WO2019214507A1 - 一种含铜污泥和线路板的综合处理方法和综合处理系统 - Google Patents

一种含铜污泥和线路板的综合处理方法和综合处理系统 Download PDF

Info

Publication number
WO2019214507A1
WO2019214507A1 PCT/CN2019/085143 CN2019085143W WO2019214507A1 WO 2019214507 A1 WO2019214507 A1 WO 2019214507A1 CN 2019085143 W CN2019085143 W CN 2019085143W WO 2019214507 A1 WO2019214507 A1 WO 2019214507A1
Authority
WO
WIPO (PCT)
Prior art keywords
side wall
copper
smelting
integrated processing
circuit board
Prior art date
Application number
PCT/CN2019/085143
Other languages
English (en)
French (fr)
Inventor
崔沐
黎敏
徐小锋
宋珍珍
陈学刚
邬传谷
李冲
Original Assignee
中国恩菲工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810433295.XA external-priority patent/CN108531737B/zh
Priority claimed from CN201810432388.0A external-priority patent/CN108707750B/zh
Application filed by 中国恩菲工程技术有限公司 filed Critical 中国恩菲工程技术有限公司
Publication of WO2019214507A1 publication Critical patent/WO2019214507A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to the field of metal recycling, and in particular to a comprehensive treatment method and integrated treatment system for a copper-containing sludge and a circuit board.
  • the printed circuit board is mainly composed of metal, organic matter and oxide, wherein the metal is ⁇ 50%, including Cu, Fe, Ni, Sn, Pb, Al, Zn and the like.
  • waste circuit board and the copper-containing sludge have rich content of valuable metals, and any disposal is bound to cause great waste of resources.
  • Heat treatment methods include incineration and thermal cracking.
  • the heat treatment methods used in industrial practice include shaft furnace, blast furnace, reverberatory furnace and rotary kiln incineration method. These methods utilize the high temperature of the metallurgical furnace to directly burn the organic matter in the circuit board, melt the valuable metal, and slag the inorganic non-metallic material to separate and obtain the crude metal ingot.
  • the chemical treatment method requires extraction, precipitation, displacement filtration, distillation and impurity removal, and electrolysis. The process is long and there are secondary pollution of the leachate and residue, and the substrate still needs to be treated again.
  • the recovery methods of valuable metals in copper-containing sludge mainly include acid leaching, ammonia leaching and high temperature smelting.
  • the main process of the acid leaching method is to leach the valuable metal in the copper-containing sludge by using sulfuric acid, hydrochloric acid or nitric acid.
  • the acid leaching method has high leaching efficiency, but has the defects that multiple metals are difficult to separate at the same time, and the equipment is seriously corroded and the operating environment is poor.
  • the ammonia leaching method generally uses an aqueous ammonia solution as a leaching agent to complex the copper and nickel in the sludge to obtain a leachate, and then recover the valuable metal.
  • the ammonia leaching method has good selectivity for valuable metals such as copper and nickel, but has high requirements on the sealing property of the device, and the leaching liquid is volatile, which is harmful to the environment.
  • the high-temperature melting method mainly heats the sludge to about 1300 ° C in a blast furnace, and is equipped with a reducing agent and a slagging agent to smelt and reduce the valuable metal, and slag the oxide to obtain crude copper.
  • the method has high energy consumption.
  • the main object of the present invention is to provide a comprehensive treatment method and an integrated treatment system for a copper-containing sludge and a circuit board, so as to solve the problem of high metal recovery cost in the copper-containing sludge and the circuit board in the prior art.
  • an integrated treatment method for a copper-containing sludge and a circuit board comprising: mixing copper-containing sludge and waste activated carbon to obtain copper-containing Sludge particles; side-smelting smelting of copper-containing sludge particles and circuit boards.
  • the waste activated carbon is used in an amount of 10% to 80% by weight based on the total copper in the copper-containing sludge and the waste circuit board; preferably, the side-blow smelting process uses waste mineral oil and oxygen-enriched air as fuel, and more preferably side-blown smelting
  • the temperature is from 1150 to 1400 °C.
  • a slag-forming agent is added, preferably the slagging agent is iron-containing waste slag, and further preferably the iron-containing slag is pyrite cinder.
  • a flux is added during the above-described side-blown smelting process, preferably the flux comprises quartz stone and/or limestone, and the flux is added in an amount of 10% to 70% by weight of the side-boiled furnace material.
  • waste activated carbon powder, pulverized coal and oxygen-enriched air are used as supplementary fuels in the above side blowing smelting process.
  • the side-blown smelting process is performed in a side-blow smelting furnace, and the side-blow smelting furnace comprises: a bottom wall divided into a smelting zone and a clarification zone which communicate with each other, and the copper-containing sludge particles and the circuit board are oxidized in the smelting zone.
  • the reduction reaction obtains a smelting liquid, and the smelting liquid flows into the clarification zone from the smelting zone, and the smelting liquid is separated into copper liquid and slag after being clarified in the clarification zone;
  • the first side wall is connected to the bottom wall, and the first side wall of the smelting zone is provided with a fuel side blowing port, preferably a fuel side blowing port is disposed at a lower half of the first side wall;
  • There is a feed port the copper-containing sludge particles and the circuit board enter the furnace cavity from the feed port; and the second side wall is connected to the top wall and extends upward, and the second side wall encloses a flue gas outlet connected to the furnace cavity
  • the clarification zone and the feed inlet are arranged on both sides of the flue gas outlet.
  • the top wall height of the smelting zone is greater than the top wall height of the clarification zone
  • the side-blow smelting furnace further comprises: a first side wall disposed between the feed port and the flue gas outlet, the first side wall being connected to the top wall And extending downward, the first side wall and the bottom wall are spaced apart; the second side wall is disposed between the clarification area and the flue gas outlet, the second side wall is connected to the top wall and extends downward, and the second side wall There is a gap between the bottom wall and the bottom wall.
  • top wall of the clarification zone is further provided with a reduction feed port
  • the comprehensive treatment method further comprises adding waste activated carbon, coke or lump coal to the clarification zone through the reduction feed port.
  • first side wall and the second side wall are provided with a secondary air inlet
  • the integrated processing method further comprises: supplying air to the upper space of the furnace chamber and the flue gas outlet through the secondary air inlet to combust the flue gas in the flue gas outlet
  • the secondary air inlet is disposed in the upper half of the first side wall.
  • the above integrated treatment method further includes a process of heating the smelting liquid in the clarification zone.
  • the above comprehensive treatment method further includes a process of burning the flue gas generated by the side blowing smelting to obtain a combustion exhaust gas.
  • the above comprehensive processing method further includes a process of sequentially performing waste heat recovery, deodorization treatment, and desulfurization treatment on the combustion exhaust gas.
  • the integrated processing method further includes a process of performing a stripping process and a crushing process on the circuit board in sequence to obtain a circuit board having a particle diameter of 20 to 70 mm.
  • an integrated treatment system comprising copper sludge and a circuit board
  • the integrated treatment system comprising: a copper-containing sludge granulation unit, the copper-containing sludge granulation unit comprising and a granulation device a connected copper-containing sludge supply device and a first waste activated carbon supply device; a circuit board supply unit; and a side-blow smelting unit, the side-blow smelting unit includes a side-blow smelting furnace, and the side-blow smelting furnace has a feed port and a fuel side blow port.
  • the granulator and the circuit board supply unit are connected to the feed port.
  • the side blowing smelting unit includes a waste mineral oil supply device and an oxygen-enriched air supply device, and the waste mineral oil supply device and the oxygen-enriched air supply device are both connected to the fuel side blowing port.
  • the side blowing smelting unit further includes a slag forming agent supply device, and the slag forming agent supply device is connected to the feed port.
  • the slag forming agent supply device is an iron-containing waste slag supply device.
  • the side blowing smelting unit further includes a flux supply device, and the flux supply device is connected to the feed port.
  • the side blowing smelting unit further includes a replenishing heat source supply device connected to the fuel side blowing port, and preferably the replenishing heat source supply device includes the second waste activated carbon powder, the pulverized coal and the oxygen-enriched air supply device.
  • the above-mentioned side-blow melting furnace comprises: a bottom wall, the bottom wall is divided into a melting zone and a clarification zone which communicate with each other; the first side wall, the first side wall is connected with the bottom wall, and the fuel side blowing port is disposed at the first of the melting zone
  • the sidewall is disposed at a lower half of the first sidewall
  • the top wall is coupled to the first sidewall, the bottom wall, the first sidewall and the top wall form a cavity
  • the inlet is disposed in the melting zone a second side wall
  • the second side wall is connected to the top wall and extends upward, the second side wall encloses a flue gas outlet connected to the furnace chamber, and the clarification area and the feed opening are disposed at the flue gas outlet On both sides.
  • the top wall height of the melting zone is greater than the top wall height of the clarification zone
  • the side blowing smelting furnace further comprises: a first side wall, the first side wall is disposed between the feeding port and the flue gas outlet, and the first side wall Connected to the top wall and extending downward, with a space between the first side wall and the bottom wall; and a second side wall; the second side wall is disposed between the clarification area and the flue gas outlet, and the second side wall is connected to the top wall And extending downward, there is a gap between the second side wall and the bottom wall.
  • the top wall of the clarification zone is further provided with a reducing feeding port
  • the side blowing smelting unit further comprises a reducing agent supply device
  • the reducing agent supply device is connected with the reducing feeding port, and preferably the reducing agent supply device is the third waste activated carbon supply device , coke supply unit or lump coal supply unit.
  • a secondary air inlet is disposed on the first side wall and the second side wall.
  • the clarification zone is further provided with a heating device, preferably the heating device is an electrode, and the electrode is disposed on the top wall.
  • the integrated processing system further includes a flue gas treatment unit, the flue gas treatment unit includes a burner, and the burner is connected to the flue gas outlet.
  • the burner has a combustion exhaust gas outlet
  • the flue gas treatment unit further comprises: a waste heat recovery device, the waste heat recovery device has a combustion exhaust gas inlet and a cooling exhaust gas outlet, and the combustion exhaust gas inlet is connected with the combustion exhaust gas outlet;
  • the dioxin device has a cooling tail gas inlet and an adsorption purifying gas outlet, and the cooling tail gas inlet is connected with the cooling tail gas outlet;
  • the desulfurization device has a adsorption purifying gas inlet and an exhausting port, and the adsorption purifying gas inlet is connected with the adsorption purifying gas outlet.
  • the circuit board supply unit includes: a de-soldering device, the de-soldering device performs a desoldering process on the circuit board; and a crushing device, and the crushing device is connected to the de-soldering device to perform the de-tinted circuit board
  • the crushing treatment is connected to the feed port of the side blowing smelting unit.
  • FIG. 1 is a schematic flow chart showing an implementation process of an integrated processing method according to a preferred embodiment of the present invention
  • FIG. 2 is a schematic structural view of a side-blow melting furnace provided according to still another preferred embodiment of the present invention.
  • FIG. 3 is a block diagram showing the structure of an integrated processing system provided in accordance with a preferred embodiment of the present invention.
