WO2019214645A1 - 用于构建光标签网络的方法及相应的光标签网络 - Google Patents

用于构建光标签网络的方法及相应的光标签网络 Download PDF

Info

Publication number
WO2019214645A1
WO2019214645A1 PCT/CN2019/086003 CN2019086003W WO2019214645A1 WO 2019214645 A1 WO2019214645 A1 WO 2019214645A1 CN 2019086003 W CN2019086003 W CN 2019086003W WO 2019214645 A1 WO2019214645 A1 WO 2019214645A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical tag
tag
location information
tags
Prior art date
Application number
PCT/CN2019/086003
Other languages
English (en)
French (fr)
Inventor
李江亮
方俊
牛旭恒
Original Assignee
北京外号信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京外号信息技术有限公司 filed Critical 北京外号信息技术有限公司
Publication of WO2019214645A1 publication Critical patent/WO2019214645A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
    • G06K17/0022Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisious for transferring data to distant stations, e.g. from a sensing device
    • G06K17/0025Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisious for transferring data to distant stations, e.g. from a sensing device the arrangement consisting of a wireless interrogation device in combination with a device for optically marking the record carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • the present invention relates to the field of optical information technology and location services, and more particularly to a network system utilizing multiple optical label architectures and a method of constructing the same.
  • Barcodes and QR codes have been widely adopted to encode information. When these barcodes and QR codes are scanned with a specific device or software, the corresponding information is identified.
  • the recognition distance between the barcode and the two-dimensional code is very limited. For example, for a two-dimensional code, when scanning with a mobile phone camera, the phone must typically be placed at a relatively short distance, typically about 15 times the width of the two-dimensional code. Therefore, for long-distance recognition (for example, 200 times the width of the two-dimensional code), barcodes and two-dimensional codes are usually not implemented, or very large barcodes and two-dimensional codes must be customized, but this will bring about an increase in cost. And in many cases it is impossible to achieve due to various other restrictions.
  • Optical tags transmit information by emitting different lights. They have the advantages of long distance, visible light conditions, strong directivity, and positionability, and the information transmitted by optical tags can change rapidly with time, thus providing greater information. Capacity (for example, an optical communication device described in Chinese Patent Publication No. CN104168060A, CN105740936A, etc.). Compared with the traditional two-dimensional code, the optical tag has stronger information interaction ability, which can provide great convenience for users and businesses.
  • optical tags With the application and popularization of optical tags, how to comprehensively utilize multiple optical tags deployed in the surrounding environment to jointly provide services such as location and information query, navigation and positioning has great research and commercial value. Accordingly, it is an object of the present invention to provide a method of dynamically constructing an optical tag network and a corresponding optical tag network.
  • the present invention provides a method of constructing an optical label network, the method comprising:
  • the method may further comprise calculating relative position information between the optical tags based on the relative position between the device performing the image acquisition and each of the optical tags.
  • the method can also include recording the size of the acquired optical tag image.
  • the method may further include determining, in response to the image acquisition of the optical tag by the device, that the size of the currently acquired optical tag image is greater than the size of the image previously acquired for the optical tag; and in response to the determining, The geographic location information and/or relative location information before the optical tag is updated based on the geographic location information and/or relative location information of the optical tag obtained from the currently acquired image.
  • the method may further include determining, based on the identified optical tag identifier, that the currently acquired image includes the set reference optical tag; and in response to the determining, based on the geographic location information of the reference optical tag and The calculated relative position information between the two optical tags acquires the geographical location information of the remaining optical tags in the collected image.
  • the method may further comprise obtaining accurate geographic location information of the one or more optical tags by the positioning device; and setting the one or more optical tags as reference optical tags and saving their respective geographic locations information.
  • the present invention also provides an apparatus having an image acquisition function, including an imaging apparatus, a processor, and a communication apparatus, wherein:
  • the imaging device is configured to perform image acquisition on the optical tag
  • the processor is configured to identify an identifier of one or more optical tags in the acquired image, calculate a relative position between the device and each of the identified optical tags based on the acquired image, and according to the device and each light Calculating the geographical location information of the optical tag by the relative position between the tags and the geographical location information of the device;
  • the communication device is configured to transmit an identifier of the optical tag and geographic location information.
  • the processor is further configurable to calculate relative position information between the optical tags according to a relative position between the device and each of the optical tags;
  • the communication device is configured to transmit relative position information of the optical tag.
  • the present invention also provides an optical label network system including a plurality of optical tags and at least one server.
  • the optical tag includes at least one light source and a controller, the controller controlling the light source to emit different light to convey different information, the information including an identifier of the optical tag;
  • the server is configured to manage its corresponding location information based on an identifier of the optical tag, the location information including a geographic location of the optical tag and/or one or more relative locations, the relative location of the optical tag being the optical tag Relative to the position of another light label.
  • each optical label can be one of a fixed optical label or a mobile optical label.
  • the plurality of optical tags may further include a reference optical tag, and the absolute position of the reference optical tag is the set geographical location information.
  • the device described above may also be included.
  • the server may be further configured to record the size of the acquired optical tag image.
  • the server may also be configured to:
  • the geographic location information and/or the relative location information prior to the optical tag is updated with geographic location information and/or relative location information of the optical tag obtained from the currently acquired image.
  • the server may also be configured to:
  • the location information acquires geographic location information of the remaining optical tags in the collected image.
  • FIG. 1 is a schematic structural diagram of an optical label network according to an embodiment of the present invention.
  • FIG. 2 is a flow diagram of a method for dynamically constructing an optical label network, in accordance with one embodiment of the present invention.
  • the optical tag may be any optical communication device capable of transmitting different information by emitting different light.
  • the optical tag can include at least one light source and a controller for controlling different light emitted by the light source to convey different information.
  • the controller can cause the light source to emit different light by changing the properties of the light emitted by the light source.
  • the property of the light may be any property that the optical imaging device (eg, CMOS imaging device) can perceive; for example, it may be an attribute of the human eye that is perceived by the intensity, color, wavelength, etc. of the light, or other attributes that are not perceptible to the human eye.
  • the intensity, color or wavelength of the electromagnetic wavelength outside the visible range of the human eye changes, or any combination of the above properties.
  • a change in the properties of light can be a single property change, or a combination of two or more properties can change.
  • the intensity of the light is selected as an attribute, it can be achieved simply by selecting to turn the light source on or off.
  • the light source is turned on or off to change the properties of the light, but those skilled in the art will appreciate that other ways to change the properties of the light are also possible.
  • the optical tag can be used in the optical tag as long as one of its properties that can be perceived by the optical imaging device can be varied at different frequencies.
  • Various common optical devices can be included in the light source, such as a light guide plate, a soft plate, a diffuser, and the like.
  • the light source may be an LED light, an array of a plurality of LED lights, a display screen or a part thereof, and even an illuminated area of light (for example, an illuminated area of light on a wall) may also serve as a light source.
  • the shape of the light source may be various shapes such as a circle, a square, a rectangle, a strip, an L, or the like.
  • the controller of the optical tag can control the properties of the light emitted by each source to communicate information.
  • "0" or "1" of binary digital information can be represented by controlling the turning on and off of each light source such that multiple light sources in the optical tag can be used to represent a sequence of binary digital information.
  • each light source can be used not only to represent a binary number, but also to represent data in ternary or larger hexadecimal.
  • each light source can represent data in ternary or larger hexadecimal. Therefore, the optical tag of the present invention can significantly increase the data encoding density compared to the conventional two-dimensional code.
  • the controller of the optical tag can control the light source to change the properties of the light it emits at a certain frequency. Therefore, the optical tag of the present invention can represent different data information at different times, for example, different. A sequence of binary digital information.
  • each frame of the image can be used to represent a set of information sequences, thereby comparing to a conventional static
  • the QR code can further significantly increase its data encoding density.
  • an optical label can be imaged using an optical imaging device or an image capture device that is common in the art, and the transmitted information, such as a binary data 1 or a data 0 information sequence, is determined from each frame of image to achieve light.
  • the optical imaging device or image acquisition device may include an image acquisition component, a processor, a memory, and the like.
  • the optical imaging device or image acquisition device may be, for example, a mobile terminal having a photographing function, including a mobile phone, a tablet, smart glasses, etc., which may include an image capture device and an image processing module.
  • the user visually finds the optical tag within a range of distance from the optical tag, and scans the optical tag by performing the information capture and interpretation process by causing the imaging sensor of the mobile terminal to face the optical tag.
  • the controller of the optical tag controls the light source to change the attribute of the light emitted by the light source at a certain frequency
  • the image acquisition frequency of the mobile terminal can be set to be greater than or equal to twice the frequency of the attribute conversion of the light source.
  • the process of identifying and decoding can be completed by performing a decoding operation on the acquired image frame.
  • the serial number, the check digit, the time stamp, and the like may be included in the information transmitted by the optical tag.
  • a start frame or an end frame may be given in a plurality of image frames as needed, or both, for indicating a start or end position of a complete period of the plurality of image frames, the start frame or the end frame may be It is set to display a particular combination of data, for example: all 0s or all 1s, or any special combination that will not be the same as the information that may actually be displayed.
