WO2019214582A1 - 业务信号传输方法及装置 - Google Patents

业务信号传输方法及装置 Download PDF

Info

Publication number
WO2019214582A1
WO2019214582A1 PCT/CN2019/085696 CN2019085696W WO2019214582A1 WO 2019214582 A1 WO2019214582 A1 WO 2019214582A1 CN 2019085696 W CN2019085696 W CN 2019085696W WO 2019214582 A1 WO2019214582 A1 WO 2019214582A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
service signal
service
rate
unit
Prior art date
Application number
PCT/CN2019/085696
Other languages
English (en)
French (fr)
Inventor
孙德胜
管四海
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2020562770A priority Critical patent/JP7101816B2/ja
Priority to KR1020207034861A priority patent/KR102519379B1/ko
Priority to EP19800217.2A priority patent/EP3780439B1/en
Publication of WO2019214582A1 publication Critical patent/WO2019214582A1/zh
Priority to US17/092,208 priority patent/US11381334B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1658Optical Transport Network [OTN] carrying packets or ATM cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • H04L1/0008Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length by supplementing frame payload, e.g. with padding bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • H04L1/0058Block-coded modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0083Formatting with frames or packets; Protocol or part of protocol for error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0084Formats for payload data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0073Services, e.g. multimedia, GOS, QOS
    • H04J2203/0082Interaction of SDH with non-ATM protocols
    • H04J2203/0085Support of Ethernet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a service signal transmission method and apparatus.
  • the networking structure of the communication network usually includes multiple network devices.
  • a service signal is usually required to be transmitted between the first network device and the second network device, where the first network device and the second network may It is any two of the plurality of network devices, and the M network devices (M ⁇ 0) may also be included between the first network device and the second network device.
  • the first network device needs to separately send the multi-path service signal to the second network device.
  • a fixed communication channel is usually used to carry a service signal, and the first network device may separately send the multiple service signal to the second network device through a corresponding multiple communication pipeline.
  • the communication channel is an end-to-end transmission resource for carrying a service signal, and may be an optical channel data unit/optical channel payload unit of an optical transport network (Optical Channel Data Unit/Optical Channel Payload Unit, ODU/OPU), time slot or frame structure, etc.
  • the first network device can support multiple communication pipes, which are used to transmit service signals of the same coding type and have different bandwidths, and the bandwidth of each communication pipe means that the communication pipeline can carry service signals. Maximum transfer rate.
  • the communication pipeline supported by the first network device has a one-to-one correspondence with the service signal, that is, each communication pipeline can only transmit one service signal at a time, and can only transmit a service whose transmission rate is less than or equal to the bandwidth of the communication pipeline. Signal, so multi-channel service signals need to be transmitted separately through corresponding multiple communication pipes.
  • the transmission efficiency is low, and the transmission resources are wasted.
  • the transmission rate of the traffic signal transmitted through the communication pipe is much smaller than the bandwidth of the communication pipe, the signal bearing of the communication pipe The efficiency is lower, and the pipeline resources are greatly wasted.
  • the present application provides a service transmission method and apparatus.
  • the technical solution is as follows:
  • a method for service transmission comprising:
  • Obtaining a first service signal of the N channel where the coding type of the first service signal of the N channel is the same, and the first service signal of the N channel has at least two first service signals with different transmission rates, where the N is greater than or An integer equal to 2;
  • the N-channel second service signal corresponding to the N-channel first service signal is obtained by inserting the padding signal into the N-channel first service signal, where the transmission rate of the N-channel second service signal is a reference. An integer multiple of the rate;
  • the N-channel can be obtained by inserting a padding signal into the N-channel first service signal.
  • the N service second signal corresponding to the first service signal is multiplexed into a first service signal and sent to the second network device.
  • the transmission rate of the N-way second service signal is an integer multiple of the reference rate, that is, the transmission rate of the N-way second service signal has a significant integer ratio characteristic.
  • the N channel second service signal corresponding to the transmission rate has a significant integral ratio characteristic, so that the N channel second service signal with the obvious integer ratio feature can be facilitated.
  • the multiplex transmission is performed to solve the multiplexing problem of service signals with different transmission rates.
  • the N service first signal is multiplexed and transmitted, compared to the separate transmission modes in the related art. The transmission efficiency of the service signal is improved, and the transmission resource is saved.
  • the step of inserting the padding signal into the first service signal of the N channel to obtain the N channel second service signal that is in one-to-one correspondence with the N channel first service signal includes:
  • the insertion of the padding signal in the first service signal A according to the transmission rate and the reference rate of the first service signal A ensures that the obtained transmission rate of the second service signal corresponding to the first service signal A is an integer multiple of the reference rate. .
  • the padding signal is inserted into the first service signal A according to the transmission rate of the first service signal A and the reference rate to obtain a second corresponding to the first service signal A.
  • Business signals including:
  • X refers to the number of first signal units acquired in a unit time
  • the first signal unit refers to a signal unit of the first service signal A
  • Y is the number of second signal units inserted in a group of first signal units that need to be acquired in a unit time
  • the two signal unit refers to the signal unit of the fill signal
  • the inserting the Y second signal units in the X first signal units acquired in each unit time includes:
  • the operation of acquiring the first signal unit and the operation of inserting the second signal unit are performed only once per unit time, so that the number of times of acquiring the signal and inserting the signal can be reduced, the operation is simple, and the efficiency is high. .
  • the inserting the Y second signal units in the X first signal units acquired in each unit time includes:
  • the ratio between the Y and the X is rounded up to obtain P, and each time a group of first signal units is acquired in the current unit time, a first signal unit, inserting P second signal units after acquiring the first signal unit until the last first signal unit in the current unit time is acquired, and the last one obtained A signal unit is followed by Q second signal units, the Q being the difference between the Y and the number of second signal units that have been inserted during the current unit time.
  • the first signal unit and the inserted second signal unit are the same each time, and the uniformity of the insertion and filling signal is improved.
  • the inserting the Y second signal units in the X first signal units acquired in each unit time includes:
  • the ratio between the X and the Y is rounded down to obtain E, and is determined according to the remainder of the X divided by the Y and the Y.
  • the number of the first signal unit obtained per unit time is the E or the E+1, and the first signal unit is acquired Y times in the current unit time according to the determined number, and the first time is obtained. Inserting a second signal unit after a signal unit;
  • the ratio between the Y and the X is rounded down to obtain F, and the unit time is determined according to the remainder of the Y divided by the X and the X. Whether the number of the second signal units inserted after acquiring one first signal unit each time is F or F+1, and acquiring the first signal unit X times in the current unit time, and according to the determined number, The second signal unit is inserted after each signal unit acquired.
  • the difference mode is used for uniformity insertion, which further improves the uniformity of inserting the fill signal in the first service signal.
  • the method before the insertion of the padding signal in the first service signal A, according to the transmission rate of the first service signal A and the reference rate, the method further includes:
  • the determining the reference rate according to the transmission rate of the N first service signal includes:
  • the target first service signal being a first service signal in the N first service signal, where T is a positive integer ;
  • the 1/T of the transmission rate of the first service signal of any of the N first service signals may be directly used as the reference rate, or the total bits of the filling signal inserted in the first service signal of the N channel may be used.
  • the least number of strategies selects 1/T of the transmission rate of the first service signal from the N first service signals as the reference rate.
  • the flexibility of setting the reference rate is improved by providing a plurality of methods for selecting the reference rate, and the reference is determined by a strategy of minimizing the total number of bits of the padding signal inserted in the N-way first service signal.
  • the rate can save the bits inserted into the padding signal, improve the resource utilization of the padding signal, and also reduce the operating frequency of inserting the padding signal and improve the insertion efficiency.
  • the transmission rate is an integer multiple of the reference rate, the total number of bits of the padding signal inserted in the N first traffic signal is required within a preset time, and the determined total number of bits is used as the first The number of fills of a service signal B;
  • the padding signal is inserted into the first service signal A according to the transmission rate of the first service signal A and the reference rate to obtain a second corresponding to the first service signal A.
  • Business signals including:
  • the transmission rate of the second service signal corresponding to the first service signal A is determined according to the transmission rate and the reference rate of the first service signal A, and then according to the transmission rate and corresponding of the first service signal A.
  • the transmission rate of the second service signal is inserted into the first service signal A, and the transmission rate of the input signal and the transmission rate of the output signal can be clearly known, and thus, according to the transmission rate of the input signal and the transmission rate of the output signal, Accurate insertion of the input signal, that is, the first service signal A, improves the accuracy of inserting the fill signal.
  • the determining, according to the transmission rate of the first service signal A and the reference rate, the transmission rate of the second service signal corresponding to the first service signal A including:
  • the relative multiple of the first service signal A is obtained by rounding up the ratio of the transmission rate of the first service signal A to the reference rate.
  • the determining, according to the first product, a transmission rate of the second service signal corresponding to the first service signal A including:
  • first rate adjustment upper limit Obtaining a first rate adjustment upper limit, and adjusting the first product according to the first rate adjustment upper limit, to obtain a transmission rate of the second service signal corresponding to the first service signal A, where the first rate adjustment upper limit is It is determined in advance according to the minimum value of the lower limit of the allowable rate of the first service signal of the N channel and the upper limit of the allowable rate of the third service signal.
  • the processing mode is simple and efficient, and the feasibility is high.
  • the first service signal and the third service signal can be tolerated at respective rates. The variation within the tolerance improves the accuracy of determining the transmission rate of the second service signal, and further improves the scope of application of the solution of the present application.
  • the adjusting, according to the first rate adjustment upper limit, the first product to obtain a transmission rate of the second service signal corresponding to the first service signal A including:
  • the method before the acquiring the first service signal of the N channel, the method further includes:
  • the fourth service signal of the N channel has a fourth service signal with a different coding type and a target coding type, where the target coding type refers to an encoding type of the N first service signal;
  • the multiplexing the N second service signals into a third service signal includes:
  • the signal units are sequentially extracted from the N second service signals, and the sequentially extracted signal units form a third service signal.
  • the extracted signal unit is a bit code block.
  • the determining, according to the transmission rate of the first service signal A and the reference rate comprises:
  • the transmission rate of the corresponding second service signal is determined according to the transmission rate of the first service signal A and the reference rate.
  • the rate of deviation between the first service signal A and the corresponding second service signal can be accurately calculated, and then the padding signal is inserted into the first service signal according to the deviation rate to adapt the transmission rate of the first service signal. Matching, a second service signal meeting the rate requirement is obtained.
  • the filling signal is inserted into the first service signal A according to a transmission rate of the first service signal A and a transmission rate of a second service signal corresponding to the first service signal A, Obtaining a second service signal corresponding to the first service signal A, including:
  • X refers to the number of first signal units acquired in a unit time
  • the first signal unit refers to a signal unit of the first service signal A
  • the determining, according to the transmission rate of the first service signal A and the reference rate, the transmission rate of the second service signal corresponding to the first service signal A including:
  • Obtaining a second rate adjustment upper limit where the second rate adjustment upper limit is determined in advance according to a maximum value of a ratio of inserting a maintenance management signal into the N first service signals, or The maximum value of the ratio of the maintenance management signal inserted in the first service signal of the N channel, the minimum value of the lower limit of the allowable rate of the N service first signal, and the upper limit of the allowable rate of the third service signal are determined;
  • Inserting a padding signal into the first service signal A according to the transmission rate of the first service signal A and the transmission rate of the second service signal corresponding to the first service signal A including:
  • the maintenance management is performed by inserting a ratio of the maintenance management signal, a transmission rate of the first service signal A, and a transmission rate of the second service signal corresponding to the first service signal A in the first service signal A as needed.
  • the signal and offset adaptation signal is inserted as a fill signal into the first traffic signal A.
  • the ratio of the maintenance management signal, the transmission rate of the first service signal A, and the transmission rate of the second service signal corresponding to the first service signal A are inserted in the first service signal A as needed. Inserting the maintenance management signal and the deviation adaptation signal as the fill signal into the first service signal A, including:
  • the deviation adaptation signal is inserted in the middle.
  • the maintenance and management of the service signal in the multiplex transmission process can be facilitated, and the ratio of the maintenance management signal is combined to the second service signal.
  • the transmission rate is fine-tuned to tolerate rate changes caused by the insertion of maintenance management signals.
  • fine-tuning the transmission rate of the second service signal the first service signal and the third service signal may be further tolerated. Changes within the respective rate tolerances, as well as rate changes caused by the insertion of maintenance management signals.
  • a second aspect provides a service signal transmission method, which is applied to a second network device, where the method includes:
  • a third service signal where the third service signal is formed by multiplexing the N second service signals, where the N second service signal is through the second service signal with the N
  • a padding signal is obtained by inserting a padding signal into the N-channel first service signal, and a transmission rate of the N-channel second service signal is an integer multiple of a reference rate, and the coding type of the N-channel first service signal is the same, and There are at least two first service signals with different transmission rates in the N service first service signal, where N is an integer greater than or equal to 2;
  • the padding signal is deleted from the N-channel second service signal obtained by demultiplexing, and the N-channel first service signal is obtained.
  • deleting the padding signal from the N-channel second service signal obtained by demultiplexing, to obtain the N-channel first service signal including:
  • the second service signal C after the deviation adaptation signal and the extraction maintenance management signal are deleted is determined as the first service signal corresponding to the second service signal C.
  • the third service signal is demultiplexed according to the multiplexing rule of the N first service signal, and the padding signal in the demultiplexed service signal is deleted, and the multiplex transmission can be successfully performed.
  • the N service first signal is recovered in the third service signal, and the problem of multiplexing reception is solved, thereby improving the transmission efficiency of the service signal and saving transmission resources.
  • a service signal transmission apparatus having a function of implementing the behavior of the service signal transmission method in the above first aspect.
  • the service signal transmission apparatus includes at least one module, and the at least one module is configured to implement the service signal transmission method provided by the above first aspect.
  • a service signal transmission apparatus having a function of implementing the behavior of the service signal transmission method in the above first aspect.
  • the service signal transmission apparatus includes at least one module, and the at least one module is configured to implement the service signal transmission method provided by the second aspect.
  • a fifth aspect provides a service signal transmission apparatus, where the structure of the service signal transmission apparatus includes a processor and a memory, where the memory is used to store a service signal transmission apparatus to perform the service signal transmission provided by the first aspect.
  • a program of the method and storing data involved in implementing the method of transmitting a service signal provided by the first aspect above.
  • the processor is configured to execute a program stored in the memory.
  • the operating device of the storage device may further include a communication bus for establishing a connection between the processor and the memory.
  • a service signal transmission apparatus where the structure of the service signal transmission apparatus includes a processor and a memory, where the memory is used to store a service signal transmission apparatus to perform the service signal transmission provided by the second aspect.
  • the processor is configured to execute a program stored in the memory.
  • the operating device of the storage device may further include a communication bus for establishing a connection between the processor and the memory.
  • a computer readable storage medium storing instructions for causing a computer to perform the service signal transmission method of the first aspect described above when it is run on a computer.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of transmitting a service signal as described in the first aspect above.
  • the technical effects obtained by the third aspect, the fifth aspect, and the seventh aspect are similar to those obtained by the corresponding technical means in the first aspect, and the technical effects obtained by the fourth aspect, the sixth aspect, and the eighth aspect are The technical effects obtained by the corresponding technical means in the second aspect are similar, and will not be described again here.
  • the first service may be obtained by inserting a padding signal into the N-channel first service signal.
  • the signal is one-to-one corresponding to the N second service signal, and then the N second service signal is multiplexed into a third service signal and sent to the second network device.
  • the transmission rate of the N-way second service signal is an integer multiple of the reference rate, that is, the transmission rate of the N-way second service signal has a significant integer ratio characteristic.
  • an N-channel second service signal corresponding to a transmission rate having a significant integer ratio characteristic is obtained, so that the N-channel second service signal having a significant integer ratio characteristic can be subsequently performed.
  • Multiplexing transmission solves the multiplexing problem of multiple service signals with different transmission rates.
  • FIG. 1 is a schematic diagram of an M/N Bit Block provided by the present application.
  • FIG. 2 is a schematic diagram of another M/N Bit Block provided by the present application.
  • FIG. 3 is a schematic diagram of still another M/N Bit Block provided by the present application.
  • FIG. 4 is a schematic diagram of a service signal transmission system provided by the present application.
  • FIG. 5 is a schematic structural diagram of a first network device 10 provided by the present application.
  • FIG. 6 is a schematic structural diagram of a second network device 20 provided by the present application.
  • FIG. 7 is a schematic structural diagram of a PE in an X-E networking provided by the present application.
  • FIG. 8 is a schematic structural diagram of P in an X-E networking provided by the present application.
  • FIG. 9 is a schematic diagram of a network formed by using X-E technology and transmitting a service signal according to the present application.
  • FIG. 10 is a schematic structural diagram of a network device provided by the present application.
  • FIG. 11 is a flowchart of a service transmission method provided by the present application.
  • FIG. 12 is a schematic diagram of a code block structure of an IDLE code block provided by the present application.
  • FIG. 13 is a schematic diagram of a code block structure of a maintenance management signal provided by the present application.
  • FIG. 14 is a schematic diagram of a bit-based frame structure provided by the present application.
  • 15 is a schematic diagram of another bit-based frame structure provided by the present application.
  • 16 is a schematic structural diagram of a service signal transmission apparatus provided by the present application.
  • FIG. 17 is a schematic structural diagram of another service signal transmission apparatus provided by the present application.
  • Ethernet (Ethernet)
  • Ethernet is a baseband LAN specification and is the most common communication protocol standard used in existing LANs.
  • FlexE is an interface technology for implementing service isolation bearers and network fragments. It has developed rapidly in the past two years and is widely accepted by major standards organizations.
  • X-E is a technical system based on the bit block switching of the Ethernet physical layer. It has the characteristics of deterministic ultra-low latency, and the encoding type used by X-E can be 64B/66B encoding type.
  • the M/N Bit Block code refers to the coding type of M payloads Bit and N total bits.
  • the N total bits include M payloads Bit and several synchronous Bits, that is, M ⁇ in the M/N Bit Block. N.
  • the M/N bit block stream is transmitted on the Ethernet physical layer link.
  • 1G Ethernet adopts 8B/10B code, 1GE physical layer link transmits 8B/10B block flow;
  • 10GE/40GE/100GE Ethernet adopts 64B/66B Coding, the 10GE/40GE/100GE Ethernet physical layer link transmits the 64B/66B code block stream.
  • other coding types will appear, such as possible encoding schemes such as 128B/130B and 256B/257B encoding.
  • Figures 1-3 are schematic diagrams of three M/N Bit Blocks provided by the present application.
  • FIG. 2 and FIG. 3 are the case of M ⁇ N
  • the code block shown in FIG. 2 has the M-bit payload area and NM.
  • the synchronization area of the bits, the position of the NM synchronization bits in the code block shown in FIG. 3 is flexibly distributed within the code block.
  • Non-M/N Bit Block Coding means that the coding technology used is not M/N Bit Block coding, but other coding methods such as Frame (Frame), such as Synchronous Digital Hierarchy (SDH) or Optical Transport Network (Optical Transport Network, OTN), etc.
  • Frame Frag., Frame
  • SDH Synchronous Digital Hierarchy
  • OTN Optical Transport Network
  • Network device Provide Edge, PE connected to the user equipment at the edge of the network
  • the edge of the primary network of the PE is used to access service signals outside the network to the network, or to recover service signals from the network to the network.
  • the nominal rate is the theoretical signal transmission/reception rate at the signal transmitter/receiver under ideal operating conditions.
  • the ideal operating condition includes the signal clock running at the center frequency without offset.
  • the average rate refers to the average signal transmission/reception rate of the signal transmitter/receiver per unit time.
  • the actual transmission/reception rate of a signal refers to the average transmission/reception rate of a signal per unit time. Commonly used unit time is seconds, minutes, hours, or any time interval.
  • the center frequency of the reference clock of the signal fluctuates up and down within a certain range.
  • This fluctuation range is generally called frequency tolerance.
  • the frequency tolerance is ⁇ allowable frequency floating upper limit, allowable frequency floating lower limit ⁇ .
  • the transmission rate of the signal is directly related to the reference clock frequency.
  • the frequency of the actual clock varies around the center frequency within the frequency tolerance, and the corresponding actual signal rate varies within a certain range around the nominal rate, which is referred to herein as the rate tolerance.
  • the rate tolerance is ⁇ permissible rate floating upper limit, allowable rate floating lower limit ⁇ .
  • the rate tolerance of the signal is equal to the frequency tolerance of the reference clock.
  • the method includes a first network device 10 and a second network device 20.
  • the first network device 10 and the second network device 20 can pass The network is connected.
  • the first network device 10 and the second network device 20 may be a network device (Provider, P) in the network, or may be a PE, and the first network device 10 and the second network device 20 may also include M devices before.
  • the third network device (M ⁇ 0), and the third network device is P.
  • a service signal is usually required to be transmitted between the first network device 10 and the second network device 20.
  • the first network device 10 needs to have more The road service signals are respectively sent to the second network device 20. Since the multiple service signals need to be separately transmitted, the transmission efficiency is low, and the transmission resources are wasted.
  • a method for multiplexing and transmitting multiple service signals is provided.
  • the first network device 10 is configured to acquire an N-channel first service signal, and insert a padding signal into the N-channel first service signal to obtain an N-channel second service that is in one-to-one correspondence with the N-channel first service signal. And signaling, the N second service signals are multiplexed into one third service signal, and the third service signal is sent to the second network device 20.
  • the N-channel first service signal has the same coding type, and the N-channel first service signal has at least two first service signals with different transmission rates, where N is an integer greater than or equal to 2, and the N-channel is second.
  • the transmission rate of the service signal is an integer multiple of the reference rate.
  • the reference rate may be determined according to the transmission rate of the first service signal of the N channel, or may be configured in advance, which is not limited in this application.
  • the second network device 10 is configured to receive the third service signal sent by the first network device 10, and demultiplex the third service signal into the N second service signal according to the multiplexing rule of the N second service signal. And deleting the padding signal from the N-channel second service signal obtained by demultiplexing, and obtaining the N-channel first service signal.
  • the first network device 10 may further include a control unit and a multiplexing unit, and may implement multiplexing transmission of the N first service signals by using the control unit and the multiplexing unit.
  • the first network device 10 will be described in detail by taking the first network device 10 as a control unit and a multiplexing unit as an example.
  • FIG. 5 is a schematic structural diagram of a first network device 10 provided by the present application. As shown in FIG. 5, the first network device 10 includes a control unit 11, N signal insertion units 12, and a multiplexing unit 13.
  • the control unit 11 is configured to control, after the first network device 10 acquires the N first service signals, the N signal insertion units 12 corresponding to the N first service signals in the N first service signals. Inserting a padding signal to obtain N-channel second service signals corresponding to the N-way first service signals, and multiplexing unit 12 is configured to multiplex the N-channel second service signals into one-way third service signal, so that The first network device 10 transmits the multiplexed third service signal to the second network device 20.
  • control unit 11 may be configured to determine a transmission rate of the N-channel first service signal, and then determine a reference rate according to a transmission rate or a configuration rate of the N-channel first service signal, where the first service signal is then used in the N-channel first service signal.
  • the first service signal of each channel may determine, according to the transmission rate and the reference rate of the first service signal, a transmission rate of the second service signal corresponding to the first service signal, and according to the transmission rate of the first service signal, And a transmission rate of the second service signal corresponding to the first service signal, and the signal insertion unit 12 corresponding to the first service signal is configured to insert a padding signal in the first service signal to obtain a correspondence with the first service signal.
  • the second business signal is configured to determine a transmission rate of the N-channel first service signal, and then determine a reference rate according to a transmission rate or a configuration rate of the N-channel first service signal, where the first service signal is then used in the N-channel first service signal.
  • the first service signal of each channel may
  • the control unit 11 may determine, according to the transmission rate and the reference rate of the first service signal 1, a corresponding to the first service signal 1. a transmission rate of the second service signal 1, and controlling a signal corresponding to the first service signal 1 according to a transmission rate of the first service signal 1 and a transmission rate of the second service signal 1 corresponding to the first service signal.
  • the insertion unit 12 inserts a padding signal in the first service signal 1 to obtain a second service signal 2 corresponding to the first service signal 1.
  • the signal insertion unit 12 corresponding to the first service signal may determine X according to the transmission rate of the first service signal, and determine Y according to the transmission rate of the first service signal and the reference rate, and then In the process of acquiring a set of first signal units per unit time, Y second signal units are inserted into the X first signal units acquired in each unit time.
  • X refers to the number of first signal units acquired in a unit time
  • the first signal unit refers to a signal unit of the first service signal
  • Y refers to a group of first signal units that need to be acquired in a unit time.
  • the number of second signal units, the second signal unit refers to the signal unit of the fill signal.
  • the signal insertion unit 12 may determine Y according to a transmission rate of the first service signal and a transmission rate of the corresponding second service signal, such as according to a transmission rate of the second service signal corresponding to the first service signal and the first service signal.
  • the rate of deviation between the transmission rates determines Y.
  • control unit 11 may further acquire a rate tolerance of the first service signal of each of the N first service signals and a rate tolerance of the third service signal, and may obtain a rate according to the N first service signal.
  • the rate tolerance of the tolerance and the third service signal determines a first rate adjustment upper limit, and then the first service signal of the first service signal in the N channel may be based on a transmission rate of the first service signal, the reference rate And the first rate adjustment upper limit, determining a transmission rate of the second service signal corresponding to the first service signal.
  • the N first service signals respectively run in respective clock domains, for example, the first service signal 1 runs in the first clock domain, and the first service signal 2 runs in the second clock domain.
  • a service signal N runs in the Nth clock domain.
  • the third service signal runs in the system clock domain.
