WO2019214631A1 - 横风作用下车-桥系统气动特性风洞试验测试装置及方法 - Google Patents

横风作用下车-桥系统气动特性风洞试验测试装置及方法 Download PDF

Info

Publication number
WO2019214631A1
WO2019214631A1 PCT/CN2019/085920 CN2019085920W WO2019214631A1 WO 2019214631 A1 WO2019214631 A1 WO 2019214631A1 CN 2019085920 W CN2019085920 W CN 2019085920W WO 2019214631 A1 WO2019214631 A1 WO 2019214631A1
Authority
WO
WIPO (PCT)
Prior art keywords
ejection
wind tunnel
vehicle
tunnel test
wind
Prior art date
Application number
PCT/CN2019/085920
Other languages
English (en)
French (fr)
Inventor
何旭辉
邹思敏
王汉封
Original Assignee
中南大学
高速铁路建造技术国家工程实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学, 高速铁路建造技术国家工程实验室 filed Critical 中南大学
Publication of WO2019214631A1 publication Critical patent/WO2019214631A1/zh
Priority to US16/923,121 priority Critical patent/US11199471B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • G01M9/04Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/08Railway vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/06Measuring arrangements specially adapted for aerodynamic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/08Aerodynamic models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/36Devices characterised by the use of optical means, e.g. using infrared, visible, or ultraviolet light