  • CMOS imaging device when a continuous multi-frame image of a light source is captured by a CMOS imaging device, it can be controlled by a controller such that a switching time interval between operating modes of the light source is equal to a full frame imaging time of the CMOS imaging device. Length, thereby achieving frame synchronization of the light source with the imaging device. Assuming that each light source transmits 1 bit of information per frame, for a shooting speed of 30 frames per second, each light source can deliver 30 bits of information per second, with an encoding space of 2 30 , which can include, for example, an initial Frame tag (frame header), optical tag ID, password, verification code, URL information, address information, time stamp, or a different combination thereof.
  • Table 1 presents an example packet structure in accordance with one embodiment of the present invention:
  • optical tags Compared with the traditional two-dimensional code, the above optical label transmits information by emitting different light, which has the advantages of long distance, visible light condition requirement, strong directivity, and positionability, and the information transmitted by the optical label can be timed. It changes rapidly, which can provide a large information capacity. Therefore, optical tags have greater information interaction capabilities, which can provide great convenience for users and businesses. In order to provide corresponding services to users and merchants based on optical tags, each optical tag is assigned a unique identifier (ID) for uniquely identifying or identifying by the manufacturer, manager, user, etc. of the optical tag. Light label.
  • ID unique identifier
  • the identifier can be issued by the optical tag, and the user can use the image capturing device or the imaging device built in the mobile phone to perform image acquisition on the optical tag to obtain information (such as an identifier) transmitted by the optical tag, so that the access can be based on The service provided by the optical label.
  • the optical label network mainly includes a plurality of optical tags and at least one server.
  • Each optical tag in the network can be a fixed optical tag or a mobile optical tag.
  • Fixed optical labels generally refer to optical labels that remain substantially unchanged in position, such as light labels installed on the door of a store or on a building.
  • Mobile optical tags generally refer to optical tags that are variable in position, such as light tags that are mounted on a removable device such as a car, and light tags that are worn on a person.
  • the information associated with each optical tag can be saved on the server.
  • an identifier (ID) of each optical tag, location information, and other information may be stored on the server, such as whether the optical tag is fixed or mobile, service information related to the optical tag, and associated with the optical tag. Other description information or attributes, such as the physical size, orientation, etc. of the optical label.
  • the location information of the optical tag can include an absolute location and/or a relative location.
  • the absolute position refers to the actual position of the optical tag in the physical world, for example, can be indicated by GPS information.
  • the relative position of the optical tag refers to the position of the optical tag relative to another optical tag.
  • the relative position of the optical tag can be represented by the spatial displacement of the optical tag relative to another optical tag, that is, by the optical tag in another optical tag corresponding thereto (hereinafter also referred to as reference light)
  • the label is represented by the position in the coordinate system of the origin.
  • the relative position can be expressed as (x, y, z: refID), where refID is the identifier of the optical label as the origin of the coordinate system, that is, the optical label is opposite
  • refID is the identifier of the optical label as the origin of the coordinate system, that is, the optical label is opposite
  • each light label can have one or more relative positions.
  • the absolute position of each optical tag can be obtained by recursively traversing the relative position of the optical tag. For example, for an optical tag, if the absolute position of one of the corresponding reference optical tags has been determined, the absolute position of the optical tag can be obtained based on the relative position of the optical tag and the absolute position of the reference optical tag.
  • each reference optical label is used as a starting point, and all relative positions of the reference optical labels are traversed, and if the absolute position of the reference optical label corresponding to one of the relative positions is It is known that the absolute position of the reference optical tag as the starting point can be obtained from the relative position and the known absolute position, thereby further obtaining the absolute position of the optical tag. The above process can be repeated until a certain absolute position has been determined.
  • certain optical tags in the optical tag network can be set as reference optical tags whose absolute locations contain accurate physical location information. For example, a certain amount of fixed-position reference optical tags may be pre-arranged, or physical location information of some optical tags may be acquired by a precise positioning device, and these optical tags are set as reference optical tags. In this way, the remaining optical tags in the cursor network can utilize these reference optical tags as direct or indirect reference optical tags, and then use the recursive process described above to obtain their absolute position.
  • the absolute position of the optical tag can be obtained by scanning the optical tag by the terminal device carried by the user.
  • the terminal device herein may be any computing device having imaging, computing, and communication functions, such as the above-mentioned optical imaging device or image capturing device such as a mobile phone, a tablet computer, smart glasses, or a portable notebook computer. Or a mobile communication device or the like dedicated to scanning optical tags.
  • the user can use the imaging device built in the mobile phone to carry out image collection on the optical tag, and based on the collected optical tag image, the relative position between the mobile phone and the collected optical tag can be obtained, and then the mobile phone and the light can be based on the mobile phone and the light.
  • the geographical position information of the optical tag is calculated by the relative position of the tag and the geographical location information of the mobile phone itself.
  • the relative positional relationship between the imaging device and the optical tag can be determined by determining the relative distance of the imaging device from the optical tag and by analyzing the perspective distortion of the imaging of the optical tag on the imaging device.
  • the relative distance between the imaging device and the optical tag can be obtained based on the acquired image, and then the relative position between the mobile phone and the collected optical tag can be obtained based on the relative distance of the imaging device from the optical tag and the orientation of the imaging device.
  • the absolute position of the optical tag can be calculated based on such relative positional relationship and position information (for example, GPS information) of the imaging device itself.
  • the above process can be performed on the terminal device, and the terminal device transmits the calculated absolute position to the server.
  • Many imaging devices currently on the market are usually equipped with a binocular camera or a depth camera, and the optical tag is image-captured by an imaging device equipped with a binocular camera or a depth camera, and the imaging device and the light can be obtained based on the acquired image.
  • the relative distance between the labels For another example, when the user uses an ordinary camera built in the mobile phone to perform image acquisition on the optical label, the focus can be automatically adjusted to obtain a clear image of the optical label.
  • the information (for example, ID) transmitted by the optical tag can be identified by decoding the acquired image, thereby obtaining the physical size corresponding to the optical tag by using the ID information query server.
  • Optical tags can also have a uniform or default physical size.
  • the relative distance between the camera and the optical tag can also be obtained based on the size of the clear image of the optical tag, the focal length parameter when the clear image of the optical tag is captured, and the physical size of the optical tag.
  • the absolute position of the optical tag can be calculated on the terminal device based on the relative distance of the imaging device from the optical tag, the orientation of the imaging device, and the position information of the imaging device itself, and the terminal device will The calculated absolute position is sent to the server.
  • the size of the clear image of the optical label, the focal length parameter when the clear image of the optical label is captured, the position information of the imaging device, and the like may be sent to the server by the terminal device, and the server may use the information according to the information.
  • the positioning information of the imaging device can be obtained by using a position sensor built in the terminal device.
  • the position sensor on the terminal device for example, the GRS sensor of the mobile phone
  • the error is usually more than ten meters. Therefore, there is also a certain error in obtaining the absolute position of the optical tag.
  • the relative position of the optical tag can also be obtained by scanning the optical tag by the portable device.
  • the same image may include multiple optical tags, and the captured image will be decoded to identify multiple optical tags.
  • the relative position between the optical tag and the imaging device can be obtained for each optical tag. After the relative position of the imaging device to each of the at least two optical tags is obtained, the relative position between the two optical tags can be determined using a triangulation method. The relative position between the two optical tags in the same image determined in the above manner is more stable and accurate than the absolute position obtained by scanning the optical tag with the terminal device.
  • the location information of the optical tags saved on the server can be continually updated.
  • the position information of the optical tag changes continuously as the object to which it is attached moves.
  • the accuracy of the calculated relative distance between the imaging device and the optical tag is also different.
  • the larger the size of the collected optical tag image the more accurate the estimated relative distance, and the higher the accuracy of the absolute position and relative position of the optical tag thus obtained. Therefore, position information acquired by close-range shooting can be used instead of position information obtained by shooting with a longer distance.
  • the server may record the size or area of the optical tag image acquired when each optical tag location information is obtained; when the new location information of the optical tag is obtained, the optical tag acquired when the location information is obtained.
  • the size or area of the image is compared with the size or area of the optical label image corresponding to the previously stored position information of the optical label, and the position information corresponding to the smaller optical label image is continuously replaced by the position information corresponding to the larger optical label image.
  • the server may record the relative distance between the imaging device and the optical tag when obtaining the optical tag location information; when the new location information of the optical tag is obtained, the relative distance when the location information is acquired and the light The relative distance corresponding to the location information of the tag is compared, and the location information corresponding to the relatively distant relative distance is continuously replaced by the location information corresponding to the relatively distant relative distance.
  • the user can use any image capture device or imaging device on the terminal device (eg, a mobile phone) carried by the user to perform image collection on a certain optical tag that is seen, for example, the optical tag transmits the information, for example, the optical tag.
  • ID Identifier
  • the terminal device can establish a network connection with the predetermined or preset optical tag server, thereby the size of the clear image of the collected optical tag, the focal length parameter when capturing the clear image of the optical tag, the ID of the optical tag, and / or location information of the personal device, etc. is provided to the server.
  • the optical tag network server can continuously calculate and update the relative position and absolute position of the corresponding optical tag in response to the received information.
  • the information about the optical tags saved by the server is gradually improved, and the scale of the optical tag network is also continuously expanded.
  • the user can obtain and access various related information of all relevant optical labels in the optical label network through the server.
  • an optical tag network can be used for precise positioning.