  • the control unit 11 may respectively determine a frequency tolerance of a clock domain of each first service signal, and determine a first service signal of each channel according to a frequency tolerance of a clock domain of each first service signal. Rate tolerance.
  • the control unit 11 can also determine the frequency tolerance of the system clock domain of the third service signal and determine the rate tolerance of the third service signal according to the frequency tolerance of the system clock domain of the third service signal.
  • control unit 11 determines the frequency tolerance of the N first service signal according to the clock domain of the N first service signal, and determines the first according to the system clock domain of the third service signal.
  • the frequency tolerance of the three service signals is described as an example. In practical applications, the frequency tolerance of the N first service signal and the frequency tolerance of the third service signal may also be configured by a user, or by a specific register. The frequency tolerance of the N-way first service signal can also be carried in the corresponding first service signal, which is not limited in this application. Therefore, control unit 11 can determine the rate tolerance of the signal based on the frequency tolerance of the signal. When considering other complex factors, the rate tolerance of the signal is equal to the frequency tolerance. As to whether other factors are considered, the specific implementation manners inside the control unit are not described in detail in this application.
  • control unit 11 may further determine a ratio of the maintenance management signals to be inserted into the first service signals of the N channels, and determine a second rate by inserting a proportion of the maintenance management signals into the first service signals of the N channels as needed. Adjusting the upper limit, or determining the rate tolerance of each of the first service signals in the N-way first service signal, the rate tolerance of the third service signal, and determining that the first service signal needs to be inserted into the N-way first service signal.
  • the ratio of the rate of the first service signal of the N channel, the rate tolerance of the third service signal, and the ratio of the maintenance management signal to be inserted into the first service signal of the N channel may be further
  • the transmission rate of the second service signal is finely adjusted, so that the determined transmission rate of the N second service signal can further tolerate the rate tolerance of the first service signal and the third service signal, and tolerate the first service signal in the N channel. Insert a certain percentage of maintenance management signals.
  • control unit 11 may further include a Rate Adjust Process (RAP) and a Tolerance Adjust Process (TAP), where the RAP is used to select a transmission rate and a reference rate according to the N first traffic signal. And determining a transmission rate of the second service signal corresponding to the N-way first service signal.
  • the TAP is configured to determine, according to the RAP, the rate of transmission of the second service signal, the rate tolerance of the first service signal, the rate tolerance of the third service signal, and the first service signal in the N channel. Inserting at least one of the proportions of the maintenance management signals respectively, and further fine-tuning the transmission rate of each of the second service signals.
  • the N signal insertion units 12 may be N service layer pipes (SPs), that is, the acquired N channels of the first service signal may be respectively sent to the first service signal of the N channel. A corresponding N SPs, and the insertion of the fill signal is completed in the N SPs.
  • SPs N service layer pipes
  • control flow of the control unit 11 can be independent of the main service flow of the first network device 10, and the control flow can be flexibly started and stopped as needed.
  • the second network device 20 may further include a demultiplexing unit, and may be implemented by demultiplexing a third service signal to 20 in detail.
  • FIG. 6 is a schematic structural diagram of a second network device 20 provided by the present application. As shown in FIG. 6, the first network device 20 includes a demultiplexing unit 21 and N deleting units 22.
  • the demultiplexing unit 21 is configured to: after the second network device 20 receives the third service signal sent by the first network device 10, according to the multiplexing rule of the N second service signal, the third service signal Demultiplexed into N second service signals.
  • the N deleting units 22 are in one-to-one correspondence with the N-way second service signals, and are used to respectively delete the padding signals from the corresponding second service signals to obtain the N-channel first service signals.
  • the service transmission method provided by the present application can be applied to a scenario in which a service signal is transmitted based on a Bit Block, for example, in a scenario in which a service signal is transmitted based on technologies such as Ethernet, Flexible Ethernet (FlexE), or XE.
  • the coding type of the N-channel first service signal and the corresponding N-channel second service signal may be M/N Bit Block coding
  • the coding type of the third service signal described in this application may be M/
  • the N bit block coding may also be a non-M/N Bit Block coding.
  • the coding type of the third service signal is not limited in this application.
  • the service transmission method provided by the present application is applied to a scenario in which a service signal is transmitted by using an X-E technology.
  • the first network device and the second network device may be PEs or Ps in an X-E network.
  • a PE in an XE network may include a user-side adaptation unit (uAdpt), a switching unit (Switch), and a network side.
  • uAdpt user-side adaptation unit
  • Switch switching unit
  • nAdpt Adaptation unit
  • uAdpt includes uAdpt deployed at the network entrance, referred to as uAdpt(i), and uAdpt deployed at the network exit, referred to as uAdpt(e).
  • uAdpt(i) is used to implement the adaptation and interleaving of low-speed service signals or low-speed pipelines to connect service signals to FlexE high-speed pipelines
  • uAdpt(e) is used to recover low-speed service signals or low-speed pipelines from FlexE high-speed pipelines. Deinterlacing and adaptation.
  • nAdpt is mainly used to complete FlexE pipe multiplexing to FlexE SHIM via FlexE interface, or to recover FlexE pipe from FlexE SHIM of FlexE interface.
  • the received N-way service signals may be multiplexed and transmitted through uAdpt or nAdpt in the PE, or the original N-way service signals may be recovered from the one-way service signal formed by multiplexing.
  • control unit may be software, a programmable device, or an integrated circuit.
  • the integrated circuit may be an application specific integrated circuit. , ASIC) and so on.
  • FIG. 8 is a schematic structural diagram of P in an X-E network provided by the present application.
  • P in the X-E network may include nAdpts on both sides and an intermediate switch.
  • the received N-way service signals may be multiplexed and transmitted through the nAdpt in the P, or the original N-way service signals may be recovered from the one-way service signal formed by the multiplexing.
  • the method of the present application may be implemented by deploying a control unit in nAdpt, which may be software, a programmable device or an integrated circuit, etc., for example, the integrated circuit may be an ASIC or the like.
  • FIG. 9 is a schematic diagram of a network that uses the XE technology to construct a network and transmits a service signal.
  • the network formed by using the XE technology includes PE 30, P 40, and PE 50, and the PE 50 can receive the N user.
  • the service signal is multiplexed into a service signal, and the service signal is sent to the PE 50 via the P40. After receiving the service signal, the PE 50 can recover the service signal of the N user from the service signal.
  • the network device may be the first network device 10 or the second network device 20. In actual applications, the network device may be a device such as an IPRAN or a PTN. Referring to FIG. 10, the network device includes at least one processor 1001, a communication bus 1002, a memory 1003, and at least one communication interface 1004.
  • the processor 1001 may be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the execution of the program of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication bus 1002 can include a path for communicating information between the components described above.
  • the memory 1003 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM), or other information that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • Type of dynamic storage device or Electro Scientific Erasable Programmable Read-Only Memory (EEPROM), Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, optical disc Storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being Any other medium accessed by the computer, but is not limited thereto.
  • the memory 1003 may be independent and connected to the processor 1001 via the communication bus 1002.
  • the memory 1003 can also be integrated with the processor 1001.
  • the communication interface 1004 uses devices such as any transceiver for communicating with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), and the like.
  • devices such as any transceiver for communicating with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), and the like.
  • RAN Radio Access Network
  • WLAN Wireless Local Area Networks
  • the processor 1001 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG.
  • the network device can include multiple processors, such as processor 1001 and processor 1005 shown in FIG. Each of these processors can be a single-CPU processor or a multi-core processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the network device may further include an output device 1006 and an input device 1007.
  • Output device 1006 is in communication with processor 1001 and can display information in a variety of ways.
  • the output device 1006 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • the input device 1007 is in communication with the processor 1001 and can receive user input in a variety of ways.
  • the input device 1007 can be a mouse, a keyboard, a touch screen device, or a sensing device, and the like.
  • the network device may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet, a wireless terminal device, a communication device, or an embedded device.
  • PDA personal digital assistant
  • This application does not limit the type of network device.
  • the memory 1003 is configured to store program code for executing the solution of the present application, and is controlled by the processor 1001 for execution.
  • the processor 1001 is configured to execute the program code 1008 stored in the memory 1003.
  • One or more software modules may be included in program code 1008.
  • FIG. 11 is a flowchart of a service transmission method provided by the present application. The method may be applied to the service transmission system shown in FIG. 1 . As shown in FIG. 11 , the method includes the following steps:
  • Step 1101 The first network device acquires the first service signal of the N channel, where the coding type of the first service signal of the N channel is the same, and the first service signal of the N channel has at least two first service signals with different transmission rates.
  • the first network device may be a PE or a P or the like.
  • the N-channel first service signal may be a service signal received by the first network device from another device, or may be a service signal obtained by encoding and converting a service signal received from another device.
  • the at least two first service signals having different transmission rates in the first service signal of the N channel are the at least two first service signals having different nominal rates or average rates in the first service signal of the N channels. That is, the transmission rate of the first service signal described in this application may be the nominal rate of the first service signal, or may be the average rate of the first service signal, which is not limited in this application.
  • the first network device may further receive the N-way fourth service signal, where the fourth service signal of the N-way fourth service signal is different from the target coding type. And translating, according to the target coding type, the fourth service signal of the Nth fourth service signal with a different coding type and a target coding type, and encoding the converted fourth service signal and the coding type to be the same as the target coding type.
  • the fourth service signal is determined as the first service signal of the N channel; when the fourth service signal of the N channel does not have a fourth service signal whose coding type is different from the target coding type, that is, the coding type of the fourth service signal of the N channel When the target coding type is used, the Nth fourth service signal is directly used as the N first service signal.
  • the target coding type refers to the coding type of the N-channel first service signal, that is, the coding type that the first network device supports for transmission.
  • the target coding type may be M/N Bit Block coding, such as 64B/66B coding or 8B/10B coding.
  • the PE may receive the Nth fourth service signal sent by the user terminal, and when the fourth service signal of the Nth channel has a fourth service signal with a different coding type and a target coding type, Encoding and transforming the Nth fourth service signal according to the target coding type, to obtain the N first service signal, when there is no fourth service signal with different coding type and target coding type in the Nth fourth service signal,
  • the N way fourth service signal is used as the N way first service signal.
  • the transmission rate of the service signal after the code conversion also changes, that is, the transmission rate of the fourth service signal before the code conversion is different from the transmission rate of the first service signal obtained after the code conversion.
  • the fourth service signal of the Nth fourth service signal is different from the target coding type
  • the fourth service signal is coded and converted according to the target coding type to obtain the corresponding first service signal
  • the transmission rate of the fourth service signal described in this application may be the nominal rate of the fourth service signal, or may be the average rate of the fourth service signal, which is not limited in this application.
  • the first network device receives the 11th fourth service signal sent by the user terminal, and the 11th service signal is the client1 to the client11, and the client1 to the client10 are the transmission rate.
  • Client11 is a service signal with a transmission rate of 266057Kbps and an encoding type of OTU1.
  • the target encoding type is 64B/66B encoding. Therefore, it is necessary to encode and convert Client1 ⁇ Client11 according to the target encoding type. Client1 ⁇ Client11 are converted to 64B/66B encoded service signals, and Client1' ⁇ Client11' are obtained. After the actual code conversion, the signal bits of Client1 to Client11 can be loaded into the 64-bit payload area in the 64B/66B bit code block.
  • Client1 ' ⁇ Client11' transmission rate are represented by c 1 -c 11.
  • the first network device receives the three-way fourth service signal sent by the user terminal, and the three fourth service signals are respectively Client1 to Client3, and the client1 has a transmission rate of 1.25 Gbps
  • the coding type is 8B/10B coded service signal
  • Client2 is the service signal with the transmission rate of 8110.4 Mbps and the coding type is 64B/66B code
  • Client3 is the service with the transmission rate of 10.3125 Gbps and the coding type of 64B/66B coding.
  • the target encoding type is 64B/66B encoding. Therefore, the client1 needs to be encoded and converted according to the target encoding type. That is, Client1 is converted into a 64B/66B encoded service signal to obtain Client1', and Client2 and Client3 are determined as Client2' and Client3. '.
  • the transmission rate of Client2' is 8110400000bps, and the transmission rate of Client3' is 10312500000bps.
  • Client1 ' ⁇ Client3' transmission rate are represented by c 1 -c 3.
  • the first network device receives the second 4-way service signal sent by the user terminal, and the two-way fourth service signals are respectively Client1 and Client2, and the client1 has a transmission rate of 155520000bps, the service signal of the encoding type is SDH, Client2 is the service signal with the transmission rate of 322080000bps and the encoding type is SDH, and the target encoding type is 64B/66B encoding. Therefore, it is necessary to encode and convert Client1 and Client2 according to the target encoding type, that is, Client1 Converted to 64B/66B encoded service signals and Client2 respectively, and get Client1' and Client2'.
  • Step 1102 The first network device inserts a padding signal into the first service signal of the N channel to obtain an N-channel second service signal corresponding to the N-channel first service signal, and the N-channel second service signal is transmitted.
  • the rate is an integer multiple of the reference rate.
  • the N service signals of the at least two first service signals having different transmission rates only when the transmission rate of the N service signals has a clear hierarchical feature, that is, the N service signals Multiplexing is only possible when the ratio between transmission rates has a significant integer ratio.
  • an N-channel second service signal that is in one-to-one correspondence with the N-channel first service signal and whose transmission rate is an integer multiple of the reference rate is obtained.
  • the multiplexed transmission of the first service signal of the N channel is facilitated, and the multiplexing problem of the first service signal of the N channel is solved.
  • the reference rate may be determined according to the transmission rate or the configuration rate of the N first service signal. Specifically, the reference rate can be determined by the following implementations:
  • a first implementation determining a rate configuration for the reference rate.
  • the configuration rate refers to a pre-configured rate of the user, the first network device, or other devices, such as a rate that can be input by the user, or a rate set by the first network device by default, or a rate sent by other devices.
  • the configuration rate may be a rate that the user configures through the control unit 11.
  • the second implementation manner is: determining the reference rate according to the transmission rate of the N first service signal.
  • the manner of determining the reference rate may include the following:
  • the transmission rate of the target first service signal can be used as the reference rate
  • T when T is greater than 1, the 1/T of the transmission rate of the target first service signal can be used as the reference rate.
  • the target first service signal may be randomly selected from the N first service signals, or may be specified from the N first service signals according to a preset policy. For example, a first service signal of the N-way first service signal in which the signal-filling unit is not deployed may be determined as the target first service signal.
  • the transmission rate of the target first service signal may be rounded according to a preset policy, and 1/T of the transmission rate after the rounding process is determined as the reference rate; or, the transmission rate of the target first service signal is used.
  • the 1/T is rounded according to a preset policy, and the processing result is determined as the reference rate. In this way, the computational complexity can be reduced and the computational efficiency can be improved.
  • selecting a service signal from the N first service signals according to a strategy of minimizing a total number of bits of the padding signal inserted in the N-channel first service signal includes: for the N-channel first service signal a first service signal B, determining that assuming that 1/T of the transmission rate of the first service signal B is the reference rate and ensuring that the transmission rate of the N second service signal is an integer multiple of the reference rate, The total number of bits of the padding signal inserted in the first service signal of the N channel is required within a preset time, and the determined total number of bits is used as the padding number of the first service signal B, and then the first service from the N channel The first service signal with the smallest number of padding is determined in the padding number of the signal, and the first service signal with the smallest padding number is used as the selected one-way service signal.
  • the first service signal needs to be in the N channel within a preset time.
  • the total number of bits of the padding signal inserted in the slot, and the determined total number of bits is used as the padding number of the corresponding first service signal, so that the padding number of the N first service signal can be obtained, and then the N channel first service is obtained.
  • the reference rate is 1/T of the transmission rate of the first service signal with the smallest number of padding in the signal.
  • the bits inserted into the padding signal can be saved, the resource utilization of the padding signal can be improved, and the padding signal can be reduced. Operating frequency to improve insertion efficiency.
  • the preset time may be preset, and may be one unit time of the transmission rate.
  • the unit of the transmission rate is usually bps, that is, the number of bits transmitted per second, so the preset time may be 1 s.
  • the preset time is one unit time of the transmission rate
  • 1/T of the transmission rate of the first service signal B is used as the reference rate and the transmission rate of the N second service signal is guaranteed.
  • the reference rate is an integer multiple
  • the total number of bits of the padding signal that needs to be inserted in the first service signal of the N channel in a preset time, that is, the padding number of the first service signal B can be determined by the following formula (1). :
  • J i is the number of the first service signal B, and i indicates that the first service signal B is the first service signal of the N first service signals, and the content in the parentheses indicates that the preset time is needed.
  • the number of bits inserted in the first service signal of the jth channel in the first service signal of the N channel is to be inserted in each of the first service signals in the first service signal of the N channel within the preset time.
  • the number of bits is added to obtain the total number of bits that need to be inserted in the first service signal of the N channel within the preset time.
  • the transmission rate of the first service signal is selected from Client1' to Client11' according to the strategy of minimizing the total number of bits of the padding signal inserted in Client1' ⁇ Client11'.
  • 1/T can calculate the number of paddings of each service signal in each of Client1' ⁇ Client11'.
  • a first service signal path 11 Client1 ' ⁇ Client11' transmission rate c 1 -c 11, respectively, said Client1 ' ⁇ Client11' are filled with a number of J 1 -J 11 represents, then J 1 -J 11 may be Determined by the following formulas (2)-(5):
  • the transmission rate of the selected one-way service signal may be rounded according to a preset policy, and 1/T of the rounded transmission rate is determined as the reference rate; or, the selected one-way service signal is selected.
  • the 1/T of the transmission rate is rounded according to a preset policy, and the processing result is determined as the reference rate. In this way, the computational complexity can be reduced and the computational efficiency can be improved.
  • selecting a service signal from the N first service signals according to a strategy of minimizing a total number of bits of the padding signal inserted in the N-channel first service signal includes: for the N-channel first service signal
  • the first service signal B of the first path determines that 1/T of the processing result of rounding off the transmission rate of the first service signal B according to the preset policy is used as the reference rate, and ensures transmission of the second service signal of the N channel
  • the rate is an integer multiple of the reference rate
  • the total number of bits of the padding signal inserted in the N first traffic signal is required within a preset time, and the determined total number of bits is used as the first service signal B.
  • the selected one-way service signal As the selected one-way service signal.
  • the N service first service signal Selecting a service signal includes: determining, for the first service signal B of the N first service signal, assuming that 1/T of the transmission rate of the first service signal B is the reference rate and securing the N path
  • the transmission rate of the second service signal is an integer multiple of the reference rate
  • the signal unit extracted from the N second service signal each time the N second service signal is multiplexed to form a third service signal The number is determined, and the determined number of signal units is determined as the number of extractions of the first service signal B, and then the first service signal with the least number of extracted from the N first service signals may be used as the selected one-way service signal.
  • obtaining the N channel second service signal corresponding to the N channel first service signal may include: for the N channel first service signal The first service signal A is inserted into the first service signal A according to the transmission rate and the reference rate of the first service signal A to obtain a second service signal corresponding to the first service signal A.
  • inserting the padding signal in the first service signal A may be implemented by the following steps 1102a-1102b:
  • Step 1102a Determine a transmission rate of the second service signal corresponding to the first service signal A according to the transmission rate of the first service signal A and the reference rate.
  • the transmission rate of the first service signal A may be the nominal rate of the first service signal A or the average rate of the first service signal A. That is, the transmission rate of the second service signal corresponding to the first service signal A may be determined according to the nominal rate and the reference rate of the first service signal A, or may be based on the average rate and the reference rate of the first service signal A. It is determined that this application does not limit this.
  • determining the transmission rate of the second service signal corresponding to the first service signal A according to the transmission rate and the reference rate of the first service signal A includes the following two implementation manners:
  • the first implementation manner is: determining, according to the first product, a transmission rate of the second service signal corresponding to the first service signal A, where the first product is a product of a relative multiple of the first service signal A and the reference rate, The relative multiple of the first service signal A is obtained by rounding up the ratio of the transmission rate of the first service signal A to the reference rate.
  • determining, according to the first product, a transmission rate of the second service signal corresponding to the first service signal A may include the following two implementation manners:
  • S 1 -S 11 can be determined by the following formulas (6)-(8), respectively:
  • c 1 is the transmission rate of Client 1 ′
  • c 2 is the transmission rate of Client 2 ′
  • c 11 is the transmission rate of Client 11 ′
  • ceiling refers to rounding up the content in parentheses.
  • a first rate adjustment upper limit which is determined according to a minimum value of a lower limit of the allowable rate of the first service signal of the N channel and an upper limit of the allowable rate of the third service signal, according to the first A rate adjustment upper limit adjusts the first product to obtain a transmission rate of the second service signal corresponding to the first service signal A.
  • the minimum value of the lower limit of the allowable rate of the N first service signal and the first The upper limit of the allowable rate of the three service signals is fluctuated, and then the first rate adjustment upper limit is determined according to the minimum value of the allowable rate floating lower limit of the N first service signal and the upper limit of the allowable rate of the third service signal, and then the first for each path
  • the second service signal corresponding to the service signal may be adjusted according to the first rate adjustment upper limit and the product of the relative multiple of each first service signal and the reference rate, to obtain a second service signal corresponding to each first service signal. Transmission rate.
  • the ratio of the rate of the first service signal of the N channel, the rate tolerance of the third service signal, and the ratio of the maintenance management signal to be inserted into the first service signal of the N channel may be further determined.
  • the transmission rate of the second service signal of the N channel is finely adjusted, so that the determined transmission rate of the N second service signal can tolerate the rate tolerance of the first service signal and the third service signal, and tolerate the first service signal in the N channel. Insert a certain percentage of maintenance management signals.
  • the lower limit of the allowable rate of the first service signal in the first service signal of the N channel may be determined according to the rate tolerance of the first service signal, and the upper limit of the allowable rate of the third service signal may be based on the third The rate tolerance of the traffic signal is determined.
  • determining, according to the minimum value of the lower limit of the allowable rate of the first service signal of the N channel and the upper limit of the allowable rate of the third service signal, the upper limit of the first rate adjustment includes: an upper limit of the allowable rate of the third service signal The difference between the minimum values of the lower limit of the allowable rate of the first traffic signal of the N channel is determined as the first rate adjustment upper limit.
  • adjusting the first product according to the first rate adjustment upper limit, and obtaining a transmission rate of the second service signal corresponding to the first service signal A may include: determining a sum of the first product and the second product For the transmission rate of the second service signal corresponding to the first service signal A, the second product is the product of the first rate adjustment upper limit and the first product.
  • the frequency tolerance of Client1' ⁇ Client10' is ⁇ +10PPM, -10PPM ⁇ , and the frequency tolerance of Client11' is ⁇ +20PPM, -20PPM ⁇ , the third service signal.
  • the frequency tolerance is ⁇ +100PPM, -100PPM ⁇ , and the rate tolerance is equal to the frequency tolerance when other complex factors are not considered.
  • PPM Part per Million
  • the S 1 -S 11 can Determined by the following formulas (10)-(12):
  • c 1 is the transmission rate of Client 1 ′
  • c 2 is the transmission rate of Client 2 ′
  • c 11 is the transmission rate of Client 11 ′
  • ceiling refers to rounding up the content in parentheses.
  • the second implementation manner is: obtaining a second rate adjustment upper limit, where the second rate adjustment upper limit is determined in advance according to a maximum value of a ratio of inserting a maintenance management signal into the N first service signal, or according to a preset
  • the maximum value of the ratio of the maintenance management signal to be inserted into the first service signal of the N channel, the minimum value of the lower limit of the allowable rate of the first service signal of the N channel, and the upper limit of the allowable rate of the third service signal are determined.
  • the first product is a relative multiple of the first service signal A
  • the relative multiple of the first service signal A is obtained by rounding up the ratio of the transmission rate of the first service signal A to the reference rate.
  • the ratio of the maintenance management signals to be inserted into the N first service signals may be determined before determining the transmission rate of the N second service signals corresponding to the N first service signals. And determining, according to the maximum value of the ratio of the maintenance management signal inserted in the first service signal of the N channel, the second rate adjustment upper limit, or determining the proportion of the maintenance management signal to be inserted into the N first service signal respectively.
  • the lower limit of the allowable rate of the first service signal of the N channel and the upper limit of the allowable rate of the third service signal, and the maximum value of the ratio of the maintenance management signal is inserted into the first service signal of the N channel as needed.
  • the minimum value of the allowable rate floating lower limit of the N-way first service signal and the allowable rate floating upper limit of the third service signal determine the second rate adjustment upper limit. Then, the first service signal A of the first service signal of the N channel is adjusted according to the product of the relative multiple of the first service signal A and the reference rate, and the first corresponding to the first service signal A is obtained. The transmission rate of the two service signals.
  • the maintenance management signal inserted in the first service signal A may carry maintenance management parameters for maintaining and managing the first service signal A.
  • the maintenance management parameter of the bearer may be the clock feature information of the first service signal A for subsequently recovering the clock of the first service signal A on the second network device side.
  • determining, according to the maximum value of the ratio of the maintenance management signals inserted in the N first service signals, determining the second rate adjustment upper limit includes: inserting the maintenance management signal into the N first service signals respectively.
  • the maximum value in the ratio is determined as the second rate adjustment upper limit.
  • the maximum value of the ratio of the maintenance management signal inserted in the first service signal of the N channel, the minimum value of the lower limit of the allowable rate of the first service signal of the N channel, and the upper limit of the allowable rate of the third service signal are determined according to requirements.
  • the second rate adjustment upper limit includes: determining a sum value between an upper limit of the allowable rate of the third service signal and a maximum value of the ratio of the maintenance management signals respectively inserted in the N first service signal, and the sum value and the The difference between the minimum values of the lower limit of the allowable rate of the first traffic signal of the N channel is determined as the second rate adjustment upper limit.
