WO2019214571A1 - 一种发送消息的方法及相关设备 - Google Patents

一种发送消息的方法及相关设备 Download PDF

Info

Publication number
WO2019214571A1
WO2019214571A1 PCT/CN2019/085652 CN2019085652W WO2019214571A1 WO 2019214571 A1 WO2019214571 A1 WO 2019214571A1 CN 2019085652 W CN2019085652 W CN 2019085652W WO 2019214571 A1 WO2019214571 A1 WO 2019214571A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
parameter
configuration information
parameter value
terminal
Prior art date
Application number
PCT/CN2019/085652
Other languages
English (en)
French (fr)
Inventor
陈晓光
杨玮玮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019214571A1 publication Critical patent/WO2019214571A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/021Traffic management, e.g. flow control or congestion control in wireless networks with changing topologies, e.g. ad-hoc networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0226Traffic management, e.g. flow control or congestion control based on location or mobility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, and in particular, to a method for sending a message and related devices.
  • V2X Vehicle to Everything
  • 3GPP 3rd Generation Partnership Project
  • V2V Vehicle to Vehicle
  • V2I Vehicle to Infrastructure
  • V2P Vehicle to Pedestrian
  • V2N Vehicle to Network
  • V2X devices broadcast V2X messages to the surroundings at a certain frequency.
  • V2X device GB/day
  • V2X service messages in the current technology are frequently exchanged, and the V2X data volume is large, which causes load on the platform and the network.
  • the embodiment of the present application provides a method for sending a message, and a related device, which is used to implement dynamic adjustment of a transmission frequency to send a message; a method for transmitting a message is applied to a communication system of a car network, the communication system including a terminal and a server, and the terminal
  • the device includes a device for sending a message, and the terminal is used to periodically broadcast a message, which is a message of the terminal's own state, the state includes the location, speed, orientation, device status, and the like of the terminal; the terminal may also receive a message broadcast by the peripheral terminal.
  • an embodiment of the present application provides a method for sending a message, where the method may be applied to a device for sending a message, where the device receives first frequency configuration information from a server, where the first frequency configuration information is used to indicate a terminal.
  • the frequency of the message, the first frequency configuration information includes at least one configuration parameter, a parameter value set of the configuration parameter, and a first transmission frequency corresponding to each parameter value in the parameter value set; the device determines that the current time configuration parameter corresponds to a first parameter value; the device then matches the first parameter value with the parameter value set to determine a second parameter value that matches the first parameter value in the parameter value set; each second parameter value has a corresponding number At a transmission frequency, the device may transmit the message according to the first transmission frequency corresponding to the second parameter value.
  • the second parameter value that matches the first parameter value may also be different, and each second parameter value has a corresponding first sending frequency.
  • the terminal may dynamically adjust the frequency of the currently sent message according to the first sending frequency corresponding to the second parameter value, and does not need to follow a fixed frequency.
  • the sent message can be sent at a lower transmission frequency to reduce the amount of data sent by the message and reduce the load on the network and the terminal.
  • the at least one configuration parameter includes a speed
  • the parameter value set includes a speed value set
  • the device detects the first speed value of the current time. Then, the terminal matches the first speed value with the speed value set, and determines a second speed value that matches the first speed value in the set of speed values, the first transmission frequency being a transmission frequency corresponding to the second speed value in the first configuration information.
  • the at least one configuration parameter includes a speed
  • the speed value set includes a plurality of second speed values
  • each of the plurality of second speed values corresponds to a sending frequency
  • the terminal may be based on the current A change in the first speed value of the time to adjust the transmission frequency of the transmitted message, for example, when the vehicle is traveling at a slower speed, the message can be sent at a lower transmission frequency, when the vehicle is traveling at a faster speed, The message may be sent at a higher transmission frequency to dynamically adjust the transmission frequency of the transmission message according to the first frequency configuration information, and reduce the data amount of the transmitted message.
  • the at least one configuration parameter includes a geographic location.
  • the parameter value of each geographic location corresponds to N speed values, and each of the N speed values corresponds to The first transmission frequency, N is a positive integer greater than or equal to 1.
  • the parameter value of each geographic location corresponds to N speed values.
  • the geographic location may include an urban area, a high speed, a viaduct, etc., and the transmission frequency corresponding to different geographical locations is different, and the device may be based on the current geographic location. The location and the speed value corresponding to the current geographic location dynamically adjust the sending frequency of the sent message.
  • the first parameter value is matched with the parameter value set, and the second parameter value that matches the first parameter value in the parameter value set is determined
  • the specific manner may be: the device acquires the current a first position of the time and a first speed value; first matching the first position of the current time with the parameter value of the geographic location, determining the second position in the frequency configuration information; and then setting the first speed value of the current time
  • the N speed values corresponding to the two positions are matched to determine a second speed value that matches the first speed value among the N speed values; then, the device transmits the message according to the first transmission frequency corresponding to the second speed value.
  • the device may dynamically adjust the sending frequency of the sent message according to the current geographic location and the speed value corresponding to the current geographic location.
  • the at least one configuration parameter includes a service
  • the parameter value set includes a service ID value set
  • the device determines a currently executed first service (such as a traffic light service, a collision service, and the like); and then the first parameter The value is matched with the parameter value set, and the ID value of the first service is matched with the service ID value set, and the second service ID value matching the first service in the service ID set is determined, and the first sending frequency is at the first The transmission frequency corresponding to the ID value of the second service in the configuration information.
  • the services are different, and the sending frequency of the sent messages is different. It can be understood that different services require different sending frequencies for sending messages.
  • some special services require a higher sending frequency.
  • the message is transmitted to ensure the security of the vehicle.
  • the sending frequency can be dynamically adjusted according to the current first service and the first frequency configuration information, that is, the data volume of the sent message can be reduced, and the security of the vehicle can be improved.
  • the first frequency configuration information further includes a configuration parameter priority, where each configuration parameter of the at least one configuration parameter has a corresponding priority; the device may determine, according to the priority of the configuration parameter, the at least one configuration parameter.
  • Target configuration parameters for example, when the first frequency configuration information includes at least two configuration parameters, each configuration parameter has a corresponding priority, wherein the service has the highest priority (first priority), and the speed has the second priority Level, etc., the service is a target configuration parameter, and the device matches the first parameter value with the parameter value set of the target configuration parameter to determine a second parameter value that matches the first parameter value in the parameter value set.
  • the device when the number of configuration parameters is at least two, the device adjusts the sending frequency of the sending message according to the first sending frequency corresponding to the target configuration parameter with the highest priority, that is, the data amount of the sent message is reduced. It can also improve the safety of the vehicle.
  • the device may send the target message corresponding to the target service to the server according to the first sending frequency, where the target service is a special service, such as a fault service, and the target message is used to instruct the server to update the first message according to the target message.
  • the frequency configuration information is obtained, and the updated second frequency configuration information is obtained, where the second frequency configuration information includes an ID value of the target service and an updated second transmission frequency corresponding to the target service; and the device receives the updated second frequency configuration. Information; the device can then send the message according to the updated second transmission frequency.
  • the server receives the target message, and determines that the current service of the terminal is a faulty service, and the server may configure frequency configuration information for the terminal according to the faulty service, that is, the updated second frequency configuration information.
  • the two frequency configuration information includes at least one configuration parameter, and the second transmission frequency is increased compared to the first transmission frequency, thereby dynamically adjusting the transmission frequency and improving the security of different services.
  • an embodiment of the present application provides a computer storage medium for storing computer software instructions for use in the foregoing apparatus, including a program designed to perform the above aspects.
  • an embodiment of the present application provides an apparatus for transmitting a message, which has the functions performed by the actual device in the foregoing method.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the apparatus comprises at least one processor and interface circuitry, at least one processor for performing the method of the first aspect described above.
  • an embodiment of the present application provides a terminal, where the terminal includes the apparatus for sending a message in the foregoing third aspect.
  • the embodiment of the present application provides a method for sending a message, where the method includes: configuring, by a server, first frequency configuration information, where the first frequency configuration information includes at least one configuration parameter, a parameter value set of the configuration parameter, and a parameter value.
  • the value is matched with the parameter value set, and the second parameter value that matches the first parameter value in the parameter value set is determined, and the message is sent according to the first sending frequency corresponding to the second parameter value.
  • the second parameter values that match the first parameter value may also be different, and each second parameter value has a corresponding first sending frequency. Transmitting a message according to the first sending frequency corresponding to the first parameter value (such as its own state information), the device may dynamically adjust the frequency of the currently sent message according to the first sending frequency corresponding to the second parameter value, and does not need to follow a fixed frequency.
  • the sent message can be sent at a lower transmission frequency to reduce the amount of data sent by the message and reduce the load on the network and the terminal.
  • the server receives the device type sent by the terminal; the device type includes but is not limited to the drive test unit, the vehicle device, and the pedestrian device; and the server configures the first frequency configuration information corresponding to the device type according to the device type.
  • the sending frequency of the sent message when the device type is a drive test unit, the sending frequency of the sent message is a fixed value; when the device type is a vehicle device and a pedestrian device, the sending frequency of the sent message may be multiple, according to the configuration parameter. Different parameter values correspond to different transmission frequencies.
  • the server receives the target message corresponding to the target service sent by the terminal; the server updates the first frequency configuration information according to the target message, and obtains the updated second frequency configuration information, where the second frequency configuration information includes the updated
  • the second transmission frequency is sent by the server to the terminal, and the second frequency configuration information is used to indicate that the terminal sends the message according to the second transmission frequency.
  • the server receives the target message, and determines that the current service of the terminal is a faulty service, and the server may configure frequency configuration information for the terminal according to the faulty service, that is, the updated second frequency configuration information, and the second frequency configuration information.
  • At least one configuration parameter for example, when the server receives the target message, determines the current service of the terminal, indicating that the terminal is currently in danger, and needs to increase the transmission frequency of the message sent by the terminal to ensure the security of the terminal, so the server reconfigures the frequency information, and Configure the second frequency configuration information to dynamically adjust the sending frequency and improve the security of different services.
  • the server includes a central server and an edge server, wherein the edge server is: an edge-deployed server, that is, a network location close to the user, usually integrating caching, security, storage, and local application hosting.
  • the edge server is: an edge-deployed server, that is, a network location close to the user, usually integrating caching, security, storage, and local application hosting.
  • central server Compared to edge servers, the central server is deployed away from users and connected to each edge server, at a central location.
  • the central server sends the first frequency configuration information to the terminal, the central server synchronously transmits the first frequency configuration information to the edge server.
  • the edge server receives the target message corresponding to the target service sent by the terminal according to the first sending frequency; the edge server updates the first frequency configuration information according to the target message, and obtains the updated second frequency configuration information,
  • the second frequency configuration information includes a parameter value set and a second transmission frequency corresponding to the parameter value set; the edge server sends the second frequency configuration information to the central server; the central server sends the second frequency configuration information to the terminal, where the second frequency configuration information is used to indicate
  • the terminal transmits a message according to the second transmission frequency.
  • the frequency configuration information is cooperatively controlled by the edge server and the central server, and the frequency of the message transmission of the terminal is adjusted by sending the frequency configuration information to the terminal.
  • the distance between the terminal and the edge server is closer than that of the central server.
  • the edge server can respond to the message sent by the terminal faster, and the processing efficiency of the frequency configuration information update is improved by the synergy between the edge server and the central server.
  • the at least one configuration parameter includes a speed
  • the parameter value set includes a speed value set
  • the speed value in the speed value set has a corresponding first transmission frequency
  • the at least one configuration parameter includes a speed
  • the speed value set includes a plurality of second speed values
  • each of the plurality of second speed values corresponds to a sending frequency
  • the terminal may be based on the current A change in the first speed value of the time to adjust the transmission frequency of the transmitted message, for example, when the vehicle is traveling at a slower speed, the message can be sent at a lower transmission frequency, when the vehicle is traveling at a faster speed, The message may be sent at a higher transmission frequency to dynamically adjust the transmission frequency of the transmission message according to the first frequency configuration information, and reduce the data amount of the transmitted message.
  • the at least one configuration parameter includes a service
  • the parameter value set includes a service ID value set
  • each service ID value in the service ID value set has a corresponding first transmission frequency.
  • the services are different, and the sending frequency of the sent messages is different. It can be understood that different services require different sending frequencies for sending messages. For example, some special services (such as collision services) require a higher sending frequency.
  • the message is transmitted to ensure the security of the vehicle.
  • the sending frequency can be dynamically adjusted according to the current first service and the first frequency configuration information, that is, the data volume of the sent message can be reduced, and the security of the vehicle can be improved. .
  • the at least one configuration parameter further includes a geographic location.
  • the parameter value of each geographic location corresponds to N speed values, and each of the N speed values has Corresponding first transmission frequency, N is a positive integer greater than or equal to 1.
  • the parameter value of each geographic location corresponds to N speed values.
  • the geographic location may include an urban area, a high speed, a viaduct, etc., and the transmission frequency corresponding to different geographical locations is different, and the device may be based on the current geographic location. The location and the speed value corresponding to the current geographic location dynamically adjust the sending frequency of the sent message.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the server, which includes a program designed to execute the above aspects.
  • an embodiment of the present application provides an apparatus, which has the functions performed by a server in the foregoing method.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the structure of the server includes a memory, a network interface, and a processor.
  • the memory is used to store computer executable program code and is coupled to a network interface.
  • the program code includes instructions that, when executed by the processor, cause the server to perform the information or instructions involved in the above method.
  • the terminal receives the first frequency configuration information from the server, where the first frequency configuration information includes at least one configuration parameter, and after receiving the first frequency configuration information, the terminal may configure the configuration parameter according to the first frequency configuration information. Determining a first parameter value corresponding to the current time configuration parameter, and then matching the first parameter value with the parameter value set in the first frequency configuration information, and determining a second parameter value that matches the first parameter value in the parameter value set The current first parameter value is different, and the second parameter value matching the first parameter value may be different. Then, the terminal may be configured according to the second parameter value in the first frequency configuration information.
  • the terminal may dynamically update the frequency of the currently sent message according to the first sending frequency corresponding to the second parameter value. Adjustments, for example, messages that do not need to be sent at a fixed frequency, can be sent at a lower transmission frequency Information to reduce the amount of data transmitted messages, and to reduce load on the network and terminals.
  • FIG. 1 is a schematic diagram of a scenario of a car network in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a communication system for a vehicle network in an embodiment of the present application
  • FIG. 3 is a schematic flowchart of steps of an embodiment of a method for sending a message according to an embodiment of the present application
  • FIG. 4 is a schematic structural diagram of another embodiment of a communication system for a vehicle network in an application embodiment
  • FIG. 5 is a schematic flowchart of steps of an embodiment of a method for sending a message according to an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of an apparatus for sending a message according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an embodiment of a terminal according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an embodiment of a server according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an embodiment of a server in an embodiment of the present application.
  • the embodiment of the present application provides a method for sending a message and a related device, which are used to dynamically adjust a sending frequency to send a message.
  • V2X vehicle to everything
  • the vehicle network is a huge interactive network composed of information such as vehicle position, speed and route. Vehicles can be completed by GPS, sensors and other devices. The collection of its own environment and state information, the vehicle network in accordance with the agreed communication protocol and data interaction standards, between the car and the car, the car and the road, the car and the person and the car and the Internet, wireless communication and information exchange network. Standard organizations at home and abroad are actively involved in the construction of vehicle networking technologies, such as the 3rd Generation Partnership Project (3GPP) and the European Telecommunications Standards Institute (ETSI), which are beneficial to the development of the Internet of Vehicles. Promote the innovation and development of the automobile industry, build a new mode of new modes of automobile and transportation services, and promote the innovation and application of autonomous driving technology.
  • 3GPP 3rd Generation Partnership Project
  • ETSI European Telecommunications Standards Institute
  • FIG. 1 is a schematic diagram of a scenario of a car network.
  • the V2X technology defined by 3GPP includes four categories: vehicle to vehicle (V2V), vehicle to infrastructure (V2I), and vehicle. It communicates with pedestrians (V2P) and vehicle to network (V2N); among them, all V2X devices broadcast messages to the surroundings at a certain frequency.
  • V2V vehicle to vehicle
  • V2I vehicle to infrastructure
  • V2N vehicle to network
  • FIG. 2 is a schematic structural diagram of a communication system for a vehicle network in the embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WiFi Wireless Fidelity
  • the next generation communication system may include, for example, a fifth-generation (5G) communication system.
  • 5G fifth-generation
  • the communication system of the car network includes an application server 201, a plurality of terminals 202 (for example, terminal A, terminal B, terminal C, and terminal D), a control function (CF) 203, and an application server (AS) 201.