  • circuit board supply unit 21, de-soldering device; 22, crushing device;
  • side blowing smelting unit 01, feeding port; 02, fuel side blowing port; 03, flue gas outlet; 04, reducing feeding port; 05, secondary air inlet; 31, side blowing melting furnace; 311, bottom wall; 312, first side wall; 313, top wall; 314, second side wall; 315, first side wall; 316, second side wall; 317, heating device; 32, waste mineral oil supply device; Air supply device; 34, slag agent supply device; 35, flux supply device; 36, heat source supply device; 37, reducing agent supply device;
  • the present application provides a comprehensive treatment method for the copper-containing sludge and the circuit board, such as As shown in FIG. 1 , the integrated treatment method comprises: mixing and granulating copper-containing sludge and waste activated carbon to obtain copper-containing sludge particles; and laterally blowing and melting the copper-containing sludge particles and the circuit board.
  • the invention utilizes waste activated carbon as a reducing agent and a partial combustion agent, and mixes and granulates with the copper-containing sludge to perform side-blow smelting with the circuit board, thereby reducing the energy consumption cost of the side-blow smelting; in addition, the circuit board is smelted in the side.
  • organic matter burns to generate heat, and the organic matter can be used as a side-blown smelting fuel, thereby completing the separation of copper metal and other impurities in the copper-containing sludge and the circuit board, and fully utilizing the organic material heat energy in the circuit board, further reducing the heat.
  • the energy cost of side blowing smelting is a waste activated carbon as a reducing agent and a partial combustion agent, and mixes and granulates with the copper-containing sludge to perform side-blow smelting with the circuit board, thereby reducing the energy consumption cost of the side-blow smelting; in addition, the circuit board is s
  • the above mixed granulation process may further comprise a conventional pretreatment process of drying and homogenizing the copper-containing sludge, that is, drying and homogenizing the copper-containing sludge, and then mixing and granulating with the waste activated carbon, the above process For the general process, it will not be repeated here.
  • the weight of the waste activated carbon is 10% to 80% of the total copper weight in the copper-containing sludge and the waste circuit board.
  • the side-blow smelting process uses waste mineral oil and oxygen-enriched air as fuel, and more preferably, the side-smelting temperature is from 1150 to 1400 °C.
  • waste mineral oil to replace the natural gas commonly used in the prior art reduces the energy cost, and the amount of waste mineral oil can be determined according to the temperature of the side-blown smelting, so that the side blowing smelting temperature is maintained at 1150-1400 ° C to ensure Smooth smelting process and metal recovery rate.
  • the slag forming agent is an iron-containing waste slag, for example,
  • the iron waste residue is pyrite slag, red earth mine electric furnace smelting waste residue, smelting residue and the like.
  • the flux comprises quartz stone and/or limestone, and the flux is added in an amount of 10% to 70% by weight of the side-blowed smelting material. %.
  • the above-mentioned furnace materials include copper-containing sludge entering the side-blown furnace, waste circuit boards, waste activated carbon and flux.
  • waste activated carbon powder, pulverized coal and oxygen-enriched air as supplementary fuels in the side-blown smelting process to provide supplementary heat for smelting.
  • the side-blow smelting process is performed in the side-blow smelting furnace 31.
  • the side-blow smelting furnace 31 includes a bottom wall 311, a first side wall 312, and a top wall. 313 and the second side wall 314, the bottom wall 311 is divided into a melting zone and a clarification zone which are in communication with each other, and the copper-containing sludge particles and the circuit board are oxidized and reduced in the melting zone to obtain a smelting liquid, and the smelting liquid flows from the smelting zone into the clarification zone.
  • the molten liquid is separated into copper liquid and slag after being clarified in the clarification zone;
  • the first side wall 312 is connected to the bottom wall 311, and the first side wall 312 of the melting zone is provided with a fuel side blowing port 02, and preferably the fuel side blowing port 02 is disposed at
  • the top wall 313 is connected to the first side wall 312, the bottom wall 311, the first side wall 312 and the top wall 313 form a furnace cavity, and the top wall 313 of the melting zone is provided with a feed port 01, the copper-containing sludge particles and the circuit board enter the furnace cavity from the feed port 01;
  • the second side wall 314 is connected to the top wall 313 and extends upward, and the second side wall 314 encloses the flue gas outlet 03 connected to the furnace cavity.
  • the clarification zone and the feed port 01 are disposed on both sides of the flue gas outlet 03.
  • the fuel is introduced into the molten pool in the lower part of the furnace chamber through the fuel side blowing port 02, so that the copper-containing sludge particles and the circuit board are oxidized and reduced in the melting zone to obtain the molten liquid and the flue gas, and the molten liquid flows into the clarification zone from the melting zone, and is smelted. After the liquid is clarified in the clarification zone, it is separated into copper liquid and slag. The copper liquid flows out from the copper outlet of the bottom, and the slag flows out from the upper slag outlet. The flue gas escapes from the side blowing smelting furnace 31 through the upper flue gas outlet 03. Out.
  • the height of the top wall 313 of the melting zone is greater than the height of the top wall 313 of the clarification zone, and the side-blow melting furnace 31 further includes a first sidewall 315 and a second.
  • the side wall 316, the first side wall 315 is disposed between the inlet port 01 and the flue gas outlet 03.
  • the first side wall 315 is connected to the top wall 313 and extends downward.
  • the first side wall 315 and the bottom wall 311 have a gap between the first side wall 315 and the bottom wall 311.
  • the second side wall 316 is disposed between the clarification area and the flue gas outlet 03.
  • the second side wall 316 is connected to the top wall 313 and extends downward, and the second side wall 316 and the bottom wall 311 are spaced apart.
  • the top wall 313 of the clarification zone is further provided with a reduction feed port 04, and the integrated processing method further includes adding the reduction feed port 04 to the clarification zone.
  • Waste activated carbon, coke or lump coal Waste activated carbon, coke or lump coal.
  • the smelting liquid in the clarification zone is further reduced by using waste activated carbon, coke or lump coal to further reduce copper in the slag, reduce slag containing copper, and improve copper recovery.
  • the first side wall 312 and the second side wall 314 are provided with a secondary air inlet 05,
  • the secondary air inlet 05 is preferably positioned on the first side wall 312 as the upper half of the first side wall 312.
  • the integrated processing method further includes supplying air to the upper chamber space and the flue gas outlet 03 through the secondary air inlet 05 to combust the flue gas in the flue gas outlet 03.
  • the combustible components such as organic matter and carbon monoxide in the flue gas are fully burned, thereby improving safety and environmental protection performance, and combustion of combustible components can replenish heat into the furnace cavity, further reducing energy consumption.
  • the above comprehensive treatment method further includes a process of heating the smelting liquid in the clarification zone.
  • the generated flue gas may contain environmental pollution components, and as shown in FIG. 1, the above comprehensive treatment method further includes a process of burning flue gas generated by side blowing smelting to obtain combustion exhaust gas.
  • the flammable components such as organic matter and carbon monoxide are further processed.
  • the above comprehensive treatment method further includes a process of sequentially performing waste heat recovery, deodorization treatment, and desulfurization treatment on the combustion exhaust gas.
  • the waste heat recovery of the combustion exhaust gas reduces the temperature of the combustion exhaust gas on the one hand, and increases the heat utilization effect of the combustion exhaust gas on the other hand, and the recovered heat can be used for power generation;
  • the dioxin treatment removes the dioxins in the smoke gas.
  • desulfurization removes sulfur from the flue gas, so that the flue gas meets emission requirements.
  • the dioxins are removed by means of quenching and activated carbon adsorption of dioxins, and will not be described herein.
  • the integrated processing method before the side-blow smelting of the circuit board, the integrated processing method further includes the steps of performing the desoldering process and the crushing process on the circuit board in sequence.
  • the present application also provides an integrated processing system for copper-containing sludge and a circuit board, as shown in FIG. 3, the integrated processing system includes a copper-containing stain.
  • the unit 30 includes a side-blown smelting furnace 31 having a feed port 01 and a fuel-side blow port 02, and the granulator device and the circuit board supply unit 20 are connected to the feed port 01.
  • the invention provides a copper-containing sludge and a waste activated carbon by using a copper-containing sludge supply device and a first waste activated carbon supply device, and then mixing and granulating the two, the waste activated carbon as a reducing agent and a partial combustion agent, and the granulation and the line
  • the plate is subjected to side-blow smelting in the side-blow smelting unit 30, thereby reducing the energy consumption cost of the side-blow smelting; in addition, the organic matter in the circuit board is burned to generate heat during the side-blow smelting process, and the organic matter can be further used as a side-blown smelting fuel. Therefore, the separation of copper metal and other impurities in the copper-containing sludge and the circuit board is completed, and the organic material heat energy in the circuit board is fully utilized, thereby further reducing the energy consumption cost of the side blowing smelting.
  • the above-described side-blow smelting unit 30 includes a waste mineral oil supply device 32 and an oxygen-enriched air supply device 33, and a waste mineral oil supply device 32. Both the oxygen-enriched air supply unit 33 and the fuel-side air outlet 02 are connected.
  • the waste mineral oil supply device 32 is used to supply waste mineral oil as a fuel to replace the natural gas commonly used in the prior art, thereby reducing energy consumption costs.
  • the side blowing smelting unit 30 further includes a slag forming agent supply unit 34, and the slagging agent supply unit 34 is connected to the feed port 01.
  • the slagging agent supply unit 34 is iron-containing. Waste supply device. The use of the slagging agent supply device 34 to provide the slagging agent improves the slagging efficiency. In addition, when the iron-containing slag supply device is selected, the cost of the slagging agent is further saved.
  • the side-side smelting unit 30 further includes a flux supply device 35, and the flux supply device 35 is connected to the feed port 01. Quartz and limestone are supplied as a flux to the side-blown melting furnace 31 by the above-described flux supply device 35.
  • the side blowing smelting unit 30 further includes a heat source supply device 36, a heat source supply device 36 and a fuel side.
  • the mouthpiece 02 is connected, and preferably the heat source supply means 36 comprises a second waste activated carbon powder, pulverized coal and oxygen-enriched air supply means to provide supplemental heat for the smelting.
  • the side-blow melting furnace 31 includes a bottom wall 311, a first side wall 312, a top wall 313, and a second side wall 314, and the bottom wall 311 is divided.
  • the first side wall 312 is connected to the bottom wall 311, and the fuel side blowing port 02 is disposed on the first side wall 312 of the melting zone, preferably disposed in the lower half of the first side wall 312;
  • the top wall 313 is connected to the side wall, the bottom wall 311, the first side wall 312 and the top wall 313 form a furnace cavity, the feed port 01 is disposed on the top wall 313 of the melting zone, and the second side wall 314 is connected to the top wall 313.
  • the second side wall 314 encloses a flue gas outlet 03 connected to the furnace chamber, and the clarification area and the feed port 01 are disposed on both sides of the flue gas outlet 03.
