WO2021227946A1 - 数据传输方法及相关产品 - Google Patents
数据传输方法及相关产品 Download PDFInfo
- Publication number
- WO2021227946A1 WO2021227946A1 PCT/CN2021/092094 CN2021092094W WO2021227946A1 WO 2021227946 A1 WO2021227946 A1 WO 2021227946A1 CN 2021092094 W CN2021092094 W CN 2021092094W WO 2021227946 A1 WO2021227946 A1 WO 2021227946A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- area
- configuration information
- information
- link
- sub
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0473—Wireless resource allocation based on the type of the allocated resource the resource being transmission power
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/53—Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
Definitions
- This application relates to the field of communication technology, and in particular to a data transmission method and related products.
- C-V2X Vehicle networking communication
- a sidelink is introduced.
- the spectrum that can be dedicated to V2X is very scarce.
- one method is to apply the enhanced Mobile Broad Band spectrum in the cellular link to the sidelink.
- interference problems will occur between the two links, resulting in poor communication quality between the cellular link and the side link. Therefore, how to solve the interference problem between the two links is a technical problem urgently needed to be solved by those skilled in the art.
- the embodiment of the application discloses a data transmission method and related products, which can send sideline data based on configured sideline link transmission parameters in a configured area, which can reduce unnecessary transmission and potential interference to eMBB services. Improve the communication quality.
- an embodiment of the present application discloses a data transmission method, including: a first device obtains first configuration information, where the first configuration information is used to indicate side link transmission parameters and first area information; A device determines that it is located in the first area according to the first area information; the first device sends the side line data based on the side line link transmission parameter.
- the sideline data can be sent according to the sideline link transmission parameters corresponding to the configuration information, which can reduce unnecessary transmission of the first device and potential interference to the eMBB service. Improve the communication quality.
- the first area information is used to indicate at least one of the following: a first area, a roadside device in the first area, a first signal quality threshold, or a first distance threshold.
- the first device can determine that it is located in the first area according to the first area information, which is convenient for improving communication quality.
- the side-link transmission parameter includes a side-link transmission power parameter and/or a side-link communication frequency.
- the device can perform sidelink communication based on specific parameters, which can reduce unnecessary transmission of the first device and potential interference to the eMBB service, and improve communication quality.
- the side link transmission power parameter includes at least one of the following: path loss factor, maximum transmission power, open loop transmission power, power adjustment factor, and at least one transmission power value.
- path loss factor maximum transmission power
- open loop transmission power open loop transmission power
- power adjustment factor at least one transmission power value.
- the first area includes a first sub-area and a second sub-area
- the at least one transmission power value includes a first transmission power value corresponding to the first sub-area and a second transmission power value corresponding to the second sub-area.
- the first device sends sideline data based on the first transmission power value and/or the sidelink communication frequency in the first sub-region; or, the first device transmits sideline data in the second sub-region based on the second transmission power value and/or Or send side-line data on the side-line link communication frequency. In this way, using different transmit power values to send side line data in different sub-regions can improve communication quality.
- the first area information is further used to indicate the first sub-area and the second sub-area, and the first device determines to be located in the first sub-area or the second sub-area according to the first area information.
- the first configuration information is also used to indicate the second area information
- the second area information is used to determine the second area
- the second area includes the first area
- the second area is larger than the first area
- the first device receives the first message sent by the roadside device; the first device obtains the signal quality of the first message; if the signal quality of the first message is greater than or equal to the first signal quality threshold, the first message A device is determined to be located in the first area. In this way, determining the first area according to the signal quality can ensure the communication quality of sidelink communication in the first area, and reduce unnecessary transmission of the first device and potential interference to the eMBB service.
- the first device determines the distance to the roadside device according to the geographic location of the roadside device and the geographic location of the first device; if the distance is less than or equal to the first distance threshold, the first device determines Located in the first area. In this way, determining the first area based on the distance from the roadside device in the first area can ensure the communication quality of sidelink communication in the first area, and reduce unnecessary transmission and potential interference from the first device. Interference from eMBB services.
- the first area information includes geographic location information, number, or identification of the first area. In this way, determining the first area according to different indication information can improve the accuracy of determining the first area and the flexibility of configuration information.
- the side link communication frequency is different from the cellular link communication frequency of the first area. In this way, interference with the cellular link can be directly avoided, and the communication quality is improved.
- the first configuration information is obtained from a base station; or, obtained from a terminal device; or, obtained from a roadside device; or, obtained from an application server. In this way, the flexibility and convenience of obtaining configuration information are improved.
- an embodiment of the present application provides another data transmission method, including: a first device obtains second configuration information, where the second configuration information is used to indicate second area information and sidelink communication frequency; A device determines that it is located in the second area according to the second geographic location information; the first device receives sideline data on the sideline link communication frequency.
- the device if the device is located in the receiving area corresponding to the configuration information, it can receive side-line data according to the side-line link communication frequency corresponding to the configuration information, which can reduce unnecessary transmission of the first device and potential interference to the eMBB service. Improve the communication quality.
- the first device includes a terminal device or a roadside device.
- the terminal device or the roadside device determines that it is located in the second area, it can perform side-link communication based on the second configuration information, which can avoid interference with other links and improve communication quality.
- the second area information includes geographic location information, number, or identification of the second area. In this way, determining the second area according to different indication information can improve the accuracy of determining the second area and the flexibility of configuration information.
- the second area information is used to indicate at least one of the following: a second area, a roadside device in the second area, a second signal quality threshold, or a second distance threshold.
- the first device can determine that it is located in the second area according to the second area information, which is convenient for improving the communication quality.
- the first device receives the second message sent by the roadside device; the first device obtains the signal quality of the second message; if the signal quality of the second message is greater than or equal to the second signal quality threshold, the first device determines Located in the second area. In this way, determining the second area according to the signal quality can ensure the communication quality of side-link communication in the second area, and reduce unnecessary transmission of the first device and potential interference to the eMBB service.
- the first device determines the distance to the roadside device according to the geographic location of the roadside device and the geographic location of the first device; if the distance is less than or equal to the second distance threshold, the first device determines that it is located in the first device. Two areas. In this way, determining the second area based on the distance from the roadside device in the second area can ensure the communication quality of sidelink communication in the second area, and reduce unnecessary transmission and potential interference from the first device. Interference from eMBB services.
- the second configuration information is also used to indicate a side-link transmission parameter, and the side-link transmission parameter includes a side-link transmission power parameter and/or a side-link communication frequency.
- the device can perform sidelink communication based on specific parameters, which can reduce unnecessary transmission of the first device and potential interference to the eMBB service, and improve communication quality.
- the side link transmission power parameter includes at least one of the following: path loss factor, maximum transmission power, open loop transmission power, power adjustment factor, and at least one transmission power value.
- path loss factor path loss factor
- maximum transmission power maximum transmission power
- open loop transmission power open loop transmission power
- power adjustment factor at least one transmission power value.
- the second configuration information is also used to indicate the first area information
- the first area information is used to determine the first area
- the second area includes the first area
- the second area is larger than the first area.
- a device determines that it is located in the first area according to the first area information; the first device sends the side line data based on the side line link transmission parameter.
- the second area can also receive side data based on the second configuration information, which can avoid interference with other links, and can improve communication quality and communication diversity.
- the first area information is also used to determine the first sub-area and the second sub-area, the first area includes the first sub-area and the second sub-area, and the first device determines that it is located according to the first area information.
- the first device sends sideline data based on the first transmit power value and/or the sidelink communication frequency corresponding to the first subregion; and/or, the first device determines that it is located in the first subregion according to the first region information.
- the first device sends the side-line data based on the second transmit power value and/or the side-link communication frequency corresponding to the second sub-region. In this way, using different transmit power values in different areas can improve communication quality and save power consumption.
- the side link communication frequency is different from the cellular link communication frequency of the second area. In this way, interference with cellular link communication can be directly avoided, and communication quality is improved.
- the second configuration information is obtained from a base station; or, obtained from a terminal device; or, obtained from a roadside device; or, obtained from an application server. In this way, the flexibility and convenience of obtaining configuration information are improved.
- an embodiment of the present application provides yet another data transmission method, including: a second device sending first configuration information and/or second configuration information, where the first configuration information is used to indicate side link transmission parameters And the first area information, and the second configuration information is used to indicate the second area information and the side link communication frequency. That is to say, if the terminal device is located in the area corresponding to the configuration information, side link communication can be performed according to the configuration information, which can reduce necessary transmission and potential interference to eMBB services, and improve communication quality.
- the second device includes a network device, a terminal device, a roadside device, or an application server. In this way, the flexibility for the device to obtain configuration information is improved.
- the roadside device and/or terminal device receives the first configuration information and/or the second configuration information sent by the network device or the application server; the roadside device and/or terminal device determines that the distance from the first device is less than or Equal to the preset threshold, sending the first configuration information and/or the second configuration information to the first device.
- the device can obtain configuration information for the current geographic location, which can improve communication quality, reduce network signaling overhead, and save power consumption.
- the first area information is used to indicate at least one of the following: the first area, the roadside device in the first area, the first signal quality threshold or the first distance threshold; the second area information It is used to indicate at least one of the following: a second area, a roadside device in the second area, a second signal quality threshold, or a second distance threshold.
- the first device can determine to be located in the first area according to the first area information, and determine to be located in the second area according to the second area information, which is convenient for improving the communication quality.
- the side-link transmission parameter includes a side-link transmission power parameter and/or a side-link communication frequency.
- the device can perform side-link communication based on specific parameters, which can reduce unnecessary transmission and potential interference to eMBB services, and improve communication quality.
- the side link transmission power parameter includes at least one of the following: path loss factor, maximum transmission power, open loop transmission power, power adjustment factor, and at least one transmission power value.
- path loss factor path loss factor
- maximum transmission power maximum transmission power
- open loop transmission power open loop transmission power
- power adjustment factor at least one transmission power value.
- the first area information is also used to indicate the first sub-area and the second sub-area, the first area includes the first sub-area and the second sub-area, and at least one transmit power value includes the first sub-area and the first sub-area.
- the first configuration information is further used to indicate the second area information
- the second area information is used to determine the second area.
- the second area includes the first area and the second area is larger than the first area.
- the first area information includes geographic location information, number, or identification of the first area
- the second area information includes geographic location information, number, or identification of the second area.
- the side link communication frequency is different from the cellular link communication frequency of the second area determined by the second area information. In this way, interference with cellular link communication can be directly avoided, and communication quality is improved.
- an embodiment of the present application provides a communication device, including: a transceiver unit, configured to acquire first configuration information, where the first configuration information is used to indicate side link transmission parameters and first area information;
- the processing unit is configured to determine that it is located in the first area according to the first area information;
- the transceiver unit is also configured to send the side line data based on the side line link transmission parameters.
- the device if the device is located in the sending area corresponding to the configuration information, it can send side-line data according to the side-line link transmission parameters corresponding to the configuration information, which can reduce unnecessary transmission and potential interference to eMBB services, and improve communication quality.
- the first area information is used to indicate at least one of the following: a first area, a roadside device in the first area, a first signal quality threshold, or a first distance threshold. In this way, it can be determined to be located in the first area according to the first area information, which is convenient for improving the communication quality.
- the side-link transmission parameters include a side-link transmission power parameter and/or a side-link communication frequency.
- the device can perform side-link communication based on specific parameters, which can reduce unnecessary transmission and potential interference to eMBB services, and improve communication quality.
- the side link transmission power parameter includes at least one of the following: path loss factor, maximum transmission power, open loop transmission power, power adjustment factor, and at least one transmission power value.
- path loss factor path loss factor
- maximum transmission power maximum transmission power
- open loop transmission power open loop transmission power
- power adjustment factor at least one transmission power value.
- the transmission power value of the side link can be dynamically set, which improves flexibility and facilitates the improvement of communication quality.
- the first area includes a first sub-area and a second sub-area
- the side link transmission power parameter includes a first transmission power value corresponding to the first sub-area and a second transmission power corresponding to the second sub-area Value
- the transceiver unit is specifically configured to send sideline data based on the first transmit power value and/or sideline link communication frequency in the first sub-region; and/or, based on the second transmit power value and/or in the second sub-region
- the side-line link communication frequency transmits the side-line data. In this way, using different transmit power values to send side line data in different sub-regions can improve communication quality.
- the first area information is further used to indicate the first sub-area and the second sub-area
- the transceiver unit is further used to determine whether it is located in the first sub-area or the second sub-area according to the first area information.
- the first configuration information is also used to indicate second area information
- the second area information is used to determine the second area
- the second area includes the first area and the second area is larger than the first area
- the transceiver unit is also used to respond
- the side-line data is received on the side-line link communication frequency.
- the transceiver unit is further configured to receive the first message sent by the roadside device; the processing unit is specifically configured to obtain the signal quality of the first message; if the signal quality of the first message is greater than or equal to the first signal quality threshold, determine Located in the first area. In this way, determining the first area according to the signal quality can ensure the communication quality of side-link communication in the first area, and reduce unnecessary transmission and potential interference to the eMBB service.
- the processing unit is further configured to determine the distance to the roadside device according to the geographic location of the roadside device and the geographic location of the communication device; if the distance is less than or equal to the first distance threshold, the first device determines that it is located at the first distance threshold.
- One area is determined according to the distance from the roadside equipment in the first area, which can ensure the communication quality of sidelink communication in the first area, and reduce unnecessary transmission and potential impact on eMBB services. interference.
- the first area information includes geographic location information, number, or identification of the first area. In this way, determining the first area according to different indication information can improve the accuracy of determining the first area and the flexibility of configuration information.
- the communication frequency of the side link is different from the communication frequency of the cellular link in the first area. In this way, interference with the cellular link can be directly avoided, and the communication quality is improved.
- the first configuration information is obtained from a network device; or, obtained from a terminal device; or, obtained from a roadside device; or, obtained from an application server. In this way, the flexibility and convenience of obtaining configuration information are improved.
- an embodiment of the present application provides another communication device, including: a transceiver unit, configured to obtain second configuration information, where the second configuration information is used to indicate second area information and sidelink communication frequency;
- the processing unit is configured to determine that it is located in the second area according to the second area information;
- the transceiver unit is also configured to receive side line data on the side line link communication frequency.
- the device if the device is located in the receiving area corresponding to the configuration information, it can receive the side line data according to the side line link communication frequency corresponding to the configuration information, which can reduce unnecessary transmission and potential interference to eMBB services, and improve communication quality.
- the first device includes a terminal device or a roadside device.
- the terminal device or the roadside device determines that it is located in the second area, it can perform side-link communication based on the second configuration information, which can avoid interference with other links and improve communication quality.
- the second configuration information is also used to indicate side-link transmission parameters, and the side-link transmission parameters include side-link transmission power parameters and/or side-link communication frequencies.
- the device can perform side-link communication based on specific parameters, which can reduce unnecessary transmission and potential interference to eMBB services, and improve communication quality.
- the communication frequency of the side link is different from the communication frequency of the cellular link in the second area.
- the second area information includes geographic location information, number, or identification of the second area. In this way, determining the second area according to different indication information can improve the accuracy of determining the second area and the flexibility of configuration information.
- the second area information is used to indicate at least one of the following: a second area, a roadside device in the second area, a second signal quality threshold, or a second distance threshold.
- the first device can determine that it is located in the second area according to the second area information, which is convenient for improving the communication quality.
- the transceiver unit is further configured to receive the second message sent by the roadside device; the processing unit is specifically configured to obtain the signal quality of the second message; if the signal quality of the second message is greater than or equal to the second signal quality threshold, determine Located in the second area. In this way, determining the second area according to the signal quality can ensure the communication quality of side-link communication in the second area, and reduce unnecessary transmission and potential interference to the eMBB service.
- the processing unit is further configured to determine the distance to the roadside device according to the geographic location of the roadside device and the geographic location of the communication device; if the distance is less than or equal to the second distance threshold, it is determined to be located in the second area.
- the second area is determined according to the distance from the roadside equipment in the second area, which can ensure the communication quality of sidelink communication in the second area, and reduce unnecessary transmission and potential impact on eMBB services. interference.
- the second area information is also used to indicate the first area information
- the first area information is used to determine the first area
- the second area includes the first area
- the second area is larger than the first area
- the transceiver unit is also used to It is determined to be located in the first area according to the first area information
- the side line data is sent based on the side line link transmission parameters.
- the first area information is further used to determine the first sub-area and the second sub-area
- the first area includes the first sub-area and the second sub-area
- the transceiver unit is further used to determine the location in the first sub-area according to the first area information.
- Sub-region based on the first transmit power value and/or side-link communication frequency corresponding to the first sub-region to send side-line data; and/or, determine to be located in the second sub-region based on the The second transmission power value and/or the side-link communication frequency corresponding to the sub-area sends the side-line data. In this way, using different transmit power values in different areas can improve communication quality and save power consumption.
- the side link transmission power parameter includes at least one of the following: path loss factor, maximum transmission power, open loop transmission power, power adjustment factor, and at least one transmission power value.
- path loss factor path loss factor
- maximum transmission power maximum transmission power
- open loop transmission power open loop transmission power
- power adjustment factor at least one transmission power value.
- the transmission power value of the side link can be dynamically set, which improves flexibility and facilitates the improvement of communication quality.
- the second configuration information is obtained from a network device; or, obtained from a terminal device; or, obtained from a roadside device; or, obtained from an application server. In this way, the flexibility and convenience of obtaining configuration information are improved.
- an embodiment of the present application provides yet another communication device, including: a transceiver unit, configured to send first configuration information and/or second configuration information, where the first configuration information is used to indicate sidelink transmission
- the parameters, as well as the first area information, and the second configuration information are used to indicate the second area information and the side link communication frequency. That is to say, if the terminal device is located in the area corresponding to the configuration information, side link communication can be performed according to the configuration information, which can reduce necessary transmission and potential interference to eMBB services, and improve communication quality.
