WO2019214703A1 - 一种无线通信的方法和装置 - Google Patents

一种无线通信的方法和装置 Download PDF

Info

Publication number
WO2019214703A1
WO2019214703A1 PCT/CN2019/086351 CN2019086351W WO2019214703A1 WO 2019214703 A1 WO2019214703 A1 WO 2019214703A1 CN 2019086351 W CN2019086351 W CN 2019086351W WO 2019214703 A1 WO2019214703 A1 WO 2019214703A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink data
time unit
unit
time
data
Prior art date
Application number
PCT/CN2019/086351
Other languages
English (en)
French (fr)
Inventor
杜白
焦淑蓉
张鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019214703A1 publication Critical patent/WO2019214703A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications and, more particularly, to a method and apparatus for wireless communication in the field of communications.
  • the fifth generation (5G) mobile communication system supports enhanced mobile broadband (eMBB) services, ultra reliable and low latency communications (URLLC) services, and massive machine-like communications ( Massive machine type communications, mMTC) business.
  • eMBB services may include: ultra high definition video, augmented reality (AR), virtual reality (VR), etc.
  • the main features of these services are large transmission data and high transmission rate.
  • typical URLLC services can include: wireless control in industrial manufacturing or production processes, motion control of driverless cars and drones, and tactile interaction applications such as remote repair and remote surgery.
  • the main features of these services are Ultra-high reliability, low latency, low data transfer and burstiness.
  • a typical mMTC service may include: smart grid distribution automation, smart city, etc. The main features are that the number of networked devices is large, the amount of transmitted data is small, and the data is not sensitive to transmission delay. These mMTC terminals need to meet low cost and Very long standby time requirements.
  • the application provides a method for wireless communication, which helps to improve data transmission performance.
  • a method of wireless communication comprising:
  • the feedback information of the first downlink data is not sent on the third time unit.
  • the method for wireless communication is that the network device sends the first downlink data on the first time unit, and sends the second downlink data on the second time unit that is located after the first time unit, and
  • the terminal device does not send the feedback information of the first downlink data on the time unit (for example, the third time unit) scheduled by the network device, so that the terminal device may not be
  • the processing resource for processing the first downlink data is used to process the second downlink data, which reduces the transmission delay of the second downlink data, thereby improving the transmission performance of the second downlink data.
  • the second downlink data has a higher priority than the first downlink data.
  • the method for wireless communication considers the priority of the first downlink data and the second downlink data, the priority of the second downlink data is higher than the priority of the first downlink data, and the method
  • the terminal device is not configured to send the first downlink data on the third time unit scheduled by the network device.
  • the feedback information is used to preferentially process the second downlink data, which reduces the processing delay of the second downlink data, and improves the transmission performance of the second downlink data with higher priority.
  • the method further includes:
  • the fourth time unit is an available time unit that is located closest to the ninth time unit after the ninth time unit, where the ninth time unit is The time unit in which the first downlink data processing is completed.
  • the fourth time unit is separated from the end point of the second processing period by M1 time units, and the duration of the M1 time units is greater than or equal to the first processing period. a duration corresponding to a period of time in which the second processing period coincides, the M1 being a positive integer; or
  • the fourth time unit is spaced apart from the end point of the second processing period by M2 time units, and the duration of the M2 time units is greater than or equal to the duration corresponding to the first processing period, and the M2 is positive Integer.
  • the method further includes:
  • the method further includes:
  • a method for wireless communication comprising:
  • the method for wireless communication is that the network device sends the first downlink data on the first time unit, and sends the second downlink data on the second time unit that is located after the first time unit, and
  • the terminal device may not send the feedback information of the first downlink data on the time unit (for example, the third time unit) scheduled by the network device, thereby causing the terminal device to
  • the processing resource that is not used to process the first downlink data is used to process the second downlink data, which reduces the transmission delay of the second downlink data, thereby improving the transmission performance of the second downlink data.
  • the second downlink data has a higher priority than the first downlink data.
  • the method for wireless communication considers the priority of the first downlink data and the second downlink data, the priority of the second downlink data is higher than the priority of the first downlink data, and the method
  • the terminal device is not configured to send the first downlink data on the third time unit scheduled by the network device.
  • the feedback information is used to preferentially process the second downlink data, which reduces the processing delay of the second downlink data, and improves the transmission performance of the second downlink data with higher priority.
  • the method further includes:
  • the fourth time unit is an available time unit that is located closest to the ninth time unit after the ninth time unit, where the ninth time unit is The time unit in which the first downlink data processing is completed.
  • the fourth time unit is separated from the end point of the second processing period of the receiving process of the second downlink data by M1 time units, and the duration of the M1 time units is greater than Or a time length corresponding to a period in which the first processing period coincides with the second processing period, the M1 being a positive integer; or
  • the time interval between the fourth time unit and the end point of the second processing period of the second downlink data receiving process is M2 time units, and the duration of the M2 time units is greater than or equal to the first processing time period.
  • the length of time, the M2 is a positive integer.
  • a method for wireless communication comprising:
  • the third DCI includes third indication information, where the third indication information is used to indicate that the first uplink data is sent on the sixth time unit, where the sending of the first uplink data
  • the processed third processing period partially coincides with the fourth processing period of the second uplink data transmission process, and the seventh time unit for transmitting the second uplink data is located after the sixth time unit;
  • Transmitting the first uplink data on an eighth time unit the eighth time unit being located after the sixth time unit.
  • the terminal device needs to send the first uplink data in the sixth time unit and the second uplink data needs to be sent in the seventh time unit after the sixth time unit, And, in a case where the processing period of the sending process of the first uplink data and the processing period of the sending process of the second uplink data partially overlap, the terminal device does not send the first uplink data on the sixth time unit, but Transmitting the first uplink data on the eighth time unit that is located after the sixth time unit, so that the terminal device processes the second uplink data by using the processing resource that is not used to process the first uplink data, and improves the The transmission performance of the two uplink data.
  • the second uplink data has a higher priority than the first uplink data.
  • the method for wireless communication considers the priority of the first uplink data and the second uplink data, the priority of the second uplink data is higher than the priority of the first uplink data, and the terminal device
  • the terminal device When the processing period of the processing of the first uplink data is partially coincident with the processing period of processing the second uplink data, the terminal device preferentially processes the second uplink data, and does not send the first uplink data in the first time unit. Thereby, the transmission performance of the second uplink data is improved.
  • the first uplink data is data of an enhanced mobile bandwidth eMBB service
  • the second uplink data is data of a high reliability low latency URL LC service.
  • the method further includes:
  • a method for wireless communication comprising:
  • the first uplink data is received on an eighth time unit, the eighth time unit being located after the sixth time unit.
  • the third processing period of the sending process of the first uplink data is partially coincident with the fourth processing period of the sending process of the second uplink data, and is used to send the second uplink data.
  • the seventh time unit is located after the sixth time unit.
  • the terminal device needs to send the first uplink data in the sixth time unit and the second uplink data needs to be sent in the seventh time unit after the sixth time unit, And, in a case where the processing period of the sending process of the first uplink data and the processing period of the sending process of the second uplink data partially overlap, the terminal device does not send the first uplink data on the sixth time unit, but Transmitting the first uplink data on the eighth time unit that is located after the sixth time unit, so that the terminal device processes the second uplink data by using the processing resource that is not used to process the first uplink data, and improves the The transmission performance of the two uplink data.
  • the second uplink data has a higher priority than the first uplink data.
  • the method for wireless communication considers the priority of the first uplink data and the second uplink data, the priority of the second uplink data is higher than the priority of the first uplink data, and the terminal device
  • the terminal device When the processing period of the processing of the first uplink data is partially coincident with the processing period of processing the second uplink data, the terminal device preferentially processes the second uplink data, and does not send the first uplink data in the first time unit. Thereby, the transmission performance of the second uplink data is improved.
  • the first uplink data is data of an enhanced mobile bandwidth eMBB service
  • the second uplink data is data of a high reliability low latency URL LC service.
  • the method further includes:
  • an apparatus for wireless communication is provided, the apparatus being operative to perform the operations of the first aspect and the terminal device in any of the possible implementations of the first aspect.
  • the apparatus may comprise a modular unit for performing the various operations of the terminal device in any of the possible implementations of the first aspect or the first aspect described above.
  • an apparatus for wireless communication is provided, the apparatus being operative to perform operations of a network device in any of the possible implementations of the second aspect and the second aspect.
  • the apparatus may comprise a modular unit for performing the various operations of the network device in any of the possible implementations of the second aspect or the second aspect described above.
  • an apparatus for wireless communication is provided, the apparatus being operative to perform operations of a terminal device in any of the possible implementations of the third aspect and the third aspect.
  • the apparatus may comprise a modular unit for performing the respective operations of the terminal device in any of the possible implementations of the third aspect or the third aspect described above.
  • an apparatus for wireless communication is provided, the apparatus being operative to perform operations of a network device in any of the possible implementations of the fourth aspect and the fourth aspect.
  • the apparatus may comprise a modular unit for performing the various operations of the network device in any of the possible implementations of the fourth aspect or the fourth aspect described above.
  • a terminal device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing the instructions stored by the memory.
  • a network device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing the instructions stored by the memory.
  • the processor executes the instructions stored by the memory, the performing causes the network device to perform any of the second aspect or any of the possible implementations of the second aspect, or the performing causes the network
  • the device implements the apparatus provided by the sixth aspect.
  • a terminal device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing the instructions stored by the memory.
  • a network device comprising: a processor, a transceiver, and a memory.
  • the processor, the transceiver and the memory communicate with each other through an internal connection path.
  • the memory is for storing instructions for executing the instructions stored by the memory.
  • the processor executes the instructions stored by the memory, the performing causes the network device to perform any of the fourth aspect or any of the possible implementations of the fourth aspect, or the performing causes the network
  • the device implements the apparatus provided by the eighth aspect.
  • a chip system comprising a memory and a processor, the memory for storing a computer program, the processor for calling and running the computer program from a memory such that the chip system is installed
  • the communication device performs any of the first to fourth aspects above and its possible embodiments.
  • a computer program product comprising: computer program code, when the computer program code is communicated by a communication unit (eg, a network device or a terminal device), a processing unit, or a transceiver And when the processor is in operation, causing the communication device to perform any of the methods of the first to fourth aspects and their possible implementations described above.
  • a communication unit eg, a network device or a terminal device
  • a fifteenth aspect a computer readable storage medium storing a program, the program causing a communication device (eg, a network device or a terminal device) to perform the above first to fourth aspects Any of its possible embodiments.
  • a communication device eg, a network device or a terminal device
  • a computer program which, when executed on a computer, causes the computer to implement any of the first to fourth aspects and possible embodiments thereof .
  • FIG. 1 is a schematic structural diagram of a mobile communication system applicable to an embodiment of the present application.
  • FIGS 2 to 4 are schematic diagrams of downlink transmission in the embodiment of the present application.
  • FIG. 5 is a schematic interaction diagram of a method of wireless communication provided according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of downlink transmission provided by an embodiment of the present application.
  • FIG. 7 is another schematic diagram of downlink transmission provided by an embodiment of the present application.
  • FIG. 8 is a schematic interaction diagram of another method of wireless communication provided by an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of an apparatus for wireless communication provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • Time Division Duplex Time Division Duplex
  • TDD Time Division Evolution
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G future 5th Generation
  • NR New Radio
  • FIG. 1 is a schematic structural diagram of a mobile communication system applicable to an embodiment of the present application.
  • the mobile communication system includes a core network device 110, a radio access network device 120, and at least one terminal device (such as the terminal device 130 and the terminal device 140 in FIG. 1).
  • the terminal device is connected to the radio access network device by means of a wireless connection, and the radio access network device is connected to the core network device by wireless or wired.
  • the core network device and the wireless access network device may be independent physical devices, or may integrate the functions of the core network device with the logical functions of the wireless access network device on the same physical device, or may be a physical device.
  • the functions of some core network devices and the functions of some wireless access network devices are integrated.
  • the terminal device can be fixed or mobile. FIG.
  • the communication system may further include other network devices, such as a wireless relay device and a wireless backhaul device, which are not shown in FIG. 1.
  • the embodiment of the present application does not limit the number of core network devices, radio access network devices, and terminal devices included in the mobile communication system.
  • the radio access network device in the embodiment of the present application is an access device that the terminal device accesses to the mobile communication system by using a wireless device, and may be a base station NodeB, an evolved base station (evolved NodeB, eNodeB), and a transmission and reception point (transmission).
  • Reception point (TRP) a next generation base station (gNB) in a 5G mobile communication system, a base station in a future mobile communication system, or an access node in a WiFi system, and may also be a cloud radio access network (Cloud Radio)
  • the wireless controller in the Access Network, CRAN) scenario may also be a relay station, an in-vehicle device, a wearable device, and a network device in a PLLM network in a future evolution.
  • a radio access network device is referred to as a network device.
  • a network device refers to a radio access network device.
  • the terminal device in the embodiment of the present application may also be referred to as a terminal terminal, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), and the like.
  • the terminal device can be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and an industrial control (industrial control).
  • Wireless terminal wireless terminal in self driving, wireless terminal in remote medical surgery, wireless terminal in smart grid, wireless in transport safety A terminal, a wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • the embodiments of the present application do not limit the specific technologies and specific device modes adopted by the terminal device.
  • the time domain resource used by the network device and the terminal device for wireless communication may be divided into multiple time units in the time domain.
  • the plurality of time units may be continuous, or a preset interval may be provided between some adjacent time units, which is not specifically limited in the embodiment of the present application.
  • the time unit may be a time unit including uplink data transmission and/or downlink data transmission.
  • the length of a time unit is not limited.
  • one time unit may be one or more subframes; or, may be one or more time slots; or, may be one or more Symbols.
  • the symbol is also referred to as a time domain symbol, and may be an orthogonal frequency division multiplexing (OFDM) symbol, or may be a single carrier frequency division multiple access (single carrier frequency division multiple access) , SC-FDMA) symbol, where SC-FDMA is also referred to as orthogonal frequency division multiplexing with transform precoding (OFDM with TP).
  • OFDM orthogonal frequency division multiplexing
  • SC-FDMA single carrier frequency division multiple access
  • SC-FDMA orthogonal frequency division multiplexing with transform precoding
  • the plurality of time units have a timing relationship in the time domain, and the lengths of time corresponding to any two time units may be the same or different.
  • the network device sends downlink control information (DCI), demodulation reference signal (DMRS), and downlink data to the terminal device, and after receiving the DCI, the terminal device may determine, according to the DCI, use for sending The time-frequency resource of the downlink data, the time-frequency resource for transmitting the feedback information of the downlink data, and the coding mode indicating the downlink data, and the like, performing channel estimation according to the DMRS, and the terminal device is based on the result of the channel estimation and the DCI
  • the downlink data is demodulated and decoded.
  • the terminal device If the terminal device successfully demodulates and decodes the downlink data, it indicates that the terminal device successfully receives the downlink data, the terminal device generates an acknowledgement response (ACK), and the time-frequency resource indicated in the DCI If the terminal device fails to receive the downlink data, the terminal device generates a negative acknowledgement (NACK), and A NACK is sent on the indicated time-frequency resource.
  • ACK acknowledgement response
  • NACK negative acknowledgement
  • the processing period in which the terminal device processes the downlink data may be defined as any one of the following:
  • the processing period includes a period in which the terminal device performs channel estimation and demodulates and decodes the downlink data.
  • the processing period includes a period in which the terminal device performs channel estimation, demodulates and decodes the downlink data, and transmits the feedback information.
  • the processing period includes a period in which the terminal device demodulates and decodes the downlink data and transmits the feedback information.
  • the processing period includes a period occupied by the terminal device for demodulating and decoding the downlink data.
  • the processing period in the definition 1 is taken as an example for description.
  • the embodiment of the present application does not limit the processing period in which the terminal device processes the downlink data.
  • the terminal device can perform channel estimation, and further, perform demodulation and decoding processing on the downlink data.
  • a physical downlink shared channel PDSCH
  • multiple DMRSs may be configured.
  • the terminal device generally needs to complete all the DMRSs in one PDSCH to complete the channel estimation.
  • the terminal device can process the downlink data while receiving downlink data.
  • the terminal device may receive the downlink data after the channel estimation, after the channel device does not receive the downlink data.
  • the processing period #C1 shown in FIG. Decode the downlink data.
  • the processing period #C shown in FIG. 2 is a period in which the terminal device processes the downlink data, that is, a time when the terminal device performs channel estimation and demodulation decoding on the downlink data.
  • the time when the terminal device receives the DMRS may affect the processing period in which the terminal device processes the downlink data.
  • FIG. 3 it is assumed that the processing time of the downlink data processing by the terminal device is the same.
  • the system configures a DMRS for the downlink data, and the terminal device can perform the channel after receiving the DMRS. It is estimated that the demodulation and decoding are performed.
  • the system configures two DMRSs for the downlink data, and the terminal device can complete the channel estimation only after receiving the second DMRS, and then perform demodulation. Decoding. Therefore, configuring two DMRSs significantly delays the processing period in which the terminal device processes the downlink data, compared to configuring one DMRS.
  • the first transmission method is based on the authorized transmission method
  • the other transmission method is based on the unlicensed transmission method.
  • a scheduling request (SR) needs to be sent to the network device on the physical uplink control channel (PUCCH) to notify the network device.
  • PUCCH physical uplink control channel
  • the network device After receiving the SR, the network device sends scheduling information to the terminal device, and the scheduling information is also referred to as Up Link Grant (UL Grant) information.
  • UL Grant Up Link Grant
  • the terminal device After receiving the scheduling information, the terminal device performs coding and modulation processing on the uplink data, and then sends the uplink data on the uplink resource indicated by the scheduling information.
  • the authorization-based transmission mechanism has high reliability, but the uplink data transmission can be performed after the terminal device sends a scheduling request and the network device sends the scheduling information, thereby causing a large transmission delay of the uplink data. Therefore, the authorization-based transmission method is not conducive to the transmission of data with high latency requirements.
  • authorization-based transmission mode may also be referred to as a scheduling-based transmission mode.
  • the uplink transmission of the terminal device does not need to be completed by the scheduling of the network device based on the unlicensed transmission mode.
  • the Grant Free (GF) transmission may be referred to as Autonomous UL (AUL) transmission, which may also be referred to as configuration.
  • the network device allocates the GF resource to the terminal device in a semi-static manner.
  • the terminal device does not need to send the scheduling request SR to the network device and wait for the network device to send the UL Grant information, and may directly send the uplink through the GF resource. Data, thereby reducing transmission delay. Therefore, the unlicensed transmission mode facilitates the transmission of data requiring higher latency.
  • the processing period in which the terminal device processes the uplink data includes a period in which the uplink data is encoded, or the processing period in which the terminal device processes the uplink data includes a period in which the uplink data is encoded and the uplink data is occupied.
  • the processing time period in which the terminal device processes the uplink data is not limited in any way.
  • the network device transmits downlink data #A on time unit #A, and then transmits downlink data #B on time unit #B.
  • the processing period in which the terminal device processes the downlink data #A is the processing period #A
  • the processing period in which the downlink data #B is processed is the processing period #B.
  • the processing period #A and the processing period #B partially overlap, that is, in the case where the terminal device has not processed the downlink data #A, it is necessary to start processing the downlink data #B.
  • the terminal device may not be able to process two data at the same time, so that the processing of the downlink data #B may be delayed, thereby affecting the transmission delay of the downlink data #B.
  • the embodiment of the present application provides a method for wireless communication, which helps reduce the processing delay of the received service data.
  • FIG. 5 is a schematic interaction diagram of a method 200 of wireless communication provided in accordance with an embodiment of the present application. Next, each step of the method 200 will be described in detail.
  • the method 200 is described by taking the terminal device and the network device as the execution subject of the execution method 200 as an example.
  • the execution subject of the execution method 200 may also be a chip of a corresponding terminal device and a chip of a corresponding network device.
  • the network device transmits DCI #1 (ie, an example of the first DCI) including the indication information #1 (ie, an example of the first indication information) to the terminal device, and the indication information #1 is used for
  • the time unit #3 that is, an example of the third time unit for carrying the feedback information of the downlink data #1 (that is, an example of the first downlink data) is indicated.
  • the network device notifies the terminal device to transmit the feedback information of the downlink data #1 on the time unit #3 through the indication information #1 in the DCI #1.
  • the DCI #1 further includes information for indicating that the network device sends the time unit (for example, time unit #1) of the downlink data #1, and information for indicating the encoding mode of the downlink data, and the like. After receiving the DCI #1, the terminal device correctly processes the downlink data #1 and the feedback information of the downlink data #1 based on the DCI #1.
  • time unit #1 may include one time unit, and may also include multiple time units, which are not limited in any embodiment of the present application.
  • the explanation of the time unit #2, the time unit #3, the time unit #4, and the time unit #5 referred to hereinafter is the same as the explanation of the time unit #1, and will not be described later for the sake of brevity.
  • S221 and S222 are included, and in the following, S221 and S222 are respectively described.
  • the network device transmits the downlink data #1 on the time unit #1 (that is, an example of the first time unit).
  • the terminal device determines, by the DCI #1, that the network device sends downlink data on the time unit #1, and the terminal device starts to receive and process the downlink data #1 on the time unit #1.
  • the network device transmits downlink data #2 (that is, an example of the second downlink data) on time unit #2 (that is, an example of the second time unit).
  • the terminal device can determine, by the DCI (for example, DCI#2) sent by the network device, that the network device sends downlink data on the time unit #2, and the terminal device will be in the time unit# 2 starts receiving the downlink data #2.
