一个或多个参数外,还可能包含用于配置NPRACH但不直接包含在NPRACH-ConfigSIB-NB中的其他参数。
在相关技术中,NB-IoT从系统消息2(SIB2)中确定PRACH的配置资源的过程大致如下:rsrp-ThresholdsPrachInfoList确定CEL,并选择与所确定的CEL相应的PRACH资源nprach-ParametersList。CEL的等级从0递增,并且numRepetitionsPerPreambleAttempt也随之递增。
在相关技术中,随着NB-IoT测量到的下行信号的RSRP落入网络配置的不同区间内时,用户终端会选择对应的CEL值(例如,0至3中的一个数值)。每个CEL值对应一系列的RACH资源参数集合,例如,以下表一中的numRepetitionsPerPreambleAttempt-r13和npdcch-NumRepetitions-RA,随着信号RSRP的降低取值越来越大,这样可以通过重复次数的加大来提高成功率。
表一
Figure PCTCN2019086429-appb-000001
这种方案存的问题是:仅仅使用RSRP来衡量CEL值的话,无法更真实的反应基站离UE的远近,其反应出来是上行信道的路径耦合损耗,并且也无法反应下行信道的信号质量,即,在RSRP较高且干扰也较高的情况下,接入的成功率也会变低。接入的成功率更多取决于参考信号接收质量(Reference Signal Receiving Quality,RSRQ)和路径损耗(Path Loss,PL)。
图1A和图1B为小区覆盖和PL不同的基站和终端结构示意图。
请参考图1A,图1A所示的基站A为大功率、广覆盖的基站,功率为50dBm。当NB-IoT用户终端A距离基站A较远时,基站A至NB-IoT用户终端A的PL为140dBm,在此情况下,NB-IoT用户终端A的RSRP为-90dBm。由以上以表一可以得知CEL值为0,并且选择与CEL值为0所对应的上行重复次数为1。然而,由于重复次数不足,可能导致上行解调失败,进而随机接入失败。
请参考图1B,图1B所示的基站B为小功率、小覆盖的基站,功率为20dBm。当NB-IoT用户终端B距离基站B较近时,基站B至NB-IoT用户终端B的PL为120dBm,在此情况下,NB-IoT用户终端B的RSRP为-100dBm。由以上表一可以得知CEL值为1,并且选择与CEL值为1所对应的上行重复次数为4。而实际上,由于NB-IoT用户终端B距 离基站B较近,重复1次就足够了,重复4次会造成资源浪费。
图2为具有同频干扰的基站和终端结构示意图。
参考图2,图2所示的基站C的功率为20dBm,基站C至NB-IoT用户终端C1和NB-IoT用户终端C2的PL均为120dBm,但NB-IoT用户终端C1接收到噪音为10dBm,NB-IoT用户终端C2接收到噪音为3dBm,在此情况下,NB-IoT用户终端C1的RSRP为-90dBm,NB-IoT用户终端C2的RSRP为-97dBm。由以上表一可以得知,NB-IoT用户终端C1的CEL值为0,且上行重复次数为1;NB-IoT用户终端C2的CEL值为1,且上行重复次数为4。从该图可以看出,由于NB-IoT用户终端部署的地段广泛,工业或者民用设备干扰状况在各个地段之间彼此不同,较高的干扰会导致RSRP较高,然而其实际的信号质量较低。如果仅仅采用RSRP来衡量CEL值的话,会导致用户终端首次采用较低的CEL值,即,选择较少的重复次数,从而降低了初次接入的成功率。
图3为根据本公开实施例的选择随机接入资源的方法的流程示意图。
如图3所示,根据本公开实施例的选择随机接入资源的方法包括步骤S11至S14。
在步骤S11,测量下行信道的RSRP值、RSRQ值以及PL值。
在步骤S12,根据测量的RSRP值、RSRQ值以及PL值和第一配置表中的RSRP值、RSRQ值以及PL值计算RSRP的波动值、RSRQ的波动值以及PL的波动值。