  • the user can access the optical tag network server by scanning the optical tag in the vicinity thereof to provide a destination to the server; then the server can query the optical tag near the destination and plan the route from the user's current location to the destination and along the way.
  • a fixed optical tag and can accurately indicate how the user travels from the currently scanned optical tag to the next optical tag based on the relative position between the optical tags until the destination is reached.
  • the optical tag network server can be a software program running on a computing device, a computing device, or a cluster of multiple computing devices.
  • the method gradually constructs and perfects an optical label network by continuously scanning the optical label of the terminal device, and the method mainly includes the following steps: identifying one or more of the collected images in response to image collection of the optical label by the terminal device carried by the user An identifier of the optical tag (step S1); calculating a relative position between the terminal device and each of the identified optical tags based on the acquired image (step S2); according to the relative between the terminal device and each optical tag
  • the location and the geographical location information of the terminal device calculate the geographical location information of the optical tag (step S3); establish a correspondence between the identifier of each optical tag and its corresponding geographical location information (step S4).
  • the optical tag when the user wishes to use or access the optical tag in the surrounding environment, the optical tag can be image-captured by the terminal device carried by the user to obtain the identifier of the optical tag.
  • the optical label can be photographed by using an integrated imaging device on the mobile phone, and a clear image of the optical label can be obtained by automatically adjusting the focal length, and the information transmitted by the optical label can be identified by performing a corresponding decoding operation on the collected image, such as the light.
  • the identifier of the label Since the optical tag can be remotely recognized, when an image is collected for an optical tag, a plurality of optical tags near the optical tag may be included in the field of view of the imaging device, so the captured image may include multiple Light label. In order to build and refine the optical tag network more quickly, in response to each image acquisition of the optical tag by the terminal device, an identifier of all optical tags present in the acquired image can be identified.
  • step S2 for each of the identified optical tags, a relative positional relationship between the optical tag and the terminal device performing image acquisition is obtained based on the acquired image.
  • the relative distance between the imaging device and the optical tag can be obtained, for example, based on a sharp image acquired by the imaging device equipped with the binocular camera or the depth camera, in combination with the orientation or posture of the imaging device.
  • a relative positional relationship between the imaging device and the optical tag can be obtained.
  • the location information of the terminal device can be obtained by using a location sensor (such as a GPS receiver or the like) built in or integrated on the terminal device, and then according to the geographical location information of the terminal device and the terminal device and each optical tag.
  • the relative position between the optical tags calculates the geographic location information of the optical tag, thereby obtaining the absolute position of the optical tag, such as the actual location of the optical tag in the physical world represented by GPS information.
  • the method further includes the step of obtaining a relative position of the optical tag.
  • the collected image may include multiple optical labels, so that the recognized optical label can be collected while acquiring the absolute position of each optical label. Relative position information between the two. For any two optical tags that appear in the acquired image, based on the relative position between each optical tag and the terminal device, relative positional information between the two optical tags can be obtained using, for example, a triangulation method.
  • the above steps S1)-S3) may all be performed on the terminal device carried by the user, and the terminal device transmits the calculated absolute position and relative position of the optical tag and the identifier thereof to the optical tag network.
  • the server is saved and managed.
  • the clear image size of the optical tag, the focal length parameter when the clear image of the optical tag is captured, the location information of the terminal device itself, the optical tag identifier, etc. may be sent to the server by the terminal device, The server calculates the relative position between the terminal device and the optical tag and the absolute position and relative position of the optical tag based on the information.
  • the method further includes the step of obtaining the absolute position of the optical tag using the set reference optical tag.
  • certain optical tags in the optical tag network can be set as reference optical tags, the absolute locations of which contain accurate physical location information. For example, a certain amount of fixed-position reference optical tags may be pre-arranged, or accurate physical location information of some optical tags may be obtained by a precise positioning device, and then the optical tags are set as reference optical tags by the optical tag server. And save their corresponding location information. In this way, the remaining optical tags in the cursor network can use these reference optical tags as a reference to obtain their absolute position.
  • the server can determine whether the reference optical tag is included in the currently acquired image. If it is determined that the currently collected image includes the reference optical label, the absolute position of the remaining optical labels in the collected image may be obtained according to the geographical location information of the reference optical label and the relative position information between the optical labels. The absolute position thus obtained has a higher priority than the absolute position obtained based on the geographical location information of the terminal device.
  • the optical tag network server manages its corresponding absolute location and/or relative location based on the identifier of the optical tag.
  • the optical tag network server can receive information about the optical tag from a plurality of terminal devices that utilize the optical tag identifier to record, save, maintain, update, and/or retrieve corresponding location information for the optical tag. As multiple users scan for each optical label, the relevant location information of the optical label saved by the server will gradually improve, and the scale of the optical label network will continue to expand.
  • the method further includes the step of updating the location information of the optical tag by the server in response to the identification of the optical tag.
  • the accuracy of the calculated relative distance between the imaging device and the optical tag is also different.
  • the larger the size of the collected optical tag image the more accurate the estimated relative distance, and the higher the accuracy of the absolute position and relative position of the optical tag thus obtained. Therefore, position information acquired by close-range shooting can be used instead of position information obtained by shooting with a longer distance.
  • the server may record the size or area of the optical tag image acquired when each optical tag location information is obtained; when the new location information of the optical tag is obtained, the optical tag image size acquired when the location information is acquired Or the area is compared with the size or area of the optical label image corresponding to the previously stored position information of the optical label, and the position information corresponding to the smaller optical label image is continuously replaced by the position information corresponding to the larger optical label image.
  • the server when the server records or stores the absolute position or relative position of a certain optical tag, the relative distance between the terminal device and the optical tag on which the absolute position or relative position is obtained may be simultaneously saved.
  • the server when the server receives new information generated in response to the image collection of the optical tag by the terminal device, it can be determined whether the relative distance between the terminal device currently performing image acquisition and the optical tag is less than that of the optical tag. a relative distance between the terminal device of the image acquisition and the optical tag; if less than, the geographic location information and/or relative of the optical tag calculated according to the relative distance between the terminal device currently performing image acquisition and the optical tag Location information to update geographic location information and/or relative location information prior to the optical tag. Otherwise, the absolute position and relative position of the optical tag are not updated.
  • the above update process is more suitable for fixed optical tags.
  • the server may update the corresponding position information each time the location information about the mobile optical label is received; or between the two positions When the distance exceeds a certain threshold, the original location information is replaced with new location information.
  • the method can also include utilizing the relative position of the optical tag to obtain the absolute position of the optical tag.
  • each optical tag can have one or more relative positions.
  • the absolute position of each optical tag can be obtained by recursively traversing the relative position of the optical tag. For example, for an optical tag, if the absolute position of the corresponding one of the reference optical tags has been determined, the absolute position of the optical tag can be obtained according to the relative position of the optical tag and the absolute position of the reference optical tag.
  • each reference optical label is used as a starting point, and all relative positions of the reference optical labels are traversed, and if the absolute position of the reference optical label corresponding to one of the relative positions is It is known that the absolute position of the reference optical tag as the starting point can be obtained from the relative position and the known absolute position, thereby further obtaining the absolute position of the optical tag. The above process can be repeated until a certain absolute position has been determined.
  • certain optical tags in the optical tag network may be configured as reference optical tags whose absolute locations contain accurate physical location information.
  • a reference optical tag that is fixed at a certain amount of position may be disposed, or physical location information of some optical tags may be acquired by a precise positioning device, and these optical tags are set as reference optical tags.
  • the remaining optical tags in the cursor network can utilize these reference optical tags as direct or indirect reference optical tags to obtain their absolute position using the recursive process described above.
  • any optical tag (or light source) that can be used to communicate information can be used.
  • the method of the present invention can be applied to a light source that transmits information through different stripes based on a rolling shutter effect of CMOS (for example, the optical communication device described in Chinese Patent Publication No. CN104168060A), and can also be used in, for example, the patent CN105740936A.
  • CMOS complementary metal-oxide-semicon-based on a rolling shutter effect of CMOS
  • the described optical tags can also be applied to a variety of optical tags that can be used to identify the transmitted information by the CCD sensor, or can be applied to an array of optical tags (or sources).
  • the terminal device carried by the user is taken as an example in the process of constructing the optical tag network, but those skilled in the art can understand that any other device with image capturing function can also be used to implement the optical tag network.
  • the device may for example be a self-moving machine with a camera, such as a drone, a driverless car or the like.
  • appearances of the phrases “in the various embodiments”, “in some embodiments”, “in one embodiment”, or “in an embodiment” are not necessarily referring to the same implementation. example.
  • the particular features, structures, or properties may be combined in any suitable manner in one or more embodiments.
  • the particular features, structures, or properties shown or described in connection with one embodiment may be combined, in whole or in part, with the features, structures, or properties of one or more other embodiments without limitation, as long as the combination is not Logical or not working.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本发明提供一种动态构建光标签网络的方法及系统,包括响应于由设备对光标签的图像采集,识别所采集的图像中一个或多个光标签的标识符,计算该设备与所识别的每个光标签之间相对位置,根据这样相对位置和设备的地理位置信息计算出每个光标签的地理位置信息;以及由服务器基于光标签的标识符来管理其对应的地理位置信息。通过设备对其周边环境中光标签的不断扫描,光标签网络被构建并不断扩展。