Definitions

  • the invention relates to the technical field of aerodynamic characteristics simulation test of a high-speed railway car-bridge system, and particularly relates to a wind tunnel test device and method for aerodynamic characteristics of a vehicle-bridge system under cross wind.
  • Pneumatic interference is also very complicated, which makes the aerodynamic characteristics of the vehicle-bridge system significantly different from that of a single car or a single bridge, and is often unfavorable for the safe operation of the vehicle.
  • this year's vehicle speeding and car body weight reduction trend is obvious, making the vehicle more sensitive to wind loads.
  • the speed of high-speed trains in China far exceeds the average operating speed of 240km/h for today's high-speed trains and the maximum operating speed of 320km/h.
  • the EMUs use large hollow aluminum alloy materials or stainless steel thin tubes.
  • the lightweight structure makes the weight of the EMU car body 50% lighter than that of the traditional locomotive.
  • the object of the present invention is to provide a wind tunnel test test device and method for aerodynamic characteristics of a vehicle-bridge system under cross wind, which solves the problem of the prior art lacking a realistic simulation of cross wind to a moving vehicle-bridge system.
  • the invention provides a wind tunnel test and test device for aerodynamic characteristics of a vehicle-bridge system under cross wind, comprising: a vehicle model, an ejection mechanism, a buffer mechanism, a wind tunnel test section, an ejection guide rail, and an ejection guide passing through the wind tunnel test section;
  • the mechanism and the buffer mechanism are respectively disposed at two ends of the ejection guide rail;
  • the ejection mechanism includes a compression projectile member and an ejection portion, and the compression projectile member presses the vehicle model against the ejection portion to release the vehicle model along the edge The ejection rail runs.
  • the projecting portion includes a spring, a fixing plate and an ejection plate.
  • the fixing plate is fixed to one end of the ejection guide rail, and the elastic plate is disposed at the tail end of the vehicle model; the spring is sandwiched between the fixing plate and the ejection plate.
  • the ejection component comprises: a hook block, a screw rod and a motor, the hook block is fixedly connected to the bottom surface of the vehicle model; the motor is drivenly connected with the screw rod, the screw rod rotates around the axis of the screw rod; and the hook rod is fixedly connected to the screw rod, The hook plate presses the ejection portion with the rotation of the screw, and the hook block is telescopically engaged with the hook plate.
  • the buffer mechanism includes a flexible buffer plate and a buffer block, and the buffer block is fixed to the other end of the ejection guide rail, and a flexible buffer plate is disposed on the outer wall of the buffer block.
  • the buffer mechanism further includes a card slot, the card slot is disposed in front of the buffer block, and is formed concavely in the ejection guide rail; the bottom surface of the vehicle model is provided with a card block, and the card block is telescopically engaged with the card slot.
  • the wind tunnel test and test device for the aerodynamic characteristics of the vehicle-bridge system under the action of cross wind also includes a test bridge span model.
  • the projectile guide rail is laid on the test bridge span model, and the test bridge span model passes through the wind tunnel test section.
  • the wind tunnel test test device for the aerodynamic characteristics of the vehicle-bridge system under the action of cross wind further comprises two support frames, the support frame is installed on the bottom surface of the test bridge spanning model; the two adjacent support frames are divided into two in the wind tunnel test section. Outside.
  • the vehicle model includes a first vehicle model and a second vehicle model
  • the ejection mechanism includes a first ejection mechanism and a second ejection mechanism
  • the buffer mechanism includes a first buffer mechanism and a second buffer mechanism
  • the wind tunnel test section includes the first wind In the hole test section and the second wind tunnel test section
  • the projectile guide rail comprises a first projectile guide rail and a second projectile guide rail
  • the first projectile guide rail and the second projectile guide rail are arranged side by side
  • the first projectile guide rail passes through the first wind tunnel test section.
  • the second ejection guide passes through the second wind tunnel test section, and the first wind tunnel test section and the second wind tunnel test section are arranged side by side; the first ejection mechanism and the first buffer mechanism are respectively disposed at the first end of the first projectile guide rail And a second end; the second ejection mechanism and the second buffer mechanism are respectively disposed at the second end and the first end of the second ejection guide; the first vehicle model runs along the first ejection guide; the second vehicle model is along the second ejection guide run.
  • a total of 8 photoelectric sensors are installed in the wind tunnel for the speed measurement of the train model.
  • Four photoelectric sensors are arranged in one direction.
  • Two sensors are arranged near the side wall of the wind tunnel test section.
  • the distance between the photoelectric sensors is 0.5 m.
  • the passing time of the model is measured, and the instantaneous speed of the train model into the wind tunnel test section is calculated.
  • the train model speed will be changed to some extent due to the effects of track friction and air resistance.
  • the average running speed V in the test section can be obtained.
  • the crosswind wind speed in the wind tunnel test section is 0-20 m/s.
  • Another aspect of the present invention also provides a test and test method for a wind tunnel test device for aerodynamic characteristics of a vehicle-bridge system under cross wind, as described above, comprising the following steps:
  • Step S100 pressing the vehicle model on the ejection portion, and releasing the vehicle model by pressing the ejection member to run on the ejection guide;
  • Step S200 Starting the wind tunnel test section to form a transverse wind in the wind tunnel test section, and obtaining aerodynamic characteristic parameters when the vehicle model passes through the wind tunnel test section;
  • Step S300 The vehicle model decelerates at the buffer mechanism and stops moving.
  • the invention provides a wind tunnel test test device for aerodynamic characteristics of a vehicle-bridge system under cross wind, and uses a train wind tunnel test model set on a bridge model track, and a model ejection mechanism is arranged at one end thereof, and the ejection mechanism is driven by a motor to rotate the screw
  • the hook plate mounted on the lead screw is linearly moved to drive the hook block and the ejection model of the vehicle model compression model ejection mechanism and the spring to move distally.
  • the spring reaches the compression required for the predetermined experiment, the hook plate and the hook block are disengaged, the vehicle model is quickly ejected, and the wind tunnel test section is entered from the side of the wind tunnel along the track to perform the wind tunnel experiment.
  • the vehicle model crosses the wind tunnel test section, it continues along the track, the model head hits the flexible buffer plate and the buffer block, and the model decelerates to stop. At the same time, the block on the vehicle model enters the card slot, and the vehicle model is basically fixed without reverse movement. At the same time, combined with the wind tunnel laboratory, it can effectively simulate the running state of the train under the action of cross wind, which provides the possibility to explore the aerodynamic characteristics of the following vehicles running on the bridge.
  • the invention has simple implementation method and is easy to control, and can realize high-speed acceleration of the train from static to 30m/s, and high-speed rapid buffering to static control, and has high test precision, and the crosswind wind speed of the experimental train can be 0. -20m/s freely switchable, which can effectively and truly reflect the true state of the following vehicles running on the bridge and crossing the bridge.
  • the invention provides a wind tunnel test and test device for aerodynamic characteristics of a vehicle-bridge system under cross wind, and simulates a real-reduction simulation test of an actual bridge and a train through a scale model to realize a mobile vehicle-bridge with high reduction and real-time simulation test.
  • System pneumatic characteristics wind tunnel test test method and device are provided.
  • FIG. 1 is a schematic structural view of a wind tunnel test and test device for aerodynamic characteristics of a vehicle-bridge system under cross wind under the preferred embodiment of the present invention
  • FIG. 2 is a schematic structural view of a wind tunnel test and test device for aerodynamic characteristics of a vehicle-bridge system under cross wind under another preferred embodiment of the present invention.
  • the present invention provides a wind tunnel test device for aerodynamic characteristics of a vehicle-bridge system under cross wind, comprising: a vehicle model 100, an ejection mechanism, a buffer mechanism, a wind tunnel test section 500, an ejection guide 610, and an ejection guide 610.
  • the wind tunnel test section 500; the ejection mechanism and the buffer mechanism are disposed at two ends of the ejection guide 610; the vehicle model 100 stops at the buffer mechanism; the ejection mechanism includes a compression ejection member and an ejection portion, and the compression ejection member presses the vehicle model 100 Immediately above the ejection portion, the release vehicle model 100 is operated along the ejection guide 610.
  • a train is a type of vehicle that can travel along a guide rail on a rail.
  • the device provides the train to run on the bridge at a certain speed in the wind tunnel, and provides the initial speed of the train running on the track according to the principle that the potential energy of the projectile is converted into kinetic energy.