- the side-link transmission parameters include a side-link transmission power parameter and/or a side-link communication frequency.
- the device can perform side-link communication based on specific parameters, which can reduce unnecessary transmission and potential interference to eMBB services, and improve communication quality.
- the sidelink communication frequency is different from the cellular link communication frequency of the second area determined by the second area information. In this way, interference with cellular link communication can be directly avoided, and communication quality is improved.
- the second device includes at least one of the following: a network device, a terminal device, a roadside device, and an application server.
- a network device In this way, the flexibility for the device to obtain configuration information is improved.
- the transceiver unit of the roadside device and/or terminal device is specifically configured to receive the first configuration information and/or the second configuration information sent by the network device and/or the application server; determine that the distance to other communication devices is less than Or equal to the preset threshold, sending the first configuration information and/or the second configuration information to the other communication device.
- the device can obtain configuration information for the current geographic location, which can improve communication quality, reduce network signaling overhead, and save power consumption.
- the first area information is used to indicate at least one of the following: a first area, a roadside device in the first area, a first signal quality threshold or a first distance threshold;
- the second area information is used to indicate the following At least one of: a second area, a roadside device in the second area, a second signal quality threshold, or a second distance threshold.
- the first device can determine that it is located in the first area according to the first area information, and the first device can determine that it is located in the second area according to the second area information, which is convenient for improving the communication quality.
- the side link transmission power parameter includes at least one of the following: path loss factor, maximum transmission power, open loop transmission power, power adjustment factor, and at least one transmission power value.
- path loss factor path loss factor
- maximum transmission power maximum transmission power
- open loop transmission power open loop transmission power
- power adjustment factor at least one transmission power value.
- the transmission power value of the side link can be dynamically set, which improves flexibility and facilitates the improvement of communication quality.
- the first area information is further used to indicate the first sub-area and the second sub-area, the first area includes the first sub-area and the second sub-area, and the at least one transmit power value includes the first sub-area corresponding to the first sub-area.
- the first configuration information is further used to indicate second area information
- the second area information is used to determine the second area.
- the second area includes the first area and the second area is larger than the first area.
- the first area information includes geographic location information, number or identification of the first area
- the second area information includes geographic location information, number or identification of the second area.
- the communication device in the above aspect may be a network device, a terminal device, a roadside device, or an application server, or may be a chip applied to these devices or other combination devices or components that can realize the functions of the above devices.
- the transceiver unit can be a transmitter and a receiver, or an integrated transceiver, which can include an antenna and a radio frequency circuit, etc.
- the processing unit can be a processor, such as a baseband Chip etc.
- the transceiver unit may be a radio frequency unit
- the processing unit may be a processor.
- the transceiver unit may be an input/output interface of the chip system
- the processing unit may be a processor of the chip system, such as a central processing unit (CPU).
- CPU central processing unit
- the present application provides a computer-readable storage medium with instructions stored in the computer-readable storage medium, which when run on a computer, cause the computer to execute the method in any of the above aspects.
- this application provides a computer program product.
- the computer program product is used to store a computer program.
- the computer program runs on a computer, the computer executes any of the above-mentioned methods.
- the present application provides a chip including a processor, configured to call and execute instructions stored in the memory from the memory, so that a terminal device with the chip installed executes the method of any of the above aspects.
- this application provides another chip.
- the chip may be a chip in the first device or the second device.
- the chip includes: an input interface, an output interface, and a processing circuit. They are connected through internal connection paths, and the processing circuit is used to execute any of the above-mentioned methods.
- this application provides another chip, including: an input interface, an output interface, a processor, and optionally, a memory.
- the input interface, output interface, processor, and memory are connected by internal connection paths.
- the processor is used to execute the code in the memory, and when the code is executed, the processor is used to execute the method in any of the foregoing aspects.
- an embodiment of the present application provides a communication device, including: a memory for storing instructions; at least one processor for calling and running instructions from the memory, so that the communication device implements the steps in any of the above aspects .
- an embodiment of the present application provides a communication system, including the first device and the second device in any of the foregoing aspects.
- FIG. 1A and 1B are schematic structural diagrams of a communication system provided by an embodiment of the present application.
- FIG. 2 is a schematic flowchart of a data transmission method provided by an embodiment of the present application.
- 3A and 3B are schematic diagrams of a first area provided by an embodiment of the present application.
- FIG. 4 is a schematic flowchart of another data transmission method provided by an embodiment of the present application.
- FIG. 5 is a schematic flowchart of another data transmission method provided by an embodiment of the present application.
- FIG. 6 is a schematic flowchart of a communication device provided by an embodiment of the present application.
- FIG. 7 is a schematic flowchart of another communication device provided by an embodiment of the present application.
- FIG. 1A is a schematic structural diagram of a first communication system provided by an embodiment of the present application.
- the communication system includes a first terminal device 102, a second terminal device 104, an application server 103, and a network device 106.
- the first terminal device 102 can directly communicate with the second terminal device 104, or can communicate with the second terminal device 104 through the network device 106.
- the first terminal device 102 and the second terminal device 104 may refer to devices that provide voice and/or data connections to the user, may also be connected to computing devices such as laptop computers or desktop computers, or they may be devices such as An independent device such as a personal digital assistant (PDA).
- PDA personal digital assistant
- Both the first terminal device 102 and the second terminal device 104 may be user equipment (UE), such as a vehicle, an on-board unit (OBU), a user unit, a user station, a mobile station, a mobile station, and a remote Station, access point, remote terminal, access terminal, user terminal, user agent or user device, etc.
- UE user equipment
- OBU on-board unit
- the first terminal device 102 and the second terminal device 104 may also be chips, such as processors.
- the application server 103 may be a server of Intelligent Traffic Systems (ITS), or may be a server of vehicle-related applications such as navigation and charging, which is not limited here.
- ITS Intelligent Traffic Systems
- the network equipment 106 can be a base station, an access point, a node, an environment bureau (eNB), or a 5G base station (next generation base station, gNB), which refers to the wireless terminal through one or more sectors on the air interface.
- Devices in the access network for communication.
- IP Internet Protocol
- the base station can serve as a router between the wireless terminal and the rest of the access network, and the access network can include an Internet Protocol network.
- the base station can also coordinate the management of the attributes of the air interface.
- the communication system can be applied to the C-V2X system, and can also be applied to other communication systems, such as public land mobile network (PLMN), device-to-device (D2D) network, Machine-to-machine (M2M) network, internet of things (IoT) or other networks, etc., are not limited here.
- PLMN public land mobile network
- D2D device-to-device
- M2M Machine-to-machine
- IoT internet of things
- This communication system is mainly used for sidelink communication.
- the first terminal device 102 and the second terminal device 104 can perform cellular link communication through the network device 106.
- the network device 106 may send the first configuration information to the first terminal device 102 and the second configuration information to the second terminal device 104.
- the first configuration information is used to instruct the first terminal device 102 how to transmit the sideline data
- the second configuration information is used to instruct the second terminal device 104 how to transmit the sideline data. Therefore, the first terminal device 102 can send sideline data to the second terminal device 104 based on the first configuration information, and receive the sideline data or cellular data sent by the second terminal device 104 based on the second configuration information.
- Figure 1B is a schematic structural diagram of a second communication system provided by an embodiment of the present application.
- the communication system includes a first terminal device 102, a second terminal device 104, an application server 103, a network device 106, and a roadside device. (Road Side Unit, RSU)105.
- the RSU can be a UE in a communication system, or a base station in a communication system.
- the RSU when the RSU is a base station, it may be a macro base station or a micro base station, which is not limited in the present invention.
- the link between the RSU and the UE is a side link; if the RSU is a base station, the link between the RSU and the UE is a cellular link (including uplink and/or downlink road).
- the optional RSU can be installed on a fixed location or object, or on a mobile physics.
- the term RSU in the present invention does not sufficiently limit the installation location and scene.
- the roadside device 105 is a relatively fixed device in the area corresponding to the first terminal device 102 and the second terminal device 104, and can be used to forward the instruction information of the network device 106, or to receive or forward the first terminal device 102 or the second terminal Data of terminal devices such as device 104.
- the network device 106 may first send the first configuration information of the first terminal device 102 and the second configuration information of the second terminal device 104 to the roadside device 105.
- the first terminal device 102 and the second terminal device 104 can pass through the network device 106 (or one of the The roadside device 105) performs communication, or the first terminal device 102 and the second terminal device 104 may perform sidelink communication based on the first configuration information or the second configuration information.
- the first terminal device 102 is a mobile phone in a vehicle driving on the highway or a vehicle-mounted terminal installed in a car
- the second terminal device 104 is another driver.
- the roadside device 105 sends the first configuration information to the first terminal device 102.
- the roadside device 105 sends the second configuration information to the second terminal device 104.
- the first terminal device 102 may perform sidelink communication with the second terminal device 104 based on the first configuration information
- the second terminal device 104 may perform sidelink communication with the first terminal device 102 based on the second configuration information.
- the roadside device 105 can also be used as the receiving end of the first terminal device 102. That is, in the case where the second terminal device 104 includes the roadside device 105, the first terminal device 102 and the roadside device 105 perform cellular link communication first, and then The roadside device 105 sends the first configuration information to the first terminal device 102, and the first terminal device 102 performs sidelink communication with the roadside device 105 based on the first configuration information.
- the roadside device 105 For example, if the roadside device 105 is placed in a toll collector at a toll station on an expressway, and the first terminal device 102 is a vehicle traveling on the expressway or an on-board terminal installed in a car, then when the first terminal device 102 is located When the roadside device 105 is within the receivable range, the roadside device 105 sends the first configuration information to the first terminal device 102.
- the first terminal device 102 can perform sidelink communication with the roadside device 105 based on the first configuration information. In this way, the roadside device 105 can obtain the driving information of the first terminal device 102 and the bound deduction account for deductions. Information, and charge based on the above information. There is no need to install other third-party applications, and no user operation is required, which improves the convenience of operation.
- the roadside device 105 For another example, if the roadside device 105 is placed in a parking lot in a shopping mall and the first terminal device 102 is the user’s mobile phone, then when the user is in a shopping mall, and the first terminal device 102 is located within the acceptable range of the roadside device 105 At this time, the roadside device 105 sends the first configuration information to the first terminal device 102.
- the first terminal device 102 can perform side-link communication with the roadside device 105 based on the first configuration information. In this way, the first terminal device 102 can obtain the parking location and navigation route in the parking lot through the roadside device 105, or Location information and promotional information of each store in the mall to facilitate users' shopping.
- D2D communication technology With the development of wireless communication technology, people’s demand for high data transmission rates and user experience is increasing. At the same time, people’s demand for proximity services that understand and communicate with people or things around them is gradually increasing. Therefore, D2D communication technology has emerged as the times require pregnancy.
- the application of D2D technology can reduce the burden on cellular networks, reduce battery power consumption of terminal devices, increase data transmission rates, and meet the needs of proximity services.
- the D2D technology allows multiple UEs supporting the D2D function to perform direct discovery and direct communication with or without network infrastructure.
- an application scenario for the Internet of Vehicles based on the D2D technology has been proposed. However, due to security considerations, the delay requirements in this scenario are very high, and the existing D2D technology cannot be implemented.
- V2X communication refers to the communication between vehicles and anything outside, including vehicle-to-vehicle communication. , V2V), vehicle to pedestrian (V2P), vehicle to infrastructure (V2I), vehicle to network (V2N).
- V2X communication is aimed at high-speed devices represented by vehicles. It is the basic technology and key technology applied in scenarios with very high communication delay requirements in the future, such as smart cars, autonomous driving, and intelligent transportation systems.
- LTE V2X communication can support communication scenarios with and without network coverage, and its resource allocation method can adopt the network access equipment scheduling mode, such as the E-UTRAN Node B (eNB) scheduling mode And UE optional mode.
- vehicle users vehicle UE, V-UE
- V-UE vehicle UE
- eNB E-UTRAN Node B
- UE optional mode UE optional mode.
- vehicle users vehicle UE, V-UE
- V-UE can share some of their own information, such as position, speed, intent (such as turning, merging, and reversing) information periodically and information triggered by some non-periodical events Send to surrounding V-UEs, and similarly V-UEs will also receive information from surrounding users in real time.
- LTE V2X solves some of the basic requirements in V2X scenarios, but for future application scenarios such as fully intelligent driving and autonomous driving, LTE V2X at this stage cannot effectively support it.
- 5G NR V2X With the advancement of 5G NR technology in the 3GPP standards organization, 5G NR V2X will also develop further.
- the enhanced Mobile Broadband (enhanced Mobile Broad Band) spectrum in the cellular link is applied to the sidelink.
- the frequency of the cellular link is used on the sidelink, interference problems will occur between the two links, resulting in poor communication quality.
- the network device pre-determines or dynamically configures the configuration information of the side link communication for the terminal devices or roadside devices in the area to perform the side link communication.
- the configuration information is used to indicate the side link transmission parameters and the geographic location information of the designated area.
- the configuration information may be configured by the network device according to each area, that is, different areas or different types of areas have different configuration information.
- the configuration information may also be configured according to various roadside devices, that is, roadside devices in different areas or different types of roadside devices have different configuration information.
- the configuration information may also be configured according to each terminal device, that is, different terminal devices or different types of terminal devices have different configuration information, which is not limited here.
- the terminal device can perform side-link communication based on preset side-link transmission parameters in the designated area, which can avoid interference with the cellular link and improve the communication quality.
- FIG. 2 is a data transmission method provided by an embodiment of the present application. The method is applied to the first device. The method includes but is not limited to the following steps:
- Step S202 The first device obtains first configuration information from the second device, where the first configuration information is used to indicate side link transmission parameters and first area information.
- the first device is a terminal device, for example, the first terminal device 102 described in FIG. 1A.
- the second device may be the network device 106 and the second terminal device 104 described in FIG. 1A and FIG. 1B, or may be the application server 103 and the roadside device 105 described in FIG. 1B. In this way, the flexibility of obtaining the first configuration information is improved.
- the first device acquiring the first configuration information from the second device includes: the first device acquiring the first configuration information forwarded by the network device and/or the application server from other terminal devices.
- obtaining the first configuration information from the second device by the first device includes: the first device obtains the first configuration information forwarded by the network device and/or the application server from the roadside device. Therefore, the configuration message received by the first device from the network device or the application server can be reduced, and the signaling overhead of the network can be reduced.
- the first device when the first device determines that the distance from the other terminal device is less than a preset threshold, the first device obtains the first configuration information forwarded by the network device and/or the application server from the other terminal device. And/or, when the first device determines that the distance from the roadside device is less than the preset threshold, the first device obtains the first configuration information forwarded by the network device and/or the application server from the roadside device. That is, the configuration information is obtained only when the distance meets the preset condition, that is, obtaining the configuration information for the geographic location of the first device can improve the communication quality, reduce the signaling overhead of the network, and save the power consumption of the first device.
- the side-line link transmission parameter is used to indicate the transmission method of the side-line data.
- the side-link transmission parameters include side-link transmission power parameters, which are used to instruct the first device to send side-line data.
- the side link transmission power parameter includes at least one of the following: path loss factor, maximum transmission power, open loop transmission power, power adjustment factor, and at least one transmission power value.
- the transmit power value Ptx satisfies the following formula,
- Ptx min ⁇ Pmax, Pmax+ ⁇ –(log 2 (M)+alpha*L+P 0 ) ⁇
- Pmax is the maximum transmission power
- ⁇ is the power adjustment parameter
- M is the bandwidth of the transmission data
- alpha is the path loss factor
- L is the path loss
- P 0 is the open-loop transmission power parameter.
- the transmission power value of the first device has an inverse relationship with at least one of the path loss between the first device and the device to be communicated, the open loop transmission power, the transmission bandwidth, and the path loss factor. That is to say, when the distance between the first device and the device to be communicated is farther, the path loss is larger, and the transmission power value is smaller. For example, when the first device is at the edge of the first area, the transmission power of the first device is relatively small; conversely, when the first device is in a relatively central area of the first area, the transmission power of the first device is relatively large. In this way, when the frequency of eMBB is used for sidelink, the transmission on the side link can be controlled in a smaller range.
- the side-link transmission parameters include the side-link transmission power, so even when the side-link communication frequency is the same as the cellular link communication frequency, the side-link communication can be controlled through the side-link transmission power. The impact on cellular link communication, thereby avoiding interference between the two links, and improving communication quality.
- the side-link transmission parameter also includes the side-link communication frequency, which is used to indicate the sending or receiving of the side-line data.
- the side link communication frequency is different from the cellular link communication frequency.
- the side link communication frequency may be different from the cellular link communication frequency in the first area or the second area. It can be understood that when the communication frequency of the side-line link is different from that of the cellular link, performing the side-line link communication will not affect the cellular link communication, thereby avoiding interference between the two links and improving the communication quality.
- the first area information is used to indicate the first area, the roadside device in the first area, the first signal quality threshold, the first distance threshold, and so on.
- the first area may be any area, or may be an area where side-link communication is restricted, or the like, or a geographic area where side-line communication is performed in the first area.
- the first area information may include geographic location information of the first area, for example, latitude and longitude information, and horizontal and vertical information embodied in satellite coordinates.
- the first area information also includes the number of the first area, for example, highway G10, the serial number stored in the base station, and so on.
- the first area information may also be an identifier of the first area, for example, a name. Based on the above information, the geographic location of the first area can be determined.
- the first area information may also include information used to determine the roadside equipment such as geographic location information, number or identification of the roadside equipment. In this way, determining the first area according to different indication information can improve the accuracy of determining the first area and the flexibility of configuration information.
- the first signal quality threshold and the first distance threshold are used to determine that the first device is located in the first area.
- the first device receives the first message sent by the roadside device in the first area; the first device obtains the signal quality of the first message; if the signal quality is greater than or equal to the first signal quality threshold , The first device is determined to be located in the first area.