  • the CF is communicated with the control function (CF) 203 through the V2 interface, and the CF is connected to the terminal 202 through the V3 interface, and the CF sends the service authorization parameter to the terminal 202 through the V3 interface.
  • 3GPP supports enhanced PC5 interfaces for direct communication between point-to-point and point-to-multipoint short-range devices between V2V, V2I, and V2P. Each terminal can communicate with each other through the PC5 interface.
  • PC5 is the reference point between the terminals, and the physical layer is also called Sidelink, which is used to complete the signaling and data transmission of the control plane and the user plane, the proximity service discovery, the direct communication between the terminals, and the relay connection to the terminal.
  • the terminal can be an in-vehicle device, a mobile phone, a road test unit, a tablet computer, a notebook computer, a palmtop computer, a mobile internet device (MID), a wearable device, an augmented reality (AR) device, and no A wireless terminal in a self driving, a wireless terminal in a transportation safety, and a wireless terminal in a smart city.
  • a mobile phone a road test unit
  • a tablet computer a notebook computer
  • a palmtop computer a mobile internet device (MID)
  • MID mobile internet device
  • AR augmented reality
  • the V2X terminal can support the traditional air Uu interface of the mobile communication network to meet the wide-area communication requirements.
  • the application server is a V2X application server for different carrier networks, and each terminal is connected to a radio access network (RAN) node 204 through a Uu interface, and the core network node 205 is connected to the application server 201.
  • RAN radio access network
  • Terminal used for periodically broadcasting a message, which is a message of the terminal's own state, including the location, speed, orientation, device status (such as normal, fault) of the terminal, and receiving the V2X message broadcast by the peripheral terminal;
  • the status and the received V2X message are used to determine whether there is a security threat currently. If there is a security threat, an alarm message is sent.
  • Access network node establishment of an air interface signaling connection for the terminal to change from an idle state to a connected state; and transmission of uplink and downlink data of a terminal participating in a connected state.
  • Control Function Device responsible for V2X communication service authorization and related parameter issuance.
  • the application server is configured to configure first frequency configuration information, where the first frequency configuration information includes configuration parameters (such as speed), parameter parameter sets of configuration parameters (such as a set of speed values), and parameters in the parameter value set. a first transmission frequency corresponding to the value; the first frequency configuration information is used to indicate a frequency at which the terminal sends the message; and the terminal receives the first frequency configuration information from the server,
  • the terminal determines a first parameter value corresponding to the current time configuration parameter (eg, the current time speed value is 90); then, the terminal matches the first parameter value with the parameter value set, and determines that the first parameter value is matched in the parameter value set.
  • the second parameter value (for example, 80-100); the terminal sends the message according to the first sending frequency corresponding to the second parameter value.
  • the terminal determines a first parameter value corresponding to the configuration parameter at the current time, and then matches the first parameter value with the parameter value set to determine a second parameter matching the first parameter value in the parameter value set.
  • the value of the parameter in the end, the terminal may send the message according to the first sending frequency corresponding to the second parameter value.
  • the second parameter value determined by the terminal at different times is different, and the second parameter value matches the second parameter value.
  • the parameter values may also be different.
  • Each second parameter value has a corresponding first sending frequency, and the message (such as its own state information) is sent according to the first sending frequency corresponding to the first parameter value, so as to implement dynamic adjustment of the sending frequency to send. Message.
  • a method for sending a message in the present application is described in detail below by using an embodiment.
  • a communication of a vehicle network is provided.
  • a plurality of terminals may be included in the system.
  • the interaction between any one of the terminals and the server is taken as an example.
  • Step 301 The terminal initiates an on boot connection to the CF, and the CF feeds back a response to the terminal, and the terminal connects with the CF.
  • Step 302 The CF authorizes the terminal to use the related service of the car network, and sends the communication parameter to the terminal (including but not limited to the wireless resource, the authorized service, or the IP address of the V2X application server, etc.);
  • Step 303 The terminal connects to the application server according to the IP address of the application server, and reports the ID of the terminal and the device type of the terminal to the application server.
  • the device types include, but are not limited to, a Road Side Unit (RSU), a Vehicle User Equipment (V-UE), and a Pedestrian User Equipment (P-UE).
  • RSU Road Side Unit
  • V-UE Vehicle User Equipment
  • P-UE Pedestrian User Equipment
  • step 301-step 303 is an optional step. If the terminal has established a connection with the application server, step 301-step 303 is not required to be performed, and step 304 is directly executed.
  • Step 304 The application server configures the first frequency configuration information, where the first frequency configuration information includes at least one configuration parameter, a parameter value set of the at least one configuration parameter, and a first sending corresponding to each first parameter value in the first parameter value set. frequency.
  • Each of the at least one configuration parameter corresponds to a set of parameter values, for example, the first configuration parameter corresponds to the first parameter value set, the second configuration parameter corresponds to the second parameter value set, and the like.
  • the application server configures the first frequency configuration information, for example, the at least one configuration parameter includes but is not limited to at least one of speed, service, and geographic location, and each configuration parameter has a corresponding parameter value set, and each of the parameter value sets The parameter values have corresponding first transmission frequencies.
  • services include, but are not limited to, regular services, traffic lights, alarm services, and faulty services.
  • Geographical locations include, but are not limited to, high speed, cities, suburbs, intersections, etc.
  • the configuration parameter may further include a device type.
  • the parameter value set corresponding to the device type includes a drive test unit and a vehicle device (a commercial vehicle vehicle device, a truck vehicle device, etc.), and each parameter value.
  • the first sending frequency corresponding to the drive test unit is 30 Hz, and when the device type is a drive test unit, the sending frequency of the sent message is a fixed value; when the device type is a vehicle device and a pedestrian device
  • the sending frequency of the sending message may be multiple.
  • different sending frequencies are corresponding, and the first sending frequency corresponding to the in-vehicle device is 10 Hz.
  • different in-vehicle devices correspond to different transmission frequencies.
  • the first transmission frequency corresponding to the commercial vehicle-mounted device is 10 Hz
  • the first transmission frequency corresponding to the truck-mounted device is 5 Hz.
  • the specific data corresponding to the device type and the first sending frequency are examples, and do not cause a limited description of the present application.
  • the application server may configure the terminal with the first frequency configuration information corresponding to the device type according to the device type reported by the terminal.
  • the frequency configuration information may be exemplified in the form of a configuration information table.
  • the frequency configuration information is exemplified by the following three examples.
  • the first frequency configuration information includes one configuration parameter.
  • the terminal is a vehicle quantity device
  • the configuration parameter is speed
  • the first frequency configuration information is as shown in Table 1 below:
  • the first frequency configuration information includes two configuration parameters, and the configuration parameters include geographic location and speed.
  • the first frequency configuration information is as shown in Table 2 below:
  • the first frequency configuration information includes three configuration parameters, and the configuration parameters include geographic location, speed, and service.
  • the first configuration information is as shown in Table 3 below:
  • the parameter value set corresponding to the service is a service ID value set, and different service ID values in the service ID value set correspond to different services.
  • “700” means regular service
  • “710” means “traffic service”
  • “720” means “alarm service”
  • “730” means “fault service”, etc.
  • the service and ID values in Table 3 are examples. Does not result in a limited description of the application.
  • the first frequency configuration information in the embodiment of the present application includes at least one configuration parameter, and the frequency configuration parameters in Table 1, Table 2, and Table 3 are only examples, and do not cause a limited description of the present application, and
  • the configuration parameter in the first frequency configuration information may be at least one of the plurality of configuration parameters.
  • the first frequency configuration information may include only the configuration parameter of the service, or may include only the configuration parameter of the geographic location, or may include services, geographic locations, and the like.
  • Step 305 The terminal receives the first frequency configuration information sent by the server, and determines a first parameter value corresponding to the current time configuration parameter.
  • the terminal receives the first frequency configuration information sent by the application server, where the first frequency configuration information is as shown in Table 1, the terminal detects the current time according to the configuration parameter (speed) in the first frequency configuration information.
  • the speed value is 70.
  • the first frequency configuration information is as shown in Table 2.
  • the terminal determines the current geographic location (such as an urban area) according to the configuration parameters (geographic location and speed) in the first frequency configuration information, and detects the current The speed value of the moment (such as 70).
  • the first frequency configuration information is as shown in Table 3.
  • the terminal determines the current time service (such as regular service) and determines the current geographic location (eg, Urban area), detects the current speed value (such as 80).
  • Step 306 The terminal matches the first parameter value with the parameter value set, and determines a second parameter value that matches the first parameter value in the parameter value set.
  • the terminal matches the currently detected first speed value (such as 70) with the speed value set in Table 1, and determines the in-degree value.
  • a second velocity value in the set that matches the first velocity value such as a current detected velocity of 70, and a second velocity value (eg, 50-80) at which the currently detected velocity matches the set of velocity values in Table 1.
  • the configuration parameter when the first frequency configuration information is as shown in Table 2, the configuration parameter includes a geographic location, and in the first frequency configuration information, the parameter value of each geographic location corresponds to N velocity values, N Each of the velocity values corresponds to a first transmission frequency, and N is a positive integer greater than or equal to one.
  • N In Table 2, there are 2 geographic locations, such as urban and high speed.
  • the terminal detects the current location (such as the urban area) and the first speed value of the current time (such as 70).
  • the terminal matches the first location (urban area) of the current time with the parameter value of the geographic location (urban area and high speed), and determines a second location in the first frequency configuration information, where the second location is “urban area” ".
  • Each geographic location corresponds to N speed values.
  • the five speed value ranges corresponding to “urban area”, the five speed values are “0-20”, “20-50”, “50” respectively. -80”, “80-120”, “120-above”.
  • the terminal matches the first speed value 70 of the current time with the N speed values corresponding to the second position, and determines a second speed value “50-80” that matches the first speed value 70 among the five speed values. .
  • the configuration parameter is a service
  • the parameter value set includes a service ID value set
  • the terminal determines the currently executed first service
  • the first service ID value is matched with the service ID set to determine the service ID set.
  • a second service ID value that matches the first service.
  • the first frequency configuration information further includes a configuration parameter priority, each of the at least one configuration parameter has a corresponding priority, and the service is the configuration parameter with the highest priority.
  • each configuration parameter has a corresponding priority, wherein the service has the highest priority (the first A priority), the speed has a second priority, and the like.
  • the terminal determines the target configuration parameter in the at least one configuration parameter according to the priority of the configuration parameter; for example, when the two configuration parameters are speed and service respectively, the terminal determines that the configuration parameter with the high priority is the target configuration parameter, and the parameter according to the target configuration parameter
  • the first transmission frequency corresponding to the second parameter value in the value set adjusts the frequency of the current transmission message. For example, when the two configuration parameters are the speed and the service, the priority of the service is the highest, and the terminal determines the first service at the current time, and the terminal first matches the first service with the service ID value set in the first frequency configuration information. For example, the first service at the current time is a “traffic service”, and the ID value of the traffic service is “710”, and the current first service is matched with the service ID value set to determine that the matching target service ID value is “710”. .
  • Step 307 The terminal sends a message according to the first sending frequency corresponding to the second parameter value.
  • the second parameter value (speed value) is "50-80", and the terminal according to the correspondence relationship between the parameter value and the message transmission frequency in the first frequency configuration information, the speed value is "50- At 80", the first transmission frequency in the corresponding message transmission frequency is "10".
  • the terminal receives the first frequency configuration information from the server, where the first frequency configuration information includes at least one configuration parameter, and after receiving the first frequency configuration information, the terminal may configure the configuration parameter according to the first frequency configuration information. Determining a first parameter value corresponding to the current time configuration parameter, and then matching the first parameter value with the parameter value set in the first frequency configuration information, and determining a second parameter value that matches the first parameter value in the parameter value set The current first parameter value is different, and the second parameter value matching the first parameter value may be different. Then, the terminal may be configured according to the second parameter value in the first frequency configuration information.
  • the terminal may dynamically update the frequency of the currently sent message according to the first sending frequency corresponding to the second parameter value. Adjustments, for example, messages that do not need to be sent at a fixed frequency, can be sent at a lower transmission frequency Information to reduce the amount of data transmitted messages, and to reduce load on the network and terminals.
  • the terminal may further receive second frequency configuration information after the update sent by the application server, where the second frequency configuration information is used.
  • the indication terminal may send a message according to the second transmission frequency after the update.
  • the terminal sends the target message corresponding to the target service to the server according to the first sending frequency (for example, 10 Hz).
  • the target service is required for some special services, such as a fault service, a collision service, and the like.
  • the application server receives the target message sent by the terminal, and the target message is used to instruct the server to update the first frequency configuration information according to the target message to obtain the updated second frequency configuration information, where the second frequency configuration information includes the updated second sending frequency.
  • the application server receives the target message, and determines that the current service of the terminal is a faulty service.
  • the application server may configure the frequency configuration information for the terminal according to the faulty service, that is, the updated second frequency configuration information, where the second frequency configuration information includes at least one configuration.
  • Parameters, the second frequency configuration information can be understood by referring to Table 1, Table 2, and Table 3.
  • the application server when the application server receives the target message and determines the current service of the terminal, indicating that the terminal is currently in danger, it is necessary to increase the transmission frequency of the message sent by the terminal to ensure the security of the terminal, so the application server reconfigures the frequency information and re-establishes a second frequency configuration information, where the second frequency configuration information includes a service and a second transmission frequency corresponding to the service.
  • the second frequency configuration information includes a fault service (ID value is “730”), and the fault service is configured.
  • the corresponding second transmission frequency is 40 Hz (the first transmission frequency is 20 Hz).
  • the second transmission frequency is increased compared with the first transmission frequency, and the dynamic adjustment transmission frequency is realized, and the security of different services is improved.
  • the “first frequency configuration information” is the frequency configuration information before the update
  • the “second frequency configuration information” For the updated frequency configuration information, the first transmission frequency in the first frequency configuration information is the transmission frequency before the update, and the second transmission frequency in the second frequency configuration information is the transmission frequency after the update.
  • the terminal After receiving the second frequency configuration information, the terminal adjusts the sending frequency of the sending message according to the indication of the second frequency configuration information.
  • the target service of the current time is matched with the service in the second frequency configuration information, and the second sending frequency corresponding to the “fault service” in the second frequency configuration information is determined (for example, 40 Hz).
  • the terminal sends a message according to the updated second transmission frequency (eg, 40 Hz).
  • the application server configures the first frequency configuration information for the terminal, and the application server may also update the first frequency configuration information according to the actual service requirement, and update the second sending frequency corresponding to the target service (such as the fault service).
  • the terminal receives the second frequency configuration information, and sends a message according to the updated second transmission frequency, and the terminal dynamically adjusts the frequency of sending the message according to the indication of the second frequency configuration information, that is, reduces all terminals in the system.
  • the amount of data in the broadcast message can also improve the security of the vehicle in certain special services, such as faulty services.
  • the application server may also update the frequency configuration information for the terminal according to the global information and the current service of the terminal, where the global information may be understood as information of the current air interface resource of the application server in the V2X communication system.
  • the case of the radio resources occupied by all the terminals in the current V2X communication system is the transmission frequency of the unified configuration transmission message for each terminal in all the terminals.
  • the V2X communication system includes the terminal A, the terminal B, and the terminal C in the connected state
  • the sending frequency of the current sending message of the terminal A is 10 Hz
  • the sending frequency of the current sending message of the terminal B is 10 Hz
  • the terminal C The sending frequency of the current sending message is 10 Hz.
  • the application server currently has no available radio resources, and the server can configure the updated second frequency configuration information for each terminal according to the current global information. For example, if the terminal C is currently a faulty service, the terminal C sends a target message of the faulty service to the application server through the base station according to the transmission frequency of 10 Hz.
  • the target message carries the ID of the faulty service, and the application server receives the target message according to the target.
  • the message determines that the current service of the terminal C is a faulty service. If the application server increases the transmission frequency of the terminal C, the transmission frequency of the terminal A and the terminal B needs to be reduced.
  • the application server reconfigures the sending frequency of the sending message for the terminal A and the terminal B, and sends the frequency configuration information A to the terminal A.
  • the frequency configuration information A is used to instruct the terminal A to adjust the current message sending frequency to 5 Hz, that is, the message of the terminal A is sent.
  • the frequency is reduced from 10 Hz to 5 Hz; the application server sends the frequency configuration information B to the terminal B, and the frequency configuration information B is used to instruct the terminal B to adjust the current message transmission frequency to 5 Hz, that is, the message transmission frequency of the terminal B is reduced from 10 Hz to 5 Hz;
  • the server configures the second frequency configuration information for the terminal C, where the second frequency configuration information includes a configuration parameter (fault service) and a second transmission frequency corresponding to the fault service is 20 Hz, that is, the message transmission frequency of the terminal C is increased from 10 Hz to 20 Hz.
  • the terminal adjusts the message sending frequency to 20 Hz according to the updated second frequency configuration information.