  • DCI for example, DCI#2
  • the time unit #2 is located after the time unit #1, and the terminal device performs the processing period #1 of the receiving processing on the downlink data #2 (that is, an example of the first processing period) and the downlink data of the terminal device. 2
  • the processing period #2 (that is, an example of the second processing period) that performs the receiving processing partially overlaps.
  • the network device also transmits the downlink data #2 after transmitting the downlink data #1.
  • the terminal device when the terminal device starts to receive the downlink data #2, the terminal device does not process the downlink data #1, that is, the processing period #1 partially coincides with the processing period #2; or The time unit #1 is relatively close to the time unit #2; or, in the coincidence period, the terminal device needs more processing resources (for example, computing resources, resources for buffering data, etc.) to process two downlink data.
  • processing resources for example, computing resources, resources for buffering data, etc.
  • the terminal device does not have sufficient resources to process the downlink data, and the situation may be considered as: the processing resource of the terminal device processing the downlink data #1 conflicts with the processing resource of the terminal device processing the downlink data #2, thereby The processing of the two downlink data is affected, and the terminal device cannot send feedback information on the resources scheduled by the network device, which affects the transmission performance of the data transmission.
  • time unit #2 and time unit #1 may partially overlap.
  • BWPs bandwidth parts
  • the terminal device supports multiple bandwidth parts (BWPs) in one carrier or supports simultaneous data transmission on multiple carriers
  • BWPs bandwidth parts
  • Data #1 then downlink data #2 is scheduled on the second carrier or BWP.
  • one slot includes 14 symbols, and the start symbol and the end symbol of time unit #1 for transmitting downlink data #1 are the first symbol and the 13th symbol of the first slot, respectively;
  • the start symbol and the end symbol of time unit #2 of data #2 are the fifth symbol and the seventh symbol of the first slot, respectively.
  • the start symbol of time unit #2 is after the start symbol of time unit #1 but before the end symbol of time unit #1, that is, time unit #2 and time unit # 1 is partially overlapping.
  • the terminal device can preferentially process an uplink data and ensure the transmission performance of an uplink data.
  • the terminal device does not transmit the feedback information of the downlink data #1 on the time unit #3.
  • the terminal device Since the terminal device does not complete the processing of the downlink data #1 before the time unit #3, the terminal device does not transmit the feedback information of the downlink data #1 on the time unit #3.
  • the terminal device after receiving the downlink data #2, the terminal device pauses processing the downlink data #1.
  • the terminal device can reserve resources for processing the downlink data #2 received later.
  • the terminal device may also perform parallel processing on the downlink data #1 and the downlink data #2, but in the specific implementation process, more processing resources are allocated for processing the downlink data #2.
  • the network device knows the time unit #1 transmitting the downlink data #1 and the time unit #2 transmitting the downlink data #2, based on the time unit #1, the time unit #2, and the terminal device.
  • the length of time for processing the downlink data may be calculated by a correlation formula, and it is determined that the processing period #1 of the downlink device processing the downlink data #1 is partially coincident with the processing period #2 of the downlink device processing the downlink data #2.
  • the network device determines that the terminal device does not complete the processing of the downlink data #1, that is, the terminal device does not send the feedback information of the downlink data #1 on the time unit #3.
  • the network device does not receive the feedback information of the downlink data #1 on the time unit #3.
  • the terminal device does not send the feedback information of the downlink data #1 on the time unit #3, which means that the terminal device does not complete the processing of the downlink data #1, and reserves processing resources.
  • the downlink data #2 is processed. Therefore, after receiving the downlink data #2, the terminal device starts processing the downlink data #2, and after the processing is completed, may send the feedback information of the downlink data #2 based on the scheduling of the network device. .
  • the network device sends DCI#2 to the network device, the DCI#2 includes indication information #2 (ie, an example of the second indication information), the indication information #2 is used to indicate the time unit #5;
  • indication information #2 ie, an example of the second indication information
  • the terminal device sends the feedback information of the downlink data #2 on the time unit #5.
  • the DCI #2 further includes information for instructing the network device to send the time unit #2 and information indicating the encoding mode of the downlink data #2, and the like, so that the terminal device can receive the DCI.
  • the downlink data #2 is correctly processed based on the DCI #2 and the feedback information of the downlink data #2 is transmitted.
  • the method for wireless communication is that the network device sends the first downlink data on the first time unit, and sends the second downlink data on the second time unit that is located after the first time unit, and
  • the terminal device does not send the feedback information of the first downlink data on the time unit (for example, the third time unit) scheduled by the network device, so that the terminal device may not be
  • the processing resource for processing the first downlink data is used to process the second downlink data, which reduces the transmission delay of the second downlink data, thereby improving the transmission performance of the second downlink data.
  • the determining criterion may be that the processing period in which the terminal device processes the downlink data #1 and the processing period in which the downlink data #2 is processed partially overlap; for example, The criterion may also be that the terminal device cannot feed back at least one of the downlink data #1 and the downlink data #2.
  • the so-called on-time feedback refers to feedback on the time-frequency resource indicated by the DCI.
  • the network device may determine, by using the information about the capability of processing the downlink data reported by the terminal device, and the timing relationship between the time unit #1 and the time unit #2, that the terminal device has a processing resource conflict.
  • the capability of the terminal device to process the downlink data includes at least the time N1 required for the terminal device to process the downlink data as an example and is not limited.
  • the N1 may be defined as the time from the last symbol of the downlink data to the first symbol that can be used for the uplink feedback.
  • the first symbol of the downlink data #1 transmitted by the network device is the k1th symbol
  • the last symbol of the downlink data #1 is the k2th symbol
  • the first symbol of the downlink data #2 is the k3th symbol.
  • the last symbol of the downlink data #2 is transmitted as the k4th symbol
  • the DCI indicates that the feedback information of the downlink data #2 is started to be transmitted on the jth symbol, where k1, k2, k3, k4, and j are non-negative integers, and Their count starting points are the same.
  • k2+N1 is greater than or equal to k, it is considered that the first processing period of the receiving process of the downlink data #1 and the second processing period of the receiving process of the downlink data #2 partially overlap; if k2+N1 is less than k, the above is considered The first processing period and the second processing period do not coincide, wherein k is a non-negative integer greater than or equal to k3 and less than or equal to k4. If the first processing period and the second processing period overlap, and k+2*N1 is greater than or equal to j, it may be considered that the processing resources of the downlink data #1 and the downlink data #2 are conflicted by the terminal device, and the application needs to be used.
  • the method in the embodiment processes the downlink data #1 and the downlink data #2; if the first processing period and the second processing period do not coincide, or k+2*N1 is less than j, the terminal device may be considered to process the downlink data #1. There is no conflict with the processing resources of the downlink data #2.
  • the terminal device does not send the feedback information of the downlink data #1 on the time unit #3, and there are two possible cases, the situation #1 and the case #2, below, respectively Two cases are explained.
  • the network device can determine the processing period and processing of the downlink device processing the downlink data #1 according to the timing relationship of the time unit #1 and the time unit #2.
  • the processing period of the downlink data #2 may overlap. It may also be determined that the terminal device does not send the feedback information of the downlink data #1 on the time unit #1 according to the scheduled resource, or that the terminal device cannot be processed in time. Downstream data #1.
  • the terminal device may not send the feedback information of the downlink data #1, that is, the terminal device not only does not send the feedback information of the downlink data #1 on the time unit #3, but also does not delay sending.
  • the feedback information of the downlink data #1 may not send the feedback information of the downlink data #1, that is, the terminal device not only does not send the feedback information of the downlink data #1 on the time unit #3, but also does not delay sending.
  • the network device can perform retransmission processing on the downlink data #1, that is, retransmit the downlink data #1 to the terminal device on other time units.
  • the terminal device transmits feedback information of the downlink data #1 in time unit #4 (ie, an example of the fourth time unit), and the time unit #4 is located after the time unit #3.
  • the time unit #4 is the available time unit closest to the time unit #9 after the time unit (denoted as time unit #9) processed by the terminal device for the downlink data #1. In other words, the time unit #4 is the first available time unit after the time unit #9.
  • the terminal device continues to process the downlink data #1 after processing the downlink data #2, and after processing the time unit of the downlink data #1 (ie, time unit #9),
  • the feedback information of the downlink data #1 is transmitted on the available time unit closest to the time unit #9 (i.e., time unit #4).
  • the available time units can have a variety of explanations:
  • the available time unit may refer to a time unit that does not require feedback on downlink data #2. Otherwise, if the same time unit transmits both the feedback information of the downlink data #1 and the feedback information of the downlink data #2, there is a conflict, and the downlink data #1 cannot be fed back. In addition, if a Time Division Duplexing (TDD) scenario is considered, the available time unit must be an uplink time unit.
  • TDD Time Division Duplexing
  • the specific location of the time unit #4 is related to the processing capability of the terminal device.
  • the processing capability of the terminal device specifically refers to whether the terminal device continues to process the remaining unprocessed downlink in the downlink data #1 during the process of processing the downlink data #1 after processing the downlink data #2. data. If the terminal device cannot continue processing the remaining unprocessed downlink data in the downlink data #1, after processing the downlink data #2, the complete downlink data #1 can only be reprocessed from the beginning.
  • the unprocessed downlink data remaining in the downlink data #1 ie, the case #2A
  • the remaining unprocessed downlink data in the downlink data #1 can be continuously processed from the terminal device (ie, the case) #2B)
  • the time unit #4 will be described.
  • the time unit #4 and the terminal device receive the processed time unit (recorded as time unit #10) for the downlink data #2, and the time period of the M1 time units is greater than or equal to the processing period.
  • #1 is the duration corresponding to the period in which the processing period #2 coincides, and the M1 is an integer greater than or equal to 1.
  • the terminal device if the terminal device can continue to process the unprocessed downlink data in the downlink data #1, after processing the downlink data #2, the terminal device only needs to continue to occupy the coincidence time period to process the downlink.
  • the remaining downlink data in data #1 is ok, and then the feedback information of the downlink data #1 is transmitted on the most recent available time unit (i.e., time unit #4) after the time unit #9 is spaced.
  • the M1 time units are approximately equal to the processing period #1 and the processing period.
  • the M1 time units may not be exactly equal to the coincidence period of the processing period #1 and the processing period #2 in a strict sense. Therefore, the equalization here can be understood as Approximately equal.
  • the terminal device continues to process the downlink data #1 after processing the downlink data #2, there may be a delay in time; for example, the 1 time unit that the terminal device processes the downlink data # may send and send the downlink data.
  • the time unit of the feedback information of #1 is the same time unit.
  • FIG. 6 is a schematic diagram of downlink transmission according to an embodiment of the present application.
  • the network device transmits downlink data #1 on slot #1 (ie, time unit #1) in the basic unit of transmission data, and indicates that the terminal device is in the slot through DCI #1.
  • the feedback information of the downlink data #1 is transmitted on #5 (ie, time unit #3).
  • the network device transmits downlink data #2 again on slot #2 (i.e., time unit #2), and instructs the terminal device to transmit the slot on slot #6 (i.e., time unit #5) through DCI #2. Feedback information of downlink data #2.
  • the processing period #1 in which the terminal device processes the downlink data #1 partially coincides with the processing period #2 in which the downlink data #2 is processed, and the duration corresponding to the coincidence period is T1.
  • the terminal device may suspend processing the downlink data #1 and preferentially process the downlink data #2, so that the terminal device does not or may not send the feedback information of the downlink data #1 on the slot #5, but The feedback information of the downlink data #2 can be transmitted on the slot #6, and the transmission delay of the downlink data #2 is guaranteed.
  • the processing time length T1 is continued, which can be processed substantially at the time slot #8 (ie, the time unit #9), since the time slot after the time slot #8 #9 is the most recent available time slot, so the terminal device can transmit the feedback information of the downlink data #1 on the time slot #9.
  • slot #9 following slot #8 is not the most recent available time unit, ie slot #9 is occupied by transmission of other data or information, the terminal device may be the nearest after slot #9.
  • the feedback information of the downlink data #1 is transmitted on the available time slots.
  • the time unit #4 and the terminal device receive M2 time units between the processed time units #10 for the downlink data #2, and the duration of the M2 time units is greater than or equal to the duration corresponding to the processing period #1.
  • the M2 is an integer greater than or equal to 1.
  • the terminal device needs to process the complete downlink data #1 from the beginning, and then, in the The feedback information of the downlink data #1 is transmitted on the most recent available time unit (ie, time unit #4) after the time unit #9.
  • the M2 time units are approximately equal to the processing period # 1 corresponding duration; if the terminal device is not available time unit after the time unit #9 of the downlink data #1 is processed, the M2 time unit is greater than the processing period #1 The corresponding duration.
  • FIG. 7 is another schematic diagram of downlink transmission according to an embodiment of the present application.
  • the network device transmits downlink data #1 on slot #1 (ie, time unit #1) in the basic unit of transmission data, and indicates that the terminal device is in the slot through DCI #1.
  • the feedback information of the downlink data #1 is transmitted on #5 (ie, time unit #3).
  • the network device transmits downlink data #2 again on slot #2 (i.e., time unit #2), and instructs the terminal device to transmit the slot on slot #6 (i.e., time unit #5) through DCI #2. Feedback information of downlink data #2.
  • the processing period #1 of the terminal device processing the downlink data #1 partially overlaps with the processing period #2 of processing the downlink data #2, and the terminal device may pause processing the downlink data #1 after receiving the downlink data #2,
  • the downlink data #2 is preferentially processed, so that the terminal device does not have or cannot send the feedback information of the downlink data #1 on the slot #5, but the feedback of the downlink data #2 can be transmitted on the slot #6.
  • the information ensures the transmission delay of downlink data #2.
  • the terminal device can transmit the feedback information of the downlink data #1 on the slot #10.
  • the terminal device may be the nearest after slot #10.
  • the feedback information of the downlink data #1 is transmitted on the available time slots.
  • the network device in the case where the terminal device sends the feedback information of the downlink data #1 on the time unit #4 in the case #2, whether the case #2A or the case #2B, the network device is The location of the feedback information of the downlink data #1 (ie, time unit #4) may be determined by the sequence of the time unit #1, the time unit #2, and the capability of the terminal device to continue processing the remaining downlink data. The feedback information of the downlink data #1 is received on the time unit #4.
  • the network device determines that the terminal device can continue to process the remaining downlink data, the determined time unit #4 is time unit #4 in case #2A; if the network device determines The terminal device cannot continue processing the remaining downlink data, and the determined time unit #4 is the time unit #4 in case #2B. In either case, the network device can receive the feedback information of the downlink data #1 only once.
  • both the case #2A and the case #2B are considered, that is, in case #2A.
  • the time unit #4 and the time unit #4 in the case #2B are both detected so as to be able to receive the feedback information of the downlink data #1.
  • the existing 5G mobile communication system can simultaneously transmit different types of data, and different types of data have different requirements for the mobile communication system.
  • the two typical data types in 5G are enhanced mobile broadband (eMBB) data and ultrareliable and low latency communication (URLLC) data.
  • eMBB enhanced mobile broadband
  • URLLC ultrareliable and low latency communication
  • the URLLC data Compared with the eMBB data, the URLLC data has a very high latency requirement.
  • how to reduce the transmission delay of the URLLC data in the 5G mobile communication system, thereby improving the data transmission performance, is also a problem to be considered.
  • the downlink data #2 Since the URLLC data has extremely high latency requirements, for the downlink data #2 transmitted on the time unit #2 after the time unit #1, if the downlink data #2 is the URLLC data, the downlink data #2 is preferentially processed, which contributes to improvement. Transmission performance of data with high latency requirements.
  • the terminal device can determine whether the downlink data #2 is preferentially processed by the priority of the downlink data. For example, if the priority of the downlink data #2 determined by the terminal device is higher than the priority of the downlink data #1, the terminal device pauses processing the downlink data #1, preferentially processes the downlink data #2, and executes the method 200. If the priority of the downlink data #2 is lower than or equal to the priority of the downlink data #1, the terminal device continues to process the downlink data #1, and delays processing the downlink data #2, so that the terminal The device may send the feedback information of the downlink data #1 on the time unit #3 scheduled by the network device, and not send the feedback information of the downlink data #2 on the time unit #5 scheduled by the network device.
  • the priority of the downlink data mentioned here can be defined in terms of reliability, transmission rate, and the like to define the priority of the downlink data: if the data is delayed and reliable, the data with short delay and high reliability is used. The priority of the data whose priority is higher than that of the extended and low reliability, for example, the priority of the URLLC data is higher than the priority of the eMBB data.
  • the terminal device may determine whether to preferentially process the downlink data #2 based on the manners 1 and 2, respectively, based on whether the terminal device can determine the data type of the downlink data.
  • the terminal device can determine the data type of the downlink data, determine the priority of the downlink data #1 and the downlink data #2 according to the data type of the downlink data #1 and the data type of the downlink data #2, and further determine Whether to process the downlink data #2 preferentially.
  • the data type can be a data type that can distinguish performance requirements such as eMBB, URLLC, and mMTC.
  • the priority of URLLC data may be higher than the priority of eMBB data in terms of delay, reliability, and the like of data transmission.
  • the terminal device may pause processing the downlink data #1.
  • the downlink data #2 is preferentially processed, and the technical solution of the method 200 is performed; if the downlink data #1 is the URLLC data and the downlink data #2 is the eMBB data, the priority of the downlink data #2 is lower than the priority of the downlink data #1.
  • the terminal device continues to process the downlink data #1, and delays processing the downlink data #2; if both the downlink data #1 and the downlink data #2 are eMBB data, the terminal device may continue to process the downlink data #1, and delay processing the Downstream data #2, the downlink data #2 may be further processed based on the service subtype of the eMBB data. For example, if the downlink data #1 is the file download data in the eMBB data, the downlink data #2 is the webpage browsing data in the eMBB data. , the downlink data #2 can be processed preferentially.
  • Table 1 shows the correspondence between the data type of the downlink data and the processing mode.
  • the terminal device may determine the data type of the downlink data in various manners.
  • the terminal device may determine a data type of the downlink data according to the DCI. For example, the terminal device may distinguish according to a payload size carried in the DCI or a Radio Network Tempory Identity (RNTI); for example, the terminal device may also be used according to an indication in the DCI for indicating a data type. The information directly determines the data type of the downlink data.
  • RNTI Radio Network Tempory Identity
  • the terminal device may determine a data type of the downlink data according to an attribute of the downlink data. For example, the terminal device may determine the data type of the downlink data by using the number of symbols of the PDSCH carrying the downlink data. If a threshold n is configured, and the number of symbols of the PDSCH is greater than n, it is considered to be eMBB data, otherwise it is considered as URLLC data.
  • the priority of the second downlink data is higher than the priority of the first downlink data, and the terminal device processes the first downlink data. If the time period coincides with the processing period of the second downlink data, the terminal device does not send the feedback information of the first downlink data on the third time unit scheduled by the network device, but preferentially processes the second downlink.
  • the data reduces the processing delay of the second downlink data and improves the transmission performance of the second downlink data with higher priority.
  • the system may specify that the priority of the downlink data #2 transmitted on the time unit #2 is higher than the priority of the downlink data #1 transmitted on the time unit #1. .
  • the network device can be controlled by scheduling such that the terminal device overlaps in the processing period of the downlink data #1 and the processing period in which the downlink data #2 is processed, in the time unit #2
  • the priority of the downlink data #2 transmitted on is higher than the priority of the downlink data #1 transmitted on the time unit #1.
  • the network device can be scheduled and delayed when the eMBB data arrives after the URLLC data.
  • the downlink data #2 must be transmitted in time, and therefore, the case where the processing period #1 and the processing period #2 partially overlap may occur. Therefore, the system can specify that, in the case where the occurrence of the processing period partially coincides, the priority of the downlink data arriving in the subsequent period is higher than the priority of the downlink data arriving in the previous period.
  • the priority of the two downlink data determined by the rule of the mode 2 may not be the priority of the actual downlink data.
  • the network device sends the two downlink data in time, and according to the rule of the mode 2, the terminal device considers the downlink data# The priority of 2 is higher than the downlink data #1.
  • the priority of the downlink data #1 and the priority of the downlink data #2 are the same. However, this approach is easy to implement from an implementation perspective.
  • the manner in which the terminal device described above determines whether to preferentially process the downlink data #2 based on whether the terminal device can determine the data type of the downlink data is only illustrative, and the embodiment of the present application is not limited to this.
  • the terminal device may determine the priority of the downlink data #1 and the downlink data #2 by using the indication information for indicating the priority of the downlink data in the DCI sent by the network device, thereby determining whether to preferentially process the downlink based on the priority of the downlink data. Data #2.
  • the method 200 of wireless communication according to an embodiment of the present application is described in detail above from the perspective of downlink transmission with reference to FIG. 5 to FIG. 7.
  • a method 300 for wireless communication according to another embodiment of the present application will be described in detail from the perspective of uplink transmission.
  • the uplink data needs to be encoded, and the uplink data is sent after the processing.
  • the terminal device needs to send uplink data in two periods before and after, wherein the terminal device partially overlaps the processing period of the uplink data that needs to be sent in the previous two periods, that is, the terminal device is in front of the The processing of the uplink data that needs to be sent in the period is not completed, and it is necessary to process the uplink data that needs to be sent in the next period.
  • the terminal device may not be able to process both types of data at the same time, so that the transmission of both data is affected.
  • the embodiment of the present application further provides a method for wireless communication, which helps improve the performance of uplink data transmission.
  • FIG. 8 is a schematic interaction diagram of another method 300 for wireless communication provided by an embodiment of the present application. Each step of method 300 is described in detail below.
  • the network device transmits DCI #A (ie, an example of the third DCI) including the indication information #A (ie, an example of the third indication information) for indicating the time unit.
  • #A ie, an example of a sixth time unit
  • #A for carrying uplink data #A (ie, an example of the first uplink data)
  • the processing period of the transmission processing of the uplink data #A# A that is, an example of the third processing period
  • partially overlaps with the processing period #D of the transmission processing of the uplink data #B that is, an example of the second uplink data
  • the time unit #B of the uplink data #B (that is, an example of the seventh time unit) is located after the time unit #A.
  • the terminal device needs to send the uplink data #A in a previous period, and the uplink data #A can be sent by using an authorization-based transmission manner, that is, the network device schedules the terminal device by using DCI#A.
  • the uplink data #A is transmitted on the time unit #A; when the terminal device is processing the uplink data #A, the terminal device needs to send the uplink data #B, and the uplink data #B is also processed.
  • the processing period #A of the terminal device processing the uplink data #A will partially coincide with the processing period #B of the processing of the uplink data #B.
  • the time unit #B is a resource that the network device schedules through DCI (for example, DCI#B); if the uplink data #B is based on the license-free The data transmitted by the transmission mode, the time unit #B is a resource configured by the network device in a semi-static manner.
  • the terminal device may need more processing resources (for example, computing resources, resources for buffering data, etc.) to process two uplink data, but the terminal device does not have enough resources to process the uplink data.