- the first message may be a data acquisition request sent by the roadside device, may also be a message specifically used to test signal quality, or may be the geographic location of the roadside device, etc., which is not limited herein.
- the signal quality can be Reference Signal Receiving Power (RSRP), Received Signal Strength Indication (RSSI), Reference Signal Receiving Quality (RSRQ), signal and One or more of interference and noise ratio (Signal to Interference plus Noise Ratio, SINR), signal to noise ratio (SIGNAL NOISE RATIO, SNR or S/N), and channel quality indicator (Channel Quality Indicator, CQI).
- the signal quality threshold is also defined by the same parameters of the signal quality together. It can be understood that the first device determines that the first device is located in the first area according to the signal quality of the first message sent by the roadside device being greater than or equal to the first signal quality threshold, thereby ensuring communication quality and reducing unnecessary use of the first device. Transmission and potential interference to eMBB services.
- the first device determines the distance to the roadside device according to the geographic location of the roadside device and the geographic location of the first device; if the distance is less than or equal to the first distance threshold, the first device The device is determined to be located in the first area. It can be understood that the first device determines that the first device is located in the first area based on the distance between the first device and the roadside device being less than or equal to the first distance threshold, thereby ensuring communication quality and reducing unnecessary transmission and potential transmission by the first device. Interference to eMBB services.
- the first device determines that it is located in the first area. That is to say, when the signal quality and distance meet the side link communication threshold at the same time, the communication quality can be further improved, and unnecessary transmission of the first device and potential interference to the eMBB service can be reduced.
- the first area may include multiple sub-areas.
- the first area 302 includes a first sub-area 3022 and a second sub-area 3024.
- the first area information is also used to indicate the first sub-area and the second sub-area. In this way, the first device can determine whether it is located in the first sub-area or the second sub-area according to the first area information.
- the first area can also be used as a sub-area surrounded by other areas.
- the second area 30 includes a first area 302 and a third area 304.
- the first configuration information is further used to indicate second area information
- the second area information is used to determine the second area
- the second area includes the first area
- the second area is larger than the first area.
- the first device can determine that it is located in the second area according to the second area information.
- a circle is used as an example, and the area may also have other shapes, which is not limited here.
- Step S204 The first device determines that it is located in the first area according to the first area information.
- step S204 can refer to the description of the first area information in step S202, which will not be repeated here.
- Step S206 The first device sends the sideline data based on the sideline link transmission parameter.
- the first device may send side-line data to devices within the receivable range based on the side-line link transmission parameters.
- the device may be a terminal device located in the second area, or a roadside device located in the first area.
- step S206 includes: the first device transmits the sideline data based on the first transmit power value and/or the sidelink communication frequency in the first subregion; or, the first device transmits the sideline data based on the second transmit power in the second subregion.
- the power value and/or the side-link communication frequency sends the side-line data.
- the configuration information can be related to the area. Therefore, the transmit power value in the side link transmission parameters obtained from the configuration information can be related to the area, that is, the first transmit power value corresponds to the first sub-area, and the second transmit power value corresponds to the first sub-area.
- the transmit power value corresponds to the second sub-region.
- This embodiment of the application does not limit the magnitude relationship between the first transmission power value and the second transmission power value.
- the first sub-region 3022 is located at the center of the first region 302, and the second sub-region 3024 is located The edge position of a region 302. Since the transmission power value has an inverse relationship with the path loss, the first transmission power value may be greater than or equal to the second transmission power value. It can be understood that using different transmit power values in different areas can improve communication quality and save power consumption.
- the first device in response to the first device determining that it is located in the second area, the first device receives sideline data on the sideline link communication frequency.
- the second area is used as the receiving area of the first device to receive sideline data sent by other communication devices, which improves the diversity of communication.
- the area other than the first area in the second area is regarded as the third area, and the side line data is not sent to the first device, or the transmission when it is located in the third area
- the power value is less than or equal to the transmit power value when located in the first area.
- the greater the path loss the smaller the transmit power value. Therefore, the transmit power value of the third area is less than or equal to the transmit power value of the first area. In this way, the transmitting and receiving areas and the transmitting power values of different areas are limited, which can improve the communication quality and save power consumption.
- the transmitter of the side-line link may not be turned on. And when the side-line data is not received, the receiver of the side-line link may not be turned on, so as to save the power consumption of the first device.
- the first device first obtains the first configuration information, and after determining that the first device is located in the first area according to the first area information obtained by the first configuration information, the first device may be based on the side obtained by the first configuration information.
- the uplink transmission parameters send sideline data. In this way, the sideline data can be sent based on the configured sidelink transmission parameters in the configured area, which can reduce unnecessary transmission and potential interference to eMBB services, and improve communication quality.
- FIG. 4 is another data transmission method provided by an embodiment of the present application. This method is also applied to the first device. It should be noted that the first device includes the terminal device shown in FIG. Can include roadside equipment. The method includes but is not limited to the following steps:
- the first device obtains second configuration information from the second device, where the second configuration information is used to indicate the second area information and the sidelink communication frequency.
- S404 The first device determines that it is located in the second area according to the second area information.
- step S402 and step S404 reference may be made to the description of step S202 and step S204, which will not be repeated here.
- the second device includes a network device, a terminal device, a roadside device, or an application server. In this way, the flexibility of obtaining the second configuration information is improved.
- the second area information includes geographic location information, number, or identification of the second area.
- the second area information can refer to the description of the first area information, which will not be repeated here. It can be understood that determining the second area according to different indication information can improve the accuracy of determining the second area and the flexibility of configuration information.
- the second area information is used to indicate at least one of the following: a second area, a roadside device in the second area, a second signal quality threshold, or a second distance threshold.
- the first device can determine that it is located in the second area according to the second area information, which is convenient for improving the communication quality.
- step S404 includes: the first device receives the second message sent by the roadside device; the first device obtains the signal quality of the second message; if the signal quality of the second message is greater than or equal to the second signal quality threshold, then The first device is determined to be located in the second area.
- determining the second area according to the signal quality can ensure the communication quality of side-link communication in the second area, and reduce unnecessary transmission of the first device and potential interference to the eMBB service.
- the first device determines the distance to the roadside device according to the geographic location of the roadside device and the geographic location of the first device; if the distance is less than or equal to the second distance threshold, the first device determines that it is located in the first device. Two areas. In this way, determining the second area based on the distance from the roadside device in the second area can ensure the communication quality of sidelink communication in the second area, and reduce unnecessary transmission and potential interference from the first device. Interference from eMBB services.
- the first device receives the second message sent by the roadside device; the first device obtains the signal quality of the second message; the first device determines the connection with the roadside device based on the geographic location of the roadside device and the geographic location of the first device.
- the second area is determined according to the distance from the roadside device in the second area and the signal quality between the first device and the roadside device, which can ensure the communication quality of side-link communication in the second area. And reduce unnecessary transmission of the first device and potential interference to eMBB services.
- the second configuration information is also used to indicate a side-link transmission parameter, and the side-link transmission parameter includes a side-link transmission power parameter and/or a side-link communication frequency.
- the device can perform sidelink communication based on specific parameters, which can reduce unnecessary transmission of the first device and potential interference to the eMBB service, and improve communication quality.
- the side link transmission power parameter includes at least one of the following: path loss factor, maximum transmission power, open loop transmission power, power adjustment factor, and at least one transmission power value.
- path loss factor path loss factor
- maximum transmission power maximum transmission power
- open loop transmission power open loop transmission power
- power adjustment factor at least one transmission power value.
- the second configuration information is also used to indicate the first area information
- the first area information is used to determine the first area
- the second area includes the first area
- the second area is larger than the first area.
- a device determines that it is located in the first area according to the first area information; the first device sends sideline data based on the sideline link transmission parameters. In this way, the first device can also send sideline data based on the second configuration information in the first area, which can avoid interference with other links, and can improve communication quality and communication diversity.
- the side link communication frequency is different from the cellular link communication frequency of the second area. In this way, interference with cellular link communication can be directly avoided, and communication quality is improved.
- S406 The first device receives the sideline data on the sideline link communication frequency.
- the first device may receive the sideline data sent by the devices within the receivable range on the sideline link communication frequency.
- the device may be a terminal device located in the second area, such as the first device described in the method in FIG. 2, or a roadside device located in the second area, which is not limited here.
- the first area information is also used to determine the first subarea and the second subarea
- the first area includes the first subarea and the second subarea
- step S406 includes: in response to the first device determining Located in the first sub-region, the first device transmits side-line data on the side-link communication frequency based on the first transmit power value and/or the side-link communication frequency corresponding to the first sub-region; and/or, responding When the first device determines that it is located in the second sub-region, the first device sends the side-line data on the side-link communication frequency based on the second transmit power value and/or the side-link communication frequency corresponding to the second sub-region. In this way, using different transmit power values in different areas can improve communication quality and save power consumption.
- the first device first obtains the second configuration information. After determining that the first device is located in the second area according to the second area information obtained by the second configuration information, the first device may be located on the side where the first configuration information is obtained.
- the uplink communication frequency receives the side line data. In this way, the side line data can be received based on the configured side line communication frequency in the configured area, which can reduce unnecessary transmission and potential interference to eMBB services, and improve communication quality.
- FIG. 5 is another data transmission method provided by an embodiment of the present application. The method is applied to the second device. The method includes but is not limited to the following steps:
- the second device sends the first configuration information and/or the second configuration information, where the first configuration information is used to indicate sidelink transmission parameters and the first area information, and the second configuration information is used to indicate the second area Information and side link communication frequency.
- step S502 can refer to the description of step S202 and step S402, which will not be repeated here.
- the second device includes a network device, a terminal device, a roadside device, or an application server. In this way, the flexibility for the device to obtain configuration information is improved.
- the first configuration information can be directly sent to the first device, and/or the second configuration information can be sent to the first device, or the first configuration information can be sent to the first device.
- the information and/or the second configuration information are sent to the terminal device or the roadside device. In this way, the configuration information of the network device or the application server is forwarded through the terminal device or the roadside device, which can reduce the signaling overhead of the network.
- step S502 includes: the roadside device and/or terminal device receives the first configuration information and/or the second configuration information sent by the network device or the application server; The distance of is less than or equal to the preset threshold, and the first configuration information and/or the second configuration information are sent to the first device.
- the device can obtain configuration information for the current geographic location, which can improve communication quality, reduce network signaling overhead, and save power consumption.
- the first area information is used to indicate at least one of the following: the first area, the roadside device in the first area, the first signal quality threshold or the first distance threshold; the second area information It is used to indicate at least one of the following: a second area, a roadside device in the second area, a second signal quality threshold, or a second distance threshold.
- the first device can determine that it is located in the first area according to the first area information, and determine that it is located in the second area according to the second area information, which is convenient for improving the communication quality.
- the side-link transmission parameter includes a side-link transmission power parameter and/or a side-link communication frequency.
- the device can perform side-link communication based on specific parameters, which can reduce unnecessary transmission and potential interference to eMBB services, and improve communication quality.
- the side link transmission power parameter includes at least one of the following: path loss factor, maximum transmission power, open loop transmission power, power adjustment factor, and at least one transmission power value.
- the second device can dynamically set the side link transmission power value, which improves flexibility and facilitates the improvement of communication quality.
- the first area information is also used to indicate the first sub-area and the second sub-area, the first area includes the first sub-area and the second sub-area, and at least one transmit power value includes the first sub-area and the first sub-area.
- the first configuration information is further used to indicate the second area information
- the second area information is used to determine the second area.
- the second area includes the first area and the second area is larger than the first area.
- the first area information includes geographic location information, number, or identification of the first area
- the second area information includes geographic location information, number, or identification of the second area.
- the side link communication frequency is different from the cellular link communication frequency of the second area. In this way, interference with cellular link communication can be directly avoided, and communication quality is improved.
- the second device sends the first configuration information and/or the second configuration information.
- the terminal device or the roadside device can perform side link transmission based on the configured side link transmission parameters in the configured area.
- the uplink communication can reduce unnecessary emission and potential interference to eMBB services, and improve the communication quality.
- FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- the communication device includes a first device.
- the first device includes a transceiver unit 601 and a processing unit 602. The detailed description of each unit is as follows .
- the transceiver unit 601 is configured to obtain first configuration information, where the first configuration information is used to indicate side link transmission parameters and first area information;
- the processing unit 602 is configured to determine that it is located in the first area according to the first area information
- the transceiver unit 601 is also configured to send side-line data based on the side-line link transmission parameters.
- the first area information is used to indicate at least one of the following:
- the first area the roadside device in the first area, the first signal quality threshold or the first distance threshold.
- the side-link transmission parameters include a side-link transmission power parameter and/or a side-link communication frequency.
- the side link transmission power parameter includes at least one of the following: path loss factor, maximum transmission power, open loop transmission power, power adjustment factor, and at least one transmission power value.
- the first area includes a first sub-area and a second sub-area
- the side link transmission power parameter includes a first transmission power value corresponding to the first sub-area and a second transmission power corresponding to the second sub-area Value
- the transceiver unit 601 is specifically configured to send sideline data based on the first transmit power value and/or the sideline link communication frequency in the first sub-region; and/or, based on the second transmit power value and/or the second sub-region in the second sub-region Or send side-line data on the side-line link communication frequency.
- the first area information is further used to indicate the first sub-area and the second sub-area
- the transceiver unit is further used to determine whether it is located in the first sub-area or the second sub-area according to the first area information.
- the first configuration information is also used to indicate second area information
- the second area information is used to determine the second area
- the second area includes the first area and the second area is larger than the first area
- the transceiver unit 601 is also used to In response to the first device determining that it is located in the second area, receiving sideline data on the sideline link communication frequency.
- the transceiver unit 601 is further configured to receive the first message sent by the roadside device; the processing unit 602 is specifically configured to obtain the signal quality of the first message; if the signal quality of the first message is greater than or equal to the first signal quality threshold, It is determined to be located in the first area.
- the processing unit 602 is further configured to determine the distance to the roadside device according to the geographic location of the roadside device and the geographic location of the communication device; if the distance is less than or equal to the first distance threshold, the first device determines that it is located at The first area.
- the first area information includes geographic location information, number, or identification of the first area.
- the communication frequency of the side link is different from the communication frequency of the cellular link in the first area.
- the first configuration information is obtained from a network device; or, obtained from a terminal device; or, obtained from a roadside device; or, obtained from an application server.
- the transceiver unit 601 is configured to obtain second configuration information, where the second configuration information is used to indicate second area information and sidelink communication frequency;
- the processing unit 602 is configured to determine that it is located in the second area according to the second area information
- the transceiver unit 601 is also used to receive side-line data on the side-line link communication frequency.
- the first device includes a terminal device or a roadside device.
- the second configuration information is also used to indicate side-link transmission parameters, and the side-link transmission parameters include side-link transmission power parameters and/or side-link communication frequencies.
- the communication frequency of the side link is different from the communication frequency of the cellular link in the second area.
- the second area information includes geographic location information, number, or identification of the second area.
- the second area information is used to indicate at least one of the following: a second area, a roadside device in the second area, a second signal quality threshold, or a second distance threshold.
- the transceiver unit 601 is further configured to receive the second message sent by the roadside device; the processing unit 602 is specifically configured to obtain the signal quality of the second message; if the signal quality of the second message is greater than or equal to the second signal quality threshold, It is determined to be located in the second area.
- the processing unit 602 is further configured to determine the distance to the roadside device according to the geographic location of the roadside device and the geographic location of the communication device; if the distance is less than or equal to the second distance threshold, it is determined to be located in the second area .
- the second area information is also used to indicate the first area information
- the first area information is used to determine the first area
- the second area includes the first area
- the second area is larger than the first area
- the transceiver unit 601 also uses It is determined to be located in the first area according to the first area information; and the side line data is sent based on the side line link transmission parameters.
- the first area information is further used to determine the first sub-area and the second sub-area.
- the first area includes the first sub-area and the second sub-area.
- a sub-area based on the first transmit power value corresponding to the first sub-area and/or the side line data sent by the side-link communication frequency; and/or, it is determined to be located in the second sub-area according to the first area information, based on The second transmit power value corresponding to the second subregion and/or the sideline data sent by the sideline link communication frequency.
- the second configuration information is also used to indicate side-link transmission parameters, and the side-link transmission parameters include side-link transmission power parameters and/or side-link communication frequencies.
- the side link transmission power parameter includes at least one of the following: path loss factor, maximum transmission power, open loop transmission power, power adjustment factor, and at least one transmission power value.
- the second configuration information is obtained from a network device; or, obtained from a terminal device; or, obtained from a roadside device; or, obtained from an application server.
- the communication device as shown in FIG. 6 further includes a second device, and the second device may also include a transceiver unit 601 and a processing unit 602, wherein the detailed description of each unit is as follows.
- the transceiver unit 601 is configured to send first configuration information and/or second configuration information, where the first configuration information is used to indicate sidelink transmission parameters and the first area information, and the second configuration information is used to indicate the second configuration information. Area information and side link communication frequency.
- the side-link transmission parameters include a side-link transmission power parameter and/or a side-link communication frequency.
- the sidelink communication frequency is different from the cellular link communication frequency of the second area determined by the second area information.
- the second device includes at least one of the following: a network device, a terminal device, a roadside device, and an application server.
- the transceiver unit 601 of the roadside device and/or terminal device is specifically configured to receive the first configuration information and/or the second configuration information sent by the network device and/or the application server; determine the distance to other communication devices If it is less than or equal to the preset threshold, send the first configuration information and/or the second configuration information to the other communication device.
- the first area information is used to indicate at least one of the following: a first area, a roadside device in the first area, a first signal quality threshold or a first distance threshold;
- the second area information is used to indicate the following At least one of: a second area, a roadside device in the second area, a second signal quality threshold, or a second distance threshold.