在本实施例中,第一配置表可以存储已成功进行随机接入的配置的RSRP值、RSRQ值以及PL值。
表二示例地示出了第一配置表的格式。
表二
PL RSRQ RSRP CEL
120.5 -3 -90 0
如表二的示例所示,PL=120.5、RSRQ=-3、RSRP=-90并且CEL值为0,这可以是前一次成功随机接入时的配置的参数值。
假设测量的PL=134、RSRQ=-7并且RSRP=-95,则RSRP的波动值可以为表二中的PL值与测量的PL值的差的绝对值,RSRQ的波动值以及PL的波动值与此类似。
在步骤S13,比较RSRP的波动值、RSRQ的波动值以及PL的波动值与各自相应的预设阈值。
在步骤S14,响应于RSRP的波动值、RSRQ的波动值以及PL的波动值均没有超过相应的预设阈值,根据第一配置表中的RSRP值、RSRQ值以及PL值在第二配置表中选择CEL,并根据选择的CEL确定随机接入资源。
在本实施例中,预设阈值可以包括RSRP波动阈值、RSRQ波动阈值以及PL波动阈值。如果在步骤S12计算得到的RSRP的波动值、RSRQ的波动值以及PL的波动值均没有超过各自相应的预设阈值(即,RSRP波动阈值、RSRQ波动阈值以及PL波动阈值),则可采用第一配置表中的RSRP值、RSRQ值以及PL值来选择CEL值。
表三示例地示出了RSRP波动阈值、RSRQ波动阈值以及PL波动阈值。
表三
PL波动阈值 RSRQ波动阈值 RSRP波动阈值
15 6 5
可以根据第一配置表中的RSRP值、RSRQ值以及PL值在第二配置表中确定CEL以及与CEL相对应的随机接入资源。第二配置表可以包括分段阈值配置表以及CEL和NPRACH信道参数映射关系表。
表四示例地示出了分段阈值配置表。
表四
Figure PCTCN2019086429-appb-000002
Figure PCTCN2019086429-appb-000003
表五示例地示出了CEL和NPRACH信道参数映射关系表。
表五
Figure PCTCN2019086429-appb-000004
在上述示例中,第一配置表中的RSRP值、RSRQ值以及PL值分别为-90、-3、120.5(参见表二)。通过表四可以确定对应的CEL值为0,并且通过表五可以确定NPRACH信道参数为numRepetitionsPerPreambleAttempt-r13=n1、npdcch-NumRepetitions-RA-r13=r1等。随后,可根据确定的NPRACH信道参数发起随机接入。
需要说明的是,表四和表五可合并为一张表,本公开对此不作限制。
图4为根据本公开实施例的选择随机接入资源的方法的另一流程示意图。
在图4所示的实施例中,在步骤S12之前,所述方法还可以包括步骤S115,并且在步骤S14之后所述方法还可以包括步骤S15至S18。
在步骤S115,判断第一配置表是否有效,响应于第一配置表有效,执行步骤S12,并且响应于第一配置表无效,执行步骤S15。
在步骤S15,响应于RSRP的波动值、RSRQ的波动值以及PL的波动值中的一个或多个值超过相应的预设阈值,或者响应于第一配置表无效,删除第一配置表中的数据并执行随机接入评估的步骤。
如果RSRP的波动值、RSRQ的波动值以及PL的波动值中的一个或多个值超过相应的预设阈值,则第一配置表中的数据已无效。在本公开的实施例中,第一配置表的无效至少包括两种情况:一、第一配置表在上一次更新后经过了预定时长,这种无效的情况可以通过步骤S115来判定;二、测量的RSRP值、RSRQ值以及PL值与第一配置表中的RSRP值、RSRQ值以及PL值之间的差异较大,使得第一配置表无效。
在步骤S16,根据确定的随机接入资源发起随机接入。
在步骤S17,响应于随机接入成功,利用根据测量的RSRP值、RSRQ值以及PL值更新第一配置表中的RSRP值、RSRQ值以及PL值,并设置第一配置表的有效时间。
在步骤S18,响应于随机接入失败,选择下一个CEL,并根据选择的CEL确定随机接入资源,以继续发起随机接入,直至随机接入成功。