  • the processing resource of the terminal device processing the uplink data #A conflicts with the processing resource of the terminal device processing the uplink data #A. In this way, the processing of the two uplink data is affected, and the terminal device cannot send the uplink data to the network device in time, which affects the reliability of the data transmission.
  • a possible implementation manner is: in the case that the terminal device needs to send the uplink data #B, the terminal device pauses processing the uplink data #A, thereby ensuring that the uplink data #B can be processed in time. Since the terminal device pauses the processing of the uplink data #A until the processing of the uplink data #B is completed, the terminal device cannot send the data #A on the time unit #A in time, that is, the terminal device does not on the time unit #A. Send upstream data #A.
  • the terminal device may postpone the time of transmitting the uplink data #A to the time unit #C (ie, an example of the eighth time unit), as shown in S320.
  • the time unit #C is after the time unit #A.
  • the terminal device may determine the time unit #C according to a predefined rule of the protocol, for example, the time unit #C and the time unit #A may be separated by a fixed length of time, or may be separated by a network device. The length of time to configure the terminal device.
  • the terminal device can transmit the uplink data #A on the time unit #C.
  • the terminal device may reserve resources for processing the uplink data #B that needs to be transmitted later.
  • the terminal device may also perform parallel processing on the uplink data #A and the uplink data #B, but in the specific implementation process, more processing resources are allocated for processing the uplink data #B.
  • the terminal device may send the uplink data #B through the pre-configured unauthorized resource after processing the uplink data #B.
  • the uplink data is data transmitted based on an authorized transmission mode, in a possible implementation manner,
  • the network device sends DCI#B (ie, an example of the fourth DCI), where the DCI#B includes the indication information #B (ie, an example of the fourth indication information), where the indication information #B is used to indicate the time unit# B;
  • DCI#B ie, an example of the fourth DCI
  • the indication information #B ie, an example of the fourth indication information
  • the terminal device sends the uplink data #B on the time unit #B.
  • the terminal device does not send the feedback information of the uplink data #A on the time unit #A, which means that the terminal device does not complete the processing of the uplink data #A, and pauses the The processing of the uplink data #A reserves processing resources to process the uplink data #B. Therefore, the terminal device can process the uplink data #B in time, and can be in the scheduled time unit of the network device after processing.
  • the uplink data #B is transmitted on B.
  • the terminal device needs to send the first uplink data in the sixth time unit and the second uplink data needs to be sent in the seventh time unit after the sixth time unit, And, in a case where the processing period of the sending process of the first uplink data and the processing period of the sending process of the second uplink data partially overlap, the terminal device does not send the first uplink data on the sixth time unit, but Transmitting the first uplink data on the eighth time unit that is located after the sixth time unit, so that the terminal device processes the second uplink data by using the processing resource that is not used to process the first uplink data, and improves the The transmission performance of the two uplink data.
  • the terminal device can determine whether to preferentially process the uplink data #B by considering the priority of the uplink data. That is, if the priority of the uplink data #B determined by the terminal device is higher than the priority of the uplink data #A, the terminal device pauses processing the uplink data #A, preferentially processes the uplink data #B, and executes the method 200.
  • the terminal device continues to process the uplink data #A, and delays processing the uplink data #B, so that the terminal The device may send the uplink data #A on the time unit #A scheduled by the network device.
  • the terminal device may determine whether to preferentially process the uplink data #B based on the manners 3 and 4, respectively, based on whether the terminal device can determine the data type of the uplink data.
  • the terminal device can determine the data type of the uplink data, determine the priority of the uplink data #A and the uplink data #B according to the data type of the uplink data #A and the data type of the uplink data #B, and further determine Whether to process the uplink data #B preferentially.
  • the terminal device pauses processing the uplink data #A, preferentially processes the uplink data #B, and performs the technical solution of the method 300; If the priority of the data #B is lower than or equal to the priority of the uplink data #A, the terminal device continues to process the uplink data #A, and delays processing the uplink data #B.
  • the priority of the uplink data mentioned herein may be defined by the delay, reliability, and transmission rate of the data transmission.
  • the specific description may refer to the description of the priority of the data in the uplink transmission. For the sake of brevity, it will not be repeated here.
  • the uplink data #A is eMBB data
  • the uplink data #B is URLLC data.
  • the priority of the URLLC data is higher than the priority of the eMBB data.
  • the priority of the data can be further determined by the transmission mode.
  • the priority of the retransmitted data is higher than the priority of the initial data.
  • the initial transmission may be performed in an unlicensed manner, and the retransmission is performed in a manner based on scheduling authorization. Therefore, in the case where the data types of the two types of uplink data are the same, the data transmitted according to the transmission mode of the scheduling grant has a higher priority than the data transmitted based on the unlicensed transmission mode.
  • the terminal device determines the data type of the uplink data, and may refer to the downlink data to determine the data type. For brevity, details are not described herein again.
  • the terminal device preferentially processes the second uplink data, and does not send the first uplink data on the first time unit, thereby improving the transmission performance of the second uplink data.
  • the system may specify that the uplink data #B to be transmitted on the time unit #B has a higher priority than the uplink data #A to be transmitted on the time unit #A.
  • Priority in other words, the uplink data after the transmission demand (ie, the uplink data #B) has a higher priority than the uplink data of the transmission demand (ie, the uplink data #A).
  • the mode 4 is applicable to the uplink data #A and the uplink data #B are both data transmitted based on an authorized transmission mode. Similar to the reason for the downlink transmission, the network device can perform appropriate regulation so that the terminal device transmits the downstream demand after the processing period of processing the uplink data #A and the processing period of processing the uplink data #B partially overlap.
  • the priority of the data i.e., the uplink data #B
  • the priority of the uplink data of the transmission demand i.e., the uplink data #A).
  • the network device may delay the scheduled time unit for transmitting the eMBB data.
  • the uplink data #B schedules a time unit so that the terminal device can send the URLLC data in time on the scheduled time unit. Therefore, the case where the processing period #A and the processing period #B partially coincide. Therefore, the system can specify that, in the case where the processing periods partially overlap, the priority of the uplink data after the transmission demand is higher than the priority of the uplink data of the transmission demand.
  • the priority of the two uplink data determined based on the rules of Mode 4 may not be the priority of the actual uplink data.
  • the terminal device may not process the uplink data again.
  • the network device does not receive the uplink data #B on the scheduled time unit #B, and sends a DCI to the terminal device to reschedule the resource for sending the uplink data #B.
  • the method for wireless communication provided by the embodiment of the present application is described in detail above with reference to FIG. 1 to FIG. 8.
  • the following describes the device for wireless communication provided by the embodiment of the present application, and the technical features described in the method embodiment are described with reference to FIG. 9 to FIG. The same applies to the following device embodiments.
  • FIG. 9 is a schematic block diagram of an apparatus 400 for wireless communication provided by an embodiment of the present application. As shown in FIG. 9, the apparatus 400 includes:
  • the receiving unit 410 is configured to receive the first downlink control information DCI, where the first DCI includes first indication information, where the first indication information is used to indicate that the feedback information of the first downlink data is sent on the third time unit;
  • the receiving unit 410 is further configured to receive the first downlink data on the first time unit;
  • the receiving unit 410 is further configured to receive second downlink data on the second time unit, where the second time unit is located after the first time unit, the first processing period of the first downlink data receiving process, and the first The second processing period of the receiving process of the two downlink data partially overlaps;
  • the processing unit 420 is configured to control the sending unit 430 not to send feedback information of the first downlink data on the third time unit.
  • the apparatus for wireless communication sends the first downlink data on the first time unit in the network device, and sends the second downlink data on the second time unit located after the first time unit, and
  • the device does not send the feedback information of the first downlink data on a time unit (for example, a third time unit) scheduled by the network device, so that the device is not used for processing.
  • the processing resources of the first downlink data are used to process the second downlink data, which reduces the transmission delay of the second downlink data, thereby improving the transmission performance of the second downlink data.
  • the second downlink data has a higher priority than the first downlink data.
  • the apparatus for wireless communication considered the priority of the first downlink data and the second downlink data, the priority of the second downlink data is higher than the priority of the first downlink data, and the If the processing period of the processing of the first downlink data is partially coincident with the processing period of processing the second downlink data, the apparatus does not send the feedback information of the first downlink data on the third time unit scheduled by the network device.
  • the processing of the second downlink data is preferentially processed, the processing delay of the second downlink data is reduced, and the transmission performance of the second downlink data with higher priority is improved.
  • the sending unit 430 is further configured to:
  • the fourth time unit is located after the third time unit.
  • the fourth time unit is separated from the end point of the second processing period by M1 time units, and the duration of the M1 time units is greater than or equal to the first processing period and the second The duration corresponding to the period in which the processing periods coincide; the M1 is a positive integer; or,
  • the fourth time unit is spaced apart from the end point of the second processing period by M2 time units, and the duration of the M2 time units is greater than or equal to the duration corresponding to the first processing period, and the M2 is a positive integer.
  • the receiving unit 410 and the processing unit 420 are further configured to:
  • the processing unit 420 suspends processing the first downlink data.
  • the receiving unit 410 is further configured to:
  • the sending unit 430 is further configured to:
  • the feedback information of the second downlink data is sent on the fifth time unit.
  • the device 400 for wireless communication may correspond to (for example, may be configured or be itself) the terminal device described in the above method 200, and each module or unit in the device 400 for wireless communication is used to execute the terminal in the method 200 described above, respectively. Detailed descriptions of the operations and processes performed by the device are omitted here to avoid redundancy.
  • the device 400 may be a terminal device.
  • the device 400 may include: a processor, a transmitter and a receiver, a processor, a transmitter, and a receiver, and optionally,
  • the apparatus also includes a memory in communication with the processor.
  • the processor, the memory, the transmitter and the receiver may be communicatively coupled, the memory being operative to store instructions for executing the instructions stored by the memory to control the transmitter to transmit information or the receiver to receive signals.
  • the receiving unit 410 in the apparatus 400 shown in FIG. 9 may correspond to the receiver, and the processing unit 420 in the apparatus 400 shown in FIG. 9 may also correspond to the processor, in the apparatus 400 shown in FIG.
  • the sending unit 430 can correspond to the sender.
  • the transmitter and receiver can be implemented by the same component transceiver.
  • the device 400 may be a chip (or a chip system) installed in the terminal device.
  • the device 400 may include: a processor and an input and output interface, and the processor may pass the input and output.
  • the interface is communicatively coupled to the transceiver of the network device.
  • the device further includes a memory in communication with the processor.
  • the processor, the memory and the transceiver can be communicatively coupled, the memory being operative to store instructions for executing the memory stored instructions to control the transceiver to transmit information or signals.
  • the receiving unit in the device 400 shown in FIG. 9 can correspond to the input interface
  • the processing unit in the device 400 shown in FIG. 9 can correspond to the processor
  • the transmitting unit in the device 400 shown in FIG. 9 can Corresponding to the output interface.
  • FIG. 10 is a schematic block diagram of an apparatus 500 for wireless communication provided by an embodiment of the present invention. As shown in FIG. 10, the apparatus 500 includes:
  • the sending unit 510 is configured to send the first downlink control information DCI, where the first DCI includes first indication information, where the first indication information is used to indicate that the feedback information of the first downlink data is sent on the third time unit;
  • the sending unit 510 is further configured to send a second DCI, where the second DCI includes second indication information, where the second indication information is used to indicate that the feedback information of the second downlink data is sent on the fifth time unit;
  • the sending unit 510 is further configured to: send the first downlink data on the first time unit and the second downlink data on the second time unit, where the second time unit is located after the first time unit;
  • Processing unit 520 and receiving unit 530 wherein
  • the processing unit 520 is configured to control the receiving unit 530 not to receive the feedback information of the first downlink data on the third time unit;
  • the receiving unit 530 is further configured to receive feedback information of the second downlink data on the fifth time unit.
  • the apparatus for wireless communication transmits the first downlink data on the first time unit, and the second downlink data on the second time unit located after the first time unit, and
  • the terminal device may not send the feedback information of the first downlink data on the time unit (for example, the third time unit) scheduled by the network device, thereby causing the terminal device to
  • the processing resource that is not used to process the first downlink data is used to process the second downlink data, which reduces the transmission delay of the second downlink data, thereby improving the transmission performance of the second downlink data.
  • the second downlink data has a higher priority than the first downlink data.
  • the apparatus for wireless communication considereds the priority of the first downlink data and the second downlink data, the priority of the second downlink data is higher than the priority of the first downlink data, and the When the processing period of the processing of the first downlink data by the terminal device is partially coincident with the processing period of processing the second downlink data, the terminal device is not configured to send the first downlink data on the third time unit scheduled by the device.
  • the feedback information is used to preferentially process the second downlink data, which reduces the processing delay of the second downlink data, and improves the transmission performance of the second downlink data with higher priority.
  • the receiving unit 530 is further configured to:
  • the feedback information of the first downlink data is received on the fourth time unit, where the fourth time unit is located after the third time unit.
  • the feature is that
  • the time interval between the fourth time unit and the end point of the second processing period of the receiving process of the second downlink data is M1 time units, and the duration of the M1 time units is greater than or equal to the first processing period and the second processing
  • the duration corresponding to the time period in which the time slots coincide, and the M1 is a positive integer; or,
  • the time interval between the fourth time unit and the end point of the second processing period of the second downlink data receiving process is M2 time units, and the duration of the M2 time units is greater than or equal to the duration corresponding to the first processing period, M2 is a positive integer.
  • the device 500 for wireless communication may correspond to (for example, may be configured or be itself) the network device described in the above method 200, and each module or unit in the device 500 for wireless communication is used to perform the network in the method 200 described above, respectively. Detailed descriptions of the operations and processes performed by the device are omitted here to avoid redundancy.
  • the apparatus 500 may be a network device.
  • the apparatus 500 may include: a processor, a transmitter and a receiver, a processor, a transmitter, and a receiver, and optionally,
  • the apparatus also includes a memory in communication with the processor.
  • the processor, the memory, the transmitter and the receiver may be communicatively coupled, the memory being operative to store instructions for executing the instructions stored by the memory to control the transmitter to transmit information or the receiver to receive signals.
  • the transmitting unit 510 in the apparatus 500 shown in FIG. 10 can correspond to the transmitter, and the processing unit 520 in the apparatus 500 shown in FIG. 10 can correspond to the processor, in the apparatus 500 shown in FIG.
  • the receiving unit 530 can correspond to the receiver.
  • the transmitter and receiver can be implemented by the same component transceiver.
  • the device 500 may be a chip (or a chip system) installed in a network device.
  • the device 500 may include: a processor and an input and output interface, and the processor may pass input and output.
  • the interface is communicatively coupled to the transceiver of the network device.
  • the device further includes a memory in communication with the processor.
  • the processor, the memory and the transceiver can be communicatively coupled, the memory being operative to store instructions for executing the memory stored instructions to control the transceiver to transmit information or signals.
  • the transmitting unit 510 in the apparatus 500 shown in FIG. 10 can correspond to the output interface
  • the processing unit 520 in the apparatus 500 shown in FIG. 10 can correspond to the processor
  • the receiving in the apparatus 500 shown in FIG. Unit 530 can correspond to an output interface
  • FIG. 11 is a schematic block diagram of an apparatus 600 for wireless communication provided by an embodiment of the present invention. As shown in FIG. 11, the apparatus 600 includes:
  • the receiving unit 610 is configured to receive the third downlink control information DCI, where the third DCI includes third indication information, where the third indication information is used to indicate that the first uplink data is sent on the sixth time unit, where the first uplink is sent.
  • the third processing period of the data transmission processing is partially coincident with the fourth processing period of the second uplink data transmission processing, and the seventh time unit for transmitting the second uplink data is located after the sixth time unit;
  • the sending unit 620 is configured to send the first uplink data on an eighth time unit, where the eighth time unit is located after the sixth time unit.
  • the apparatus for wireless communication needs to send the second uplink data on the seventh time unit after the sixth time unit needs to send the first uplink data and the seventh time unit located after the sixth time unit, and If the processing period of the sending process of the first uplink data and the processing period of the sending process of the second uplink data partially overlap, the device does not send the first uplink data on the sixth time unit, but is located at The first uplink data is sent by the eighth time unit after the sixth time unit, so that the device processes the second uplink data by processing resources that are not used to process the first uplink data, and improves the second uplink data. Transmission performance.
  • the second uplink data has a higher priority than the first uplink data.
  • the apparatus for wireless communication considered the priority of the first uplink data and the second uplink data, the priority of the second uplink data is higher than the priority of the first uplink data, and the terminal device
  • the apparatus preferentially processes the second uplink data, and does not send the first uplink data on the first time unit, thereby The transmission performance of the second uplink data is improved.
  • the first uplink data is data of an enhanced mobile bandwidth eMBB service
  • the second uplink data is data of a high reliability low latency URLLC service.
  • the receiving unit 610 is further configured to:
  • the sending unit 620 is further configured to:
  • the second uplink data is sent on the seventh time unit.
  • the device 600 of the wireless communication may correspond to (for example, may be configured or be itself) the terminal device described in the above method 300, and each module or unit in the device 600 of the wireless communication is used to execute the terminal in the method 300 above. Detailed descriptions of the operations and processes performed by the device are omitted here to avoid redundancy.
  • the device 600 may be a terminal device.
  • the device 600 may include: a processor, a transmitter and a receiver, a processor, a transmitter, and a receiver, and optionally,
  • the apparatus also includes a memory in communication with the processor.
  • the processor, the memory, the transmitter and the receiver may be communicatively coupled, the memory being operative to store instructions for executing the instructions stored by the memory to control the transmitter to transmit information or the receiver to receive signals.
  • the receiving unit 610 in the apparatus 600 shown in FIG. 11 can correspond to the receiver, and the transmitting unit 620 in the apparatus 600 shown in FIG. 1 can correspond to the transmitter.
  • the transmitter and receiver can be implemented by the same component transceiver.
  • the device 600 may be a chip (or a chip system) installed in the terminal device.
  • the device 600 may include: a processor and an input and output interface, and the processor may pass the input and output.
  • the interface is communicatively coupled to the transceiver of the terminal device.
  • the device further includes a memory in communication with the processor.
  • the processor, the memory and the transceiver can be communicatively coupled, the memory being operative to store instructions for executing the memory stored instructions to control the transceiver to transmit information or signals.
  • the receiving unit 610 in the device 600 shown in FIG. 11 can correspond to the input interface
  • the transmitting unit 620 in the device 600 shown in FIG. 11 can correspond to the output interface
  • FIG. 12 is a schematic block diagram of an apparatus 700 for wireless communication provided by an embodiment of the present invention. As shown in FIG. 12, the apparatus 700 includes:
  • the sending unit 710 is configured to send a third downlink control information DCI, where the third DCI includes third indication information, where the third indication information is used to indicate a sixth time unit, where the sixth time unit is configured to carry the first uplink data.
  • the receiving unit 720 is configured to receive the first uplink data on an eighth time unit, where the eighth time unit is located after the sixth time unit.
  • the third processing period of the sending process of the first uplink data is partially overlapped with the fourth processing period of the sending process of the second uplink data, and is configured to send the seventh data of the second uplink data.
  • the time unit is located after the sixth time unit.
  • the apparatus for wireless communication needs to send the first uplink data in the sixth time unit and the second time data in the seventh time unit after the sixth time unit, And, in a case where the processing period of the sending process of the first uplink data and the processing period of the sending process of the second uplink data partially overlap, the terminal device does not send the first uplink data on the sixth time unit, but Transmitting the first uplink data on the eighth time unit that is located after the sixth time unit, so that the terminal device processes the second uplink data by using the processing resource that is not used to process the first uplink data, and improves the The transmission performance of the two uplink data.
  • the second uplink data has a higher priority than the first uplink data.
  • the apparatus for wireless communication considered the priority of the first uplink data and the second uplink data, the priority of the second uplink data is higher than the priority of the first uplink data, and the terminal device
  • the terminal device When the processing period of the processing of the first uplink data is partially coincident with the processing period of processing the second uplink data, the terminal device preferentially processes the second uplink data, and does not send the first uplink data in the first time unit. Thereby, the transmission performance of the second uplink data is improved.
  • the first uplink data is data of an enhanced mobile bandwidth eMBB service
  • the second uplink data is data of a high reliability low latency URLLC service.
  • the sending unit 710 is further configured to:
  • the receiving unit 720 is further configured to:
  • the second uplink data is received on the seventh time unit.
  • the apparatus 700 for wireless communication may correspond to (eg, may be configured or be itself) the network device described in the method 300 above, and each module or unit in the apparatus 700 of the wireless communication is used to perform the network in the method 300 above. Detailed descriptions of the operations and processes performed by the device are omitted here to avoid redundancy.
  • the device 700 may be a network device.
  • the device 700 may include: a processor, a transmitter and a receiver, a processor, a transmitter, and a receiver, and optionally,
  • the apparatus also includes a memory in communication with the processor.
  • the processor, the memory, the transmitter and the receiver may be communicatively coupled, the memory being operative to store instructions for executing the instructions stored by the memory to control the transmitter to transmit information or the receiver to receive signals.
  • the transmitting unit 710 in the apparatus 700 shown in FIG. 12 can correspond to the transmitter, and the receiving unit 720 in the apparatus 700 shown in FIG. 12 can correspond to the receiver.
  • the transmitter and receiver can be implemented by the same component transceiver.
  • the device 700 may be a chip (or a chip system) installed in a network device.
  • the device 700 may include: a processor and an input and output interface, and the processor may pass input and output.
  • the interface is communicatively coupled to the transceiver of the network device.
  • the device further includes a memory in communication with the processor.
  • the processor, the memory and the transceiver can be communicatively coupled, the memory being operative to store instructions for executing the memory stored instructions to control the transceiver to transmit information or signals.
  • the transmitting unit 710 in the apparatus 700 shown in FIG. 12 can correspond to the output interface
  • the receiving unit 720 in the apparatus 700 shown in FIG. 12 can correspond to the output interface
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线通信的方法和装置,该方法包括:网络设备通过第一指示信息指示终端设备在第三时间单元上发送第一下行数据的反馈信息;并且,该网络设备在第一时间单元上向终端设备发送该第一下行数据和在该第一时间单元之后的第二时间单元上发送第二下行数据;在该第一下行数据的接收处理的第一处理时段和该第二下行数据的接收处理的第二处理时段部分重合的情况下,该终端设备在该第三时间单元上,不发送该第一下行数据的反馈信息。因此,可以通过降低该第二下行数据的传输时延,提高该第二下行数据的传输性能。