- the side-link transmission parameters include a side-link transmission power parameter and/or a side-link communication frequency.
- the side link transmission power parameter includes at least one of the following: path loss factor, maximum transmission power, open loop transmission power, power adjustment factor, and at least one transmission power value.
- the first area information is further used to indicate the first sub-area and the second sub-area, the first area includes the first sub-area and the second sub-area, and the at least one transmit power value includes the first sub-area corresponding to the first sub-area.
- the first configuration information is further used to indicate second area information
- the second area information is used to determine the second area.
- the second area includes the first area and the second area is larger than the first area.
- the first area information includes geographic location information, number or identification of the first area
- the second area information includes geographic location information, number or identification of the second area.
- each unit may also correspond to the corresponding description of the method embodiments shown in FIG. 2, FIG. 4, and FIG. 5.
- the first device or the first device can obtain the configuration information of the second device, and perform side-travel based on the side-link transmission parameters of the configuration information in the area corresponding to the configuration information.
- Link communication can reduce unnecessary emission and potential interference to eMBB services, and improve communication quality.
- FIG. 7 is another communication device provided by an embodiment of the present application.
- the communication device includes a processor 701, a memory 702, and a communication interface 703.
- the processor 701, the memory 702, and the communication interface 703 are connected to each other through a bus 704. .
- the memory 702 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM), the memory 702 is used for related computer programs and side data.
- the communication interface 703 is used to receive and send side line data.
- the processor 701 may be one or more central processing units (CPUs). When the processor 701 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
- CPUs central processing units
- the communication device includes a first device, and the processor 701 in the communication device is configured to read the computer program code stored in the memory 702, and perform the following operations:
- first configuration information where the first configuration information is used to indicate side link transmission parameters and first area information
- the side-line data is sent based on the side-line link transmission parameters.
- the first area information is used to indicate at least one of the following: a first area, a roadside device in the first area, a first signal quality threshold, or a first distance threshold.
- the side-link transmission parameter includes a side-link transmission power parameter and/or a side-link communication frequency.
- the side link transmission power parameter includes at least one of the following: path loss factor, maximum transmission power, open loop transmission power, power adjustment factor, and at least one transmission power value.
- the first area includes a first sub-area and a second sub-area
- the at least one transmission power value includes a first transmission power value corresponding to the first sub-area and a second transmission power value corresponding to the second sub-area.
- the processor 701 is specifically configured to perform the following operations:
- the side line data is sent based on the first transmit power value and/or the side link communication frequency; or, in the second sub-region, the side line data is sent based on the second transmit power value and/or the side link communication frequency. data.
- the first area information is further used to indicate the first sub-area and the second sub-area, and the first device determines to be located in the first sub-area or the second sub-area according to the first area information.
- the first configuration information is also used to indicate the second area information
- the second area information is used to determine the second area
- the second area includes the first area
- the second area is larger than the first area
- processing The device 701 is specifically used to perform the following operations:
- the side row data is received on the side row link communication frequency.
- the processor 701 is specifically configured to perform the following operations:
- the first device determines that it is located in the first area.
- the processor 701 is further configured to perform the following operations:
- the distance is less than or equal to the first distance threshold, it is determined to be located in the first area.
- the first area information includes geographic location information, number, or identification of the first area.
- the side link communication frequency is different from the cellular link communication frequency of the first area.
- the first configuration information is obtained from a base station; or, obtained from a terminal device; or, obtained from a roadside device; or, obtained from an application server. In this way, the flexibility and convenience of obtaining configuration information are improved.
- the processor 701 in the first device is configured to read the computer program code stored in the memory 702, and perform the following operations:
- the second area information includes geographic location information, number, or identification of the second area.
- the second area information is used to indicate at least one of the following: a second area, a roadside device in the second area, a second signal quality threshold, or a second distance threshold.
- processor 701 is specifically configured to perform the following operations:
- the signal quality of the second message is greater than or equal to the second signal quality threshold, it is determined that the first device is located in the second area.
- processor 701 is further configured to perform the following operations:
- the distance is less than or equal to the second distance threshold, it is determined that the first device is located in the second area.
- the second configuration information is also used to indicate a side-link transmission parameter
- the side-link transmission parameter includes a side-link transmission power parameter and/or a side-link communication frequency.
- the side link transmission power parameter includes at least one of the following: path loss factor, maximum transmission power, open loop transmission power, power adjustment factor, and at least one transmission power value.
- the second area information is also used to indicate the first area information
- the first area information is used to determine the first area
- the second area includes the first area
- the second area is larger than the first area
- processing The device 701 is also used to perform the following operations:
- the side-line data is sent based on the side-line link transmission parameters.
- the first area information is also used to determine the first sub-area and the second sub-area, the first area includes the first sub-area and the second sub-area, and the processor 701 is further configured to perform the following operations:
- the receiving first device In response to the first device determining that it is located in the first sub-region, on the side link communication frequency, the receiving first device sends the side link based on the first transmit power value corresponding to the first sub-region and/or the side link communication frequency. Row data; and/or,
- the side link communication frequency is different from the cellular link communication frequency of the second area.
- the second configuration information is obtained from a base station; or, obtained from a terminal device; or, obtained from a roadside device; or, obtained from an application server.
- the communication apparatus includes a second device, and the processor 701 in the second device is configured to read computer program codes stored in the memory 702, and perform the following operations:
- the second device includes a network device, a terminal device, a roadside device, or an application server.
- the processor 701 of the roadside device and/or terminal device is specifically configured to perform the following operations:
- the distance to the other communication device is less than or equal to the preset threshold, and the first configuration information and/or the second configuration information are sent to the other communication device.
- the first area information is used to indicate at least one of the following: the first area, the roadside device in the first area, the first signal quality threshold or the first distance threshold;
- the second area information It is used to indicate at least one of the following: a second area, a roadside device in the second area, a second signal quality threshold, or a second distance threshold.
- the side-link transmission parameter includes a side-link transmission power parameter and/or a side-link communication frequency.
- the side link transmission power parameter includes at least one of the following: path loss factor, maximum transmission power, open loop transmission power, power adjustment factor, and at least one transmission power value.
- the first area information is also used to indicate the first sub-area and the second sub-area, the first area includes the first sub-area and the second sub-area, and at least one transmit power value includes the first sub-area and the first sub-area.
- the first configuration information is further used to indicate the second area information