  • the fuel is introduced into the molten pool in the lower part of the furnace chamber through the fuel side blowing port 02, so that the copper-containing sludge particles and the circuit board are oxidized and reduced in the melting zone to obtain the molten liquid and the flue gas, and the molten liquid flows into the clarification zone from the melting zone, and is smelted. After the liquid is clarified in the clarification zone, it is separated into copper liquid and slag. The copper liquid flows out from the copper outlet of the bottom, and the slag flows out from the upper slag outlet. The flue gas escapes from the side blowing smelting furnace 31 through the upper flue gas outlet 03. Out.
  • the height of the top wall 313 of the melting zone is greater than the height of the top wall 313 of the clarification zone, and the side-blow melting furnace 31 further includes a first sidewall 315 and a second.
  • the side wall 316, the first side wall 315 is disposed between the inlet port 01 and the flue gas outlet 03.
  • the first side wall 315 is connected to the top wall 313 and extends downward.
  • the first side wall 315 and the bottom wall 311 have a gap between the first side wall 315 and the bottom wall 311.
  • the second side wall 316 is disposed between the clarification area and the flue gas outlet 03.
  • the second side wall 316 is connected to the top wall 313 and extends downward, and the second side wall 316 and the bottom wall 311 are spaced apart.
  • the top wall 313 of the clarification zone is further provided with a reduction feed port 04
  • the side blow smelting unit 30 further includes a reducing agent supply device 37, a reducing agent.
  • the supply device 37 is connected to the reduction feed port 04.
  • the reductant supply device 37 is a third waste activated carbon supply device, a coke supply device or a lump coal supply device.
  • the third waste activated carbon supply device, the coke supply device or the lump coal supply device is supplied with waste activated carbon, coke or lump coal to further reduce the molten liquid in the clarification zone to further reduce the copper in the slag and reduce the copper content of the slag. Improve copper recovery.
  • the first side wall 312 and the second side wall 314 are provided with a secondary air inlet 05,
  • the secondary air inlet 05 is preferably positioned on the first side wall 312 as the upper half of the first side wall 312. Air is supplied to the upper chamber space and the flue gas outlet 03 through the secondary air inlet 05 to burn the flue gas in the flue gas outlet 03.
  • the combustible components such as organic matter and carbon monoxide in the flue gas are fully burned, thereby improving safety and environmental protection performance, and combustion of combustible components can replenish heat into the furnace cavity, further reducing energy consumption.
  • the clarification zone is further provided with a heating device 317, preferably the heating device 317 is an electrode, and the above electrode is disposed on the top wall 313.
  • the integrated processing system further includes a flue gas treatment unit 40, and the flue gas treatment unit 40 includes a burner 41, a burner 41 and a smoke.
  • the gas outlets 03 are connected.
  • the flue gas generated by the side blowing smelting is combusted by the burner 41 to obtain a combustion exhaust gas for further treating the combustible components such as organic matter and carbon monoxide therein.
  • the burner 41 has a combustion exhaust gas outlet, and the flue gas treatment unit 40 further includes a waste heat recovery device 42, a de-dioxin device 43 and a desulfurization device 44.
  • the waste heat recovery device 42 has a combustion exhaust gas inlet and a cooling exhaust gas outlet, and the combustion exhaust gas inlet is connected to the combustion exhaust gas outlet;
  • the dioxin removal device 43 has a cooling exhaust gas inlet and an adsorption purification gas outlet, and the cooling exhaust gas inlet is connected with the cooling exhaust gas outlet;
  • the desulfurization device 44 has an adsorption purification gas inlet and an exhaust port, and the adsorption purification gas inlet is connected to the adsorption purification gas outlet.
  • the residual heat recovery device 42 performs waste heat recovery on the combustion exhaust gas, on the one hand, reduces the temperature of the combustion exhaust gas, on the other hand, improves the utilization effect of the heat of the combustion exhaust gas, and the recovered heat can be used for power generation; In addition to the dioxins in the flue gas; the sulfur in the flue gas is removed by the desulfurization device 44 to meet the emission requirements of the flue gas.
  • the circuit board supply unit 20 includes a de-soldering device 21 and a crushing device 22, and the de-soldering device 21 performs a desoldering process on the circuit board;
  • the crushing device 22 is connected to the desoldering device 21 to crush the stripped soldered circuit board, and the crushing device 22 is connected to the feed port 01 of the side blowing and melting unit 30.
  • the stripping device is used to remove the soldering process of the circuit board, thereby improving the recovery rate of the tin metal and avoiding the influence of tin metal on the recovery of the copper metal; using the crushing device 22 to crush the circuit board, the circuit board is improved on the side
  • the heat-receiving area in the smelting process accelerates the side-smelting smelting efficiency.
  • the copper-containing sludge is dried to a water content of ⁇ 40%, and then pre-homogenized, and then the dried copper-containing sludge is mixed with waste activated carbon to be granulated to obtain copper-containing sludge particles.
  • the waste circuit board is first stripped of tin to obtain a waste circuit board after de-tinning, and then sent to a shear crusher for crushing to obtain a circuit board having a particle diameter of about 50 mm. After the broken circuit board is mixed with copper-containing sludge particles, pyrite cinder, and quartz stone, it is added into the side blowing furnace.
  • the weight of the waste activated carbon is controlled to be 30% of the total copper weight in the copper-containing sludge and the circuit board; the pyrite slag batching amount is 15% of the amount of the incoming material; the quartz stone batching amount is 15 of the incoming material amount. %.
  • the oxygen-enriched air (oxygen concentration 50-60%) and the waste mineral oil are sprayed into the molten pool of the side-blown furnace through a plurality of spray guns immersed in the molten pool.
  • the influent material falls on the surface of the molten pool, and a redox reaction occurs, and the organic matter in the waste circuit board is vigorously burned.
  • the waste mineral oil is burned with oxygen-enriched air to provide heat for smelting, and the side-smelting smelting temperature is controlled to be 1300 ° C to 1350 ° C.
  • the metal oxides such as copper and nickel in the material undergo a reduction reaction to form a metal, pyrite cinder and quartz stone slag to form a slag phase, wherein the waste activated carbon acts as a reducing agent.
  • the molten metal and slag are clarified in the clarification zone of the side-blown furnace and separated into copper liquid and slag.
  • the copper liquid flows out from the copper outlet at the bottom, and the slag flows out from the upper slag outlet.
  • the side wall of the side blowing furnace is provided with a secondary air inlet, and the side blowing internal gas contains unburned CO and organic matter, and is combusted with the secondary air in the upper space of the side blowing furnace.
  • the combustion exhaust gas is sequentially subjected to waste heat recovery, deodorization treatment and desulfurization treatment, and is discharged after reaching the standard.
  • the copper-containing sludge is dried to a water content of ⁇ 40%, and then pre-homogenized, and then the dried copper-containing sludge is mixed with waste activated carbon to be granulated to obtain copper-containing sludge particles.
  • the waste circuit board is first stripped of tin to obtain a waste circuit board after de-tinning, and then sent to a shear crusher for crushing to obtain a circuit board having a particle diameter of about 40 to 70 mm. After the broken circuit board is mixed with copper-containing sludge particles, pyrite cinder, and quartz stone, it is added into the side blowing furnace.
  • the weight of the waste activated carbon is controlled to be 80% of the total copper weight of the copper-containing sludge and the circuit board; the amount of the pyrite slag is 15% of the amount of the incoming material; the amount of the quartz stone is 15 of the amount of the incoming material. %.
  • the oxygen-enriched air (oxygen concentration 50-60%) and the waste mineral oil are sprayed into the molten pool of the side-blown furnace through a plurality of spray guns immersed in the molten pool.
  • the influent material falls on the surface of the molten pool, and a redox reaction occurs, and the organic matter in the waste circuit board is vigorously burned.
  • the waste mineral oil is burned with oxygen-enriched air to provide heat for smelting, and the side-smelting smelting temperature is controlled to be 1150 ° C to 1200 ° C.
  • the metal oxides such as copper and nickel in the material undergo a reduction reaction to form a metal, pyrite cinder and quartz stone slag to form a slag phase, wherein the waste activated carbon acts as a reducing agent.
  • the molten metal and slag are clarified in the clarification zone of the side-blown furnace and separated into copper liquid and slag.
  • the copper liquid flows out from the copper outlet at the bottom, and the slag flows out from the upper slag outlet.
  • the side wall of the side blowing furnace is provided with a secondary air inlet, and the side blowing internal gas contains unburned CO and organic matter, and is combusted with the secondary air in the upper space of the side blowing furnace.
  • the combustion exhaust gas is sequentially subjected to waste heat recovery, deodorization treatment and desulfurization treatment, and is discharged after reaching the standard.
  • the copper-containing sludge is dried to a water content of ⁇ 40%, and then pre-homogenized, and then the dried copper-containing sludge is mixed with waste activated carbon to be granulated to obtain copper-containing sludge particles.
  • the waste circuit board is first de-tinned to obtain a waste circuit board after de-tinning, and then sent to a shear crusher for crushing to obtain a circuit board having a particle diameter of about 20 to 50 mm. After the broken circuit board is mixed with copper-containing sludge particles, pyrite cinder, and quartz stone, it is added into the side blowing furnace.
  • the weight of the waste activated carbon is controlled to be 10% of the total copper weight of the copper-containing sludge and the circuit board; the amount of the pyrite cinder is 15% of the amount of the incoming material; the amount of the quartz stone is 15 of the amount of the incoming material. %.
  • the oxygen-enriched air (oxygen concentration 50-60%) and the waste mineral oil are sprayed into the molten pool of the side-blown furnace through a plurality of spray guns immersed in the molten pool.
  • the influent material falls on the surface of the molten pool, and a redox reaction occurs, and the organic matter in the waste circuit board is vigorously burned.
  • the waste mineral oil is burned with oxygen-enriched air to provide heat for smelting, and the side-smelting smelting temperature is controlled to be 1350 ° C to 1400 ° C.
  • the metal oxides such as copper and nickel in the material undergo a reduction reaction to form a metal, pyrite cinder and quartz stone slag to form a slag phase, wherein the waste activated carbon acts as a reducing agent.
  • the molten metal and slag are clarified in the clarification zone of the side-blown furnace and separated into copper liquid and slag.
  • the copper liquid flows out from the copper outlet at the bottom, and the slag flows out from the upper slag outlet.
  • the side wall of the side blowing furnace is provided with a secondary air inlet, and the side blowing internal gas contains unburned CO and organic matter, and is combusted with the secondary air in the upper space of the side blowing furnace.
  • the combustion exhaust gas is sequentially subjected to waste heat recovery, deodorization treatment and desulfurization treatment, and is discharged after reaching the standard.
  • the invention utilizes waste activated carbon as a reducing agent and a partial combustion agent, and mixes and granulates with the copper-containing sludge to perform side-blow smelting with the circuit board, thereby reducing the energy consumption cost of the side-blow smelting; in addition, the circuit board is smelted in the side.
  • organic matter burns to generate heat, and the organic matter can be used as a side-blown smelting fuel, thereby completing the separation of copper metal and other impurities in the copper-containing sludge and the circuit board, and fully utilizing the organic material heat energy in the circuit board, further reducing the heat.
  • the energy cost of side blowing smelting is a waste activated carbon as a reducing agent and a partial combustion agent, and mixes and granulates with the copper-containing sludge to perform side-blow smelting with the circuit board, thereby reducing the energy consumption cost of the side-blow smelting; in addition, the circuit board is s