作为示例,假设测量的PL=134、RSRQ=-7并且RSRP=-95。在第一配置表中存储的RSRP值、RSRQ值以及PL值分别为-90、-3、120.5(参见表二)。RSRP的波动值为5,RSRQ的波动值为4,PL的波动值为13.5,均没有超过相对应的预设阈值(参见表三)。因此,可 直接采用第一配置表中存储的RSRP值、RSRQ值以及PL值,即-90、-3、120.5通过表四和表五来确定CEL为0以及相应的NPRACH信道参数为numRepetitionsPerPreambleAttempt-r13=n1、npdcch-NumRepetitions-RA-r13=r1等。随后,可根据NPRACH信道参数发起随机接入(步骤S16)。
对发起的随机接入过程进行监测,若随机接入成功,则利用根据测量的RSRP值-95、RSRQ值-7以及PL值134更新第一配置表中的RSRP值、RSRQ值以及PL值,并启动定时器来设置第一配置表的有效时间(步骤S17)。更新后的第一配置表为:
PL RSRQ RSRP CEL
134 -7 -95 0
若随机接入失败,则选择下一个CEL,并根据选择的CEL确定随机接入资源,以继续发起随机接入,直至随机接入成功(步骤S18)。
例如,可以选择CEL=1,并且确定相对应的随机接入资源,即,NPRACH信道参数为numRepetitionsPerPreambleAttempt-r13=n4、npdcch-NumRepetitions-RA-r13=r4等。随后,可根据该NPRACH信道参数继续发起随机接入,直至随机接入成功。此时更新后的第一配置表为:
PL RSRQ RSRP CEL
134 -7 -95 1
同样地,启动定时器来设置第一配置表的有效时间。
图5为根据本公开实施例的随机接入评估的步骤的流程图。
参见图5,,随机接入评估的步骤可以包括过程包括步骤S501至S504。
在步骤S501,根据测量的RSRP值、RSRQ值以及PL值在第二配置表中选择CEL,并根据选择的CEL确定随机接入资源。
在步骤S502,根据确定的随机接入资源发起随机接入。
在步骤S503,响应于随机接入成功,利用根据测量的RSRP值、RSRQ值以及PL值更新第一配置表中的RSRP值、RSRQ值以及PL值,并设置第一配置表的有效时间。
在步骤S504,响应于随机接入失败,选择下一个CEL,并根据选择的CEL确定随机接入资源,以继续发起随机接入,直至随机接入成功。
步骤S501与上述步骤S14的区别在于,采用测量的RSRP值、RSRQ值以及PL值,而不是第一配置表中的RSRP值、RSRQ值以及PL值来确定CLE值以及相应的随机接入资源。步骤S502至S504与上述步骤S16至S18实质上相同,在此不再赘述。
在该方式中,随机接入评估过程是采用测量的下行信道的RSRP值、RSRQ值以及PL值,选择CEL相对应的随机接入资源发起随机接入。
根据本公开实施例的选择随机接入资源的方法,可以通过RSRP、RSRQ以及PL选择CEL以及相应的随机接入资源,以发起随机接入,提升随机接入成功率和减少资源的消耗,增强用户体验。
图6为根据本公开实施例的选择随机接入资源的装置的结构示意图。
如图6所示,根据本公开实施例的选择随机接入资源的装置包括测量模块21、计算模块22、比较模块23和选择模块24。
参考图3和图6,测量模块21用于测量下行信道的RSRP值、RSRQ值以及PL值(即,执行步骤S11)。计算模块22用于根据测量的RSRP值、RSRQ值以及PL值和第一配置表中的RSRP值、RSRQ值以及PL值计算RSRP的波动值、RSRQ的波动值以及PL的波动值(即,执行步骤S12)。比较模块23用于比较RSRP的波动值、RSRQ的波动值以及PL的波动值与各自相应的预设阈值(即,执行步骤S13)。响应于RSRP的波动值、RSRQ的波动值以及PL的波动值均没有超过相应的预设阈值,选择模块24根据第一配置表中的RSRP值、RSRQ值以及PL值在第二配置表中选择覆盖增强等级CEL,并根据选择的CEL确定随机接入资源(即,执行步骤S14)。