  • the frequency tolerance of Client1' ⁇ Client10' is ⁇ +10PPM, -10PPM ⁇
  • the frequency tolerance of Client11' is ⁇ +20PPM, -20PPM ⁇
  • the frequency tolerance is ⁇ +100PPM, -100PPM ⁇ .
  • the rate tolerance of each client is equal to the frequency tolerance and can be borrowed directly.
  • Client1 ' ⁇ Client11' need to insert maintenance signals are proportional 50PPM, assuming a second adjustment rate is represented by the upper limit f max, f max can be determined by the following equation (13):
  • the S 1 -S 11 may each Determined by the following formulas (14)-(16):
  • c 1 is the transmission rate of Client 1 ′
  • c 2 is the transmission rate of Client 2 ′
  • c 11 is the transmission rate of Client 11 ′
  • ceiling refers to rounding up the content in parentheses.
  • the frequency tolerance of Client1' and Client2' is ⁇ +100PPM, -100PPM ⁇
  • the frequency tolerance of Client3' is ⁇ +20PPM, -20PPM ⁇
  • the frequency tolerance is ⁇ +20PPM, -20PPM ⁇ .
  • the rate tolerance of each client is equal to the frequency tolerance and can be borrowed directly.
  • Client1 ' ⁇ Client3' need to insert maintenance signals are 100PPM ratio, by assuming that the second upper limit f max rate adjustment expressed, can (17)
  • f max is determined by the following formula:
  • S 1 -S 3 may then respectively Determine by the following formulas (18)-(20):
  • c 1 is the transmission rate of Client1′
  • c 2 is the transmission rate of Client 2 ′
  • c 3 is the transmission rate of Client 3 ′
  • ceiling refers to rounding up the content in parentheses.
  • the frequency tolerance of Client1' is ⁇ +10PPM, -10PPM ⁇
  • the frequency tolerance of Client2' is ⁇ +20PPM, -20PPM ⁇
  • the frequency capacity of the third service signal is ⁇ +100PPM, -100PPM ⁇ .
  • the rate tolerance of each client is equal to the frequency tolerance and can be borrowed directly.
  • Client1 'and Client2' need to insert maintenance signals are proportional 50PPM, assuming a second adjustment rate is represented by the upper limit f max, f max can be determined by the following equation (21):
  • S 1 and S 2 are It can be determined by the following formulas (22) and (23), respectively:
  • c 1 is the transmission rate of Client1′
  • c 2 is the transmission rate of Client 2 ′
  • ceiling refers to rounding up the content in parentheses.
  • Step 1102b Insert a padding signal into the first service signal A according to a transmission rate of the first service signal A and a transmission rate of the second service signal corresponding to the first service signal A, to obtain a first The second service signal corresponding to the service signal A.
  • inserting the padding signal in the first service signal A includes the following two implementation manners:
  • the first implementation manner is: when the transmission rate of the second service signal corresponding to the first service signal A is determined by using the first implementation manner in the foregoing step 1102a, the second service signal corresponding to the first service signal A may be used. A rate of deviation between the transmission rate and the transmission rate of the first traffic signal A, in which the padding signal is inserted.
  • the padding signal may be inserted into the first service signal A according to the deviation rate.
  • the first service signal A and the corresponding second service are illustrated.
  • the transmission rate of the signal is the same, and there is no need to insert a fill signal in the first service signal A.
  • the fill signal can be a bias adaptation signal. That is, the deviation adaptation signal may be inserted as the fill signal into the first according to the deviation rate between the transmission rate of the second service signal corresponding to the first service signal A and the transmission rate of the first service signal A.
  • Business signal A For example, when it is not configured to insert a maintenance management signal into the N-way first service signal, the offset adaptation signal may be inserted only in the first service signal A.
  • the offset adaptation signal is used to adapt the rate of deviation between the transmission rate of the first service signal A and the transmission rate of the corresponding second service signal, so that the offset adaptation signal is inserted in the first service signal A. Thereafter, the transmission rate of the obtained second service signal is guaranteed to be equal to the predetermined transmission rate.
  • a deviation adaptation signal having a transmission rate equal to the deviation rate may be inserted in the first service signal A.
  • the offset adaptation signal may be an idle (IDLE) code block stream, and may of course be other signal forms, which is not limited in this application.
  • the inserted offset adaptation signal may be a 64B/66B encoded IDLE code block stream, and the code block structure of the IDLE code block may be as shown in FIG.
  • inserting the padding signal in the first service signal A may include:
  • the transmission rate of the first service signal A determines X, X refers to the number of first signal units acquired in a unit time, and the first signal unit refers to the signal unit of the first service signal A; corresponding to the first service signal A
  • Deviation rate between the transmission rate of the second service signal and the transmission rate of the first service signal A determines Y, Y refers to the second signal unit inserted in a group of first signal units that need to be acquired in a unit time
  • the quantity, the second signal unit refers to a signal unit that fills the signal; in the process of acquiring a group of first signal units every unit time, Y second units are inserted in the X first signal units acquired in each unit time Signal unit.
  • the second implementation manner is: when the second implementation manner in the foregoing step 1102a is used to determine the transmission rate of the second service signal corresponding to the first service signal A, it may be determined that the maintenance management signal needs to be inserted in the first service signal A. Ratio, the ratio of the maintenance management signal inserted in the first service signal A, the transmission rate of the first service signal A, and the transmission rate of the second service signal corresponding to the first service signal A, as needed A fill signal is inserted into a service signal A.
  • the ratio of the maintenance management signal, the transmission rate of the first service signal A, and the transmission rate of the second service signal corresponding to the first service signal A may be inserted into the first service signal A as needed.
  • the management signal and the offset adaptation signal are inserted as a fill signal into the first traffic signal A.
  • the maintenance management signal inserted in the client 1 ' to the client 11 ′ can carry the clock feature information corresponding to the first service signal, and is used to subsequently restore the corresponding first service on the second network device side.
  • the clock of the signal can carry the clock feature information corresponding to the first service signal, and is used to subsequently restore the corresponding first service on the second network device side.
  • the code block structure of the management signal can be as shown in FIG.
  • Inserting the signal and the deviation adaptation signal as the filling signal into the first service signal A may include: first inserting a proportion of the maintenance management signal in the first service signal A according to requirements, and inserting maintenance management into the first service signal A Transmitting, according to the transmission rate of the first service signal A and the ratio of inserting the maintenance management signal in the first service signal A, determining a transmission rate of the first service signal A after the insertion of the maintenance management signal, and finally according to the first The transmission rate of the second service signal corresponding to the service signal A and the transmission rate of the first service signal A after the insertion of the maintenance management signal are inserted into the first service signal A after the insertion of the maintenance management signal.
  • the adaptation signal includes: determining a transmission rate of the second service signal corresponding to the first service signal A and a transmission rate between the transmission rate of the first service signal A after the insertion of the maintenance management signal, and inserting according to the deviation rate A deviation adaptation signal is inserted into the first service signal A after the maintenance management signal.
  • the first rate after the insertion of the maintenance management signal a method of inserting a deviation adaptation signal in the service signal A, and a deviation rate between the transmission rate of the second service signal corresponding to the first service signal A and the transmission rate of the first service signal A, at the first
  • the method for inserting the padding signal in the service signal A is the same.
  • the specific implementation process may refer to the rate of deviation between the transmission rate of the second service signal corresponding to the first service signal A and the transmission rate of the first service signal A.
  • the implementation process of inserting the padding signal in the first service signal A is not described herein again.
  • the process of inserting the padding signal in the first service signal A according to the transmission rate and the reference rate of the first service signal A may include: determining X according to the transmission rate of the first service signal A, where X is The number of first signal units acquired in a unit time, the first signal unit refers to the signal unit of the first service signal A; the Y and Y are determined according to the transmission rate and the reference rate of the first service signal A, which means that the unit time is required Obtaining the number of second signal units inserted in a set of first signal units, the second signal unit refers to a signal unit filling the signal; in the process of acquiring a set of first signal units every unit time, in each unit Y second signal units are inserted into the X first signal units acquired in time.
  • the unit time may be determined according to a transmission rate. For example, when the unit of the transmission rate is bps, the unit time may be 1 second. When the unit time is 1 second, that is, a group of first signal units is acquired every 1 second, and Y second signal units are inserted in the X first signal units acquired every second.
  • the signal unit of the first service signal A and the signal unit of the padding signal may each be a bit code block, such as an M/N Bit Block.
  • the padding signal may be a bias adaptation signal.
  • determining Y according to the transmission rate and the reference rate of the first service signal A includes: determining, according to a deviation rate between a transmission rate of the second service signal corresponding to the first service signal A and a transmission rate of the first service signal A, Y.
  • the transmission rate of the second service signal corresponding to the first service signal A is determined in advance according to the transmission rate and the reference rate of the first service signal A.
  • the transmission rate of the first service signal A may be determined as X, and the transmission rate of the second service signal corresponding to the first service signal A and the transmission rate of the first service signal A may be The deviation rate is determined to be Y. For example, assuming that the transmission rate of the first service signal A is 100 bps and the deviation rate is 15 bps, then X is 100 and Y is 15.
  • inserting the Y second signal units into the X first signal units acquired in each unit time includes the following implementation manners:
  • 100 first signal units can be acquired when 100 first signal units are acquired in the process of acquiring a set of first signal units in the current unit time. Then 15 second signal units are inserted.
  • the operation of acquiring the first signal unit and the operation of inserting the second signal unit are performed only once per unit time, so that the number of times of acquiring the signal and inserting the signal can be reduced, and the operation is simple.
  • the insertion efficiency is higher.
  • the second signal unit that needs to be inserted can be more evenly inserted into the first signal unit when X is greater than or equal to Y, and the second signal unit can be inserted after the second signal unit is inserted.
  • the resulting transmission rate of the second service signal conforms to the rate requirement.
  • the second signal unit that needs to be inserted can be more evenly inserted into the first signal unit when X is smaller than Y, and can be obtained after inserting the second signal unit.
  • the transmission rate of the second service signal conforms to the rate requirement.
  • the smaller Y may be determined as the number of times the first signal unit is acquired per unit time, that is, the first signal unit is acquired Y times per unit time. Moreover, each time the acquisition operation is performed, it is necessary to insert a second signal unit after the acquired first signal unit to realize an operation of inserting a total of Y second signal units, so that the transmission rate of the second service signal obtained after the insertion is performed. Meet the rate requirement.
  • the number of the first signal units that are acquired each time may be E or E+1, and specifically, E or E+1 are obtained each time, and may be determined by dividing the remainder of X by Y and Y. Specifically, it may be determined according to the remainder of X divided by Y, Y, and the number of acquisitions of the first signal unit each time in the unit time, to determine whether the number of the first signal unit is E or E+1 per unit time.
  • the first signal can be obtained every unit time according to the remainder of the factor divided by Y, Y, and the number of acquisitions of the first signal unit each time per unit time.
  • the number of units is E or E+1:
  • the first signal unit can be acquired 15 times per unit time, and 6 or 7 first signal units are acquired each time, and 6 or 7 are acquired each time.
  • a second signal unit is inserted after the acquired first signal unit. Specifically, 6 or 7 first signal units are acquired each time, and can be determined according to the above formula (24).
  • the first 15 signal units are acquired for the 15th time, and one second signal unit is inserted.
  • the second signal unit that needs to be inserted can be more evenly inserted into the first signal unit when X is greater than or equal to Y, and the second signal unit can be inserted.
  • the resulting second service signal transmission rate then meets the rate requirement.
  • the smaller X when X is smaller than Y, the smaller X may be determined as the number of times the first signal unit is acquired in a unit time, that is, the first signal unit is acquired Y times per unit time, and each time is acquired. A first signal unit.
  • the second signal unit needs to be inserted after the acquired first signal unit, and a total of Y second signal units need to be inserted to meet the rate requirement.
  • the corresponding second signal unit needs to be inserted after each of the acquired first signal units.
  • the F or F+1 second signals can be inserted each time.
  • the unit, specifically inserting F or F+1 each time can be determined by dividing Y by the remainder of X and X.
  • the second signal unit inserted after acquiring one first signal unit per unit time may be determined according to the remainder of Y divided by X, Y, and the number of times of acquiring the first signal unit each time per unit time. The number is F or F+1.
  • a first time is obtained each time per unit time by the following formula (25).
  • the number of second signal units inserted after the signal unit is F or F+1:
  • L(j) represents the number of second signal units inserted after acquiring the first signal unit for the jth time in unit time;
  • the first signal unit can be acquired 15 times per unit time, and one first signal unit is acquired each time, and one first signal unit is acquired each time. It is necessary to insert 6 or 7 second signal units after a first signal unit is acquired. Specifically, 6 or 7 second signal units are inserted at a time, and can be determined according to the above formula (25).
  • the first signal unit is acquired for the 15th time, and the 7 second signal units are inserted.
  • the second signal unit to be inserted can be more evenly inserted into the first signal unit when X is smaller than Y, and the second signal unit can be inserted after the second signal unit is inserted.
  • the transmission rate of the second service signal conforms to the rate requirement.
  • Step 1103 The first network device multiplexes the N second service signals into one third service signal, and sends the third service signal to the second network device.
  • multiplexing the N second service signals into one third service signal includes: sequentially extracting signal units from the N second service signals according to a ratio between transmission rates of the N second service signals.
  • the signal units sequentially extracted form a third service signal.
  • the signal unit can be a bit code block.
  • the ratio between the transmission rates of the 11 second service signals corresponding to Client1' to Client11' is 1:1:...:18, so the 11 channels can be followed.
  • a ratio between transmission rates of the second service signal one bit code block is extracted from each of the first 10 channels of the second service signal, and 18 bit code blocks are extracted from the second channel second service signal, and then The bit code blocks sequentially extracted form a third service signal.
  • the N second service signal may be multiplexed into a third service signal in a communication pipeline supported by the first network device, and the third service signal is sent to the second network device by using the communication pipeline.
  • the bandwidth of the communication pipeline is greater than or equal to the sum of the transmission rates of the N second service signals, that is, the N second service signals can be multiplexed and transmitted through a high-speed pipeline, thereby improving the signal of the communication pipeline. Carrying efficiency saves transmission resources.
  • the N-way second service signal may be multiplexed into a third service signal, and the third service signal may be sent to the second network device, where the N-channel second service signal respectively occupies the communication A time slot in the pipeline corresponding to a ratio between the transmission rates of the N-way second service signals.
  • the ratio between the transmission rates of the 11 second service signals corresponding to Client1' to Client11' is 1:1:...:18, then the 11th channel is second.
  • the service signals can respectively occupy 1:1:...:18 time slots of the communication pipe.
  • a FlexE pipe carrying a service signal is Z 5 Gbps/25 Gbps time slots (Z ⁇ 1), that is, a bandwidth of a FlexE pipe carrying a service signal is Z ⁇ 5 Gbps or Z ⁇ 25 Gbps.
  • the minimum bandwidth of the FlexE pipeline is 5 Gbps
  • the 5 Gbps FlexE pipeline can transmit service signals with a transmission rate less than or equal to 5 Gbps.
  • the signal carrying efficiency of the communication pipeline is 20%, the bearer efficiency is low, and transmission resources are wasted.
  • the multi-path service signal can be uniformly multiplexed into a high-speed FlexE pipeline multiplexing transmission for the service signal with a small multi-path transmission rate, thereby improving the signal carrying efficiency of the FlexE pipeline and saving. Transmission resources.
  • the coding type of the N second service signal may be encoded by M/N Bit Block
  • the coding type of the third service signal is not limited to the coding type of the N second service signal.
  • the bit-based frame structure can be flexibly combined by one or more non-payload areas and one or more payload areas, and the respective rows (L) and columns (C) can be flexibly set, and the transmission period can also be flexibly set.
  • the bit-based frame structure can be specifically as shown in FIG.
  • the coding type of the third service signal formed by the multiplexing of the client1' to the client3' may be a bit-based frame structure, and the bit-based frame structure may be configured with one non-payload area.
  • one, nine, and ten 66-bit code blocks can be extracted from Client1' to Client3', respectively, to the payload area of the bit-based frame structure shown in Fig. 15 .
  • the transmission period T of the bit-based frame structure may be:
  • the reference rate changes. For example, when the reference rate is specified by the user through the control unit, when the user modifies the reference rate again, the service transmission distance described in the present application may be restarted;
  • Step 1104 The second network device receives the third service signal sent by the first network device.
  • Step 1105 The second network device demultiplexes the third service signal into the N second service signal according to the multiplexing rule of the N second service signal.
  • the first network device sequentially extracts signal units from the N second service signals according to the ratio between the transmission rates of the N second service signals, and sequentially extracts the signal units to form a third service signal.
  • the second network device may sequentially extract signal units from the third service signal according to a ratio between transmission rates of the N second service signals, and combine the extracted signal units separately to obtain the N. Road second business signal.
  • Step 1106 The second network device deletes the padding signal from the N channel second service signals obtained by demultiplexing, to obtain the N channel first service signal.
  • the padding signal may be deleted from the second service signal C, and the first service corresponding to the second service signal C is obtained. signal.
  • the second service signal C when the second service signal C is obtained by inserting the offset adaptation signal as a padding signal into the first service signal corresponding to the second service signal C, the second service signal C may be deleted from the second service signal C. Deviating the adaptation signal to obtain a first service signal corresponding to the second service signal C.
  • the second service signal C is obtained by inserting the deviation adaptation signal and the maintenance management signal as a filling signal into the first service signal corresponding to the second service signal C, and the maintenance management signal is in the second
  • the first service signal corresponding to the service signal C is proportionally inserted
  • the deviation adaptation signal is deleted from the second service signal C
  • the maintenance management signal is inserted according to the first service signal corresponding to the second service signal C.
  • the ratio is obtained by extracting the maintenance management signal from the second service signal C after the deviation adaptation signal is deleted; determining the second service signal C after deleting the deviation adaptation signal and extracting the maintenance management signal as the second service The first service signal corresponding to the signal C.
  • the first corresponding to the second service signal C may be further received according to the maintenance management information carried in the maintenance management signal.
  • Business signals are maintained and managed. For example, when the clock feature information is carried in the maintenance management signal, the clock of the first service signal corresponding to the second service signal C may be recovered according to the clock feature information.
  • the N signal can be obtained by inserting a padding signal into the N first service signal.
  • the N service second signal corresponding to the first service signal is multiplexed into a first service signal and sent to the second network device.
  • the transmission rate of the N-way second service signal is an integer multiple of the reference rate, that is, the transmission rate of the N-way second service signal has a significant integer ratio characteristic.
  • the multiplex transmission is performed to solve the multiplexing problem of service signals with different transmission rates.
  • the N service first signal is multiplexed and transmitted, compared to the separate transmission modes in the related art.
  • the transmission efficiency of the service signal is improved, and the transmission resource is saved.
  • FIG. 16 is a schematic structural diagram of a service signal transmission apparatus provided by the present application.
  • the apparatus may be the foregoing first network equipment. Referring to FIG. 16, the apparatus includes:
  • the obtaining module 1601 is configured to execute step 1101 in the foregoing embodiment of FIG. 11;
  • Inserting module 1602 for performing step 1102 in the above embodiment of FIG. 11;
  • the multiplexing module 1603 is configured to perform step 1103 in the foregoing embodiment of FIG.
  • the inserting module 1602 includes:
  • a first insertion unit configured to insert a fill signal into the first service signal A according to a transmission rate of the first service signal A and the reference rate for a first service signal A of the N first service signals And obtaining a second service signal corresponding to the first service signal A.
  • the first insertion unit comprises:
  • a first determining subunit configured to determine X according to a transmission rate of the first service signal A, where X refers to the number of first signal units acquired in a unit time, and the first signal unit refers to the first service signal A Signal unit
  • a second determining subunit configured to determine Y according to a transmission rate of the first service signal A and the reference rate, where Y is a second signal unit inserted in a group of first signal units that need to be acquired in a unit time Quantity, the second signal unit refers to a signal unit of the fill signal;
  • the insertion subunit is specifically configured to:
  • the insertion subunit is specifically configured to:
  • the ratio between the X and the Y is rounded up to obtain R, and each time a group of first signal units is acquired in the current unit time, each time R is obtained.
  • a second signal unit is inserted after the acquired R first signal units until the last S first signal units in the current unit time are acquired, and the last S units are acquired. Inserting a second signal unit after a signal unit, the S being less than or equal to the R;
  • the ratio between the Y and the X is rounded up to obtain P, and a first signal is acquired each time a group of first signal units is acquired in the current unit time.
  • the insertion subunit is specifically configured to:
  • the ratio between the X and the Y is rounded down to obtain E, and the X is divided by the remainder of the Y and the Y to determine the acquisition time per unit time. Whether the number of a signal unit is the E or the E+1, according to the determined number, acquiring the first signal unit Y times in the current unit time, and inserting a second signal after each acquired first signal unit unit;
  • the ratio between the Y and the X is rounded down to obtain F, and according to the remainder of the X divided by the X and the X, it is determined that each time a unit time is acquired.
  • the number of the second signal units inserted after the signal unit is the F or the F+1, and the first signal unit is acquired X times in the current unit time, and according to the determined number, after each acquired signal unit Insert the second signal unit.
  • the inserting module further includes:
  • the first determining unit is configured to determine the reference rate according to a transmission rate or a configuration rate of the N first service signal.
  • the first determining unit is specifically configured to:
  • the inserting module comprises:
  • a second determining unit configured to determine, according to the transmission rate of the first service signal A and the reference rate, a transmission rate of the second service signal corresponding to the first service signal A;
  • a second insertion unit configured to insert a padding signal into the first service signal A according to a transmission rate of the first service signal A and a transmission rate of the second service signal corresponding to the first service signal A, to obtain a second service signal corresponding to the first service signal A.
  • the second determining unit is configured to:
  • the first product Determining, according to the first product, a transmission rate of the second service signal corresponding to the first service signal A, where the first product is a product of a relative multiple of the first service signal A and the reference rate, the first service signal A
  • the relative multiple is obtained by rounding up the ratio of the transmission rate of the first service signal A to the reference rate.
  • the second determining unit is configured to:
  • the minimum value of the lower limit of the allowable rate of the first service signal of the N channel and the upper limit of the allowable rate of the third service signal are determined.
  • the second determining unit is configured to:
  • the sum of the first product and the second product is determined as the transmission rate of the second service signal corresponding to the first service signal A, and the second product is the product of the first rate adjustment upper limit and the first product.
  • the device further includes:
  • a receiving module configured to receive an N-way fourth service signal, where the fourth service signal of the N-channel has a fourth service signal with a different coding type and a target coding type, where the target coding type refers to an encoding of the N-channel first service signal Types of;
  • a conversion module configured to encode and convert the fourth service signal of the Nth fourth service signal and the fourth service signal different from the target coding type according to the target coding type;
  • a determining module configured to determine, by the code-converted fourth service signal and the fourth service signal of the same coding type as the N-th first service signal.
  • the N signal can be obtained by inserting a padding signal into the N first service signal.
  • the N service second signal corresponding to the first service signal is multiplexed into a first service signal and sent to the second network device.
  • the transmission rate of the N-way second service signal is an integer multiple of the reference rate, that is, the transmission rate of the N-way second service signal has a significant integer ratio characteristic.
  • the multiplex transmission is performed to solve the multiplexing problem of service signals with different transmission rates.
  • the N service first signal is multiplexed and transmitted, compared to the separate transmission modes in the related art.
  • the transmission efficiency of the service signal is improved, and the transmission resource is saved.
  • FIG. 17 is a schematic structural diagram of another service signal transmission apparatus provided by the present application.
  • the apparatus may be the foregoing second network device. Referring to FIG. 17, the apparatus includes:
  • the receiving module 1701 is configured to receive a third service signal sent by the first network device, where the third service signal is formed by multiplexing the N second service signals, where the N second service signal is passed through the N road Inserting a padding signal into the N-channel first service signal corresponding to the two service signals, the transmission rate of the N-channel second service signal is an integer multiple of the reference rate, and the coding type of the N-channel first service signal is the same, and There are at least two first service signals with different transmission rates in the N first service signal, where N is an integer greater than or equal to 2;
  • the demultiplexing module 1702 is configured to demultiplex the third service signal into the N second service signal according to the multiplexing rule of the N second service signal;
  • the deleting module 1703 is configured to delete the padding signal from the N channel second service signals obtained by demultiplexing, to obtain the N channel first service signal.
  • the deleting module 1703 includes:
  • a first deleting unit configured to: for the second service signal C of the N second service signals obtained by the demultiplexing, when the second service signal C is inserted by using the deviation adaptation signal and the maintenance management signal as the filling signal Obtaining from the first service signal corresponding to the second service signal C, and the maintenance management signal is proportionally inserted in the first service signal corresponding to the second service signal C, from the second service signal C Deleting the deviation adaptation signal;
  • a second deleting unit configured to extract the maintenance management signal from the second service signal C after the deviation adaptation signal is deleted according to a ratio of inserting the maintenance management signal in the first service signal corresponding to the second service signal C ;
  • a determining unit configured to determine the second service signal C after deleting the deviation adaptation signal and extracting the maintenance management signal as the first service signal corresponding to the second service signal C.
  • the third service signal is demultiplexed according to the multiplexing rule of the N first service signal, and the padding signal in the demultiplexed service signal is deleted, and the multiplex transmission can be successfully performed.
  • the N service first signal is recovered in the third service signal, and the problem of multiplexing reception is solved, thereby improving the transmission efficiency of the service signal and saving transmission resources.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be wired from a website site, computer, server or data center (for example: coaxial cable, fiber, Digital Subscriber Line (DSL)) or wireless (eg infrared, wireless, microwave, etc.) to another website, computer, server or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a Digital Versatile Disc (DVD)), or a semiconductor medium (for example, a Solid State Disk (SSD)). Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a Digital Versatile Disc (DVD)
  • DVD Digital Versatile Disc
  • SSD Solid State Disk
  • the present application also provides a computer storage medium for storing computer software instructions for implementing the service transmission method described above with reference to FIG. 11, which includes a program designed to execute the above method embodiments. By executing the stored program, it is possible to obtain the business data required to develop the application.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种业务信号传输方法及装置,属于通信技术领域。该方法包括:第一网络设备获取N路第一业务信号,该N路第一业务信号的编码类型相同,且该N路第一业务信号中存在传输速率不同的至少两路第一业务信号,N≥2;通过在该N路第一业务信号中插入填充信号,得到N路第二业务信号,该N路第二业务信号的传输速率均为参考速率的整数倍;将该N路第二业务信号复用成一路第三业务信号发送给第二网络设备。本申请通过在N路第一业务信号中插入填充信号,得到传输速率具有明显的整比特征的N路第二业务信号,解决了传输速率不同的业务信号的复用问题,实现了将N路第一业务信号复用传输,提高了业务信号的传输效率,节省了传输资源。