  • the acceleration, deceleration and gradual stop functions of the train in the wind tunnel test section 500 are realized.
  • the damping mechanism is used to accelerate the deceleration and realize the train stop function.
  • the ejection mechanism can be a mechanism that can be compressed, such as a spring 220, and can convert the compressive potential energy into kinetic energy.
  • the cushioning mechanism can be a component made of various types of flexible cushioning materials.
  • the compression projecting member can be implemented as long as the compression ejection portion can be realized.
  • the compression ejection member may be: the vehicle model 100 is retracted and pressed against the ejection portion.
  • the ejection guide 610 ensures that the model vehicle can smoothly run at a certain speed in the wind tunnel; the vehicle model 100: a certain high-speed vehicle model is one of the main research objects.
  • the ejection guide 610 penetrates the two relatively large side walls of the wind tunnel test section 500 to maximize the use of the length of the wind tunnel section and increase the effective test length.
  • the wind tunnel test section 500 performs cross wind simulation at a wind speed of 0 to 20 m/s, and effectively performs a wind tunnel test of the aerodynamic characteristics of the moving vehicle-bridge system under cross wind.
  • the projecting portion includes a spring 220, a fixing plate and an ejection plate 210.
  • the fixing plate is fixed to one end of the ejection rail 610, the ejection plate 210 is disposed at the tail end of the vehicle model 100, and the spring 220 is sandwiched between the fixing plate and the ejection plate 210. between.
  • the projectile can realize that the train pops up in the orbital direction at a certain initial speed, which converts the elastic potential energy of the train into kinetic energy and provides the initial test speed of the train in the wind tunnel.
  • the compression ejection member comprises: a hook block 110, a screw rod and a motor 310, the hook block 110 is fixedly connected to the bottom surface of the vehicle model 100; the motor 310 is drivingly connected with the screw rod, and the screw rod 340 is rotated about the axis of the screw rod 340; The hook plate 330 is fixedly connected to the lead screw 340. The hook plate 330 presses the ejection portion with the rotation of the lead screw 340, and the hook block 110 is telescopically engaged with the hook plate 330.
  • the motor 310 drives the lead screw 340 to rotate, and the hook plate 330 mounted on the lead screw 340 linearly moves the hook block 110 and the vehicle model 100 to compress the ejection portion.
  • the hook is hooked.
  • the plate 330 and the hook block 110 are disengaged, the vehicle model 100 is quickly ejected, and the wind tunnel test section 500 is laterally entered along the track to perform a wind tunnel test.
  • the buffer mechanism includes a flexible buffer plate 230 and a buffer block 240 fixed to the other end of the ejection rail 610, and a flexible buffer plate 230 is disposed on the outer wall of the buffer block 240.
  • the buffer mechanism can reduce the running speed of the vehicle model 100 so that it can enter the deceleration phase faster.
  • the buffer mechanism includes a card slot 350.
  • the card slot 350 is disposed in front of the buffer block 240 and is recessed into the ejection rail 610.
  • the bottom surface of the vehicle model 100 is provided with a card block 120.
  • the card block 120 is telescopically coupled to the card slot 350. Pick up.
  • the vehicle continues to advance along the projectile track, the head of the vehicle model 100 strikes the flexible buffer plate 230 and the buffer mechanism, and the vehicle model 100 decelerates to stop while the vehicle model The card block 120 on the 100 is engaged in the card slot 350, so that the vehicle model 100 is substantially fixed, and the vehicle model 100 is prevented from moving in the reverse direction.
  • a test bridge span model 530 is also included, the projectile rail 610 is laid over the test bridge span model 530, and the test bridge span model 530 is passed through the wind tunnel test section 500.
  • the typical bridge model of high-speed railway including beam body and bridge deck track system (two-track railway), effectively simulates the actual situation and improves the accuracy of the experimental results. It can effectively solve the high-speed movement of the train on the bridge. In addition, it can effectively simulate the influence of the cross wind on the vehicle-bridge system, and effectively realize the effective test of the wind tunnel test of the aerodynamic characteristics of the mobile vehicle-bridge system under the cross wind. There may be a seamless connection between the ejection guide 610 and the test bridge span model 530.
  • the support frame 400 is mounted on the bottom surface of the test bridge spanning model 530; the two adjacent support frames 400 are arranged on both outer sides of the wind tunnel test section 500.
  • the support frame 400 allows the test bridge spanning the model 530 to be remote from the ground, thereby better simulating the bridge structure.
  • the bracket is connected with the external rail support frame by the snap-on assembly, and the electromagnetic bracket is used to fit the bracket to the wind tunnel floor to ensure the stability of the test and facilitate the disassembly.
  • the ejection mechanism includes a first ejection mechanism and a second ejection mechanism
  • the buffer mechanism includes a first buffer mechanism and a second buffer mechanism
  • the wind tunnel test section 500 includes a first wind tunnel test section 500 and a second wind.
  • the hole test section 500 includes a first ejection rail 610 and a second ejection rail 610; the first ejection rail 610 and the second ejection rail 610 are arranged side by side; the first ejection rail 610 passes through the first wind tunnel test section 500.
  • the second ejection guide 610 passes through the second wind tunnel test section 500, and the first wind tunnel test section 500 and the second wind tunnel test section 500 are arranged side by side in the same wind tunnel; the first ejection mechanism and the first buffer mechanism respectively The second ejection mechanism and the second buffer mechanism are respectively disposed on the second end and the first end of the second ejection rail 610.
  • side-by-side ejection guides 610 capable of realizing the vehicle model 100 to face each other can be simulated, and the aerodynamic characteristics of the two trains can be simulated.
  • one of the sets of ejection guides, the buffer mechanism, and the ejection mechanism are reversely arranged, and Zeke simulates the aerodynamic characteristics of the two trains traveling in the same direction.
  • the test bridge span model 530 includes a first test bridge span model 530 and a second test bridge span model 530.
  • the first projectile guide rail 610 is mounted on the first test bridge span model 530; the second projectile guide rail 610 is mounted on the second The test bridge spans the model 530.
  • the device provided by the present invention is tested in the following with reference to specific embodiments. Experimental conditions: the wind tunnel simulates crosswind wind speed at 0-20 m/s.
  • the motor 310 drives the lead screw 340 to rotate, and the hook plate 330 mounted on the lead screw 340 linearly moves the hook block 110 and the vehicle model 100 to compress the ejection plate 210 and the spring 220 on the model ejection mechanism. 220 reaches the amount of compression required for the predetermined experiment, the hook plate 330 and the hook block 110 are disengaged, the vehicle model 100 is quickly ejected, and the wind tunnel test section 500 is laterally entered along the track to perform a wind tunnel test.
  • the track continues to advance along the track, the model head hits the flexible buffer plate 230 and the buffer mechanism, and the model decelerates to stop, while the block 120 on the vehicle model 100 enters the card slot 350, the vehicle model 100 is basically fixed and does not move in reverse.
  • FIG. 2 is a second schematic structural view of the aerodynamic characteristic testing device of the vehicle-bridge system under the cross wind
  • the support bridge 400 is evenly disposed at the lower end of the test bridge 530
  • the elastic guide rail 610 is disposed on the support frame 400, and both ends of the ejection guide 610 are provided.
  • An ejection mechanism and a buffer mechanism are disposed.
  • the vehicle model 100 is placed in front of the ejection mechanism.
  • the ejection mechanism is in contact with the vehicle model 100, and an ejection plate 210 is disposed. Both ends of the ejection rail 610 are provided with an ejection mechanism and a buffer mechanism.
  • the test bridge span model 530 includes a beam body.
  • the bridge track, the projectile guide 610 passes through the wind tunnel, and the wind tunnel simulates the cross wind speed at 0-20 m/s.
  • Another aspect of the present invention also provides a test and test method for a wind tunnel test device for aerodynamic characteristics of a vehicle-bridge system as described above, comprising the following steps:
  • Step S100 pressing the vehicle model on the ejection portion, and releasing the vehicle model by pressing the ejection member to run on the ejection guide 610;
  • Step S200 Start the wind tunnel test section 500 to form a lateral wind in the wind tunnel test section 500, and obtain aerodynamic characteristic parameters when the vehicle model passes through the wind tunnel test section 500;
  • Step S300 The vehicle model decelerates at the buffer mechanism and stops moving.
  • the method includes the step of releasing the compression ejection member in the ejection portion after the vehicle model is pressed against the ejection portion.
  • the wind tunnel is started, and the wind with a lateral wind speed of 0-20 m/s is formed in the wind tunnel test section.
  • the vehicle model is launched and then moved along the projectile orbit and passed through the wind tunnel test section.
  • the aerodynamic characteristic parameters during the passage of the vehicle model through the wind tunnel test section 500 are obtained.
  • the vehicle model hits the buffer mechanism and stops moving.
  • the lateral wind here refers to the movement of the wind along the horizontal axis of the vehicle model.