  • the application server adjusts the sending frequency of the sending message of the terminal in the system according to the global information in the V2X communication system, thereby saving radio resources and improving The security of certain services.
  • the terminal D is a vehicle device, the vehicle is traveling on a high road, and the terminal D is connected to the application server, and the application server sends the first frequency configuration information to the terminal D through the base station.
  • a frequency configuration information is as shown in Table 2 above, that is, the first frequency configuration information includes two configuration parameters, namely, speed and location, terminal A detects that the current speed is "90", and obtains the current position as "high speed”, and terminal D will The current location is matched with the set of parameter values (urban area and high speed) corresponding to the location in the received first frequency configuration information, and the parameter value corresponding to the geographic location is determined to be “high speed”, and the speed corresponding to terminal D itself is 90 The speed values corresponding to the high speeds in the first frequency configuration information are matched. As shown in Table 2, the second speed value matching the first speed value 90 of the terminal D itself is (80-120), and the second speed value is (80-120) The corresponding message transmission frequency is 20Hz.
  • the terminal sends a message according to the frequency 20Hz.
  • the vehicle travels faster, it needs to configure a higher transmission frequency to ensure that it can be
  • the state information of the surrounding terminals is notified at a high frequency to improve the safety of driving the vehicle.
  • the terminal detects that the current speed is 40, and the terminal will match according to the information shown in Table 2.
  • Table 2 when the speed is 40, the speed value set in Table 2 is matched.
  • the second speed value is determined to be (20-50), and the second speed value (20-50) corresponds to a message transmission frequency of 5 Hz.
  • the vehicle travels at a slower speed, so the frequency of sending the message can be reduced. Small, it can also ensure the communication and security of the vehicle.
  • the terminal D broadcasts a message to the surrounding terminals and servers at 5 Hz.
  • the terminal can flexibly adjust the sending frequency of the currently sent message according to the message sending frequency in the frequency configuration information, that is, the useless V2X message can be reduced, and the V2X message transmission is more efficient.
  • FIG. 4 is a schematic structural diagram of another example of a communication system of a vehicle network in an embodiment of the present application.
  • the terminal 401 passes through an access network node 402, a core network node (such as the edge gateway 403), and an edge server.
  • the terminal 401 is connected to the central server 406 through an access network node 402 (such as a base station), and the core network node (such as a PDN gateway (PGW) 405), and the edge server 404 and the central server 406 can follow the set geography.
  • an access network node 402 such as a base station
  • the core network node such as a PDN gateway (PGW) 405
  • PGW PDN gateway
  • the edge server the server deployed at the edge, that is, the network location close to the user, usually integrates caching, security, storage, and local application hosting capabilities for seamless, efficient, high performance Deliver cloud applications with low latency.
  • Central server Compared to the edge server, the central server is deployed away from the user, connecting each edge server, and at the center.
  • edge servers and one central server can be set up, and each edge server is connected to the central server; the edge server provides the user with a channel to enter the network and communicate with the central server, usually the edge server can Complete a single business function or a small number of business functions, and the central server can perform multiple business or full business functions.
  • FIG. 5 another embodiment of a method for transmitting a message in this embodiment is shown.
  • Step 501 The terminal initiates an on boot connection to the CF, and connects to the CF.
  • Step 502 The CF authorizes the terminal to use the Internet of Vehicle service, and sends the communication parameter to the terminal (including but not limited to the wireless resource, the authorized V2X service, the IP address of the central server, and the like).
  • Step 503 The terminal connects to the central server according to the IP address of the central server, and reports the ID of the terminal and the device type of the terminal to the central server.
  • step 501 - step 503 is an optional step. If the terminal has established a connection with the central server, step 501 - step 503 need not be performed, and step 504 is directly executed.
  • Step 504 The central server configures first frequency configuration information, where the first frequency configuration information includes at least one configuration parameter, a first parameter value set of the at least one configuration parameter, and a first corresponding to each first parameter value in the first parameter value set.
  • a transmission frequency
  • Step 504 can be understood in conjunction with step 304, and details are not described herein.
  • Step 5051 The central server sends the first frequency configuration information to the terminal.
  • Step 5052 The central server synchronously sends the first frequency configuration information to the edge server, and the terminal identifier of the terminal.
  • Step 506 The terminal receives the first frequency configuration information sent by the central server, and determines a first parameter value corresponding to the current time configuration parameter.
  • Step 506 can be understood in conjunction with step 305, and details are not described herein.
  • Step 507 The terminal matches the first parameter value with the parameter value set, and determines a second parameter value that matches the first parameter value in the parameter value set, where the first parameter value is a parameter value in the parameter value set.
  • Step 507 can be understood in conjunction with step 306, and details are not described herein.
  • Step 508 The terminal sends the target message to the edge server according to the first sending frequency corresponding to the second parameter value.
  • the terminal sends a target service (such as a fault service) transmission target message to the edge server according to the first sending frequency (for example, 10 Hz) corresponding to the target parameter value, where the target message is used to instruct the edge server to update the frequency configuration information corresponding to the terminal.
  • a target service such as a fault service
  • the first sending frequency for example, 10 Hz
  • Step 509 The edge server updates the first frequency configuration information according to the target message, and obtains the updated second frequency configuration information, where the second frequency configuration information includes a parameter value set and a second sending frequency corresponding to the parameter value set.
  • the edge server has the function of performing a faulty service.
  • the target message carries the ID value of the service
  • the edge server determines the current service of the terminal according to the ID value carried in the target message. For example, the edge server determines that the current service of the terminal A is a faulty service, and the edge server can provide the latest service to the user, which is faster.
  • the network service responds, and the edge server can configure the updated second frequency configuration information for the terminal, where the second frequency configuration information includes the service, and the updated second transmission frequency corresponding to the fault service.
  • the server receives the target message, and determines that the current service of the terminal is a faulty service.
  • the server can configure the frequency configuration information, that is, the updated second frequency configuration information, and the second frequency configuration information includes at least one configuration parameter.
  • the second frequency configuration information can be understood by referring to Table 1, Table 2, and Table 3.
  • the edge server when the edge server receives the target message and determines that the current service of the terminal is a faulty service, indicating that the terminal is currently in danger, the terminal needs to increase the sending frequency of the message to ensure the security of the terminal, so the edge server reconfigures the frequency.
  • Step 510 The edge server sends the updated second frequency configuration information to the central server.
  • Step 511 The central server sends the updated second frequency configuration information to the terminal. So that the terminal sends a message according to the second transmission frequency in the second frequency configuration information.
  • the frequency configuration information is cooperatively controlled by the edge server and the central server, and the frequency of the message transmission of the terminal is adjusted by sending the frequency configuration information to the terminal.
  • the distance between the terminal and the edge server is closer than that of the central server.
  • the edge server can respond to the message sent by the terminal faster, and the processing efficiency of the frequency configuration information update is improved by the synergy between the edge server and the central server.
  • an embodiment of the present application provides an apparatus 600 for transmitting a message, where the apparatus includes a plurality of modules that perform various steps of a method performed by a terminal in the foregoing method embodiment.
  • the device comprises a receiving module 601, a processing module 602 and a transmitting module 603.
  • the receiving module 601 is configured to receive first frequency configuration information from the server, where the first frequency configuration information is used to indicate a frequency at which the terminal sends a message, and the first frequency configuration information includes at least one configuration parameter, where the configuration parameter is a set of parameter values, and a first transmission frequency corresponding to each parameter value in the set of parameter values;
  • the processing module 602 is configured to determine a first parameter value corresponding to the configuration parameter at a current time, and match the first parameter value with the parameter value set received by the receiving module 601 to determine the parameter value set. a second parameter value that matches the first parameter value;
  • the sending module 603 is configured to send a message according to the first sending frequency corresponding to the second parameter value determined by the processing module 602.
  • the at least one configuration parameter includes a speed
  • the set of parameter values includes a set of speed values
  • the processing module 602 is further configured to detect a first speed value at a current time, and match the first speed value with the speed value set to determine that the first speed value is in the speed value set a matching second speed value, the first transmission frequency being a transmission frequency corresponding to the second speed value in the first configuration information.
  • the at least one configuration parameter includes a geographic location, and in the first frequency configuration information, a parameter value of each geographic location corresponds to N speed values, among the N speed values Each speed value corresponds to a first transmission frequency, and the N is a positive integer greater than or equal to 1.
  • the processing module 602 is further configured to acquire a first location and a first speed value of the current moment
  • the sending module 603 is further configured to send a message according to the first sending frequency corresponding to the second speed value determined by the processing module 602.
  • the at least one configuration parameter includes a service
  • the parameter value set includes a service ID value set
  • the processing module 602 is further configured to determine a first service that is currently executed
  • the first frequency configuration information further includes a configuration parameter priority, and each of the at least one configuration parameter has a corresponding priority
  • the processing module 602 is further configured to determine, according to a priority of the configuration parameter, a target configuration parameter of the at least one configuration parameter, and match the first parameter value with a parameter value set of the target configuration parameter to determine a second parameter value in the set of parameter values that matches the first parameter value.
  • the sending module 603 is further configured to send, according to the first sending frequency, a target message corresponding to the target service to the server, where the target message is used to indicate that the server is according to the target
  • the message updates the first frequency configuration information to obtain updated second frequency configuration information, where the second frequency configuration information includes the updated second transmission frequency;
  • the receiving module 601 is configured to receive the updated second frequency configuration information.
  • the sending module 603 is configured to send a message according to the updated second sending frequency.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), circuitry, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other functions that provide the functionality described above.
  • ASIC application-specific integrated circuit
  • FIG. 6 can take the form shown in FIG.
  • Each module can be implemented by the processor, transceiver and memory of FIG.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present application. It can be the terminal in the above embodiment, and is used to implement the operation of the terminal in the above embodiment, including a device for sending a message corresponding to FIG. 6.
  • the terminal includes an antenna 710, a radio frequency portion 720, and a signal processing portion 730.
  • the antenna 710 is connected to the radio frequency portion 720.
  • the radio frequency portion 720 receives information through the antenna 710, and transmits the received information to the signal processing portion 730 for processing.
  • the signal processing portion 730 processes the information of the terminal and sends it to the radio frequency portion 720.
  • the radio frequency portion 720 processes the information of the terminal and transmits it via the antenna 710.
  • the signal processing portion 730 may include a modem subsystem for implementing processing of each communication protocol layer of data; and may further include a central processing subsystem for implementing processing on the terminal operating system and the application layer; Other subsystems, such as multimedia subsystems, peripheral subsystems, etc., in which the multimedia subsystem is used to implement control of the terminal camera, screen display, etc., and the peripheral subsystem is used to implement connection with other devices.
  • the modem subsystem can be a separately set chip.
  • the above device for the terminal may be located in the modem subsystem.
  • the modem subsystem may include one or more processing elements 731, including, for example, a master CPU and other integrated circuits. Additionally, the modem subsystem can also include a storage element 732 and an interface circuit 733.
  • the storage element 732 is used to store data and programs, but the program for executing the method executed by the terminal in the above method may not be stored in the storage element 732, but stored in a memory other than the modem subsystem, using The modem demodulation subsystem is loaded for use.
  • Interface circuit 733 is used to communicate with other subsystems.
  • the above device for the terminal may be located in a modem subsystem, which may be implemented by a chip, the chip comprising at least one processing element and interface circuit, wherein the processing element is used to perform any of the above methods of terminal execution In various steps, the interface circuit is used to communicate with other devices.
  • the means for the terminal to implement the various steps in the above method may be implemented in the form of a processing component scheduler, for example, the device for the terminal includes a processing component and a storage component, and the processing component invokes a program stored by the storage component to perform the above Method performed by a terminal in a method embodiment.
  • the storage element can be a storage element on which the processing element is on the same chip, ie an on-chip storage element.
  • the program for performing the method performed by the terminal in the above method may be on a different storage element than the processing element, ie, an off-chip storage element.
  • the processing element calls or loads the program from the off-chip storage element on the on-chip storage element to invoke and execute the method performed by the terminal in the above method embodiment.
  • the unit that implements the various steps in the above method may be configured as one or more processing elements disposed on a modem subsystem, where the processing elements may be integrated circuits, such as : One or more ASICs, or one or more DSPs, or one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated to form a chip.
  • the unit that implements each step in the above method may be integrated and implemented in the form of a system-on-a-chip (SOC) for implementing the above method.
  • SOC system-on-a-chip
  • At least one processing element and a storage element may be integrated in the chip, and the method executed by the terminal is implemented by the processing element calling the stored program of the storage element; or at least one integrated circuit may be integrated in the chip for implementing the above terminal
  • the functions of some units are implemented by processing the component calling program, and the functions of some units are implemented by the form of an integrated circuit.
  • the above device for the terminal can include at least one processing element and interface circuit, wherein at least one processing element is used to execute the method performed by any of the terminals provided by the above method embodiments.
  • the processing element may perform some or all of the steps performed by the terminal in a manner of calling the program stored by the storage element; or in a second manner: by combining the logic of the hardware in the processor element with the instruction
  • the method performs some or all of the steps performed by the terminal; of course, some or all of the steps performed by the terminal may also be performed in combination with the first mode and the second mode.
  • the processing elements herein, as described above, may be general purpose processors, such as a CPU, or may be one or more integrated circuits configured to implement the above methods, such as one or more ASICs, or one or more microprocessors.
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • the embodiment of the present application further provides a computer storage medium for storing computer software instructions used by the terminal shown in FIG. 7 above, which includes a program designed to execute the foregoing method embodiments.
  • an embodiment of the present application provides a server, where the server is configured to perform the method steps performed by an application server, a central server, or an edge server in the foregoing method embodiment, where the server includes:
  • the configuration module 801 is configured to configure the first frequency configuration information, where the first frequency configuration information includes at least one configuration parameter, a parameter value set of the configuration parameter, and a first sending frequency corresponding to each parameter value in the parameter value set;
  • the sending module 802 is configured to send the first frequency configuration information configured by the configuration module 801 to the terminal, where the first frequency configuration information is used to indicate that the terminal determines the first parameter value corresponding to the current time configuration parameter; and the first parameter value and the parameter The set of values is matched to determine a second parameter value that matches the first parameter value in the parameter value set, and the message is sent according to the first sending frequency corresponding to the second parameter value.
  • the server further includes a receiving module 803;
  • the receiving module 803 is further configured to receive a device type sent by the terminal;
  • the configuration module 801 is further configured to configure, according to the device type received by the receiving module 803, first frequency configuration information corresponding to the device type.
  • the receiving module 803 is further configured to receive a target message corresponding to the target service sent by the terminal;
  • the configuration module 801 is further configured to: update the first frequency configuration information according to the target message of the receiving module 803, and obtain the updated second frequency configuration information, where the second configuration information includes the updated second sending frequency;
  • the sending module 802 is configured to send the second frequency configuration information to the terminal, where the second frequency configuration information is used to instruct the terminal to send the message according to the second sending frequency.
  • the at least one configuration parameter includes a speed
  • the parameter value set includes a speed value set
  • the speed value in the speed value set has a corresponding first transmission frequency
  • the at least one configuration parameter includes a service
  • the parameter value set includes a service ID value set
  • each service ID value in the service ID value set has a corresponding first sending frequency
  • the at least one configuration parameter further includes a geographic location, where, in the first frequency configuration information, a parameter value of each geographic location corresponds to N speed values, where the N speed values are Each speed value has a corresponding first transmission frequency, and the N is a positive integer greater than or equal to 1.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), circuitry, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other functions that provide the functionality described above.
  • ASIC application-specific integrated circuit
  • FIG. 8 can take the form shown in FIG.
  • Each module can be implemented by the processor, network interface and memory of FIG.
  • FIG. 9 is a schematic structural diagram of a server according to an embodiment of the present invention.
  • the server 900 may generate a large difference due to different configurations or performances, and may include one or more processors 922 and a memory 932, and one or more storage applications.
  • Program 942 or storage medium 930 of data 944 (eg, one or one storage device in Shanghai).
  • the memory 932 and the storage medium 930 may be short-term storage or persistent storage.
  • the program stored on storage medium 930 may include one or more modules (not shown), each of which may include a series of instruction operations in the server.
  • the processor 922 can be configured to communicate with the storage medium 930, executing a series of instruction operations in the storage medium 930 on the server 900.
  • Server 900 may also include one or more power supplies 926, one or more wired or wireless network interfaces 950, one or more input and output interfaces 958, and/or one or more operating systems 941, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • operating systems 941 such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • the steps performed by the server in the above embodiment may be based on the server structure shown in FIG.
  • the embodiment of the present application further provides a computer storage medium for storing computer software instructions used by the server shown in FIG. 9 above, which includes a program designed to execute the foregoing method embodiments.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)