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种含铜污泥和线路板的综合处理方法和综合处理系统。该综合处理方法包括:将含铜污泥和废活性炭进行混合造粒,得到含铜污泥颗粒;将含铜污泥颗粒和线路板进行侧吹熔炼。利用废活性炭作为还原剂和部分燃烧剂,与含铜污泥混合造粒后与线路板进行侧吹熔炼,此外采用废矿物油作为补充燃料,从而进一步降低了侧吹熔炼的能源消耗成本;线路板在侧吹熔炼的过程中有机物燃烧产生热量,有机物可以作为侧吹熔炼的燃料,从而既完成了含铜污泥和线路板中的铜金属与其它杂质的分离,又充分利用了线路板中有机物热能,进一步降低了侧吹熔炼的能耗成本。

Description

一种含铜污泥和线路板的综合处理方法和综合处理系统 技术领域
本发明涉及金属回收领域,具体而言,涉及一种含铜污泥和线路板的综合处理方法和综合处理系统。
背景技术
随着电子电气产品更新换代的加快,导致产品的平均使用年限越来越短。我国每年有1500万台左右的彩电空调等大型家电报废,上千万部手机被淘汰,电子废弃物年增长5%~8%。中国每年需要处理掉的废印刷线路板在50万吨以上。印刷线路板主要由金属、有机物和氧化物组成,其中金属≤50%,包括Cu、Fe、Ni、Sn、Pb、Al、Zn等。
为处理电镀、制造、印染等行业产生的重金属废水,相关环保单位或企业每年均会产生大量含铜污泥。在自然条件下,随意堆放的含铜污泥中的重金属很可能溶出,并再次进入水体或土壤而造成二次污染。另外,污泥中有价金属铜的含量远高于铜矿的开采品位,具有很高的利用价值。
由此可见,废线路板和含铜污泥中有价金属含量丰富,任意处置势必造成资源的极大浪费。
目前回收废线路板中有价金属的常见方法是热处理法和化学处理法。热处理法包括焚烧法和热裂解法。工业实际应用的热处理法有竖炉、鼓风炉、反射炉和回转窑焚烧法。这些方法利用冶金炉高温使线路板中有机物直接燃烧,有价金属熔融,无机非金属物质造渣,加以分离,获得粗金属锭。化学处理法需要经过萃取、沉淀、置换过滤、蒸馏除杂及电解等程序,工艺流程长且存在浸出液和残渣二次污染、基体仍需再次处理等问题。
目前含铜污泥中有价金属的回收方法主要有酸浸法、氨浸法和高温熔炼法。酸浸法的主要过程是采用硫酸、盐酸或者硝酸等浸出含铜污泥中的有价金属。酸浸法浸出效率高,但具有多种金属同时浸出难以分离,并且对设备腐蚀严重,操作环境差的缺陷。氨浸法一般采用氨水溶液作为浸出剂,与污泥中的铜、镍发生络合反应,获得浸出液,再回收有价金属。氨浸法对铜、镍等有价金属具有很好的选择性,但对装置密封性要求高,浸出液易挥发,对环境危害大。高温熔炼法主要是将污泥在鼓风炉中加热到1300℃左右,配入还原剂和造渣剂,使有价金属熔融还原,氧化物造渣,得到粗铜,该法耗能较高。
发明内容
本发明的主要目的在于提供一种含铜污泥和线路板的综合处理方法和综合处理系统,以解决现有技术中的含铜污泥和线路板中金属回收成本高的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种含铜污泥和线路板的综合处理方法,该综合处理方法包括:将含铜污泥和废活性炭进行混合造粒,得到含铜污泥颗粒;将含铜污泥颗粒和线路板进行侧吹熔炼。
进一步地,上述废活性炭的重量用量为含铜污泥和废线路板中总铜重量的10%~80%;优选侧吹熔炼过程采用废矿物油和富氧空气为燃料,更优选侧吹熔炼的温度为1150~1400℃。
进一步地,在上述侧吹熔炼过程中添加造渣剂,优选造渣剂为含铁废渣,进一步优选含铁废渣为黄铁矿烧渣。
进一步地,在上述侧吹熔炼过程中添加熔剂,优选熔剂包括石英石和/或石灰石,熔剂加入重量为侧吹熔炼的入炉物料重量的10%~70%。
进一步地,在上述侧吹熔炼过程中采用废活性炭粉、煤粉和富氧空气作为补充燃料。
进一步地,上述侧吹熔炼过程在侧吹熔炼炉中进行,侧吹熔炼炉包括:底壁,划分为相互连通的熔炼区和澄清区,含铜污泥颗粒和线路板在熔炼区发生氧化和还原反应得到熔炼液,熔炼液由熔炼区流入澄清区,熔炼液在澄清区经过澄清后分离为铜液和渣;第一侧壁,与底壁连接,熔炼区的第一侧壁上设置有燃料侧吹口,优选燃料侧吹口设置在第一侧壁的下半部;顶壁,与第一侧壁连接,底壁、第一侧壁和顶壁形成炉腔,熔炼区的顶壁上设置有进料口,含铜污泥颗粒和线路板由进料口进入炉腔中;以及第二侧壁,与顶壁相连且向上延伸,第二侧壁围成与炉腔相连的烟气出口,且澄清区与进料口设置在烟气出口的两侧。
进一步地,上述熔炼区的顶壁高度大于澄清区的顶壁高度,侧吹熔炼炉还包括:第一侧墙,设置在进料口和烟气出口之间,第一侧墙与顶壁相连且向下延伸,第一侧墙与底壁之间具有间隔;第二侧墙,设置在澄清区与烟气出口之间,第二侧墙与顶壁相连且向下延伸,第二侧墙与底壁之间具有间隔。
进一步地,上述澄清区的顶壁上还设置有还原加料口,综合处理方法还包括通过还原加料口向澄清区内添加废活性炭、焦炭或块煤。
进一步地,上述第一侧壁和第二侧壁上设置二次风入口,综合处理方法还包括通过二次风入口向炉腔上部空间和烟气出口提供空气使烟气出口中的烟气燃烧,优选二次风入口设置在第一侧壁的上半部。
进一步地,上述综合处理方法还包括对澄清区的熔炼液进行加热的过程。
进一步地,上述综合处理方法还包括对侧吹熔炼产生的烟气进行燃烧得到燃烧尾气的过程。
进一步地,上述综合处理方法还包括对燃烧尾气依次进行余热回收、脱二噁英处理以及脱硫处理的过程。
进一步地,在对上述线路板进行侧吹熔炼之前,综合处理方法还包括依次对线路板进行脱锡焊处理和破碎处理的过程,得到粒径为20~70mm的线路板。
根据本发明的另一个方面,提供了一种含铜污泥和线路板的综合处理系统,该综合处理系统包括:含铜污泥造粒单元,含铜污泥造粒单元包括与造粒装置相连的含铜污泥供应装置和第一废活性炭供应装置;线路板供应单元;以及侧吹熔炼单元,侧吹熔炼单元包括侧吹熔炼炉,侧吹熔炼炉具有进料口和燃料侧吹口,造粒装置和线路板供应单元与进料口相连。
进一步地,上述侧吹熔炼单元包括废矿物油供应装置和富氧空气供应装置,废矿物油供应装置和富氧空气供应装置均与燃料侧吹口相连。
进一步地,上述侧吹熔炼单元还包括造渣剂供应装置,造渣剂供应装置与进料口相连,优选造渣剂供应装置为含铁废渣供应装置。
进一步地,上述侧吹熔炼单元还包括熔剂供应装置,熔剂供应装置与进料口相连。
进一步地,上述侧吹熔炼单元还包括补热源供应装置,补热源供应装置与燃料侧吹口相连,优选补热源供应装置包括第二废活性炭粉、煤粉和富氧空气的供应装置。
进一步地,上述侧吹熔炼炉包括:底壁,底壁划分为相互连通的熔炼区和澄清区;第一侧壁,第一侧壁与底壁连接,燃料侧吹口设置在熔炼区的第一侧壁上,优选设置在第一侧壁的下半部;顶壁;顶壁与第一侧壁连接,底壁、第一侧壁和顶壁形成炉腔,进料口设置在熔炼区的顶壁上;以及第二侧壁,第二侧壁与顶壁相连且向上延伸,第二侧壁围成与炉腔相连的烟气出口,且澄清区与进料口设置在烟气出口的两侧。
进一步地,上述熔炼区的顶壁高度大于澄清区的顶壁高度,侧吹熔炼炉还包括:第一侧墙,第一侧墙设置在进料口和烟气出口之间,第一侧墙与顶壁相连且向下延伸,第一侧墙与底壁之间具有间隔;以及第二侧墙;第二侧墙设置在澄清区与烟气出口之间,第二侧墙与顶壁相连且向下延伸,第二侧墙与底壁之间具有间隔。
进一步地,上述澄清区的顶壁上还设置有还原加料口,侧吹熔炼单元还包括还原剂供应装置,还原剂供应装置与还原加料口相连,优选还原剂供应装置为第三废活性炭供应装置、焦炭供应装置或块煤供应装置。
进一步地,上述第一侧壁和第二侧壁上设置二次风入口。
进一步地,上述澄清区还设置有加热装置,优选加热装置为电极,电极设置在顶壁上。
进一步地,上述综合处理系统还包括烟气处理单元,烟气处理单元包括燃烧器,燃烧器与烟气出口相连。
进一步地,上述燃烧器具有燃烧尾气出口,烟气处理单元还包括:余热回收装置,余热回收装置具有燃烧尾气入口和降温尾气出口,燃烧尾气入口与燃烧尾气出口相连;脱二噁英装置,脱二噁英装置具有降温尾气入口和吸附净化气出口,降温尾气入口与降温尾气出口相连;脱硫装置,脱硫装置具有吸附净化气入口和排空口,吸附净化气入口与吸附净化气出口相连。
进一步地,上述线路板供应单元包括:脱锡焊装置,脱锡焊装置对线路板进行脱锡焊处理;以及破碎装置,破碎装置与脱锡焊装置相连以对脱锡焊后的线路板进行破碎处理,破碎装置与侧吹熔炼单元的进料口相连。
应用本发明的技术方案,利用废活性炭作为还原剂和部分燃烧剂,与含铜污泥混合造粒后与线路板进行侧吹熔炼,从而降低了侧吹熔炼的能源消耗成本;此外,线路板在侧吹熔炼的过程中有机物燃烧产生热量,有机物可以作为侧吹熔炼的燃料,从而既完成了含铜污泥和线路板中的铜金属与其它杂质的分离,又充分利用了线路板中有机物热能,进一步降低了侧吹熔炼的能耗成本。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了根据本发明的一种优选实施例提供的综合处理方法的实施流程示意图;