Description

用于构建光标签网络的方法及相应的光标签网络 技术领域
本发明涉及光信息技术和位置服务领域,更具体地涉及利用多个光标签架构的网络系统及其构建方法。
背景技术
条形码和二维码已经被广泛采用来对信息进行编码。当用特定设备或软件扫描这些条形码和二维码时,相应的信息就会被识别出来。然而,条形码和二维码的识别距离很受限制。例如,对于二维码而言,当用手机摄像头对其进行扫描时,该手机通常必须置于一个比较近的距离内,该距离通常只是二维码的宽度的15倍左右。因此,对于远距离识别(例如相当于二维码宽度的200倍的距离),条形码和二维码通常不能实现,或者必须定制非常大的条形码和二维码,但这会带来成本的提升,并且在许多情形下由于其他各种限制是不可能实现的。
光标签通过发出不同的光来传递信息,其具有远距、可见光条件要求宽松、指向性强、可定位的优势,并且光标签所传递的信息可以随时间迅速变化,从而可以提供更大的信息容量(例如在中国专利公开CN104168060A、CN105740936A等中所描述的光通信装置)。相比于传统的二维码,光标签具有更强的信息交互能力,从而可以为用户和商家提供巨大的便利性。
发明内容
随着光标签的应用和普及,如何综合利用周围环境中不断部署的多个光标签来共同提供例如位置与信息查询、导航与定位之类的服务,具有很大的研究和商业价值。因此,本发明的目的在于提供一种动态构建光标签网络的方法及相应的光标签网络。
本发明的目的是通过以下技术方案实现的:
在一个方面,本发明提供了一种构建光标签网络的方法,该方法包括:
响应于由设备对光标签的图像采集,识别所采集的图像中一个或多个光标签的标识符;
基于所采集的图像计算该设备与所识别的每个光标签之间相对位置;
根据该设备与每个光标签之间的相对位置和该设备的地理位置信息计算出该光标签的地理位置信息;
建立光标签的标识符与其地理位置信息之间的对应关系。
在一个实施例中,该方法还可包括根据进行图像采集的设备与每个光标签之间的相对位置计算光标签两两之间的相对位置信息。
在一个实施例中,该方法还可包括记录所采集的光标签图像的尺寸。
在一个实施例中,该方法还可包括响应于设备对光标签的图像采集,确定当前采集的光标签图像的尺寸大于先前对该光标签所采集的图像的尺寸;以及响应于该确定,以根据当前采集的图像获得的光标签的地理位置信息和/或相对位置信息来更新该光标签之前的地理位置信息和/或相对位置信息。
在一个实施例中,该方法还可包括基于所识别的光标签标识符确定当前所采集的图像中包括设定的基准光标签;以及响应于该确定,根据该基准光标签的地理位置信息和所计算的光标签两两之间的相对位置信息,获取所采集的图像中其余光标签的地理位置信息。
在一个实施例中,该方法还可包括通过定位设备获取一个或多个光标签的准确地理位置信息;并将该一个或多个光标签设定为基准光标签,并保存其相应的地理位置信息。
在又一个方面,本发明还提供了一种具有图像采集功能的设备,包括成像装置、处理器和通信装置,其中:
成像装置被配置为对光标签进行图像采集;
处理器被配置为识别所采集的图像中一个或多个光标签的标识符,基于所采集的图像计算该设备与所识别的每个光标签之间相对位置,以及根据该设备与每个光标签之间的相对位置和该设备的地理位置信息计算出该光标签的地理位置信息;
通信装置被配置为传输光标签的标识符及地理位置信息。
在一个实施例中,所述处理器还可被配置为根据设备与每个光标签之间的相对位置计算光标签两两之间的相对位置信息;以及
所述通信装置被配置为传输光标签的相对位置信息。
在又一个方面,本发明还提供了一种光标签网络系统,包括多个光标签和至少一个服务器,
所述光标签包括至少一个光源和控制器,所述控制器控制所述光源发出不同的光以传递不同信息,所述信息包含该光标签的标识符;
所述服务器被配置为基于光标签的标识符管理其相应的位置信息,所述位置信息包括光标签的地理位置和/或一个或多个相对位置,所述光标签的相对位置为该光标签相对于另一光标签的位置。
在上述光标签网络中,每个光标签可为固定式光标签或移动式光标签的其中之一。
在上述光标签网络中,所述多个光标签还可包括基准光标签,所述基准光标签的绝对位置为设定的地理位置信息。
在上述光标签网络中,还可包括根上文所述的设备。
在上述光标签网络中,所述服务器还可被配置为记录所采集的光标签图像的尺寸。
在上述光标签网络中,所述服务器还可被配置为:
响应于设备对光标签的图像采集,确定当前采集的光标签图像的尺寸大于先前对该光标签所采集的图像的尺寸;
响应于该确定,以根据当前采集的图像获得的光标签的地理位置信息和/或相对位置信息来更新该光标签之前的地理位置信息和/或相对位置信息。
在上述光标签网络中,所述服务器还可被配置为:
基于所识别的光标签标识符确定当前所采集的图像中包括设定的基准光标签;以及响应于该确定,根据该基准光标签的地理位置信息和所计算的光标签两两之间的相对位置信息,获取所采集的图像中其余光标签的地理位置信息。
附图说明
以下参照附图对本发明实施例作进一步说明,其中:
图1为根据本发明一个实施例的光标签网络结构示意图;
图2为根据本发明一个实施例的用于动态构建光标签网络的方法的流程示意图。
具体实施方式
为了使本发明的目的,技术方案及优点更加清楚明白,以下结合附图 通过具体实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
在本发明的实施例中,光标签可以是能够通过发出不同的光来传输不同的信息的任一光通信装置。在一个实施例中,光标签可包括至少一个光源和控制器,控制器用于控制所述光源发出的不同的光来传递不同的信息。例如,控制器可以通过改变光源发出的光的属性来使得光源发出不同的光。光的属性可以是光学成像器件(例如CMOS成像器件)能够感知的任何属性;例如其可以是光的强度、颜色、波长等人眼可感知的属性,也可以是人眼不可感知的其他属性,例如在人眼可见范围外的电磁波长的强度、颜色或波长改变,或者是上述属性的任一组合。因此,光的属性变化可以是单个属性发生变化,也可以是两个或更多个属性的组合发生变化。当选择光的强度作为属性时,可以简单地通过选择开启或关闭光源来实现。在下文中为了简单起见,以开启或关闭光源来改变光的属性,但本领域技术人员可以理解,用于改变光的属性的其他方式也是可行的。
在该光标签中可以使用各种形式的光源,只要其某一可被光学成像器件感知的属性能够以不同频率进行变化即可。光源中可以包括各种常见的光学器件,例如导光板、柔光板、漫射器等。例如,光源可以是一个LED灯、由多个LED灯构成的阵列、显示屏幕或者其中的一部分,甚至光的照射区域(例如光在墙壁上的照射区域)也可以作为光源。该光源的形状可以是各种形状,例如圆形、正方形、矩形、条状、L状等。