Abstract

本申请实施例公开了一种发送消息的方法。本申请实施例方法包括:接收来自服务器的第一频率配置信息,第一频率配置信息用于指示终端发送消息的频率,第一频率配置信息包括至少一个配置参数,配置参数的参数值集合,及所参数值集合中的每个参数值所对应的第一发送频率;确定当前时刻配置参数对应的第一参数值;将第一参数值与参数值集合进行匹配,确定在参数值集合中与第一参数值相匹配的第二参数值;按照第二参数值对应的第一发送频率发送消息。本申请实施例中还提供了一种发送消息的装置,终端和服务器,终端可以动态的调整发送消息的发送频率,减少发送消息的数据量,降低网络和终端的负荷。

Description

一种发送消息的方法及相关设备
本申请要求于2018年5月10日提交中国国家知识产权局、申请号为201810447656.6、发明名称为“一种发送消息的方法及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种发送消息的方法及相关设备。
背景技术
当前,车联网技术已经成为汽车新技术发展的热点,国内外标准组织均积极参与车联网技术的建设,大力发展车联网,有利于促进汽车产业创新发展,构建汽车和交通服务新模式新业态,促进自动驾驶技术创新和应用。第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)定义的车联网(Vehicle to Everything,V2X)技术包括4大类:车车通信(Vehicle to Vehicle,V2V)、车与基础设施通信(Vehicle to Infrastructure,V2I)、车与行人通信(Vehicle to Pedestrian,V2P)和车与网络通信(Vehicle to Network,V2N)。
在现有的V2X技术中,所有V2X设备都是以一定频率向周围广播V2X消息。例如,假定为双向8车道道路,4方向1000米范围;拥堵情况下每条车道每10米1辆车(含车长);数据上传频率为100毫秒,数据包大小为1KB;时长统计为12小时;则V2X设备广播的数据量(GB/每天)为:1000米/10米/车×4车道×8方向×10条/秒=3.2万条/秒×1KB=32MB/s×3600秒×12小时=1382.4GB/天。
当前技术中的V2X业务消息交互频繁,V2X数据体量大,对平台及网络造成负荷。
发明内容
本申请实施例提供了一种发送消息的方法及相关设备,用于实现动态的调整发送频率来发送消息;发送消息的方法应用于车联网的通信系统,该通信系统包括终端和服务器,该终端包括发送消息的装置,该终端用于周期性广播消息,该消息为终端自身状态的消息,该状态包括终端的位置、速度、朝向、设备状况等;该终端也可以接收周边终端广播的消息。
第一方面,本申请实施例提供了一种发送消息的方法,该方法可以应用于一种发送消息的装置,该装置接收来自服务器的第一频率配置信息,第一频率配置信息用于指示终端发送消息的频率,第一频率配置信息包括至少一个配置参数,配置参数的参数值集合,及所参数值集合中的每个参数值所对应的第一发送频率;该装置确定当前时刻配置参数对应的第一参数值;然后装置将第一参数值与参数值集合进行匹配,进而确定在参数值集合中与第一参数值相匹配的第二参数值;每个第二参数值具有对应的第一发送频率,装置可以按照第二参数值对应的第一发送频率发送消息。本申请实施例中,终端在不同时刻确定的第一参数值不同,则与该第一参数值相匹配的第二参数值也可能不同,每个第二参数值具有对应的第一发送频率,按照第一参数值对应的第一发送频率发送消息(如自身的状态信息),终端可以根据第二参数值所对应的第一发送频率对当前发送消息的频率进行动态调整,不需要按照固定频率发 送的消息,可以按照较低的发送频率来发送消息,以减少发送消息的数据量,并降低网络和终端的负荷。
在一种可能的实现方式中,至少一个配置参数包括速度,参数值集合包括速度值集合,装置检测当前时刻的第一速度值;然后,终端将第一速度值与速度值集合进行匹配,确定在速度值集合中与第一速度值相匹配的第二速度值,第一发送频率为在第一配置信息中与第二速度值对应的发送频率。本申请实施例中,至少一个配置参数包括速度,该速度值集合中包括多个第二速度值,多个第二速度值中的每个第二速度值都会对应一个发送频率,终端可以根据当前时刻的第一速度值的变化来调整发送消息的发送频率,例如,当车辆以较慢的速度行驶的时候,可以以较低的发送频率发送消息,当车辆以较快的速度行驶的时候,可以以较高的发送频率发送消息,以实现根据第一频率配置信息动态调整发送消息的发送频率,减少发送消息的数据量。
在一种可能的实现方式中,至少一个配置参数包括地理位置,在第一频率配置信息中,每个地理位置的参数值对应N个速度值,N个速度值中的每个速度值对应有第一发送频率,N为大于或者等于1的正整数。本申请实施例中,每个地理位置的参数值对应N个速度值,例如,地理位置可以包括市区、高速、高架桥等,在不同的地理位置对应的发送频率不同,装置可以根据当前的地理位置及当前地理位置所对应的速度值来动态的调整发送消息的发送频率。
在一种可能的实现方式中,将第一参数值与参数值集合进行匹配,确定在参数值集合中与第一参数值相匹配的第二参数值具体的方式具体的可以为:装置获取当前时刻的第一位置及第一速度值;首先将当前时刻的第一位置与地理位置的参数值进行匹配,确定在频率配置信息中的第二位置;然后将当前时刻的第一速度值与第二位置对应的N个速度值进行匹配,确定在N个速度值中与第一速度值相匹配的第二速度值;然后,装置按照第二速度值对应的第一发送频率发送消息。本申请实施例中,装置可以根据当前的地理位置及当前地理位置所对应的速度值来动态的调整发送消息的发送频率。
在一种可能的实现方式中,该至少一个配置参数包括业务,参数值集合包括业务ID值集合,装置确定当前所执行的第一业务(如红绿灯业务,碰撞业务等);然后将第一参数值与参数值集合进行匹配,将第一业务的ID值与业务ID值集合进行匹配,确定在业务ID集合中与第一业务相匹配的第二业务ID值,第一发送频率为在第一配置信息中与第二业务的ID值对应的发送频率。本申请实施例中,业务不同,需要发送消息的发送频率不同,可以理解的是,不同的业务对于发送消息的发送频率要求不同,例如某些特殊业务(如碰撞业务)需要较高的发送频率发送消息以保证车辆的安全性,本申请实施例中,可以根据当前的第一业务和第一频率配置信息来动态调整发送频率,即能减少发送消息的数据量,又可以提高车辆的安全性。
在一种可能的实现方式,第一频率配置信息还包括配置参数优先级,至少一个配置参数中每个配置参数具有对应的优先级;装置可以根据配置参数的优先级确定至少一个配置参数中的目标配置参数;例如,第一频率配置信息中包括至少两个配置参数时,每个配置参数具有对应的优先级,其中,业务具有最高的优先级(第一优先级),速度具有第二优先级等,业务为目标配置参数,装置将第一参数值与目标配置参数的参数值集合进行匹配,确定在参数 值集合中与第一参数值相匹配的第二参数值。本申请实施例中,当配置参数的数量至少为2个时,装置根据优先级最高的目标配置参数所对应的第一发送频率来调整发送消息的发送频率,即能减少发送消息的数据量,又可以提高车辆的安全性。
在一种可能的实现方式中,装置可以按照第一发送频率向服务器发送目标业务对应的目标消息,该目标业务为特殊业务,如故障业务等,目标消息用于指示服务器根据目标消息更新第一频率配置信息,得到更新后的第二频率配置信息,该第二频率配置信息包括该目标业务的ID值及该目标业务对应的更新后的第二发送频率;装置接收更新后的第二频率配置信息;然后装置可以按照更新后的第二发送频率发送消息。本申请实施例中,服务器(应用服务器)接收到目标消息,确定终端当前的业务为故障业务,服务器可以根据该故障业务为终端配置频率配置信息,即更新后的第二频率配置信息,该第二频率配置信息包含至少一个配置参数,该第二发送频率较第一发送频率增大,实现动态的调整发送频率,并提高不同业务的安全性。
第二方面,本申请实施例提供了一种计算机存储介质,用于储存上述装置所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第三方面,本申请实施例提供了一种发送消息的装置,具有实现上述方法中实际中装置所执行的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第四方面,装置的结构中包括至少一个处理器和接口电路,至少一个处理器用于执行如上述第一方面的方法。
第五方面,本申请实施例提供了一种终端,该终端包括上述第三方面的发送消息的装置。
第六方面,本申请实施例提供了一种发送消息的方法,该方法包括:服务器配置第一频率配置信息,第一频率配置信息包括至少一个配置参数,配置参数的参数值集合,及参数值集合中每个参数值对应的第一发送频率;服务器向终端发送第一频率配置信息,第一频率配置信息用于指示:终端确定当前时刻配置参数所对应的第一参数值;将第一参数值与参数值集合进行匹配,确定在参数值集合中与第一参数值相匹配的第二参数值,按照第二参数值对应的第一发送频率发送消息。本申请实施例中,装置在不同时刻确定的第一参数值不同,则与该第一参数值相匹配的第二参数值也可能不同,每个第二参数值具有对应的第一发送频率,按照第一参数值对应的第一发送频率发送消息(如自身的状态信息),装置可以根据第二参数值所对应的第一发送频率对当前发送消息的频率进行动态调整,不需要按照固定频率发送的消息,可以按照较低的发送频率来发送消息,以减少发送消息的数据量,并降低网络和终端的负荷。
在一种可能的实现方式中,服务器接收终端发送的设备类型;该设备类型包括但不限定于路测单元,车辆设备和行人设备;服务器根据设备类型配置与设备类型对应的第一频率配置信息,本申请实施例中,当设备类型为路测单元时,发送消息的发送频率为固定值;当设备类型为车辆设备和行人设备时,发送消息的发送频率可以为多个,根据配置参数的不同参数值对应不同的发送频率。
在一种可能的实现方式中,服务器接收终端发送的目标业务对应的目标消息;服务器根据目标消息更新第一频率配置信息,得到更新后的第二频率配置信息,第二频率配置信息包括更新后的第二发送频率;服务器向终端发送第二频率配置信息,第二频率配置信息用于指 示终端按照第二发送频率发送消息。本申请实施例中,服务器接收到目标消息,确定终端当前的业务为故障业务,服务器可以根据该故障业务为终端配置频率配置信息,即更新后的第二频率配置信息,该第二频率配置信息包含至少一个配置参数,例如,当服务器接收到目标消息,确定终端当前的业务,表明该终端当前发生危险,需要提高终端发送消息的发送频率来保障终端的安全,故而服务器重新配置频率信息,重新配置的第二频率配置信息,实现动态的调整发送频率,并提高不同业务的安全性。
在一种可能的实现方式中,服务器包括中心服务器和边缘服务器,其中,边缘服务器为:部署在边缘的服务器,即靠近用户的网络位置,通常集成了缓存、安全性、存储和本地应用程序托管能力,从而无缝、高效、高性能、低延迟地交付云应用程序;中心服务器:相对于边缘服务器,中心服务器部署远离用户,连接各个边缘服务器,处于中心位置。当中心服务器向终端发送第一频率配置信息时,中心服务器向边缘服务器同步发送第一频率配置信息。
在一种可能的实现方式中,边缘服务器接收终端按照第一发送频率发送的目标业务对应的目标消息;边缘服务器根据目标消息更新第一频率配置信息,得到更新后的第二频率配置信息,第二频率配置信息包括参数值集合及参数值集合对应的第二发送频率;边缘服务器向中心服务器发送第二频率配置信息;中心服务器向终端发送第二频率配置信息,第二频率配置信息用于指示终端按照第二发送频率发送消息。本申请实施例中,通过边缘服务器和中心服务器对频率配置信息进行协同控制,通过向终端下发频率配置信息调整终端的消息发送频率。终端距离边缘服务器的距离较距离中心服务器的距离较近,边缘服务器能较快的响应终端发送的消息,通过边缘服务器和中心服务器的协同作用,提高对频率配置信息更新的处理效率。
在一种可能的实现方式中,至少一个配置参数包括速度,参数值集合包括速度值集合,速度值集合中的速度值具有对应的第一发送频率。本申请实施例中,至少一个配置参数包括速度,该速度值集合中包括多个第二速度值,多个第二速度值中的每个第二速度值都会对应一个发送频率,终端可以根据当前时刻的第一速度值的变化来调整发送消息的发送频率,例如,当车辆以较慢的速度行驶的时候,可以以较低的发送频率发送消息,当车辆以较快的速度行驶的时候,可以以较高的发送频率发送消息,以实现根据第一频率配置信息动态调整发送消息的发送频率,减少发送消息的数据量。
在一种可能的实现方式中,至少一个配置参数包括业务,参数值集合包括业务ID值集合,业务ID值集合中的每个业务ID值具有对应的第一发送频率。本申请实施例中,业务不同,需要发送消息的发送频率不同,可以理解的是,不同的业务对于发送消息的发送频率要求不同,例如某些特殊业务(如碰撞业务)需要较高的发送频率发送消息以保证车辆的安全性,本申请实施例中,可以根据当前的第一业务和第一频率配置信息来动态调整发送频率,即能减少发送消息的数据量,又可以提高车辆的安全性。
在一种可能的实现方式中,至少一个配置参数还包括地理位置,在第一频率配置信息中,每个地理位置的参数值对应N个速度值,N个速度值中的每个速度值具有对应的第一发送频率,N为大于或者等于1的正整数。本申请实施例中,每个地理位置的参数值对应N个速度值,例如,地理位置可以包括市区、高速、高架桥等,在不同的地理位置对应的发送频率不同,装置可以根据当前的地理位置及当前地理位置所对应的速度值来动态的调整发送消息的 发送频率。
第七方面,本申请实施例提供了一种计算机存储介质,用于储存上述服务器所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第八方面,本申请实施例提供了一种装置,具有实现上述方法中实际中服务器所执行的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第九方面,服务器的结构中包括存储器,网络接口和处理器。其中存储器用于存储计算机可执行程序代码,并与网络接口耦合。该程序代码包括指令,当该处理器执行该指令时,该指令使该服务器执行上述方法中所涉及的信息或者指令。
本申请实施例中,终端接收来自服务器的第一频率配置信息,该第一频率配置信息包括至少一个配置参数,终端接收到第一频率配置信息后,可以根据第一频率配置信息中的配置参数确定当前时刻配置参数对应的第一参数值,然后将第一参数值与第一频率配置信息中的参数值集合进行匹配,确定在参数值集合中与第一参数值相匹配的第二参数值;随着时间的变化,当前的第一参数值不同,与该第一参数值相匹配的第二参数值可能不同,然后,终端可以根据第一频率配置信息中第二参数值所对应的第一发送频率发送消息,由于该第一频率配置信息中的每个参数值具有对应的第一发送频率,因此终端可以根据第二参数值所对应的第一发送频率对当前发送消息的频率进行动态调整,例如,不需要按照固定频率发送的消息,可以按照较低的发送频率来发送消息,以减少发送消息的数据量,并降低网络和终端的负荷。
附图说明
图1为本申请实施例中车联网的场景示意图;
图2为本申请实施例中车联网的通信系统的架构示意图;
图3为本申请实施例中一种发送消息的方法的一个实施例的步骤流程示意图;
图4为申请实施例中的车联网的通信系统的另一个实施例的架构示意图;
图5为本申请实施例中一种发送消息的方法的一个实施例的步骤流程示意图;
图6为本申请实施例中一种发送消息的装置的一个实施例的结构示意图;
图7为本申请实施例中一种终端的一个实施例的结构示意图;
图8为本申请实施例中一种服务器的一个实施例的结构示意图;
图9为本申请实施例中一种服务器的一个实施例的结构示意图。
具体实施方式
本申请实施例提供了一种发送消息的方法及相关设备,用于实现动态的调整发送频率来发送消息。
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四” 等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
当前,车联网(vehicle to everything,V2X)技术已经成为汽车新技术发展的热点,车辆网是由车辆位置、速度和路线等信息构成的巨大的交互网络,通过GPS、传感器等装置,车辆可以完成自身环境和状态信息的采集,车联网按照约定的通信协议和数据交互标准,在车与车,车与路,车与人及车与互联网之间,进行无线通信和信息交互的网络。国内外标准组织均积极参与车联网技术的建设,如第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)、欧洲电信标准化协会(European Telecommunications Standards Institute,ETSI)等,大力发展车联网,有利于促进汽车产业创新发展,构建汽车和交通服务新模式新业态,促进自动驾驶技术创新和应用。