Description

一种无线通信的方法和装置
本申请要求于2018年5月11日提交中国专利局、申请号为201810450930.5、申请名称为“一种无线通信的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及通信领域中无线通信的方法和装置。
背景技术
第五代(the fifth generation,5G)移动通信系统支持增强型移动宽带(enhanced mobile broadband,eMBB)业务、高可靠低时延通信(ultra reliable and low latency communications,URLLC)业务以及海量机器类通信(massive machine type communications,mMTC)业务。例如,典型的eMBB业务可以有:超高清视频、增强现实(augmented reality,AR)、虚拟现实(virtual reality,VR)等,这些业务的主要特点是传输数据量大、传输速率很高。再例如,典型的URLLC业务可以有:工业制造或生产流程中的无线控制、无人驾驶汽车和无人驾驶飞机的运动控制以及远程修理、远程手术等触觉交互类应用,这些业务的主要特点是超高可靠性、低延时,传输数据量较少以及具有突发性。再例如,典型的mMTC业务可以有:智能电网配电自动化、智慧城市等,主要特点是联网设备数量巨大、传输数据量较小、数据对传输时延不敏感,这些mMTC终端需要满足低成本和非常长的待机时间的需求。
如何提高5G移动通信系统中数据的传输性能,是业界亟需解决的问题。
发明内容
本申请提供一种无线通信的方法,有助于提高数据的传输性能。
第一方面,提供了一种无线通信的方法,所述方法包括:
接收第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示在第三时间单元上发送第一下行数据的反馈信息;
在第一时间单元上接收第一下行数据;
在第二时间单元上接收第二下行数据,所述第二时间单元位于所述第一时间单元之后,所述第一下行数据的接收处理的第一处理时段和所述第二下行数据的接收处理的第二处理时段部分重合;
在所述第三时间单元上,不发送所述第一下行数据的反馈信息。
因此,本申请实施例提供的无线通信的方法,在网络设备在第一时间单元上发送第一下行数据,在位于该第一时间单元之后的第二时间单元上发送第二下行数据,并且,在终端设备有处理资源的冲突时,该终端设备在该网络设备调度的时间单元(例如,第三时间 单元)上不发送该第一下行数据的反馈信息,可以使得该终端设备将未用来处理该第一下行数据的处理资源来处理该第二下行数据,降低了该第二下行数据的传输时延,从而提高了该第二下行数据的传输性能。
在一种可能的实现方式中,所述第二下行数据的优先级高于所述第一下行数据的优先级。
因此,本申请实施例提供的无线通信的方法,通过考虑第一下行数据和第二下行数据的优先级,在第二下行数据的优先级高于该第一下行数据的优先级以及该终端设备处理该第一下行数据的处理时段与处理该第二下行数据的处理时段部分重合的情况下,使得该终端设备不在网络设备调度的第三时间单元上发送该第一下行数据的反馈信息,而是优先处理该第二下行数据,降低了该第二下行数据的处理时延,提高了优先级较高的第二下行数据的传输性能。
在一种可能的实现方式中,所述方法还包括:
在第四时间单元上发送所述第一下行数据的反馈信息,所述第四时间单元位于所述第三时间单元之后。
在一种可能的实现方式中,所述第四时间单元是位于第九时间单元之后的距离所述第九时间单元最近的可用的时间单元,所述第九时间单元是所述终端设备针对所述第一下行数据处理完毕的时间单元。
在一种可能的实现方式中,所述第四时间单元与所述第二处理时段的结束点之间间隔M1个时间单元,所述M1个时间单元的时长大于或等于所述第一处理时段与所述第二处理时段重合的时段对应的时长,所述M1为正整数;或,
所述第四时间单元与所述第二处理时段的结束点之间间隔M2个时间单元,所述M2个时间单元的时长大于或等于所述第一处理时段对应的时长,所述M2为正整数。
在一种可能的实现方式中,所述方法还包括:
在接收到所述第二下行数据后,暂停处理所述第一下行数据。
在一种可能的实现方式中,所述方法还包括:
接收第二DCI,所述第二DCI包括第二指示信息,所述第二指示信息用于指示第五时间单元;
在所述第五时间单元上发送所述第二下行数据的反馈信息。
第二方面,提供了一种无线通信的方法,其特征在于,所述方法包括:
发送第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示在第三时间单元上发送第一下行数据的反馈信息;
发送第二DCI,所述第二DCI包括第二指示信息,所述第二指示信息用于指示在第五时间单元上发送第二下行数据的反馈信息;
在第一时间单元上发送所述第一下行数据和在第二时间单元上发送所述第二下行数据,所述第二时间单元位于所述第一时间单元之后;
在所述第三时间单元上不接收所述第一下行数据的反馈信息;
在所述第五时间单元上接收所述第二下行数据的反馈信息。
因此,本申请实施例提供的无线通信的方法,在网络设备在第一时间单元上发送第一下行数据,在位于该第一时间单元之后的第二时间单元上发送第二下行数据,并且,在终 端设备有处理资源的冲突时,可以使得该终端设备在该网络设备调度的时间单元(例如,第三时间单元)上不发送该第一下行数据的反馈信息,进而使得该终端设备将未用来处理该第一下行数据的处理资源来处理该第二下行数据,降低了该第二下行数据的传输时延,从而提高了该第二下行数据的传输性能。
在一种可能的实现方式中,所述第二下行数据的优先级高于所述第一下行数据的优先级。
因此,本申请实施例提供的无线通信的方法,通过考虑第一下行数据和第二下行数据的优先级,在第二下行数据的优先级高于该第一下行数据的优先级以及该终端设备处理该第一下行数据的处理时段与处理该第二下行数据的处理时段部分重合的情况下,使得该终端设备不在网络设备调度的第三时间单元上发送该第一下行数据的反馈信息,而是优先处理该第二下行数据,降低了该第二下行数据的处理时延,提高了优先级较高的第二下行数据的传输性能。
在一种可能的实现方式中,所述方法还包括:
在第四时间单元上接收所述第一下行数据的反馈信息,所述第四时间单元位于所述第三时间单元之后。
在一种可能的实现方式中,所述第四时间单元是位于第九时间单元之后的距离所述第九时间单元最近的可用的时间单元,所述第九时间单元是所述终端设备针对所述第一下行数据处理完毕的时间单元。
在一种可能的实现方式中,所述第四时间单元与所述第二下行数据的接收处理的第二处理时段的结束点之间间隔M1个时间单元,所述M1个时间单元的时长大于或等于所述第一处理时段与所述第二处理时段重合的时段对应的时长,所述M1为正整数;或,
所述第四时间单元与所述第二下行数据的接收处理的第二处理时段的结束点之间间隔M2个时间单元,所述M2个时间单元的时长大于或等于所述第一处理时段对应的时长,所述M2为正整数。
第三方面,提供了一种无线通信的方法,其特征在于,所述方法包括:
接收第三下行控制信息DCI,所述第三DCI包括第三指示信息,所述第三指示信息用于指示在第六时间单元上发送第一上行数据,其中,所述第一上行数据的发送处理的第三处理时段与所述第二上行数据的发送处理的第四处理时段部分重合,用于发送所述第二上行数据的第七时间单元位于所述第六时间单元之后;
在第八时间单元上发送所述第一上行数据,所述第八时间单元位于所述第六时间单元之后。
因此,本申请实施例提供的无线通信的方法,在终端设备需要在第六时间单元需要发送第一上行数据和需要在位于该第六时间单元之后的第七时间单元上发送第二上行数据,并且,该第一上行数据的发送处理的处理时段和该第二上行数据的发送处理的处理时段部分重合的情况下,该终端设备不在该第六时间单元上发送该第一上行数据,而是在位于该第六时间单元之后的第八时间单元上发送该第一上行数据,可以使得该终端设备将未用来处理该第一上行数据的处理资源来处理该第二上行数据,提高了第二上行数据的传输性能。
在一种可能的实现方式中,所述第二上行数据的优先级高于所述第一上行数据的优先级。
因此,本申请实施例提供的无线通信的方法,通过考虑第一上行数据和第二上行数据的优先级,在第二上行数据的优先级高于该第一上行数据的优先级以及该终端设备处理该第一上行数据的处理时段与处理该第二上行数据的处理时段部分重合的情况下,使得该终端设备优先处理第二上行数据,在第一时间单元上不发送第一上行该数据,从而提高了第二上行数据的传输性能。
在一种可能的实现方式中,所述第一上行数据为增强型移动带宽eMBB业务的数据,所述第二上行数据为高可靠低时延URLLC业务的数据。
在一种可能的实现方式中,所述方法还包括:
接收第四DCI,所述第四DCI包括第四指示信息,所述第四指示信息用于指示所述第七时间单元;
在所述第七时间单元上发送所述第二上行数据。
第四方面,提供了一种无线通信的方法,其特征在于,所述方法包括:
发送第三下行控制信息DCI,所述第三DCI包括第三指示信息,所述第三指示信息用于指示第六时间单元,所述第六时间单元用于承载第一上行数据;
在第八时间单元上接收所述第一上行数据,所述第八时间单元位于所述第六时间单元之后。
在一种可能的实现方式中,所述第一上行数据的发送处理的第三处理时段与所述第二上行数据的发送处理的第四处理时段部分重合,用于发送所述第二上行数据的第七时间单元位于所述第六时间单元之后。
因此,本申请实施例提供的无线通信的方法,在终端设备需要在第六时间单元需要发送第一上行数据和需要在位于该第六时间单元之后的第七时间单元上发送第二上行数据,并且,该第一上行数据的发送处理的处理时段和该第二上行数据的发送处理的处理时段部分重合的情况下,该终端设备不在该第六时间单元上发送该第一上行数据,而是在位于该第六时间单元之后的第八时间单元上发送该第一上行数据,可以使得该终端设备将未用来处理该第一上行数据的处理资源来处理该第二上行数据,提高了第二上行数据的传输性能。
在一种可能的实现方式中,所述第二上行数据的优先级高于所述第一上行数据的优先级。
因此,本申请实施例提供的无线通信的方法,通过考虑第一上行数据和第二上行数据的优先级,在第二上行数据的优先级高于该第一上行数据的优先级以及该终端设备处理该第一上行数据的处理时段与处理该第二上行数据的处理时段部分重合的情况下,使得该终端设备优先处理第二上行数据,在第一时间单元上不发送第一上行该数据,从而提高了第二上行数据的传输性能。
在一种可能的实现方式中,所述第一上行数据为增强型移动带宽eMBB业务的数据,所述第二上行数据为高可靠低时延URLLC业务的数据。
在一种可能的实现方式中,所述方法还包括:
发送第四DCI,所述第四DCI包括第四指示信息,所述第四指示信息用于指示所述第七时间单元;
在所述第七时间单元上接收所述第二上行数据。
第五方面,提供了一种无线通信的装置,所述装置可以用来执行第一方面及第一方面 的任意可能的实现方式中的终端设备的操作。具体地,所述装置可以包括用于执行上述第一方面或第一方面的任意可能的实现方式中的终端设备的各个操作的模块单元。
第六方面,提供了一种无线通信的装置,所述装置可以用来执行第二方面及第二方面的任意可能的实现方式中的网络设备的操作。具体地,所述装置可以包括用于执行上述第二方面或第二方面的任意可能的实现方式中的网络设备的各个操作的模块单元。
第七方面,提供了一种无线通信的装置,所述装置可以用来执行第三方面及第三方面的任意可能的实现方式中的终端设备的操作。具体地,所述装置可以包括用于执行上述第三方面或第三方面的任意可能的实现方式中的终端设备的各个操作的模块单元。
第八方面,提供了一种无线通信的装置,所述装置可以用来执行第四方面及第四方面的任意可能的实现方式中的网络设备的操作。具体地,所述装置可以包括用于执行上述第四方面或第四方面的任意可能的实现方式中的网络设备的各个操作的模块单元。
第九方面,提供了一种终端设备,所述终端设备包括:处理器、收发器和存储器。其中,所述处理器、收发器和存储器之间通过内部连接通路互相通信。所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令。当所述处理器执行所述存储器存储的指令时,所述执行使得所述终端设备执行第一方面或第一方面的任意可能的实现方式中的任一方法,或者所述执行使得所述终端设备实现第五方面提供的装置。
第十方面,提供了一种网络设备,所述网络设备包括:处理器、收发器和存储器。其中,所述处理器、收发器和存储器之间通过内部连接通路互相通信。所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令。当所述处理器执行所述存储器存储的指令时,所述执行使得所述网络设备执行第二方面或第二方面的任意可能的实现方式中的任一方法,或者所述执行使得所述网络设备实现第六方面提供的装置。
第十一方面,提供了一种终端设备,所述终端设备包括:处理器、收发器和存储器。其中,所述处理器、收发器和存储器之间通过内部连接通路互相通信。所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令。当所述处理器执行所述存储器存储的指令时,所述执行使得所述终端设备执行第三方面或第三方面的任意可能的实现方式中的任一方法,或者所述执行使得所述终端设备实现第七方面提供的装置。
第十二方面,提供了一种网络设备,所述网络设备包括:处理器、收发器和存储器。其中,所述处理器、收发器和存储器之间通过内部连接通路互相通信。所述存储器用于存储指令,所述处理器用于执行所述存储器存储的指令。当所述处理器执行所述存储器存储的指令时,所述执行使得所述网络设备执行第四方面或第四方面的任意可能的实现方式中的任一方法,或者所述执行使得所述网络设备实现第八方面提供的装置。
第十三方面,提供了一种芯片系统,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于从存储器中调用并运行所述计算机程序,使得安装有所述芯片系统的通信设备执行上述第一方面至第四方面及其可能的实施方式中的任一方法。
第十四方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被通信设备(例如,网络设备或终端设备)的通信单元、处理单元或收发器、处理器运行时,使得通信设备执行上述第一方面至第四方面及其可能的实施方式中的任一方法。
第十五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序, 所述程序使得通信设备(例如,网络设备或终端设备)执行上述第一方面至第四方面及其可能的实施方式中的任一方法。
第十六方面,提供了一种计算机程序,所述计算机程序在某一计算机上执行时,将会使所述计算机实现上述第一方面至第四方面及其可能的实施方式中的任一方法。
附图说明
图1是适用于本申请实施例的移动通信系统的架构示意图。
图2至图4是本申请实施例的下行传输的示意图。
图5是根据本申请实施例提供的无线通信的方法的示意性交互图。
图6是本申请实施例提供的下行传输的示意图。
图7是本申请实施例提供的下行传输的另一示意图。
图8是本申请实施例提供的另一无线通信的方法的示意性交互图。
图9至图12是本申请实施例提供的无线通信的装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
图1是适用于本申请实施例的移动通信系统的架构示意图。如图1所示,该移动通信系统包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
本申请实施例中的无线接入网设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站NodeB、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点,还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,还可以是中继站、车载设备、可穿戴设备以及未来演进的PLMN网络中的网络设备等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入 网设备简称网络设备,如果无特殊说明,在本申请中,网络设备均指无线接入网设备。
本申请实施例中的终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
首先,对本申请实施例中用于无线通信的时域资源进行简单说明。
在本申请实施例中,网络设备和终端设备用于无线通信的时域资源在时域上可以划分为多个时间单元。
并且,在本申请实施例中,多个时间单元可以是连续的,也可以是某些相邻的时间单元之间设有预设的间隔,本申请实施例并未特别限定。
在本申请实施例中,时间单元可以是包括用于上行数据传输和/或下行数据传输的时间单元。
在本申请实施例中,对一个时间单元的长度不做限定例如,1个时间单元可以是一个或多个子帧;或者,也可以是一个或多个时隙;或者,也可以是一个或多个符号。
在本申请的实施例中,符号也称为时域符号,可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是单载波频分多址(single carrier frequency division multiple access,SC-FDMA)符号,其中SC-FDMA又称为带有转换预编码的正交频分复用(orthogonal frequency division multiplexing with transform precoding,OFDM with TP)。
在本申请实施例中,对于多个时间单元来说,多个时间单元在时域上是存在时序关系的,且任意两个时间单元对应的时间长度可以相同也可以不同。
下面,为了便于理解,对本申请实施例中涉及的下行数据的传输和上行数据的传输分别进行详细说明。
下行数据的传输
网络设备向终端设备发送下行控制信息(downlink control information,DCI),解调参考信号(Demodulation Reference Signal,DMRS)和下行数据,该终端设备在接收到该DCI后,根据该DCI可以确定用于发送该下行数据的时频资源、用于发送该下行数据的反馈信息的时频资源以及表示该下行数据的编码方式等信息,根据DMRS进行信道估计,该终端设备基于信道估计的结果和DCI对该下行数据进行解调译码。若该终端设备针对该下行数据解调译码成功,则表示该终端设备成功接收该下行数据,该终端设备会生成确认应答(Acknowledgment,ACK),并且,在该DCI中所指示的时频资源上发送ACK;若该终端设备针对该下行数据解调译码失败,则表示该终端设备未成功接收该下行数据,该终端设备会生成否认应答(Negative Acknowledgement,NACK),并且,在该DCI中所指示的时频资源上发送NACK。
基于上述描述,终端设备处理下行数据的处理时段可以为以下任一种定义:
定义1
处理时段包括终端设备进行信道估计和对下行数据进行解调译码占用的时段。
定义2
处理时段包括终端设备进行信道估计、对下行数据进行解调译码和发送反馈信息的占用的时段。
定义3
处理时段包括终端设备对下行数据进行解调译码和发送反馈信息占用的时段。
定义4
处理时段包括终端设备对下行数据进行解调译码占用的时段。
为了便于描述,在对本申请实施例举例说明时,以定义1中处理时段为例进行描述。但本申请实施例对终端设备处理下行数据的处理时段不做任何限定。
需要说明的是,终端设备在接收到DMRS后,才可以进行信道估计,进而,对下行数据进行解调译码处理。在一个物理下行共享信道(Physical Downlink Shared Channel,PDSCH)中,可能会配置多个DMRS,终端设备一般需要将一个PDSCH中的所有DMRS全部接收完成,才完成信道估计。
一般情况下,终端设备可以一边接收下行数据,一边对下行数据进行处理。
如图2所示,网络设备发送下行数据后,该终端设备在接收到DMRS后,虽然该终端设备没有接收完该下行数据,该终端设备可以在信道估计后,对已经接收到的部分下行数据进行解调译码,这样,在该终端设备进行信道估计的时间点开始到该完整接收下行数据的时段内,即图2所示的处理时段#C1,该终端设备可以边接收下行数据边解调译码下行数据。图2所示的处理时段#C是该终端设备处理该下行数据的时段,即,该终端设备对该下行数据进行信道估计、解调译码占用的时间。