- the second area information is used to determine the second area.
- the second area includes the first area and the second area is larger than the first area.
- the first area information includes geographic location information, number, or identification of the first area
- the second area information includes geographic location information, number, or identification of the second area
- the side link communication frequency is different from the cellular link communication frequency of the second area determined by the second area information.
- each operation may also correspond to the corresponding description of the method embodiments shown in FIG. 2, FIG. 4, and FIG. 5.
- the first device or the first device can obtain the configuration information of the second device, and perform side-travel based on the side-link transmission parameters of the configuration information in the area corresponding to the configuration information.
- Link communication can reduce unnecessary transmission and potential interference to eMBB services, and improve communication quality.
- the embodiments of the present application also provide a communication device for executing any method and function related to the first device or the second device in any one of the foregoing embodiments.
- An embodiment of the present application also provides a communication system, which includes at least one first device and at least one second device involved in any of the foregoing embodiments.
- the embodiment of the present application also provides a chip system.
- the chip system includes at least one processor, a memory, and an interface circuit.
- the memory, a transceiver, and at least one processor are interconnected by wires, and the at least one memory stores a computer program; the computer program is processed When the device is executed, the method flow shown in Figure 2, Figure 4, and Figure 5 is implemented.
- the embodiment of the present application also provides a computer-readable storage medium in which a computer program is stored.
- a computer program is stored.
- the method flow shown in FIG. 2, FIG. 4, and FIG. 5 can be realized.
- the embodiment of the present application also provides a computer program product.
- the computer program product runs on a communication device, the method flow shown in FIG. 2, FIG. 4, and FIG. 5 can be realized.
- the first device can obtain the configuration information of the second device, and perform side-link communication based on the side-link transmission parameters of the configuration information in the area corresponding to the configuration information. It can reduce unnecessary emission and potential interference to eMBB services, and improve communication quality.
- the computer program can be stored in a computer readable storage medium.
- the computer program During execution, it may include the procedures of the foregoing method embodiments.
- the aforementioned storage media include: ROM or random storage RAM, magnetic disks or optical disks and other media that can store computer program codes.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例提供一种数据传输方法及相关产品,包括:第一设备获取第一配置信息,其中,第一配置信息用于指示侧行链路传输参数以及第一区域信息;第一设备根据第一区域信息确定位于第一区域;第一设备基于侧行链路传输参数发送侧行数据。采用本申请实施例,能够在配置的区域内基于配置的侧行链路传输参数发送侧行数据,可减少不必要的发射和潜在的对增强的移动宽带业务的干扰,提高了通信质量。
Description
本申请要求于2020年05月15日提交中国专利局、申请号为202010416969.2、申请名称为“数据传输方法及相关产品”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信技术领域,尤其涉及一种数据传输方法及相关产品。
随着通信技术的发展,基于蜂窝技术的车联网通信(Cellular-Vehicle-to-Everything,C-V2X)得到了飞速发展。为了支持V2X设备间直接通信引入侧行链路(sidelink)。然而在目前的分析和讨论中,能够专用于V2X的频谱非常稀缺。为了应用和推广V2X,一种方法是将蜂窝链路(cellular link)中增强的移动宽带(enhanced Mobile Broad Band)的频谱应用于sidelink上。然而,将cellular link的频率用到sidelink上,两个链路之间会产生干扰问题,导致蜂窝链路和侧行链路的通信质量变差。因此,如何解决两个链路之间的干扰问题是本领域技术人员急需解决的技术问题。
发明内容
本申请实施例公开了一种数据传输方法及相关产品,能够在配置的区域内基于配置的侧行链路传输参数发送侧行数据,可减少不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
第一方面,本申请实施例公开了一种数据传输方法,包括:第一设备获取第一配置信息,其中,第一配置信息用于指示侧行链路传输参数,以及第一区域信息;第一设备根据第一区域信息确定位于第一区域;第一设备基于侧行链路传输参数发送侧行数据。也就是说,若设备位于配置信息对应的发送区域,则可根据配置信息对应的侧行链路传输参数发送侧行数据,可减少第一设备不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
在一种可能的示例中,第一区域信息用于指示以下中的至少一种:第一区域、第一区域内的路侧设备、第一信号质量门限或第一距离门限。如此,第一设备可根据第一区域信息确定位于第一区域,便于提高通信质量。
在一种可能的示例中,侧行链路传输参数包括侧行链路发射功率参数和/或侧行链路通信频率。如此,设备可基于具体的参数进行侧行链路通信,可减少第一设备不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
在一种可能的示例中,侧行链路发射功率参数包括以下中的至少一种:路损因子、最大发射功率、开环发射功率、功率调整因子、至少一个发射功率值。如此,可动态设置侧行链路发射功率值,提高了灵活性,便于提高通信质量。
在一种可能的示例中,第一区域包括第一子区域和第二子区域,至少一个发射功率值包括与第一子区域对应的第一发射功率值和与第二子区域对应的第二发射功率值,第一设备在第一子区域基于第一发射功率值和/或侧行链路通信频率发送侧行数据;或者,第一设备在第二子区域基于第二发射功率值和/或侧行链路通信频率发送侧行数据。如此,在不同的子区域中采用不同的发射功率值发送侧行数据,可提高通信质量。
在一种可能的示例中,第一区域信息还用于指示第一子区域和第二子区域,第一设备根据第一区域信息确定位于第一子区域或第二子区域。
在一种可能的示例中,第一配置信息还用于指示第二区域信息,第二区域信息用于确定第二区域,第二区域包括第一区域,且第二区域大于第一区域,响应于第一设备确定位于第二区域,第一设备在侧行链路通信频率上接收侧行数据。如此,若设备位于配置信息对应的接收区域,则可接收其它设备基于侧行链路传输参数发送侧行数据,可减少第一设备不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量,并节省功耗。
在一种可能的示例中,第一设备接收路侧设备发送的第一消息;第一设备获取第一消息的信号质量;若第一消息的信号质量大于或等于第一信号质量门限,则第一设备确定位于第一区域。如此,依据信号质量确定第一区域,可保证在第一区域进行侧行链路通信的通信质量,并且减少第一设备不必要的发射和潜在的对eMBB业务的干扰。
在一种可能的示例中,第一设备根据路侧设备的地理位置和第一设备的地理位置确定与路侧设备之间的距离;若距离小于或等于第一距离门限,则第一设备确定位于第一区域。如此,依据与第一区域内的路侧设备之间的距离确定第一区域,可保证在第一区域进行侧行链路通信的通信质量,并且减少第一设备不必要的发射和潜在的对eMBB业务的干扰。
在一种可能的示例中,第一区域信息包括第一区域的地理位置信息、编号或标识。如此,依据不同的指示信息确定第一区域,可提高确定第一区域的准确性和配置信息的灵活性。
在一种可能的示例中,侧行链路通信频率与第一区域的蜂窝链路通信频率不同。如此,可直接避免与蜂窝链路产生干扰,提高了通信质量。
在一种可能的示例中,第一配置信息是从基站获取的;或者,从终端设备获取的;或者,从路侧设备获取的;或者,从应用服务器获取的。如此,提高了获取配置信息的灵活性和便利性。
第二方面,本申请实施例提供了另一种数据传输方法,包括:第一设备获取第二配置信息,其中,第二配置信息用于指示第二区域信息以及侧行链路通信频率;第一设备根据第二地理位置信息确定位于第二区域;第一设备在侧行链路通信频率上接收侧行数据。也就是说,若设备位于配置信息对应的接收区域,则可根据配置信息对应的侧行链路通信频率接收侧行数据,可减少第一设备不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
在一种可能的示例中,第一设备包括终端设备或路侧设备。如此,当终端设备或路侧设备确定位于第二区域时,可基于第二配置信息进行侧行链路通信,可避免与其它链路产生干扰,可提高通信质量。
在一种可能的示例中,第二区域信息包括第二区域的地理位置信息、编号或标识。如 此,依据不同的指示信息确定第二区域,可提高确定第二区域的准确性和配置信息的灵活性。
在一种可能的示例中,第二区域信息用于指示以下中的至少一种:第二区域、第二区域内的路侧设备、第二信号质量门限或第二距离门限。如此,第一设备可根据第二区域信息确定位于第二区域,便于提高通信质量。
在该示例中,第一设备接收路侧设备发送的第二消息;第一设备获取第二消息的信号质量;若第二消息的信号质量大于或等于第二信号质量门限,则第一设备确定位于第二区域。如此,依据信号质量确定第二区域,可保证在第二区域进行侧行链路通信的通信质量,并且减少第一设备不必要的发射和潜在的对eMBB业务的干扰。
在该示例中,第一设备根据路侧设备的地理位置和第一设备的地理位置,确定与路侧设备之间的距离;若距离小于或等于第二距离门限,则第一设备确定位于第二区域。如此,依据与第二区域内的路侧设备之间的距离确定第二区域,可保证在第二区域进行侧行链路通信的通信质量,并且减少第一设备不必要的发射和潜在的对eMBB业务的干扰。
在一种可能的示例中,第二配置信息还用于指示侧行链路传输参数,侧行链路传输参数包括侧行链路发射功率参数和/或侧行链路通信频率。如此,设备可基于具体的参数进行侧行链路通信,可减少第一设备不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
在该示例中,侧行链路发射功率参数包括以下中的至少一种:路损因子、最大发射功率、开环发射功率、功率调整因子、至少一个发射功率值。如此,可动态设置侧行链路发射功率值,提高了灵活性,便于提高通信质量。
在一种可能的示例中,第二配置信息还用于指示第一区域信息,第一区域信息用于确定第一区域,第二区域包括第一区域,且第二区域大于第一区域,第一设备根据第一区域信息确定位于第一区域;第一设备基于侧行链路传输参数发送侧行数据。如此,第二区域还可基于第二配置信息接收侧行数据,可避免与其它链路产生干扰,可提高通信质量和通信的多样性。
在一种可能的示例中,第一区域信息还用于确定第一子区域和第二子区域,第一区域包括第一子区域和第二子区域,第一设备根据第一区域信息确定位于第一子区域,第一设备基于与第一子区域对应的第一发射功率值和/或侧行链路通信频率发送侧行数据;和/或,第一设备根据第一区域信息确定位于第二子区域,第一设备基于与第二子区域对应的第二发射功率值和/或侧行链路通信频率发送侧行数据。如此,在不同的区域采用不同的发射功率值,可提高通信质量,并节省功耗。
在一种可能的示例中,侧行链路通信频率与第二区域的蜂窝链路通信频率不同。如此,可直接避免与蜂窝链路通信产生干扰,提高了通信质量。
在一种可能的示例中,第二配置信息是从基站获取的;或者,从终端设备获取的;或者,从路侧设备获取的;或者,从应用服务器获取的。如此,提高了获取配置信息的灵活性和便利性。
第三方面,本申请实施例提供了又一种数据传输方法,包括:第二设备发送第一配置信息和/或第二配置信息,其中,第一配置信息用于指示侧行链路传输参数以及第一区域信 息,第二配置信息用于指示第二区域信息以及侧行链路通信频率。也就是说,若终端设备位于配置信息对应的区域,则可根据配置信息进行侧行链路通信,可减少必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
在一种可能的示例中,第二设备包括网络设备、终端设备、路侧设备或应用服务器。如此,提高了设备获取配置信息的灵活性。
在该示例中,路侧设备和/终端设备接收网络设备或应用服务器发送的第一配置信息和/或第二配置信息;路侧设备和/终端设备确定与第一设备之间的距离小于或等于预设阈值,向第一设备发送第一配置信息和/或第二配置信息。也就是说,设备可针对当前地理位置获取配置信息,可提高通信质量,减少网络的信令开销,并节省功耗。
在一种可能的示例中,第一区域信息用于指示以下中的至少一种:第一区域、第一区域内的路侧设备、第一信号质量门限或第一距离门限;第二区域信息用于指示以下中的至少一种:第二区域、第二区域内的路侧设备、第二信号质量门限或第二距离门限。如此,第一设备可根据第一区域信息确定位于第一区域,根据第二区域信息确定位于第二区域,便于提高通信质量。
在一种可能的示例中,侧行链路传输参数包括侧行链路发射功率参数和/或侧行链路通信频率。如此,设备可基于具体的参数进行侧行链路通信,可减少不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
在该示例中,侧行链路发射功率参数包括以下中的至少一种:路损因子、最大发射功率、开环发射功率、功率调整因子、至少一个发射功率值。如此,可动态设置侧行链路发射功率值,提高了灵活性,便于提高通信质量。
在一种可能的示例中,第一区域信息还用于指示第一子区域和第二子区域,第一区域包括第一子区域和第二子区域,至少一个发射功率值包括与第一子区域对应的第一发射功率值和与第二子区域对应的第二发射功率值。如此,在不同的子区域中采用不同的发射功率值发送侧行数据,可提高通信质量。
在一种可能的示例中,第一配置信息还用于指示第二区域信息,第二区域信息用于确定第二区域,第二区域包括第一区域且第二区域大于第一区域。如此,限定了发送和接收区域,可提高通信质量,并节省功耗。
在一种可能的示例中,第一区域信息包括第一区域的地理位置信息、编号或标识,第二区域信息包括第二区域的地理位置信息、编号或标识。如此,依据不同的指示信息确定区域,可提高确定区域的准确性和配置信息的灵活性。
在一种可能的示例中,侧行链路通信频率与第二区域信息确定的第二区域的蜂窝链路通信频率不同。如此,可直接避免与蜂窝链路通信产生干扰,提高了通信质量。
第四方面,本申请实施例提供了一种通信装置,包括:收发单元,用于获取第一配置信息,其中,第一配置信息用于指示侧行链路传输参数,以及第一区域信息;处理单元,用于根据第一区域信息确定位于第一区域;收发单元,还用于基于侧行链路传输参数发送侧行数据。也就是说,若设备位于配置信息对应的发送区域,则可根据配置信息对应的侧行链路传输参数发送侧行数据,可减少不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
可选的,第一区域信息用于指示以下中的至少一种:第一区域、第一区域内的路侧设备、第一信号质量门限或第一距离门限。如此,可根据第一区域信息确定位于第一区域,便于提高通信质量。
可选的,侧行链路传输参数包括侧行链路发射功率参数和/或侧行链路通信频率。如此,设备可基于具体的参数进行侧行链路通信,可减少不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
可选的,侧行链路发射功率参数包括以下中的至少一种:路损因子、最大发射功率、开环发射功率、功率调整因子、至少一个发射功率值。如此,可动态设置侧行链路发射功率值,提高了灵活性,便于提高通信质量。
可选的,第一区域包括第一子区域和第二子区域,侧行链路发射功率参数包括与第一子区域对应的第一发射功率值和与第二子区域对应的第二发射功率值,收发单元具体用于在第一子区域基于第一发射功率值和/或侧行链路通信频率发送侧行数据;和/或,在第二子区域基于第二发射功率值和/或侧行链路通信频率发送侧行数据。如此,在不同的子区域中采用不同的发射功率值发送侧行数据,可提高通信质量。
可选的,第一区域信息还用于指示第一子区域和第二子区域,收发单元还用于根据第一区域信息确定位于第一子区域或第二子区域。
可选的,第一配置信息还用于指示第二区域信息,第二区域信息用于确定第二区域,第二区域包括第一区域且第二区域大于第一区域,收发单元还用于响应于确定位于第二区域,在侧行链路通信频率上接收侧行数据。如此,若设备位于配置信息对应的接收区域,则可接收其它设备基于侧行链路传输参数发送侧行数据,可减少不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量,并节省功耗。
可选的,收发单元还用于接收路侧设备发送的第一消息;处理单元具体用于获取第一消息的信号质量;若第一消息的信号质量大于或等于第一信号质量门限,则确定位于第一区域。如此,依据信号质量确定第一区域,可保证在第一区域进行侧行链路通信的通信质量,并且减少不必要的发射和潜在的对eMBB业务的干扰。
可选的,处理单元还用于根据路侧设备的地理位置和通信装置的地理位置,确定与路侧设备之间的距离;若距离小于或等于第一距离门限,则第一设备确定位于第一区域。如此,依据与第一区域内的路侧设备之间的距离确定第一区域,可保证在第一区域进行侧行链路通信的通信质量,并且减少不必要的发射和潜在的对eMBB业务的干扰。
可选的,第一区域信息包括第一区域的地理位置信息、编号或标识。如此,依据不同的指示信息确定第一区域,可提高确定第一区域的准确性和配置信息的灵活性。
可选的,侧行链路通信频率与第一区域的蜂窝链路通信频率不同。如此,可直接避免与蜂窝链路产生干扰,提高了通信质量。
可选的,第一配置信息是从网络设备获取的;或者,从终端设备获取的;或者,从路侧设备获取的;或者,从应用服务器获取的。如此,提高了获取配置信息的灵活性和便利性。
第五方面,本申请实施例提供了另一种通信装置,包括:收发单元,用于获取第二配置信息,其中,第二配置信息用于指示第二区域信息以及侧行链路通信频率;处理单元, 用于根据第二区域信息确定位于第二区域;收发单元,还用于在侧行链路通信频率上接收侧行数据。也就是说,若设备位于配置信息对应的接收区域,则可根据配置信息对应的侧行链路通信频率接收侧行数据,可减少不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
可选的,第一设备包括终端设备或路侧设备。如此,当终端设备或路侧设备确定位于第二区域时,可基于第二配置信息进行侧行链路通信,可避免与其它链路产生干扰,可提高通信质量。