结合图1进行理解,图1为车联网的场景示意图,3GPP定义的V2X技术包括4大类:车车通信(vehicle to vehicle,V2V)、车与基础设施通信(vehicle to infrastructure,V2I)、车与行人通信(vehicle to pedestrian,V2P)和车与网络通信(vehicle to network,V2N);其中,所有的V2X设备会以一定的频率向周围广播消息。
请参阅图2进行理解,图2为本申请实施例中车联网的通信系统的架构示意图。
应理解,该通信系统可以为应理解,本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)或下一代通信系统等,这里,下一代通信系统可以包括例如,第五代(fifth-generation,5G)通信系统。
该车联网的通信系统包括应用服务器201,多个终端202(例如终端A、终端B、终端C和终端D),控制功能设备(control function,CF)203;应用服务器(application server,AS)201通过V2接口与控制功能设备(control function,CF)203通信,CF通过V3接口与终端202连接,CF通过V3接口向终端202下发业务授权参数。3GPP在V2V、V2I、V2P之间支持点对点、点对多点的短距离设备直接通信的增强PC5接口,各个终端之间可以通过PC5接口进行通信。其中,PC5为终端间的参考点,物理层也称为Sidelink,用于完成控制面和用户面的信令和数据传输、邻近服务发现、实现终端之间的直接通信和对终端的入网中继功能。
其中,该终端可以为车载设备,手机、路测单元,平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,增强现实(augmented reality, AR)设备、无人驾驶(self driving)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端。
同时,V2X的终端可支持移动通信网络传统的空中Uu接口,满足广域通信需求。应用服务器是面向不同运营商网络的V2X应用服务器,各个终端通过Uu接口连接接入网(radio access network,RAN)节点204,核心网节点205连接应用服务器201。
下面对图2中架构中涉及的网元功能进行简要说明:
终端:用于周期性广播消息,该消息为终端自身状态的消息,该状态包括终端的位置、速度、朝向、设备状况(如正常,故障)等;接收周边终端广播的V2X消息;能够根据自身状态和接收到的V2X消息进行判断,当前是否存在安全威胁,若存在安全威胁,发出告警消息。
接入网节点:用于终端从空闲态变为连接态的空口信令连接的建立;参与连接态的终端上下行数据的传输。
控制功能设备(CF):负责V2X通信的业务授权与相关参数发放。
本申请实施例中,应用服务器用于配置第一频率配置信息,该第一频率配置信息包括配置参数(如速度)、配置参数的参数值集合(如速度值集合),及参数值集合中参数值对应的第一发送频率;该第一频率配置信息用于指示终端发送消息的频率;终端接收来自服务器的第一频率配置信息,
终端确定当前时刻配置参数对应的第一参数值(如当前时刻速度值为90);然后,终端将第一参数值与参数值集合进行匹配,确定在参数值集合中与第一参数值相匹配的第二参数值(如,80-100);终端按照第二参数值对应的第一发送频率发送消息。本申请实施例中,终端确定当前时刻的配置参数对应的第一参数值,然后将该第一参数值与参数值集合进行匹配,确定在参数值集合中与第一参数值相匹配的第二参数值,最终,终端可以按照第二参数值对应的第一发送频率发送消息,可以理解的是,终端在不同时刻确定的第一参数值不同,则与该第一参数值相匹配的第二参数值也可能不同,每个第二参数值具有对应的第一发送频率,按照第一参数值对应的第一发送频率发送消息(如自身的状态信息),以实现动态的调整发送频率来发送消息。
下面通过实施例对本申请中的一种发送消息的方法进行详细描述,请参阅图3所示,本申请实施例中一种发送消息的方法的一个实施例,本实施例中,车联网的通信系统中可以包括多个终端,本示例中以其中的任一个终端与服务器的交互为例进行说明。
步骤301、终端向CF发起启动连接(on boot connection),CF向终端反馈响应,终端与CF进行连接。
步骤302、CF授权终端使用车联网的相关业务,并向终端发送通信参数(包括但不限定于无线资源、授权的业务,或V2X应用服务器的IP地址等);
步骤303、终端通过基站根据应用服务器的IP地址与应用服务器连接,并向应用服务器上报终端的ID和该终端的设备类型。
该设备类型包括但不限定于路测单元(Road Side Unit,RSU),车辆设备(Vehicle User Equipment,V-UE)和行人设备(Pedestrian User Equipment,P-UE)。
需要说明的是,步骤301-步骤303为可选步骤,若终端与应用服务器已经建立连接,则不需要执行上述步骤301-步骤303,而直接执行步骤304。
步骤304、应用服务器配置第一频率配置信息,第一频率配置信息包括至少一个配置参数,至少一个配置参数的参数值集合,及第一参数值集合中每个第一参数值对应的第一发送频率。
至少一个配置参数中的每个配置参数均对应一个参数值集合,例如,第一配置参数对应第一参数值集合,第二配置参数对应第二参数值集合等等。
应用服务器配置第一频率配置信息,例如,该至少一个配置参数包括但不限定于速度、业务、地理位置中的至少一个,且每个配置参数具有对应的参数值集合,参数值集合中的每个参数值具有对应的第一发送频率。
例如,业务包括但不限定于常规业务、红绿灯业务,告警业务和故障业务等。
地理位置包括但不限定于高速、城市、郊区、十字路口等。
在第一个可能实现的方式中,配置参数还可以包括设备类型,如设备类型对应的参数值集合包括路测单元和车辆设备(商用车车载设备,卡车车载设备等)等,每个参数值对应一个第一发送频率,例如,路测单元对应的第一发送频率为30Hz,且当设备类型为路测单元时,发送消息的发送频率为固定值;当设备类型为车辆设备和行人设备时,发送消息的发送频率可以为多个,根据配置参数的不同参数值对应不同的发送频率,车载设备对应的第一发送频率为10Hz。或者,不同的车载设备对应不同的发送频率,例如,商用车车载设备对应的第一发送频率为10Hz,卡车车载设备对应的发送第一发送频率为5Hz。
需要说明的是,本申请实施例中,设备类型和第一发送频率对应的具体数据均为举例说明,并不造成对本申请的限定性说明。
在第二个可能实现的方式中,应用服务器可以根据终端上报的设备类型为该终端配置与该设备类型相对应的第一频率配置信息。频率配置信息可以以配置信息表的形式进行举例,下面该频率配置信息以以下3个示例进行举例。
1、第一频率配置信息中包括1个配置参数,当终端为车量设备时,配置参数为速度时,该第一频率配置信息如下表1所示:
表1
Figure PCTCN2019085652-appb-000001
2、第一频率配置信息中包括2个配置参数,配置参数包括地理位置和速度,该第一频率配置信息如下表2所示:
表2
Figure PCTCN2019085652-appb-000002
3、第一频率配置信息中包括3个配置参数,配置参数包括地理位置,速度和业务,该第一配置信息如下表3所示:
表3
Figure PCTCN2019085652-appb-000003
在表3中,业务对应的参数值集合为业务ID值集合,业务ID值集合中不同的业务ID值对应不同的业务。例如,“700”表示常规业务,“710”表示“红绿灯业务”,“720”表示“告警业务”,“730”表示“故障业务”等等,表3中的业务及ID值均是举例说明,并不造成对本申请的限定性说明。
需要说明的是,上述表1、表2及表3中的配置参数及每个配置参数对应的参数值集合均为举例说明,并不造成对本申请的限定性说明。
应理解,本申请实施例中的第一频率配置信息中包括至少一个配置参数,对于表1、表2和表3中的频率配置参数只是举例说明,并不造成对本申请的限定性说明,且第一频率配置信息中的配置参数可以为上述多个配置参数中至少一个。例如,在另一个示例中,该第一频率配置信息中也可以只包括业务这个配置参数,或者,也可以只包括地理位置这个配置参数,或者,也可以包括业务和地理位置等等。
步骤305、终端接收来自服务器发送的第一频率配置信息,并确定当前时刻配置参数对 应的第一参数值。
在第一个示例中,终端接收来自应用服务器发送的第一频率配置信息,该第一频率配置信息如表1所示,终端按照第一频率配置信息中的配置参数(速度)检测当前时刻的速度值为70。
在第二个示例中,该第一频率配置信息如表2所示,终端按照第一频率配置信息中的配置参数(地理位置和速度),确定当前的地理位置(如市区),检测当前时刻的速度值(如70)。
在第三个示例中,该第一频率配置信息如表3所示,当配置参数包括地理位置、速度和业务时,终端确定当前时刻的业务(如常规业务),确定当前的地理位置(如市区),检测当前时刻的速度值(如80)。
步骤306、终端将第一参数值与参数值集合进行匹配,确定在参数值集合中与第一参数值相匹配的第二参数值。
在第一个示例中,当该第一频率配置信息如表1所示时,终端将当前检测到的第一速度值(如70)与表1中的速度值集合进行匹配,确定在度值集合中与第一速度值相匹配的第二速度值,如,当前检测的速度为70,当前检测的速度与表1中的速度值集合相匹配的第二速度值(如50-80)。
在第二个示例中,当该第一频率配置信息如表2所示时,配置参数包括地理位置,在第一频率配置信息中,每个地理位置的参数值对应N个速度值,N个速度值中的每个速度值对应有第一发送频率,N为大于或者等于1的正整数。在表2中,包括2个地理位置,如市区和高速。
应理解,在表2中只是对地理位置及每个地理位置对应的速度值集合进行举例说明,并不作为限定性说明,当然,地理位置还可以包括十字路口、高架桥等,此处不一一举例。
终端检测到当前位置(如市区)及当前时刻的第一速度值(如70)。
首先,终端将当前时刻的第一位置(市区)与地理位置的参数值(市区和高速)进行匹配,确定在第一频率配置信息中的第二位置,该第二位置为“市区”。
每个地理位置对应N个速度值,例如,如表2中,“市区”对应的5个速度值范围,该5个速度值分别为“0-20”、“20-50”、“50-80”、“80-120”、“120-以上”。
然后,终端将当前时刻的第一速度值70与第二位置对应的N个速度值进行匹配,确定在5个速度值中与第一速度值70相匹配的第二速度值“50-80”。
在第三个示例中,配置参数为业务,参数值集合包括业务ID值集合,终端确定当前所执行的第一业务;将第一业务的ID值与业务ID集合进行匹配,确定在业务ID集合中与第一业务相匹配的第二业务ID值。
在第四个示例中,第一频率配置信息还包括配置参数优先级,至少一个配置参数中每个配置参数具有对应的优先级,业务为优先级最高的配置参数。
当该第一频率配置信息如表2或3所示时,第一频率配置信息中包括至少两个配置参数时,每个配置参数具有对应的优先级,其中,业务具有最高的优先级(第一优先级),速度具有第二优先级等。
终端根据配置参数的优先级确定至少一个配置参数中的目标配置参数;例如,2个配置参数分别为速度和业务时,终端确定优先级别高的配置参数为目标配置参数,根据目标配置 参数的参数值集合中的第二参数值对应的第一发送频率调整当前发送消息的频率。例如,当2个配置参数分别为速度和业务时,业务的优先级别最高,终端确定当前时刻的第一业务,终端首先将第一业务与第一频率配置信息中的业务ID值集合进行匹配,例如,当前时刻的第一业务为“红绿灯业务”,红绿灯业务的ID值为“710”,将当前的第一业务与业务ID值集合进行匹配,确定相匹配的目标业务ID值为“710”。
步骤307、终端按照第二参数值对应的第一发送频率发送消息。
在第一个示例中,参阅表1,第二参数值(速度值)为“50-80”、终端根据第一频率配置信息中参数值与消息发送频率的对应关系,速度值为“50-80”时,对应的消息发送频率中的第一发送频率为“10”。
在第二示例中,参阅表2,“市区”中,当速度值为“50-80”时,对应的消息发送频率中的第一发送频率为“10”。
在第三个示例中,参阅表3所示,当第一业务ID值为“710”时,与该目标业务ID值“710”对应的第一发送频率为“10”。
本申请实施例中,终端接收来自服务器的第一频率配置信息,该第一频率配置信息包括至少一个配置参数,终端接收到第一频率配置信息后,可以根据第一频率配置信息中的配置参数确定当前时刻配置参数对应的第一参数值,然后将第一参数值与第一频率配置信息中的参数值集合进行匹配,确定在参数值集合中与第一参数值相匹配的第二参数值;随着时间的变化,当前的第一参数值不同,与该第一参数值相匹配的第二参数值可能不同,然后,终端可以根据第一频率配置信息中第二参数值所对应的第一发送频率发送消息,由于该第一频率配置信息中的每个参数值具有对应的第一发送频率,因此终端可以根据第二参数值所对应的第一发送频率对当前发送消息的频率进行动态调整,例如,不需要按照固定频率发送的消息,可以按照较低的发送频率来发送消息,以减少发送消息的数据量,并降低网络和终端的负荷。
在图2对应的实施例基础上,可选的,终端在接收到第一频率配置信息后,还可以接收来自应用服务器发送的更新之后的第二频率配置信息,该第二频率配置信息用于指示终端可以根据更新之后的第二发送频率发送消息。
在一种可能的实现方式中,终端按照第一发送频率(如10Hz)向服务器发送目标业务对应的目标消息,例如,该目标业务为一些需要特殊业务,如故障业务、碰撞业务等等。
应用服务器接收到终端发送的目标消息,目标消息用于指示服务器根据目标消息更新第一频率配置信息,得到更新后的第二频率配置信息,第二频率配置信息包括更新后的第二发送频率。
应用服务器接收到目标消息,确定终端当前的业务为故障业务,应用服务器可以根据该故障业务为终端配置频率配置信息,即更新后的第二频率配置信息,该第二频率配置信息包含至少一个配置参数,该第二频率配置信息可以参照表1、表2和表3进行理解。在一个应用场景中,当应用服务器接收到目标消息,确定终端当前的业务,表明该终端当前发生危险,需要提高终端发送消息的发送频率来保障终端的安全,故而应用服务器重新配置频率信息,重新配置的第二频率配置信息,该第二频率配置信息包括业务及该业务对应的第二发送频率,例如,该第二频率配置信息中包括故障业务(ID值为“730”),该故障业务对应的第二发送 频率为40Hz(第一发送频率为20Hz)。该第二发送频率较第一发送频率增大,实现动态的调整发送频率,并提高不同业务的安全性。
需要说明的是,本申请实施例中,为了区分更新之后的频率配置信息和发送频率,在本申请中,“第一频率配置信息”为更新之前的频率配置信息,“第二频率配置信息”为更新之后的频率配置信息,第一频率配置信息中的第一发送频率为更新之前的发送频率,第二频率配置信息中的第二发送频率为更新之后的发送频率。
终端接收到第二频率配置信息后,按照第二频率配置信息的指示调整发送消息的发送频率。当终端接收到第二频率配置信息,将当前时刻的目标业务与第二频率配置信息中的业务进行匹配,确定第二频率配置信息中的“故障业务”对应的第二发送频率(如40Hz),终端按照更新后的第二发送频率(如40Hz)发送消息。
本示例中,应用服务器为终端配置第一频率配置信息,根据实际业务的需要,应用服务器也可以对第一频率配置信息进行更新,更新该目标业务(如故障业务)所对应的第二发送频率(如40Hz),终端接收到该第二频率配置信息,按照更新后的第二发送频率发送消息,终端按照第二频率配置信息的指示动态的调整发送消息的频率,即减少了系统中所有终端的广播消息的数据量,又可以提高车辆在某些特殊业务(如故障业务)时的安全性。
在另一种可能的实现方式中,应用服务器也可以根据全局信息和终端当前的业务为终端更新频率配置信息,该全局信息可以理解为在V2X通信系统中,应用服务器当前的空口资源的信息。例如,当前V2X通信系统中所有终端占用的无线资源的情况为所有终端中的各个终端进行统一配置发送消息的发送频率。