图7为根据本公开实施例的选择随机接入资源的装置的另一结构示意图。
如图7所示,根据本公开实施方式的选择随机接入资源的装置 还可以包括判断模块25、处理模块26、接入模块27和更新模块28。
参考图4和图7,判断模块25用于判断第一配置表是否有效(即,执行步骤S115)。响应于第一配置表有效,计算模块22计算RSRP的波动值、RSRQ的波动值以及PL的波动值(即,执行步骤S12);响应于第一配置表无效,处理模块26删除第一配置表中的数据并执行随机接入评估的步骤(即,执行步骤S15)。
在一实施例中,响应于RSRP的波动值、RSRQ的波动值以及PL的波动值中的一个或多个值超过相应的预设阈值,处理模块26删除第一配置表中的数据并执行随机接入评估的步骤(即,执行步骤S15)。
接入模块27根据确定的随机接入资源发起随机接入(即,执行步骤S16)。响应于随机接入成功,更新模块28利用根据测量的RSRP值、RSRQ值以及PL值更新第一配置表中的RSRP值、RSRQ值以及PL值,并设置第一配置表的有效时间(即,执行步骤S17);响应于随机接入失败,选择模块24选择下一个CEL,并根据选择的CEL确定随机接入资源,以继续发起随机接入,直至随机接入成功(即,执行步骤S18)。
参考图5和图7,在一实施例中,随机接入评估的步骤包括:选择模块24根据测量的RSRP值、RSRQ值以及PL值在第二配置表中选择CEL,并根据选择的CEL确定随机接入资源(即,执行步骤S501);接入模块27根据确定的随机接入资源发起随机接入(即,执行步骤S502);响应于随机接入成功,更新模块28利用根据测量的RSRP值、RSRQ值以及PL值更新第一配置表中的RSRP值、RSRQ值以及PL值,并设置所述第一配置表的有效时间(即,执行步骤S503);以及响应于随机接入失败,选择模块24选择下一个CEL,并根据选择的CEL确定随机接入资源,以继续发起随机接入,直至随机接入成功(即,执行步骤S504)。
根据本公开实施例的选择随机接入资源的装置,可以通过RSRP、RSRQ以及PL选择CEL以及相应的随机接入资源,以发起随机接入,提升随机接入成功率和减少资源的消耗,增强用户体验。
根据本公开实施例,还提供一种选择随机接入资源的设备,包 括存储器和处理器,其中,在存储器上存储有计算机程序,所述计算机程序被处理器执行时,处理器执行根据本公开各实施例的选择随机接入资源的方法。
根据本公开实施例的选择随机接入资源的设备,可以通过RSRP、RSRQ以及PL选择CEL以及相应的随机接入资源,以发起随机接入,提升随机接入成功率和减少资源的消耗,增强用户体验。
根据本公开实施例,还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,处理器执行根据本公开各实施例的选择随机接入资源的方法。
根据本公开实施例的计算机可读存储介质,可以通过RSRP、RSRQ以及PL选择CEL以及相应的随机接入资源,以发起随机接入,提升随机接入成功率和减少资源的消耗,增强用户体验。
需要说明的是,上述装置实施例与方法实施例属于同一构思,其具体实现过程详见方法实施例,且关于方法实施例中的技术特征的描述适用于在装置实施例中的相应的技术特征,这里不再赘述。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件来实现。基于这样的理解,本公开的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
以上参照附图说明了本公开的优选实施例,并非因此局限本公开的权利范围。本领域技术人员不脱离本公开的范围和实质,可以有多种变型方案实现本公开,比如作为一个实施例的特征可用于另一实施例而得到又一实施例。凡在运用本公开的技术构思之内所作的任何修改、等同替换和改进,均应在本公开的权利范围之内。