在一个实施例中,该光标签的控制器可以控制每个光源发出的光的属性,以便传递信息。例如,可以通过控制每个光源的开启和关闭来表示二进制数字信息的“0”或“1”,从而该光标签中多个光源可以用于表示一个二进制数字信息序列。如本领域技术人员可以理解的,每个光源不仅可以用于表示一个二进制数,还可以用于表示三进制或更大进制的数据。例如,可以通过将光源所发出的光的强度设置为从三种或更多种水平中进行选择,或者通过将光源所发出的光的颜色设置为从三种或更多种颜色中进行选择,甚至通过采用强度与颜色的组合,来使得每个光源能表示三进制或更大进制的数据。因此,相比于传统二维码,本发明的光标签可以显著提高数据编码密度。
在又一实施例中,该光标签的控制器可以控制光源以一定频率改变其所发出的光的属性,因此,本发明的光标签可以在不同的时间表示不同的 数据信息,例如,不同的二进制数字信息序列。如此,当使用光学成像设备对本发明的光标签进行连续拍摄时(例如,以30帧/秒的速率),其每一帧图像都可以用于表示一组信息序列,从而相比于传统的静态二维码,可以进一步显著地提高其数据编码密度。
在本申请的实施例中,可以使用本领域常见的光学成像设备或图像采集设备对光标签进行成像,从每帧图像确定所传递的信息,例如二进制数据1或数据0信息序列,从而实现光标签向光学成像器件的信息传递。光学成像设备或图像采集设备可以包括图像采集元件、处理器和存储器等。光学成像设备或图像采集设备例如可以是具有拍摄功能的移动终端,包括手机、平板电脑、智能眼镜等,其可以包括图像采集装置和图像处理模块。用户在距离光标签视距范围内通过肉眼发现光标签,通过使移动终端成像传感器朝向光标签,扫描该光标签并进行信息捕获与判读处理。当光标签的控制器控制光源以一定频率改变其所发出的光的属性时,移动终端的图像采集频率可以被设置为大于或等于光源的属性变换频率的2倍。通过对所采集的图像帧进行解码操作,可以完成识别解码的过程。在一个实施例中,为了避免图像帧的重复、遗漏等,可以在光标签所传递的信息中包括序列号、校验位、时间戳等。根据需要,可以在多个图像帧中给出起始帧或结束帧,或者二者兼有,用于指示多个图像帧的一个完整周期的开始或结束位置,该起始帧或结束帧可以被设定为显示某个特殊的数据组合,例如:全0或全1,或者任何不会与实际可能显示的信息相同的特殊组合。
以CMOS成像器件为例,当通过CMOS成像器件拍摄光源的连续的多帧图像时,可以通过控制器进行控制,使得光源的工作模式之间的切换时间间隔等于CMOS成像器件一个完整帧成像的时间长度,从而实现光源与成像器件的帧同步。假定每个光源每帧传输1比特的信息,那么对于30帧/每秒的拍摄速度,每个光源每秒钟可以传递30比特的信息,编码空间达到2 30,该信息可以包括例如,起始帧标记(帧头)、光标签的ID、口令、验证码、网址信息、地址信息、时间戳或其不同的组合等等。可以按照结构化方法,设定上述各种信息的顺序关系,形成数据包结构。每接收到一个完整的该数据包结构,视为获得一组完整数据(一个数据包),进而可以对其进行数据读取和校验分析。表1给出根据本发明的一个实施例的示例数据包结构:
表1
帧头 属性字段(可选) 数据字段 校验位 帧尾
相比于传统的二维码,上述光标签通过发出不同的光来传递信息,其具有远距、可见光条件要求宽松、指向性强、可定位的优势,并且光标签所传递的信息可以随时间迅速变化,从而可以提供大的信息容量。因此,光标签具有更强的信息交互能力,从而可以为用户和商家提供巨大的便利性。为了基于光标签向用户和商家提供对应的服务,每个光标签都分配有唯一标识符(ID),该标识符用以由光标签的制造者、管理者及使用者等唯一地识别或标识光标签。通常,可由光标签发布其标识符,而使用者可以使用例如手机上内置的图像采集设备或成像装置对光标签进行图像采集来获得该光标签传递的信息(例如标识符),从而可以访问基于该光标签提供的服务。
现参考图1,示出了根据本发明一个实施例的光标签网络结构示意图。该光标签网络主要包括多个光标签和至少一个服务器。该网络中每个光标签可以是固定式光标签或移动式光标签。固定式光标签通常指位置基本保持不变的光标签,例如,安装在商店门头,建筑物上的光标签。移动式光标签通常指位置随时可变的光标签,例如,安装在例如汽车等可移动装置上的光标签,佩戴在人身上的光标签。如图1所示,与每个光标签相关的信息可保存在服务器上。例如,可以在服务器上保存每个光标签的标识符(ID)、位置信息以及其他信息,例如该光标签是固定式还是移动式、与该光标签相关的服务信息、与该光标签相关的其他描述信息或属性,如光标签的物理尺寸、朝向等。
光标签的位置信息可包括绝对位置和/或相对位置。绝对位置是指该光标签在物理世界中的实际位置,例如可以通过GPS信息来指示。光标签的相对位置是指该光标签相对于另一光标签的位置。在一个示例中,光标签的相对位置可以通过该光标签相对于另一光标签的空间位移来表示,也就是通过该光标签在以与其对应的另一光标签(下文也可称为参考光标签)为原点的坐标系中位置来进行表示,例如,相对位置可表示为(x,y,z:refID),其中refID为作为坐标系原点的光标签的标识符,即该光标签所相对的参考光标签的标识符,x,y,z分别表示相对于该坐标系原点的三个方向的位移。优选地,每个光标签可以具有一个或多个相对位置。每个光标签的绝对位置可以通过递归地遍历光标签的相对位置来获取。例如,对于某个光标签,如果所对应的其中一个参考光标签的绝对位置已经被确定,则 可以根据该光标签的相对位置和该参考光标签的绝对位置获得该光标签的绝对位置。如果该光标签对应的所有参考光标签的绝对位置都未确定,则以每个参考光标签为起点,遍历该参考光标签的所有相对位置,如果其中一个相对位置对应的参考光标签的绝对位置已知,则可根据该相对位置及该已知的绝对位置获得作为起点的参考光标签的绝对位置,从而进一步获得该光标签的绝对位置。上述过程可以不断重复直到获得某个已被确定的绝对位置为止。
在一些实施例中,可以将光标签网络中某些光标签设置为基准光标签,这些基准光标签的绝对位置包含精确的物理位置信息。例如,可以预先布设一定量的位置固定的基准光标签,或者可以通过精确的定位设备获取某些光标签的物理位置信息,并将这些光标签设置为基准光标签。这样,光标网络中的其余光标签可以利用这些基准光标签作为直接的或间接的参考光标签,进而利用上述递归过程获取其绝对位置。
在又一些实施例中,光标签的绝对位置可以通过用户携带的终端设备扫描光标签的方式来获得。这里的终端设备可以是具有成像、计算和通信功能的任意计算设备,例如上文提到的诸如手机、平板电脑、智能眼镜之类的光学成像设备或图像采集设备,或者也可以是便携笔记本电脑或专用于扫描光标签的移动通信设备等等。例如,用户可使用随身携带的手机上内置的成像装置对光标签进行图像采集,基于所采集的光标签图像可以获得该手机与所采集的光标签之间相对位置,然后就可以基于手机与光标签的相对位置和手机本身的地理位置信息计算出该光标签的地理位置信息。其中可以使用多种可行的方法来确定成像设备与光标签之间的相对位置关系。例如,可以通过确定成像设备与光标签的相对距离并通过分析光标签在成像设备上成像的透视畸变来确定成像设备与光标签之间的相对位置关系。又例如,可基于所采集的图像获得成像装置与光标签的相对距离,然后基于该成像装置与光标签的相对距离和该成像装置的朝向获得该手机与所采集的光标签之间相对位置,从而可基于这样的相对位置关系和该成像装置本身的位置信息(例如,GPS信息)计算出该光标签的绝对位置。