从上述描述可以看出,在一定程度上,终端设备接收DMRS的时间会影响终端设备处理下行数据的处理时段。如图3所示,假设,终端设备处理下行数据的处理时长相同,在图3的第一个图中,系统为下行数据配置了一个DMRS,则终端设备在接收到该DMRS后就可以进行信道估计,进而进行解调译码;在图3的第二个图中,系统为下行数据配置了两个DMRS,则终端设备只有在接收到第二个DMRS后才能完成信道估计,进而进行解调译码。因此,相比于配置一个DMRS,配置两个DMRS明显延迟了终端设备处理下行数据的处理时段。
上行数据的传输
上行数据的传输有两种传输方式:第一种传输方式是基于授权的传输方式,另一种传输方式是基于免授权的传输方式。
下面,分别对上述两种传输方式进行说明。
基于授权的传输方式
在上行数据的传输中,当终端设备有上行业务传输需求的时候,需要在物理上行控制信道(Physical Uplink Control Channel,PUCCH)上向网络设备发送调度请求(Scheduling Request,SR),通知该网络设备有上行数据传输需求。该网络设备在接收到SR后,会向该终端设备发送调度信息,调度信息也称为上行授权(Up Link Grant,UL Grant)信息。该终端设备收到调度信息后,对上行数据进行编码调制处理后,在该调度信息指示的上行 资源上发送该上行数据。这种基于授权的传输机制可靠性高,但是需要经过终端设备发送调度请求、网络设备发送调度信息之后才能进行上行数据传输,从而导致上行数据的传输时延较大。因此,基于授权的传输方式不利于对时延要求较高的数据的传输。
需要说明的是,基于授权的传输方式也可以称为基于调度的传输方式。
基于免授权的传输方式终端设备的上行传输不需要通过网络设备的调度完成,这种免授权(Grant free,GF)的传输可以称为自主上行(Autonomous UL,AUL)传输,也可以称为配置授权的上行传输(configured grant UL transmission,CGL),也可以称为基于竞争机制(contention based)的传输。具体地,网络设备将GF资源通过半静态方式分配给终端设备,终端设备在进行上行传输时,不需要向网络设备发送调度请求SR以及等待网络设备发送UL Grant信息,可以直接通过GF资源发送上行数据,从而减少传输时延。因此,基于免授权的传输方式有利于对时延要求较高的数据的传输。
在上行传输中,终端设备处理上行数据的处理时段包括对上行数据进行编码占用的时段,或者,终端设备处理上行数据的处理时段包括对上行数据进行编码和发送上行数据占用的时段。本申请实施例对终端设备处理上行数据的处理时段不做任何限定。
以上,对本申请实施例中涉及的技术术语和数据传输的流程做了简单描述。下面,对本申请实施例的无线通信的方法进行详细说明。
如图4所示,网络设备在时间单元#A上发送下行数据#A,随后,在时间单元#B上发送下行数据#B。终端设备处理该下行数据#A的处理时段为处理时段#A,处理该下行数据#B的处理时段为处理时段#B。该处理时段#A和该处理时段#B部分重合,也就是说,该终端设备还未处理完该下行数据#A的情况下,就需要开始处理该下行数据#B。但是,在重合时段中,该终端设备可能并没有能力同时处理两个数据,使得下行数据#B的处理会被延迟,从而影响下行数据#B的传输时延。
因此,本申请实施例提供了一种无线通信的方法,有助于降低后接收到的业务数据的处理时延。
以下,结合图5至图8,对本申请一实施例的无线通信的方法进行详细说明。
图5是根据本申请实施例提供的无线通信的方法200的示意性交互图。下面,对方法200的每个步骤进行详细说明。
在本申请实施例中,以终端设备和网络设备作为执行方法200的执行主体为例,对方法200进行说明。作为示例而非限定,执行方法200的执行主体也可以是对应终端设备的芯片和对应网络设备的芯片。
在S210中,网络设备向终端设备发送DCI#1(即,第一DCI的一例),该DCI#1包括指示信息#1(即,第一指示信息的一例),该指示信息#1用于指示时间单元#3(即,第三时间单元的一例),该时间单元#3用于承载下行数据#1(即,第一下行数据的一例)的反馈信息。
也就是说,该网络设备通过该DCI#1中的指示信息#1通知该终端设备在该时间单元#3上发送该下行数据#1的反馈信息。
应理解,该DCI#1还包括用于指示该网络设备发送该下行数据#1的时间单元(例如,时间单元#1)的信息以及用于指示该下行数据的编码方式的信息等信息,可以使得该终端设备在接收到该DCI#1后,基于该DCI#1正确处理该下行数据#1以及发送该下行数据#1 的反馈信息。
需要说明的是,时间单元#1可以包括一个时间单元,也可以包括多个时间单元,本申请实施例不做任何限定。下文中涉及的时间单元#2、时间单元#3、时间单元#4和时间单元#5的解释同该时间单元#1的解释,为了简洁,后续不再做描述。
在S220中,包括S221和S222,下面,分别对S221和S222说明。
在S221中,该网络设备在时间单元#1(即,该第一时间单元的一例)上发送该下行数据#1。
对应地,该终端设备通过该DCI#1确定该网络设备会在该时间单元#1上发送下行数据,则,该终端设备会在该时间单元#1上开始接收并处理该下行数据#1。
在S222中,该网络设备在时间单元#2(即,第二时间单元的一例)上发送下行数据#2(即,第二下行数据的一例)。
同理,对应地,该终端设备可以通过网络设备发送的DCI(例如,DCI#2)确定该网络设备会在该时间单元#2上发送下行数据,则,该终端设备会在该时间单元#2上开始接收该下行数据#2。
其中,该时间单元#2位于该时间单元#1之后,终端设备对该下行数据#2做接收处理的处理时段#1(即,第一处理时段的一例)与该终端设备对该下行数据#2做接收处理的处理时段#2(即,第二处理时段的一例)部分重合。
也就是说,该网络设备在发送该下行数据#1之后,也发送了该下行数据#2。在这个过程中,该终端设备在开始接收该下行数据#2时,该终端设备并未处理完该下行数据#1,即,该处理时段#1与该处理时段#2部分重合;或者说,该时间单元#1与该时间单元#2间隔较近;或者说,在重合时段,该终端设备会需要更多的处理资源(例如,计算资源、缓存数据的资源等)来处理两个下行数据,但是,该终端设备并没有足够的资源处理下行数据,这样情况可以认为是,该终端设备处理该下行数据#1的处理资源与该终端设备处理该下行数据#2的处理资源发生冲突,从而,会使得两个下行数据的处理都受到影响,该终端设备无法在该网络设备调度的资源上发送反馈信息,影响了数据传输的传输性能。
作为示例而非限定,在某些场景下,时间单元#2与时间单元#1可以部分重叠。例如,当终端设备支持在一个载波内激活多个带宽部分(bandwidth part,BWP)或支持在多个载波同时进行数据传输的时候,可能会出现在在第一个载波或BWP上先调度了下行数据#1,然后再在第二个载波或BWP上调度了下行数据#2。假设,一个时隙包括14个符号,用于传输下行数据#1的时间单元#1的起始符号和结束符号分别为第一时隙的第一个符号和第13个符号;用于传输下行数据#2的时间单元#2的起始符号和结束符号分别为第一时隙的第5个符号和第7个符号。那么,在这种场景下,时间单元#2的起始符号在时间单元#1的起始符号之后但在时间单元#1的结束符号之前,也就是说,时间单元#2与,时间单元#1是部分重叠的。为了避免出现上述场景中两个下行数据都无法按时反馈的问题,提高数据传输的传输性能,这种情况下,终端设备可以优先处理一种上行数据,尽量保证一种上行数据的传输性能。
在S230中,该终端设备在该时间单元#3上,不发送该下行数据#1的反馈信息。
由于终端设备没有在时间单元#3之前完成对下行数据#1的处理,所以终端设备没有在该时间单元#3上发送下行数据#1的反馈信息。
在一种可能的实现方式中,该终端设备在接收到该下行数据#2后,暂停处理该下行数据#1。
这样,该终端设备可以将资源预留出来用于处理后来接收到的下行数据#2。
作为示例而非限定,该终端设备也可以对下行数据#1和下行数据#2做并行处理,但在具体实现过程中,会分配更多的处理资源用来处理下行数据#2。
对于网络设备来说,该网络设备确知发送该下行数据#1的时间单元#1和发送该下行数据#2的时间单元#2,基于该时间单元#1、该时间单元#2和终端设备处理下行数据的大概占用的时长,可以通过相关公式进行计算,确定该终端设备处理该下行数据#1的处理时段#1与该终端设备处理该下行数据#2的处理时段#2部分重合,这种情况下,该网络设备确知该终端设备未完成对该下行数据#1的处理,即终端设备也不会在该时间单元#3上发送该下行数据#1的反馈信息。
因此,该网络设备不会在该时间单元#3上接收该下行数据#1的反馈信息。
如前所述,该终端设备不会在该时间单元#3上发送该下行数据#1的反馈信息,意味着该终端设备并没有完成对该下行数据#1的处理,预留了处理资源来处理该下行数据#2,因此,该终端设备在接收到该下行数据#2后,开始处理该下行数据#2,并且,处理完毕后可以基于网络设备的调度发送该下行数据#2的反馈信息。
S211,该网络设备向该网络设备发送DCI#2,该DCI#2包括指示信息#2(即,第二指示信息的一例),该指示信息#2用于指示时间单元#5;
S240,该终端设备在该时间单元#5上发送该下行数据#2的反馈信息。
应理解,该DCI#2还包括用于指示该网络设备发送该时间单元#2的信息以及用于指示该下行数据#2的编码方式的信息等信息,可以使得该终端设备在接收到该DCI#2后,基于该DCI#2正确处理该下行数据#2以及发送该下行数据#2的反馈信息。
因此,本申请实施例提供的无线通信的方法,在网络设备在第一时间单元上发送第一下行数据,在位于该第一时间单元之后的第二时间单元上发送第二下行数据,并且,在终端设备有处理资源的冲突时,该终端设备在该网络设备调度的时间单元(例如,第三时间单元)上不发送该第一下行数据的反馈信息,可以使得该终端设备将未用来处理该第一下行数据的处理资源来处理该第二下行数据,降低了该第二下行数据的传输时延,从而提高了该第二下行数据的传输性能。
其中,针对终端设备有处理资源冲突可以有多种判断准则:例如,判断准则可以是终端设备处理该下行数据#1的处理时段和处理该下行数据#2的处理时段存在部分重合;再例如,判断准则也可以是终端设备无法按时对该下行数据#1和该下行数据#2中的至少一个进行反馈,这里所谓的按时进行反馈指在DCI指示的时频资源上进行反馈。
在一种可能的实现方式中,网络设备可以通过终端设备上报的处理下行数据的能力的信息以及时间单元#1和时间单元#2的时序关系确定终端设备有处理资源冲突的情况。其中,终端设备处理下行数据的能力至少包含终端设备处理下行数据需要的时间N1作为示例而非限定,N1可以定义为从下行数据的最后一个符号到最早能够进行上行反馈的第一个符号的时间长度,例如,网络设备发送下行数据的时间单元的最后一个符号为第n个符号,通过DCI调度的终端设备最快能够发送反馈信息的是第m个符号开始反馈,则N1=m-n+1。
假设,网络设备发送下行数据#1的第一个符号为第k1个符号,发送下行数据#1的最后一个符号为第k2个符号,发送下行数据#2的第一个符号为第k3个符号,发送下行数据#2的最后一个符号为第k4个符号,DCI指示在第j个符号上开始发送下行数据#2的反馈信息,其中k1,k2,k3,k4和j为非负整数,且它们的计数起点相同。如果k2+N1大于或等于k,则认为下行数据#1的接收处理的第一处理时段和下行该数据#2的接收处理的第二处理时段部分重合;如果k2+N1小于k,则认为上述第一处理时段和第二处理时段没有重合,其中k为大于等于k3且小于等于k4的非负整数。如果第一处理时段和第二处理时段有重合,且满足k+2*N1大于或等于j,则可以认为终端设备处理下行数据#1和下行数据#2的处理资源有冲突,需要使用本申请实施例中的方法对下行数据#1和下行数据#2进行处理;如果第一处理时段和第二处理时段没有重合,或k+2*N1小于j,则可以认为终端设备处理下行数据#1和下行数据#2的处理资源没冲突。
在本申请实施例的S230中,该终端设备在该时间单元#3上不发送该下行数据#1的反馈信息,有两种可能的情况,情况#1和情况#2,下面,分别对这两种情况进行说明。
情况#1
由于时间单元#1和时间单元#2是网络设备通过DCI调度的资源,该网络设备根据时间单元#1和时间单元#2的时序关系可以确定该终端设备处理下行数据#1的处理时段和处理下行数据#2的处理时段会存在重合,也可以确定该终端设备不会按照调度的资源在时间单元#1上发送下行数据#1的反馈信息,或者说,也可以确定该终端设备无法及时处理下行数据#1。
基于此,该终端设备可以一直不发送该下行数据#1的反馈信息,即,该终端设备不仅不会在该时间单元#3上发送该下行数据#1的反馈信息,也不会延后发送该下行数据#1的反馈信息。
随后,该网络设备可以对下行数据#1做重传处理,即,在其他时间单元上向该终端设备重新发送下行数据#1。
情况#2
该终端设备在时间单元#4(即,第四时间单元的一例)发送该下行数据#1的反馈信息,该时间单元#4位于该时间单元#3之后。
其中,该时间单元#4是位于该终端设备针对该下行数据#1处理完毕的时间单元(记为时间单元#9)之后的距离该时间单元#9最近的可用的时间单元。或者说,该时间单元#4是位于该时间单元#9之后的第一个可用的时间单元。
在此种情况下,该终端设备会在处理完该下行数据#2之后,继续处理该下行数据#1,在处理完该下行数据#1的时间单元(即,时间单元#9)之后,会在距离该时间单元#9最近的可用的时间单元(即,时间单元#4)上发送该下行数据#1的反馈信息。
其中,可用的时间单元可以有多种解释:
可用的时间单元可以是指不需要对下行数据#2进行反馈的时间单元。否则,若同一个时间单元既发送下行数据#1的反馈信息也发送下行数据#2的反馈信息,会有冲突,无法对下行数据#1进行反馈。此外,若考虑时分双工(Time Division Duplexing,TDD)的场景,可用的时间单元必须是上行时间单元。
在本申请实施例中,该时间单元#4的具体位置与终端设备的处理能力有关。其中, 终端设备的处理能力具体指,该终端设备在处理完该下行数据#2后继续处理该下行数据#1的过程中,是否有能力继续处理该下行数据#1中剩余的未处理的下行数据。若该终端设备无法继续处理该下行数据#1中剩余的未处理的下行数据,在处理完该下行数据#2后,只能从头开始重新处理完整的该下行数据#1。
下面,分别从终端设备能继续处理该下行数据#1中剩余的未处理的下行数据(即,情况#2A)和不能继续处理该下行数据#1中剩余的未处理的下行数据(即,情况#2B)对时间单元#4进行说明。
情况#2A
该时间单元#4与该终端设备对该下行数据#2接收处理完毕的时间单元(记为时间单元#10)之间间隔M1个时间单元,该M1个时间单元的时长大于或等于该处理时段#1与该处理时段#2重合的时段对应的时长,该M1为大于或等于1的整数。
也就是说,若该终端设备可以继续处理该下行数据#1中未处理的下行数据,该终端设备在处理完该下行数据#2后,只需要继续占用重合的时段对应的时长来处理该下行数据#1中剩余的下行数据就可以,随后,在间隔该时间单元#9之后的最近的可用的时间单元(即,时间单元#4)上发送该下行数据#1的反馈信息。
若该终端设备在处理完该下行数据#1的时间单元#9之后距离该时间单元#9最近的时间单元是可用的时间单元,则该M1个时间单元大约等于该处理时段#1和处理时段#2重合的时段对应的时长;若该终端设备在处理完该下行数据#1的时间单元#9之后距离时间单元#9最近的时间单元不是可用的时间单元,则该M1个时间单元大于该处理时段#1和处理时段#2重合的时段对应的时长。
需要说明的是,在实际处理中,基于很多实现因素,该M1个时间单元可能并不是严格意义上的完全等于处理时段#1和处理时段#2的重合时段,因此,这里的等于可以理解为大约等于。例如,该终端设备在处理完该下行数据#2后继续处理该下行数据#1时,时间上可能会有延迟;再例如终端设备处理完该下行数据#的1时间单元可能与发送该下行数据#1的反馈信息的时间单元是同一个时间单元。
图6所示为根据本申请一实施例提供的下行传输的示意图。如图6所示,以时隙为传输数据的基本单位,网络设备在时隙#1(即,时间单元#1)上发送下行数据#1,并且,通过DCI#1指示终端设备在时隙#5(即,时间单元#3)上发送该下行数据#1的反馈信息。随后,网络设备又在时隙#2(即,时间单元#2)上发送下行数据#2,并且,通过DCI#2指示终端设备在时隙#6(即,时间单元#5)上发送该下行数据#2的反馈信息。但是,该终端设备处理该下行数据#1的处理时段#1与处理该下行数据#2的处理时段#2部分重合,重合时段对应的时长为T1。终端设备接收到下行数据#2之后可以暂停处理下行数据#1,优先处理下行数据#2,从而,使得该终端设备不会或者来不及在时隙#5上发送下行数据#1的反馈信息,但是,可以在时隙#6上发送该下行数据#2的反馈信息,保证了下行数据#2的传输时延。对于下行数据#1来说,处理完下行数据#2后,继续处理时长T1,大致在时隙#8(即,时间单元#9)上才能处理完,由于在时隙#8后面的时隙#9是最近的可用的时隙,因此,该终端设备可以在时隙#9上发送该下行数据#1的反馈信息。
当然,若在时隙#8后面的时隙#9不是最近的可用的时间单元,即,时隙#9被其他数据或信息的传输占用,该终端设备可以在时隙#9之后的最近的可用的时隙上发送该下行 数据#1的反馈信息。
情况#2B
该时间单元#4与该终端设备对该下行数据#2接收处理完毕的时间单元#10之间间隔M2个时间单元,该M2个时间单元的时长大于或等于该处理时段#1对应的时长,该M2为大于或等于1的整数。
也就是说,若该终端设备不能继续处理该下行数据#1中未处理的下行数据,该终端设备在处理完下行数据#2后,需要从头开始处理完整的该下行数据#1,随后,在距离该时间单元#9之后的最近的可用的时间单元(即,时间单元#4)上发送该下行数据#1的反馈信息。
同理,若该终端设备在处理完该下行数据#1的时间单元#9之后距离该时间单元#9的最近的时间单元是可用的时间单元,则该M2个时间单元大约等于该处理时段#1对应的时长;若该终端设备在处理完该下行数据#1的时间单元#9之后距离该时间单元#9的时间单元不是可用的时间单元,则该M2个时间单元大于该处理时段#1对应的时长。
这里对于等于的解释同情况#B对等于的解释相同,为了简洁,此处不再赘述。
图7所示为根据本申请一实施例提供的下行传输的另一示意图。如图7所示,以时隙为传输数据的基本单位,网络设备在时隙#1(即,时间单元#1)上发送下行数据#1,并且,通过DCI#1指示终端设备在时隙#5(即,时间单元#3)上发送该下行数据#1的反馈信息。随后,网络设备又在时隙#2(即,时间单元#2)上发送下行数据#2,并且,通过DCI#2指示终端设备在时隙#6(即,时间单元#5)上发送该下行数据#2的反馈信息。但是,该终端设备处理该下行数据#1的处理时段#1与处理该下行数据#2的处理时段#2部分重合,该终端设备在接收到下行数据#2之后可以暂停处理下行数据#1,优先处理下行数据#2,从而,使得该终端设备不会或者来不及在时隙#5上发送该下行数据#1的反馈信息,但是,可以在时隙#6上发送该下行数据#2的反馈信息,保证了下行数据#2的传输时延。对于下行数据#1来说,由于不能继续处理未处理的下行数据#1,必须从头开始处理完整的下行数据#1,需要继续处理与处理时段#1相同时长,大致在时隙#9(即,时间单元#9)上才能处理完下行数据#1。由于在时隙#9后面的时隙#10是最近的可用的时隙,因此,该终端设备可以在时隙#10上发送该下行数据#1的反馈信息。
当然,若在时隙#9后面的时隙#10不是最近的可用的时间单元,即,时隙#10被其他数据或信息的传输占用,该终端设备可以在时隙#10之后的最近的可用的时隙上发送该下行数据#1的反馈信息。
在本申请实施例中,对于情况#2中该终端设备会在该时间单元#4上发送该下行数据#1的反馈信息的情况,无论是上述情况#2A还是情况#2B,该网络设备都可以通过该时间单元#1、时间单元#2的先后顺序以及终端设备继续处理剩余下行数据的能力确定该终端设备发送该下行数据#1的反馈信息的位置(即,时间单元#4)从而,在该时间单元#4上接收该下行数据#1的反馈信息。
在一种可能的实现方式中,若该网络设备确知该终端设备能够继续处理剩余的下行数据,则确定的时间单元#4是情况#2A中的时间单元#4;若该网络设备确知该终端设备不能继续处理剩余的下行数据,则确定的时间单元#4是情况#2B中的时间单元#4。无论哪种情况,该网络设备可以仅检测一次就可以接收该下行数据#1的反馈信息。