Description

业务信号传输方法及装置
本申请要求于2018年5月7日提交的申请号为201810427846.1、发明名称为“业务信号传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种业务信号传输方法及装置。
背景技术
在目前的通信网络中,通常需要在端到端之间传输业务信号。例如,通信网络的组网结构通常包括多个网络设备,在具体业务场景中,通常需要在第一网络设备和第二网络设备之间传输业务信号,其中,第一网络设备和第二网络可以为该多个网络设备中的任意两个网络设备,且第一网络设备和第二网络设备之间还可以包括M个第三网络设备(M≥0)。
相关技术中,对于编码类型相同的多路业务信号,第一网络设备需要将该多路业务信号分别发送给第二网络设备。例如,目前的通信网络中通常采用固定的通信管道承载业务信号,第一网络设备可以将该多路业务信号通过对应的多个通信管道分别发送给第二网络设备。其中,通信管道是指用于承载业务信号的端到端传输资源,具体可以为光网络(Optical Transport Network)的光通道数据单元/光通道净荷单元(Optical Channel Data Unit/Optical Channel Payload Unit,ODU/OPU)、时隙或帧结构等。实际应用中,第一网络设备可以支持多种通信管道,这多种通信管道用于传输相同编码类型的业务信号且具有不同的带宽,每种通信管道的带宽是指该通信管道能够承载业务信号的最大传输速率。而且,第一网络设备支持的通信管道与业务信号具有一一对应关系,即每种通信管道每次仅能传输一种业务信号,且仅能传输传输速率小于或等于该通信管道的带宽的业务信号,因此多路业务信号也就需要通过对应的多个通信管道分别传输。
由于多路业务信号需要分别传输,因此传输效率较低,浪费了传输资源。例如,当通过多个通信管道分别传输多路业务信号时,对于其中的一个通信管道,如果通过该通信管道传输的业务信号的传输速率远小于该通信管道的带宽,则该通信管道的信号承载效率也就较低,极大地浪费了管道资源。
发明内容
为了解决现有技术中存在的传输效率较低,浪费了传输资源问题,本申请提供了一种业务传输方法及装置。所述技术方案如下:
第一方面,提供了一种业务传输方法,所述方法包括:
获取N路第一业务信号,所述N路第一业务信号的编码类型相同,且所述N路第一业务信号中存在传输速率不同的至少两路第一业务信号,所述N为大于或等于2的整数;
通过在所述N路第一业务信号中插入填充信号,得到与所述N路第一业务信号一一对应的N路第二业务信号,所述N路第二业务信号的传输速率均为参考速率的整数倍;
将所述N路第二业务信号复用成一路第三业务信号,并将所述第三业务信号发送给第二 网络设备。
也即是,对于编码类型相同且其中存在传输速率不同的至少两路第一业务信号的N路第一业务信号,可以通过在该N路第一业务信号中插入填充信号,得到与该N路第一业务信号一一对应的N路第二业务信号,然后将该N路第二业务信号复用成一路第三业务信号发送给第二网络设备。
其中,该N路第二业务信号的传输速率均为参考速率的整数倍,即该N路第二业务信号的传输速率具有明显的整比特征。通过在该N路第一业务信号中插入填充信号,得到对应传输速率具有明显的整比特征的N路第二业务信号,可以便于后续能够根据具有明显的整比特征的N路第二业务信号进行复用传输,解决了传输速率不同的业务信号的复用问题。通过将对N路第一业务信号填充得到的N路第二业务信号复用成一路第三业务信号,实现了将N路第一业务信号复用传输,相较于相关技术中的分别传输方式,提高了业务信号的传输效率,节省了传输资源。
可选地,所述通过在所述N路第一业务信号中插入填充信号,得到与所述N路第一业务信号一一对应的N路第二业务信号,包括:
对于所述N路第一业务信号中的一路第一业务信号A,根据所述第一业务信号A的传输速率和所述参考速率,在所述第一业务信号A中插入填充信号,以得到与所述第一业务信号A对应的第二业务信号。
通过根据第一业务信号A的传输速率和参考速率,在第一业务信号A中插入填充信号,可以保证得到的与第一业务信号A对应的第二业务信号的传输速率为参考速率的整数倍。
可选地,所述根据所述第一业务信号A的传输速率和所述参考速率,在所述第一业务信号A中插入填充信号,以得到与所述第一业务信号A对应的第二业务信号,包括:
根据所述第一业务信号A的传输速率确定X,所述X是指单位时间内获取的第一信号单元的数量,所述第一信号单元是指所述第一业务信号A的信号单元;
根据所述第一业务信号A的传输速率和所述参考速率确定Y,所述Y是指需要在单位时间内获取的一组第一信号单元中插入的第二信号单元的数量,所述第二信号单元是指所述填充信号的信号单元;
在每隔单位时间获取一组第一信号单元的过程中,在每个单位时间内获取的X个第一信号单元中插入Y个第二信号单元。
可选地,所述在每个单位时间内获取的X个第一信号单元中插入Y个第二信号单元,包括:
在当前单位时间内获取一组第一信号单元的过程中,当获取到X个第一信号单元时,在获取到的X个第一信号单元之后插入Y个第二信号单元。
本发明实施例中,在每个单位时间内只需执行一次获取第一信号单元的操作,以及插入第二信号单元的操作,如此可以减少获取信号和插入信号的次数,操作简便,效率较高。
可选地,所述在每个单位时间内获取的X个第一信号单元中插入Y个第二信号单元,包括:
当所述X大于或等于所述Y时,对所述X与所述Y之间的比值进行向上取整,得到R,在当前单位时间内获取一组第一信号单元的过程中,每当获取到R个第一信号单元时,在获取到的R个第一信号单元之后插入一个第二信号单元,直至获取到所述当前单位时间内的最 后S个第一信号单元时,在获取到的最后S个第一信号单元之后插入一个第二信号单元,所述S小于或等于所述R;
当所述X小于所述Y时,对所述Y与所述X之间的比值进行向上取整,得到P,在当前单位时间内获取一组第一信号单元的过程中,每当获取到一个第一信号单元时,在获取到的一个第一信号单元之后插入P个第二信号单元,直至获取到所述当前单位时间内的最后一个第一信号单元时,在获取到的最后一个第一信号单元之后插入Q个第二信号单元,所述Q为所述Y与在所述当前单位时间内已插入的第二信号单元的数量之间的差值。
本发明实施例中,在单位时间内除最后一次的插入操作外,每次获取的第一信号单元和插入的第二信号单元均相同,提高了插入填充信号的均匀性。
可选地,所述在每个单位时间内获取的X个第一信号单元中插入Y个第二信号单元,包括:
当所述X大于或等于所述Y时,对所述X与所述Y之间的比值进行向下取整,得到E,根据所述X除以所述Y的余数和所述Y,确定单位时间内每次获取第一信号单元的个数是所述E还是所述E+1,按照确定的个数,在当前单位时间内获取Y次第一信号单元,并在每次获取的第一信号单元之后插入一个第二信号单元;
当所述X小于所述Y时,对所述Y与所述X之间的比值进行向下取整,得到F,根据所述Y除以所述X的余数和所述X,确定单位时间内每次获取一个第一信号单元之后插入的第二信号单元的个数是所述F还是所述F+1,在当前单位时间内获取X次第一信号单元,并按照确定的个数,在每次获取的一个信号单元之后插入第二信号单元。
本发明实施例中,使用了差分方式进行均匀性插入,进一步提高了在第一业务信号中插入填充信号的均匀性。
可选地,所述根据所述第一业务信号A的传输速率和所述参考速率,在所述第一业务信号A中插入填充信号之前,还包括:
根据所述N路第一业务信号的传输速率或配置速率,确定所述参考速率。
可选地,所述根据所述N路第一业务信号的传输速率,确定所述参考速率,包括:
将目标第一业务信号的传输速率的1/T确定为所述参考速率,所述目标第一业务信号为所述N路第一业务信号中的一路第一业务信号,所述T为正整数;
或者,
按照在所述N路第一业务信号中插入的填充信号的总比特数最少的策略,从所述N路第一业务信号中选择出一路业务信号,并将选择出的一路业务信号的传输速率的1/T作为所述参考速率,所述T为正整数。
也即是,可以直接将N路第一业务信号中的任一路第一业务信号的传输速率的1/T作为参考速率,也可以按照在N路第一业务信号中插入的填充信号的总比特数最少的策略,从N路第一业务信号中选择一路第一业务信号的传输速率的1/T作为参考速率。
本发明实施例中,通过提供多种选择参考速率的方式,提高了设置参考速率的灵活性,且通过按照在该N路第一业务信号中插入的填充信号的总比特数最少的策略确定参考速率,可以节省插入填充信号的比特,提高填充信号的资源利用率,同时还可以减少插入填充信号的操作频率,提高插入效率。
可选地,所述按照在所述N路第一业务信号中插入的填充信号的总比特数最少的策略, 从所述N路第一业务信号中选择出一路业务信号,包括:
对于所述N路第一业务信号中的一路第一业务信号B,确定假设将所述第一业务信号B的传输速率的1/T作为所述参考速率并保证所述N路第二业务信号的传输速率均为所述参考速率的整数倍时,在预设时间内需要在所述N路第一业务信号中插入的填充信号的总比特数,并将确定的总比特数作为所述第一业务信号B的填充数;
从所述N路第一业务信号的填充数中确定填充数最小的一路第一业务信号,并将所述填充数最小的一路第一业务信号作为所述选择出的一路业务信号。
可选地,所述根据所述第一业务信号A的传输速率和所述参考速率,在所述第一业务信号A中插入填充信号,以得到与所述第一业务信号A对应的第二业务信号,包括:
根据所述第一业务信号A的传输速率和所述参考速率,确定与所述第一业务信号A对应的第二业务信号的传输速率;
根据所述第一业务信号A的传输速率,以及与所述第一业务信号A对应的第二业务信号的传输速率,在所述第一业务信号A中插入填充信号,以得到与所述第一业务信号A对应的第二业务信号。
本发明实施例中,通过预先根据第一业务信号A的传输速率和参考速率,确定与第一业务信号A对应的第二业务信号的传输速率,然后根据第一业务信号A的传输速率和对应的第二业务信号的传输速率,在第一业务信号A中插入填充信号,可以明确地获知输入信号传输速率以及输出信号的传输速率,进而可以根据输入信号的传输速率以及输出信号的传输速率,对输入信号即第一业务信号A进行准确地插入,提高了插入填充信号的准确性。
可选地,所述根据所述第一业务信号A的传输速率和所述参考速率,确定与所述第一业务信号A对应的第二业务信号的传输速率,包括:
根据第一乘积确定与所述第一业务信号A对应的第二业务信号的传输速率,所述第一乘积是指所述第一业务信号A的相对倍数和所述参考速率的乘积,所述第一业务信号A的相对倍数是通过对所述第一业务信号A的传输速率和所述参考速率的比值进行向上取整得到。
可选地,所述根据第一乘积确定与所述第一业务信号A对应的第二业务信号的传输速率,包括:
将所述第一乘积确定为与所述第一业务信号A对应的第二业务信号的传输速率;
或者,
获取第一速率调整上限,根据所述第一速率调整上限对所述第一乘积进行调整,得到与所述第一业务信号A对应的第二业务信号的传输速率,所述第一速率调整上限是预先根据所述N路第一业务信号的容许速率浮动下限的最小值和所述第三业务信号的容许速率浮动上限确定得到。
本发明实施例中,通过将第一乘积确定为与第一业务信号A对应的第二业务信号的传输速率,处理方式简单高效,可行性较高。另外,通过根据第一业务信号的速率容限和第三业务信号的速率容限,对第二业务信号的传输速率进一步进行精调,可以容忍第一业务信号和第三业务信号在各自的速率容限内变化,提高了确定第二业务信号的传输速率精确度,进一步提高了本申请方案的适用范围。
可选地,所述根据所述第一速率调整上限对所述第一乘积进行调整,得到与所述第一业务信号A对应的第二业务信号的传输速率,包括:
将所述第一乘积和第二乘积之和确定为与所述第一业务信号A对应的第二业务信号的传输速率,所述第二乘积是指所述第一速率调整上限和所述第一乘积的乘积。
可选地,所述获取N路第一业务信号之前,还包括:
接收N路第四业务信号,所述N路第四业务信号中存在编码类型与目标编码类型不同的第四业务信号,所述目标编码类型是指所述N路第一业务信号的编码类型;
将所述N路第四业务信号中编码类型与所述目标编码类型不同的第四业务信号按照所述目标编码类型进行编码转换;
将编码转换后的第四业务信号和编码类型与所述目标编码类型相同的第四业务信号,确定为所述N路第一业务信号。
可选地,所述将所述N路第二业务信号复用成一路第三业务信号,包括:
按照所述N路第二业务信号的传输速率之间的比例,依次从所述N路第二业务信号中提取信号单元,将依次提取的信号单元形成一路第三业务信号。
可选地,所述提取的信号单元为比特码块。
可选地,所述根据所述第一业务信号A的传输速率和所述参考速率确定Y,包括:
根据与所述第一业务信号A对应的第二业务信号的传输速率和所述第一业务信号A的传输速率之间的偏差速率,确定所述Y,所述与所述第一业务信号A对应的第二业务信号的传输速率是根据所述第一业务信号A的传输速率和所述参考速率确定得到。
本发明实施例中,可以准确计算第一业务信号A和对应的第二业务信号之间的偏差速率,然后根据偏差速率在第一业务信号中插入填充信号对第一业务信号的传输速率进行适配,得到满足速率要求的第二业务信号。
可选地,所述根据所述第一业务信号A的传输速率,以及与所述第一业务信号A对应的第二业务信号的传输速率,在所述第一业务信号A中插入填充信号,以得到与所述第一业务信号A对应的第二业务信号,包括:
根据所述第一业务信号A的传输速率确定X,所述X是指单位时间内获取的第一信号单元的数量,所述第一信号单元是指所述第一业务信号A的信号单元;
根据与所述第一业务信号A对应的第二业务信号的传输速率和所述第一业务信号A的传输速率之间的偏差速率,确定所述Y,所述Y是指需要在单位时间内获取的一组第一信号单元中插入的第二信号单元的数量,所述第二信号单元是指所述填充信号的信号单元;
在每隔单位时间获取一组第一信号单元的过程中,在每个单位时间内获取的X个第一信号单元中插入Y个第二信号单元。
可选地,所述根据所述第一业务信号A的传输速率和所述参考速率,确定与所述第一业务信号A对应的第二业务信号的传输速率,包括:
获取第二速率调整上限,所述第二速率调整上限是预先根据需要在所述N路第一业务信号中分别插入维护管理信号的比例中的最大值确定得到,或者是预先根据需要在所述N路第一业务信号中分别插入维护管理信号的比例中的最大值、所述N路第一业务信号的容许速率浮动下限的最小值和所述第三业务信号的容许速率浮动上限确定得到;
根据所述第二速率调整上限,对第一乘积进行调整,得到与所述第一业务信号A对应的第二业务信号的传输速率,所述第一乘积是指所述第一业务信号A的相对倍数和所述参考速率的乘积,所述第一业务信号A的相对倍数是通过对所述第一业务信号A的传输速率和所述 参考速率的比值进行向上取整得到;
所述根据所述第一业务信号A的传输速率,以及与所述第一业务信号A对应的第二业务信号的传输速率,在所述第一业务信号A中插入填充信号,包括:
根据需要在所述第一业务信号A中插入维护管理信号的比例、所述第一业务信号A的传输速率和与所述第一业务信号A对应的第二业务信号的传输速率,将维护管理信号和偏差适配信号作为填充信号插入到所述第一业务信号A中。
可选地,根据需要在所述第一业务信号A中插入维护管理信号的比例、所述第一业务信号A的传输速率和与所述第一业务信号A对应的第二业务信号的传输速率,将维护管理信号和偏差适配信号作为填充信号插入到所述第一业务信号A中,包括:
根据需要在所述第一业务信号A中插入维护管理信号的比例,在所述第一业务信号A中插入维护管理信号;
根据所述第一业务信号A的传输速率和在所述第一业务信号A中插入维护管理信号的比例,确定插入维护管理信号后的所述第一业务信号A的传输速率;
根据插入维护管理信号后的所述第一业务信号A的传输速率以及与所述第一业务信号A对应的第二业务信号的传输速率,在插入维护管理信号后的所述第一业务信号A中插入偏差适配信号。
本发明实施例中,通过在第一业务信号中插入维护管理信号,可以便于对复用传输过程中业务信号的维护和管理,而且,通过结合插入维护管理信号的比例,对第二业务信号的传输速率进行精调,能够容忍插入维护管理信号引起的速率变化。进一步地,通过结合第一业务信号和三业务信号的速率容限,以及插入维护管理信号的比例,对第二业务信号的传输速率进行精调,可以进一步容忍第一业务信号和第三业务信号在各自速率容限范围内的变化,以及插入维护管理信号引起的速率变化。
第二方面,提供了一种业务信号传输方法,应用于第二网络设备中,所述方法包括:
接收第一网络设备发送的第三业务信号,所述第三业务信号是由N路第二业务信号复用形成,所述N路第二业务信号是通过在与所述N路第二业务信号一一对应的N路第一业务信号中插入填充信号得到,所述N路第二业务信号的传输速率均为参考速率的整数倍,所述N路第一业务信号的编码类型相同,且所述N路第一业务信号中存在传输速率不同的至少两路第一业务信号,所述N为大于或等于2的整数;
根据所述N路第二业务信号的复用规则,将所述第三业务信号解复用为所述N路第二业务信号;
从解复用得到的N路第二业务信号中删除填充信号,得到所述N路第一业务信号。
可选地,所述从解复用得到的N路第二业务信号中删除填充信号,得到所述N路第一业务信号,包括:
对于解复用得到的N路第二业务信号中的一路第二业务信号C,当所述第二业务信号C是通过将偏差适配信号和维护管理信号作为填充信号插入到与所述第二业务信号C对应的第一业务信号中得到,且所述维护管理信号是在与所述第二业务信号C对应的第一业务信号中按比例插入时,从所述第二业务信号C中删除所述偏差适配信号;
根据在与所述第二业务信号C对应的第一业务信号中插入维护管理信号的比例,从删除 偏差适配信号后的所述第二业务信号C中提取所述维护管理信号;
将删除偏差适配信号和提取维护管理信号后的所述第二业务信号C确定为与所述第二业务信号C对应的第一业务信号。
本发明实施例中,通过按照N路第一业务信号的复用规则,对第三业务信号进行解复用,并删除解复用得到的业务信号中的填充信号,可以成功地从复用传输的第三业务信号中恢复出N路第一业务信号,解决了复用接收的问题,从而提高了业务信号的传输效率,节省了传输资源。
第三方面,提供了一种业务信号传输装置,所述业务信号传输装置具有实现上述第一方面中业务信号传输方法行为的功能。所述业务信号传输装置包括至少一个模块,该至少一个模块用于实现上述第一方面所提供的业务信号传输方法。
第四方面,提供了一种业务信号传输装置,所述业务信号传输装置具有实现上述第一方面中业务信号传输方法行为的功能。所述业务信号传输装置包括至少一个模块,该至少一个模块用于实现上述第二方面所提供的业务信号传输方法。
第五方面,提供了一种业务信号传输装置,所述业务信号传输装置的结构中包括处理器和存储器,所述存储器用于存储支持业务信号传输装置执行上述第一方面所提供的业务信号传输方法的程序,以及存储用于实现上述第一方面所提供的业务信号传输方法所涉及的数据。所述处理器被配置为用于执行所述存储器中存储的程序。所述存储设备的操作装置还可以包括通信总线,该通信总线用于该处理器与存储器之间建立连接。
第六方面,提供了一种业务信号传输装置,所述业务信号传输装置的结构中包括处理器和存储器,所述存储器用于存储支持业务信号传输装置执行上述第二方面所提供的业务信号传输方法的程序,以及存储用于实现上述第二方面所提供的业务信号传输方法所涉及的数据。所述处理器被配置为用于执行所述存储器中存储的程序。所述存储设备的操作装置还可以包括通信总线,该通信总线用于该处理器与存储器之间建立连接。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面所述的业务信号传输方法。
第八方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的业务信号传输方法。
上述第三方面、第五方面和第七方面所获得的技术效果与第一方面中对应的技术手段获得的技术效果近似,上述第四方面、第六方面和第八方面所获得的技术效果与第二方面中对应的技术手段获得的技术效果近似,在这里不再赘述。
本申请提供的技术方案带来的有益效果是:
本申请中,对于编码类型相同且其中存在传输速率不同的N路(至少两路)第一业务信 号,可以通过在该N路第一业务信号中插入填充信号,得到与该N路第一业务信号一一对应的N路第二业务信号,然后将该N路第二业务信号复用成一路第三业务信号发送给第二网络设备。其中,该N路第二业务信号的传输速率均为参考速率的整数倍,即该N路第二业务信号的传输速率具有明显的整比特征。通过在该N路第一业务信号中插入填充信号,得到对应传输速率具有明显的整比特征的N路第二业务信号,便于后续能够对具有明显的整比特征的N路第二业务信号进行复用传输,解决了传输速率不同的多路业务信号的复用问题。通过将对N路第一业务信号填充得到的N路第二业务信号复用成一路第三业务信号,实现了将N路第一业务信号复用传输,相较于相关技术中的分别传输方式,提高了业务信号的传输效率,节省了传输资源。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是是本申请提供的一种M/N Bit Block的示意图;
图2是是本申请提供的另一种M/N Bit Block的示意图;
图3是是本申请提供的又一种M/N Bit Block的示意图;
图4是本申请提供的一种业务信号传输系统的示意图;
图5是本申请提供的一种第一网络设备10的结构示意图;
图6是本申请提供的一种第二网络设备20的结构示意图;
图7是本申请提供的一种X-E组网中的PE的结构示意图;
图8是本申请提供的一种X-E组网中的P的结构示意图;
图9是本申请提供的一种采用X-E技术组建网络并传输业务信号的示意图;
图10是本申请提供的一种网络设备的结构示意图;
图11是本申请提供的一种业务传输方法的流程图;
图12是本申请提供的一种IDLE码块的码块结构示意图;
图13是本申请提供的一种维护管理信号的码块结构示意图;
图14是本申请提供的一种基于比特的帧结构的示意图;
图15是本申请提供的另一种基于比特的帧结构的示意图;
图16是本申请提供的一种业务信号传输装置的结构示意图;
图17是本申请提供的另一种业务信号传输装置的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在对本申请进行详细说明之前,先对本申请涉及的名词进行介绍。
以太网(Ethernet)
Ethernet是一种基带局域网规范,是当今现有局域网采用的最通用的通信协议标准。
灵活以太网(Flexible Ethernet,FlexE)
FlexE是实现业务隔离承载和网络分片的一种接口技术,近两年发展迅速,被各大标准组织广泛接纳。
泛在以太网(X-Ethernet,X-E)
X-E是一种基于Ethernet物理层的比特码块(Bit Block)交换的技术体系,具备确定性超低时延的特征,X-E所采用的编码类型可以为64B/66B编码类型等。
M/N Bit Block编码
M/N Bit Block编码是指M个净荷Bit、N个总Bit的编码类型,其中,N个总Bit包括M个净荷Bit和若干个同步Bit,即M/N Bit Block中的M≤N。在Ethernet物理层链路传递的就是M/N Bit Block流,比如1G Ethernet采用8B/10B编码,1GE物理层链路传递的就是8B/10B码块流;10GE/40GE/100GE Ethernet采用64B/66B编码,10GE/40GE/100GE Ethernet物理层链路传递的就是64B/66B码块流。未来随着Ethernet技术的发展,也会出现其他编码类型,比如可能出现128B/130B、256B/257B编码等可能的编码方案。
例如,图1-图3是本申请提供的3种M/N Bit Block的示意图。其中,图1为M=N的情况,即整个码块全部承载净荷;图2和图3是M≤N的情况,图2所示的码块中有M个比特的净荷区和N-M个比特的同步区,图3所示的码块中N-M个同步比特在码块内的位置灵活分布。
非M/N Bit Block编码
非M/N Bit Block编码是指采用的编码技术不是M/N Bit Block编码,而是采用业务帧(Frame)等其他编码方法,比如同步数字体系(Synchronous Digital Hierarchy,SDH)或光传送网(Optical Transport Network,OTN)等。
网络边缘与用户设备连接的网络设备(Provider Edge,PE)
本文所指的PE主要网络边缘侧用于将网络外的业务信号接入到本网络,或者从本网络恢复出业务信号向网络外传递。
标称速率(nominal rate)
标称速率是指在信号发送机/接收机在理想工作条件下的理论信号发送/接收速率。其中,所述理想工作条件包括信号时钟运行在中心频率,没有偏移。
平均速率(average rate)
平均速率是指信号发送机/接收机在单位时间内的平均信号发送/接收速率。一般所说的信号实际发送/接收速率就是指信号在单位时间内的平均发送/接收速率。常用的单位时间是秒、分、小时,也可以是任意时间间隔。
频率容限
实际传输时,信号的参考时钟的中心频率在一定范围内上下波动,这个波动范围一般称为频率容限。具体地,频率容限为{容许频率浮动上限,容许频率浮动下限}。
速率容限
实际传输时,信号的传输速率与参考时钟频率直接相关。实际时钟的频率围绕中心频率在频率容限内变化,对应的实际信号速率则围绕标称速率在一定范围内变化,这个变化范围本文称为速率容限。具体地,速率容限为{容许速率浮动上限,容许速率浮动下限}。不考虑其他复杂因素时,信号的速率容限数值上就等于参考时钟的频率容限。
在对本申请进行详细说明之前,先对本申请的系统架构进行详细介绍。
图4是本申请提供的一种业务信号传输系统的示意图,如图4所示,该方法包括第一网络设备10和第二网络设备20,第一网络设备10和第二网络设备20可以通过网络进行连接。其中,第一网络设备10和第二网络设备20可以为网络内的网络设备(Provider,P),也可以为PE,而且,第一网络设备10和第二网络设备20之前还可以包括M个第三网络设备(M≥0),第三网络设备为P。
在具体业务场景中,通常需要在第一网络设备10和第二网络设备20之间传输业务信号,但是相关技术中,对于编码类型相同的多路业务信号,第一网络设备10需要将该多路业务信号分别发送给第二网络设备20,由于多路业务信号需要分别传输,因此传输效率较低,浪费了传输资源。本申请中,为了提高业务信号的传输效率较低,节省传输资源,提供了一种可以将多路业务信号复用传输的方法。
具体地,第一网络设备10用于获取N路第一业务信号,通过在该N路第一业务信号中插入填充信号,得到与该N路第一业务信号一一对应的N路第二业务信号,将该N路第二业务信号复用成一路第三业务信号,并将该第三业务信号发送给第二网络设备20。其中,该N路第一业务信号的编码类型相同,且该N路第一业务信号中存在传输速率不同的至少两路第一业务信号,N为大于或等于2的整数,该N路第二业务信号的传输速率均为参考速率的整数倍。该参考速率可以根据该N路第一业务信号的传输速率确定得到,也可以预先配置得到,本申请对此不做限定。
第二网络设备10用于接收第一网络设备10发送的第三业务信号,根据该N路第二业务信号的复用规则,将该第三业务信号解复用为N路第二业务信号,并从解复用得到的N路第二业务信号中删除填充信号,得到N路第一业务信号。
进一步地,第一网络设备10还可以包括控制单元和复用单元,并可以通过控制单元和复用单元实现对N路第一业务信号的复用传输。接下来将以第一网络设备10包括控制单元和复用单元为例,对该第一网络设备10进行详细介绍。
图5是本申请提供的一种第一网络设备10的结构示意图,如图5所示,该第一网络设备10包括控制单元11、N个信号插入单元12和复用单元13。
其中,控制单元11用于在第一网络设备10获取到N路第一业务信号之后,控制与该N路第一业务信号一一对应的N个信号插入单元12在该N路第一业务信号中插入填充信号,以得到与该N路第一业务信号一一对应的N路第二业务信号,复用单元12用于将该N路第二业务信号复用成一路第三业务信号,以便该第一网络设备10将复用成的第三业务信号发送给第二网络设备20。
具体地,控制单元11可以用于确定该N路第一业务信号的传输速率,然后根据该N路第一业务信号的传输速率或配置速率确定参考速率,之后对于该N路第一业务信号中的每路第一业务信号,可以根据该第一业务信号的传输速率和参考速率,确定与该第一业务信号对应的第二业务信号的传输速率,并根据该第一业务信号的传输速率,以及与该第一业务信号对应的第二业务信号的传输速率,控制与该第一业务信号对应的信号插入单元12在该第一业务信号中插入填充信号,以得到与该第一业务信号对应的第二业务信号。
例如,参见图5,对于该N路第一业务信号中的第一业务信号1,控制单元11可以根据该第一业务信号1的传输速率和参考速率,确定与该第一业务信号1对应的第二业务信号1 的传输速率,并根据该第一业务信号1的传输速率,以及与该第一业务信号对应的第二业务信号1的传输速率,控制与该第一业务信号1对应的信号插入单元12在该第一业务信号1中插入填充信号,以得到与该第一业务信号1对应的第二业务信号2。
在一种可能的实施例中,与第一业务信号对应的信号插入单元12可以根据第一业务信号的传输速率确定X,并根据第一业务信号的传输速率和参考速率确定Y,然后在每隔单位时间获取一组第一信号单元的过程中,在每个单位时间内获取的X个第一信号单元中插入Y个第二信号单元。其中,X是指单位时间内获取的第一信号单元的数量,第一信号单元是指第一业务信号的信号单元,Y是指需要在单位时间内获取的一组第一信号单元中插入的第二信号单元的数量,第二信号单元是指所述填充信号的信号单元。
具体地,信号插入单元12可以根据第一业务信号的传输速率和对应的第二业务信号的传输速率确定Y,比如根据与第一业务信号对应的第二业务信号的传输速率和第一业务信号的传输速率之间的偏差速率确定Y。
进一步地,控制单元11还可以获取该N路第一业务信号中的每路第一业务信号的速率容限以及第三业务信号的速率容限,并可以根据该N路第一业务信号的速率容限和第三业务信号的速率容限确定第一速率调整上限,之后对于该N路第一业务信号中的每路第一业务信号,可以根据该第一业务信号的传输速率、该参考速率和该第一速率调整上限,确定与该第一业务信号对应的第二业务信号的传输速率。
例如,如图5所示,该N路第一业务信号分别运行于各自的时钟域,比如第一业务信号1运行于第一时钟域,第一业务信号2的运行于第二时钟域,第一业务信号N运行于第N时钟域。第三业务信号运行于系统时钟域。在一个实现方式中,控制单元11可以分别确定每路第一业务信号的时钟域的频率容限,并根据每路第一业务信号的时钟域的频率容限,确定每路第一业务信号的速率容限。另外,控制单元11还可以确定第三业务信号的系统时钟域的频率容限,并根据第三业务信号的系统时钟域的频率容限,确定第三业务信号的速率容限。
需要说明的是,图5仅以控制单元11根据该N路第一业务信号的时钟域确定该N路第一业务信号的频率容限,以及根据该第三业务信号的系统时钟域确定该第三业务信号的频率容限为例进行说明,而实际应用中,该N路第一业务信号的频率容限和该第三业务信号的频率容限还可以由用户配置得到,或者由特定的寄存器存储,或者通过其他方式获取得到,比如该N路第一业务信号的频率容限还可以在该对应的第一业务信号中携带,本申请对此不做限定。所以控制单元11根据信号的频率容限可以确定信号的速率容限。而不考虑其他复杂因素时,信号的速率容限数值上就等于频率容限。至于是否考虑其他因素,属于控制单元内部的具体实施方式,本申请不再详细描述。
进一步地,控制单元11还可以确定需要在该N路第一业务信号中分别插入维护管理信号的比例,并根据需要在该N路第一业务信号中分别插入维护管理信号的比例确定第二速率调整上限,或者,确定该N路第一业务信号中的每路第一业务信号的速率容限、该第三业务信号的速率容限和确定需要在该N路第一业务信号中分别插入维护管理信号的比例,并根据该N路第一业务信号中的每路第一业务信号的速率容限、该第三业务信号的速率容限和确定需要在该N路第一业务信号中分别插入维护管理信号的比例,确定第二速率调整上限,之后对于该N路第一业务信号中的每路第一业务信号,可以根据该第一业务信号的传输速率、该参考速率和该第二速率调整上限,确定与该第一业务信号对应的第二业务信号的传输速率。
也即是,可以根据该N路第一业务信号的速率容限、第三业务信号的速率容限和需要在该N路第一业务信号中分别插入维护管理信号的比例,进一步地对该N路第二业务信号的传输速率进行精调,使得确定的N路第二业务信号的传输速率能够进一步容忍第一业务信号和第三业务信号的速率容限,以及容忍在N路第一业务信号中插入一定比例的维护管理信号。
进一步地,控制单元11还可以包括速率调整单元(Rate Adjust Process,RAP)和容限调整单元(Tolerance Adjust Process,TAP),RAP用于对根据该N路第一业务信号的传输速率和参考速率,确定与该N路第一业务信号对应的第二业务信号的传输速率。TAP用于在RAP确定各路第二业务信号的传输速率的基础上,根据该N路第一业务信号的速率容限、第三业务信号的速率容限和需要在该N路第一业务信号中分别插入维护管理信号的比例中的至少一种,对各路第二业务信号的传输速率进一步精调。