Claims (12)

  1. 一种选择随机接入资源的方法,包括:
    测量下行信道的参考信号接收功率RSRP值、参考信号接收质量RSRQ值以及路径损耗PL值;
    根据测量的RSRP值、RSRQ值以及PL值和第一配置表中的RSRP值、RSRQ值以及PL值计算RSRP的波动值、RSRQ的波动值以及PL的波动值;
    比较RSRP的波动值、RSRQ的波动值以及PL的波动值与各自相应的预设阈值;以及
    响应于RSRP的波动值、RSRQ的波动值以及PL的波动值均没有超过相应的预设阈值,根据所述第一配置表中的RSRP值、RSRQ值以及PL值在第二配置表中选择覆盖增强等级CEL,并根据选择的CEL确定随机接入资源。
  2. 根据权利要求1所述的方法,其中,在根据测量的RSRP值、RSRQ值以及PL值和第一配置表中的RSRP值、RSRQ值以及PL值计算RSRP的波动值、RSRQ的波动值以及PL的波动值的步骤之前,所述方法还包括:
    判断所述第一配置表是否有效,
    响应于所述第一配置表有效,执行计算RSRP的波动值、RSRQ的波动值以及PL的波动值的步骤,并且
    响应于所述第一配置表无效,删除所述第一配置表中的数据并执行随机接入评估的步骤。
  3. 根据权利要求1所述的方法,其中,在计算RSRP的波动值、RSRQ的波动值以及PL的波动值之后,所述方法还包括:
    响应于RSRP的波动值、RSRQ的波动值以及PL的波动值中的一个或多个值超过相应的预设阈值,删除所述第一配置表中的数据并执行随机接入评估的步骤。
  4. 根据权利要求1所述的方法,还包括:
    根据确定的随机接入资源发起随机接入;
    响应于随机接入成功,利用根据测量的RSRP值、RSRQ值以及PL值更新所述第一配置表中的RSRP值、RSRQ值以及PL值,并设置所述第一配置表的有效时间;以及
    响应于随机接入失败,选择下一个CEL,并根据选择的CEL确定随机接入资源,以继续发起随机接入,直至随机接入成功。
  5. 根据权利要求2或3所述的方法,其中,所述随机接入评估的步骤包括:
    根据测量的RSRP值、RSRQ值以及PL值在所述第二配置表中选择CEL,并根据选择的CEL确定随机接入资源;
    根据确定的随机接入资源发起随机接入;
    响应于随机接入成功,利用根据测量的RSRP值、RSRQ值以及PL值更新所述第一配置表中的RSRP值、RSRQ值以及PL值,并设置所述第一配置表的有效时间;以及
    响应于随机接入失败,选择下一个CEL,并根据选择的CEL确定随机接入资源,以继续发起随机接入,直至随机接入成功。
  6. 一种选择随机接入资源的装置,包括测量模块、计算模块、比较模块以及选择模块,
    所述测量模块用于测量下行信道的参考信号接收功率RSRP值、参考信号接收质量RSRQ值以及路径损耗PL值,
    所述计算模块用于根据测量的RSRP值、RSRQ值以及PL值和第一配置表中的RSRP值、RSRQ值以及PL值计算RSRP的波动值、RSRQ的波动值以及PL的波动值,
    所述比较模块用于比较RSRP的波动值、RSRQ的波动值以及PL的波动值与各自相应的预设阈值,并且
    响应于RSRP的波动值、RSRQ的波动值以及PL的波动值均没有 超过相应的预设阈值,所述选择模块根据所述第一配置表中的RSRP值、RSRQ值以及PL值在第二配置表中选择覆盖增强等级CEL,并根据选择的CEL确定随机接入资源。
  7. 根据权利要求6所述的装置,还包括判断模块和处理模块;
    所述判断模块用于判断所述第一配置表是否有效,
    响应于所述第一配置表有效,所述计算模块计算RSRP的波动值、RSRQ的波动值以及PL的波动值,并且
    响应于所述第一配置表无效,所述处理模块删除所述第一配置表中的数据并执行随机接入评估的步骤。
  8. 根据权利要求7所述的装置,其中,
    响应于RSRP的波动值、RSRQ的波动值以及PL的波动值中的一个或多个值超过相应的预设阈值,所述处理模块删除所述第一配置表中的数据并执行随机接入评估的步骤。
  9. 根据权利要求7或8所述的装置,还包括接入模块和更新模块,
    所述接入模块根据确定的随机接入资源发起随机接入,
    响应于随机接入成功,所述更新模块利用根据测量的RSRP值、RSRQ值以及PL值更新所述第一配置表中的RSRP值、RSRQ值以及PL值,并设置所述第一配置表的有效时间,并且
    响应于随机接入失败,所述选择模块选择下一个CEL,并根据选择的CEL确定随机接入资源,以继续发起随机接入,直至随机接入成功。
  10. 根据权利要求9所述的装置,其中,所述随机接入评估的步骤包括:
    所述选择模块根据测量的RSRP值、RSRQ值以及PL值,在所述第二配置表中选择CEL,并根据选择的CEL确定随机接入资源;
    所述接入模块根据确定的随机接入资源发起随机接入;
    响应于随机接入成功,所述更新模块利用根据测量的RSRP值、RSRQ值以及PL值更新所述第一配置表中的RSRP值、RSRQ值以及PL值,并设置所述第一配置表的有效时间;以及
    响应于随机接入失败,所述选择模块选择下一个CEL,并根据选择的CEL确定随机接入资源,以继续发起随机接入,直至随机接入成功。
  11. 一种选择随机接入资源的设备,包括存储器和处理器,其中,
    在所述存储器上存储有计算机程序,所述计算机程序被所述处理器执行时,所述处理器执行根据权利要求1至5中任一项所述的选择随机接入资源的方法。
  12. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,所述处理器执行根据权利要求1至5中任一项所述的选择随机接入资源的方法。
PCT/CN2019/086429 2018-05-11 2019-05-10 随机接入资源的选择方法、装置及设备、存储介质 WO2019214718A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/054,481 US11596002B2 (en) 2018-05-11 2019-05-10 Method, device, apparatus for selecting a random access resource, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810449441.8A CN110475363B (zh) 2018-05-11 2018-05-11 随机接入资源的选择方法、装置及设备、存储介质
CN201810449441.8 2018-05-11