在另一种可能的实现方式中,若该网络设设备并不确知该终端设备是否能够继续处理剩余的下行数据,则会同时考虑情况#2A和情况#2B,即,在情况#2A中的时间单元#4和情况#2B中的时间单元#4上都会检测,以便于能够接收到该下行数据#1的反馈信息。
现有的5G移动通信系统可以同时传输不同类型的数据,不同类型的数据对移动通信系统的需求不同。其中,5G中典型的两种数据类型是增强型移动宽带(enhanced mobile broadband,eMBB)数据和高可靠低时延通信(ultrareliable and low latencycommunications,URLLC)数据。
相比于eMBB数据,URLLC数据对时延要求极高,在本申请实施例中,如何在5G移动通信系统降低URLLC数据的传输时延,从而提高数据的传输性能,也是需要考虑的问题。
由于URLLC数据对时延要求极高,对于在时间单元#1之后的时间单元#2上发送的下行数据#2,若下行数据#2是URLLC数据,优先处理下行数据#2,有助于提高对时延要求高的数据的传输性能。
因此,终端设备可以通过下行数据的优先级来确定是否优先处理该下行数据#2。例如,若该终端设备确定的该下行数据#2的优先级高于该下行数据#1的优先级,则该终端设备暂停处理该下行数据#1,优先处理该下行数据#2,执行方法200的技术方案;若该下行数据#2的优先级低于或等于该下行数据#1的优先级,则该终端设备继续处理该下行数据#1,延后处理该下行数据#2,使得该终端设备可以在网络设备调度的时间单元#3上发送该下行数据#1的反馈信息,不在网络设备调度的该时间单元#5上发送该下行数据#2的反馈信息。
这里所说的下行数据的优先级可以从可靠性、传输速率等方面考虑来定义下行数据的优先级:若从数据传输的时延和可靠性方面考虑,时延短且可靠性高的数据的优先级高于时延长且可靠性低的数据的优先级,例如,URLLC数据的优先级高于eMBB数据的优先级。
在本申请实施例中,终端设备可以基于终端设备是否能够确定下行数据的数据类型的情况分别基于方式1和方式2确定是否优先处理该下行数据#2。
方式1
在终端设备可以确定下行数据的数据类型的情况下,根据该下行数据#1的数据类型和该下行数据#2的数据类型确定该下行数据#1和该下行数据#2的优先级,进而确定是否优先处理该下行数据#2。
其中,数据类型可以是eMBB、URLLC和mMTC等可以区分性能需求的数据类型。
举例来说,从数据传输的时延、可靠性等方面考虑,URLLC数据的优先级可以高于eMBB数据的优先级。
例如,若下行数据#2为URLLC数据,下行数据#1为eMBB数据,则下行数据#2的优先级高于下行数据#1的优先级,则该终端设备可以暂停处理该下行数据#1,优先处理下行数据#2,执行方法200的技术方案;若下行数据#1为URLLC数据,下行数据#2为eMBB数据,则下行数据#2的优先级低于下行数据#1的优先级,则该终端设备继续处理下行数据#1,延后处理该下行数据#2;若下行数据#1和下行数据#2都为eMBB数据,则该终端设备可以继续处理下行数据#1,延后处理该下行数据#2,也可以进一步基于eMBB 数据的业务子类型优先处理下行数据#2,例如,若下行数据#1是eMBB数据中的文件下载数据,下行数据#2是eMBB数据中的网页浏览数据,则可以优先处理下行数据#2。
基于上述描述,表1所示为下行数据的数据类型与处理方式的对应关系。
表1
Figure PCTCN2019086351-appb-000001
在本申请实施例中,该终端设备可以通过各种方式确定下行数据的数据类型。
在一种可能的实现方式中,该终端设备可以根据DCI确定下行数据的数据类型。例如,该终端设备可以根据DCI中携带的载荷(payload size)或者无线网络临时鉴定(Radio Network Tempory Identity,RNTI)进行区分;再例如,该终端设备也可以根据DCI中用于指示数据类型的指示信息直接确定下行数据的数据类型。
在另一种可能的实现方式中,该终端设备可以根据下行数据的属性确定下行数据的数据类型。例如,该终端设备可以通过承载下行数据的PDSCH的符号数确定下行数据的数据类型,假设,配置一个门限n,PDSCH的符号数大于n,则认为是eMBB数据,否则认为是URLLC数据。
这样,通过考虑第一下行数据和第二下行数据的优先级,在第二下行数据的优先级高于该第一下行数据的优先级以及该终端设备处理该第一下行数据的处理时段与处理该第二下行数据的处理时段部分重合的情况下,使得该终端设备不在网络设备调度的第三时间单元上发送该第一下行数据的反馈信息,而是优先处理该第二下行数据,降低了该第二下行数据的处理时延,提高了优先级较高的第二下行数据的传输性能。
方式2
在终端设备无法确定下行数据的数据类型的情况下,系统可以规定,在时间单元#2上发送的下行数据#2的优先级高于在时间单元#1上发送的下行数据#1的优先级。
在这种方式中,网络设备可以通过调度进行控制,使得终端设备在处理该下行数据#1的处理时段和在处理该下行数据#2的处理时段部分重合的情况下,在该时间单元#2上发送的该下行数据#2的优先级高于在该时间单元#1上发送的该下行数据#1的优先级。
具体而言,以eMBB数据和URLLC数据为例,考虑到eMBB数据对时延的要求通常不如URLLC数据对时延的要求高,当eMBB数据在URLLC数据之后到达时,网络设备可以通过调度,延迟发送eMBB数据以避免出现终端设备同时处理两种数据的情况;因此,只有当该下行数据#1为eMBB数据,该下行数据#2为URLLC数据时,由于URLLC数据不能延迟发送,所以,网络设备必须及时发送该下行数据#2,因此,才会出现该处理时段#1和该处理时段#2部分重合的情况。因此,系统可以规定:在出现处理时段部分重合的情况下,后面的时段到达的下行数据的优先级高于前面的时段到达的下行数据的优先级。
不过,需要说明的是,基于方式2的规则确定的两个下行数据的优先级可能并不是实际的下行数据的优先级。例如,若该下行数据#1的数据类型和下行数据#2的数据类型都是URLLC数据,网络设备都会及时发送这两种下行数据,基于方式2的规则,该终端设备会认为该下行数据#2的优先级高于该下行数据#1的,实际上,该下行数据#1的优先级和该下行数据#2的优先级是相同的。但是,从实现角度来说,这种方式易于实现。
作为示例而限定,上文所述的终端设备基于终端设备是否能够确定下行数据的数据类型的情况确定是否优先处理该下行数据#2的方式,仅为示意性说明,本申请实施例并不限于此。
例如,终端设备可以通过网络设备发送的DCI中用于指示下行数据的优先级的指示信息确定下行数据#1和下行数据#2的优先级,从而,基于下行数据的优先级确定是否优先处理下行数据#2。
以上,结合图5至图7,从下行传输的角度,详细描述了本申请一实施例的无线通信的方法200。下面,结合图8,从上行传输的角度,对本申请另一个实施例的无线通信的方法300做一详细说明。
在上行传输中,网络设备对发送上行数据之前,需要对上行数据做编码处理,处理完后发送上行数据。在一种通信场景中,终端设备在前后两个时段都需要发送上行数据,其中,终端设备对前后两个时段需要发送的上行数据的处理时段存在部分重合,也就是说,该终端设备对前个时段需要发送的上行数据的处理还未完成,就需要处理在下个时段需要发送的上行数据。但是,对于处理时段重合的情况,该终端设备可能无法同时处理两种数据,使得两种数据的传输都会受到影响。
因此,本申请实施例还提供了一种无线通信的方法,有助于提高上行数据传输的性能。
图8是本申请实施例提供的另一种无线通信的方法300的示意性交互图。下面,对方法300的每个步骤进行详细说明。
在S310中,网络设备发送DCI#A(即,第三DCI的一例),该DCI#A包括指示信息#A(即,第三指示信息的一例),该指示信息#A用于指示时间单元#A(即,第六时间单元的一例),该时间单元#A用于承载上行数据#A(即,第一上行数据的一例),其中,该上行数据#A的发送处理的处理时段#A(即,第三处理时段的一例)与上行数据#B(即,第二上行数据的一例)的发送处理的处理时段#D(即,第四处理时段的一例)部分重合,用于承载该上行数据#B的时间单元#B(即,第七时间单元的一例)位于该时间单元#A之后。
具体而言,该终端设备在前一个时段需要发送该上行数据#A,并且,可以通过基于授权的传输方式发送该上行数据#A,即,该网络设备通过DCI#A调度该终端设备在该时间单元#A上发送该上行数据#A;当该终端设备正在处理该上行数据#A的过程中,该终端设备又需要发送该上行数据#B,也会处理该上行数据#B。此种情况下,该终端设备处理该上行数据#A的处理时段#A会与处理该上行数据#B的处理时段#B部分重合。
其中,若该上行数据#B是基于授权的传输方式发送的数据,则该时间单元#B是网络设备通过DCI(例如,DCI#B)调度的资源;若该上行数据#B是基于免授权的传输方式发送的数据,则该时间单元#B是网络设备通过半静态方式配置的资源。
对于上行传输,在重合时段,该终端设备会需要更多的处理资源(例如,计算资源、 缓存数据的资源等)来处理两个上行数据,但是,该终端设备并没有足够的资源处理上行数据,这样情况可以认为是,该终端设备处理该上行数据#A的处理资源与该终端设备处理该上行数据#A的处理资源发生冲突。这样,会使得两个上行数据的处理都受到影响,该终端设备无法向该网络设备及时发送上行数据,影响了数据传输的可靠性。
为了解决该场景的问题,一种可能的实现方式是,在终端设备需要发送该上行数据#B的情况下,终端设备暂停处理上行数据#A,从而确保上行数据#B能够及时得到处理。由于终端设备暂停了对上行数据#A的处理,直到上行数据#B处理完成,从而导致终端设备无法及时在时间单元#A上发送数据#A,也就是说终端设备在时间单元#A上不发送上行数据#A。
进一步的,终端设备可以将发送上行数据#A的时间推迟到时间单元#C(即,第八时间单元的一例),如S320所示。其中,时间单元#C在时间单元#A之后。
在一种可能的实现方式中,终端设备可以根据协议预定义的规则确定时间单元#C,例如,时间单元#C与时间单元#A之间可以间隔一个固定的时间长度,或者间隔一个网络设备给终端设备配置的时间长度。
对于网络设备来说,若是在该时间单元#A上未接收到该上行数据#A,则会调度资源通知该终端设备进行该上行数据#A的重传,即,通过DCI通知该终端设备在时间单元#C上重新发送该上行数据#A。因此,该终端设备可以在该时间单元#C上发送该上行数据#A。
对于上行数据#B来说,由于该终端设备暂停处理该上行数据A,该终端设备可以将资源预留出来用于处理后来需要发送的上行数据#B。
作为示例而非限定,该终端设备也可以对上行数据#A和上行数据#B做并行处理,但在具体实现过程中,会分配更多的处理资源用来处理上行数据#B。
若该上行数据#B是基于免授权的传输方式发送的数据,则该终端设备在处理完该上行数据#B后,可以通过预配置的免授权资源发送该上行数据#B。
若该上行数据是基于授权的传输方式发送的数据,在一种可能的实现方式中,
S311,网络设备发送DCI#B(即,第四DCI的一例),该DCI#B包括指示信息#B(即,第四指示信息的一例),该指示信息#B用于指示该时间单元#B;
S330,该终端设备在该时间单元#B上发送该上行数据#B。
也就是说,如前所述,该终端设备在该时间单元#A上不发送该上行数据#A的反馈信息,意味着该终端设备没有完成对该上行数据#A的处理,暂停了对该上行数据#A的处理,预留了处理资源来处理该上行数据#B,因此,该终端设备可以及时处理该上行数据#B,并且,处理完毕后可以在该网络设备的调度的时间单元#B上发送该上行数据#B。
因此,本申请实施例提供的无线通信的方法,在终端设备需要在第六时间单元需要发送第一上行数据和需要在位于该第六时间单元之后的第七时间单元上发送第二上行数据,并且,该第一上行数据的发送处理的处理时段和该第二上行数据的发送处理的处理时段部分重合的情况下,该终端设备不在该第六时间单元上发送该第一上行数据,而是在位于该第六时间单元之后的第八时间单元上发送该第一上行数据,可以使得该终端设备将未用来处理该第一上行数据的处理资源来处理该第二上行数据,提高了第二上行数据的传输性能。
考虑到在5G移动通信系统中如何更好地同时支持多种不同类型的数据的传输需求,同下行传输类似,该终端设备可以通过考虑上行数据的优先级确定是否优先处理该上行数 据#B。即,若该终端设备确定的该上行数据#B的优先级高于该上行数据#A的优先级,则该终端设备暂停处理该上行数据#A,优先处理该上行数据#B,执行方法200的技术方案;若该上行数据#B的优先级低于或等于该上行数据#A的优先级,则该终端设备继续处理该上行数据#A,延后处理该上行数据#B,使得该终端设备可以在网络设备调度的时间单元#A上发送该上行数据#A。
因此,在本申请实施例中,终端设备可以基于终端设备是否能够确定上行数据的数据类型的情况分别基于方式3和方式4确定是否优先处理该上行数据#B。
方式3
在终端设备可以确定上行数据的数据类型的情况下,根据该上行数据#A的数据类型和该上行数据#B的数据类型确定该上行数据#A和该上行数据#B的优先级,进而确定是否优先处理该上行数据#B。
若该上行数据#B的优先级高于该上行数据#A的优先级,则该终端设备暂停处理该上行数据#A,优先处理该上行数据#B,执行方法300的技术方案;若该上行数据#B的优先级低于或等于该上行数据#A的优先级,则该终端设备继续处理该上行数据#A,延后处理该上行数据#B。
其中,这里所说的上行数据的优先级可以从数据传输的时延、可靠性、传输速率等方面考虑来定义下行数据的优先级,具体描述可以参考上行传输中关于数据的优先级的描述,为了简洁,此处不再赘述。
在一种可能的实现方式中,该上行数据#A为eMBB数据,该上行数据#B为URLLC数据。
即,URLLC数据的优先级高于eMBB数据的优先级。
这里需要补充的是,若是该上行数据#A的数据类型和该上行数据#B的数据类型相同,数据的优先级可以进一步通过传输方式确定。
具体的,对于相同类型的业务数据,重传数据的优先级高于初传数据的优先级。对于URLLC业务的上行该数据传输,可能采用免授权的方式进行初传,而采用基于调度授权的方式进行重传。因此,在两种上行数据的数据类型相同的情况下,基于调度授权的传输方式发送的数据的优先级高于基于免授权的传输方式发送的数据的优先级。
在本申请实施例中,该终端设备确定上行数据的数据类型可以参考下行数据确定数据类型的方式,为了简洁,此处不再赘述。
这样,通过考虑第一上行数据和第二上行数据的优先级,在第二上行数据的优先级高于该第一上行数据的优先级以及该终端设备处理该第一上行数据的处理时段与处理该第二上行数据的处理时段部分重合的情况下,使得该终端设备优先处理第二上行数据,在第一时间单元上不发送第一上行该数据,从而提高了第二上行数据的传输性能。
方式4
在终端设备无法确定下行数据的数据类型的情况下,系统可以规定,将要在时间单元#B上发送的上行数据#B的优先级高于将要在时间单元#A上发送的上行数据#A的优先级;或者说,传输需求靠后的上行数据(即,上行数据#B)的优先级高于传输需求靠前的上行数据(即,上行数据#A)的优先级。
该方式4适用于该上行数据#A和该上行数据#B都是基于授权的传输方式发送的数据。 与下行传输的理由类似,网络设备可以做适当调控,使得终端设备在处理该上行数据#A的处理时段和在处理该上行数据#B的处理时段部分重合的情况下,传输需求靠后的上行数据(即,上行数据#B)的优先级高于传输需求靠前的上行数据(即,上行数据#A)的优先级。
具体而言,以eMBB数据和URLLC数据为例,考虑eMBB数据对时延的要求不高,当eMBB数据在URLLC数据之后到达时,网络设备可以使得调度的用于发送eMBB数据的时间单元延迟,以避免出现终端设备同时处理两种数据的情况;因此,只有当该上行数据#A为eMBB数据,该上行数据#B为URLLC数据时,由于URLLC数据不能延迟发送,所以,网络设备必须及时为该上行数据#B调度时间单元,以便于该终端设备可以在调度的时间单元上及时发送URLLC数据。因此,才会出现该处理时段#A和该处理时段#B部分重合的情况。因此,系统可以规定:在出现处理时段部分重合的情况下,传输需求靠后的上行数据的优先级高于传输需求靠前的上行数据的优先级。
不过,需要说明的是,基于方式4的规则确定的两个上行数据的优先级可能并不是实际的上行数据的优先级。具体描述可以参考方式2的相关描述,为了简洁,此处不再赘述。
需要补充的是,若上行数据#A的优先级高于上行数据#B的优先级,且上行数据#B是基于授权的传输方式发送的数据,该终端设备也可以不再处理该上行数据#B,该网络设备在调度的时间单元#B上接收不到该上行数据#B,会向该终端设备再发送一个DCI来重新调度发送上行数据#B的资源。
以上,结合图1至图8详细描述了本申请实施例提供的无线通信的方法,下面,结合图9至图12描述本申请实施例提供的无线通信的装置,方法实施例所描述的技术特征同样适用于以下装置实施例。
图9示出了本申请实施例提供的无线通信的装置400的示意性框图。如图9所示,该装置400包括:
接收单元410,用于接收第一下行控制信息DCI,该第一DCI包括第一指示信息,该第一指示信息用于指示在第三时间单元上发送第一下行数据的反馈信息;
该接收单元410还用于,在第一时间单元上接收第一下行数据;
该接收单元410还用于,在第二时间单元上接收第二下行数据,该第二时间单元位于该第一时间单元之后,该第一下行数据的接收处理的第一处理时段和该第二下行数据的接收处理的第二处理时段部分重合;
处理单元420和发送单元430,其中,
该处理单元420用于控制该发送单元430在该第三时间单元上,不发送该第一下行数据的反馈信息。
因此,本申请实施例提供的无线通信的装置,在网络设备在第一时间单元上发送第一下行数据,在位于该第一时间单元之后的第二时间单元上发送第二下行数据,并且,在装置有处理资源的冲突时,该装置在该网络设备调度的时间单元(例如,第三时间单元)上不发送该第一下行数据的反馈信息,可以使得该装置将未用来处理该第一下行数据的处理资源来处理该第二下行数据,降低了该第二下行数据的传输时延,从而提高了该第二下行数据的传输性能。
在一种可能的实现方式中,该第二下行数据的优先级高于该第一下行数据的优先级。
因此,本申请实施例提供的无线通信的装置,通过考虑第一下行数据和第二下行数据的优先级,在第二下行数据的优先级高于该第一下行数据的优先级以及该装置处理该第一下行数据的处理时段与处理该第二下行数据的处理时段部分重合的情况下,使得该装置不在网络设备调度的第三时间单元上发送该第一下行数据的反馈信息,而是优先处理该第二下行数据,降低了该第二下行数据的处理时延,提高了优先级较高的第二下行数据的传输性能。
在一种可能的实现方式中,该发送单元430还用于:
在第四时间单元上发送该第一下行数据的反馈信息,该第四时间单元位于该第三时间单元之后。
在一种可能的实现方式中,该第四时间单元与该第二处理时段的结束点之间间隔M1个时间单元,该M1个时间单元的时长大于或等于该第一处理时段与该第二处理时段重合的时段对应的时长,该M1为正整数;或,
该第四时间单元与该第二处理时段的结束点之间间隔M2个时间单元,该M2个时间单元的时长大于或等于该第一处理时段对应的时长,该M2为正整数。
在一种可能的实现方式中,该接收单元410和该处理单元420还用于:接
在该接收单元410接收到该第二下行数据后,该处理单元420暂停处理该第一下行数据。
在一种可能的实现方式中,
该接收单元410还用于:
接收第二DCI,该第二DCI包括第二指示信息,该第二指示信息用于指示第五时间单元;
该发送单元430还用于:
在该第五时间单元上发送该第二下行数据的反馈信息。
该无线通信的装置400可以对应(例如,可以配置于或本身即为)上述方法200中描述的终端设备,并且,该无线通信的装置400中各模块或单元分别用于执行上述方法200中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置400可以为终端设备,此种情况下,该装置400可以包括:处理器、发送器和接收器,处理器、发送器和接收器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器、发送器和接收器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制发送器发送信息或接收器接收信号。