在一个应用场景中,若该V2X通信系统中包括连接态的终端A,终端B和终端C,若终端A当前发送消息的发送频率为10Hz,终端B当前发送消息的发送频率为10Hz,终端C当前发送消息的发送频率为10Hz,假设应用服务器当前已无可分配的无线资源,服务器可以根据当前的全局信息为各个终端配置更新后的第二频率配置信息。例如,若终端C当前为故障业务,终端C按照10Hz的发送频率通过基站向应用服务器发送故障业务的目标消息,该目标消息携带该故障业务的ID,应用服务器接收到目标消息后,根据该目标消息确定终端C当前的业务为故障业务,若应用服务器提高终端C的发送频率,则需要降低终端A和终端B的发送频率。应用服务器为终端A和终端B重新配置发送消息的发送频率,并向终端A发送频率配置信息A,频率配置信息A用于指示终端A调整当前的消息发送频率为5Hz,即将终端A的消息发送频率从10Hz降低至5Hz;应用服务器向终端B发送频率配置信息B,频率配置信息B用于指示终端B调整当前的消息发送频率为5Hz,即将终端B的消息发送频率从10Hz降低至5Hz;应用服务器为终端C配置第二频率配置信息,该第二频率配置信息包括配置参数(故障业务)和该故障业务对应的第二发送频率为20Hz,即将终端C的消息发送频率从10Hz提高到20Hz,终端根据更新后的第二频率配置信息调整消息发送频率为20Hz,本示例中,应用服务器根据V2X通信系统中的全局信息调整系统中终端的发送消息的发送频率,即节省了无线资源,又提高了某些业务的安全性。
为了理解本申请实施例,在一个应用场景中,终端D为车辆设备,车辆在高路上行驶,且该终端D与应用服务器连接,应用服务器通过基站向终端D发送第一频率配置信息,该第 一频率配置信息如上表2所示,即第一频率配置信息包括2个配置参数,即速度和位置,终端A检测当前的速度是“90”,获取当前的位置为“高速”,终端D将当前的位置与接收到的第一频率配置信息中的位置对应的参数值集合(市区和高速)进行匹配,确定地理位置对应的参数值为“高速”,将终端D自身对应的速度90与第一频率配置信息中的高速所对应的速度值进行匹配,如表2所示,与终端D自身的第一速度值90相匹配的第二速度值为(80-120),第二速度值(80-120)对应的消息发送频率为20Hz,此时,终端按照频率20Hz发送消息,当车辆的行驶速度较快时,需要配置较高的发送频率,以保证可以高频率的通知周围终端自身的状态信息,提高车辆行驶的安全性。当车辆行驶到市区后,终端检测当前的速度为40,终端会根据表2中所示的信息进行匹配,如表2所示,当速度为40时,匹配到表2中的速度值集合,确定第二速度值为(20-50),该第二速度值(20-50)对应的消息发送频率为5Hz,在市区时,车辆行驶的速度较慢,因此发送消息的频率可以减小,也同样可以保障车辆的通信及安全,此时,终端D按照5Hz向周围的终端及服务器广播消息。本申请实施例中,终端可以根据频率配置信息中的消息发送频率灵活调整当前发送消息的发送频率,即可以减少无用的V2X消息,又使得V2X消息传输更高效。
本申请实施例提供了一种发送消息的方法的另一个实施例,本实施例与图2对应的实施例的区别在于,上述实施例中的应用服务器的功能由边缘服务器和中心服务器来执行,请参阅图4所示,图4为本申请实施例中的车辆网的通信系统的另一个示例的架构示意图,终端401通过接入网节点402,核心网节点(如边缘网关403)与边缘服务器404建立连接,终端401通过接入网节点402(如基站),核心网节点(如PDN网关(PDN gateway,PGW)405)与中心服务器406连接,边缘服务器404和中心服务器406可以按照设置的地理位置和执行的功能进行划分,其中,边缘服务器:部署在边缘的服务器,即靠近用户的网络位置,通常集成了缓存、安全性、存储和本地应用程序托管能力,从而无缝、高效、高性能、低延迟地交付云应用程序。中心服务器:相对于边缘服务器,中心服务器部署远离用户,连接各个边缘服务器,处于中心位置。例如,在一个区域范围内,可以设置多个边缘服务器和一个中心服务器,每个边缘服务器与中心服务器连接;边缘服务器为用户提供一个进入网络的通道和与中心服务器通信的功能,通常边缘服务器可以完成单一的业务功能或者少量的几项业务功能,而中心服务器可以执行多项业务或全部业务的功能。
请参阅图5所示,本实施例中的一种发送消息的方法的另一个实施例。
步骤501、终端向CF发起启动连接(on boot connection),与CF进行连接。
步骤502、CF授权终端使用车联网业务,并向终端发送通信参数(包括但不限定于无线资源、授权的V2X业务,中心服务器的IP地址等)。
步骤503、终端根据中心服务器的IP地址与中心服务器连接,并向中心服务器上报终端的ID和该终端的设备类型。
需要说明的是,步骤501-步骤503为可选步骤,若终端与中心服务器已经建立连接,则不需要执行上述步骤501-步骤503,而直接执行步骤504。
步骤504、中心服务器配置第一频率配置信息,第一频率配置信息包括至少一个配置参数,至少一个配置参数的第一参数值集合,及第一参数值集合中每个第一参数值对应的第一 发送频率。
步骤504可以结合步骤304进行理解,此处不赘述。
步骤5051、中心服务器向终端发送该第一频率配置信息。
步骤5052、中心服务器向边缘服务器同步发送该第一频率配置信息,及该终端的终端标识。
步骤506、终端接收来自中心服务器发送的第一频率配置信息,并确定当前时刻配置参数对应的第一参数值。
步骤506可以结合步骤305进行理解,此处不赘述。
步骤507、终端将第一参数值与参数值集合进行匹配,确定在参数值集合中与第一参数值相匹配的第二参数值,第一参数值为参数值集合中的参数值。
步骤507可以结合步骤306进行理解,此处不赘述。
步骤508、终端按照第二参数值对应的第一发送频率向边缘服务器发送目标消息。
终端按照目标参数值对应的第一发送频率(如10Hz)向边缘服务器发送目标业务(如故障业务)发送目标消息,该目标消息用于指示该边缘服务器更新该终端对应的频率配置信息。
步骤509、边缘服务器根据目标消息更新第一频率配置信息,得到更新后的第二频率配置信息,第二频率配置信息包括参数值集合及参数值集合对应的第二发送频率。
该边缘服务器具有执行故障业务的功能。
目标消息携带业务的ID值,边缘服务器根据目标消息携带的ID值确定终端当前的业务,例如,边缘服务器确定终端A当前的业务为故障业务,边缘服务器可以为用户提供最近端的服务,产生更快的网络服务响应,边缘服务器可以为终端配置更新后的第二频率配置信息,第二频率配置信息包括业务,故障业务对应的更新后的第二发送频率。
服务器接收到目标消息,确定终端当前的业务为故障业务,服务器可以根据该故障业务为终端从新配置频率配置信息,即更新后的第二频率配置信息,该第二频率配置信息包含至少一个配置参数,该第二频率配置信息可以参照表1、表2和表3进行理解。在一个应用场景中,当边缘服务器接收到目标消息,确定终端当前的业务为故障业务,表明该终端当前发生危险,需要提高终端发送消息的发送频率来保障终端的安全,故而边缘服务器重新配置频率信息,重新配置的第二频率配置信息,该第二频率配置信息包括业务及该业务对应的第二发送频率。
步骤510、边缘服务器将该更新后的第二频率配置信息向中心服务器发送。
步骤511、中心服务器将更新后的第二频率配置信息向终端发送。以使终端按照第二频率配置信息中的第二发送频率发送消息。
本申请实施例中,通过边缘服务器和中心服务器对频率配置信息进行协同控制,通过向终端下发频率配置信息调整终端的消息发送频率。终端距离边缘服务器的距离较距离中心服务器的距离较近,边缘服务器能较快的响应终端发送的消息,通过边缘服务器和中心服务器的协同作用,提高对频率配置信息更新的处理效率。
请参阅图6所示,本申请实施例提供了一种发送消息的装置600,该装置包括执行上述方法实施例中终端所执行的方法的各个步骤的多个模块。该装置包括接收模块601,处理模块602和发送模块603。
接收模块601,用于接收来自服务器的第一频率配置信息,所述第一频率配置信息用于指示终端发送消息的频率,所述第一频率配置信息包括至少一个配置参数,所述配置参数的参数值集合,及所参数值集合中的每个参数值所对应的第一发送频率;
处理模块602,用于确定当前时刻所述配置参数对应的第一参数值;将所述第一参数值与所述接收模块601接收的所述参数值集合进行匹配,确定在所述参数值集合中与所述第一参数值相匹配的第二参数值;
发送模块603,用于按照所述处理模块602确定的所述第二参数值对应的第一发送频率发送消息。
在一个可能实现的实施例中,所述至少一个配置参数包括速度,所述参数值集合包括速度值集合;
所述处理模块602,还用于检测当前时刻的第一速度值;将所述第一速度值与所述速度值集合进行匹配,确定在所述速度值集合中与所述第一速度值相匹配的第二速度值,所述第一发送频率为在所述第一配置信息中与所述第二速度值对应的发送频率。
在一个可能实现的实施例中,所述至少一个配置参数包括地理位置,在所述第一频率配置信息中,每个地理位置的参数值对应N个速度值,所述N个速度值中的每个速度值对应有第一发送频率,所述N为大于或者等于1的正整数。
在一个可能实现的实施例中,所述处理模块602,还用于获取当前时刻的第一位置及第一速度值;
将所述当前时刻的第一位置与所述地理位置的参数值进行匹配,确定在所述频率配置信息中的第二位置;
将当前时刻的第一速度值与所述第二位置对应的N个速度值进行匹配,确定在所述N个速度值中与所述第一速度值相匹配的第二速度值;
所述发送模块603,还用于按照所述处理模块602确定的所述第二速度值对应的第一发送频率发送消息。
在一个可能实现的实施例中,所述至少一个配置参数包括业务,所述参数值集合包括业务ID值集合;
所述处理模块602,还用于确定当前所执行的第一业务;
将所述第一业务的ID值与所述业务ID值集合进行匹配,确定在所述业务ID集合中与所述第一业务相匹配的第二业务ID值,所述第一发送频率为在所述第一配置信息中与所述第二业务的ID值对应的发送频率。
在一个可能实现的实施例中,所述第一频率配置信息还包括配置参数优先级,所述至少一个配置参数中每个配置参数具有对应的优先级;
所述处理模块602,还用于根据配置参数的优先级确定所述至少一个配置参数中的目标配置参数;将所述第一参数值与所述目标配置参数的参数值集合进行匹配,确定在所述参数值集合中与所述第一参数值相匹配的第二参数值。
在一个可能实现的实施例中所述发送模块603,还用于按照所述第一发送频率向所述服务器发送目标业务对应的目标消息,所述目标消息用于指示所述服务器根据所述目标消息更新所述第一频率配置信息,得到更新后的第二频率配置信息,所述第二频率配置信息包括更 新后的第二发送频率;
所述接收模块601,用于接收所述更新后的第二频率配置信息;
所述发送模块603,用于按照所述更新后的所述第二发送频率发送消息。
进一步的,图6中的装置是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到图6中的终端可以采用图7所示的形式。各模块可以通过图7的处理器、收发器和存储器来实现。
请参考图7,其为本申请实施例提供的一种终端的结构示意图。其可以为以上实施例中的终端,用于实现以上实施例中终端的操作,包括图6对应的一种发送消息的装置。如图7所示,该终端包括:天线710、射频部分720、信号处理部分730。天线710与射频部分720连接。在下行方向上,射频部分720通过天线710接收信息,将接收到的信息发送给信号处理部分730进行处理。在上行方向上,信号处理部分730对终端的信息进行处理,并发送给射频部分720,射频部分720对终端的信息进行处理后经过天线710发送。
信号处理部分730可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。可选的,以上用于终端的装置可以位于该调制解调子系统。
调制解调子系统可以包括一个或多个处理元件731,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件732和接口电路733。存储元件732用于存储数据和程序,但用于执行以上方法中终端所执行的方法的程序可能不存储于该存储元件732中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路733用于与其它子系统通信。以上用于终端的装置可以位于调制解调子系统,该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端执行的方法。
在又一种实现中,终端实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于终端的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
本申请实施例还提供了一种计算机存储介质,用于储存为上述图7所示的终端所用的计算机软件指令,其包含用于执行上述方法实施例所设计的程序。
请参阅图8,本申请实施例提供了一种服务器,该服务器用于执行上述方法实施例中应用服务器,中心服务器或边缘服务器所执行的方法步骤,服务器包括:
配置模块801,用于配置第一频率配置信息,第一频率配置信息包括至少一个配置参数,配置参数的参数值集合,及参数值集合中每个参数值对应的第一发送频率;
发送模块802,用于向终端发送配置模块801配置的第一频率配置信息,第一频率配置信息用于指示:终端确定当前时刻配置参数所对应的第一参数值;将第一参数值与参数值集合进行匹配,确定在参数值集合中与第一参数值相匹配的第二参数值,按照第二参数值对应的第一发送频率发送消息。
在一个可能的实现方式中,服务器还包括接收模块803;
接收模块803,还用于接收终端发送的设备类型;
配置模块801,还用于根据接收模块803接收的设备类型配置与设备类型对应的第一频率配置信息。
在一个可能的实现方式中,接收模块803,还用于接收终端发送的目标业务对应的目标消息;
配置模块801,还用于根据接收模块803目标消息更新第一频率配置信息,得到更新后的第二频率配置信息,第二配置信息包括更新后的第二发送频率;
发送模块802,用于向终端发送第二频率配置信息,第二频率配置信息用于指示终端按照第二发送频率发送消息。
在一种可能的实现方式中,所述至少一个配置参数包括速度,所述参数值集合包括速度值集合,所述速度值集合中的速度值具有对应的第一发送频率。
在一种可能的实现方式中,所述至少一个配置参数包括业务,所述参数值集合包括业务 ID值集合,所述业务ID值集合中的每个业务ID值具有对应的第一发送频率。
在一种可能的实现方式中,所述至少一个配置参数还包括地理位置,在所述第一频率配置信息中,每个地理位置的参数值对应N个速度值,所述N个速度值中的每个速度值具有对应的所述第一发送频率,所述N为大于或者等于1的正整数。
进一步的,图8中的服务器是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到图8中的终端可以采用图9所示的形式。各模块可以通过图9的处理器、网络接口和存储器来实现。
图9是本发明实施例提供的一种服务器结构示意图,该服务器900可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器922和存储器932,一个或一个以上存储应用程序942或数据944的存储介质930(例如一个或一个以上海量存储设备)。其中,存储器932和存储介质930可以是短暂存储或持久存储。存储在存储介质930的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对服务器中的一系列指令操作。更进一步地,处理器922可以设置为与存储介质930通信,在服务器900上执行存储介质930中的一系列指令操作。
服务器900还可以包括一个或一个以上电源926,一个或一个以上有线或无线网络接口950,一个或一个以上输入输出接口958,和/或,一个或一个以上操作系统941,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
上述实施例中由服务器所执行的步骤可以基于该图9所示的服务器结构。
本申请实施例还提供了一种计算机存储介质,用于储存为上述图9所示的服务器所用的计算机软件指令,其包含用于执行上述方法实施例所设计的程序。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以 存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (30)