Publications (1)

Publication Number Publication Date
WO2019214718A1 true WO2019214718A1 (zh) 2019-11-14

Family

ID=68467802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086429 WO2019214718A1 (zh) 2018-05-11 2019-05-10 随机接入资源的选择方法、装置及设备、存储介质

Country Status (3)

Country Link
US (1) US11596002B2 (zh)
CN (1) CN110475363B (zh)
WO (1) WO2019214718A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021254482A1 (zh) * 2020-06-18 2021-12-23 华为技术有限公司 一种覆盖增强等级的确定方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7336468B2 (ja) * 2018-06-21 2023-08-31 オッポ広東移動通信有限公司 無線リンクの監視測定方法、端末デバイス及びネットワークデバイス
WO2020167202A2 (en) * 2019-02-14 2020-08-20 Telefonaktiebolaget Lm Ericsson (Publ) Random access procedure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254135A (zh) * 2013-06-27 2014-12-31 夏普株式会社 物理随机接入信道的发送和接收方法以及基站和用户设备
CN104704884A (zh) * 2012-10-05 2015-06-10 交互数字专利控股公司 增强机器类型通信(mtc)设备覆盖的方法和装置
CN104812084A (zh) * 2014-01-28 2015-07-29 中兴通讯股份有限公司 配置信息的发送、获取方法、接入方法、通信节点及系统
WO2017065468A1 (en) * 2015-10-14 2017-04-20 Lg Electronics Inc. Method and apparatus for controlling backoff procedure for coverage enhancement in wireless communication system
WO2017078090A1 (ja) * 2015-11-05 2017-05-11 株式会社Nttドコモ ユーザ装置及び無線通信方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009055356A (ja) * 2007-08-27 2009-03-12 Ntt Docomo Inc 移動通信システムにおける基地局装置、移動局装置および基地局制御方法
CN102077676B (zh) * 2009-04-28 2013-10-02 华为技术有限公司 优化终端随机接入的方法及装置
CN101695196B (zh) * 2009-10-20 2011-08-31 普天信息技术研究院有限公司 一种提高竞争模式下随机接入成功率的方法、系统和装置
CN103052087B (zh) * 2011-10-11 2017-05-24 中兴通讯股份有限公司 空闲态用户设备的干扰检测方法及用户设备
JP2013201631A (ja) * 2012-03-26 2013-10-03 Sumitomo Electric Ind Ltd ランダムアクセス制御装置、無線基地局装置、管理装置およびランダムアクセス制御プログラム
CN110234148B (zh) * 2013-08-29 2021-10-01 华为技术有限公司 通信方法、用户设备和基站
CN104619025A (zh) * 2013-11-01 2015-05-13 中兴通讯股份有限公司 随机接入信道资源分配方法和系统
KR102217075B1 (ko) * 2014-04-21 2021-02-18 삼성전자 주식회사 무선 통신 시스템에서 랜덤 액세스 방법 및 장치
CA2995677C (en) * 2015-08-14 2023-01-03 Telefonaktiebolaget Lm Ericsson (Publ) Random access procedure for mtc operation
CN106941730A (zh) * 2016-01-05 2017-07-11 中兴通讯股份有限公司 随机接入的控制方法和装置
WO2018031291A1 (en) * 2016-08-09 2018-02-15 Intel IP Corporation Enhanced physical random-access channel transmission in new radio standard
CN107734714B (zh) * 2016-08-12 2023-04-18 中兴通讯股份有限公司 无线通信系统中的随机接入方法和装置、用户终端
WO2018143877A1 (en) * 2017-02-03 2018-08-09 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for identifying ce level mismatch
JP6888115B2 (ja) * 2017-04-01 2021-06-16 深▲セン▼前▲海▼▲達▼▲闥▼▲雲▼端智能科技有限公司Cloudminds (Shenzhen) Robotics Systems Co., Ltd. ランダムアクセス方法および装置
US11818761B2 (en) * 2017-11-13 2023-11-14 Telefonaktiebolaget Lm Ericsson (Publ) Implicit temporal network access load distribution
US11202220B2 (en) * 2018-01-15 2021-12-14 Telefonaktiebolaget Lm Ericsson (Publ) Method of adapting report mapping based on beamforming
PL3777349T3 (pl) * 2018-04-06 2022-10-17 Telefonaktiebolaget Lm Ericsson (Publ) Sposób odbierania sygnału wybudzenia, urządzenie bezprzewodowe i program komputerowy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104704884A (zh) * 2012-10-05 2015-06-10 交互数字专利控股公司 增强机器类型通信(mtc)设备覆盖的方法和装置
CN104254135A (zh) * 2013-06-27 2014-12-31 夏普株式会社 物理随机接入信道的发送和接收方法以及基站和用户设备
CN104812084A (zh) * 2014-01-28 2015-07-29 中兴通讯股份有限公司 配置信息的发送、获取方法、接入方法、通信节点及系统
WO2017065468A1 (en) * 2015-10-14 2017-04-20 Lg Electronics Inc. Method and apparatus for controlling backoff procedure for coverage enhancement in wireless communication system
WO2017078090A1 (ja) * 2015-11-05 2017-05-11 株式会社Nttドコモ ユーザ装置及び無線通信方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021254482A1 (zh) * 2020-06-18 2021-12-23 华为技术有限公司 一种覆盖增强等级的确定方法及装置