进一步地,该N个信号插入单元12可以为N个服务层管道(Service Pat,SP),也即是,可以将获取的N路第一业务信号分别发送至与该N路第一业务信号一一对应的N个SP,并在该N个SP中完成填充信号的插入。
需要说明的是,控制单元11的控制流程可以独立于第一网络设备10的主业务流程,且控制流程可以按需灵活启动和停止。
另外,第二网络设备20还可以包括解复用单元,并可以通过解复用单元实现将一路第三业务信号解复用为20进行详细介绍。
图6是本申请提供的一种第二网络设备20的结构示意图,如图6所示,该第一网络设备20包括解复用单元21和N个删除单元22。
具体地,解复用单元21用于在第二网络设备20接收到第一网络设备10发送的第三业务信号之后,根据该N路第二业务信号的复用规则,将该第三业务信号解复用为N路第二业务信号。该N个删除单元22与该N路第二业务信号一一对应,用于分别从对应的第二业务信号中删除填充信号,以得到N路第一业务信号。
需要说明的是,本申请提供的业务传输方法可以应用于基于Bit Block传输业务信号的场景中,例如应用于基于Ethernet、灵活以太网(Flexible Ethernet,FlexE)或X-E等技术传输业务信号的场景中。比如,本申请所述的N路第一业务信号和对应的N路第二业务信号的编码类型可以为M/N Bit Block编码,本申请所述的第三业务信号的编码类型可以为M/N Bit Block编码,也可以为非M/N Bit Block编码,本申请对第三业务信号的编码类型不做限定。
例如,以本申请提供的业务传输方法应用于基于X-E技术传输业务信号的场景为例,该第一网络设备和该第二网络设备可以为X-E组网中的PE或P。
图7是本申请提供的一种X-E组网中的PE的结构示意图,如图7所示,X-E组网中的PE可以包括用户侧适配单元(uAdpt)、交换单元(Switch)和网络侧适配单元(nAdpt)。其中,uAdpt包括部署在网络入口的uAdpt,简称uAdpt(i),以及部署于网络出口的uAdpt,简称uAdpt(e)。uAdpt(i)用于实施低速业务信号或低速管道的适配和交织工作,以将业务信号接入到FlexE高速管道,uAdpt(e)用于完成从FlexE高速管道恢复出低速业务信号或低速管道的解交织和适配等功能。nAdpt主要用于完成FlexE管道复用到FlexE SHIM经过FlexE接口传送,或者从FlexE接口的FlexE SHIM恢复出FlexE管道。本申请中,可以通过PE中的uAdpt或nAdpt实现将接收到的N路业务信号复用传输,或者实现从复用形成的一路业务信号中恢复出原来的N路业务信号。实际应用中,可以通过在uAdpt或nAdpt中部署控制单元实现本 申请的方法,该控制单元可以为软件、可编程器件或集成电路等,例如,该集成电路可以为专用集成电路(Application Specific Integrated Circuit,ASIC)等。
图8是本申请提供的一种X-E组网中的P的结构示意图,如图8所示,X-E组网中的P可以包括两侧的nAdpt和中间的Switch。本申请中,可以通过P中的nAdpt实现将接收到的N路业务信号复用传输,或者实现从复用形成的一路业务信号中恢复出原来的N路业务信号。实际应用中,可以通过在nAdpt中部署控制单元实现本申请的方法,该控制单元可以为软件、可编程器件或集成电路等,例如,该集成电路可以为ASIC等。
图9是本申请提供的一种采用X-E技术组建网络并传输业务信号的示意图,如图9所示,采用X-E技术组建网络中包括PE30、P40和PE50,PE50可以将接收到的N路用户的业务信号复用成一路业务信号,并将这一路业务信号经由P40发送给PE50,PE50接收到这一路业务信号之后,可以从这一路业务信号中恢复出N路用户的业务信号。
图10是本申请提供的一种网络设备的结构示意图,该网络设备可以为上述第一网络设备10或第二网络设备20,实际应用中,该网络设备可以为IPRAN或PTN等设备。参见图10,该网络设备包括至少一个处理器1001,通信总线1002,存储器1003以及至少一个通信接口1004。
处理器1001可以是一个通用中央处理器(Central Processing Unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信总线1002可包括一通路,在上述组件之间传送信息。
存储器1003可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其它类型的静态存储设备,随机存取存储器(random access memory,RAM))或者可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其它光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。存储器1003可以是独立存在,通过通信总线1002与处理器1001相连接。存储器1003也可以和处理器1001集成在一起。
通信接口1004,使用任何收发器一类的装置,用于与其它设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(Wireless Local Area Networks,WLAN)等。
在具体实现中,作为一种实施例,处理器1001可以包括一个或多个CPU,例如图10中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,网络设备可以包括多个处理器,例如图10中所示的处理器1001和处理器1005。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,网络设备还可以包括输出设备1006和输入设备1007。输出设备1006和处理器1001通信,可以以多种方式来显示信息。例如,输出设备1006可以 是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备1007和处理器1001通信,可以以多种方式接收用户的输入。例如,输入设备1007可以是鼠标、键盘、触摸屏设备或传感设备等。
在具体实现中,该网络设备可以是台式机、便携式电脑、网络服务器、掌上电脑(Personal Digital Assistant,PDA)、移动手机、平板电脑、无线终端设备、通信设备或者嵌入式设备。本申请不限定网络设备的类型。
其中,存储器1003用于存储执行本申请方案的程序代码,并由处理器1001来控制执行。处理器1001用于执行存储器1003中存储的程序代码1008。程序代码1008中可以包括一个或多个软件模块。
图11是本申请提供的一种业务传输方法的流程图,该方法可以应用于上述图1所示的业务传输系统中,如图11所示,该方法包括如下步骤:
步骤1101:第一网络设备获取N路第一业务信号,该N路第一业务信号的编码类型相同,且该N路第一业务信号中存在传输速率不同的至少两路第一业务信号。
其中,N为大于或等于2的整数,比如N可以为2、3或5等。该第一网络设备可以为PE或P等。该N路第一业务信号可以为该第一网络设备从其他设备接收的业务信号,也可以为对从其他设备接收的业务信号进行编码转换后得到的业务信号。
其中,该N路第一业务信号中存在传输速率不同的至少两路第一业务信号是指该N路第一业务信号中存在标称速率或平均速率不同的至少两路第一业务信号。也即是,本申请所述的第一业务信号的传输速率可以为第一业务信号的标称速率,也可以为第一业务信号的平均速率,本申请对此不做限定。
具体地,在获取N路第一业务信号之前,该第一网络设备还可以接收N路第四业务信号,当该N路第四业务信号中存在编码类型与目标编码类型不同的第四业务信号时,将该N路第四业务信号中编码类型与目标编码类型不同的第四业务信号按照目标编码类型进行编码转换,并将编码转换后的第四业务信号和编码类型与目标编码类型相同的第四业务信号,确定为该N路第一业务信号;当该N路第四业务信号中不存在编码类型与目标编码类型不同的第四业务信号,即该N路第四业务信号的编码类型均为目标编码类型时,直接将该N路第四业务信号作为该N路第一业务信号。
其中,目标编码类型是指该N路第一业务信号的编码类型,即该第一网络设备支持进行传输的编码类型。实际应用中,该目标编码类型可以为M/N Bit Block编码,如64B/66B编码或8B/10B编码等。通过将接收的N路第四业务信号转换为目标编码类型的业务信号,便于第一网络设备对编码转换后的业务信号进行处理。
例如,当该第一网络设备为PE时,PE可以接收用户终端发送的N路第四业务信号,当该N路第四业务信号中存在编码类型与目标编码类型不同的第四业务信号时,按照目标编码类型对该N路第四业务信号进行编码转换,得到该N路第一业务信号,当该N路第四业务信号中不存在编码类型与目标编码类型不同的第四业务信号时,将该N路第四业务信号作为该N路第一业务信号。
另外,需要说明的是,编码转换后的业务信号传输速率也会发生改变,即编码转换前的 第四业务信号的传输速率与编码转换后得到的第一业务信号的传输速率不同。例如,对于该N路第四业务信号中编码类型与目标编码类型不同的某一路第四业务信号,在将该路第四业务信号按照目标编码类型进行编码转换得到对应的第一业务信号后,也需要基于该路第四业务信号的传输速率,以及该路第四业务信号的编码类型和目标编码类型的编码转换关系,确定编码转换得到的第一业务信号的传输速率。其中,本申请所述的第四业务信号的传输速率可以为第四业务信号的标称速率,也可以为第四业务信号的平均速率,本申请对此不做限定。
例如,在第一个实施例中,假设第一网络设备接收到用户终端发送的11路第四业务信号,这11路第四业务信号分别为Client1~Client11,而且其中的Client1~Client10为传输速率为15552000bps、编码类型为SDH的业务信号,Client11为传输速率为266057Kbps、编码类型为OTU1的业务信号,目标编码类型为64B/66B编码,因此需要按照目标编码类型对Client1~Client11进行编码转换,即将Client1~Client11转换为64B/66B编码的业务信号,得到Client1’~Client11’。实际编码转换之后,可以将Client1~Client11的信号比特装载于64B/66B比特码块中的64比特净荷区中。
编码转换后,
Figure PCTCN2019085696-appb-000001
Figure PCTCN2019085696-appb-000002
为了便于说明,接下来将Client1’~Client11’的传输速率分别用c 1-c 11表示。
再例如,在第二个实施例中,假设第一网络设备接收到用户终端发送的3路第四业务信号,这3路第四业务信号分别为Client1~Client3,而且其中的Client1为传输速率为1.25Gbps、编码类型为8B/10B编码的业务信号,Client2为传输速率为8110.4Mbps、编码类型为64B/66B编码的业务信号,Client3为传输速率为10.3125Gbps、编码类型为64B/66B编码的业务信号,目标编码类型为64B/66B编码,因此需要按照目标编码类型对Client1进行编码转换,即将Client1转换为64B/66B编码的业务信号,得到Client1’,并将Client2和Client3确定为Client2’和Client3’。
编码转换后,
Figure PCTCN2019085696-appb-000003
Client2’的传输速率=8110400000bps,Client3’的传输速率=10312500000bps。为了便于说明,接下来将Client1’~Client3’的传输速率分别用c 1-c 3表示。
再例如,在第三个实施例中,假设第一网络设备接收到用户终端发送的2路第四业务信号,这2路第四业务信号分别为Client1和Client2,而且其中的Client1为传输速率为155520000bps、编码类型为SDH的业务信号,Client2为传输速率为322080000bps、编码类型为SDH的业务信号,目标编码类型为64B/66B编码,因此需要按照目标编码类型对Client1和Client2进行编码转换,即将Client1和Client2分别转换为64B/66B编码的业务信号,得到Client1’和Client2’。
编码转换后,
Figure PCTCN2019085696-appb-000004
Figure PCTCN2019085696-appb-000005
Figure PCTCN2019085696-appb-000006
为了便于说明,接下来将Client1’和Client2’的传输速率分别用c 1-c 2表示。
步骤1102:第一网络设备通过在该N路第一业务信号中插入填充信号,得到与该N路第一业务信号一一对应的N路第二业务信号,该N路第二业务信号的传输速率均为参考速率的整数倍。
需要说明的是,对于存在传输速率不同的至少两路第一业务信号的N路第一业务信号, 只有当该N路业务信号的传输速率存在明确的等级化特征,即该N路业务信号的传输速率之间的比例具有明显的整比特征时,才能够进行复用。本申请中,通过在该N路第一业务信号中插入填充信号,得到与该N路第一业务信号一一对应的且传输速率均为参考速率的整数倍的N路第二业务信号,可以便于后续对该N路第一业务信号进行复用传输,解决了该N路第一业务信号的复用问题。
进一步地,在步骤1102之前,可以先根据该N路第一业务信号的传输速率或配置速率,确定参考速率。具体地,可以通过以下几种实现方式确定参考速率:
第一种实现方式:将配置速率确定为该参考速率。
其中,该配置速率是指用户、第一网络设备或其他设备预先配置的速率,比如可以为用户输入的速率,或者第一网络设备默认设置的速率,或者其他设备发送的速率等。例如,在图5所示的第一网络设备10中,该配置速率可以为用户通过控制单元11配置的速率。
第二种实现方式:根据该N路第一业务信号的传输速率,确定该参考速率。
具体地,根据该N路第一业务信号的传输速率,确定该参考速率的方式可以包括以下几种:
1)将目标第一业务信号的传输速率的1/T确定为该参考速率,该目标第一业务信号为该N路第一业务信号中的一路第一业务信号,该T为正整数。
也即是,当T=1时,可以将目标第一业务信号的传输速率作为参考速率,当T大于1时,可以将目标第一业务信号的传输速率的1/T作为参考速率。
其中,目标第一业务信号可以从该N路第一业务信号中随机选择得到,也可以按照预设策略从该N路第一业务信号中指定。例如,可以将N路第一业务信号中未部署信号填充单元的一路第一业务信号确定为目标第一业务信号。
进一步地,还可以将目标第一业务信号的传输速率按照预设策略进行四舍五入处理,将四舍五入处理后的传输速率的1/T确定为该参考速率;或者,将目标第一业务信号的传输速率的1/T按照预设策略进行四舍五入处理,并将处理结果确定为该参考速率。如此,可以减轻计算的复杂度,提高计算效率。
2)按照在该N路第一业务信号中插入的填充信号的总比特数最少的策略,从该N路第一业务信号中选择出一路业务信号,并将选择出的一路业务信号的传输速率的1/T作为该参考速率,该T为正整数。
具体地,按照在该N路第一业务信号中插入的填充信号的总比特数最少的策略,从该N路第一业务信号中选择出一路业务信号包括:对于该N路第一业务信号中的一路第一业务信号B,确定假设将该第一业务信号B的传输速率的1/T作为该参考速率并保证该N路第二业务信号的传输速率均为该参考速率的整数倍时,在预设时间内需要在该N路第一业务信号中插入的填充信号的总比特数,并将确定的总比特数作为该第一业务信号B的填充数,然后从该N路第一业务信号的填充数中确定填充数最小的一路第一业务信号,并将该填充数最小的一路第一业务信号作为该选择出的一路业务信号。
也即是,可以计算假设将该N路第一业务信号中的每路第一业务信号的传输速率的1/T作为该参考速率时,在预设时间内需要在该N路第一业务信号中插入的填充信号的总比特数,并将确定的总比特数作为对应的第一业务信号的填充数,从而可以得到N路第一业务信号的填充数中,然后将该N路第一业务信号中填充数最小的一路第一业务信号的传输速率的1/T 作为该参考速率。
通过按照在该N路第一业务信号中插入的填充信号的总比特数最少的策略确定参考速率,可以节省插入填充信号的比特,提高填充信号的资源利用率,同时还可以减少插入填充信号的操作频率,提高插入效率。
其中,该预设时间可以预先设置,具体可以为传输速率的一个单位时间,比如传输速率的单位通常为bps,即每秒传输的比特数,因此该预设时间可以为1s。
具体地,当该预设时间为传输速率的一个单位时间时,假设将第一业务信号B的传输速率的1/T作为该参考速率并保证该N路第二业务信号的传输速率均为该参考速率的整数倍时,在预设时间内需要在该N路第一业务信号中插入的填充信号的总比特数,即该第一业务信号B的填充数可以通过以下公式(1)确定得到:
Figure PCTCN2019085696-appb-000007
其中,J i为第一业务信号B的填充数,i表示该第一业务信号B为该N个第一业务信号中的第几个业务信号,括号内的内容表示在该预设时间内需要在该N路第一业务信号中的第j路第一业务信号中插入的比特数,将在该预设时间内需要在该N路第一业务信号中的每路第一业务信号中插入的比特数进行相加,即可得到在该预设时间内需要在该N路第一业务信号中插入的总比特数。
例如,以上述第一个实施例为例,假设按照在Client1’~Client11’中插入的填充信号的总比特数最少的策略,从Client1’~Client11’中选择一路第一业务信号的传输速率的1/T作为该参考速率,则可以先分别计算Client1’~Client11’中每路第一业务信号的填充数。假设这11路第一业务信号Client1’~Client11’的传输速率分别用c 1-c 11表示,Client1’~Client11’的填充数分别用J 1-J 11表示,则J 1-J 11可以用通过以下公式(2)-(5)确定得到:
Figure PCTCN2019085696-appb-000008
J 1=J 2=…=J 10   (3)
Figure PCTCN2019085696-appb-000009
J 1=J 2=…J 10=min(J 1,J 2…,J 11) (5)
由上述公式可知,J 1=J 2=…J 10=min(J 1,J 2…,J 11),即Client1’~Client10’的填充数均相同且为最小值,因此可以Client1’~Client10’中的任一路第一业务信号的传输速率的1/T作为该参考速率,比如可以Client2’的传输速率的1/T作为该参考速率。
进一步地,还可以将选择出的一路业务信号的传输速率按照预设策略进行四舍五入处理,将四舍五入处理后的传输速率的1/T确定为该参考速率;或者,将选择出的一路业务信号的传输速率的1/T按照预设策略进行四舍五入处理,并将处理结果确定为该参考速率。如此,可以减轻计算的复杂度,提高计算效率。
具体地,按照在该N路第一业务信号中插入的填充信号的总比特数最少的策略,从该N路第一业务信号中选择出一路业务信号包括:对于该N路第一业务信号中的一路第一业务信号B,确定假设将该第一业务信号B的传输速率按照预设策略进行四舍五入处理的处理结果的1/T作为该参考速率,并保证该N路第二业务信号的传输速率均为该参考速率的整数倍时,在预设时间内需要在该N路第一业务信号中插入的填充信号的总比特数,并将确定的总比特数作为该第一业务信号B的填充数,然后从该N路第一业务信号的填充数中确定填充数最小 的一路第一业务信号,并将该填充数最小的一路第一业务信号作为该选择出的一路业务信号。
或者,对于该N路第一业务信号中的一路第一业务信号B,确定假设将该第一业务信号B的传输速率的1/T按照预设策略进行四舍五入处理的处理结果作为该参考速率,并保证该N路第二业务信号的传输速率均为该参考速率的整数倍时,在预设时间内需要在该N路第一业务信号中插入的填充信号的总比特数,并将确定的总比特数作为该第一业务信号B的填充数,然后从该N路第一业务信号的填充数中确定填充数最小的一路第一业务信号,并将该填充数最小的一路第一业务信号作为该选择出的一路业务信号。
3)按照在将该N路第二业务信号复用形成一路第三业务信号时,每次从该N路第二业务信号中提取的信号单元最少的策略,从该N路第一业务信号中选择出一路业务信号,并将选择出的一路业务信号的传输速率的1/T作为该参考速率。
具体地,按照在将该N路第二业务信号复用形成一路第三业务信号时,每次从该N路第二业务信号中提取的信号单元最少的策略,从该N路第一业务信号中选择出一路业务信号包括:对于该N路第一业务信号中的一路第一业务信号B,确定假设将该第一业务信号B的传输速率的1/T作为该参考速率并保证该N路第二业务信号的传输速率均为该参考速率的整数倍时,在将该N路第二业务信号复用形成一路第三业务信号时每次从该N路第二业务信号中提取的信号单元数,并将确定的信号单元数确定为该第一业务信号B的提取数,之后可以将该N路第一业务信号中提取数最少的一路第一业务信号作为选择出的一路业务信号。
在一个实施例中,通过在该N路第一业务信号中插入填充信号,得到与该N路第一业务信号一一对应的N路第二业务信号可以包括:对于N路第一业务信号中的一路第一业务信号A,根据第一业务信号A的传输速率和参考速率,在第一业务信号A中插入填充信号,以得到与第一业务信号A对应的第二业务信号。
具体地,根据第一业务信号A的传输速率和参考速率,在第一业务信号A中插入填充信号可以通过如下步骤1102a-1102b实现:
步骤1102a:根据第一业务信号A的传输速率和该参考速率,确定与第一业务信号A对应的第二业务信号的传输速率。
需要说明的是,第一业务信号A的传输速率可以为第一业务信号A的标称速率,也可以为第一业务信号A的平均速率。也即是,与第一业务信号A对应的第二业务信号的传输速率可以根据第一业务信号A的标称速率和参考速率确定得到,也可以根据第一业务信号A的平均速率和参考速率确定得到,本申请对此不做限定。
具体地,根据第一业务信号A的传输速率和参考速率,确定与第一业务信号A对应的第二业务信号的传输速率包括以下两种实现方式:
第一种实现方式:根据第一乘积确定与该第一业务信号A对应的第二业务信号的传输速率,该第一乘积是指该第一业务信号A的相对倍数和该参考速率的乘积,该第一业务信号A的相对倍数是通过对该第一业务信号A的传输速率和该参考速率的比值进行向上取整得到。
具体地,根据第一乘积确定与该第一业务信号A对应的第二业务信号的传输速率可以包括以下两种实现方式:
1)将该第一乘积确定为与该第一业务信号A对应的第二业务信号的传输速率。
例如,以上述第一个实施例为例,假设将Client1’~Client11’中的Client2’的传输速率作为参考速率,且对应的11路的第二业务信号的传输速率分别用S 1-S 11,则S 1-S 11可以分别通过 如下公式(6)-(8)确定:
Figure PCTCN2019085696-appb-000010
S 1=S 2=…=S 10  (7)
Figure PCTCN2019085696-appb-000011
其中,c 1为Client1’的传输速率,c 2为Client2’的传输速率,c 11为Client11’的传输速率,ceiling是指对括号内的内容进行向上取整。
2)获取第一速率调整上限,该第一速率调整上限是预先根据该N路第一业务信号的容许速率浮动下限的最小值和该第三业务信号的容许速率浮动上限确定得到,根据该第一速率调整上限对第一乘积进行调整,得到与该第一业务信号A对应的第二业务信号的传输速率。
也即是,在确定与该N路第一业务信号一一对应的N路第二业务信号的传输速率之前,可以先确定该N路第一业务信号的容许速率浮动下限的最小值和该第三业务信号的容许速率浮动上限,然后根据该N路第一业务信号的容许速率浮动下限的最小值和该第三业务信号的容许速率浮动上限确定第一速率调整上限,之后对于每路第一业务信号对应的第二业务信号,即可根据该第一速率调整上限对每路第一业务信号的相对倍数和该参考速率的乘积进行调整,得到每路第一业务信号对应的第二业务信号的传输速率。
也即是,可以根据该N路第一业务信号的速率容限、第三业务信号的速率容限和确定需要在该N路第一业务信号中分别插入维护管理信号的比例,进一步地对该N路第二业务信号的传输速率进行精调,使得确定的N路第二业务信号的传输速率能够容忍第一业务信号和第三业务信号的速率容限,以及容忍在N路第一业务信号中插入一定比例的维护管理信号。
其中,该N路第一业务信号中每路第一业务信号的容许速率浮动下限可以根据每路第一业务信号的速率容限确定,该第三业务信号的容许速率浮动上限可以根据该第三业务信号的速率容限确定。
具体地,根据该N路第一业务信号的容许速率浮动下限的最小值和该第三业务信号的容许速率浮动上限确定第一速率调整上限包括:将该第三业务信号的容许速率浮动上限和该N路第一业务信号的容许速率浮动下限的最小值之间的差值,确定为该第一速率调整上限。
具体地,根据该第一速率调整上限对该第一乘积进行调整,得到与该第一业务信号A对应的第二业务信号的传输速率可以包括:将该第一乘积和第二乘积之和确定为与该第一业务信号A对应的第二业务信号的传输速率,该第二乘积是指该第一速率调整上限和该第一乘积的乘积。
例如,以上述第一个实施例为例,Client1’~Client10’的频率容限为{+10PPM,-10PPM},Client11’的频率容限为{+20PPM,-20PPM},第三业务信号的频率容限为{+100PPM,-100PPM},不考虑其他复杂因素时,速率容限数值上等于频率容限。PPM(Part per Million)为频率单位,即百万分之一。假设第一速率调整上限用f max表示,则可以通过如下公式(9)确定f max
f max=100-(-20)=120PPM (9)
假设将Client1’~Client11’中的Client2’的传输速率作为参考速率,且Client1’~Client11’对应的11路第二业务信号的传输速率分别用S 1-S 11,则S 1-S 11可以分别通过如下公式(10)-(12)确定:
Figure PCTCN2019085696-appb-000012
S 1=S 2=…=S 10  (11)
Figure PCTCN2019085696-appb-000013
其中,c 1为Client1’的传输速率,c 2为Client2’的传输速率,c 11为Client11’的传输速率,ceiling是指对括号内的内容进行向上取整。
第二种实现方式:获取第二速率调整上限,该第二速率调整上限是预先根据需要在该N路第一业务信号中分别插入维护管理信号的比例中的最大值确定得到,或者是预先根据需要在该N路第一业务信号中分别插入维护管理信号的比例中的最大值、该N路第一业务信号的容许速率浮动下限的最小值和该第三业务信号的容许速率浮动上限确定得到;根据该第二速率调整上限,对第一乘积进行调整,得到与该第一业务信号A对应的第二业务信号的传输速率,该第一乘积是指该第一业务信号A的相对倍数和该参考速率的乘积,该第一业务信号A的相对倍数是通过对该第一业务信号A的传输速率和该参考速率的比值进行向上取整得到。
也即是,在确定与该N路第一业务信号一一对应的N路第二业务信号的传输速率之前,可以先确定需要在该N路第一业务信号中分别插入维护管理信号的比例,并根据需要在该N路第一业务信号中分别插入维护管理信号的比例中的最大值确定第二速率调整上限,或者先确定需要在该N路第一业务信号中分别插入维护管理信号的比例、该N路第一业务信号的容许速率浮动下限和该第三业务信号的容许速率浮动上限,并根据需要在该N路第一业务信号中分别插入维护管理信号的比例中的最大值、该N路第一业务信号的容许速率浮动下限的最小值和该第三业务信号的容许速率浮动上限确定第二速率调整上限。之后,对于该N路第一业务信号中的一路第一业务信号A,再根据该第一业务信号A的相对倍数和该参考速率的乘积进行调整,得到与该第一业务信号A对应的第二业务信号的传输速率。
其中,在第一业务信号A中插入的维护管理信号可以承载维护管理参数,用于对该第一业务信号A进行维护和管理。例如,承载的维护管理参数可以为该第一业务信号A的时钟特征信息,用于后续在第二网络设备侧恢复第一业务信号A的时钟。
具体地,根据需要在该N路第一业务信号中分别插入维护管理信号的比例中的最大值确定第二速率调整上限包括:将需要在该N路第一业务信号中分别插入维护管理信号的比例中的最大值,确定为第二速率调整上限。根据需要在该N路第一业务信号中分别插入维护管理信号的比例中的最大值、该N路第一业务信号的容许速率浮动下限的最小值和第三业务信号的容许速率浮动上限确定第二速率调整上限包括:确定第三业务信号的容许速率浮动上限与需要在该N路第一业务信号中分别插入维护管理信号的比例中的最大值之间的和值,将该和值与该N路第一业务信号的容许速率浮动下限的最小值之间的差值确定为第二速率调整上限。
例如,以上述第一个实施例为例,假设Client1’~Client10’的频率容限为{+10PPM,-10PPM},Client11’的频率容限为{+20PPM,-20PPM},第三业务信号的频率容限为{+100PPM,-100PPM},不考虑其他因素,则各Client的速率容限数值上等于频率容限,可以直接借用。Client1’~Client11’中需要插入维护管理信号的比例均为50PPM,假设第二速率调整上限用f max表示,则可以通过如下公式(13)确定f max
f max=100+50-(-20)=170PPM  (13)
假设将该Client1’~Client11’中的Client2’作为该参考速率,且Client1’~Client11’对应的11路第二业务信号的传输速率分别用S 1-S 11,则S 1-S 11可以分别通过如下公式(14)-(16)确定:
Figure PCTCN2019085696-appb-000014
S 1=S 2=…=S 10  (15)
Figure PCTCN2019085696-appb-000015
其中,c 1为Client1’的传输速率,c 2为Client2’的传输速率,c 11为Client11’的传输速率,ceiling是指对括号内的内容进行向上取整。
例如,以上述第二个实施例为例,Client1’和Client2’的频率容限为{+100PPM,-100PPM},Client3’的频率容限为{+20PPM,-20PPM},第三业务信号的频率容限为{+20PPM,-20PPM},不考虑其他因素,则各Client的速率容限数值上等于频率容限,可以直接借用。Client1’~Client3’中需要插入维护管理信号的比例均为100PPM,假设第二速率调整上限用f max表示,则可以通过如下公式(17)确定f max
f max=20+100-(-100)=220PPM (17)
假设将Client3’的传输速率的1/10作为该参考速率,且Client1’~Client3’对应的3路第二业务信号的传输速率分别用S 1-S 3表示,则S 1-S 3可以分别通过如下公式(18)-(20)确定:
Figure PCTCN2019085696-appb-000016
Figure PCTCN2019085696-appb-000017
Figure PCTCN2019085696-appb-000018
其中,c 1为Client1’的传输速率,c 2为Client2’的传输速率,c 3为Client3’的传输速率,ceiling是指对括号内的内容进行向上取整。
再例如,以上述第三个实施例为例,Client1’的频率容限为{+10PPM,-10PPM},Client2’的频率容限为{+20PPM,-20PPM},第三业务信号的频率容限为{+100PPM,-100PPM},不考虑其他因素,则各Client的速率容限数值上等于频率容限,可以直接借用。Client1’和Client2’中需要插入维护管理信号的比例均为50PPM,假设第二速率调整上限用f max表示,则可以通过如下公式(21)确定f max
f max=100+50-(-20)=170PPM (21)
假设将第一网络设备设置的配置速率c ref=160380000bps作为参考速率,且Client1’和Client2’对应的2路第二业务信号的传输速率分别用S 1和S 2表示,则S 1和S 2可以分别通过如下公式(22)和(23)确定:
Figure PCTCN2019085696-appb-000019
Figure PCTCN2019085696-appb-000020
其中,c 1为Client1’的传输速率,c 2为Client2’的传输速率,ceiling是指对括号内的内容进行向上取整。
步骤1102b:根据该第一业务信号A的传输速率,以及与该第一业务信号A对应的第二业务信号的传输速率,在该第一业务信号A中插入填充信号,以得到与该第一业务信号A对应的第二业务信号。
具体地,根据该第一业务信号A的传输速率,以及与该第一业务信号A对应的第二业务信号的传输速率,在该第一业务信号A中插入填充信号包括以下两种实现方式:
第一种实现方式:当采用上述步骤1102a中的第一种实现方式确定第一业务信号A对应的第二业务信号的传输速率时,可以根据该第一业务信号A对应的第二业务信号的传输速率和该第一业务信号A的传输速率之间的偏差速率,在该第一业务信号A中插入填充信号。
具体地,可以在该偏差速率大于0时,按照该偏差速率将填充信号插入到该第一业务信号A中,当该偏差速率等于0时,说明该第一业务信号A和对应的第二业务信号的传输速率相同,此时无需在第一业务信号A中插入填充信号。
示例的,该填充信号可以为偏差适配信号。也即是,可以根据该第一业务信号A对应的第二业务信号的传输速率和该第一业务信号A的传输速率之间的偏差速率,将偏差适配信号作为填充信号插入到该第一业务信号A中。例如,在未配置需要在该N路第一业务信号中插入维护管理信号时,可以仅在第一业务信号A中插入偏差适配信号。
其中,偏差适配信号用于适配该第一业务信号A的传输速率和对应的第二业务信号的传输速率之间的偏差速率,以使在该第一业务信号A中插入偏差适配信号后,保证得到的第二业务信号的传输速率等于预先确定的传输速率。例如,可以在该第一业务信号A中插入传输速率等于该偏差速率的偏差适配信号。在一种实现方式中,该偏差适配信号可以为空闲(IDLE)码块流,当然也可以为其他信号形式,本申请对此不做限定。例如,以上述第一个实施例为例,所插入的偏差适配信号可以为64B/66B编码的IDLE码块流,IDLE码块的码块结构可以如图12所示。
具体地,根据该第一业务信号A对应的第二业务信号的传输速率和该第一业务信号A的传输速率之间的偏差速率,在该第一业务信号A中插入填充信号可以包括:根据该第一业务信号A的传输速率确定X,X是指单位时间内获取的第一信号单元的数量,第一信号单元是指第一业务信号A的信号单元;根据该第一业务信号A对应的第二业务信号的传输速率和该第一业务信号A的传输速率之间的偏差速率确定Y,Y是指需要在单位时间内获取的一组第一信号单元中插入的第二信号单元的数量,第二信号单元是指填充信号的信号单元;在每隔单位时间获取一组第一信号单元的过程中,在每个单位时间内获取的X个第一信号单元中插入Y个第二信号单元。
需要说明的是,在每个单位时间内获取的X个第一信号单元中插入Y个第二信号单元的具体实现方式将在本申请的后续内容中进行详细描述,在此先不做赘述。
第二种实现方式:当采用上述步骤1102a中的第二种实现方式确定第一业务信号A对应的第二业务信号的传输速率时,可以确定需要在该第一业务信号A中插入维护管理信号的比例,根据需要在该第一业务信号A中插入维护管理信号的比例、该第一业务信号A的传输速率和与该第一业务信号A对应的第二业务信号的传输速率,在该第一业务信号A中插入填充信号。
具体地,可以根据需要在该第一业务信号A中插入维护管理信号的比例、该第一业务信号A的传输速率和与该第一业务信号A对应的第二业务信号的传输速率,将维护管理信号和偏差适配信号作为填充信号插入到该第一业务信号A中。
也即是,在配置了需要在该N路第一业务信号中需要插入维护管理信号时,需要在第一业务信号A中插入偏差适配信号和维护管理信号。例如,以上述第一个实施例为例,在Client1’ ~Client11’中插入的维护管理信号可以承载对应第一业务信号的时钟特征信息,用于后续在第二网络设备侧恢复对应第一业务信号的时钟。例如,在Client1’~Client11’中插入的维护管理信号的编码类型可以为64B/66B编码,64B/66B码块中Type=4B,O=0x8码块用于承载时钟特征信息,所插入的维护管理信号的码块结构可以如图13所示。
具体地,根据需要在该第一业务信号A中插入维护管理信号的比例、该第一业务信号A的传输速率和与该第一业务信号A对应的第二业务信号的传输速率,将维护管理信号和偏差适配信号作为填充信号插入到该第一业务信号A中可以包括:先根据需要在该第一业务信号A中插入维护管理信号的比例,在该第一业务信号A中插入维护管理信号,然后根据该第一业务信号A的传输速率和在该第一业务信号A中插入维护管理信号的比例,确定插入维护管理信号后的第一业务信号A的传输速率,最后根据该第一业务信号A对应的第二业务信号的传输速率与插入维护管理信号后的第一业务信号A的传输速率,在插入维护管理信号后的第一业务信号A中插入偏差适配信号。
具体地,根据该第一业务信号A对应的第二业务信号的传输速率与插入维护管理信号后的第一业务信号A的传输速率,在插入维护管理信号后的第一业务信号A中插入偏差适配信号包括:确定该第一业务信号A对应的第二业务信号的传输速率与插入维护管理信号后的第一业务信号A的传输速率和之间的偏差速率,根据该偏差速率,在插入维护管理信号后的第一业务信号A中插入偏差适配信号。
具体地,根据该第一业务信号A对应的第二业务信号的传输速率与插入维护管理信号后的第一业务信号A的传输速率和之间的偏差速率,在插入维护管理信号后的第一业务信号A中插入偏差适配信号的方法,与上述根据该第一业务信号A对应的第二业务信号的传输速率和该第一业务信号A的传输速率之间的偏差速率,在该第一业务信号A中插入填充信号的方法同理,具体实现过程可以参考根据该第一业务信号A对应的第二业务信号的传输速率和该第一业务信号A的传输速率之间的偏差速率,在该第一业务信号A中插入填充信号的实现过程,本申请在此不再赘述。
接下来将对在第一业务信号A中插入填充信号的插入方式进行详细说明。
在一个实施例中,根据第一业务信号A的传输速率和参考速率,在第一业务信号A中插入填充信号的实现过程可以包括:根据第一业务信号A的传输速率确定X,X是指单位时间内获取的第一信号单元的数量,第一信号单元是指第一业务信号A的信号单元;根据第一业务信号A的传输速率和参考速率确定Y,Y是指需要在单位时间内获取的一组第一信号单元中插入的第二信号单元的数量,第二信号单元是指填充信号的信号单元;在每隔单位时间获取一组第一信号单元的过程中,在每个单位时间内获取的X个第一信号单元中插入Y个第二信号单元。
其中,该单位时间可以根据传输速率确定,例如,当传输速率的单位为bps时,该单位时间可以为1秒。当该单位时间为1秒时,也即是每隔1秒获取一组第一信号单元,并在每秒获取的X个第一信号单元中插入Y个第二信号单元。其中,该第一业务信号A的信号单元和填充信号的信号单元均可以为比特码块,比如可以为一个M/N Bit Block。其中,该填充信号可以为偏差适配信号。
具体地,根据第一业务信号A的传输速率和参考速率确定Y包括:根据第一业务信号A对应的第二业务信号的传输速率和第一业务信号A的传输速率之间的偏差速率,确定Y。其 中,第一业务信号A对应的第二业务信号的传输速率是预先根据第一业务信号A的传输速率和参考速率确定得到。
在一种可能的实施例中,可以将第一业务信号A的传输速率确定为X,将第一业务信号A对应的第二业务信号的传输速率和第一业务信号A的传输速率之间的偏差速率确定为Y。例如,假设第一业务信号A的传输速率为100bps,偏差速率为15bps,则X为100,Y为15。
具体地,在每个单位时间内获取的X个第一信号单元中插入Y个第二信号单元包括以下几种实现方式:
1)在当前单位时间内获取一组第一信号单元的过程中,当获取到X个第一信号单元时,在获取到的X个第一信号单元之后插入Y个第二信号单元。
例如,假设X为100,Y为15,则可以在当前单位时间内获取一组第一信号单元的过程中,当获取到100个第一信号单元时,在获取到的100个第一信号单元之后插入15个第二信号单元。
采用第1)种实现方式进行插入时,在每个单位时间内只需执行一次获取第一信号单元的操作以及插入第二信号单元的操作,如此可以减少获取信号和插入信号的次数,操作简便,插入效率较高。
2)当X大于或等于Y时,对X与Y之间的比值进行向上取整,得到R;在当前单位时间内获取一组第一信号单元的过程中,每当获取到R个第一信号单元时,在获取到的R个第一信号单元之后插入一个第二信号单元,直至获取到当前单位时间内的最后S个第一信号单元时,在获取到的最后S个第一信号单元之后插入一个第二信号单元,该S小于或等于该R。
也即是,
Figure PCTCN2019085696-appb-000021
例如,当X为100、Y为15时,R为7。当X为100、Y为15、R为7时,在当前单位时间内获取一组第一信号单元的过程中,可以在每当获取到7个第一信号单元时,在获取到的7个第一信号单元之后插入一个第二信号单元,直至获取到最后的2个第一信号单元时,在获取的2个信号单元之后插入一个第二信号单元,如此即可完成当前单位时间内填充信号的插入。
由上可知,采用第2)种实现方式,能够在X大于或等于Y的情况下,将需要插入的第二信号单元较为均匀插入到第一信号单元中,并能够保证插入第二信号单元之后得到的第二业务信号的传输速率符合速率要求。
3)当X小于Y时,对Y与X之间的比值进行向上取整,得到P;在当前单位时间内获取一组第一信号单元的过程中,每当获取到一个第一信号单元时,在获取到的一个第一信号单元之后插入P个第二信号单元,直至获取到当前单位时间内的最后一个第一信号单元时,在获取到的一个第一信号单元之后插入P个第二信号单元。
也即是,
Figure PCTCN2019085696-appb-000022
例如,当X为15、Y为100时,R为7。当X为15、Y为100、R为7时,在当前单位时间内获取一组第一信号单元的过程中,可以在每当获取到一个第一信号单元时,在获取到的一个第一信号单元之后插入7个第二信号单元,直至获取到当前单位时间内的最后一个第一信号单元时,在获取到的一个第一信号单元之后插入2个第二信号单元。
由上可知,采用第3)种实现方式,能够在X小于Y的情况下,将需要插入的第二信号单元较为均匀插入到第一信号单元中,并能够保证插入第二信号单元之后得到的第二业务信号的传输速率符合速率要求。
4)当X大于或等于Y时,对X与Y之间的比值进行向下取整,得到E,根据X除以Y 的余数和Y,确定单位时间内每次获取第一信号单元的个数是E还是E+1,按照确定的个数,在当前单位时间内获取Y次第一信号单元,并在每次获取的第一信号单元之后插入一个第二信号单元。
在第4)种实现方式中,当X大于或等于Y时,可以将较小的Y确定为单位时间内获取第一信号单元的次数,即单位时间内获取Y次第一信号单元。而且,每次执行获取操作后,需要在获取的第一信号单元之后插入一个第二信号单元,以实现总共插入Y个第二信号单元的操作,使得插入后得到的第二业务信号的传输速率满足速率要求。
其中,每次获取的第一信号单元的个数可以是E或E+1,具体每次获取E个还是E+1个,可以通过根据X除以Y的余数以及Y确定。具体地,可以根据X除以Y的余数、Y以及在单位时间内每次获取第一信号单元的获取次数,确定单位时间内每次获取第一信号单元的个数是E还是E+1。
在一个可能的实施例中,可以根据X除以Y的余数、Y以及在单位时间内每次获取第一信号单元的获取次数,通过以下公式(24)确定单位时间内每次获取第一信号单元的个数是E还是E+1:
Figure PCTCN2019085696-appb-000023
其中,i=1,2,…,Y,H(i)表示单位时间内第i次获取第一信号单元的个数;G是指X除以Y的余数,即G=mod(X,Y);Z(i)=mod(i×G,Y)。
其中,
Figure PCTCN2019085696-appb-000024
例如,当X为100、Y为15时,E为6。当X为100、Y为15、E为6时,可以确定单位时间内可以获取15次第一信号单元,且每次获取6个或7个第一信号单元,每次获取到6个或7个第一信号单元时,在获取的第一信号单元之后插入一个第二信号单元。具体每次获取6个还是7个第一信号单元,可以根据上述公式(24)确定得到。
例如,当X为100、Y为15时,H(1)=6,H(2)=7,H(3)=7,H(4)=6,H(5)=7,H(6)=7,H(7)=6,H(8)=7,H(9)=7,H(10)=6,H(11)=7,H(12)=7,H(13)=6,H(14)=7,H(15)=7。
也即是,在每个单位时间内获取15次信号单元,具体获取和插入流程如下,且下述流程可以循环执行:
第1次获取6个第一信号单元,插入1个第二信号单元;
第2次获取7个第一信号单元,插入1个第二信号单元;
第3次获取7个第一信号单元,插入1个第二信号单元;
第4次获取6个第一信号单元,插入1个第二信号单元;
第5次获取7个第一信号单元,插入1个第二信号单元;
第6次获取7个第一信号单元,插入1个第二信号单元;
第7次获取6个第一信号单元,插入1个第二信号单元;
第8次获取7个第一信号单元,插入1个第二信号单元;
第9次获取7个第一信号单元,插入1个第二信号单元;
第10次获取6个第一信号单元,插入1个第二信号单元;
第11次获取7个第一信号单元,插入1个第二信号单元;
第12次获取7个第一信号单元,插入1个第二信号单元;
第13次获取6个第一信号单元,插入1个第二信号单元;
第14次获取7个第一信号单元,插入1个第二信号单元;
第15次获取7个第一信号单元,插入1个第二信号单元。
由上可知,采用第4)种实现方式,也能够在X大于或等于Y的情况下,将需要插入的第二信号单元较为均匀插入到第一信号单元中,并能够保证插入第二信号单元之后得到的第二业务信号的传输速率符合速率要求。
5)当X小于Y时,对Y与X之间的比值进行向下取整,得到F,根据Y除以X的余数和X,确定单位时间内每次获取一个第一信号单元之后插入的第二信号单元的个数是F还是F+1,在当前单位时间内获取X次第一信号单元,并按照确定的个数,在每次获取的一个信号单元之后插入第二信号单元。
在第5)种实现方式中,当X小于Y时,可以将较小的X确定为单位时间内获取第一信号单元的次数,即单位时间内获取Y次第一信号单元,且每次获取一个第一信号单元。另外,每次执行完获取操作后,还需要在获取的一个第一信号单元之后插入第二信号单元,且总共需要插入Y个第二信号单元,才能满足速率要求。
其中,在每次执行完获取操作后,还需要在每次获取的一个第一信号单元之后插入相应的第二信号单元,本实现方式中,可以每次插入F或F+1个第二信号单元,具体每次是插入F还是F+1个,可以根据Y除以X的余数及X确定。具体地,可以根据Y除以X的余数、Y以及在单位时间内每次获取第一信号单元的获取次数,确定单位时间内每次获取一个第一信号单元之后插入的第二信号单元的个数是F还是F+1。
在一个可能的实施例中,可以根据Y除以X的余数、Y以及在单位时间内每次获取第一信号单元的获取次数,通过以下公式(25)确定单位时间内每次获取一个第一信号单元之后插入的第二信号单元的个数是F还是F+1:
Figure PCTCN2019085696-appb-000025
其中,j=1,2,…,X,L(j)表示单位时间内第j次获取一个第一信号单元之后插入的第二信号单元的个数;O是指Y除以X的余数,即O=mod(Y,X);K(j)=mod(j×O,X)。
其中,
Figure PCTCN2019085696-appb-000026
例如,当X为15、Y为100时,F为6。当X为15、Y为100、F为6时,可以确定单位时间内可以获取15次第一信号单元,且每次获取1个第一信号单元,每次获取到1个第一信号单元时,需要在获取的一个第一信号单元之后插入6个或7个第二信号单元。具体每次插入6个还是7个第二信号单元,可以根据上述公式(25)确定得到。
例如,当X为15、Y为100时,L(1)=6,L(2)=7,L(3)=7,L(4)=6,L(5)=7,L(6)=7,L(7)=6,L(8)=7,L(9)=7,L(10)=6,L(11)=7,L(12)=7,L(13)=6,L(14)=7,L(15)=7。
也即是,在每个单位时间内获取15次信号单元,具体获取和插入流程如下,且下述流程可以循环执行:
第1次获取1个第一信号单元,插入6个第二信号单元;
第2次获取1个第一信号单元,插入7个第二信号单元;
第3次获取1个第一信号单元,插入7个第二信号单元;
第4次获取1个第一信号单元,插入6个第二信号单元;
第5次获取1个第一信号单元,插入7个第二信号单元;
第6次获取1个第一信号单元,插入7个第二信号单元;
第7次获取1个第一信号单元,插入6个第二信号单元;
第8次获取1个第一信号单元,插入7个第二信号单元;
第9次获取1个第一信号单元,插入7个第二信号单元;
第10次获取1个第一信号单元,插入6个第二信号单元;
第11次获取1个第一信号单元,插入7个第二信号单元;
第12次获取1个第一信号单元,插入7个第二信号单元;
第13次获取1个第一信号单元,插入6个第二信号单元;
第14次获取1个第一信号单元,插入7个第二信号单元;
第15次获取1个第一信号单元,插入7个第二信号单元。
由上可知,采用第5)种实现方式,也能够在X小于Y的情况下,将需要插入的第二信号单元较为均匀插入到第一信号单元中,并能够保证插入第二信号单元之后得到的第二业务信号的传输速率符合速率要求。
步骤1103:第一网络设备将该N路第二业务信号复用成一路第三业务信号,并将该第三业务信号发送给第二网络设备。
具体地,将该N路第二业务信号复用成一路第三业务信号包括:按照该N路第二业务信号的传输速率之间的比例,依次从该N路第二业务信号中提取信号单元,将依次提取的信号单元形成一路第三业务信号。其中,该信号单元可以为比特码块。
例如,以上述第一个实施例为例,与Client1’~Client11’对应的11路第二业务信号的传输速率之间的比例为1:1:...:18,因此可以按照这11路第二业务信号的传输速率之间的比例,每次从前10路第二业务信号中分别提取1个比特码块,并从第11路第二业务信号中提取18个比特码块,然后将依次提取的比特码块形成一路第三业务信号。
进一步地,可以将该N路第二业务信号在该第一网络设备支持的一个通信管道复用成一路第三业务信号,并将该第三业务信号通过该通信管道发送给第二网络设备。其中,该通信管道的带宽大于或等于N路第二业务信号的传输速率之和,也即是,可以将该N路第二业务信号通过一个高速管道复用传输,从而提高了通信管道的信号承载效率,节省了传输资源。
进一步地,还可以将该N路第二业务信号复用成一路第三业务信号,并将该第三业务信号发送给第二网络设备还可以包括:该N路第二业务信号分别占用该通信管道中与该N路第二业务信号的传输速率之间的比例对应的时隙。例如,以上述第一个实施例为例,与Client1’~Client11’对应的11路第二业务信号的传输速率之间的比例为1:1:...:18,则这11路第二业务信号可以分别占用该通信管道的1:1:...:18个时隙。
相关技术中,在基于FlexE的组网中,承载业务信号的FlexE管道为Z个5Gbps/25Gbps的时隙(Z≥1),即承载业务信号的FlexE管道的带宽为Z×5Gbps或Z×25Gbps,由此可知,FlexE管道的最小带宽为5Gbps,且5Gbps的FlexE管道可以传输传输速率小于或等于5Gbps的业务信号。对于5Gbps的FlexE管道而言,当传输速率为1Gbps的业务信号通过该FlexE管道传输时,该通信管道的信号承载效率为20%,承载效率较低,浪费了传输资源。而通过本申请提供的方法,则对于多路传输速率较小的业务信号,可以将这多路业务信号统一复用到一个高速FlexE管道复用传输,从而提高了FlexE管道的信号承载效率,节省了传输资源。
另外,需要说明的是,该N路第二业务信号的编码类型可以采用M/N Bit Block编码,而该第三业务信号的编码类型则不受限于该N路第二业务信号的编码类型,可以为任何基于 bit的构造。具体地,可以为与该N路第二业务信号的编码类型相同的M/N Bit Block编码,也可以为基于比特的帧结构。该基于比特的帧结构可以由一个或多个非净荷区以及1个或多个净荷区灵活组合,各自的行(L)和列(C)可以灵活设置,传送周期也可以灵活设置。该基于比特的帧结构具体可以如图14所示。例如,若该基于比特的帧结构设置1个非净荷区C=9×8和L=9×8,设置1个净荷区C=261×8和L=9×8,非净荷区在净荷区之前,则该基于比特的帧结构即为SDH的STM-1帧结构;若该基于比特的帧结构设置1个非净荷区C=16×8和L=4×8,设置1个净荷区C=3808×8和L=4×8,非净荷区在净荷区之前,则该基于比特的帧结构即为OTN的ODU帧结构。
例如,以上述第二个实施例为例,Client1’~Client3’复用形成的第三业务信号的编码类型可以为基于bit的帧结构,该基于bit的帧结构可以设置1个非净荷区C=66和L=2,设置1个净荷区C=66×100和L=3,且非净荷区在净荷区之前,具体如图15所示。另外,复用传输时,可以每次从Client1’~Client3’分别提取1个、9个和10个66比特码块依次放到图15所示的基于bit的帧结构的净荷区。该基于bit的帧结构的发送周期T可以为:
Figure PCTCN2019085696-appb-000027
进一步地,当特定因素发生变化,还需要重新启动本申请所述的业务传输流程,例如重新启动图5中控制单元的控制逻辑,该特定因素包括但不限于:
1)参考速率发生变化。例如,当参考速率由用户通过控制单元指定时,当用户再次修改了参考速率时,可以重新启动本申请所述的业务传输路程;
2)在该N路第一业务信号的基础上,增加了至少一路第一业务信号,或删除了至少一路第一业务信号时;
3)该N路第一业务信号的传输速率或速率容限发生改变时;
4)该第三业务信号的速率容限发生改变时;
5)插入维护管理信号的比例发生改变时。
步骤1104:第二网络设备接收第一网络设备发送的第三业务信号。
步骤1105:第二网络设备根据该N路第二业务信号的复用规则,将该第三业务信号解复用为该N路第二业务信号。
例如,当第一网络设备按照该N路第二业务信号的传输速率之间的比例,依次从该N路第二业务信号中提取信号单元,将依次提取的信号单元形成一路第三业务信号时,该第二网络设备可以从该第三业务信号中,按照该N路第二业务信号的传输速率之间的比例依次提取信号单元,并将每次提取的信号单元分别进行组合,得到该N路第二业务信号。
步骤1106:第二网络设备从解复用得到的N路第二业务信号中删除填充信号,得到该N路第一业务信号。
也即是,对于解复用得到的N路第二业务信号中的一路第二业务信号C,可以从第二业务信号C中删除填充信号,得到与该第二业务信号C对应的第一业务信号。
具体地,当该第二业务信号C是通过将偏差适配信号作为填充信号插入到与该第二业务信号C对应的第一业务信号中得到时,可以从该第二业务信号C中删除该偏差适配信号,得到与该第二业务信号C对应的第一业务信号。
当该第二业务信号C是通过将偏差适配信号和维护管理信号作为填充信号插入到与该第 二业务信号C对应的第一业务信号中得到,且该维护管理信号是在与该第二业务信号C对应的第一业务信号中按比例插入时,从该第二业务信号C中删除该偏差适配信号;根据在与该第二业务信号C对应的第一业务信号中插入维护管理信号的比例,从删除偏差适配信号后的该第二业务信号C中提取该维护管理信号;将删除偏差适配信号和提取维护管理信号后的该第二业务信号C确定为与该第二业务信号C对应的第一业务信号。
另外,从删除偏差适配信号后的该第二业务信号C中提取该维护管理信号之后,还可以根据该维护管理信号中承载的维护管理信息对该与该第二业务信号C对应的第一业务信号进行维护管理。例如,当该维护管理信号中承载时钟特征信息时,可以根据该时钟特征信息恢复与该第二业务信号C对应的第一业务信号的时钟。
本申请中,对于编码类型相同且其中存在传输速率不同的至少两路第一业务信号的N路第一业务信号,可以通过在该N路第一业务信号中插入填充信号,得到与该N路第一业务信号一一对应的N路第二业务信号,然后将该N路第二业务信号复用成一路第三业务信号发送给第二网络设备。其中,该N路第二业务信号的传输速率均为参考速率的整数倍,即该N路第二业务信号的传输速率具有明显的整比特征。通过在该N路第一业务信号中插入填充信号,得到对应传输速率具有明显的整比特征的N路第二业务信号,可以便于后续能够根据具有明显的整比特征的N路第二业务信号进行复用传输,解决了传输速率不同的业务信号的复用问题。通过将对N路第一业务信号填充得到的N路第二业务信号复用成一路第三业务信号,实现了将N路第一业务信号复用传输,相较于相关技术中的分别传输方式,提高了业务信号的传输效率,节省了传输资源。
图16是本申请提供的一种业务信号传输装置的结构示意图,该装置可以为上述第一网络设备,参见图16,该装置包括:
获取模块1601,用于执行上述图11实施例中的步骤1101;
插入模块1602,用于执行上述图11实施例中的步骤1102;
复用模块1603,用于执行上述图11实施例中的步骤1103。
可选地,该插入模块1602包括:
第一插入单元,用于对于该N路第一业务信号中的一路第一业务信号A,根据该第一业务信号A的传输速率和该参考速率,在该第一业务信号A中插入填充信号,以得到与该第一业务信号A对应的第二业务信号。
可选地,该第一插入单元包括:
第一确定子单元,用于根据该第一业务信号A的传输速率确定X,该X是指单位时间内获取的第一信号单元的数量,该第一信号单元是指该第一业务信号A的信号单元;
第二确定子单元,用于根据该第一业务信号A的传输速率和该参考速率确定Y,该Y是指需要在单位时间内获取的一组第一信号单元中插入的第二信号单元的数量,该第二信号单元是指该填充信号的信号单元;
插入子单元,用于在每隔单位时间获取一组第一信号单元的过程中,在每个单位时间内获取的X个第一信号单元中插入Y个第二信号单元。
可选地,该插入子单元具体用于:
在当前单位时间内获取一组第一信号单元的过程中,当获取到X个第一信号单元时,在 获取到的X个第一信号单元之后插入Y个第二信号单元。
可选地,该插入子单元具体用于:
当该X大于或等于该Y时,对该X与该Y之间的比值进行向上取整,得到R,在当前单位时间内获取一组第一信号单元的过程中,每当获取到R个第一信号单元时,在获取到的R个第一信号单元之后插入一个第二信号单元,直至获取到该当前单位时间内的最后S个第一信号单元时,在获取到的最后S个第一信号单元之后插入一个第二信号单元,该S小于或等于该R;
当该X小于该Y时,对该Y与该X之间的比值进行向上取整,得到P,在当前单位时间内获取一组第一信号单元的过程中,每当获取到一个第一信号单元时,在获取到的一个第一信号单元之后插入P个第二信号单元,直至获取到该当前单位时间内的最后一个第一信号单元时,在获取到的最后一个第一信号单元之后插入Q个第二信号单元,该Q为该Y与在该当前单位时间内已插入的第二信号单元的数量之间的差值。
可选地,该插入子单元具体用于:
当该X大于或等于该Y时,对该X与该Y之间的比值进行向下取整,得到E,根据该X除以该Y的余数和该Y,确定单位时间内每次获取第一信号单元的个数是该E还是该E+1,按照确定的个数,在当前单位时间内获取Y次第一信号单元,并在每次获取的第一信号单元之后插入一个第二信号单元;
当该X小于该Y时,对该Y与该X之间的比值进行向下取整,得到F,根据该Y除以该X的余数和该X,确定单位时间内每次获取一个第一信号单元之后插入的第二信号单元的个数是该F还是该F+1,在当前单位时间内获取X次第一信号单元,并按照确定的个数,在每次获取的一个信号单元之后插入第二信号单元。
可选地,该插入模块还包括:
第一确定单元,用于根据该N路第一业务信号的传输速率或配置速率,确定该参考速率。
可选地,该第一确定单元具体用于:
将目标第一业务信号的传输速率的1/T确定为该参考速率,该目标第一业务信号为该N路第一业务信号中的一路第一业务信号,该T为正整数;
或者,
按照在该N路第一业务信号中插入的填充信号的总比特数最少的策略,从该N路第一业务信号中选择出一路业务信号,并将选择出的一路业务信号的传输速率的1/T作为该参考速率,该T为正整数。
可选地,该插入模块包括:
第二确定单元,用于根据该第一业务信号A的传输速率和该参考速率,确定与该第一业务信号A对应的第二业务信号的传输速率;
第二插入单元,用于根据该第一业务信号A的传输速率,以及与该第一业务信号A对应的第二业务信号的传输速率,在该第一业务信号A中插入填充信号,以得到与该第一业务信号A对应的第二业务信号。
可选地,该第二确定单元用于:
根据第一乘积确定与该第一业务信号A对应的第二业务信号的传输速率,该第一乘积是指该第一业务信号A的相对倍数和该参考速率的乘积,该第一业务信号A的相对倍数是通过 对该第一业务信号A的传输速率和该参考速率的比值进行向上取整得到。
可选地,该第二确定单元用于:
将该第一乘积确定为与该第一业务信号A对应的第二业务信号的传输速率;
或者,
获取第一速率调整上限,根据该第一速率调整上限对该第一乘积进行调整,得到与该第一业务信号A对应的第二业务信号的传输速率,该第一速率调整上限是预先根据该N路第一业务信号的容许速率浮动下限的最小值和该第三业务信号的容许速率浮动上限确定得到。
可选地,该第二确定单元用于:
将该第一乘积和第二乘积之和确定为与该第一业务信号A对应的第二业务信号的传输速率,该第二乘积是指该第一速率调整上限和该第一乘积的乘积。
可选地,该装置还包括:
接收模块,用于接收N路第四业务信号,该N路第四业务信号中存在编码类型与目标编码类型不同的第四业务信号,该目标编码类型是指该N路第一业务信号的编码类型;
转换模块,用于将该N路第四业务信号中编码类型与该目标编码类型不同的第四业务信号按照该目标编码类型进行编码转换;
确定模块,用于将编码转换后的第四业务信号和编码类型与该目标编码类型相同的第四业务信号,确定为该N路第一业务信号。
本申请中,对于编码类型相同且其中存在传输速率不同的至少两路第一业务信号的N路第一业务信号,可以通过在该N路第一业务信号中插入填充信号,得到与该N路第一业务信号一一对应的N路第二业务信号,然后将该N路第二业务信号复用成一路第三业务信号发送给第二网络设备。其中,该N路第二业务信号的传输速率均为参考速率的整数倍,即该N路第二业务信号的传输速率具有明显的整比特征。通过在该N路第一业务信号中插入填充信号,得到对应传输速率具有明显的整比特征的N路第二业务信号,可以便于后续能够根据具有明显的整比特征的N路第二业务信号进行复用传输,解决了传输速率不同的业务信号的复用问题。通过将对N路第一业务信号填充得到的N路第二业务信号复用成一路第三业务信号,实现了将N路第一业务信号复用传输,相较于相关技术中的分别传输方式,提高了业务信号的传输效率,节省了传输资源。
图17是本申请提供的另一种业务信号传输装置的结构示意图,该装置可以为上述第二网络设备,参见图17,该装置包括:
接收模块1701,用于接收第一网络设备发送的第三业务信号,该第三业务信号是由N路第二业务信号复用形成,该N路第二业务信号是通过在与该N路第二业务信号一一对应的N路第一业务信号中插入填充信号得到,该N路第二业务信号的传输速率均为参考速率的整数倍,该N路第一业务信号的编码类型相同,且该N路第一业务信号中存在传输速率不同的至少两路第一业务信号,该N为大于或等于2的整数;
解复用模块1702,用于根据该N路第二业务信号的复用规则,将该第三业务信号解复用为该N路第二业务信号;
删除模块1703,用于从解复用得到的N路第二业务信号中删除填充信号,得到该N路第一业务信号。
可选地,该删除模块1703包括:
第一删除单元,用于对于解复用得到的N路第二业务信号中的一路第二业务信号C,当该第二业务信号C是通过将偏差适配信号和维护管理信号作为填充信号插入到与该第二业务信号C对应的第一业务信号中得到,且该维护管理信号是在与该第二业务信号C对应的第一业务信号中按比例插入时,从该第二业务信号C中删除该偏差适配信号;
第二删除单元,用于根据在与该第二业务信号C对应的第一业务信号中插入维护管理信号的比例,从删除偏差适配信号后的该第二业务信号C中提取该维护管理信号;
确定单元,用于将删除偏差适配信号和提取维护管理信号后的该第二业务信号C确定为与该第二业务信号C对应的第一业务信号。
本发明实施例中,通过按照N路第一业务信号的复用规则,对第三业务信号进行解复用,并删除解复用得到的业务信号中的填充信号,可以成功地从复用传输的第三业务信号中恢复出N路第一业务信号,解决了复用接收的问题,从而提高了业务信号的传输效率,节省了传输资源。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意结合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机指令时,全部或部分地产生按照本申请该的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如:同轴电缆、光纤、数据用户线(Digital Subscriber Line,DSL))或无线(例如:红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如:软盘、硬盘、磁带)、光介质(例如:数字通用光盘(Digital Versatile Disc,DVD))、或者半导体介质(例如:固态硬盘(Solid State Disk,SSD))等。
本申请还提供了一种计算机存储介质,用于储存实现上述图11所述的业务传输方法的计算机软件指令,其包含用于执行上述方法实施例所设计的程序。通过执行存储的程序,可以实现获取开发应用所需的业务数据。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的示例性实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (30)