可选的,第二配置信息还用于指示侧行链路传输参数,侧行链路传输参数包括侧行链路发射功率参数和/或侧行链路通信频率。如此,设备可基于具体的参数进行侧行链路通信,可减少不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
可选的,侧行链路通信频率与第二区域的蜂窝链路通信频率不同。
可选的,第二区域信息包括第二区域的地理位置信息、编号或标识。如此,依据不同的指示信息确定第二区域,可提高确定第二区域的准确性和配置信息的灵活性。
可选的,第二区域信息用于指示以下中的至少一种:第二区域、第二区域内的路侧设备、第二信号质量门限或第二距离门限。如此,第一设备可根据第二区域信息确定位于第二区域,便于提高通信质量。
可选的,收发单元还用于接收路侧设备发送的第二消息;处理单元具体用于获取第二消息的信号质量;若第二消息的信号质量大于或等于第二信号质量门限,则确定位于第二区域。如此,依据信号质量确定第二区域,可保证在第二区域进行侧行链路通信的通信质量,并且减少不必要的发射和潜在的对eMBB业务的干扰。
可选的,处理单元还用于根据路侧设备的地理位置和通信装置的地理位置,确定与路侧设备之间的距离;若距离小于或等于第二距离门限,则确定位于第二区域。如此,依据与第二区域内的路侧设备之间的距离确定第二区域,可保证在第二区域进行侧行链路通信的通信质量,并且减少不必要的发射和潜在的对eMBB业务的干扰。
可选的,第二区域信息还用于指示第一区域信息,第一区域信息用于确定第一区域,第二区域包括第一区域,且第二区域大于第一区域,收发单元还用于根据第一区域信息确定位于第一区域;基于侧行链路传输参数发送侧行数据。
可选的,第一区域信息还用于确定第一子区域和第二子区域,第一区域包括第一子区域和第二子区域,收发单元还用于根据第一区域信息确定位于第一子区域,基于与第一子区域对应的第一发射功率值和/或侧行链路通信频率发送侧行数据;和/或,根据第一区域信息确定位于第二子区域,基于与第二子区域对应的第二发射功率值和/或侧行链路通信频率发送侧行数据。如此,在不同的区域采用不同的发射功率值,可提高通信质量,并节省功耗。
可选的,侧行链路发射功率参数包括以下中的至少一种:路损因子、最大发射功率、开环发射功率、功率调整因子、至少一个发射功率值。如此,可动态设置侧行链路发射功率值,提高了灵活性,便于提高通信质量。
可选的,第二配置信息是从网络设备获取的;或者,从终端设备获取的;或者,从路侧设备获取的;或者,从应用服务器获取的。如此,提高了获取配置信息的灵活性和便利 性。
第六方面,本申请实施例提供了又一种通信装置,包括:收发单元,用于发送第一配置信息和/或第二配置信息,其中,第一配置信息用于指示侧行链路传输参数,以及第一区域信息,第二配置信息用于指示第二区域信息以及侧行链路通信频率。也就是说,若终端设备位于配置信息对应的区域,则可根据配置信息进行侧行链路通信,可减少必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
可选的,侧行链路传输参数包括侧行链路发射功率参数和/或侧行链路通信频率。如此,设备可基于具体的参数进行侧行链路通信,可减少不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
可选的,侧行链路通信频率与第二区域信息确定的第二区域的蜂窝链路通信频率不同。如此,可直接避免与蜂窝链路通信产生干扰,提高了通信质量。
可选的,第二设备包括以下中的至少一种:网络设备、终端设备、路侧设备、应用服务器。如此,提高了设备获取配置信息的灵活性。
可选的,路侧设备和/或终端设备的收发单元具体用于接收网络设备和/或应用服务器发送的第一配置信息和/或第二配置信息;确定与其它通信装置之间的距离小于或等于预设阈值,向该其它通信装置发送第一配置信息和/或第二配置信息。也就是说,设备可针对当前地理位置获取配置信息,可提高通信质量,减少网络的信令开销,并节省功耗。
可选的,第一区域信息用于指示以下中的至少一种:第一区域、第一区域内的路侧设备、第一信号质量门限或第一距离门限;第二区域信息用于指示以下中的至少一种:第二区域、第二区域内的路侧设备、第二信号质量门限或第二距离门限。如此,第一设备可根据第一区域信息确定位于第一区域,第一设备可根据第二区域信息确定位于第二区域,便于提高通信质量。
可选的,侧行链路发射功率参数包括以下中的至少一种:路损因子、最大发射功率、开环发射功率、功率调整因子、至少一个发射功率值。如此,可动态设置侧行链路发射功率值,提高了灵活性,便于提高通信质量。
可选的,第一区域信息还用于指示第一子区域和第二子区域,第一区域包括第一子区域和第二子区域,至少一个发射功率值包括与第一子区域对应的第一发射功率值和与第二子区域对应的第二发射功率值。如此,在不同的子区域中采用不同的发射功率值发送侧行数据,可提高通信质量。
可选的,第一配置信息还用于指示第二区域信息,第二区域信息用于确定第二区域,第二区域包括第一区域且第二区域大于第一区域。如此,限定了发送和接收区域,可提高通信质量,并节省功耗。
可选的,第一区域信息包括第一区域的地理位置信息、编号或标识,第二区域信息包括第二区域的地理位置信息、编号或标识。如此,依据不同的指示信息确定区域,可提高确定区域的准确性和配置信息的灵活性。
需要说明的是,上述方面中的通信装置可以是网络设备、终端设备、路侧设备或应用服务器,也可以是应用于这些设备中的芯片或者其他可实现上述设备功能的组合器件、部件等。当通信装置是网络设备、终端设备、路侧设备或应用服务器时收发单元可以是发送 器和接收器,或整合的收发器,可以包括天线和射频电路等,处理单元可以是处理器,例如基带芯片等。当通信装置是具有上述设备功能的部件时,收发单元可以是射频单元,处理单元可以是处理器。当通信装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理单元可以是芯片系统的处理器,例如:中央处理单元(central processing unit,CPU)。
第七方面,本申请提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述任一方面的方法。
第八方面,本申请提供了一种计算机程序产品,计算机程序产品用于存储计算机程序,当计算机程序在计算机上运行时,使得计算机执行上述任一方面的方法。
第九方面,本申请提供了一种芯片,包括处理器,用于从存储器中调用并运行存储器中存储的指令,使得安装有芯片的终端设备执行上述任一方面的方法。
第十方面,本申请提供了另一种芯片,该芯片可以为第一设备或第二设备内的芯片,该芯片包括:输入接口、输出接口和处理电路,输入接口、输出接口与电路之间通过内部连接通路相连,处理电路用于执行上述任一方面的方法。
第十一方面,本申请提供了另一种芯片,包括:输入接口、输出接口、处理器,可选的,还包括存储器,输入接口、输出接口、处理器以及存储器之间通过内部连接通路相连,处理器用于执行存储器中的代码,当代码被执行时,处理器用于执行上述任一方面中的方法。
第十二方面,本申请实施例提供了一种通信装置,包括:存储器,用于存储指令;至少一个处理器,用于从存储器中调用并运行指令,使得通信装置实现上述任一方面的步骤。
第十三方面,本申请实施例提供了一种通信系统,包括上述任一方面中的第一设备和第二设备。
以下对本申请实施例用到的附图进行介绍。
图1A、图1B是本申请实施例提供的一种通信系统的结构示意图;
图2是本申请实施例提供的一种数据传输方法的流程示意图;
图3A、图3B是本申请实施例提供的一种第一区域的示意图;
图4是本申请实施例提供的另一种数据传输方法的流程示意图;
图5是本申请实施例提供的又一种数据传输方法的流程示意图;
图6是本申请实施例提供的一种通信装置的流程示意图;
图7是本申请实施例提供的另一种通信装置的流程示意图。
下面结合本申请实施例中的附图对本申请实施例进行描述。
请参见图1A,图1A是本申请实施例提供的第一种通信系统的结构示意图,该通信系统包括第一终端设备102、第二终端设备104、应用服务器103和网络设备106。其中,第一终端设备102可以与第二终端设备104直接通信,也可以通过网络设备106与第二终端 设备104进行通信。第一终端设备102和第二终端设备104可以是指提供到用户的语音和/或数据连接的设备,也可以被连接到诸如膝上型计算机或台式计算机等的计算设备,或者其可以是诸如个人数字助理(personal digital assistant,PDA)等的独立设备。第一终端设备102和第二终端设备104均可以为用户设备(user equipment,UE),如车辆、车载单元(On-Board Unit,OBU)、用户单元、用户站、移动站、移动台、远程站、接入点、远程终端、接入终端、用户终端、用户代理或用户装置等。第一终端设备102和第二终端设备104也可以为芯片,如处理器等等。
应用服务器103可以是智能交通系统(Intelligent Traffic Systems,ITS)的服务器,也可以是导航和收费等与车辆相关的应用的服务器等,在此不做限定。
网络设备106可以为基站、接入点、节点、演进型节点(environment Bureau,eNB)或5G基站(next generation base station,gNB),指在空中接口上通过一个或多个扇区与无线终端进行通信的接入网络中的设备。通过将已接收的空中接口帧转换为网际互连协议(Internet Protocol,IP)分组,基站可以作为无线终端和接入网络的其余部分之间的路由器,接入网络可以包括因特网协议网络。基站还可以对空中接口的属性的管理进行协调。
该通信系统可以应用于C-V2X系统,也可以应用与其他的通信系统中,例如,公共陆地移动网络(public land mobile network,PLMN)、设备到设备(device-to-device,D2D)网络、机器到机器(machine to machine,M2M)网络、物联网(internet of things,IoT)或者其他网络等,在此不做限定。
该通信系统主要用于侧行链路(sidelink)通信。如图1A所示,第一终端设备102和第二终端设备104可通过网络设备106进行蜂窝链路通信。网络设备106可向第一终端设备102发送第一配置信息,向第二终端设备104发送第二配置信息。该第一配置信息用于指示第一终端设备102如何传输侧行数据,该第二配置信息用于指示第二终端设备104如何传输侧行数据。因此,第一终端设备102基于第一配置信息可向第二终端设备104发送侧行数据,并接收第二终端设备104基于第二配置信息发送的侧行数据或蜂窝数据。
请参见图1B,图1B是本申请实施例提供的第二种通信系统的结构示意图,该通信系统包括第一终端设备102、第二终端设备104、应用服务器103、网络设备106和路侧设备(Road Side Unit,RSU)105。在本发明中,RSU可以是通信系统中的UE,也可以是通信系统中的基站。可选的,RSU为基站时,可以是宏基站或微基站,本发明对此不做限定。若RSU为UE,RSU与UE之间的链路为侧行链路(sideink);若RSU为基站时,RSU与UE之间的链路为蜂窝链路(包括上行链路和/或下行链路)。可选的RSU可以安装在固定的位置或物体上,也可以安装在移动的物理上,本发明中的RSU的名词对安装位置和场景不够成限定。
其中,第一终端设备102、第二终端设备104、应用服务器103和网络设备106可参照图1A是描述,在此不再赘述。路侧设备105作为第一终端设备102和第二终端设备104对应的区域内的位置相对固定的设备,可用于转发网络设备106的指示信息,或接收或转发第一终端设备102或第二终端设备104等终端设备的数据。
在图1B中,网络设备106可先向路侧设备105发送第一终端设备102的第一配置信息和第二终端设备104的第二配置信息。由路侧设备105作为第一终端设备102和第二终端 设备104的发送端转发网络设备106中的配置信息,则第一终端设备102和第二终端设备104可通过网络设备106(或其中的路侧设备105)进行通信,或者第一终端设备102和第二终端设备104之间可基于第一配置信息或第二配置信息进行侧行链路通信。
例如,若路侧设备105置于公路上的红绿灯中,第一终端设备102为驾驶在该公路上的车辆内的手机或为安装在汽车中的车载终端,第二终端设备104为另一个驾驶在该公路上的车辆,则当第一终端设备102位于路侧设备105的可接收范围内时,路侧设备105向第一终端设备102发送第一配置信息。当第二位置102位于路侧设备105的可接收范围内时,路侧设备105向第二终端设备104发送第二配置信息。第一终端设备102可基于第一配置信息与第二终端设备104进行侧行链路通信,第二终端设备104可基于第二配置信息与第一终端设备102进行侧行链路通信。
路侧设备105还可作为第一终端设备102的接收端,即在第二终端设备104包括路侧设备105的情况中,第一终端设备102和路侧设备105先进行蜂窝链路通信,再由路侧设备105向第一终端设备102发送第一配置信息,第一终端设备102基于第一配置信息与路侧设备105进行侧行链路通信。
例如,若路侧设备105置于高速公路上收费站的收费器中,第一终端设备102为行驶在高速公路上的车辆或为安装在汽车中的车载终端,则当第一终端设备102位于路侧设备105的可接收范围内时,路侧设备105向第一终端设备102发送第一配置信息。第一终端设备102基于该第一配置信息可与路侧设备105进行侧行链路通信,如此,路侧设备105可获取第一终端设备102的行驶信息和绑定的扣费账户等扣费信息,并基于上述信息进行收费。而无需安装其他的第三方应用,且无需用户操作,提高了操作的便利性。
再例如,若路侧设备105置于商场中的停车场中,第一终端设备102为用户的手机,则当用户在商场中,且第一终端设备102位于路侧设备105的可接收范围内时,路侧设备105向第一终端设备102发送第一配置信息。第一终端设备102基于该第一配置信息可与路侧设备105进行侧行链路通信,如此,第一终端设备102可通过路侧设备105获取停车场中的可停车位置及导航路线,或者商场中各个门店的位置信息和促销信息等,以便于用户购物。
随着无线通信技术的发展,人们对高数据传输速率的需求和用户体验的需求日益增长,同时人们对了解周边人或事物并与之通信的邻近服务的需求逐渐增加,因此D2D通信技术应运而生。D2D技术的应用,可以减轻蜂窝网络的负担、减少终端设备的电池功耗、提高数据传输速率,并能很好地满足邻近服务的需求。D2D技术允许多个支持D2D功能的UE在有网络基础设施或无网络基础设施的情况下进行直接发现和直接通信。鉴于D2D技术的特点和优势,基于D2D技术的车联网应用场景被提出,但是因涉及安全性的考虑,这种场景下对时延的要求非常高,现有的D2D技术无法实现。
因此在3GPP提出的长期演进(long term evolution,LTE)技术的网络下,V2X的车联网技术被提出,V2X通信是指车辆与外界的任何事物的通信,包括车与车的通信(vehicle to vehicle,V2V)、车与行人的通信(vehicle to pedestrian,V2P)、车与基础设施的通信(vehicle to infrastructure,V2I)、车与网络的通信(vehicle to network,V2N)。V2X通信针对以车辆为代表的高速设备,是未来对通信时延要求非常高的场景下应用的基础技术和关键技术, 如智能汽车、自动驾驶、智能交通运输系统等场景。
LTE V2X通信可以支持有网络覆盖和无网络覆盖的通信场景,其资源分配方式可以采取网络接入设备调度模式,如演进通用陆地无线接入网节点B(E-UTRAN Node B,eNB)调度模式和UE自选模式。基于V2X技术,车辆用户(vehicle UE,V-UE)能将自身的一些信息,例如位置、速度、意图(例如转弯、并线、倒车)等信息周期性以及一些非周期性的事件触发的信息向周围的V-UE发送,同样地V-UE也会实时接收周围用户的信息。
LTE V2X解决了V2X场景中的一些部分基础性的需求,但对于未来的完全智能驾驶、自动驾驶等应用场景而言,现阶段的LTE V2X还不能有效的支持。随着5G NR技术在3GPP标准组织中的推进,5G NR V2X也将进一步发展。为了节省频率资源,将蜂窝链路中增强的移动宽带(enhanced Mobile Broad Band)的频谱应用于sidelink上。然而,将cellular link的频率用到sidelink上,两个链路之间会产生干扰问题,导致通信质量差。
为了解决上述技术问题,本申请实施例由网络设备预先确定或动态配置侧行链路通信的配置信息,以供区域内的终端设备或路侧设备进行侧行链路通信。该配置信息用于指示侧行链路传输参数,以及指定区域的地理位置信息。该配置信息可以是网络设备根据各个区域进行配置的,也就是说,不同的区域,或不同类型的区域,其配置信息不同。该配置信息也可以是根据各个路侧设备进行配置的,也就是说,不同区域的路侧设备,或不同类型的路侧设备,其配置信息不同。该配置信息还可以是根据各个终端设备进行配置的,也就是说,不同的终端设备,或不同类型的终端设备,其配置信息不同等,在此不做限定。
可以理解,在终端设备获取配置信息之后,可在指定区域内基于预设的侧行链路传输参数进行侧行链路通信,可避免与蜂窝链路产生干扰,可提高通信质量。
具体的,请参见图2,图2是本申请实施例提供的一种数据传输方法,该方法应用于第一设备,该方法包括但不限于如下步骤:
步骤S202:第一设备从第二设备获取第一配置信息,第一配置信息用于指示侧行链路传输参数,以及第一区域信息。
在本申请实施例中,第一设备为终端设备,例如,图1A所述的第一终端设备102。第二设备可以是图1A和图1B所述的网络设备106和第二终端设备104,也可以是图1B所述的应用服务器103和路侧设备105。如此,提高了获取第一配置信息的灵活性。
当第二设备包括终端设备时,第一设备从第二设备获取第一配置信息包括:第一设备从其它终端设备获取网络设备和/或应用服务器转发的第一配置信息。而当第二设备包括路侧设备时,第一设备从第二设备获取第一配置信息包括:第一设备从路侧设备获取网络设备和/或应用服务器转发的第一配置信息。从而可以减少第一设备从网络设备或应用服务器接收的配置消息,减少网络的信令开销。
可选的,当第一设备确定与其它终端设备之间的距离小于预设阈值时,第一设备从其它终端设备获取网络设备和/或应用服务器转发的第一配置信息。和/或,当第一设备确定与路侧设备之间的距离小于预设阈值时,第一设备从路侧设备获取网络设备和/或应用服务器转发的第一配置信息。即在距离满足预设条件时,才获取配置信息,也就是说,针对第一设备的地理位置获取配置信息,可提高通信质量,减少网络的信令开销,并节省第一设备的功耗。
在本申请实施例中,侧行链路传输参数用于指示侧行数据的传输方法。侧行链路传输参数包括侧行链路发射功率参数,用于指示第一设备发送侧行数据。其中,侧行链路发射功率参数包括以下中的至少一种:路损因子、最大发射功率、开环发射功率、功率调整因子、至少一个发射功率值。发射功率值Ptx满足如下公式,
Ptx=Pmax+Δ-(log
2(M)+alpha*L+P
0);或者,
Ptx=min{Pmax,Pmax+Δ–(log
2(M)+alpha*L+P
0)}
其中,Pmax为最大发射功率,Δ为功率调整参数,M为传输数据的带宽,alpha为路损因子,L为路损,P
0为开环发射功率参数。
根据上述公式可知,第一设备的发射功率值与第一设备和待通信的设备之间的路损、开环发射功率、传输带宽、路损因子中的至少一种成反变化关系。也就是说,当第一设备和待通信的设备之间的距离越远时,路损越大,则发射功率值越小。例如,当第一设备在第一区域的边缘时,第一设备的发射功率较小;反之当第一设备在第一区域的较中心的区域时,第一设备发发射功率较大。这样,当eMBB的频率用于sidelink时,可以将侧行链路上的传输控制更小的范围。
可以理解,侧行链路传输参数包括侧行链路发射功率,则即使在侧行链路通信频率与蜂窝链路通信频率相同时,也可通过侧行链路发射功率控制侧行链路通信对于蜂窝链路通信的影响,从而避免两个链路之间产生干扰,可提高通信质量。
在本申请实施例中,侧行链路传输参数还包括侧行链路通信频率,用于指示发送或接收侧行数据。可选的,侧行链路通信频率与蜂窝链路通信频率不同。进一步的,侧行链路通信频率可与第一区域或第二区域内的蜂窝链路通信频率不同。可以理解,在侧行链路通信频率与蜂窝链路通信频率不同时,进行侧行链路通信,不会影响蜂窝链路通信,从而避免两个链路之间产生干扰,可提高通信质量。
在本申请实施例中,第一区域信息用于指示第一区域、第一区域内的路侧设备、第一信号质量门限、第一距离门限等。其中,第一区域可以是任一区域,也可以是侧行链路通信受限的区域等,或第一区域进行侧行通信的地理区域。
第一区域信息可包括第一区域的地理位置信息,例如,经纬度信息,用卫星坐标的体现的水平方向和垂直方向的信息。该第一区域信息也包括第一区域的编号,例如,高速公路G10,基站中存储的序列号等。该第一区域信息还可以是第一区域的标识,例如,名称等。基于上述信息可确定第一区域的地理位置。第一区域信息也可包括路侧设备的地理位置信息、编号或标识等用于确定路侧设备的信息。如此,依据不同的指示信息确定第一区域,可提高确定第一区域的准确性和配置信息的灵活性。
第一信号质量门限和第一距离门限用于确定第一设备位于第一区域。在一种可能的示例中,第一设备接收第一区域内的路侧设备发送的第一消息;第一设备获取该第一消息的信号质量;若该信号质量大于或等于第一信号质量门限,则第一设备确定位于第一区域。
其中,第一消息可以是路侧设备发送的数据获取请求,也可以是专门用于测试信号质量的消息,还可以是路侧设备的地理位置等,在此不做限定。
可选的,信号质量可以是参考信号接收功率(Reference Signal Receiving Power,RSRP)、接收的信号强度指示(Received Signal Strength Indication,RSSI)、参考信号接收质量 (Reference Signal Receiving Quality,RSRQ)、信号与干扰噪声比值(Signal to Interference plus Noise Ratio,SINR)、信噪比(SIGNAL NOISE RATIO,SNR或者S/N)、信道质量指示(Channel Quality Indicator,CQI)中的一种或多种。信号质量的门限也是按信号质量相同的参数一起来定义门限。可以理解,第一设备根据路侧设备发送的第一消息的信号质量大于或等于第一信号质量门限,确定第一设备位于第一区域,从而保证了通信质量,并且减少第一设备不必要的发射和潜在的对eMBB业务的干扰。
在第二种可能的示例中,第一设备根据路侧设备的地理位置和第一设备的地理位置,确定与路侧设备之间的距离;若距离小于或等于第一距离门限,则第一设备确定位于第一区域。可以理解,第一设备根据与路侧设备之间的距离小于或等于第一距离门限,确定第一设备位于第一区域,从而保证了通信质量,并且减少第一设备不必要的发射和潜在的对eMBB业务的干扰。
在第三种可能的示例中,若该信号质量大于或等于第一信号质量门限,且距离小于或等于第一距离门限,则第一设备确定位于第一区域。也就是说,在信号质量和距离同时满足侧行链路通信的门限时,可进一步提高通信质量,并且减少第一设备不必要的发射和潜在的对eMBB业务的干扰。