  1. 一种发送消息的方法,其特征在于,包括:
    接收来自服务器的第一频率配置信息,所述第一频率配置信息用于指示终端发送消息的频率,所述第一频率配置信息包括至少一个配置参数,所述配置参数的参数值集合,及所参数值集合中的每个参数值所对应的第一发送频率;
    确定当前时刻所述配置参数对应的第一参数值;
    将所述第一参数值与所述参数值集合进行匹配,确定在所述参数值集合中与所述第一参数值相匹配的第二参数值;
    按照所述第二参数值对应的第一发送频率发送消息。
  2. 根据权利要求1所述的方法,其特征在于,所述至少一个配置参数包括速度,所述参数值集合包括速度值集合,所述确定当前时刻所述配置参数对应的第一参数值,包括:
    检测当前时刻的第一速度值;
    将所述第一参数值与所述参数值集合进行匹配,确定所述参数值集合中与所述第一参数值相匹配的第二参数值,包括:
    将所述第一速度值与所述速度值集合进行匹配,确定在所述速度值集合中与所述第一速度值相匹配的第二速度值,所述第一发送频率为在所述第一配置信息中与所述第二速度值对应的发送频率。
  3. 根据权利要求1或2中所述的方法,其特征在于,所述至少一个配置参数包括地理位置,在所述第一频率配置信息中,每个地理位置的参数值对应N个速度值,所述N个速度值中的每个速度值对应有第一发送频率,所述N为大于或者等于1的正整数。
  4. 根据权利要求3所述的方法,其特征在于,所述将所述第一参数值与所述参数值集合进行匹配,确定在所述参数值集合中与所述第一参数值相匹配的第二参数值,包括:
    获取当前时刻的第一位置及第一速度值;
    将所述当前时刻的第一位置与所述地理位置的参数值进行匹配,确定在所述频率配置信息中的第二位置;
    将当前时刻的第一速度值与所述第二位置对应的N个速度值进行匹配,确定在所述N个速度值中与所述第一速度值相匹配的第二速度值;
    按照所述第二速度值对应的第一发送频率发送消息。
  5. 根据权利要求1所述的方法,其特征在于,所述至少一个配置参数包括业务,所述参数值集合包括业务ID值集合,所述确定当前时刻所述配置参数所对应的第一参数值,包括:
    确定当前所执行的第一业务;
    将所述第一参数值与所述参数值集合进行匹配,确定所述参数值集合中与所述第一参数值相匹配的第二参数值,包括:
    将所述第一业务的ID值与所述业务ID值集合进行匹配,确定在所述业务ID集合中与所述第一业务相匹配的第二业务ID值,所述第一发送频率为在所述第一配置信息中与所述第二业务的ID值对应的发送频率。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述第一频率配置信息还包括配置参数优先级,所述至少一个配置参数中每个配置参数具有对应的优先级;所述方法还包括:
    根据配置参数的优先级确定所述至少一个配置参数中的目标配置参数;
    将所述第一参数值与所述目标配置参数的参数值集合进行匹配,确定在所述参数值集合中与所述第一参数值相匹配的第二参数值。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    按照所述第一发送频率向所述服务器发送目标业务对应的目标消息,所述目标消息用于指示所述服务器根据所述目标消息更新所述第一频率配置信息,得到更新后的第二频率配置信息,所述第二频率配置信息包括更新后的第二发送频率;
    接收所述更新后的第二频率配置信息;
    按照所述更新后的所述第二发送频率发送消息。
  8. 一种发送消息的方法,其特征在于,包括:
    服务器配置第一频率配置信息,所述第一频率配置信息包括至少一个配置参数,所述配置参数的参数值集合,及所述参数值集合中每个参数值对应的第一发送频率;
    所述服务器向终端发送所述第一频率配置信息,所述第一频率配置信息用于指示:所述终端确定当前时刻所述配置参数所对应的第一参数值;将所述第一参数值与所述参数值集合进行匹配,确定在所述参数值集合中与所述第一参数值相匹配的第二参数值,按照所述第二参数值对应的第一发送频率发送消息。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述服务器接收终端发送的设备类型;
    所述服务器配置第一频率配置信息,包括:
    所述服务器根据所述设备类型配置与所述设备类型对应的第一频率配置信息。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述服务器接收所述终端发送的目标业务对应的目标消息;
    所述服务器根据所述目标消息更新所述第一频率配置信息,得到更新后的第二频率配置信息,所述第二频率配置信息包括更新后的第二发送频率;
    所述服务器向所述终端发送所述第二频率配置信息,所述第二频率配置信息用于指示所述终端按照所述第二发送频率发送消息。
  11. 根据权利要求8-10中任一项所述的方法,其特征在于,所述服务器包括中心服务器和边缘服务器,当所述中心服务器向所述终端发送第一频率配置信息时,所述方法还包括:
    所述中心服务器向所述边缘服务器发送所述第一频率配置信息。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述边缘服务器接收所述终端按照所述第一发送频率发送的目标业务对应的目标消息;
    所述边缘服务器根据所述目标消息更新所述第一频率配置信息,得到更新后的第二频率配置信息,所述第二频率配置信息包括所述参数值集合及所述参数值集合对应的第二发送频率;
    所述边缘服务器向所述中心服务器发送所述第二频率配置信息;
    所述中心服务器向所述终端发送所述第二频率配置信息,所述第二频率配置信息用于指示所述终端按照所述第二发送频率发送消息。
  13. 根据权利要求8-12中任一项所述的方法,其特征在于,所述至少一个配置参数包括速度,所述参数值集合包括速度值集合,所述速度值集合中的速度值具有对应的第一发送频率。
  14. 根据权利要求8-12中任一项所述的方法,其特征在于,所述至少一个配置参数包括业务,所述参数值集合包括业务ID值集合,所述业务ID值集合中的每个业务ID值具有对应的第一发送频率。
  15. 根据权利要求8-12中任一项所述的方法,其特征在于,所述至少一个配置参数还包括地理位置,在所述第一频率配置信息中,每个地理位置的参数值对应N个速度值,所述N个速度值中的每个速度值具有对应的所述第一发送频率,所述N为大于或者等于1的正整数。
  16. 一种发送消息的装置,其特征在于,包括:
    接收模块,用于接收来自服务器的第一频率配置信息,所述第一频率配置信息用于指示终端发送消息的频率,所述第一频率配置信息包括至少一个配置参数,所述配置参数的参数值集合,及所参数值集合中的每个参数值所对应的第一发送频率;
    处理模块,用于确定当前时刻所述配置参数对应的第一参数值;将所述第一参数值与所述接收模块接收的所述参数值集合进行匹配,确定在所述参数值集合中与所述第一参数值相匹配的第二参数值;
    发送模块,用于按照所述处理模块确定的所述第二参数值对应的第一发送频率发送消息。
  17. 根据权利要求16所述的装置,其特征在于,所述至少一个配置参数包括速度,所述参数值集合包括速度值集合;
    所述处理模块,还用于检测当前时刻的第一速度值;将所述第一速度值与所述速度值集合进行匹配,确定在所述速度值集合中与所述第一速度值相匹配的第二速度值,所述第一发送频率为在所述第一配置信息中与所述第二速度值对应的发送频率。
  18. 根据权利要求16或17所述的装置,其特征在于,所述至少一个配置参数包括地理位置,在所述第一频率配置信息中,每个地理位置的参数值对应N个速度值,所述N个速度值中的每个速度值对应有第一发送频率,所述N为大于或者等于1的正整数。
  19. 根据权利要求18所述的装置,其特征在于,
    所述处理模块,还用于获取当前时刻的第一位置及第一速度值;
    将所述当前时刻的第一位置与所述地理位置的参数值进行匹配,确定在所述频率配置信息中的第二位置;
    将当前时刻的第一速度值与所述第二位置对应的N个速度值进行匹配,确定在所述N个速度值中与所述第一速度值相匹配的第二速度值;
    所述发送模块,还用于按照所述处理模块确定的所述第二速度值对应的第一发送频率发送消息。
  20. 根据权利要求16所述的装置,其特征在于,所述至少一个配置参数包括业务,所述参数值集合包括业务ID值集合;
    所述处理模块,还用于确定当前所执行的第一业务;
    将所述第一业务的ID值与所述业务ID值集合进行匹配,确定在所述业务ID集合中与所述第一业务相匹配的第二业务ID值,所述第一发送频率为在所述第一配置信息中与所述第二业务的ID值对应的发送频率。
  21. 根据权利要求16-20中任一项所述的装置,其特征在于,所述第一频率配置信息还包括配置参数优先级,所述至少一个配置参数中每个配置参数具有对应的优先级;
    所述处理模块,还用于根据配置参数的优先级确定所述至少一个配置参数中的目标配置参数;将所述第一参数值与所述目标配置参数的参数值集合进行匹配,确定在所述参数值集合中与所述第一参数值相匹配的第二参数值。
  22. 根据权利要求16-21任一项所述的装置,其特征在于,
    所述发送模块,还用于按照所述第一发送频率向所述服务器发送目标业务对应的目标消息,所述目标消息用于指示所述服务器根据所述目标消息更新所述第一频率配置信息,得到更新后的第二频率配置信息,所述第二频率配置信息包括更新后的第二发送频率;
    所述接收模块,用于接收所述更新后的第二频率配置信息;
    所述发送模块,用于按照所述更新后的所述第二发送频率发送消息。
  23. 一种发送消息的装置,其特征在于,包括至少一个处理器和接口电路,所述至少一个处理器用于执行如权利要求1至7任一项所述的方法。
  24. 一种终端,其特征在于,包括如权利要求16-22中任一项所述的发送消息的装置。
  25. 一种存储介质,其特征在于,包括程序,该程序被处理器执行时用于执行如权利要求1至7任一项所述的方法。
  26. 一种服务器,其特征在于,包括:
    配置模块,用于配置第一频率配置信息,所述第一频率配置信息包括至少一个配置参数,所述配置参数的参数值集合,及所述参数值集合中每个参数值对应的第一发送频率;
    发送模块,用于向终端发送所述配置模块配置的所述第一频率配置信息,所述第一频率配置信息用于指示:所述终端确定当前时刻所述配置参数所对应的第一参数值;将所述第一参数值与所述参数值集合进行匹配,确定在所述参数值集合中与所述第一参数值相匹配的第二参数值,按照所述第二参数值对应的第一发送频率发送消息。
  27. 根据权利要求26所述的服务器,其特征在于,所述服务器还包括接收模块;
    所述接收模块,还用于接收终端发送的设备类型;
    所述配置模块,还用于根据所述接收模块接收的所述设备类型配置与所述设备类型对应的第一频率配置信息。
  28. 根据权利要求26所述的服务器,其特征在于,所述服务器还包括接收模块;
    所述接收模块,还用于接收所述终端发送的目标业务对应的目标消息;
    所述配置模块,还用于根据所述接收模块目标消息更新所述第一频率配置信息,得到更新后的第二频率配置信息,所述第二配置信息包括更新后的第二发送频率;
    所述发送模块,用于向所述终端发送所述第二频率配置信息,所述第二频率配置信息 用于指示所述终端按照所述第二发送频率发送消息。
  29. 一种服务器,其特征在于,包括:
    存储器,用于存储计算机可执行程序代码;
    网络接口,以及
    处理器,与所述存储器和所述网络接口耦合;
    其中所述程序代码包括指令,当所述处理器执行所述指令时,所述指令使所述服务器执行如权利要求8-15中任一项所述的方法。
  30. 一种存储介质,其特征在于,包括程序,该程序被处理器执行时用于执行如权利要求8至15任一项所述的方法。
PCT/CN2019/085652 2018-05-10 2019-05-06 一种发送消息的方法及相关设备 WO2019214571A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810447656.6 2018-05-10
CN201810447656.6A CN110475225B (zh) 2018-05-10 2018-05-10 一种发送消息的方法及相关设备