上述过程可在终端设备上执行,并由该终端设备将计算得到的绝对位置发送给服务器。目前市场销售的很多成像装置上通常配备有双目摄像头或深度摄像头,利用配备有双目摄像头或深度摄像头的成像装置对光标签进行图像采集,基于所采集的图像就能获得该成像装置与光标签之间的相 对距离。又例如,当用户使用手机上内置的普通摄像头对光标签进行图像采集时,可以自动调整焦距,以获得光标签的清晰图像。通过对所采集的图像进行解码可以识别该光标签传递的信息(例如ID),从而通过使用ID信息查询服务器获得光标签所对应的物理尺寸。光标签也可以具有统一的或默认的物理尺寸。这样,利用透镜物象公式和物像关系,基于光标签的清晰图像的尺寸、拍摄到该光标签的清晰图像时的焦距参数、光标签的物理尺寸也可以获得该摄像头与光标签的相对距离。接着如上文介绍的,可在终端设备上基于该成像装置与光标签的相对距离、该成像装置的朝向以及该成像装置本身的位置信息来计算该光标签的绝对位置,并由该终端设备将计算得到的绝对位置发送给服务器。在其他一些实施例中,也可以由终端设备将光标签的清晰图像的尺寸、拍摄到该光标签的清晰图像时的焦距参数、成像装置的位置信息等发送给服务器,由服务器来根据这些信息计算光标签的绝对位置。其中成像装置的定位信息可以利用终端设备上内置的位置传感器来获取。但是,终端设备上的位置传感器(例如手机的GRS传感器)存在一定的误差,例如误差通常为十几米。因此这样的获得光标签的绝对位置也存在一定误差。
在一些实施例中,还可以通过便携设备扫描光标签的方式获得光标签的相对位置。当用户使用手机上内置的成像装置对光标签进行图像采集时,同一图像中可能包含了多个光标签,对采集到的图像进行解码后会识别到多个光标签。如上文提到的,对于每个光标签都能获取该光标签与成像装置之间的相对位置。在获得了成像装置与至少两个光标签中的每一个的相对位置后,可以利用三角定位法确定这两个光标签之间的相对位置。与利用终端设备扫描光标签获得的绝对位置相比,采用上述方式确定的同一图像中两两光标签之间的相对位置更稳定和准确。
在又一些实施例中,可以不断更新在服务器上保存的光标签的位置信息。例如对于移动式光标签,随着其所附着的对象的不断移动,该光标签的位置信息会不断发生变化。另外,成像装置对光标签进行图像采集时距离远近不同,则所计算的成像装置与光标签的相对距离的精度也不同。通常,所采集的光标签图像尺寸越大,则估计的相对距离越准确,由此获得的光标签的绝对位置和相对位置的精度也越高。因此,可使用通过近距离拍摄获取的位置信息来不断代替使用较远距离拍摄而获得的位置信息。在一些优选的实施例中,服务器可以记录获得每个光标签位置信息时所采集 的光标签图像尺寸或面积;当获得光标签的新的位置信息时,将获取该位置信息时采集的光标签图像尺寸或面积与先前保存的该光标签已有位置信息对应的光标签图像尺寸或面积进行比较,不断以较大的光标签图像对应的位置信息来代替较小的光标签图像对应的位置信息。在又一些实施例中,服务器可以记录获得每个光标签位置信息时成像装置与光标签的相对距离;当获得光标签的新的位置信息时,将获取该位置信息时的相对距离与该光标签已有位置信息对应的相对距离进行比较,不断以较近的相对距离对应的位置信息来代替较远的相对距离对应的位置信息。
继续参考图1,用户可以随时利用其携带的终端设备(例如手机)上的图像采集设备或成像装置对见到的某个光标签进行图像采集来获得该光标签传递的信息,例如该光标签的标识符(ID)。接着,终端设备可以与预定的或预先设置的光标签服务器建立网络连接,从而将所采集的光标签的清晰图像的尺寸、拍摄到该光标签的清晰图像时的焦距参数、光标签的ID和/或个人设备的位置信息等提供给服务器。光标签网络服务器可以响应于收到的信息来不断计算和更新相应光标签的相对位置和绝对位置。随着多个用户的终端设备对于光标签的不断扫描,服务器保存的光标签的相关信息逐渐完善,光标签网络的规模也随之不断扩展。用户只要扫描光标签网络中任一光标签,就可以通过服务器获得和访问该光标签网络中所有相关的光标签的各种相关信息。例如,可以利用光标签网络进行精准定位。用户可以通过扫描其附近的光标签来访问光标签网络服务器,向服务器提供目的地;接着服务器可以查询到目的地附近的光标签,并规划出从用户当前位置到目的地的路线和沿途相关的固定式光标签,并且可以根据光标签之间的相对位置精确地指示用户从当前扫描的光标签开始如何行进至下一个光标签,直到到达目的地为止。光标签网络服务器可以是在计算装置上运行的软件程序、一台计算装置或者由多台计算装置构成的集群。
现参考图2,示出了根据本发明一个实施例的用于动态构建光标签网络的方法的流程示意图。该方法通过终端设备对于光标签的不断扫描来逐步构建和完善光标签网络,其主要包括下列步骤:响应于由用户携带的终端设备对光标签的图像采集,识别所采集的图像中一个或多个光标签的标识符(步骤S1);基于所采集的图像计算该终端设备与所识别的每个光标签之间相对位置(步骤S2);根据该终端设备与每个光标签之间的相对位 置和该终端设备的地理位置信息计算出该光标签的地理位置信息(步骤S3);建立每个光标签的标识符与其对应的地理位置信息之间的对应关系(步骤S4)。
更具体地,在步骤S1,当用户希望使用或访问其周围环境中的光标签时,可以利用其随身携带的终端设备对光标签进行图像采集,以获取该光标签的标识符。例如,可使用手机上集成的成像装置对光标签进行拍照,通过自动调节焦距获得光标签的清晰图像,通过对所采集的图像进行相应解码操作,可识别该光标签传递的信息,例如该光标签发布的标识符。由于光标签可以进行远距离识别,所以对某个光标签进行图像采集时,在成像装置视场内可能会包括该光标签附近的多个光标签,因此所采集的图像中可能会包括多个光标签。为了更快地构建和完善光标签网络,可以响应于终端设备对光标签的每次图像采集,识别出所有出现在所采集的图像中的光标签的标识符。
在步骤S2,对于所识别的每个光标签,基于所采集的图像获取该光标签与进行图像采集的终端设备之间相对位置关系。如上文介绍的,例如基于通过配备有双目摄像头或深度摄像头的成像装置对光标签采集的清晰图像可以获得该成像装置与光标签之间的相对距离,再结合该成像装置的朝向或姿态等可以获得该成像装置与光标签之间的相对位置关系。
在步骤S3,可利用终端设备上内置或集成的位置传感器(例如GPS接收机等)获取该终端设备的地理位置信息,然后根据该终端设备的地理位置信息以及该终端设备与每个光标签之间的相对位置计算出该光标签的地理位置信息,从而获得该光标签的绝对位置,例如以GPS信息表示的该光标签在物理世界中的实际位置。在一些优选实施例中,该方法还包括获取光标签的相对位置的步骤。如上文提到的,在对某个光标签进行采集时,所采集的图像中可能会包括多个光标签,因此在获取每个光标签的绝对位置的同时还可以收集所识别的光标签两两之间的相对位置信息。对于出现在采集的图像中的任意两个光标签,根据每个光标签与终端设备之间的相对位置,可以利用例如三角定位方法获得这两个光标签之间的相对位置信息。