Abstract

一种横风作用下车-桥系统气动特性风洞试验测试装置及方法,该装置包括:车辆模型(100)、弹射机构、缓冲机构、风洞试验段(500)、弹射导轨(610),弹射导轨(610)穿过风洞试验段(500);弹射机构和缓冲机构分设于弹射导轨(610)两端;车辆模型(100)在缓冲机构处停止运行;弹射机构包括压紧弹射部件和弹射部,压紧弹射部件将车辆模型压紧于弹射部上后,释放车辆模型(100)沿弹射导轨(610)运行。通过缩尺模型模拟实际桥梁和列车进行真实还原的模拟试验。

Description

横风作用下车-桥系统气动特性风洞试验测试装置及方法 技术领域
本发明涉及高速铁路车-桥系统气动特性模拟试验技术领域,具体的涉及一种横风作用下车-桥系统气动特性风洞试验测试装置及方法。
背景技术
行驶速度是交通运输发展追求的目标,而“安全”则是永恒的主题。然而,由强风引起的行车安全事故层出不穷:日本自开始铁路运输以来,发生了28起由强风引起的列车事故。英国“欧洲之星”曾因强风被迫停运;广州虎门大桥也曾发生过多起汽车被强风吹翻的事故。车辆在桥上运行时,车辆过桥时产生的动力冲击会引起桥梁振动,而桥梁结构的振动又会反过来影响车辆的运行安全。强风作用下,车辆与桥梁间的动力相互作用被增强,而且桥梁气动特性还会随车辆的到达和离去而改变,桥上车辆则处于桥梁断面的绕流之中,二者之间的相互气动干扰也非常复杂,使得车-桥系统气动特性较单车、单桥时明显不同,且往往对车辆安全运行不利。此外,今年车辆行驶高速化和车体轻量化趋势明显,使车辆对风荷载更为敏感。例如,我国高速列车运行速度远远超过当今世界高速列车240km/h的平均运营速度和320km/h的最高运营速度,为适应列车高速度运行,动车组采用大型中空铝合金型材料或不锈钢薄筒型轻量化结构,使得动车组车体重量较传统机车车辆减轻了50%,列车行驶高速化和车体轻量化势必使得列车对风荷载的作用更为敏感。因此,强风、高速运行的轻量化列车和桥梁三种因素组合,将大大增加强风条件下,车辆在桥梁上高速运行的安全风险。
由于常规的风洞试验无法有效模拟横风对移动中的车-桥系统的作用以及交会列车与周围环境之间的相对运动,仍然缺乏较真实模拟列车在横风作用下运行时的气动力试验模拟分析。
因此,研究一种新型的横风作用下车-桥系统风洞试验模型已成为亟待解决的技术问题。
发明内容
本发明的目的在于提供一种横风作用下车-桥系统气动特性风洞试验测试装置及方法,该发明解决了现有技术中缺乏能较真实模拟横风对移动中的车-桥系统的作用以及交会列车与周围环境之间的相对运动装置的技术问题。
本发明提供一种横风作用下车-桥系统气动特性风洞试验测试装置,包括:车辆模型、弹射机构、缓冲机构、风洞试验段、弹射导轨,弹射导轨穿过风洞试验段;弹射机构和缓冲机构分设于弹射导轨两端;车辆模型在缓冲机构处停止运行;弹射机构包括压紧弹射部件和弹射部,压紧弹射部件将车辆模型压紧于弹射部上后,释放车辆模型沿弹射导轨运行。
进一步地弹射部包括弹簧、固定板和弹射板,固定板固定于弹射导轨的一端,弹射板设置于车辆模型的尾端;弹簧夹设于固定板和弹射板之间。
进一步地压紧弹射部件包括:钩块、丝杆和电机,钩块固定连接于车辆模型的底面;电机与丝杆驱动连接,丝杠绕丝杠的轴线转动;丝杠上固定连接钩板,钩板随丝杠的转动压紧弹射部,钩块伸缩地卡接于钩板上。
进一步地缓冲机构包括柔性缓冲板和缓冲块,缓冲块固定于弹射导轨的另一端,缓冲块的外壁上设置柔性缓冲板。
进一步地缓冲机构包括卡槽,卡槽设置于缓冲块前,并向弹射导轨内凹陷形成;车辆模型的底面设置卡块,卡块伸缩地与述卡槽卡接。
进一步地横风作用下车-桥系统气动特性风洞试验测试装置还包括试验桥跨模型,弹射导轨铺设于试验桥跨模型上,试验桥跨模型穿过风洞试验段。
进一步地,横风作用下车-桥系统气动特性风洞试验测试装置还包括两个支撑架,支撑架安装于试验桥跨模型的底面;两相邻支撑架分列于风洞试验段的两外侧。
进一步地,车辆模型包括第一车辆模型和第二车辆模型;弹射机构包括第一弹射机构和第二弹射机构,缓冲机构包括第一缓冲机构和第二缓冲机构、风洞试验段包括第一风洞试验段和第二风洞试验段,弹射导轨包括第一弹射导轨和第二弹射导轨;第一弹射导轨和第二弹射导轨并排间隔设置;第一弹射导轨穿过第一风洞试验段,第二弹射导轨穿过第二风洞试验段,第一风洞试验段和第二风洞试验段并排间隔设置;第一弹射机构和第一缓冲机构分别设置于第一弹射导轨的第一端和第二端;第二弹射机构和第二缓冲机构分别设置于第二弹射导轨的第二端和第一端;第一车辆模型沿第一弹射导轨运行;第二车辆模型沿第二弹射导轨运行。
在风洞内共设置8个光电传感器用于列车模型速度测量,单方向布置4个光电传感器,其中在风洞试验段靠近侧壁位置设置两个传感器,光电传感器间距为0.5m,模型发射后,先后经过传感器,测出模型的通过时间,计算出列车模型进入风洞试验段的瞬时速度。列车模型在试验段运行过程中由于轨道摩擦和空气阻力的作用,列车模型速度会受到一定程度的变化,通过长距离的传感器布置,可以得到试验段内的运行平均速度V。
进一步地,风洞试验段内横风风速为0~20m/s。
本发明的另一方面还提供了一种如上述的横风作用下车-桥系统气动特性风洞试验测试装置的试验测试方法,包括以下步骤:
步骤S100:将车辆模型压紧于弹射部上,通过压紧弹射部件释放车辆模型在弹射导轨上运行;
步骤S200:启动风洞试验段在所述风洞试验段内形成横向风,车辆模型穿过风洞试验段时获取气动特性参数;
步骤S300:车辆模型在所述缓冲机构处减速并停止运动。
本发明的技术效果:
本发明提供横风作用下车-桥系统气动特性风洞试验测试装置,使用设置于桥梁模型轨道上的列车风洞试验模型,在其一端设置模型弹射机构,该弹射机构由电机带动丝杠旋转,安装在丝杠上的钩板做直线运动,带动钩块及车辆模型压缩模型弹射机构上的弹射板及弹簧向远端运动。当弹簧达到预定的实验所需要的压缩量,将钩板和钩块脱开,车辆模型快速弹出,沿轨道从风洞的侧面进入风洞试验段,进行风洞实验。当车辆模型穿越风洞试验段后,沿轨道继续前进,模型头部撞击柔性缓冲板和缓冲块,模型减速停下。同时车辆模型上的卡块进入卡槽,车辆模型基本固定,不会反向运动。同时结合风洞实验室,能有效模拟列车在横风作用下的运行状态,为探究横风作用下列车在桥梁上运行时的气动特性提供可能。
本发明实现方法简单,易于控制,能够实现列车从静止到30m/s的高速加速,以及从高速迅速缓冲到静止的控制,且具有较高的试验精度,同时实验列车所受横风风速可由0-20m/s自由切换,能够有效且真实地反映横风作用下列车运行于桥上以及交会于桥上的真实状态。
本发明提供的横风作用下车-桥系统气动特性风洞试验测试装置,通过缩尺模型模拟实际桥梁和列车进行真实还原的模拟试验,从而实现高度还原和真实度模拟试验的移动车-桥系统气动特性风洞试验测试方法及其装置。
具体请参考根据本发明的横风作用下车-桥系统气动特性风洞试验测试装置提出的各种实施例的如下描述,将使得本发明的上述和其他方面显而易见。
附图说明
图1是本发明优选实施中横风作用下车-桥系统气动特性风洞试验测试装置的结构示意图;
图2是本发明另一优选实施中横风作用下车-桥系统气动特性风洞试验测试装置的结构示意图。
图例说明:
100、车辆模型;110、钩块;120、卡块;210、弹射板;220、弹簧;230、柔性缓冲板;240、缓冲块;310、电机;330、钩板;340、丝杠;350、卡槽;400、支撑架;500、风洞试验段;610、弹射导轨;630、试验桥跨模型。
具体实施方式
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
参见图1,本发明提供的横风作用下车-桥系统气动特性风洞试验测试装置,包括:车辆模型100、弹射机构、缓冲机构、风洞试验段500、弹射导轨610,弹射导轨610穿过风洞试验段500;弹射机构和缓冲机构分设于弹射导轨610两端;车辆模型100在缓冲机构处停止运行;弹射机构包括压紧弹射部件和弹射部,压紧弹射部件将车辆模型100压紧于弹射部上,并释放车辆模型100沿弹射导轨610运行。
本文中,列车是指可在导轨上沿导轨行驶的各类车辆。该装置提供列车在风洞中以某一速度在桥上运行,根据弹射部势能转换为动能的原理,提供列车在轨道上运行的初始速度。随着车辆模型100在轨道上运行,实现了列车在风洞试验段500内的加减速和渐停功能,列车穿过风洞试验段500后,通过缓冲机构进行增阻减速,实现列车停车功能。弹射机构可以为现有如弹簧220类可压紧并能将压紧势能转化为动能的机构。缓冲机构可以为各类柔性缓冲材料制成的部件。压紧弹射部件只要能实现压缩弹射部的作用即可,例如在一实施例中,压紧弹射部件可以为:车辆模型100后退对弹射部压紧。弹射导轨610:保证模型车辆能够在风洞内以某一速度平稳运行;车辆模型100:某种高速车辆模型,是主要研究对象之一。弹射导轨610贯穿风洞试验段500的两相对距离较大的侧墙,以最大化利用风洞截面长度以及增加有效试验长度。
优选的,风洞试验段500以0~20m/s风速进行横风模拟,有效地进行横风作用下的移动车-桥系统气动特性风洞试验测试。
优选的,弹射部包括弹簧220、固定板和弹射板210,固定板固定于弹射导轨610的一端,弹射板210设置于车辆模型100的尾端;弹簧220夹设于固定板和弹射板210之间。弹射部能实现列车以某种初始速度沿轨道方向弹出,让列车弹性势能转化为动能,提供列车在风洞内的试验初速度。
优选的,压紧弹射部件包括:钩块110、丝杆和电机310,钩块110固定连接于车辆模型100的底面;电机310与丝杆驱动连接,丝杠340绕丝杠340的轴线转动;丝杠340上固定连接钩板330,钩板330随丝杠340的转动压紧弹射部,钩块110伸缩地卡接于钩板330上。
利用电机310带动丝杠340旋转,安装在丝杠340上的钩板330做直线运动,带动钩块110及车辆模型100压缩弹射部,当弹射部达到预定的实验所需要的压缩量,将钩板330和钩块110脱开,车辆模型100快速弹出,沿轨道侧向进入风洞试验段500,进行风洞实验。
优选的,缓冲机构包括柔性缓冲板230和缓冲块240,缓冲块240固定于弹射导轨610的另一端,缓冲块240的外壁上设置柔性缓冲板230。
缓冲机构可实现降低车辆模型100的运行速度,使其能较快的进入减速阶段。
优选的,缓冲机构包括卡槽350,卡槽350设置于缓冲块240前,并向弹射导轨610内凹陷形成;车辆模型100的底面设置卡块120,卡块120伸缩地与述卡槽350卡接。