Also Published As

Publication number Publication date
CN110475363B (zh) 2024-05-31
US11596002B2 (en) 2023-02-28
CN110475363A (zh) 2019-11-19
US20210195646A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
WO2019214718A1 (zh) 随机接入资源的选择方法、装置及设备、存储介质
JP6936232B2 (ja) ランダムアクセス方法および装置
US9788304B2 (en) Preamble sequence transmission method, apparatus, and system
JP6381680B2 (ja) 物理ランダムアクセスチャネル(prach)のチャネル周波数領域オフセットを調整するための方法及び装置
EP3099086A1 (en) Method and device for sending device-to-device synchronization signal, and user equipment
EP3200544A1 (en) Random access signalling sending method and apparatus
US20200287766A1 (en) Reference signal transmission method and user equipment
US10206208B2 (en) Device and method of handling channel access procedures
CN105307284B (zh) 一种随机接入方法及用户设备
CN108307413A (zh) 接入方法、终端设备和基站
RU2725174C1 (ru) Способ передачи данных, оконечное устройство и сетевое устройство
WO2015081561A1 (zh) D2d发现信号的发送方法、装置以及通信系统
WO2018113570A1 (zh) 一种随机接入方法及设备
CN109565426B (zh) 传输时间提前量的设置方法及装置
CN108513362B (zh) 一种信道检测方法、装置及基站
CN106301688B (zh) 一种prach抗干扰技术中支持小区间联合检测的方法
WO2018145302A1 (zh) 无线通信方法、终端设备和网络设备
WO2017024999A1 (zh) 一种ra-rnti的确定方法和设备
CN112398806A (zh) 一种基于状态着色的水声网络mac协议生成方法
WO2016106655A1 (zh) 一种数据传输方法、装置和设备
US20210384960A1 (en) Beam failure recovery method and device, and terminal device
CN104936295A (zh) 用于d2d中的发现资源适配机制
WO2019192304A1 (zh) 信道盲检方法、信号传输方法和相关设备
JP2020502900A (ja) ランダムアクセスのための方法及びデバイス
EP3949649A1 (en) Indication of random access response transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 20/04/2021 )

122 Ep: pct application non-entry in european phase

Ref document number: 19800240

Country of ref document: EP

Kind code of ref document: A1