图2示出了根据本发明又一种优选实施例提供的侧吹熔炼炉的结构示意图;
图3示出了根据本发明的一种优选实施例提供的综合处理系统的结构框图。
其中,上述附图包括以下附图标记:
10、含铜污泥造粒单元;
20、线路板供应单元;21、脱锡焊装置;22、破碎装置;
30、侧吹熔炼单元;01、进料口;02、燃料侧吹口;03、烟气出口;04、还原加料口;05、二次风入口;31、侧吹熔炼炉;311、底壁;312、第一侧壁;313、顶壁;314、第二侧壁;315、第一侧墙;316、第二侧墙;317、加热装置;32、废矿物油供应装置;33、富氧空气供应装置;34、造渣剂供应装置;35、熔剂供应装置;36、补热源供应装置;37、还原剂供应装置;
40、烟气处理单元;41、燃烧器;42、余热回收装置;43、脱二噁英装置;44、脱硫装置。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
如本申请背景技术所记载的,现有技术中含铜污泥和线路板中金属回收成本高,为了解决该问题,本申请提供了一种含铜污泥和线路板的综合处理方法,如图1所示,该综合处理 方法包括:将含铜污泥和废活性炭进行混合造粒,得到含铜污泥颗粒;将含铜污泥颗粒和线路板进行侧吹熔炼。
本申请利用废活性炭作为还原剂和部分燃烧剂,与含铜污泥混合造粒后与线路板进行侧吹熔炼,从而降低了侧吹熔炼的能源消耗成本;此外,线路板在侧吹熔炼的过程中有机物燃烧产生热量,有机物可以作为侧吹熔炼的燃料,从而既完成了含铜污泥和线路板中的铜金属与其它杂质的分离,又充分利用了线路板中有机物热能,进一步降低了侧吹熔炼的能耗成本。
上述混合造粒过程还可以包括对含铜污泥进行干燥均质等常规的前处理过程,即对含铜污泥进行干燥、均质的前处理后再与废活性炭进行混合造粒,上述过程为常规过程,在此不再赘述。
在本申请一种优选的实施例中,为了提高含铜污泥中铜的回收率,优选废活性炭的重量用量为含铜污泥和废线路板中总铜重量的10%~80%。
为了进一步降低含铜污泥和线路板中金属回收的成本,优选侧吹熔炼过程采用废矿物油和富氧空气为燃料,更优选侧吹熔炼的温度为1150~1400℃。利用废矿物油替代现有技术中常用的天然气,降低了能耗成本,且废矿物油的用量可以根据侧吹熔炼的温度来确定,使其维持侧吹熔炼温度在1150~1400℃,以保证熔炼过程的顺利进行和金属的回收率。
为了保证熔炼过程的顺利进行和提高金属和渣的分离效率,优选如图1所示,在侧吹熔炼过程中添加造渣剂,为了节约成本,进一步优选造渣剂为含铁废渣,比如含铁废渣为黄铁矿烧渣、红土矿电炉熔炼废渣、冶炼残渣等。
此外,为了提高熔炼效率,优选如图1所示,在侧吹熔炼过程中添加熔剂,进一步优选熔剂包括石英石和/或石灰石,熔剂加入重量为侧吹熔炼的入炉物料重量的10%~70%。上述入炉物料包括进入侧吹炉的含铜污泥、废线路板、废活性炭和熔剂。
在本申请一种优选的实施例中,为了保证侧吹熔炼温度的稳定性,优选在侧吹熔炼过程中采用废活性炭粉、煤粉和富氧空气作为补充燃料,为熔炼提供补充热量。
在本申请又一种优选的实施例中,上述侧吹熔炼过程在侧吹熔炼炉31中进行,如图2所示,侧吹熔炼炉31包括底壁311、第一侧壁312、顶壁313以及第二侧壁314,底壁311划分为相互连通的熔炼区和澄清区,含铜污泥颗粒和线路板在熔炼区发生氧化和还原反应得到熔炼液,熔炼液由熔炼区流入澄清区,熔炼液在澄清区经过澄清后分离为铜液和渣;第一侧壁312与底壁311连接,熔炼区的第一侧壁312上设置有燃料侧吹口02,优选燃料侧吹口02设置在第一侧壁312的下半部;顶壁313与第一侧壁312连接,底壁311、第一侧壁312和顶壁313形成炉腔,熔炼区的顶壁313上设置有进料口01,含铜污泥颗粒和线路板由进料口01进入炉腔中;第二侧壁314与顶壁313相连且向上延伸,第二侧壁314围成与炉腔相连的烟气出口03,且澄清区与进料口01设置在烟气出口03的两侧。
燃料通过燃料侧吹口02通入炉腔下部的熔池中,使得含铜污泥颗粒和线路板在熔炼区发生氧化和还原反应得到熔炼液和烟气,熔炼液由熔炼区流入澄清区,熔炼液在澄清区经过澄 清后分离为铜液和渣,铜液从底部的铜流出口流出,渣从上部的出渣口流出,烟气经过上部的烟气出口03从侧吹熔炼炉31中逸出。
为了提高熔炼区和澄清区各自的功能效果,优选如图2所示,熔炼区的顶壁313高度大于澄清区的顶壁313高度,侧吹熔炼炉31还包括第一侧墙315和第二侧墙316,第一侧墙315设置在进料口01和烟气出口03之间,第一侧墙315与顶壁313相连且向下延伸,第一侧墙315与底壁311之间具有间隔;第二侧墙316设置在澄清区与烟气出口03之间,第二侧墙316与顶壁313相连且向下延伸,第二侧墙316与底壁311之间具有间隔。
在本申请又一种优选的实施例中,如图2所示,上述澄清区的顶壁313上还设置有还原加料口04,上述综合处理方法还包括通过还原加料口04向澄清区内添加废活性炭、焦炭或块煤。利用废活性炭、焦炭或块煤对澄清区中的熔炼液进行进一步的还原,以将渣中的铜进一步还原,降低渣含铜,提高铜的回收率。
由于本申请侧吹熔炼产生的烟气中有机物相对较多,为了提高有机物的利用效率,优选如图2所示,上述第一侧壁312和第二侧壁314上设置二次风入口05,二次风入口05在第一侧壁312上优选位置为第一侧壁312的上半部。该综合处理方法还包括通过二次风入口05向上述炉腔上部空间和烟气出口03提供空气使烟气出口03中的烟气燃烧。通过提供的空气,使烟气中的有机物、一氧化碳等可燃成分充分燃烧,提高了安全环保性能,并且可燃成分燃烧可以向炉腔中补热,进一步降低能耗。
为了保证澄清区的分离效果,优选上述综合处理方法还包括对澄清区的熔炼液进行加热的过程。
经过上述处理后,产生的烟气中可能含有环境污染成分,优选如图1所示,上述综合处理方法还包括对侧吹熔炼产生的烟气进行燃烧得到燃烧尾气的过程。以对其中的有机物、一氧化碳等可燃成分进行进一步处理。
针对本申请所产生的烟气中的成分,优选如图1所示,上述综合处理方法还包括对燃烧尾气依次进行余热回收、脱二噁英处理以及脱硫处理的过程。对燃烧尾气进行余热回收,一方面降低了燃烧尾气的温度,另一方面提高了燃烧尾气的热量的利用效果,回收的热量可以用于发电;脱二噁英处理脱除烟气中的二噁英;脱硫处理脱除烟气中的硫,使烟气达到排放要求。上述的脱二噁英处理以及脱硫处理的具体实施方法可以参考现有技术,比如采用骤冷、活性炭吸附二噁英的方式脱除二噁英,在此不再赘述。
在本申请再一种优选的实施例中,如图1所示,在对线路板进行侧吹熔炼之前,上述综合处理方法还包括依次对线路板进行脱锡焊处理和破碎处理的过程,得到粒径为20~70mm的线路板。对线路板进行脱锡焊处理,提高锡金属的回收率,并且避免锡金属对铜金属回收的影响;对线路板的破碎处理,提高了线路板在侧吹熔炼中的受热面积,进而加快侧吹熔炼效率。
为了使本领域技术人员更方便地实施本申请的综合处理方法,本申请还提供了一种含铜污泥和线路板的综合处理系统,如图3所示,该综合处理系统包括含铜污泥造粒单元10、线路板供应单元20和侧吹熔炼单元30,含铜污泥造粒单元10包括与造粒装置相连的含铜污泥供应装置和第一废活性炭供应装置;侧吹熔炼单元30包括侧吹熔炼炉31,所述侧吹熔炼炉31具有进料口01和燃料侧吹口02,造粒装置和线路板供应单元20与进料口01相连。
本申请利用含铜污泥供应装置和第一废活性炭供应装置分别提供含铜污泥和废活性炭,然后将两者进行混合造粒,废活性炭作为还原剂和部分燃烧剂,造粒后与线路板在侧吹熔炼单元30进行侧吹熔炼,从而降低了侧吹熔炼的能源消耗成本;此外,在侧吹熔炼的过程中线路板中的有机物燃烧产生热量,有机物可以进一步作为侧吹熔炼的燃料,从而既完成了含铜污泥和线路板中的铜金属与其它杂质的分离,又充分利用了线路板中有机物热能,进一步降低了侧吹熔炼的能耗成本。
为了进一步降低含铜污泥和线路板中金属回收的成本,优选如图3所示,上述侧吹熔炼单元30包括废矿物油供应装置32和富氧空气供应装置33,废矿物油供应装置32和富氧空气供应装置33均与燃料侧吹口02相连。利用废矿物油供应装置32供应废矿物油作为燃料替代现有技术中常用的天然气,降低了能耗成本。
为了提高分离效率,优选如图3所示,上述侧吹熔炼单元30还包括造渣剂供应装置34,造渣剂供应装置34与进料口01相连,优选造渣剂供应装置34为含铁废渣供应装置。利用造渣剂供应装置34提供造渣剂提高了出渣效率,另外当选用含铁废渣供应装置时,进一步节约了造渣剂的成本。
此外,为了提高熔炼效率,优选如图3所示,上述侧吹熔炼单元30还包括熔剂供应装置35,熔剂供应装置35与进料口01相连。利用上述熔剂供应装置35向侧吹熔炼炉31提供石英石和石灰石作为熔剂。