在一具体实施例中,当车辆模型100穿越风洞试验段500后,沿弹射轨道继续前进,车辆模型100的头部撞击柔性缓冲板230和缓冲机构,车辆模型100减速停下,同时车辆模型100上的卡块120卡接于卡槽350内,从而实现车辆模型100基本固定,避免车辆模型100的不会反向运动。
优选的,还包括试验桥跨模型530,弹射导轨610铺设于试验桥跨模型530上,试验桥跨模型530穿过风洞试验段500。
高速铁路典型桥梁模型,包括梁体和桥面轨道系统(双线铁路)从而有效模拟实际情况,提高实验结果准确性。能够有效解决列车在桥梁上高速移动,另外能够有效模拟横风对车-桥 系统的影响,很好地实现了横风作用下的移动车-桥系统气动特性风洞试验的有效测试。弹射导轨610与试验桥跨模型530之间可以为有/无缝连接。
优选的,还包括两个支撑架400,支撑架400安装于试验桥跨模型530的底面;两相邻支撑架400分列于风洞试验段500的两外侧。支撑架400使得试验桥跨模型530能远离地面,从而较好的模拟了桥梁结构。为方便合理有效利用风洞试验段,支架采用搭扣式组件与外部轨道支撑架相连,同时采用电磁技术将支架与风洞地面贴合,保证试验稳定性的同时,方便拆卸。
参见图2,优选的,弹射机构包括第一弹射机构和第二弹射机构,缓冲机构包括第一缓冲机构和第二缓冲机构、风洞试验段500包括第一风洞试验段500和第二风洞试验段500,弹射导轨610包括第一弹射导轨610和第二弹射导轨610;第一弹射导轨610和第二弹射导轨610并排间隔设置;第一弹射导轨610穿过第一风洞试验段500,第二弹射导轨610穿过第二风洞试验段500,第一风洞试验段500和第二风洞试验段500并排间隔设置于同一风洞中;第一弹射机构和第一缓冲机构分别设置于第一弹射导轨610的第一端和第二端;第二弹射机构和第二缓冲机构分别设置于第二弹射导轨610的第二端和第一端。
通过并排弹射导轨610,且在弹射导轨610上设置能实现车辆模型100相向而行的并排弹射导轨610,能模拟两列车汇车时的气动特性。或者,将其中某一套弹射导轨、缓冲机构、弹射机构反向设置,泽科模拟两列车同向行驶时的气动特性。
优选的,试验桥跨模型530包括第一试验桥跨模型530和第二试验桥跨模型530,第一弹射导轨610架设于第一试验桥跨模型530上;第二弹射导轨610架设于第二试验桥跨模型530上。
通过将弹射导轨610架设于桥梁模型上,即可模拟在桥梁上行驶的列车的汇车情况,从而获取较准确的气动参数特性。
以下结合具体实施例对本发明提供的装置进行检测,实验条件:风洞以0~20m/s进行横风风速模拟。
参见图1,利用电机310带动丝杠340旋转,安装在丝杠340上的钩板330做直线运动,带动钩块110及车辆模型100压缩模型弹射机构上的弹射板210及弹簧220,当弹簧220达到预定的实验所需要的压缩量,将钩板330和钩块110脱开,车辆模型100快速弹出,沿轨道侧向进入风洞试验段500,进行风洞实验。当车辆模型100穿越风洞试验段500后,沿轨道继续前进,模型头部撞击柔性缓冲板230和缓冲机构,模型减速停下,同时车辆模型100上的卡块120进入卡槽350,车辆模型100基本固定,不会反向运动。
图2是本发明横风作用下车-桥系统气动特性测试装置的结构示意图之二,试验桥跨模型530下端均匀设置支撑架400,支撑架400上设置弹射导轨610,弹射导轨610的两端设置弹射机构和缓冲机构,弹射机构前放置车辆模型100,弹射机构与车辆模型100接触部分设置有弹射板210,弹射导轨610的两端设置弹射机构和缓冲机构,试验桥跨模型530包括梁体、桥面轨道,弹射导轨610穿过风洞,风洞以0~20m/s进行横风风速模拟。
本发明的另一方面还提供了一种如上述横风作用下车-桥系统气动特性风洞试验测试装置 的试验测试方法,包括以下步骤:
步骤S100:将车辆模型压紧于弹射部上,通过压紧弹射部件释放车辆模型在弹射导轨610上运行;
步骤S200:启动风洞试验段500在所述风洞试验段500内形成横向风,车辆模型穿过所述风洞试验段500时获取气动特性参数;
步骤S300:车辆模型在缓冲机构处减速并停止运动。
具体的该方法包括以下步骤:车辆模型压紧于弹射部后,通过释放弹射部中的压紧弹射部件。同时启动风洞,风洞试验段内形成横向风速为0~20m/s的风。将车辆模型射出后沿弹射轨道运行,并通过风洞试验段。获取车辆模型通过风洞试验段500的过程中的气动特性参数。通过风洞试验段500后,车辆模型撞击在缓冲机构上,停止运动。此处的横向风是指风沿车辆模型的横轴方向运动。本领域技术人员将清楚本发明的范围不限制于以上讨论的示例,有可能对其进行若干改变和修改,而不脱离所附权利要求书限定的本发明的范围。尽管己经在附图和说明书中详细图示和描述了本发明,但这样的说明和描述仅是说明或示意性的,而非限制性的。本发明并不限于所公开的实施例。
通过对附图,说明书和权利要求书的研究,在实施本发明时本领域技术人员可以理解和实现所公开的实施例的变形。在权利要求书中,术语“包括”不排除其他步骤或元素,而不定冠词“一个”或“一种”不排除多个。在彼此不同的从属权利要求中引用的某些措施的事实不意味着这些措施的组合不能被有利地使用。权利要求书中的任何参考标记不构成对本发明的范围的限制。