在一些实施例中上述步骤S1)-S3)可全部在用户个人携带的终端设备上执行,并由该终端设备将计算得到的光标签的绝对位置和相对位置及其标识符发送给光标签网络服务器进行保存和管理。在又一个实施例中, 可以由终端设备将光标签的清晰图像尺寸、拍摄到该光标签的清晰图像时的焦距参数、该终端设备本身的位置信息、光标签标识符等发送给服务器,由服务器来根据这些信息计算终端设备与光标签之间的相对位置以及光标签的绝对位置和相对位置。
在一些实施例中,该方法还包括利用设定的基准光标签来获取光标签绝对位置的步骤。如上文提到的,可以将光标签网络中某些光标签设置为基准光标签,这些基准光标签的绝对位置包含精确的物理位置信息。例如,可以预先布设一定量的位置固定的基准光标签,或者可以通过精确的定位设备获取某些光标签的准确的物理位置信息,然后由光标签服务器将这些光标签设定为基准光标签,并保存其相应的地理位置信息。这样,光标网络中的其余光标签可以利用这些基准光标签作为参照来获取其绝对位置。例如根据终端设备从采集的图像中识别的每个光标签的标识符,服务器可以判断当前所采集的图像中是否包括基准光标签。如果确定当前采集的图像中包括基准光标签,则可以根据该基准光标签的地理位置信息以及光标签两两之间的相对位置信息获取所采集的图像中其余光标签的绝对位置。这样获得的绝对位置的优先级高于基于终端设备的地理位置信息获取的绝对位置。
继续参考图2,在步骤S4,光标签网络服务器基于光标签的标识符来管理其对应的绝对位置和/或相对位置。光标签网络服务器可以收到来自多个终端设备的关于光标签的相关信息,其利用光标签标识符来记录、保存、维护、更新和/或检索光标签的相应位置信息。随着多个用户对于各个光标签的不断扫描,该服务器保存的光标签的相关位置信息会逐渐完善,光标签网络的规模也随之不断扩展。
在一些优选的实施例中,该方法还包括由服务器响应于对光标签的识别来更新光标签的位置信息的步骤。如上文提到的,成像装置对光标签进行图像采集时距离远近不同,则所计算的成像装置与光标签的相对距离的精度也不同。通常,所采集的光标签图像尺寸越大,则估计的相对距离越准确,由此获得的光标签的绝对位置和相对位置的精度也越高。因此,可使用通过近距离拍摄获取的位置信息来不断代替使用较远距离拍摄而获得的位置信息。在一些实施例中,服务器可以记录获得每个光标签位置信息时所采集的光标签图像尺寸或面积;当获得光标签的新的位置信息时,将获取该位置信息时采集的光标签图像尺寸或面积与先前保存的该光标 签已有位置信息对应的光标签图像尺寸或面积进行比较,不断以较大的光标签图像对应的位置信息来代替较小的光标签图像对应的位置信息。在又一些实施例中,服务器在记录或保存某个光标签的绝对位置或相对位置时,可以同时保存获得该绝对位置或相对位置所依据的终端设备与该光标签之间的相对距离。这样,当服务器接收到响应于终端设备对光标签的图像采集而产生的新信息时,可以判断当前进行图像采集的终端设备与该光标签之间的相对距离是否小于上次对该光标签进行图像采集的终端设备与该光标签之间的相对距离;如果小于,则以根据当前进行图像采集的终端设备与该光标签之间的相对距离计算得到的光标签的地理位置信息和/或相对位置信息来更新该光标签之前的地理位置信息和/或相对位置信息。反之,则不对光标签的绝对位置和相对位置进行更新。上述更新过程更适用于固定式光标签。而对于移动式光标签,为了及时地反映其位置状态变化,服务器可以在每次收到关于该移动式光标签的位置信息时都对相应位置信息进行更新;或者可以在前后两次位置之间距离超过一定阈值时以新的位置信息代替原来的位置信息。
在又一些实施例中,该方法还可包括利用光标签的相对位置来获取光标签的绝对位置。如上文介绍的,每个光标签可以具有一个或多个相对位置。每个光标签的绝对位置可以通过递归地遍历光标签的相对位置来获取。例如,对于某个光标签,如果所对应的其中一个参考光标签的绝对位置已经被确定,则可以根据该光标签的相对位置和该参考光标签的绝对位置获得该光标签的绝对位置。如果该光标签对应的所有参考光标签的绝对位置都未确定,则以每个参考光标签为起点,遍历该参考光标签的所有相对位置,如果其中一个相对位置对应的参考光标签的绝对位置已知,则可根据该相对位置及该已知的绝对位置获得作为起点的参考光标签的绝对位置,从而进一步获得该光标签的绝对位置。上述过程可以不断重复直到获得某个已被确定的绝对位置为止。在一个实施例中,可以将光标签网络中某些光标签设置为基准光标签,这些基准光标签的绝对位置包含精确的物理位置信息。例如,可以在布设一定量的位置固定的基准光标签,或者可以通过精确的定位设备获取某些光标签的物理位置信息,并将这些光标签设置为基准光标签。在光标网络中的其余光标签可以利用这些基准光标签可以作为直接的或间接的参考光标签,从而利用上述递归过程获取其绝对位置。
在本发明的实施例中,可以使用任何能够用于传递信息的光标签(或光源)。例如,本发明的方法可以适用于基于CMOS的滚动快门效应而通过不同的条纹来传递信息的光源(例如在中国专利公开CN104168060A中所描述的光通信装置),也可以使用于如专利CN105740936A中所描述的光标签,也可以适用于各种能通过CCD感光器件来识别所传递的信息的光标签,或者也可以适用于光标签(或光源)的阵列。
在上文中在构建光标签网络的过程中以用户携带的终端设备为例进行了说明,但本领域技术人员可以理解,也可以使用其他任何具有图像采集功能的设备来实现光标签网络的构建,该设备例如可以是具有摄像头的能够自主移动的机器,例如无人机、无人驾驶汽车等。
本文中针对“各个实施例”、“一些实施例”、“一个实施例”、或“实施例”等的参考指代的是结合所述实施例所描述的特定特征、结构、或性质包括在至少一个实施例中。因此,短语“在各个实施例中”、“在一些实施例中”、“在一个实施例中”、或“在实施例中”等在整个本文中各处的出现并非必须指代相同的实施例。此外,特定特征、结构、或性质可以在一个或多个实施例中以任何合适方式组合。因此,结合一个实施例中所示出或描述的特定特征、结构或性质可以整体地或部分地与一个或多个其他实施例的特征、结构、或性质无限制地组合,只要该组合不是非逻辑性的或不能工作。本文中出现的类似于“根据A”或“基于A”的表述意指非排他性的,也即,“根据A”可以涵盖“仅仅根据A”,也可以涵盖“根据A和B”,除非特别声明或者根据上下文明确可知其含义为“仅仅根据A”。在本申请中为了清楚说明,以一定的顺序描述了一些示意性的操作步骤,但本领域技术人员可以理解,这些操作步骤中的每一个并非是必不可少的,其中的一些步骤可以被省略或者被其他步骤替代。这些操作步骤也并非必须以所示的方式依次执行,相反,这些操作步骤中的一些可以根据实际需要以不同的顺序执行,或者并行执行,只要新的执行方式不是非逻辑性的或不能工作。
虽然本发明已经通过优选实施例进行了描述,然而本发明并非局限于这里所描述的实施例,在不脱离本发明范围的情况下还包括所做出的各种改变以及变化。