在本申请一种优选的实施例中,为了保证侧吹熔炼温度的稳定性,优选如图3所示,上述侧吹熔炼单元30还包括补热源供应装置36,补热源供应装置36与燃料侧吹口02相连,优选补热源供应装置36包括第二废活性炭粉、煤粉和富氧空气的供应装置,以为熔炼提供补充热量。
在本申请又一种优选的实施例中,优选如图2所示,上述侧吹熔炼炉31包括底壁311、第一侧壁312、顶壁313以及第二侧壁314,底壁311划分为相互连通的熔炼区和澄清区;第一侧壁312与底壁311连接,燃料侧吹口02设置在熔炼区的第一侧壁312上,优选设置在第一侧壁312的下半部;顶壁313与侧壁连接,底壁311、第一侧壁312和顶壁313形成炉腔,进料口01设置在熔炼区的顶壁313上;第二侧壁314与顶壁313相连且向上延伸,第二侧壁314围成与炉腔相连的烟气出口03,且澄清区与进料口01设置在烟气出口03的两侧。
燃料通过燃料侧吹口02通入炉腔下部的熔池中,使得含铜污泥颗粒和线路板在熔炼区发生氧化和还原反应得到熔炼液和烟气,熔炼液由熔炼区流入澄清区,熔炼液在澄清区经过澄 清后分离为铜液和渣,铜液从底部的铜流出口流出,渣从上部的出渣口流出,烟气经过上部的烟气出口03从侧吹熔炼炉31中逸出。
为了提高熔炼区和澄清区各自的功能效果,优选如图2所示,熔炼区的顶壁313高度大于澄清区的顶壁313高度,侧吹熔炼炉31还包括第一侧墙315和第二侧墙316,第一侧墙315设置在进料口01和烟气出口03之间,第一侧墙315与顶壁313相连且向下延伸,第一侧墙315与底壁311之间具有间隔;第二侧墙316设置在澄清区与烟气出口03之间,第二侧墙316与顶壁313相连且向下延伸,第二侧墙316与底壁311之间具有间隔。
在本申请又一种优选的实施例中,如图2所示,上述澄清区的顶壁313上还设置有还原加料口04,上述侧吹熔炼单元30还包括还原剂供应装置37,还原剂供应装置37与还原加料口04相连,优选还原剂供应装置37为第三废活性炭供应装置、焦炭供应装置或块煤供应装置。利用第三废活性炭供应装置、焦炭供应装置或块煤供应装置供应废活性炭、焦炭或块煤对澄清区中的熔炼液进行进一步的还原,以将渣中的铜进一步还原,降低渣含铜,提高铜的回收率。
由于本申请侧吹熔炼产生的烟气中有机物相对较多,为了提高有机物的利用效率,优选如图2所示,上述第一侧壁312和第二侧壁314上设置二次风入口05,二次风入口05在第一侧壁312上优选位置为第一侧壁312的上半部。通过二次风入口05向上述炉腔上部空间和烟气出口03提供空气使烟气出口03中的烟气燃烧。通过提供的空气,使烟气中的有机物、一氧化碳等可燃成分充分燃烧,提高了安全环保性能,并且可燃成分燃烧可以向炉腔中补热,进一步降低能耗。
为了保证澄清区的分离效果,优选如图2所示,澄清区还设置有加热装置317,优选加热装置317为电极,上述电极设置在顶壁313上。
经过上述处理后,产生的烟气中可能含有环境污染成分,优选如图3所示,上述综合处理系统还包括烟气处理单元40,烟气处理单元40包括燃烧器41,燃烧器41与烟气出口03相连。
利用燃烧器41对侧吹熔炼产生的烟气进行燃烧得到燃烧尾气,以对其中的有机物、一氧化碳等可燃成分进行进一步处理。
针对本申请所产生的烟气中的成分,优选如图3所示,上述燃烧器41具有燃烧尾气出口,烟气处理单元40还包括余热回收装置42、脱二噁英装置43和脱硫装置44,余热回收装置42具有燃烧尾气入口和降温尾气出口,燃烧尾气入口与燃烧尾气出口相连;脱二噁英装置43具有降温尾气入口和吸附净化气出口,降温尾气入口与降温尾气出口相连;脱硫装置44具有吸附净化气入口和排空口,吸附净化气入口与吸附净化气出口相连。利用余热回收装置42对燃烧尾气进行余热回收,一方面降低了燃烧尾气的温度,另一方面提高了燃烧尾气的热量的利用效果,回收的热量可以用于发电;利用脱二噁英装置43脱除烟气中的二噁英;利用脱硫装置44脱除烟气中的硫,使烟气达到排放要求。
在本申请再一种优选的实施例中,优选如图3所示,上述线路板供应单元20包括脱锡焊装置21和破碎装置22,脱锡焊装置21对线路板进行脱锡焊处理;破碎装置22与脱锡焊装置21相连以对脱锡焊后的线路板进行破碎处理,破碎装置22与侧吹熔炼单元30的进料口01相连。利用脱锡焊装置21对线路板进行脱锡焊处理,提高锡金属的回收率,并且避免锡金属对铜金属回收的影响;利用破碎装置22对线路板的破碎处理,提高了线路板在侧吹熔炼中的受热面积,进而加快侧吹熔炼效率。
以下将结合实施例和对比例,进一步说明本申请的有益效果。
实施例1
含铜污泥经干燥至含水~40%,然后预均化,然后将干燥后的含铜污泥与废活性炭混合造粒,得到含铜污泥颗粒。废线路板首先脱锡得到脱锡后废线路板,然后送入剪切破碎机内破碎,得到粒径为约50mm的线路板。破碎后的线路板与含铜污泥颗粒、黄铁矿烧渣、石英石配料后,加入侧吹炉内。其中,控制废活性炭的重量为含铜污泥和线路板中总铜重量的30%;黄铁矿烧渣配料量为入炉物料量的15%;石英石配料量为入炉物料量的15%。富氧空气(氧气浓度50~60%)和废矿物油通过多支浸没在熔池的喷枪喷射到侧吹炉的熔池内。
入炉物料落到熔池表面,发生氧化还原反应,废线路板中的有机物剧烈燃烧。废矿物油与富氧空气燃烧,为熔炼提供热量,控制侧吹熔炼温度为1300℃~1350℃。物料中的铜、镍等金属氧化物发生还原反应,生成金属,黄铁矿烧渣与石英石造渣,形成渣相,其中废活性炭作为还原剂。
熔融金属和渣在侧吹炉的澄清区内澄清后,分离为铜液和渣。铜液从底部的铜流出口流出,渣从上部的出渣口流出。
侧吹炉侧壁设有二次风入口,侧吹内烟气含有未燃烧完全的CO和有机物,在侧吹炉上部空间内与二次风燃烧。
侧吹炉烟气经燃烧室燃烧后,对燃烧尾气依次进行余热回收、脱二噁英处理以及脱硫处理,达标后排放。
实施例2
含铜污泥经干燥至含水~40%,然后预均化,然后将干燥后的含铜污泥与废活性炭混合造粒,得到含铜污泥颗粒。废线路板首先脱锡得到脱锡后废线路板,然后送入剪切破碎机内破碎,得到粒径为约40~70mm的线路板。破碎后的线路板与含铜污泥颗粒、黄铁矿烧渣、石英石配料后,加入侧吹炉内。其中,控制废活性炭的重量为含铜污泥和线路板中总铜重量的80%;黄铁矿烧渣配料量为入炉物料量的15%;石英石配料量为入炉物料量的15%。富氧空气(氧气浓度50~60%)和废矿物油通过多支浸没在熔池的喷枪喷射到侧吹炉的熔池内。
入炉物料落到熔池表面,发生氧化还原反应,废线路板中的有机物剧烈燃烧。废矿物油与富氧空气燃烧,为熔炼提供热量,控制侧吹熔炼温度为1150℃~1200℃。物料中的铜、镍 等金属氧化物发生还原反应,生成金属,黄铁矿烧渣与石英石造渣,形成渣相,其中废活性炭作为还原剂。
熔融金属和渣在侧吹炉的澄清区内澄清后,分离为铜液和渣。铜液从底部的铜流出口流出,渣从上部的出渣口流出。
侧吹炉侧壁设有二次风入口,侧吹内烟气含有未燃烧完全的CO和有机物,在侧吹炉上部空间内与二次风燃烧。
侧吹炉烟气经燃烧室燃烧后,对燃烧尾气依次进行余热回收、脱二噁英处理以及脱硫处理,达标后排放。
实施例3
含铜污泥经干燥至含水~40%,然后预均化,然后将干燥后的含铜污泥与废活性炭混合造粒,得到含铜污泥颗粒。废线路板首先脱锡得到脱锡后废线路板,然后送入剪切破碎机内破碎,得到粒径为约20~50mm的线路板。破碎后的线路板与含铜污泥颗粒、黄铁矿烧渣、石英石配料后,加入侧吹炉内。其中,控制废活性炭的重量为含铜污泥和线路板中总铜重量的10%;黄铁矿烧渣配料量为入炉物料量的15%;石英石配料量为入炉物料量的15%。富氧空气(氧气浓度50~60%)和废矿物油通过多支浸没在熔池的喷枪喷射到侧吹炉的熔池内。
入炉物料落到熔池表面,发生氧化还原反应,废线路板中的有机物剧烈燃烧。废矿物油与富氧空气燃烧,为熔炼提供热量,控制侧吹熔炼温度为1350℃~1400℃。物料中的铜、镍等金属氧化物发生还原反应,生成金属,黄铁矿烧渣与石英石造渣,形成渣相,其中废活性炭作为还原剂。
熔融金属和渣在侧吹炉的澄清区内澄清后,分离为铜液和渣。铜液从底部的铜流出口流出,渣从上部的出渣口流出。
侧吹炉侧壁设有二次风入口,侧吹内烟气含有未燃烧完全的CO和有机物,在侧吹炉上部空间内与二次风燃烧。
侧吹炉烟气经燃烧室燃烧后,对燃烧尾气依次进行余热回收、脱二噁英处理以及脱硫处理,达标后排放。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
本申请利用废活性炭作为还原剂和部分燃烧剂,与含铜污泥混合造粒后与线路板进行侧吹熔炼,从而降低了侧吹熔炼的能源消耗成本;此外,线路板在侧吹熔炼的过程中有机物燃烧产生热量,有机物可以作为侧吹熔炼的燃料,从而既完成了含铜污泥和线路板中的铜金属与其它杂质的分离,又充分利用了线路板中有机物热能,进一步降低了侧吹熔炼的能耗成本。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (26)