Claims (10)

  1. 一种横风作用下车-桥系统气动特性风洞试验测试装置,其特征在于,包括:车辆模型、弹射机构、缓冲机构、风洞试验段、弹射导轨,所述弹射导轨穿过所述风洞试验段;所述弹射机构和所述缓冲机构分设于所述弹射导轨两端;所述弹射机构包括压紧弹射部件和弹射部,所述压紧弹射部件将所述车辆模型压紧于所述弹射部上后,释放所述车辆模型沿所述弹射导轨运行;所述车辆模型在所述缓冲机构处停止运行。
  2. 根据权利要求1所述的横风作用下车-桥系统气动特性风洞试验测试装置,其特征在于,所述弹射部包括弹簧、固定板和弹射板,所述固定板固定于所述弹射导轨的一端,所述弹射板设置于所述车辆模型的尾端;所述弹簧夹设于所述固定板和所述弹射板之间。
  3. 根据权利要求1所述的横风作用下车-桥系统气动特性风洞试验测试装置,其特征在于,所述压紧弹射部件包括:钩块、丝杆和电机,所述钩块固定连接于所述车辆模型的底面;所述电机与所述丝杆驱动连接,所述丝杠绕所述丝杠的轴线转动;所述丝杠上固定连接钩板,所述钩板随所述丝杠的转动压紧所述弹射部,所述钩块伸缩地卡接于所述钩板上。
  4. 根据权利要求1所述的横风作用下车-桥系统气动特性风洞试验测试装置,其特征在于,所述缓冲机构包括柔性缓冲板和缓冲块,所述缓冲块固定于所述弹射导轨的另一端,所述缓冲块的外壁上设置所述柔性缓冲板。
  5. 根据权利要求4所述的横风作用下车-桥系统气动特性风洞试验测试装置,其特征在于,所述缓冲机构包括卡槽,所述卡槽设置于所述缓冲块前,并向所述弹射导轨内凹陷形成;所述车辆模型的底面设置卡块,所述卡块伸缩地与所述卡槽卡接。
  6. 根据权利要求1所述的横风作用下车-桥系统气动特性风洞试验测试装置,其特征在于,所述横风作用下车-桥系统气动特性风洞试验测试装置还包括试验桥跨模型,所述弹射导轨铺设于所述试验桥跨模型上,所述试验桥跨模型穿过所述风洞试验段。
  7. 根据权利要求6所述的横风作用下车-桥系统气动特性风洞试验测试装置,其特征在于,所述横风作用下车-桥系统气动特性风洞试验测试装置还包括两个支撑架,所述支撑架安装于所述试验桥跨模型的底面;两相邻所述支撑架分列于所述风洞试验段的两外侧。
  8. 根据权利要求1~6中任一项所述的横风作用下车-桥系统气动特性风洞试验测试装置,其特征在于,所述车辆模型包括第一车辆模型和第二车辆模型;所述弹射机构包括第一弹射机构和第二弹射机构,所述缓冲机构包括第一缓冲机构和第二缓冲机构、所述风洞试验段包括第一风洞试验段和第二风洞试验段,所述弹射导轨包括第一弹射导轨和第二弹射导轨;所述第一弹射导轨和所述第二弹射导轨并排间隔设置;所述第一弹射导轨穿过所述第一风洞试验段,所述第二弹射导轨穿过所述第二风洞试验段,所述第一风洞试验段和所述第二风洞试验段并排间隔设置于同一风洞中;所述第一弹射机构和所述第一缓冲机构分别设置于所述第一弹射导轨的第一端和第二端;所述第二弹射机构和所述第二缓冲机构分别设置于所述第二弹射导轨的第二端和第一端;所述第一车辆模型沿所述第一弹射导轨运行;所述第二车辆模型沿所述第二弹射导轨运行。
  9. 根据权利要求1所述的横风作用下车-桥系统气动特性风洞试验测试装置,其特征在于,所述风洞试验段内横风风速为0~20m/s。
  10. 一种如权利要求1~9中任一项所述的横风作用下车-桥系统气动特性风洞试验测试装置的试验测试方法,其特征在于,包括以下步骤:
    步骤S100:将车辆模型压紧于弹射部上,通过压紧弹射部件释放所述车辆模型在弹射导轨上运行;
    步骤S200:启动风洞试验段在所述风洞试验段内形成横向风,所述车辆模型穿过风洞试验段时获取气动特性参数;
    步骤S300:所述车辆模型在所述缓冲机构处减速并停止运动。
PCT/CN2019/085920 2018-05-08 2019-05-08 横风作用下车-桥系统气动特性风洞试验测试装置及方法 WO2019214631A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/923,121 US11199471B2 (en) 2018-05-08 2020-07-08 System and method for testing aerodynamic characteristic of high-speed moving vehicle-bridge system and subsidiary facilities thereof under crosswind

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810432727.5A CN108398226A (zh) 2018-05-08 2018-05-08 横风作用下车-桥系统气动特性风洞试验测试装置及方法
CN201810432727.5 2018-05-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/923,121 Continuation-In-Part US11199471B2 (en) 2018-05-08 2020-07-08 System and method for testing aerodynamic characteristic of high-speed moving vehicle-bridge system and subsidiary facilities thereof under crosswind

Publications (1)

Publication Number Publication Date
WO2019214631A1 true WO2019214631A1 (zh) 2019-11-14

Family

ID=63101628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085920 WO2019214631A1 (zh) 2018-05-08 2019-05-08 横风作用下车-桥系统气动特性风洞试验测试装置及方法

Country Status (3)