  1. 一种业务信号传输方法,其特征在于,应用于第一网络设备中,所述方法包括:
    获取N路第一业务信号,所述N路第一业务信号的编码类型相同,且所述N路第一业务信号中存在传输速率不同的至少两路第一业务信号,所述N为大于或等于2的整数;
    通过在所述N路第一业务信号中插入填充信号,得到与所述N路第一业务信号一一对应的N路第二业务信号,所述N路第二业务信号的传输速率均为参考速率的整数倍;
    将所述N路第二业务信号复用成一路第三业务信号,并将所述第三业务信号发送给第二网络设备。
  2. 如权利要求1所述的方法,其特征在于,所述通过在所述N路第一业务信号中插入填充信号,得到与所述N路第一业务信号一一对应的N路第二业务信号,包括:
    对于所述N路第一业务信号中的一路第一业务信号A,根据所述第一业务信号A的传输速率和所述参考速率,在所述第一业务信号A中插入填充信号,以得到与所述第一业务信号A对应的第二业务信号。
  3. 如权利要求2所述的方法,其特征在于,所述根据所述第一业务信号A的传输速率和所述参考速率,在所述第一业务信号A中插入填充信号,以得到与所述第一业务信号A对应的第二业务信号,包括:
    根据所述第一业务信号A的传输速率确定X,所述X是指单位时间内获取的第一信号单元的数量,所述第一信号单元是指所述第一业务信号A的信号单元;
    根据所述第一业务信号A的传输速率和所述参考速率确定Y,所述Y是指需要在单位时间内获取的一组第一信号单元中插入的第二信号单元的数量,所述第二信号单元是指所述填充信号的信号单元;
    在每隔单位时间获取一组第一信号单元的过程中,在每个单位时间内获取的X个第一信号单元中插入Y个第二信号单元。
  4. 如权利要求3所述的方法,其特征在于,所述在每个单位时间内获取的X个第一信号单元中插入Y个第二信号单元,包括:
    在当前单位时间内获取一组第一信号单元的过程中,当获取到X个第一信号单元时,在获取到的X个第一信号单元之后插入Y个第二信号单元。
  5. 如权利要求3所述的方法,其特征在于,所述在每个单位时间内获取的X个第一信号单元中插入Y个第二信号单元,包括:
    当所述X大于或等于所述Y时,对所述X与所述Y之间的比值进行向上取整,得到R,在当前单位时间内获取一组第一信号单元的过程中,每当获取到R个第一信号单元时,在获取到的R个第一信号单元之后插入一个第二信号单元,直至获取到所述当前单位时间内的最后S个第一信号单元时,在获取到的最后S个第一信号单元之后插入一个第二信号单元,所 述S小于或等于所述R;
    当所述X小于所述Y时,对所述Y与所述X之间的比值进行向上取整,得到P,在当前单位时间内获取一组第一信号单元的过程中,每当获取到一个第一信号单元时,在获取到的一个第一信号单元之后插入P个第二信号单元,直至获取到所述当前单位时间内的最后一个第一信号单元时,在获取到的最后一个第一信号单元之后插入Q个第二信号单元,所述Q为所述Y与在所述当前单位时间内已插入的第二信号单元的数量之间的差值。
  6. 如权利要求3所述的方法,其特征在于,所述在每个单位时间内获取的X个第一信号单元中插入Y个第二信号单元,包括:
    当所述X大于或等于所述Y时,对所述X与所述Y之间的比值进行向下取整,得到E,根据所述X除以所述Y的余数和所述Y,确定单位时间内每次获取第一信号单元的个数是所述E还是所述E+1,按照确定的个数,在当前单位时间内获取Y次第一信号单元,并在每次获取的第一信号单元之后插入一个第二信号单元;
    当所述X小于所述Y时,对所述Y与所述X之间的比值进行向下取整,得到F,根据所述Y除以所述X的余数和所述X,确定单位时间内每次获取一个第一信号单元之后插入的第二信号单元的个数是所述F还是所述F+1,在当前单位时间内获取X次第一信号单元,并按照确定的个数,在每次获取的一个信号单元之后插入第二信号单元。
  7. 如权利要求2-6任一所述的方法,其特征在于,所述根据所述第一业务信号A的传输速率和所述参考速率,在所述第一业务信号A中插入填充信号之前,还包括:
    根据所述N路第一业务信号的传输速率或配置速率,确定所述参考速率。
  8. 如权利要求7所述的方法,其特征在于,所述根据所述N路第一业务信号的传输速率,确定所述参考速率,包括:
    将目标第一业务信号的传输速率的1/T确定为所述参考速率,所述目标第一业务信号为所述N路第一业务信号中的一路第一业务信号,所述T为正整数;
    或者,
    按照在所述N路第一业务信号中插入的填充信号的总比特数最少的策略,从所述N路第一业务信号中选择出一路业务信号,并将选择出的一路业务信号的传输速率的1/T作为所述参考速率,所述T为正整数。
  9. 如权利要求2所述的方法,其特征在于,所述根据所述第一业务信号A的传输速率和所述参考速率,在所述第一业务信号A中插入填充信号,以得到与所述第一业务信号A对应的第二业务信号,包括:
    根据所述第一业务信号A的传输速率和所述参考速率,确定与所述第一业务信号A对应的第二业务信号的传输速率;
    根据所述第一业务信号A的传输速率,以及与所述第一业务信号A对应的第二业务信号的传输速率,在所述第一业务信号A中插入填充信号,以得到与所述第一业务信号A对应的第二业务信号。
  10. 如权利要求9所述的方法,其特征在于,所述根据所述第一业务信号A的传输速率和所述参考速率,确定与所述第一业务信号A对应的第二业务信号的传输速率,包括:
    根据第一乘积确定与所述第一业务信号A对应的第二业务信号的传输速率,所述第一乘积是指所述第一业务信号A的相对倍数和所述参考速率的乘积,所述第一业务信号A的相对倍数是通过对所述第一业务信号A的传输速率和所述参考速率的比值进行向上取整得到。
  11. 如权利要求10所述的方法,其特征在于,所述根据第一乘积确定与所述第一业务信号A对应的第二业务信号的传输速率,包括:
    将所述第一乘积确定为与所述第一业务信号A对应的第二业务信号的传输速率;
    或者,
    获取第一速率调整上限,根据所述第一速率调整上限对所述第一乘积进行调整,得到与所述第一业务信号A对应的第二业务信号的传输速率,所述第一速率调整上限是预先根据所述N路第一业务信号的容许速率浮动下限的最小值和所述第三业务信号的容许速率浮动上限确定得到。
  12. 如权利要求11所述的方法,其特征在于,所述根据所述第一速率调整上限对所述第一乘积进行调整,得到与所述第一业务信号A对应的第二业务信号的传输速率,包括:
    将所述第一乘积和第二乘积之和确定为与所述第一业务信号A对应的第二业务信号的传输速率,所述第二乘积是指所述第一速率调整上限和所述第一乘积的乘积。
  13. 如权利要求1-12任一所述的方法,其特征在于,所述获取N路第一业务信号之前,还包括:
    接收N路第四业务信号,所述N路第四业务信号中存在编码类型与目标编码类型不同的第四业务信号,所述目标编码类型是指所述N路第一业务信号的编码类型;
    将所述N路第四业务信号中编码类型与所述目标编码类型不同的第四业务信号按照所述目标编码类型进行编码转换;
    将编码转换后的第四业务信号和编码类型与所述目标编码类型相同的第四业务信号,确定为所述N路第一业务信号。
  14. 一种业务信号传输方法,其特征在于,应用于第二网络设备中,所述方法包括:
    接收第一网络设备发送的第三业务信号,所述第三业务信号是由N路第二业务信号复用形成,所述N路第二业务信号是通过在与所述N路第二业务信号一一对应的N路第一业务信号中插入填充信号得到,所述N路第二业务信号的传输速率均为参考速率的整数倍,所述N路第一业务信号的编码类型相同,且所述N路第一业务信号中存在传输速率不同的至少两路第一业务信号,所述N为大于或等于2的整数;
    根据所述N路第二业务信号的复用规则,将所述第三业务信号解复用为所述N路第二业务信号;
    从解复用得到的N路第二业务信号中删除填充信号,得到所述N路第一业务信号。
  15. 一种业务信号传输装置,其特征在于,应用于第一网络设备中,所述装置包括:
    获取模块,用于获取N路第一业务信号,所述N路第一业务信号的编码类型相同,且所述N路第一业务信号中存在传输速率不同的至少两路第一业务信号,所述N为大于或等于2的整数;
    插入模块,用于通过在所述N路第一业务信号中插入填充信号,得到与所述N路第一业务信号一一对应的N路第二业务信号,所述N路第二业务信号的传输速率均为参考速率的整数倍;
    复用模块,用于将所述N路第二业务信号复用成一路第三业务信号,并将所述第三业务信号发送给第二网络设备。
  16. 如权利要求15所述的装置,其特征在于,所述插入模块包括:
    第一插入单元,用于对于所述N路第一业务信号中的一路第一业务信号A,根据所述第一业务信号A的传输速率和所述参考速率,在所述第一业务信号A中插入填充信号,以得到与所述第一业务信号A对应的第二业务信号。
  17. 如权利要求16所述的装置,其特征在于,所述第一插入单元包括:
    第一确定子单元,用于根据所述第一业务信号A的传输速率确定X,所述X是指单位时间内获取的第一信号单元的数量,所述第一信号单元是指所述第一业务信号A的信号单元;
    第二确定子单元,用于根据所述第一业务信号A的传输速率和所述参考速率确定Y,所述Y是指需要在单位时间内获取的一组第一信号单元中插入的第二信号单元的数量,所述第二信号单元是指所述填充信号的信号单元;
    插入子单元,用于在每隔单位时间获取一组第一信号单元的过程中,在每个单位时间内获取的X个第一信号单元中插入Y个第二信号单元。
  18. 如权利要求17所述的装置,其特征在于,所述插入子单元具体用于:
    在当前单位时间内获取一组第一信号单元的过程中,当获取到X个第一信号单元时,在获取到的X个第一信号单元之后插入Y个第二信号单元。
  19. 如权利要求17所述的装置,其特征在于,所述插入子单元具体用于:
    当所述X大于或等于所述Y时,对所述X与所述Y之间的比值进行向上取整,得到R,在当前单位时间内获取一组第一信号单元的过程中,每当获取到R个第一信号单元时,在获取到的R个第一信号单元之后插入一个第二信号单元,直至获取到所述当前单位时间内的最后S个第一信号单元时,在获取到的最后S个第一信号单元之后插入一个第二信号单元,所述S小于或等于所述R;
    当所述X小于所述Y时,对所述Y与所述X之间的比值进行向上取整,得到P,在当前单位时间内获取一组第一信号单元的过程中,每当获取到一个第一信号单元时,在获取到的一个第一信号单元之后插入P个第二信号单元,直至获取到所述当前单位时间内的最后一个第一信号单元时,在获取到的最后一个第一信号单元之后插入Q个第二信号单元,所述Q为所述Y与在所述当前单位时间内已插入的第二信号单元的数量之间的差值。
  20. 如权利要求17所述的装置,其特征在于,所述插入子单元具体用于:
    当所述X大于或等于所述Y时,对所述X与所述Y之间的比值进行向下取整,得到E,根据所述X除以所述Y的余数和所述Y,确定单位时间内每次获取第一信号单元的个数是所述E还是所述E+1,按照确定的个数,在当前单位时间内获取Y次第一信号单元,并在每次获取的第一信号单元之后插入一个第二信号单元;
    当所述X小于所述Y时,对所述Y与所述X之间的比值进行向下取整,得到F,根据所述Y除以所述X的余数和所述X,确定单位时间内每次获取一个第一信号单元之后插入的第二信号单元的个数是所述F还是所述F+1,在当前单位时间内获取X次第一信号单元,并按照确定的个数,在每次获取的一个信号单元之后插入第二信号单元。
  21. 如权利要求16-20任一所述的装置,其特征在于,所述插入模块还包括:
    第一确定单元,用于根据所述N路第一业务信号的传输速率或配置速率,确定所述参考速率。
  22. 如权利要求21所述的装置,其特征在于,所述第一确定单元具体用于:
    将目标第一业务信号的传输速率的1/T确定为所述参考速率,所述目标第一业务信号为所述N路第一业务信号中的一路第一业务信号,所述T为正整数;
    或者,
    按照在所述N路第一业务信号中插入的填充信号的总比特数最少的策略,从所述N路第一业务信号中选择出一路业务信号,并将选择出的一路业务信号的传输速率的1/T作为所述参考速率,所述T为正整数。
  23. 如权利要求16所述的装置,其特征在于,所述插入模块包括:
    第二确定单元,用于根据所述第一业务信号A的传输速率和所述参考速率,确定与所述第一业务信号A对应的第二业务信号的传输速率;
    第二插入单元,用于根据所述第一业务信号A的传输速率,以及与所述第一业务信号A对应的第二业务信号的传输速率,在所述第一业务信号A中插入填充信号,以得到与所述第一业务信号A对应的第二业务信号。
  24. 如权利要求23所述的装置,其特征在于,所述第二确定单元用于:
    根据第一乘积确定与所述第一业务信号A对应的第二业务信号的传输速率,所述第一乘积是指所述第一业务信号A的相对倍数和所述参考速率的乘积,所述第一业务信号A的相对倍数是通过对所述第一业务信号A的传输速率和所述参考速率的比值进行向上取整得到。
  25. 如权利要求24所述的装置,其特征在于,所述第二确定单元用于:
    将所述第一乘积确定为与所述第一业务信号A对应的第二业务信号的传输速率;
    或者,
    获取第一速率调整上限,根据所述第一速率调整上限对所述第一乘积进行调整,得到与 所述第一业务信号A对应的第二业务信号的传输速率,所述第一速率调整上限是预先根据所述N路第一业务信号的容许速率浮动下限的最小值和所述第三业务信号的容许速率浮动上限确定得到。
  26. 如权利要求11所述的装置,其特征在于,所述第二确定单元用于:
    将所述第一乘积和第二乘积之和确定为与所述第一业务信号A对应的第二业务信号的传输速率,所述第二乘积是指所述第一速率调整上限和所述第一乘积的乘积。
  27. 如权利要求1-14任一所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收N路第四业务信号,所述N路第四业务信号中存在编码类型与目标编码类型不同的第四业务信号,所述目标编码类型是指所述N路第一业务信号的编码类型;
    转换模块,用于将所述N路第四业务信号中编码类型与所述目标编码类型不同的第四业务信号按照所述目标编码类型进行编码转换;
    确定模块,用于将编码转换后的第四业务信号和编码类型与所述目标编码类型相同的第四业务信号,确定为所述N路第一业务信号。
  28. 一种业务信号传输装置,其特征在于,应用于第二网络设备中,所述装置包括:
    接收模块,用于接收第一网络设备发送的第三业务信号,所述第三业务信号是由N路第二业务信号复用形成,所述N路第二业务信号是通过在与所述N路第二业务信号一一对应的N路第一业务信号中插入填充信号得到,所述N路第二业务信号的传输速率均为参考速率的整数倍,所述N路第一业务信号的编码类型相同,且所述N路第一业务信号中存在传输速率不同的至少两路第一业务信号,所述N为大于或等于2的整数;
    解复用模块,用于根据所述N路第二业务信号的复用规则,将所述第三业务信号解复用为所述N路第二业务信号;
    删除模块,用于从解复用得到的N路第二业务信号中删除填充信号,得到所述N路第一业务信号。
  29. 一种网络设备,所述网络设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器被配置为执行权利要求1-13或14所述的任一项方法的步骤。
  30. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求1-13或14任一项所述的方法。
PCT/CN2019/085696 2018-05-07 2019-05-06 业务信号传输方法及装置 WO2019214582A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020562770A JP7101816B2 (ja) 2018-05-07 2019-05-06 サービス信号伝送方法及び装置
KR1020207034861A KR102519379B1 (ko) 2018-05-07 2019-05-06 서비스 신호 전송 방법 및 장치
EP19800217.2A EP3780439B1 (en) 2018-05-07 2019-05-06 Service signal transmission method and apparatus
US17/092,208 US11381334B2 (en) 2018-05-07 2020-11-06 Service signal transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810427846.1A CN110460405B (zh) 2018-05-07 2018-05-07 业务信号传输方法及装置
CN201810427846.1 2018-05-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/092,208 Continuation US11381334B2 (en) 2018-05-07 2020-11-06 Service signal transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2019214582A1 true WO2019214582A1 (zh) 2019-11-14