Publications (1)

Publication Number Publication Date
WO2019214571A1 true WO2019214571A1 (zh) 2019-11-14

Family

ID=68466864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085652 WO2019214571A1 (zh) 2018-05-10 2019-05-06 一种发送消息的方法及相关设备

Country Status (2)

Country Link
CN (2) CN113411754A (zh)
WO (1) WO2019214571A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586557B (zh) * 2020-04-03 2024-05-03 腾讯科技(深圳)有限公司 车辆通信方法、装置、计算机可读介质及电子设备
US12096280B2 (en) * 2022-03-08 2024-09-17 Hong Kong Applied Science And Technology Research Institute Co., Ltd System and a method for increasing network efficiency in a 5G-V2X network
CN115361667A (zh) * 2022-08-22 2022-11-18 中国第一汽车股份有限公司 一种电动汽车数据分类变频传输方法、装置及系统
CN117768923B (zh) * 2024-02-22 2024-05-28 武汉电动汽车技术开发有限公司 基于5g短切片专网的新能源汽车数据传输优化方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013109960A1 (en) * 2012-01-18 2013-07-25 Carnegie Mellon University Transitioning to a roadside unit state
CN106507500A (zh) * 2015-09-07 2017-03-15 中兴通讯股份有限公司 车联网的通信方法及装置
CN107231634A (zh) * 2017-05-31 2017-10-03 北京邮电大学 一种车载通信系统中的频谱资源分配方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9189896B2 (en) * 2013-12-05 2015-11-17 GM Global Technology Operations LLC Method and system for vehicular data collection
KR101610461B1 (ko) * 2014-03-26 2016-04-07 현대자동차주식회사 응급 서비스를 지원하는 시스템, 차량용 단말기 및 방법
EP4266643A1 (en) * 2014-09-02 2023-10-25 Huawei Technologies Co., Ltd. Data transmission method and device
CN106200518A (zh) * 2015-04-29 2016-12-07 中国科学院电工研究所 一种电动汽车远程监控系统的频率自适应方法
US20180213376A1 (en) * 2015-07-13 2018-07-26 Intel Corporation Techniques to configure vehicle to anything communications
EP3338494B1 (en) * 2015-08-21 2023-01-04 Nec Corporation Vehicle to everything (v2x) communication method and system
CN106973356B (zh) * 2016-01-13 2021-08-24 北京三星通信技术研究有限公司 传输v2x消息的方法和装置
CN105681439A (zh) * 2016-01-29 2016-06-15 宇龙计算机通信科技(深圳)有限公司 用于车辆通信的资源调度方法、装置、终端和基站
US9739881B1 (en) * 2016-03-24 2017-08-22 RFNAV, Inc. Low cost 3D radar imaging and 3D association method from low count linear arrays for all weather autonomous vehicle navigation
US10517110B2 (en) * 2016-08-10 2019-12-24 Ofinno, Llc Cell configuration for V2X communications in a wireless network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013109960A1 (en) * 2012-01-18 2013-07-25 Carnegie Mellon University Transitioning to a roadside unit state
CN106507500A (zh) * 2015-09-07 2017-03-15 中兴通讯股份有限公司 车联网的通信方法及装置
CN107231634A (zh) * 2017-05-31 2017-10-03 北京邮电大学 一种车载通信系统中的频谱资源分配方法及装置

Also Published As

Publication number Publication date
CN113411754A (zh) 2021-09-17
CN110475225B (zh) 2021-05-14
CN110475225A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2019214571A1 (zh) 一种发送消息的方法及相关设备
US20200228948A1 (en) Efficient vehicular services
JP6705073B2 (ja) 車両環境のためのプロキシ協調無線通信動作
CN110383864B (zh) 具有多播的道路通信系统
CN107409402B (zh) 用于车辆通信智能无线电接入区的方法、装置、系统和计算机程序
US20170330457A1 (en) Techniques for vehicle based message transmission and reception
JP7232323B2 (ja) 測位リソース調整方法及びその装置、ネットワークノード、端末並びに基地局
US20140237125A1 (en) Method, apparatus, and system for establishing device-to-device connection
WO2017028679A1 (zh) 一种数据收发、中继方法、装置及通信系统
WO2017020759A1 (zh) 车联网数据传输方法及第一转发设备
WO2020259525A1 (zh) 一种通信方法及装置
WO2019223639A1 (zh) 无线通信方法和设备
Zhou et al. Arve: Augmented reality applications in vehicle to edge networks
WO2017206019A1 (zh) 交通消息传递的方法、装置、车载终端及及服务器
WO2023273783A1 (zh) 定位方法、装置及系统
WO2017054606A1 (zh) 一种基于d2d通信的预警方法及相关装置
US20240118365A1 (en) Optimizing transmission of a sidelink synchronization signal by a wireless device
US20230027290A1 (en) V2x communication method and apparatus
US20220377549A9 (en) Proxy coordinated wireless communication operation for vehicular environments
US20220345860A1 (en) Road side unit for v2x service
TW202038636A (zh) 無線通訊方法及裝置
CN112469000A (zh) 5g网络上车辆网络服务的系统和方法
WO2022032545A1 (zh) 通信方法及装置
WO2021227946A1 (zh) 数据传输方法及相关产品
Channakeshava et al. Implementation of Cellular IoT over VANETs for Efficient Communication of Safety Messages

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799440

Country of ref document: EP

Kind code of ref document: A1