Country Link
US (1) US11199471B2 (zh)
CN (1) CN108398226A (zh)
WO (1) WO2019214631A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049218A (zh) * 2019-12-27 2021-06-29 上汽通用汽车有限公司 气动模型机构
CN113804395A (zh) * 2021-08-23 2021-12-17 中国水利水电第五工程局有限公司 用于模拟轨道列车与桥梁受载情况的测试装置
CN116067609A (zh) * 2023-03-31 2023-05-05 中国航空工业集团公司沈阳空气动力研究所 一种大吨位可移动试验段的高精度定位装置及方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108398226A (zh) 2018-05-08 2018-08-14 中南大学 横风作用下车-桥系统气动特性风洞试验测试装置及方法
CN109141807B (zh) * 2018-09-18 2024-01-30 中南大学 光伏结构的风洞试验模型及风洞试验方法
CN109959497A (zh) * 2019-04-12 2019-07-02 中南大学 横风作用下车辆动模型试验制动装置
CN110006615A (zh) * 2019-04-12 2019-07-12 中南大学 基于惯性原理驱动的高速车辆风洞模型的运行装置
CN113155407A (zh) * 2021-05-13 2021-07-23 中国汽车工程研究院股份有限公司 一种具有智能感知功能的汽车空气动力学标准模型
CN113687626B (zh) * 2021-10-26 2022-01-18 中国空气动力研究与发展中心超高速空气动力研究所 高超声速风洞危险介质的紧急截止控制装置及控制方法
CN114199502A (zh) * 2021-12-21 2022-03-18 上汽通用汽车有限公司 缩比风洞油泥模型柔性化骨架系统
CN114383803B (zh) * 2022-03-22 2022-06-14 西南交通大学 一种拟动态车辆-桥梁气动特性风洞试验装置
CN114754966B (zh) * 2022-04-28 2023-03-10 中国空气动力研究与发展中心超高速空气动力研究所 一种具有轨道车的超高速真空试验装置
CN115597822B (zh) * 2022-12-15 2023-03-14 中国空气动力研究与发展中心超高速空气动力研究所 一种大型高超声速高温风洞模型送进系统的轴向平移机构
CN116822024A (zh) * 2023-06-28 2023-09-29 西南交通大学 一种铁路桥上多线列车最不利交会位置的确定方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101750219A (zh) * 2010-01-25 2010-06-23 西南交通大学 一种列车动模实验系统
CN101968399A (zh) * 2010-10-18 2011-02-09 西南交通大学 一种车辆、桥梁模型风洞试验系统
CN102944434A (zh) * 2012-11-30 2013-02-27 中南大学 一种u形风洞试验列车加速系统
CN105109685A (zh) * 2015-09-29 2015-12-02 东北大学 一种无人机发射与回收装置及其方法
JP2016011858A (ja) * 2014-06-27 2016-01-21 株式会社大気社 風洞実験装置
CN108398226A (zh) * 2018-05-08 2018-08-14 中南大学 横风作用下车-桥系统气动特性风洞试验测试装置及方法
CN208458971U (zh) * 2018-05-08 2019-02-01 中南大学 横风作用下车-桥系统气动特性风洞试验测试装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734702A (en) * 1956-02-14 John k
KR100506297B1 (ko) * 2003-06-20 2005-08-09 이근식 차량을 이용한 풍동시험장치
ITTO20060409A1 (it) * 2006-06-05 2007-12-06 Pininfarina Spa "sistema di simulazione dell¿effetto suolo per prove di veicoli o loro simulacri in galleria del vento"
CN103398834B (zh) * 2013-08-16 2016-12-28 中南大学 一种环形轨道、车辆、桥梁模型风洞试验系统
CN103466099B (zh) * 2013-09-22 2015-09-16 河南省寰宇测绘科技发展有限公司 无人测量机高速弹射架
CN104261063B (zh) * 2014-07-10 2016-06-22 西南交通大学 一种机器人抛射机构
CN205228768U (zh) * 2015-12-09 2016-05-11 吉林大学 一种用于汽车风洞中完成侧风试验的牵引弹射系统
US10254195B1 (en) * 2016-11-28 2019-04-09 Amazon Technologies, Inc. Wind tunnel for aerial vehicle certification
CN107436216B (zh) * 2017-09-15 2024-02-23 中南大学 一种列车横向激振和测力装置
CN107991058A (zh) * 2017-12-18 2018-05-04 西南交通大学 针对封闭式桥梁的移动列车风洞模型试验系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101750219A (zh) * 2010-01-25 2010-06-23 西南交通大学 一种列车动模实验系统
CN101968399A (zh) * 2010-10-18 2011-02-09 西南交通大学 一种车辆、桥梁模型风洞试验系统
CN102944434A (zh) * 2012-11-30 2013-02-27 中南大学 一种u形风洞试验列车加速系统
JP2016011858A (ja) * 2014-06-27 2016-01-21 株式会社大気社 風洞実験装置
CN105109685A (zh) * 2015-09-29 2015-12-02 东北大学 一种无人机发射与回收装置及其方法
CN108398226A (zh) * 2018-05-08 2018-08-14 中南大学 横风作用下车-桥系统气动特性风洞试验测试装置及方法
CN208458971U (zh) * 2018-05-08 2019-02-01 中南大学 横风作用下车-桥系统气动特性风洞试验测试装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113049218A (zh) * 2019-12-27 2021-06-29 上汽通用汽车有限公司 气动模型机构
CN113804395A (zh) * 2021-08-23 2021-12-17 中国水利水电第五工程局有限公司 用于模拟轨道列车与桥梁受载情况的测试装置
CN116067609A (zh) * 2023-03-31 2023-05-05 中国航空工业集团公司沈阳空气动力研究所 一种大吨位可移动试验段的高精度定位装置及方法

Also Published As

Publication number Publication date
US11199471B2 (en) 2021-12-14
US20200333212A1 (en) 2020-10-22
CN108398226A (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
WO2019214631A1 (zh) 横风作用下车-桥系统气动特性风洞试验测试装置及方法
CN101498622B (zh) 列车气动性能模拟动模型试验方法及其装置
Zhou et al. Pressure transients induced by a high-speed train passing through a station
CN101561979B (zh) 一种车桥耦合动力实验模型装置
CN101441138A (zh) 列车气动性能模拟试验装置的测试方法及系统
Yang et al. A moving model rig with a scale ratio of 1/8 for high speed train aerodynamics
WO2014101407A1 (zh) 轨道交通列车整车移动荷载模拟加载方法及装置
CN104655390B (zh) 基于精密直线滑轨的桥上移动车辆模型风洞试验装置
WO2020082408A1 (zh) 一种轨道车辆碰撞试验系统及方法
CN206420657U (zh) 一种零部件碰撞台车试验平台
CN101441136A (zh) 列车气动性能模拟试验装置的同步发射测控方法及系统
CN205120390U (zh) 一种模拟地铁列车移动车轮静载的试验装置
CN209182041U (zh) 一种吊挂式单轨车辆滚动振动试验装置
CN103033335B (zh) 一种滑轨式飞机模型后体投放风洞试验装置
CN101865785B (zh) 轨道车辆车轮耐磨性能综合试验台
WO2021164391A1 (zh) 一种滑轮组放大加速式可组装型落锤试验系统
CN101430250A (zh) 列车气动性能模拟动模型试验瞬态加速装置
CN107588916B (zh) 燃油箱噪声测量驱动试验台
CN103217302A (zh) 一种星球车车轮测试装置
CN106323655A (zh) 一种研究轮轨关系的试验装置
CN202956259U (zh) 移动车辆气动力测试装置
CN206387587U (zh) 一种轮轨关系测试研究试验台
CN103542973A (zh) 一种测试车辆制动性能的方法及装置
CN208458971U (zh) 横风作用下车-桥系统气动特性风洞试验测试装置
CN207311419U (zh) 一种铁道车辆制动系统综合性能通用试验台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800607

Country of ref document: EP

Kind code of ref document: A1