Family

ID=68467733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085696 WO2019214582A1 (zh) 2018-05-07 2019-05-06 业务信号传输方法及装置

Country Status (6)

Country Link
US (1) US11381334B2 (zh)
EP (1) EP3780439B1 (zh)
JP (1) JP7101816B2 (zh)
KR (1) KR102519379B1 (zh)
CN (1) CN110460405B (zh)
WO (1) WO2019214582A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112636835A (zh) * 2020-12-16 2021-04-09 中国联合网络通信集团有限公司 一种业务传输方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577598A (zh) * 2009-06-03 2009-11-11 深圳华为通信技术有限公司 多路信号复用、解复用的方法、装置和系统
CN102325343A (zh) * 2011-05-25 2012-01-18 京信通信系统(中国)有限公司 一种数据压缩传输方法及其系统
CN104993902A (zh) * 2015-02-03 2015-10-21 协同通信技术有限公司 卫星通信系统信道复用的方法
CN106817211A (zh) * 2015-11-30 2017-06-09 华为技术有限公司 一种发送信号、接收信号的方法及装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2549616B2 (ja) * 1984-12-03 1996-10-30 日本放送協会 時分割多重伝送装置および方法
JPH0783340B2 (ja) * 1985-09-18 1995-09-06 株式会社ケンウッド 時分割多重伝送方式
CN1941905A (zh) * 1996-09-02 2007-04-04 株式会社东芝 编解码设备及编码/多路复用设备和解码/多路分解设备
JP3235655B2 (ja) * 1997-12-01 2001-12-04 日本電気株式会社 バースト性をもつ低速汎用データの固定長パケット多重装置
JP3871270B2 (ja) * 2003-05-20 2007-01-24 株式会社インテリジェント・コスモス研究機構 送信装置および通信システム
US7673213B2 (en) * 2004-02-19 2010-03-02 Trellisware Technologies, Inc. Method and apparatus for communications using improved turbo like codes
US8213489B2 (en) * 2005-06-23 2012-07-03 Agere Systems Inc. Serial protocol for agile sample rate switching
CN101035143B (zh) * 2006-03-09 2010-05-12 杭州华三通信技术有限公司 一种物理层芯片、传输信号的方法及交换机
CN101507155B (zh) * 2006-09-22 2015-01-21 日本电信电话株式会社 复用传输系统以及复用传输方法
EP3493433A1 (en) * 2007-01-17 2019-06-05 Nippon Telegraph and Telephone Corporation Digital transmission system and digital transmission method
CN100490395C (zh) * 2007-02-09 2009-05-20 华为技术有限公司 通过光传送网络传送以太网数据的方法及系统及以太网数据发送及接收装置
KR101405969B1 (ko) * 2007-06-28 2014-06-13 엘지전자 주식회사 디지털 방송 시스템 및 데이터 처리 방법
WO2009005326A2 (en) * 2007-07-04 2009-01-08 Lg Electronics Inc. Digital broadcasting system and method of processing data
CN101378399B (zh) * 2008-09-28 2012-04-04 华为技术有限公司 业务数据映射和解映射方法及装置
BR112012010467B1 (pt) * 2009-11-04 2021-09-08 Electronics And Telecommunications Research Institute Equipamento de transmissão de blocos de dados em sistema de comunicação sem fio e método para rede local sem fio
KR20120056643A (ko) * 2010-11-25 2012-06-04 한국전자통신연구원 디지털 멀티미디어 방송 서비스 제공장치 및 방법
US9590756B2 (en) * 2013-09-16 2017-03-07 Applied Micro Circuits Corporation Mapping a plurality of signals to generate a combined signal comprising a higher data rate than a data rate associated with the plurality of signals
CN105790883B (zh) 2014-12-22 2019-12-17 华为技术有限公司 一种处理信号的方法及通信设备
CN111147185A (zh) 2015-01-22 2020-05-12 华为技术有限公司 一种利用以太网信道传输业务信号的方法及通信设备
CN106330417B (zh) * 2015-06-19 2019-09-13 华为技术有限公司 数据承载的方法、装置以及数据解析的方法、装置
CN106506110B (zh) * 2015-09-06 2020-05-29 中兴通讯股份有限公司 统计复用光传送网方法及装置
DE102016007576B3 (de) * 2016-06-21 2017-11-02 Audi Ag Übermitteln von TDM-kodierten Daten über einen Kommunikationskanal nach dem I²S-Protokoll
CN109995434B (zh) 2017-12-29 2020-09-08 华为技术有限公司 一种数据传输方法、通信设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101577598A (zh) * 2009-06-03 2009-11-11 深圳华为通信技术有限公司 多路信号复用、解复用的方法、装置和系统
CN102325343A (zh) * 2011-05-25 2012-01-18 京信通信系统(中国)有限公司 一种数据压缩传输方法及其系统
CN104993902A (zh) * 2015-02-03 2015-10-21 协同通信技术有限公司 卫星通信系统信道复用的方法
CN106817211A (zh) * 2015-11-30 2017-06-09 华为技术有限公司 一种发送信号、接收信号的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780439A4

Also Published As

Publication number Publication date
US11381334B2 (en) 2022-07-05
KR102519379B1 (ko) 2023-04-06
JP2021522746A (ja) 2021-08-30
CN110460405B (zh) 2021-04-09
EP3780439B1 (en) 2023-08-02
EP3780439A4 (en) 2021-05-12
CN110460405A (zh) 2019-11-15
US20210058186A1 (en) 2021-02-25
EP3780439A1 (en) 2021-02-17
KR20210005249A (ko) 2021-01-13
JP7101816B2 (ja) 2022-07-15

Similar Documents

Publication Publication Date Title
US20200014610A1 (en) Ethernet signal transport method and scheduling method, and apparatus and system thereof
RU2500080C2 (ru) СПОСОБ РЕГУЛИРОВКИ ПОЛОСЫ ПРОПУСКАНИЯ КАНАЛА ODUflex БЕЗ ПОТЕРЬ И КАНАЛ ODUflex
US11528169B2 (en) Method for adjusting PHY in FlexE group, related device, and storage medium
US20190342022A1 (en) Service transmission method, network device, and network system
WO2014106319A1 (zh) 以太网中处理数据的方法、物理层芯片和以太网设备
CN103404226A (zh) 一种传输数据的方法及设备
WO2014205628A1 (zh) 可变光通道带宽增加方法和减少方法及装置
WO2010121520A1 (zh) 光传送网的信号传送方法、设备及通信系统
US12021615B2 (en) Data processing method, optical transmission device, and digital processing chip
CN110830858A (zh) 客户业务数据传送方法、装置、光传送网设备及存储介质
WO2019214582A1 (zh) 业务信号传输方法及装置
WO2024011879A1 (zh) 一种灵活以太网中网络时延优化的方法和装置
CN104796289A (zh) 一种电力sdh数据业务保护配置方法及数据业务传输方法
CN110890936B (zh) 一种码块生成方法、接收方法和装置
WO2023221966A1 (zh) 一种传输数据的方法和装置
WO2024051586A1 (zh) 一种光传送网中的数据帧的处理方法、装置和系统
WO2024045869A1 (zh) 一种数据传输方法和数据传输装置
CN113330696A (zh) Cpri数据块传输方法和设备
US12143204B2 (en) CPRI data block transmission method and apparatus
WO2024046465A1 (zh) 一种传输数据的方法和装置
WO2024002146A1 (zh) 一种配置时隙的方法、装置和系统
WO2019061406A1 (zh) 一种业务数据发送方法及装置
CN116566542A (zh) 业务数据承载方法、承载帧结构及业务处理设备
CN118055076A (zh) 一种报文处理方法、信息处理方法及装置
CN117354158A (zh) 一种通用通信信道实现方法、电子设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562770

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019800217

Country of ref document: EP

Effective date: 20201110

ENP Entry into the national phase

Ref document number: 20207034861

Country of ref document: KR

Kind code of ref document: A