  1. 一种含铜污泥和线路板的综合处理方法,其特征在于,所述综合处理方法包括:
    将含铜污泥和废活性炭进行混合造粒,得到含铜污泥颗粒;
    将所述含铜污泥颗粒和线路板进行侧吹熔炼。
  2. 根据权利要求1所述的综合处理方法,其特征在于,所述废活性炭的重量用量为所述含铜污泥和废线路板中总铜重量的10%~80%;优选所述侧吹熔炼过程采用废矿物油和富氧空气为燃料,更优选所述侧吹熔炼的温度为1150~1400℃。
  3. 根据权利要求1所述的综合处理方法,其特征在于,在所述侧吹熔炼过程中添加造渣剂,优选所述造渣剂为含铁废渣,进一步优选所述含铁废渣为黄铁矿烧渣。
  4. 根据权利要求1所述的综合处理方法,其特征在于,在所述侧吹熔炼过程中添加熔剂,优选所述熔剂包括石英石和/或石灰石,所述熔剂加入重量为所述侧吹熔炼的入炉物料重量的10%~70%。
  5. 根据权利要求1所述的综合处理方法,其特征在于,在所述侧吹熔炼过程中采用废活性炭粉、煤粉和富氧空气作为补充燃料。
  6. 根据权利要求1所述的综合处理方法,其特征在于,所述侧吹熔炼过程在侧吹熔炼炉(31)中进行,所述侧吹熔炼炉(31)包括:
    底壁(311),划分为相互连通的熔炼区和澄清区,所述含铜污泥颗粒和所述线路板在所述熔炼区发生氧化和还原反应得到熔炼液,所述熔炼液由所述熔炼区流入所述澄清区,所述熔炼液在所述澄清区经过澄清后分离为铜液和渣;
    第一侧壁(312),与所述底壁(311)连接,所述熔炼区的所述第一侧壁(312)上设置有燃料侧吹口(02),优选所述燃料侧吹口(02)设置在所述第一侧壁(312)的下半部;
    顶壁(313),与所述第一侧壁(312)连接,所述底壁(311)、所述第一侧壁(312)和所述顶壁(313)形成炉腔,所述熔炼区的所述顶壁(313)上设置有进料口(01),所述含铜污泥颗粒和所述线路板由所述进料口(01)进入所述炉腔中;以及
    第二侧壁(314),与所述顶壁(313)相连且向上延伸,所述第二侧壁(314)围成与所述炉腔相连的烟气出口(03),且所述澄清区与所述进料口(01)设置在所述烟气出口(03)的两侧。
  7. 根据权利要求6所述的综合处理方法,其特征在于,所述熔炼区的顶壁(313)高度大于所述澄清区的顶壁(313)高度,所述侧吹熔炼炉(31)还包括:
    第一侧墙(315),设置在所述进料口(01)和所述烟气出口(03)之间,所述第一侧墙(315)与所述顶壁(313)相连且向下延伸,所述第一侧墙(315)与所述底壁(311)之间具有间隔;
    第二侧墙(316),设置在所述澄清区与所述烟气出口(03)之间,所述第二侧墙(316)与所述顶壁(313)相连且向下延伸,所述第二侧墙(316)与所述底壁(311)之间具有间隔。
  8. 根据权利要求6所述的综合处理方法,其特征在于,所述澄清区的所述顶壁(313)上还设置有还原加料口(04),所述综合处理方法还包括通过所述还原加料口(04)向所述澄清区内添加废活性炭、焦炭或块煤。
  9. 根据权利要求6所述的综合处理方法,其特征在于,所述第一侧壁(312)和所述第二侧壁(314)上设置二次风入口(05),所述综合处理方法还包括通过所述二次风入口(05)向所述炉腔上部空间和所述烟气出口(03)提供空气使所述烟气出口(03)中的烟气燃烧,优选所述二次风入口(05)设置在所述第一侧壁(312)的上半部。
  10. 根据权利要求6所述的综合处理方法,其特征在于,所述综合处理方法还包括对所述澄清区的所述熔炼液进行加热的过程。
  11. 根据权利要求1所述的综合处理方法,其特征在于,所述综合处理方法还包括对所述侧吹熔炼产生的烟气进行燃烧得到燃烧尾气的过程。
  12. 根据权利要求11所述的综合处理方法,其特征在于,所述综合处理方法还包括对所述燃烧尾气依次进行余热回收、脱二噁英处理以及脱硫处理的过程。
  13. 根据权利要求11所述的综合处理方法,其特征在于,在对所述线路板进行侧吹熔炼之前,所述综合处理方法还包括依次对所述线路板进行脱锡焊处理和破碎处理的过程,得到粒径为20~70mm的线路板。
  14. 一种含铜污泥和线路板的综合处理系统,其特征在于,所述综合处理系统包括:
    含铜污泥造粒单元(10),所述含铜污泥造粒单元(10)包括与造粒装置相连的含铜污泥供应装置和第一废活性炭供应装置;
    线路板供应单元(20);以及
    侧吹熔炼单元(30),所述侧吹熔炼单元(30)包括侧吹熔炼炉(31),所述侧吹熔炼炉(31)具有进料口(01)和燃料侧吹口(02),所述造粒装置和所述线路板供应单元(20)与所述进料口(01)相连。
  15. 根据权利要求14所述的综合处理系统,其特征在于,所述侧吹熔炼单元(30)包括废矿物油供应装置(32)和富氧空气供应装置(33),所述废矿物油供应装置(32)和所述富氧空气供应装置(33)均与所述燃料侧吹口(02)相连。
  16. 根据权利要求14所述的综合处理系统,其特征在于,所述侧吹熔炼单元(30)还包括造渣剂供应装置(34),所述造渣剂供应装置(34)与所述进料口(01)相连,优选造渣剂供应装置(34)为含铁废渣供应装置。
  17. 根据权利要求14所述的综合处理系统,其特征在于,所述侧吹熔炼单元(30)还包括熔剂供应装置(35),所述熔剂供应装置(35)与进料口(01)相连。
  18. 根据权利要求14所述的综合处理系统,其特征在于,所述侧吹熔炼单元(30)还包括补热源供应装置(36),所述补热源供应装置(36)与所述燃料侧吹口(02)相连,优选补热源供应装置(36)包括第二废活性炭粉、煤粉和富氧空气的供应装置。
  19. 根据权利要求14所述的综合处理系统,其特征在于,所述侧吹熔炼炉(31)包括:
    底壁(311),所述底壁(311)划分为相互连通的熔炼区和澄清区;
    第一侧壁(312),所述第一侧壁(312)与所述底壁(311)连接,所述燃料侧吹口(02)设置在所述熔炼区的所述第一侧壁(312)上,优选设置在所述第一侧壁(312)的下半部;
    顶壁(313);所述顶壁(313)与所述第一侧壁(312)连接,所述底壁(311)、所述第一侧壁(312)和所述顶壁(313)形成炉腔,所述进料口(01)设置在所述熔炼区的顶壁(313)上;以及
    第二侧壁(314),所述第二侧壁(314)与所述顶壁(313)相连且向上延伸,所述第二侧壁(314)围成与所述炉腔相连的烟气出口(03),且所述澄清区与所述进料口(01)设置在所述烟气出口(03)的两侧。
  20. 根据权利要求19所述的综合处理系统,其特征在于,所述熔炼区的所述顶壁(313)高度大于所述澄清区的所述顶壁(313)高度,所述侧吹熔炼炉(31)还包括:
    第一侧墙(315),所述第一侧墙(315)设置在所述进料口(01)和所述烟气出口(03)之间,所述第一侧墙(315)与所述顶壁(313)相连且向下延伸,所述第一侧墙(315)与所述底壁(311)之间具有间隔;以及
    第二侧墙(316);所述第二侧墙(316)设置在所述澄清区与所述烟气出口(03)之间,所述第二侧墙(316)与所述顶壁(313)相连且向下延伸,所述第二侧墙(316)与所述底壁(311)之间具有间隔。
  21. 根据权利要求19所述的综合处理系统,其特征在于,所述澄清区的所述顶壁(313)上还设置有还原加料口(04),所述侧吹熔炼单元(30)还包括还原剂供应装置(37),所述还原剂供应装置(37)与所述还原加料口(04)相连,优选所述还原剂供应装置(37)为第三废活性炭供应装置、焦炭供应装置或块煤供应装置。
  22. 根据权利要求19所述的综合处理系统,其特征在于,所述第一侧壁(312)和所述第二侧壁(314)上设置二次风入口(05)。
  23. 根据权利要求19所述的综合处理系统,其特征在于,所述澄清区还设置有加热装置(317),优选所述加热装置(317)为电极,所述电极设置在所述顶壁(313)上。
  24. 根据权利要求19所述的综合处理系统,其特征在于,所述综合处理系统还包括烟气处理单元(40),所述烟气处理单元(40)包括燃烧器(41),所述燃烧器(41)与所述烟气出口(03)相连。
  25. 根据权利要求24所述的综合处理系统,其特征在于,所述燃烧器(41)具有燃烧尾气出口,所述烟气处理单元(40)还包括:
    余热回收装置(42),所述余热回收装置(42)具有燃烧尾气入口和降温尾气出口,所述燃烧尾气入口与所述燃烧尾气出口相连;
    脱二噁英装置(43),所述脱二噁英装置(43)具有降温尾气入口和吸附净化气出口,所述降温尾气入口与所述降温尾气出口相连;
    脱硫装置(44),所述脱硫装置(44)具有吸附净化气入口和排空口,所述吸附净化气入口与所述吸附净化气出口相连。
  26. 根据权利要求14所述的综合处理系统,其特征在于,所述线路板供应单元(20)包括:
    脱锡焊装置(21),所述脱锡焊装置(21)对线路板进行脱锡焊处理;以及
    破碎装置(22),所述破碎装置(22)与脱锡焊装置(21)相连以对脱锡焊后的线路板进行破碎处理,所述破碎装置(22)与所述侧吹熔炼单元(30)的进料口(01)相连。
PCT/CN2019/085143 2018-05-08 2019-04-30 一种含铜污泥和线路板的综合处理方法和综合处理系统 WO2019214507A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810433295.X 2018-05-08
CN201810433295.XA CN108531737B (zh) 2018-05-08 2018-05-08 一种含铜污泥和线路板的综合处理系统
CN201810432388.0A CN108707750B (zh) 2018-05-08 2018-05-08 一种含铜污泥和线路板的综合处理方法
CN201810432388.0 2018-05-08