此种情况下,图9所示的装置400中的接收单元410可以对应该接收器,图9所示的装置400中的处理单元420也可以对应该处理器,图9所示的装置400中的发送单元430可以对应该发送器。另一种实施方式中,发送器和接收器可以由同一个部件收发器实现。
在本申请实施例中,该装置400可以为安装在终端设备中的芯片(或者说,芯片系统),此情况下,该装置400可以包括:处理器和输入输出接口,处理器可以通过输入输出接口与网络设备的收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
此情况下,图9所示的装置400中的接收单元可以对应该输入接口,图9所示的装置400中的处理单元可以对应该处理器,图9所示的装置400中的发送单元可以对应该输出接口。
图10示出了本发明实施例提供的无线通信的装置500的示意性框图。如图10所示,该装置500包括:
发送单元510,用于发送第一下行控制信息DCI,该第一DCI包括第一指示信息,该第一指示信息用于指示在第三时间单元上发送第一下行数据的反馈信息;
该发送单元510还用于,发送第二DCI,该第二DCI包括第二指示信息,该第二指示信息用于指示在第五时间单元上发送第二下行数据的反馈信息;
该发送单元510还用于,在第一时间单元上发送该第一下行数据和在第二时间单元上发送该第二下行数据,该第二时间单元位于该第一时间单元之后;
处理单元520和接收单元530,其中,
该处理单元520用于控制该接收单元530在该第三时间单元上不接收该第一下行数据的反馈信息;
该接收单元530还用于,在该第五时间单元上接收该第二下行数据的反馈信息。
因此,本申请实施例提供的无线通信的装置,在该装置在第一时间单元上发送第一下行数据,在位于该第一时间单元之后的第二时间单元上发送第二下行数据,并且,在终端设备有处理资源的冲突时,可以使得该终端设备在该网络设备调度的时间单元(例如,第三时间单元)上不发送该第一下行数据的反馈信息,进而使得该终端设备将未用来处理该第一下行数据的处理资源来处理该第二下行数据,降低了该第二下行数据的传输时延,从而提高了该第二下行数据的传输性能。
在一种可能的实现方式中,该第二下行数据的优先级高于该第一下行数据的优先级。
因此,本申请实施例提供的无线通信的装置,通过考虑第一下行数据和第二下行数据的优先级,在第二下行数据的优先级高于该第一下行数据的优先级以及该终端设备处理该第一下行数据的处理时段与处理该第二下行数据的处理时段部分重合的情况下,使得该终端设备不在该装置调度的第三时间单元上发送该第一下行数据的反馈信息,而是优先处理该第二下行数据,降低了该第二下行数据的处理时延,提高了优先级较高的第二下行数据的传输性能。
在一种可能的实现方式中,该接收单元530还用于:
在第四时间单元上接收该第一下行数据的反馈信息,该第四时间单元位于该第三时间单元之后。
在一种可能的实现方式中,其特征在于,
该第四时间单元与该第二下行数据的接收处理的第二处理时段的结束点之间间隔M1个时间单元,该M1个时间单元的时长大于或等于该第一处理时段与该第二处理时段重合的时段对应的时长,该M1为正整数;或,
该第四时间单元与该第二下行数据的接收处理的第二处理时段的结束点之间间隔M2个时间单元,该M2个时间单元的时长大于或等于该第一处理时段对应的时长,该M2为正整数。
该无线通信的装置500可以对应(例如,可以配置于或本身即为)上述方法200中描 述的网络设备,并且,该无线通信的装置500中各模块或单元分别用于执行上述方法200中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置500可以为网络设备,此种情况下,该装置500可以包括:处理器、发送器和接收器,处理器、发送器和接收器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器、发送器和接收器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制发送器发送信息或接收器接收信号。
此种情况下,图10所示的装置500中的发送单元510可以对应该发送器,图10所示的装置500中的处理单元520可以对应该处理器,图10所示的装置500中的接收单元530可以对应该接收器。另一种实施方式中,发送器和接收器可以由同一个部件收发器实现。
在本申请实施例中,该装置500可以为安装在网络设备中的芯片(或者说,芯片系统),此情况下,该装置500可以包括:处理器和输入输出接口,处理器可以通过输入输出接口与网络设备的收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
此情况下,图10所示的装置500中的发送单元510可以对应该输出接口,图10所示的装置500中的处理单元520可以对应该处理器,图10所示的装置500中的接收单元530可以对应该输出接口。
图11示出了本发明实施例提供的无线通信的装置600的示意性框图。如图11所示,该装置600包括:
接收单元610,用于接收第三下行控制信息DCI,该第三DCI包括第三指示信息,该第三指示信息用于指示在第六时间单元上发送第一上行数据,其中,该第一上行数据的发送处理的第三处理时段与该第二上行数据的发送处理的第四处理时段部分重合,用于发送该第二上行数据的第七时间单元位于该第六时间单元之后;
发送单元620,用于在第八时间单元上发送该第一上行数据,该第八时间单元位于该第六时间单元之后。
因此,本申请实施例提供的无线通信的装置,在装置需要在第六时间单元需要发送第一上行数据和需要在位于该第六时间单元之后的第七时间单元上发送第二上行数据,并且,该第一上行数据的发送处理的处理时段和该第二上行数据的发送处理的处理时段部分重合的情况下,该装置不在该第六时间单元上发送该第一上行数据,而是在位于该第六时间单元之后的第八时间单元上发送该第一上行数据,可以使得该装置将未用来处理该第一上行数据的处理资源来处理该第二上行数据,提高了第二上行数据的传输性能。
在一种可能的实现方式中,该第二上行数据的优先级高于该第一上行数据的优先级。
因此,本申请实施例提供的无线通信的装置,通过考虑第一上行数据和第二上行数据的优先级,在第二上行数据的优先级高于该第一上行数据的优先级以及该终端设备处理该第一上行数据的处理时段与处理该第二上行数据的处理时段部分重合的情况下,使得该装置优先处理第二上行数据,在第一时间单元上不发送第一上行该数据,从而提高了第二上行数据的传输性能。
在一种可能的实现方式中,该第一上行数据为增强型移动带宽eMBB业务的数据,该 第二上行数据为高可靠低时延URLLC业务的数据。
在一种可能的实现方式中,
该接收单元610还用于:
接收第四DCI,该第四DCI包括第四指示信息,该第四指示信息用于指示该第七时间单元;
该发送单元620还用于:
在该第七时间单元上发送该第二上行数据。
该无线通信的装置600可以对应(例如,可以配置于或本身即为)上述方法300中描述的终端设备,并且,该无线通信的装置600中各模块或单元分别用于执行上述方法300中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置600可以为终端设备,此种情况下,该装置600可以包括:处理器、发送器和接收器,处理器、发送器和接收器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器、发送器和接收器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制发送器发送信息或接收器接收信号。
此种情况下,图11所示的装置600中的接收单元610可以对应该接收器,图,1所示的装置600中的发送单元620可以对应该发送器。另一种实施方式中,发送器和接收器可以由同一个部件收发器实现。
在本申请实施例中,该装置600可以为安装在终端设备中的芯片(或者说,芯片系统),此情况下,该装置600可以包括:处理器和输入输出接口,处理器可以通过输入输出接口与终端设备的收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
此情况下,图11所示的装置600中的接收单元610可以对应该输入接口,图11所示的装置600中的发送单元620可以对应该输出接口。
图12示出了本发明实施例提供的无线通信的装置700的示意性框图。如图12所示,该装置700包括:
发送单元710,用于发送第三下行控制信息DCI,该第三DCI包括第三指示信息,该第三指示信息用于指示第六时间单元,该第六时间单元用于承载第一上行数据;
接收单元720,用于在第八时间单元上接收该第一上行数据,该第八时间单元位于该第六时间单元之后。
在一种可能的实现方式中,该第一上行数据的发送处理的第三处理时段与该第二上行数据的发送处理的第四处理时段部分重合,用于发送该第二上行数据的第七时间单元位于该第六时间单元之后。
因此,本申请实施例提供的无线通信的装置,在终端设备需要在第六时间单元需要发送第一上行数据和需要在位于该第六时间单元之后的第七时间单元上发送第二上行数据,并且,该第一上行数据的发送处理的处理时段和该第二上行数据的发送处理的处理时段部分重合的情况下,该终端设备不在该第六时间单元上发送该第一上行数据,而是在位于该第六时间单元之后的第八时间单元上发送该第一上行数据,可以使得该终端设备将未用来 处理该第一上行数据的处理资源来处理该第二上行数据,提高了第二上行数据的传输性能。
在一种可能的实现方式中,该第二上行数据的优先级高于该第一上行数据的优先级。
因此,本申请实施例提供的无线通信的装置,通过考虑第一上行数据和第二上行数据的优先级,在第二上行数据的优先级高于该第一上行数据的优先级以及该终端设备处理该第一上行数据的处理时段与处理该第二上行数据的处理时段部分重合的情况下,使得该终端设备优先处理第二上行数据,在第一时间单元上不发送第一上行该数据,从而提高了第二上行数据的传输性能。
在一种可能的实现方式中,该第一上行数据为增强型移动带宽eMBB业务的数据,该第二上行数据为高可靠低时延URLLC业务的数据。
在一种可能的实现方式中,
该发送单元710还用于:
发送第四DCI,该第四DCI包括第四指示信息,该第四指示信息用于指示该第七时间单元;
该接收单元720还用于:
在该第七时间单元上接收该第二上行数据。
该无线通信的装置700可以对应(例如,可以配置于或本身即为)上述方法300中描述的网络设备,并且,该无线通信的装置700中各模块或单元分别用于执行上述方法300中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
在本申请实施例中,该装置700可以为网络设备,此种情况下,该装置700可以包括:处理器、发送器和接收器,处理器、发送器和接收器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器、发送器和接收器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制发送器发送信息或接收器接收信号。
此种情况下,图12所示的装置700中的发送单元710可以对应该发送器,图12所示的装置700中的接收单元720可以对应该接收器。另一种实施方式中,发送器和接收器可以由同一个部件收发器实现。
在本申请实施例中,该装置700可以为安装在网络设备中的芯片(或者说,芯片系统),此情况下,该装置700可以包括:处理器和输入输出接口,处理器可以通过输入输出接口与网络设备的收发器通信连接,可选地,该装置还包括存储器,存储器与处理器通信连接。可选地,处理器、存储器和收发器可以通信连接,该存储器可以用于存储指令,该处理器用于执行该存储器存储的指令,以控制收发器发送信息或信号。
此情况下,图12所示的装置700中的发送单元710可以对应该输出接口,图12所示的装置700中的接收单元720可以对应该输出接口。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装 置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种无线通信的方法,其特征在于,所述方法包括:
    接收第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示在第三时间单元上发送第一下行数据的反馈信息;
    在第一时间单元上接收第一下行数据;
    在第二时间单元上接收第二下行数据,所述第二时间单元位于所述第一时间单元之后,所述第一下行数据的接收处理的第一处理时段和所述第二下行数据的接收处理的第二处理时段部分重合;
    在所述第三时间单元上,不发送所述第一下行数据的反馈信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第二下行数据的优先级高于所述第一下行数据的优先级。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    在第四时间单元上发送所述第一下行数据的反馈信息,所述第四时间单元位于所述第三时间单元之后。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第四时间单元与所述第二处理时段的结束点之间间隔M1个时间单元,所述M1个时间单元的时长大于或等于所述第一处理时段与所述第二处理时段重合的时段对应的时长,所述M1为正整数;或,
    所述第四时间单元与所述第二处理时段的结束点之间间隔M2个时间单元,所述M2个时间单元的时长大于或等于所述第一处理时段对应的时长,所述M2为正整数。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    在接收到所述第二下行数据后,暂停处理所述第一下行数据。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    接收第二DCI,所述第二DCI包括第二指示信息,所述第二指示信息用于指示第五时间单元;
    在所述第五时间单元上发送所述第二下行数据的反馈信息。
  7. 一种无线通信的方法,其特征在于,所述方法包括:
    发送第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示在第三时间单元上发送第一下行数据的反馈信息;
    发送第二DCI,所述第二DCI包括第二指示信息,所述第二指示信息用于指示在第五时间单元上发送第二下行数据的反馈信息;
    在第一时间单元上发送所述第一下行数据和在第二时间单元上发送所述第二下行数据,所述第二时间单元位于所述第一时间单元之后;
    在所述第三时间单元上不接收所述第一下行数据的反馈信息;
    在所述第五时间单元上接收所述第二下行数据的反馈信息。
  8. 根据权利要求7所述的方法,其特征在于,所述第二下行数据的优先级高于所述第一下行数据的优先级。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    在第四时间单元上接收所述第一下行数据的反馈信息,所述第四时间单元位于所述第三时间单元之后。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第四时间单元与所述第二下行数据的接收处理的第二处理时段的结束点之间间隔M1个时间单元,所述M1个时间单元的时长大于或等于所述第一处理时段与所述第二处理时段重合的时段对应的时长,所述M1为正整数;或,
    所述第四时间单元与所述第二下行数据的接收处理的第二处理时段的结束点之间间隔M2个时间单元,所述M2个时间单元的时长大于或等于所述第一处理时段对应的时长,所述M2为正整数。
  11. 一种无线通信的装置,其特征在于,所述装置包括:
    接收单元,用于接收第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示在第三时间单元上发送第一下行数据的反馈信息;
    所述接收单元还用于,在第一时间单元上接收第一下行数据;
    所述接收单元还用于,在第二时间单元上接收第二下行数据,所述第二时间单元位于所述第一时间单元之后,所述第一下行数据的接收处理的第一处理时段和所述第二下行数据的接收处理的第二处理时段部分重合;
    处理单元和发送单元,其中,
    所述处理单元用于控制所述发送单元在所述第三时间单元上,不发送所述第一下行数据的反馈信息。
  12. 根据权利要求11所述的装置,其特征在于,所述第二下行数据的优先级高于所述第一下行数据的优先级。
  13. 根据权利要求11或12所述的装置,其特征在于,所述发送单元还用于:
    在第四时间单元上发送所述第一下行数据的反馈信息,所述第四时间单元位于所述第三时间单元之后。
  14. 根据权利要求13所述的装置,其特征在于,
    所述第四时间单元与所述第二处理时段的结束点之间间隔M1个时间单元,所述M1个时间单元的时长大于或等于所述第一处理时段与所述第二处理时段重合的时段对应的时长,所述M1为正整数;或,
    所述第四时间单元与所述第二处理时段的结束点之间间隔M2个时间单元,所述M2个时间单元的时长大于或等于所述第一处理时段对应的时长,所述M2为正整数。
  15. 根据权利要求11至14中任一项所述的装置,其特征在于,所述接收单元和所述处理单元还用于:接
    在所述接收单元接收到所述第二下行数据后,所述处理单元暂停处理所述第一下行数据。
  16. 根据权利要求15所述的装置,其特征在于,
    所述接收单元还用于:
    接收第二DCI,所述第二DCI包括第二指示信息,所述第二指示信息用于指示第五时间单元;
    所述发送单元还用于:
    在所述第五时间单元上发送所述第二下行数据的反馈信息。
  17. 一种无线通信的装置,其特征在于,所述装置包括:
    发送单元,用于发送第一下行控制信息DCI,所述第一DCI包括第一指示信息,所述第一指示信息用于指示在第三时间单元上发送第一下行数据的反馈信息;
    所述发送单元还用于,发送第二DCI,所述第二DCI包括第二指示信息,所述第二指示信息用于指示在第五时间单元上发送第二下行数据的反馈信息;
    所述发送单元还用于,在第一时间单元上发送所述第一下行数据和在第二时间单元上发送所述第二下行数据,所述第二时间单元位于所述第一时间单元之后;
    处理单元和接收单元,其中,
    所述处理单元用于控制所述接收单元在所述第三时间单元上不接收所述第一下行数据的反馈信息;
    所述接收单元还用于,在所述第五时间单元上接收所述第二下行数据的反馈信息。
  18. 根据权利要求17所述的装置,其特征在于,所述第二下行数据的优先级高于所述第一下行数据的优先级。
  19. 根据权利要求17或18所述的装置,其特征在于,所述接收单元还用于:
    在第四时间单元上接收所述第一下行数据的反馈信息,所述第四时间单元位于所述第三时间单元之后。
  20. 根据权利要求19所述的装置,其特征在于,
    所述第四时间单元与所述第二下行数据的接收处理的第二处理时段的结束点之间间隔M1个时间单元,所述M1个时间单元的时长大于或等于所述第一处理时段与所述第二处理时段重合的时段对应的时长,所述M1为正整数;或,
    所述第四时间单元与所述第二下行数据的接收处理的第二处理时段的结束点之间间隔M2个时间单元,所述M2个时间单元的时长大于或等于所述第一处理时段对应的时长,所述M2为正整数。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至10中任意一项所述的方法。
  22. 一种芯片系统,其特征在于,所述芯片系统包括:
    存储器:用于存储指令;
    处理器,用于从所述存储器中调用并运行所述指令,使得安装有所述芯片系统的通信设备执行如权利要求1至10中任意一项所述的方法。
PCT/CN2019/086351 2018-05-11 2019-05-10 一种无线通信的方法和装置 WO2019214703A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810450930.5A CN110474738A (zh) 2018-05-11 2018-05-11 一种无线通信的方法和装置
CN201810450930.5 2018-05-11