在本申请实施例中,第一区域可包括多个子区域,如图3A所示,第一区域302包括第一子区域3022和第二子区域3024。可选的,第一区域信息还用于指示第一子区域和第二子区域。如此,第一设备可根据第一区域信息确定位于第一子区域或第二子区域。
第一区域也可作为子区域被其它区域包围。如图3B所示,第二区域30包括第一区域302和第三区域304。可选的,第一配置信息还用于指示第二区域信息,第二区域信息用于确定第二区域,第二区域包括第一区域,且第二区域大于第一区域。如此,第一设备可根据第二区域信息确定位于第二区域。需要说明的是,在图3A和图3B所示的区域中以圆形进行举例,区域还可以是其它的形状,在此不做限定。
步骤S204:第一设备根据第一区域信息确定位于第一区域。
其中,步骤S204可参照步骤S202中第一区域信息的描述,在此不再赘述。
步骤S206:第一设备基于侧行链路传输参数发送侧行数据。
在本申请实施例中,第一设备可基于侧行链路传输参数向可接收范围内的设备发送侧行数据。该设备可以是位于第二区域内的终端设备,也可以是位于第一区域内的路侧设备。例如,图1A所述的第二终端设备104,图1B所述的路侧设备105。
可选的,步骤S206包括:第一设备在第一子区域基于第一发射功率值和/或侧行链路通信频率发送侧行数据;或者,第一设备在第二子区域基于第二发射功率值和/或侧行链路通信频率发送侧行数据。
如前所述,配置信息可以与区域相关,因此,从配置信息获取的侧行链路传输参数中的发射功率值可以与区域相关,即第一发射功率值与第一子区域对应,第二发射功率值与第二子区域对应。本申请实施例不限定第一发射功率值和第二发射功率值之间的大小关系,如图3A所示,第一子区域3022位于第一区域302的中心位置,第二子区域3024位于第一区域302的边缘位置。由于发射功率值与路损成反变化关系,因此,第一发射功率值可大于或等于第二发射功率值。可以理解,在不同的区域采用不同的发射功率值,可提高通 信质量,并节省功耗。
可选的,响应于第一设备确定位于第二区域,第一设备在所述侧行链路通信频率上接收侧行数据。
在本说明书中,“响应于”也可以表示或理解为“当”,或“如果”等表示条件和判断的含义。
也就是说,第二区域作为第一设备的接收区域,接收其他通信装置发送的侧行数据,提高了通信的多样性。
在一种可能的示例中,如图3B所示,将第二区域中除了第一区域之外的区域作为第三区域,不向第一设备发送侧行数据,或者位于第三区域时的发射功率值小于或等于位于第一区域时的发射功率值。如前所述,路损越大,其发送功率值越小,因此,第三区域的发射功率值小于或等于第一区域的发射功率值。如此,限定了发送和接收区域以及不同的区域的发射功率值,可提高通信质量,并节省功耗。
需要说明的是,在不发送侧行数据时,可不打开侧行链路的发射器。且在不接收侧行数据时,可不打开侧行链路的接收器,以节省第一设备的功耗。
在图2所描述的方法中,第一设备先获取第一配置信息,在根据第一配置信息获取的第一区域信息确定第一设备位于第一区域之后,可基于第一配置信息获取的侧行链路传输参数发送侧行数据,如此,可在配置的区域内基于配置的侧行链路传输参数发送侧行数据,可减少不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
请参见图4,图4是本申请实施例提供的另一种数据传输方法,该方法也应用于第一设备,需要说明的是,该第一设备包括如图2所示的终端设备,也可包括路侧设备。该方法包括但不限于如下步骤:
S402:第一设备从第二设备获取第二配置信息,第二配置信息用于指示第二区域信息以及侧行链路通信频率。
S404:第一设备根据第二区域信息确定位于第二区域。
其中,步骤S402和步骤S404可参照步骤S202和步骤S204的描述,在此不再赘述。
在一种可能的示例中,第二设备包括网络设备、终端设备、路侧设备或应用服务器。如此,提高了获取第二配置信息的灵活性。
在一种可能的示例中,第二区域信息包括第二区域的地理位置信息、编号或标识。其中,第二区域信息可参照第一区域信息的描述,在此不再赘述。可以理解,依据不同的指示信息确定第二区域,可提高确定第二区域的准确性和配置信息的灵活性。
在一种可能的示例中,第二区域信息用于指示以下中的至少一种:第二区域、第二区域内的路侧设备、第二信号质量门限或第二距离门限。如此,第一设备可根据第二区域信息确定位于第二区域,便于提高通信质量。
在该示例中,步骤S404包括:第一设备接收路侧设备发送的第二消息;第一设备获取第二消息的信号质量;若第二消息的信号质量大于或等于第二信号质量门限,则第一设备确定位于第二区域。
其中,第二消息以及第二消息的信号质量可参照第一消息和第一消息的信号质量的描述,在此不再赘述。如此,依据信号质量确定第二区域,可保证在第二区域进行侧行链路通信的通信质量,并且减少第一设备不必要的发射和潜在的对eMBB业务的干扰。
在该示例中,第一设备根据路侧设备的地理位置和第一设备的地理位置,确定与路侧设备之间的距离;若距离小于或等于第二距离门限,则第一设备确定位于第二区域。如此,依据与第二区域内的路侧设备之间的距离确定第二区域,可保证在第二区域进行侧行链路通信的通信质量,并且减少第一设备不必要的发射和潜在的对eMBB业务的干扰。
在该示例中,第一设备接收路侧设备发送的第二消息;第一设备获取第二消息的信号质量;第一设备根据路侧设备的地理位置和第一设备的地理位置,确定与路侧设备之间的距离;若第二消息的信号质量大于或等于第二信号质量门限,和/或距离小于或等于第二距离门限,则第一设备确定位于第二区域。如此,依据与第二区域内的路侧设备之间的距离以及第一设备与路侧设备之间的信号质量确定第二区域,可保证在第二区域进行侧行链路通信的通信质量,并且减少第一设备不必要的发射和潜在的对eMBB业务的干扰。
在一种可能的示例中,第二配置信息还用于指示侧行链路传输参数,侧行链路传输参数包括侧行链路发射功率参数和/或侧行链路通信频率。如此,设备可基于具体的参数进行侧行链路通信,可减少第一设备不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
在该示例中,侧行链路发射功率参数包括以下中的至少一种:路损因子、最大发射功率、开环发射功率、功率调整因子、至少一个发射功率值。如此,可动态设置侧行链路发射功率值,提高了灵活性,便于提高通信质量。
在一种可能的示例中,第二配置信息还用于指示第一区域信息,第一区域信息用于确定第一区域,第二区域包括第一区域,且第二区域大于第一区域,第一设备根据第一区域信息确定位于所述第一区域;第一设备基于侧行链路传输参数发送侧行数据。如此,第一设备还在可第一区域还可基于第二配置信息发送侧行数据,可避免与其它链路产生干扰,可提高通信质量和通信的多样性。
在一种可能的示例中,侧行链路通信频率与第二区域的蜂窝链路通信频率不同。如此,可直接避免与蜂窝链路通信产生干扰,提高了通信质量。
S406:第一设备在侧行链路通信频率上接收侧行数据。
在本申请实施例中,第一设备可在侧行链路通信频率上接收可接收范围内的设备发送的侧行数据。该设备可以是位于第二区域内的终端设备,例如图2方法中描述的第一设备,也可以是位于第二区域内的路侧设备,在此不做限定。
在一种可能的示例中,第一区域信息还用于确定第一子区域和第二子区域,第一区域包括第一子区域和第二子区域,步骤S406包括:响应于第一设备确定位于第一子区域,第一设备在侧行链路通信频率上,基于与第一子区域对应的第一发射功率值和/或侧行链路通信频率发送侧行数据;和/或,响应于第一设备确定位于第二子区域,第一设备在侧行链路通信频率上,基于与第二子区域对应的第二发射功率值和/或侧行链路通信频率发送侧行数据。如此,在不同的区域采用不同的发射功率值,可提高通信质量,并节省功耗。
在图4所描述的方法中,第一设备先获取第二配置信息,在根据第二配置信息获取的第二区域信息确定第一设备位于第二区域之后,可在第一配置信息获取的侧行链路通信频率接收侧行数据,如此,可在配置的区域内基于配置的侧行链路通信频率接收侧行数据,可减少不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
请参见图5,图5是本申请实施例提供的又一种数据传输方法,该方法应用于第二设备,该方法包括但不限于如下步骤:
S502:第二设备发送第一配置信息和/或第二配置信息,其中,第一配置信息用于指示侧行链路传输参数,以及第一区域信息,第二配置信息用于指示第二区域信息以及侧行链路通信频率。
其中,步骤S502可参照步骤S202和步骤S402的描述,在此不再赘述。
在一种可能的示例中,第二设备包括网络设备、终端设备、路侧设备或应用服务器。如此,提高了设备获取配置信息的灵活性。
需要说明的是,当第二设备为网络设备或应用服务器时,可直接将第一配置信息发送给第一设备,和/或将第二配置信息发送给第一设备,也可将第一配置信息和/或第二配置信息发送给终端设备或者路侧设备。如此,通过终端设备或路侧设备转发网络设备或应用服务器的配置信息,可减少网络的信令开销。
在该示例中,步骤S502包括:路侧设备和/终端设备接收网络设备或应用服务器发送的第一配置信息和/或第二配置信息;路侧设备和/终端设备确定与第一设备之间的距离小于或等于预设阈值,向第一设备发送第一配置信息和/或第二配置信息。也就是说,设备可针对当前地理位置获取配置信息,可提高通信质量,减少网络的信令开销,并节省功耗。
在一种可能的示例中,第一区域信息用于指示以下中的至少一种:第一区域、第一区域内的路侧设备、第一信号质量门限或第一距离门限;第二区域信息用于指示以下中的至少一种:第二区域、第二区域内的路侧设备、第二信号质量门限或第二距离门限。如此,第一设备可根据第一区域信息确定位于第一区域,以及根据第二区域信息确定位于第二区域,便于提高通信质量。
在一种可能的示例中,侧行链路传输参数包括侧行链路发射功率参数和/或侧行链路通信频率。如此,设备可基于具体的参数进行侧行链路通信,可减少不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
在该示例中,侧行链路发射功率参数包括以下中的至少一种:路损因子、最大发射功率、开环发射功率、功率调整因子、至少一个发射功率值。如此,第二设备可动态设置侧行链路发射功率值,提高了灵活性,便于提高通信质量。
在一种可能的示例中,第一区域信息还用于指示第一子区域和第二子区域,第一区域包括第一子区域和第二子区域,至少一个发射功率值包括与第一子区域对应的第一发射功率值和与第二子区域对应的第二发射功率值。如此,在不同的子区域中采用不同的发射功率值发送侧行数据,可提高通信质量。
在一种可能的示例中,第一配置信息还用于指示第二区域信息,第二区域信息用于确定第二区域,第二区域包括第一区域且第二区域大于第一区域。如此,限定了发送和接收区域,可提高通信质量,并节省功耗。
在一种可能的示例中,第一区域信息包括第一区域的地理位置信息、编号或标识,第二区域信息包括第二区域的地理位置信息、编号或标识。如此,依据不同的指示信息确定区域,可提高确定区域的准确性和配置信息的灵活性。
在一种可能的示例中,侧行链路通信频率与第二区域的蜂窝链路通信频率不同。如此, 可直接避免与蜂窝链路通信产生干扰,提高了通信质量。
在图5所描述的方法中,第二设备发送第一配置信息和/或第二配置信息,如此,终端设备或路侧设备可在配置的区域内基于配置的侧行链路传输参数进行侧行链路通信,可减少不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
请参见图6,图6是本申请实施例提供的一种通信装置的结构示意图,该通信装置包括第一设备,第一设备包括收发单元601和处理单元602,其中,各个单元的详细描述如下。
在一个实施例中:
收发单元601,用于获取第一配置信息,其中,第一配置信息用于指示侧行链路传输参数,以及第一区域信息;
处理单元602,用于根据第一区域信息确定位于第一区域;
收发单元601,还用于基于侧行链路传输参数发送侧行数据。
可选的,第一区域信息用于指示以下中的至少一种:
第一区域、第一区域内的路侧设备、第一信号质量门限或第一距离门限。
可选的,侧行链路传输参数包括侧行链路发射功率参数和/或侧行链路通信频率。
可选的,侧行链路发射功率参数包括以下中的至少一种:路损因子、最大发射功率、开环发射功率、功率调整因子、至少一个发射功率值。
可选的,第一区域包括第一子区域和第二子区域,侧行链路发射功率参数包括与第一子区域对应的第一发射功率值和与第二子区域对应的第二发射功率值,收发单元601具体用于在第一子区域基于第一发射功率值和/或侧行链路通信频率发送侧行数据;和/或,在第二子区域基于第二发射功率值和/或侧行链路通信频率发送侧行数据。
可选的,第一区域信息还用于指示第一子区域和第二子区域,收发单元还用于根据第一区域信息确定位于第一子区域或第二子区域。
可选的,第一配置信息还用于指示第二区域信息,第二区域信息用于确定第二区域,第二区域包括第一区域且第二区域大于第一区域,收发单元601还用于响应于第一设备确定位于第二区域,在所述侧行链路通信频率上接收侧行数据。
可选的,收发单元601还用于接收路侧设备发送的第一消息;处理单元602具体用于获取第一消息的信号质量;若第一消息的信号质量大于或等于第一信号质量门限,则确定位于第一区域。
可选的,处理单元602还用于根据路侧设备的地理位置和通信装置的地理位置,确定与路侧设备之间的距离;若距离小于或等于第一距离门限,则第一设备确定位于第一区域。
可选的,第一区域信息包括第一区域的地理位置信息、编号或标识。
可选的,侧行链路通信频率与第一区域的蜂窝链路通信频率不同。
可选的,第一配置信息是从网络设备获取的;或者,从终端设备获取的;或者,从路侧设备获取的;或者,从应用服务器获取的。
在一个实施例中:
收发单元601,用于获取第二配置信息,其中,第二配置信息用于指示第二区域信息 以及侧行链路通信频率;
处理单元602,用于根据第二区域信息确定位于第二区域;
收发单元601,还用于在侧行链路通信频率上接收侧行数据。
可选的,第一设备包括终端设备或路侧设备。
可选的,第二配置信息还用于指示侧行链路传输参数,侧行链路传输参数包括侧行链路发射功率参数和/或侧行链路通信频率。
可选的,侧行链路通信频率与第二区域的蜂窝链路通信频率不同。
可选的,第二区域信息包括第二区域的地理位置信息、编号或标识。
可选的,第二区域信息用于指示以下中的至少一种:第二区域、第二区域内的路侧设备、第二信号质量门限或第二距离门限。
可选的,收发单元601还用于接收路侧设备发送的第二消息;处理单元602具体用于获取第二消息的信号质量;若第二消息的信号质量大于或等于第二信号质量门限,则确定位于第二区域。
可选的,处理单元602还用于根据路侧设备的地理位置和通信装置的地理位置,确定与路侧设备之间的距离;若距离小于或等于第二距离门限,则确定位于第二区域。
可选的,第二区域信息还用于指示第一区域信息,第一区域信息用于确定第一区域,第二区域包括第一区域,且第二区域大于第一区域,收发单元601还用于根据所述第一区域信息确定位于第一区域;基于侧行链路传输参数发送侧行数据。
可选的,第一区域信息还用于确定第一子区域和第二子区域,第一区域包括第一子区域和第二子区域,收发单元601还用于根据第一区域信息确定位于第一子区域,基于与第一子区域对应的第一发射功率值和/或侧行链路通信频率发送的侧行数据;和/或,根据第一区域信息确定位于第二子区域,基于与第二子区域对应的第二发射功率值和/或侧行链路通信频率发送的侧行数据。
可选的,第二配置信息还用于指示侧行链路传输参数,侧行链路传输参数包括侧行链路发射功率参数和/或侧行链路通信频率。
可选的,侧行链路发射功率参数包括以下中的至少一种:路损因子、最大发射功率、开环发射功率、功率调整因子、至少一个发射功率值。
可选的,第二配置信息是从网络设备获取的;或者,从终端设备获取的;或者,从路侧设备获取的;或者,从应用服务器获取的。
如图6所示的通信装置还包括第二设备,该第二设备也可以包括收发单元601和处理单元602,其中,各个单元的详细描述如下。
在一个实施例中:
收发单元601,用于发送第一配置信息和/或第二配置信息,其中,第一配置信息用于指示侧行链路传输参数,以及第一区域信息,第二配置信息用于指示第二区域信息以及侧行链路通信频率。
可选的,侧行链路传输参数包括侧行链路发射功率参数和/或侧行链路通信频率。
可选的,侧行链路通信频率与第二区域信息确定的第二区域的蜂窝链路通信频率不同。
可选的,第二设备包括以下中的至少一种:网络设备、终端设备、路侧设备、应用服 务器。
可选的,路侧设备和/或终端设备的收发单元601具体用于接收网络设备和/或应用服务器发送的第一配置信息和/或第二配置信息;确定与其它通信装置之间的距离小于或等于预设阈值,向该其它通信装置发送第一配置信息和/或第二配置信息。
可选的,第一区域信息用于指示以下中的至少一种:第一区域、第一区域内的路侧设备、第一信号质量门限或第一距离门限;第二区域信息用于指示以下中的至少一种:第二区域、第二区域内的路侧设备、第二信号质量门限或第二距离门限。
可选的,侧行链路传输参数包括侧行链路发射功率参数和/或侧行链路通信频率。
可选的,侧行链路发射功率参数包括以下中的至少一种:路损因子、最大发射功率、开环发射功率、功率调整因子、至少一个发射功率值。
可选的,第一区域信息还用于指示第一子区域和第二子区域,第一区域包括第一子区域和第二子区域,至少一个发射功率值包括与第一子区域对应的第一发射功率值和与第二子区域对应的第二发射功率值。
可选的,第一配置信息还用于指示第二区域信息,第二区域信息用于确定第二区域,第二区域包括第一区域且第二区域大于第一区域。
可选的,第一区域信息包括第一区域的地理位置信息、编号或标识,第二区域信息包括第二区域的地理位置信息、编号或标识。
需要说明的是,各个单元的实现还可以对应参照图2、图4和图5所示的方法实施例的相应描述。
在图6所描述的通信装置中,第一设备或第一设备可获取第二设备的配置信息,并在该配置信息对应的区域上,基于该配置信息的侧行链路传输参数进行侧行链路通信,可减少不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
请参见图7,图7是本申请实施例提供的另一种通信装置,该通信装置包括处理器701、存储器702和通信接口703,处理器701、存储器702和通信接口703通过总线704相互连接。
存储器702包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器702用于相关计算机程序及侧行数据。通信接口703用于接收和发送侧行数据。
处理器701可以是一个或多个中央处理器(central processing unit,CPU),在处理器701是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该通信装置包括第一设备,该通信装置中的处理器701用于读取存储器702中存储的计算机程序代码,执行以下操作:
获取第一配置信息,其中,第一配置信息用于指示侧行链路传输参数,以及第一区域信息;
根据第一区域信息确定位于第一区域;
基于侧行链路传输参数发送侧行数据。
在一种可能的示例中,第一区域信息用于指示以下中的至少一种:第一区域、第一区 域内的路侧设备、第一信号质量门限或第一距离门限。
在一种可能的示例中,侧行链路传输参数包括侧行链路发射功率参数和/或侧行链路通信频率。
在一种可能的示例中,侧行链路发射功率参数包括以下中的至少一种:路损因子、最大发射功率、开环发射功率、功率调整因子、至少一个发射功率值。
在一种可能的示例中,第一区域包括第一子区域和第二子区域,至少一个发射功率值包括与第一子区域对应的第一发射功率值和与第二子区域对应的第二发射功率值,处理器701具体用于执行如下操作:
在第一子区域基于第一发射功率值和/或侧行链路通信频率发送侧行数据;或者,在第二子区域基于第二发射功率值和/或侧行链路通信频率发送侧行数据。
在一种可能的示例中,第一区域信息还用于指示第一子区域和第二子区域,第一设备根据第一区域信息确定位于第一子区域或第二子区域。
在一种可能的示例中,第一配置信息还用于指示第二区域信息,第二区域信息用于确定第二区域,第二区域包括第一区域,且第二区域大于第一区域,处理器701具体用于执行如下操作:
响应于第一设备确定位于第二区域,在侧行链路通信频率上接收侧行数据。
在一种可能的示例中,处理器701具体用于执行如下操作:
接收路侧设备发送的第一消息;
获取第一消息的信号质量;
若信号质量大于或等于第一信号质量门限,则第一设备确定位于第一区域。
在一种可能的示例中,处理器701还用于执行如下操作:
根据路侧设备的地理位置和第一设备的地理位置确定与路侧设备之间的距离;
若距离小于或等于第一距离门限,则确定位于第一区域。
在一种可能的示例中,第一区域信息包括第一区域的地理位置信息、编号或标识。
在一种可能的示例中,侧行链路通信频率与第一区域的蜂窝链路通信频率不同。
在一种可能的示例中,第一配置信息是从基站获取的;或者,从终端设备获取的;或者,从路侧设备获取的;或者,从应用服务器获取的。如此,提高了获取配置信息的灵活性和便利性。
该第一设备中的处理器701用于读取存储器702中存储的计算机程序代码,执行以下操作:
获取第二配置信息,其中,第二配置信息用于指示第二区域信息以及侧行链路通信频率;
根据第二地理位置信息确定位于第二区域;
在侧行链路通信频率上接收侧行数据。
在一种可能的示例中,第二区域信息包括第二区域的地理位置信息、编号或标识。
在一种可能的示例中,第二区域信息用于指示以下中的至少一种:第二区域、第二区域内的路侧设备、第二信号质量门限或第二距离门限。
在该示例中,处理器701具体用于执行如下操作:
接收路侧设备发送的第二消息;
获取第二消息的信号质量;
若第二消息的信号质量大于或等于第二信号质量门限,则确定第一设备位于第二区域。
在该示例中,处理器701还用于执行如下操作:
根据路侧设备的地理位置和第一设备的地理位置,确定与路侧设备之间的距离;
若距离小于或等于第二距离门限,则确定第一设备位于第二区域。
在一种可能的示例中,第二配置信息还用于指示侧行链路传输参数,侧行链路传输参数包括侧行链路发射功率参数和/或侧行链路通信频率。
在该示例中,侧行链路发射功率参数包括以下中的至少一种:路损因子、最大发射功率、开环发射功率、功率调整因子、至少一个发射功率值。
在一种可能的示例中,第二区域信息还用于指示第一区域信息,第一区域信息用于确定第一区域,第二区域包括第一区域,且第二区域大于第一区域,处理器701还用于执行如下操作:
根据所述第一区域信息确定位于所述第一区域;
基于所述侧行链路传输参数发送侧行数据。
在一种可能的示例中,第一区域信息还用于确定第一子区域和第二子区域,第一区域包括第一子区域和第二子区域,处理器701还用于执行如下操作:
响应于第一设备确定位于第一子区域,在侧行链路通信频率上,接收第一设备基于与第一子区域对应的第一发射功率值和/或侧行链路通信频率发送的侧行数据;和/或,
响应于第一设备确定位于第二子区域,在侧行链路通信频率上,接收第一设备基于与第二子区域对应的第二发射功率值和/或侧行链路通信频率发送的侧行数据。
在一种可能的示例中,侧行链路通信频率与第二区域的蜂窝链路通信频率不同。
在一种可能的示例中,第二配置信息是从基站获取的;或者,从终端设备获取的;或者,从路侧设备获取的;或者,从应用服务器获取的。