Claims (15)

  1. 一种构建光标签网络的方法,该方法包括:
    响应于设备对光标签的图像采集,识别所采集的图像中一个或多个光标签的标识符;
    基于所采集的图像计算该设备与所识别的每个光标签之间相对位置;
    根据该设备与每个光标签之间的相对位置和该设备的地理位置信息计算出该光标签的地理位置信息;
    建立光标签的标识符与其地理位置信息之间的对应关系。
  2. 根据权利要求1所述的方法,还包括:
    根据进行图像采集的设备与每个光标签之间的相对位置计算光标签两两之间的相对位置信息。
  3. 根据权利要求1或2所述的方法,还包括记录所采集的光标签图像的尺寸。
  4. 根据权利要求3所述的方法,还包括:
    响应于设备对光标签的图像采集,确定当前采集的光标签图像的尺寸大于先前对该光标签所采集的图像的尺寸;
    响应于该确定,以根据当前采集的图像获得的光标签的地理位置信息和/或相对位置信息来更新该光标签之前的地理位置信息和/或相对位置信息。
  5. 根据权利要求2所述的方法,还包括:
    基于所识别的光标签标识符确定当前所采集的图像中包括设定的基准光标签;
    响应于该确定,根据该基准光标签的地理位置信息和所计算的光标签两两之间的相对位置信息,获取所采集的图像中其余光标签的地理位置信息。
  6. 根据权利要求5所述的方法,还包括:
    通过定位设备获取一个或多个光标签的准确地理位置信息;
    将该一个或多个光标签设定为基准光标签,并保存其相应的地理位置信息。
  7. 一种具有图像采集功能的设备,包括成像装置、处理器和通信装置,其中:
    成像装置被配置为对光标签进行图像采集;
    处理器被配置为识别所采集的图像中一个或多个光标签的标识符,基于所采集的图像计算该设备与所识别的每个光标签之间相对位置,以及根据该设备与每个光标签之间的相对位置和该设备的地理位置信息计算出该光标签的地理位置信息;
    通信装置被配置为传输光标签的标识符及地理位置信息。
  8. 根据权利要求7所述的设备,其中所述处理器还被配置为根据设备与每个光标签之间的相对位置计算光标签两两之间的相对位置信息;以及
    所述通信装置被配置为传输光标签的相对位置信息。
  9. 一种光标签网络系统,包括多个光标签和至少一个服务器,
    所述光标签包括至少一个光源和控制器,所述控制器控制所述光源发出不同的光以传递不同信息,所述信息包含该光标签的标识符;
    所述服务器被配置为基于光标签的标识符管理其相应的位置信息,所述位置信息包括光标签的地理位置和/或一个或多个相对位置,所述光标签的相对位置为该光标签相对于另一光标签的位置。
  10. 根据权利要求9所述的光标签网络系统,其中每个光标签为固定式光标签或移动式光标签的其中之一。
  11. 根据权利要求9所述的光标签网络系统,所述多个光标签还包括基准光标签,所述基准光标签的绝对位置为设定的地理位置信息。
  12. 根据权利要求9-11中任一项所述的光标签网络系统,还包括根据权利要求7或8所述的设备。
  13. 根据权利要求12所述的光标签网络系统,所述服务器还被配置为记录所采集的光标签图像的尺寸。
  14. 根据权利要求13所述的光标签网络系统,所述服务器还被配置为:
    响应于设备对光标签的图像采集,确定当前采集的光标签图像的尺寸大于先前对该光标签所采集的图像的尺寸;
    响应于该确定,以根据当前采集的图像获得的光标签的地理位置信息和/或相对位置信息来更新该光标签之前的地理位置信息和/或相对位置信息。
  15. 根据权利要求12所述的光标签网络系统,所述服务器还被配置为:
    基于所识别的光标签标识符确定当前所采集的图像中包括设定的基准光标签;以及响应于该确定,根据该基准光标签的地理位置信息和所计 算的光标签两两之间的相对位置信息,获取所采集的图像中其余光标签的地理位置信息。
PCT/CN2019/086003 2018-05-09 2019-05-08 用于构建光标签网络的方法及相应的光标签网络 WO2019214645A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810435207.XA CN110472702B (zh) 2018-05-09 2018-05-09 用于构建光标签网络的方法及相应的光标签网络
CN201810435207.X 2018-05-09

Publications (1)

Publication Number Publication Date
WO2019214645A1 true WO2019214645A1 (zh) 2019-11-14

Family

ID=68468446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086003 WO2019214645A1 (zh) 2018-05-09 2019-05-08 用于构建光标签网络的方法及相应的光标签网络

Country Status (2)

Country Link
CN (1) CN110472702B (zh)
WO (1) WO2019214645A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105393260A (zh) * 2013-07-19 2016-03-09 尼斯集团股份有限公司 用于标识和认证标签的系统和方法
CN106525021A (zh) * 2015-09-14 2017-03-22 中兴通讯股份有限公司 位置确定方法、装置、系统及处理中心
EP3147813A1 (en) * 2014-05-23 2017-03-29 ZTE Corporation Reflection-type passive optical tag, optical read/write device and intelligent optical distribution network
CN107734449A (zh) * 2017-11-09 2018-02-23 陕西外号信息技术有限公司 一种基于光标签的室外辅助定位方法、系统及设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330770B (zh) * 2014-09-30 2017-09-22 天津工业大学 一种基于超高频rfid电子标签的精确定位系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105393260A (zh) * 2013-07-19 2016-03-09 尼斯集团股份有限公司 用于标识和认证标签的系统和方法
EP3147813A1 (en) * 2014-05-23 2017-03-29 ZTE Corporation Reflection-type passive optical tag, optical read/write device and intelligent optical distribution network
CN106525021A (zh) * 2015-09-14 2017-03-22 中兴通讯股份有限公司 位置确定方法、装置、系统及处理中心
CN107734449A (zh) * 2017-11-09 2018-02-23 陕西外号信息技术有限公司 一种基于光标签的室外辅助定位方法、系统及设备

Also Published As

Publication number Publication date
CN110472702B (zh) 2021-07-20
CN110472702A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
US9918013B2 (en) Method and apparatus for switching between cameras in a mobile device to receive a light signal
US9257035B2 (en) Remote control device, remote control system, and storage medium storing control program, and medium to be attached to electrical device
WO2019214640A1 (zh) 基于光标签网络的导航方法和相应的计算设备
US9307515B1 (en) Self identifying modulated light source
CN102749072B (zh) 室内定位方法、装置及系统
US8913885B2 (en) Information provision system, server, terminal device, information provision method, display control method and recording medium
JP4786322B2 (ja) 能動装置を用いた、画像において追跡された物体の識別
CA2892923C (en) Self-identifying one-way authentication method using optical signals
CN105467356B (zh) 一种高精度的单led光源室内定位装置、系统及方法
WO2019214641A1 (zh) 基于光标签的信息设备交互方法及系统
WO2019120156A1 (zh) 基于光标签的定位方法及系统
WO2019214643A1 (zh) 通过光通信装置对能够自主移动的机器进行导引的方法
KR102107208B1 (ko) 네트워크를 통한 오프라인 매장 정보 제공 방법 및 이에 사용되는 관리 서버
US6750790B2 (en) Data-encoding apparatus, data-encoding method, data-decoding apparatus, data-decoding method, data-transmitting apparatus, data-receiving apparatus, data storage medium and computer programs
WO2021093703A1 (zh) 基于光通信装置的交互方法和系统
WO2019214645A1 (zh) 用于构建光标签网络的方法及相应的光标签网络
WO2019214644A1 (zh) 基于光标签网络的辅助识别方法
KR101999457B1 (ko) 광학 카메라 통신을 이용하는 위치 추정 방법 및 장치
WO2020062876A1 (zh) 基于光标签的服务提供方法和系统
TWI741588B (zh) 光通信裝置的識別方法和電子設備、以及電腦可讀取記錄媒體
TWI734464B (zh) 基於光通信裝置的資訊顯示方法、電子設備、以及電腦可讀取記錄媒體
CN111753578A (zh) 光通信装置的识别方法和相应的电子设备
KR20230055387A (ko) 딥러닝 기반 실내 약도 생성 및 증강현실 실내 내비게이션을 지원하는 사용자 단말 및 컴퓨터 프로그램

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800735

Country of ref document: EP

Kind code of ref document: A1