Publications (1)

Publication Number Publication Date
WO2019214703A1 true WO2019214703A1 (zh) 2019-11-14

Family

ID=68467806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086351 WO2019214703A1 (zh) 2018-05-11 2019-05-10 一种无线通信的方法和装置

Country Status (2)

Country Link
CN (1) CN110474738A (zh)
WO (1) WO2019214703A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160338052A1 (en) * 2015-05-13 2016-11-17 Samsung Electronics Co., Ltd. Method and apparatus for feedback in mobile communication system
WO2017133212A1 (zh) * 2016-02-02 2017-08-10 华为技术有限公司 下行控制信息检测方法、下行控制信息发送方法和装置
CN107734680A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 一种传输信息的方法及装置、接收信息的方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107231218B (zh) * 2016-03-25 2021-07-30 大唐移动通信设备有限公司 一种ack/nack反馈方法及相关设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160338052A1 (en) * 2015-05-13 2016-11-17 Samsung Electronics Co., Ltd. Method and apparatus for feedback in mobile communication system
WO2017133212A1 (zh) * 2016-02-02 2017-08-10 华为技术有限公司 下行控制信息检测方法、下行控制信息发送方法和装置
CN107734680A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 一种传输信息的方法及装置、接收信息的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA: "CR to 38. 214 capturing the RANl#92bis meeting agreements,", 3GPP TSG-RAN1 MEETING #92BIS RL-1805796, 20 April 2018 (2018-04-20), XP051461509 *

Also Published As

Publication number Publication date
CN110474738A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
CN110831200B (zh) 用于移动通信系统的用户装置及基站
CN107733620B (zh) 一种无线传输中的方法和装置
CN110166182B (zh) 一种竞争窗管理的方法及发送设备
EP3416322A1 (en) Reliable ultra-low latency communications
CN110582968A (zh) 用于时间间隔的一部分的指示
EP4080980B1 (en) Scheduling request indication
CN112187416B (zh) 通信方法、装置及系统
CN109075906A (zh) 传输数据的方法和装置
WO2013166986A1 (zh) 一种传输资源分配方法、装置及系统和基站设备
EP3695672B1 (en) Determining a transmission scheme
CN106797582B (zh) 用户装置以及基站
US11356204B2 (en) Communication method, network device, and terminal
WO2021204218A1 (zh) 一种harq信息传输方法及装置
CN109951262A (zh) 一种harq反馈的方法和装置
WO2020088088A1 (zh) 一种数据传输方法及终端设备
CN104348582A (zh) 用于传输控制信息的方法和设备
CN110830177A (zh) 一种混合自动重传请求传输方法和装置
WO2020011109A1 (zh) 信息传输方法、终端及基站
KR20220128415A (ko) 채널 충돌 처리 방법, 장치, 설비 및 저장 매체
CN110199495B (zh) 上行传输的反馈方法、重传方法、装置、终端及存储介质
WO2019238014A1 (zh) 反馈信息的传输方法和装置
WO2018228521A1 (zh) 发送数据和接收数据的方法以及装置
CN112449421A (zh) 一种闭环应用场景下的通信方法及装置
WO2019214703A1 (zh) 一种无线通信的方法和装置
CN112514483B (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799984

Country of ref document: EP

Kind code of ref document: A1