该通信装置包括第二设备,该第二设备中的处理器701用于读取存储器702中存储的计算机程序代码,执行以下操作:
发送第一配置信息和/或第二配置信息,其中,第一配置信息用于指示侧行链路传输参数以及第一区域信息,第二配置信息用于指示第二区域信息以及侧行链路通信频率。
在一种可能的示例中,第二设备包括网络设备、终端设备、路侧设备或应用服务器。
在该示例中,路侧设备和/或终端设备的处理器701具体用于执行如下操作:
接收网络设备或应用服务器发送的第一配置信息和/或第二配置信息;
确定与其它通信装置之间的距离小于或等于预设阈值,向该其它通信装置发送第一配置信息和/或第二配置信息。
在一种可能的示例中,第一区域信息用于指示以下中的至少一种:第一区域、第一区域内的路侧设备、第一信号质量门限或第一距离门限;第二区域信息用于指示以下中的至少一种:第二区域、第二区域内的路侧设备、第二信号质量门限或第二距离门限。
在一种可能的示例中,侧行链路传输参数包括侧行链路发射功率参数和/或侧行链路通信频率。
在该示例中,侧行链路发射功率参数包括以下中的至少一种:路损因子、最大发射功率、开环发射功率、功率调整因子、至少一个发射功率值。
在一种可能的示例中,第一区域信息还用于指示第一子区域和第二子区域,第一区域包括第一子区域和第二子区域,至少一个发射功率值包括与第一子区域对应的第一发射功率值和与第二子区域对应的第二发射功率值。
在一种可能的示例中,第一配置信息还用于指示第二区域信息,第二区域信息用于确定第二区域,第二区域包括第一区域且第二区域大于第一区域。
在一种可能的示例中,第一区域信息包括第一区域的地理位置信息、编号或标识,第二区域信息包括第二区域的地理位置信息、编号或标识。
在一种可能的示例中,侧行链路通信频率与第二区域信息确定的第二区域的蜂窝链路通信频率不同。
需要说明的是,各个操作的实现还可以对应参照图2、图4和图5所示的方法实施例的相应描述。
在图7所描述的通信装置中,第一设备或第一设备可获取第二设备的配置信息,并在该配置信息对应的区域上,基于该配置信息的侧行链路传输参数进行侧行链路通信,可减少不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
本申请实施例还提供了一种通信装置,用于执行上述各实施例中任一实施例中涉及第一设备或第二设备的任意方法和功能。
本申请实施例还提供一种通信系统,该系统包括上述任一实施例中涉及的至少一个第一设备和至少一个第二设备。
本申请实施例还提供一种芯片系统,芯片系统包括至少一个处理器,存储器和接口电路,存储器、收发器和至少一个处理器通过线路互联,至少一个存储器中存储有计算机程序;计算机程序被处理器执行时,图2、图4和图5所示的方法流程得以实现。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当其在通信装置上运行时,图2、图4和图5所示的方法流程得以实现。
本申请实施例还提供一种计算机程序产品,当计算机程序产品在通信装置上运行时,图2、图4和图5所示的方法流程得以实现。
综上,通过实施本申请实施例,第一设备可获取第二设备的配置信息,并在该配置信息对应的区域上,基于该配置信息的侧行链路传输参数进行侧行链路通信,可减少不必要的发射和潜在的对eMBB业务的干扰,提高了通信质量。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来计算机程序相关的硬件完成,该计算机程序可存储于计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储计算机程序代码的介质。
Claims (42)
- 一种数据传输方法,其特征在于,包括:第一设备获取第一配置信息,其中,所述第一配置信息用于指示侧行链路传输参数,以及第一区域信息;所述第一设备根据所述第一区域信息确定位于第一区域;所述第一设备基于所述侧行链路传输参数发送侧行数据。
- 根据权利要求1所述的方法,其特征在于,所述第一区域信息用于指示以下中的至少一种:所述第一区域、所述第一区域内的路侧设备、第一信号质量门限或第一距离门限。
- 根据权利要求1或2所述的方法,其特征在于,所述侧行链路传输参数包括侧行链路发射功率参数和/或侧行链路通信频率。
- 根据权利要求3所述的方法,其特征在于,所述第一区域包括第一子区域和第二子区域,所述侧行链路发射功率参数包括与所述第一子区域对应的第一发射功率值和与所述第二子区域对应的第二发射功率值,所述第一设备基于所述侧行链路传输参数发送侧行数据,包括:所述第一设备在所述第一子区域基于所述第一发射功率值和/或所述侧行链路通信频率发送侧行数据;和/或,所述第一设备在所述第二子区域基于所述第二发射功率值和/或所述侧行链路通信频率发送侧行数据。
- 根据权利要求4所述的方法,其特征在于,所述第一区域信息还用于指示所述第一子区域和所述第二子区域,所述方法还包括:所述第一设备根据所述第一区域信息确定位于所述第一子区域或所述第二子区域。
- 根据权利要求3至5中任意一项所述的方法,其特征在于,所述第一配置信息还用于指示第二区域信息,所述第二区域信息用于确定第二区域,所述第二区域包括所述第一区域且所述第二区域大于所述第一区域,所述方法还包括:响应于所述第一设备确定位于所述第二区域,所述第一设备在所述侧行链路通信频率上接收侧行数据。
- 根据权利要求2所述的方法,其特征在于,所述第一设备根据所述第一区域信息确定位于第一区域,包括:所述第一设备接收所述路侧设备发送的第一消息;所述第一设备获取所述第一消息的信号质量;若所述第一消息的信号质量大于或等于所述第一信号质量门限,则所述第一设备确定位于第一区域。
- 根据权利要求2或7所述的方法,其特征在于,所述方法还包括:所述第一设备根据所述路侧设备的地理位置和所述第一设备的地理位置,确定与所述路侧设备之间的距离;若所述距离小于或等于所述第一距离门限,则所述第一设备确定位于第一区域。
- 根据权利要求3至8中任意一项所述的方法,其特征在于,所述侧行链路通信频率与所述第一区域的蜂窝链路通信频率不同。
- 根据权利要求1至9中任意一项所述的方法,其特征在于,所述第一配置信息是从网络设备获取的;或者,从终端设备获取的;或者,从路侧设备获取的;或者,从应用服务器获取的。
- 一种数据传输方法,其特征在于,包括:第一设备获取第二配置信息,其中,所述第二配置信息用于指示第二区域信息以及侧行链路通信频率;所述第一设备根据所述第二区域信息确定位于第二区域;所述第一设备在所述侧行链路通信频率上接收侧行数据。
- 根据权利要求11所述的方法,其特征在于,所述第二配置信息还用于指示侧行链路传输参数,所述侧行链路传输参数包括侧行链路发射功率参数和/或所述侧行链路通信频率。
- 根据权利要求11或12所述的方法,其特征在于,所述第二配置信息还用于指示第一区域信息,所述第一区域信息用于确定第一区域,所述第二区域包括所述第一区域,且所述第二区域大于所述第一区域,所述方法还包括:所述第一设备根据所述第一区域信息确定位于所述第一区域;所述第一设备基于所述侧行链路传输参数发送侧行数据。
- 根据权利要求11至13中任意一项所述的方法,其特征在于,所述侧行链路通信频率与所述第二区域的蜂窝链路通信频率不同。
- 一种数据传输方法,其特征在于,包括:第二设备发送第一配置信息和/或第二配置信息,其中,所述第一配置信息用于指示侧行链路传输参数,以及第一区域信息,所述第二配置信息用于指示第二区域信息以及侧行链路通信频率。
- 根据权利要求15所述的方法,其特征在于,所述侧行链路传输参数包括侧行链路发射功率参数和/或所述侧行链路通信频率。
- 根据权利要求15或16所述的方法,其特征在于,所述侧行链路通信频率与所述第二区域信息确定的第二区域的蜂窝链路通信频率不同。
- 根据权利要求15至17中任意一项所述的方法,其特征在于,所述第二设备包括以下中的至少一种:网络设备、终端设备、路侧设备、应用服务器。
- 根据权利要求18所述的方法,其特征在于,所述第二设备发送第一配置信息和/或第二配置信息,包括:所述路侧设备和/或所述终端设备接收所述网络设备和/或所述应用服务器发送的所述第一配置信息和/或第二配置信息;所述路侧设备和/所述终端设备确定与第一设备之间的距离小于或等于预设阈值,向所述第一设备发送第一配置信息和/或第二配置信息。
- 一种通信装置,其特征在于,包括:收发单元,用于获取第一配置信息,其中,所述第一配置信息用于指示侧行链路传输参数,以及第一区域信息;处理单元,用于根据所述第一区域信息确定位于第一区域;所述收发单元,还用于基于所述侧行链路传输参数发送侧行数据。
- 根据权利要求20所述的设备,其特征在于,所述第一区域信息用于指示以下中的至少一种:所述第一区域、所述第一区域内的路侧设备、第一信号质量门限或第一距离门限。
- 根据权利要求20或21所述的设备,其特征在于,所述侧行链路传输参数包括侧行链路发射功率参数和/或侧行链路通信频率。
- 根据权利要求22所述的设备,其特征在于,所述第一区域包括第一子区域和第二子区域,所述侧行链路发射功率参数包括与所述第一子区域对应的第一发射功率值和与所述第二子区域对应的第二发射功率值,所述收发单元具体用于在所述第一子区域基于所述第一发射功率值和/或所述侧行链路通信频率发送侧行数据;和/或,在所述第二子区域基于所述第二发射功率值和/或所述侧行链路通信频率发送侧行数据。
- 根据权利要求23所述的设备,其特征在于,所述第一区域信息还用于指示所述第一子区域和所述第二子区域,所述收发单元还用于根据所述第一区域信息确定位于所述第一子区域或所述第二子区域。
- 根据权利要求22至24中任意一项所述的设备,其特征在于,所述第一配置信息还用于指示第二区域信息,所述第二区域信息用于确定第二区域,所述第二区域包括所述第一区域且所述第二区域大于所述第一区域,所述收发单元还用于响应于确定位于所述第二区域,在所述侧行链路通信频率上接收侧行数据。
- 根据权利要求21所述的设备,其特征在于,所述收发单元还用于接收所述路侧设备发送的第一消息;所述处理单元具体用于获取所述第一消息的信号质量;若所述第一消息的信号质量大于或等于所述第一信号质量门限,则确定位于第一区域。
- 根据权利要求21或26所述的设备,其特征在于,所述处理单元还用于根据所述路侧设备的地理位置和所述通信装置的地理位置,确定与所述路侧设备之间的距离;若所述距离小于或等于所述第一距离门限,则确定位于第一区域。
- 根据权利要求22至27中任意一项所述的设备,其特征在于,所述侧行链路通信频率与所述第一区域的蜂窝链路通信频率不同。
- 根据权利要求21至28中任意一项所述的设备,其特征在于,所述第一配置信息是从网络设备获取的;或者,从终端设备获取的;或者,从路侧设备获取的;或者,从应用服务器获取的。
- 一种通信装置,其特征在于,包括:收发单元,用于获取第二配置信息,其中,所述第二配置信息用于指示第二区域信息以及侧行链路通信频率;处理单元,用于根据所述第二区域信息确定位于第二区域;所述收发单元,还用于在所述侧行链路通信频率上接收侧行数据。
- 根据权利要求30所述的设备,其特征在于,所述第二配置信息还用于指示侧行链路传输参数,所述侧行链路传输参数包括侧行链路发射功率参数和/或所述侧行链路通信频率。
- 根据权利要求30或31所述的设备,其特征在于,所述第二配置信息还用于指示第一区域信息,所述第一区域信息用于确定第一区域,所述第二区域包括所述第一区域,且所述第二区域大于所述第一区域,所述收发单元还用于根据所述第一区域信息确定位于所述第一区域,基于所述侧行链路传输参数发送侧行数据。
- 根据权利要求30至32中任意一项所述的设备,其特征在于,所述侧行链路通信频率与所述第二区域的蜂窝链路通信频率不同。
- 一种通信装置,其特征在于,包括:收发单元,用于发送第一配置信息和/或第二配置信息,其中,所述第一配置信息用于指示侧行链路传输参数,以及第一区域信息,所述第二配置信息用于指示第二区域信息以及侧行链路通信频率。
- 根据权利要求34所述的设备,其特征在于,所述侧行链路传输参数包括侧行链路发射功率参数和/或所述侧行链路通信频率。
- 根据权利要求34或35所述的设备,其特征在于,所述侧行链路通信频率与所述第二区域信息确定的第二区域的蜂窝链路通信频率不同。
- 根据权利要求34至36中任意一项所述的设备,其特征在于,所述通信装置包括以下中的至少一种:网络设备、终端设备、路侧设备、应用服务器。
- 根据权利要求37所述的设备,其特征在于,所述路侧设备和/或所述终端设备的收发单元具体用于接收所述网络设备和/或所述应用服务器发送的所述第一配置信息和/或第二配置信息;确定与其它通信装置之间的距离小于或等于预设阈值,向所述其它通信装置发送第一配置信息和/或第二配置信息。
- 一种通信装置,其特征在于,包括处理器和与所述处理器连接的存储器和通信接口,其中,所述存储器用于存储一个或多个程序,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-19中任意一项所述的方法中的步骤的指令。
- 一种计算机可读存储介质,其特征在于,其用于存储计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-19中任意一项所述的方法。
- 一种计算机程序产品,其特征在于,所述计算机程序产品用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至19中任意一项所述的方法。
- 一种通信系统,其特征在于,包括如权利要求20至29中任意一项所述的通信装置和如权利要求30至33中任意一项所述的通信装置,以及如权利要求34至38中所述的通信装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010416969.2 | 2020-05-15 | ||
CN202010416969.2A CN113677021B (zh) | 2020-05-15 | 2020-05-15 | 数据传输方法及相关产品 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021227946A1 true WO2021227946A1 (zh) | 2021-11-18 |
Family
ID=78526438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/092094 WO2021227946A1 (zh) | 2020-05-15 | 2021-05-07 | 数据传输方法及相关产品 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113677021B (zh) |
WO (1) | WO2021227946A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107734557A (zh) * | 2016-08-11 | 2018-02-23 | 北京三星通信技术研究有限公司 | 一种v2x通信中避免对蜂窝通信干扰的方法和设备 |
CN108023715A (zh) * | 2016-11-04 | 2018-05-11 | 北京三星通信技术研究有限公司 | 同步信号接收、发送方法及相应装置 |
US20190158240A1 (en) * | 2017-11-22 | 2019-05-23 | Qualcomm Incorporated | Inter-cell interference mitigation for uplink ultra-reliable low latency communications |
CN110710233A (zh) * | 2017-05-30 | 2020-01-17 | 华为技术有限公司 | 用于无线通信网络中通信的装置和方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11503604B2 (en) * | 2018-09-04 | 2022-11-15 | Hyundai Motor Company | Method for configuring sidelink resources based on user equipment speed in communication system and apparatus for the same |
CN110944386B (zh) * | 2018-09-21 | 2022-02-11 | 展讯通信(上海)有限公司 | 广播信令的配置方法、终端及计算机可读存储介质 |
CN109417685B (zh) * | 2018-09-28 | 2022-07-01 | 北京小米移动软件有限公司 | 直连通信的数据传输方法、装置、设备及系统 |
CN111148205B (zh) * | 2018-11-02 | 2022-03-25 | 华为技术有限公司 | 发送功率的确定方法和装置 |
WO2020223977A1 (zh) * | 2019-05-09 | 2020-11-12 | 北京小米移动软件有限公司 | 接入控制方法、装置及可读存储介质 |
-
2020
- 2020-05-15 CN CN202010416969.2A patent/CN113677021B/zh active Active
-
2021
- 2021-05-07 WO PCT/CN2021/092094 patent/WO2021227946A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107734557A (zh) * | 2016-08-11 | 2018-02-23 | 北京三星通信技术研究有限公司 | 一种v2x通信中避免对蜂窝通信干扰的方法和设备 |
CN108023715A (zh) * | 2016-11-04 | 2018-05-11 | 北京三星通信技术研究有限公司 | 同步信号接收、发送方法及相应装置 |
CN110710233A (zh) * | 2017-05-30 | 2020-01-17 | 华为技术有限公司 | 用于无线通信网络中通信的装置和方法 |
US20190158240A1 (en) * | 2017-11-22 | 2019-05-23 | Qualcomm Incorporated | Inter-cell interference mitigation for uplink ultra-reliable low latency communications |
Also Published As
Publication number | Publication date |
---|---|
CN113677021B (zh) | 2024-06-28 |
CN113677021A (zh) | 2021-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022011565A1 (zh) | 相对定位的方法、终端、基站、通信设备及存储介质 | |
US10917742B2 (en) | Electronic apparatus, device and method for adjusting a parameter for a proximity-based service communication | |
KR102317551B1 (ko) | V2x 통신을 수행하는 방법 및 단말 | |
KR20150010434A (ko) | 무선이동통신시스템에서 d2d 통신을 지원/사용하는 단말기의 이동성을 지원하는 방안 | |
EP3571886A1 (en) | Wireless communication devices and methods for sidelink interference coordination in a wireless communication network | |
EP3200527B1 (en) | Method and device for allocating radio resource | |
US20240097845A1 (en) | Method and apparatus for determining transmission resource, and communication device and storage medium | |
WO2021003614A1 (zh) | 信息传输方法、装置及存储介质 | |
US20200162854A1 (en) | Service Data Transmission Method And Apparatus | |
KR102539295B1 (ko) | 셀룰러 이동 무선 네트워크 내에서 단말기-대-단말기 통신방법, 및 이 방법을 위한 시스템 | |
US11057805B2 (en) | Mobility management method, network side device, internet-of-vehicles terminal, and system | |
WO2016187807A1 (zh) | 数据传输装置、v2v通信系统及方法 | |
WO2019196922A1 (zh) | 资源分配方法、装置及系统 | |
US20210235305A1 (en) | Connection configuration method, device and storage medium | |
US10771953B2 (en) | Selection of communication partners using location and velocity information | |
WO2021227946A1 (zh) | 数据传输方法及相关产品 | |
CN114554421B (zh) | 一种通信方法及装置 | |
WO2021196834A1 (zh) | V2x通信方法和装置 | |
US11973848B2 (en) | Apparatus, method and computer program | |
RU2815087C1 (ru) | Способ и устройство для запроса конфигурации опорного сигнала позиционирования (prs), а также устройство связи и носитель данных | |
WO2023030208A1 (zh) | 一种资源确定的方法和装置 | |
CN118524461A (zh) | 侧行链路通信方法和装置 | |
CN117769872A (zh) | 一种用于侧行链路的多载波通信方法及其装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21803066 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21803066 Country of ref document: EP Kind code of ref document: A1 |