Publications (1)

Publication Number Publication Date
WO2019214507A1 true WO2019214507A1 (zh) 2019-11-14

Family

ID=68467740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/085143 WO2019214507A1 (zh) 2018-05-08 2019-04-30 一种含铜污泥和线路板的综合处理方法和综合处理系统

Country Status (1)

Country Link
WO (1) WO2019214507A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112811763A (zh) * 2020-12-29 2021-05-18 江西挺进环保科技有限公司 一种电镀污泥处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104126A (ja) * 1998-09-30 2000-04-11 Shin Meiwa Ind Co Ltd 廃プリント基板からの銅を含む有価金属の回収方法及び廃プリント基板からの銅を含む有価金属の回収とスラグ成分の分離システム
CN102703732A (zh) * 2012-06-18 2012-10-03 中国恩菲工程技术有限公司 一种侧吹熔炼设备
CN104342556A (zh) * 2013-08-06 2015-02-11 沈志良 一种从含铜或镍污泥中提取铜或镍的方法
CN105969989A (zh) * 2016-06-20 2016-09-28 铜陵有色金属集团铜冠新技术有限公司 高杂质铜阳极泥处理新工艺
CN108707750A (zh) * 2018-05-08 2018-10-26 中国恩菲工程技术有限公司 一种含铜污泥和线路板的综合处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104126A (ja) * 1998-09-30 2000-04-11 Shin Meiwa Ind Co Ltd 廃プリント基板からの銅を含む有価金属の回収方法及び廃プリント基板からの銅を含む有価金属の回収とスラグ成分の分離システム
CN102703732A (zh) * 2012-06-18 2012-10-03 中国恩菲工程技术有限公司 一种侧吹熔炼设备
CN104342556A (zh) * 2013-08-06 2015-02-11 沈志良 一种从含铜或镍污泥中提取铜或镍的方法
CN105969989A (zh) * 2016-06-20 2016-09-28 铜陵有色金属集团铜冠新技术有限公司 高杂质铜阳极泥处理新工艺
CN108707750A (zh) * 2018-05-08 2018-10-26 中国恩菲工程技术有限公司 一种含铜污泥和线路板的综合处理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112811763A (zh) * 2020-12-29 2021-05-18 江西挺进环保科技有限公司 一种电镀污泥处理方法

Similar Documents

Publication Publication Date Title
CN108707750B (zh) 一种含铜污泥和线路板的综合处理方法
CN108411113B (zh) 一种危险废物的资源再生方法
CN103421955B (zh) 一种锌浸出渣处理方法
CN102965510B (zh) 低硫含铅二次物料和富铁重金属固废的还原固硫熔池熔炼方法和设备
CN107363072B (zh) 废物的熔池熔炼方法
JP4350711B2 (ja) 産業廃棄物の溶融処理法
CN102321806A (zh) 一种富氧侧吹炉处理锌浸出渣的冶炼方法
CN111020212B (zh) 一种含铜废料金属铜回收工艺
CN102965509A (zh) 处理废铅酸蓄电池胶泥与富铁重金属固废的方法及设备
CN111893310A (zh) 一种固体危废无害化资源化的处理方法
CN108103319B (zh) 一种含铜多金属物料高温强化精炼方法
CN111457735A (zh) 一体化火法冶炼炉和处理锌浸出渣的方法
CN111676373A (zh) 一种铜基有机固废资源化、减量化、无害化处理装置及处理方法
CN111304450B (zh) 含铜污泥生产黑铜的方法及装置
CN108413412B (zh) 一种线路板的处理系统
JP2023063362A (ja) 貴金属の回収方法
CN108531737B (zh) 一种含铜污泥和线路板的综合处理系统
CN203295587U (zh) 侧吹冶炼设备
WO2019214507A1 (zh) 一种含铜污泥和线路板的综合处理方法和综合处理系统
CN111647749B (zh) 一种含铜固废的分离方法
CN208517489U (zh) 一种含铜污泥和线路板的综合处理系统
JP6327943B2 (ja) 廃棄物中の有価金属回収方法
CN212316200U (zh) 含铜污泥生产黑铜的装置
CN212247151U (zh) 射流熔炼电热还原炉
CN203602695U (zh) 侧吹冶炼设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799154

Country of ref document: EP

Kind code of ref document: A1