WO2019214249A1 - 定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法 - Google Patents

定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法 Download PDF

Info

Publication number
WO2019214249A1
WO2019214249A1 PCT/CN2018/123239 CN2018123239W WO2019214249A1 WO 2019214249 A1 WO2019214249 A1 WO 2019214249A1 CN 2018123239 W CN2018123239 W CN 2018123239W WO 2019214249 A1 WO2019214249 A1 WO 2019214249A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
root
cds
mixed component
quantum dot
Prior art date
Application number
PCT/CN2018/123239
Other languages
English (en)
French (fr)
Inventor
李锐龙
王英辉
张琳琳
王少鹏
Original Assignee
广西大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广西大学 filed Critical 广西大学
Publication of WO2019214249A1 publication Critical patent/WO2019214249A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices

Definitions

  • the present disclosure relates to the field of chemical detection, and in particular to a method for quantitatively determining mixed component CdS/ZnS quantum dots in plant root epidermal tissue.
  • Quantum dots are one of the typical engineered nanomaterials (ENMs) due to their small particle size (2-10 nm), quantum and confined energy levels of electrons and holes.
  • ENMs engineered nanomaterials
  • optical performance is unique, widely used in single molecule detection, single cell tracking and animal living imaging and many other fields.
  • Das et al. used Atomic force microscopy (AFM) and Raman imaging (RM) techniques to investigate the absorption of N-acetylcysteine by the roots of Pisum sativum L.
  • AFM Atomic force microscopy
  • RM Raman imaging
  • the process of acid-coated manganese-doped CdS/ZnS QDs showed that although the absorption processes of ex vivo and living grasses were different, most of these QDs were still adsorbed on the root epidermis, only a small part. QDs migrate to pea seeds.
  • ENMs including QDs
  • ENMs usually exist as mixed components in the near-shore estuary environment, and there may be competitive adsorption and migration processes between different components. Therefore, it is important to study the adsorption and migration processes of QDs from different surface ligands in the root surface (surface and superficial) of plants to explore the process mechanism of plant roots to absorb QDs.
  • UV-visible absorption spectroscopy is the most simple, effective and rapid method for the determination of QDs in the laboratory.
  • ENMs including QDs
  • the content of ENMs (including QDs) in the actual environment is extremely low, far exceeding the detection limit of the UV-Vis method.
  • ICP-MS inductively coupled plasma mass spectrometry
  • the ICP-MS method has high sensitivity and selectivity for metal element analysis, it requires a series of steps such as extraction, purification and determination, so that the method can not quantitatively analyze the QDs content of plant root surface (surface and superficial). .
  • the metal release of QDs appears in the root surface of the plant, and the ICP-MS method as a method for determining the total metal elements is difficult to effectively distinguish the body of the QDs from the metal elements released therefrom.
  • NTFS nanosecond time-resolved fluorescence spectra method
  • the object of the present disclosure includes, for example, providing a method (modeling method) for quantitatively determining a mixed component CdS/ZnS quantum dot in a plant root epidermal tissue, the method of the present disclosure being capable of adsorbing to a root epidermis under living conditions of a plant Quantitative determination of the quantum dot content of mixed components in the tissue.
  • a method for quantitatively determining a mixed component CdS/ZnS quantum dot in a plant root epidermal tissue comprising:
  • the fluorescence spectra of different quantum dots were scanned in the same path of the matrix fluorescence signal to obtain derivative fluorescence spectra, and a standard curve of fluorescence intensity and concentration of different quantum dots in the root epidermis of the plant was established.
  • the model plant in the method step (a) of quantitatively determining a component CdS/ZnS quantum dot in a plant root epidermal tissue, is derived from a plant hypocotyl and/or plant.
  • the seeds are cultured under non-polluting substrate conditions.
  • the culture in the method for quantitatively determining a component CdS/ZnS quantum dot in a plant root epidermal tissue according to the present disclosure, is a sand culture.
  • the culture in the method for quantitatively determining a component CdS/ZnS quantum dot in a plant root epidermal tissue according to the present disclosure, is performed in a constant temperature light incubator; wherein the light intensity is 200 ⁇ mol/m 2 ⁇ s, light/dark cycle time was 14/10h.
  • the root of the model plant has a meristematic zone And the main root of the elongation zone.
  • the mixed component CdS/ with different surface ligands include at least two of CdS/ZnS quantum dots with oleic acid, mercaptoethylamine, PEG-COOH, PEG-NH 2 , MPA-NH 2 or MPA-COOH ligands.
  • the method further comprises: the quantum dot coated model plant After the root is positioned and fixed on the sample holder, the laser-induced nanosecond time-resolved fluorescence spectrum detection step is performed.
  • the top center position of the sample holder is fixedly provided with a scaled quartz. a sheet; wherein the root of the model plant coated with the quantum dots is fixed on the quartz sheet.
  • the size of the sample holder is (160-170) mm ⁇ ( 70 to 80) mm ⁇ (100 to 110) mm; and/or the size of the quartz plate is: (75 to 80) mm ⁇ (23 to 26) mm ⁇ (1 to 2) mm.
  • the conditions of laser-induced nanosecond time-resolved fluorescence spectroscopy are: objective lens 0X/ 0.8 and 40X/0.65 DIC dry mirror; delay time 30 ns; cycle number 24 times; excitation light wavelength 405 nm; pulse frequency 40 MHz; single signal accumulation time 5.00 s; image resolution 256 ⁇ 256 pixels; pixel size 49.7 nm.
  • the present disclosure also provides a method for quantitatively determining a mixed component CdS/ZnS quantum dot in a plant root epidermal tissue, comprising:
  • the fluorescence component is used to determine or read the concentration of mixed component CdS/ZnS quantum dots in the epidermal tissue of the target plant root.
  • the root of the target plant is a primary root with a zone of division and an zone of elongation.
  • the mixed component CdS/ZnS quantum in the target plant root epidermal tissue comprises: with oleic acid, mercaptoethylamine, PEG-COOH, PEG-NH 2 , MPA-NH 2 or At least two of the CdS/ZnS quantum dots of the MPA-COOH ligand.
  • the step of laser-induced nanosecond time-resolved fluorescence spectrum detection is further performed after the root of the target plant is positioned and fixed on the sample holder.
  • the top center of the sample holder is fixedly provided with a graduated quartz plate; wherein the root of the target plant is fixed on the quartz plate.
  • the sample holder has a size of (160-170) mm ⁇ (70-80) mm ⁇ (100-110) mm.
  • the quartz piece has a size of (75 to 80) mm ⁇ (23 to 26) mm ⁇ (1 to 2) mm.
  • step (1) the conditions of the laser-induced nanosecond time-resolved fluorescence spectroscopy are:
  • Objective lens 0X/0.8 and 40X/0.65DIC dry mirror delay time 30ns; cycle number 24 times; excitation light wavelength 405nm; pulse frequency 40MHz; single signal accumulation time 5.00s; image resolution 256 ⁇ 256 pixels; pixel size 49.7nm .
  • the nanosecond time-resolved fluorescence spectroscopy test method is combined with the constant matrix derivative synchronous fluorescence spectroscopy method, thereby not only effectively eliminating the interference of the auto-fluorescence signal of the plant root surface, but also realizing the adsorption to the root surface of the plant root.
  • the in-situ quantitative analysis of the mixed component quantum dots has high method accuracy, good stability, and excellent recovery and selectivity;
  • the method of the present disclosure does not cause damage to plants, and can perform plant living body detection
  • the sample holder for fixing plant roots of the present disclosure can adjust the position of the plant roots in each experiment to ensure that the plant root samples can be placed in the same position in multiple experiments, and the experimental conditions of each group are kept the same.
  • the stability and repeatability of the disclosed methods are enhanced.
  • the present disclosure provides a method for quantitatively determining the mixed component CdS/ZnS quantum dots in the root epidermal tissue of the plant.
  • the detection method provided by the present disclosure includes the following steps:
  • the model plant is preferably Kandelia obovata or wheat (Triticum acstivnm L.);
  • hypocotyl hypocotyls and wheat seeds from the uncontaminated area as a substrate, wash and dry, and then in a constant temperature light incubator. After 6 months of planting in the inner sand, several groups of Kandelia and wheat plants were obtained.
  • the roots of the wheat seedling and the Kandelia plant need to be cleaned to remove the impurities contaminated by the root; after drying, the main root containing the meristematic zone and the elongation zone is selected.
  • the experimental substrate it is preferable to select a main root (rooted plant) having a size of about 0.5 cm ⁇ 2.0 cm (diameter ⁇ length) as an experimental sample.
  • a solution of a mixed component CdS/ZnS quantum dot (preferably an acetone solution) with different surface ligands is applied to the surface of the Kandelia or wheat root sample;
  • the surface ligand is a mixed component of three different CdS/ZnS quantum dots of oleic acid, PEG-COOH (carboxy-modified PEG), and MPA-COOH as a quantum dot raw material to be tested;
  • the present disclosure is a mixture of different concentrations of CdS/ZnS quantum dot solution (the total concentration of quantum dots and different quantum dots) The concentration can be adjusted. Multiple sets of parallel experiments are performed under the same conditions to obtain the corresponding standard curve and linear correspondence.
  • plant roots are cylindrical in shape. Therefore, in the fluorescence measurement, especially in the parallel experiment of multi-group CdS/ZnS quantum dot contamination with different concentrations of plant roots, it is difficult to ensure that the plant roots are determined to be the same every time using conventional fixation methods. Location, which also affects the accuracy and repeatability of the test results.
  • a novel sample holder is specially used in the method of the present disclosure, and the size of the sample holder is preferably 167.5 mm ⁇ 74.2 mm ⁇ 150.0 mm (length ⁇ width ⁇ height);
  • the center of the top of the sample holder is fixedly provided with a quartz plate with a millimeter scale (the quartz plate can be symmetrically arranged along the axis of the sample holder and kept horizontal), and its size is preferably 76.2 mm ⁇ 25.4 mm ⁇ 1.2 mm (length ⁇ Width ⁇ height);
  • the position of the plant root in each experiment can be adjusted by the scale reading on the quartz plate to ensure multiple experiments.
  • the medium plant root samples can all be placed in the same position, keeping the experimental conditions of each group the same, improving the stability and repeatability of the disclosed method.
  • the application of the sample holder is also one of the important reasons for the measurement method of the present disclosure.
  • the position of the light probe it is preferred to adjust the position of the light probe so that the distance from the sample root is maintained at about 4.0 mm;
  • the objective lens is 0X/0.8 and 40X/0.65 DIC dry mirror; the delay time is 30 ns; the number of cycles is 24; the excitation light wavelength is 405 nm; the pulse frequency is 40 MHz; the single signal accumulation time is 5.00 s; image resolution
  • the fluorescence spectrum (laser-induced nanosecond time-resolved fluorescence spectroscopy) was detected under the detection condition of 256 ⁇ 256 pixels and the pixel size was 49.7 nm, and the fluorescence spectra corresponding to different quantum dots were obtained.
  • the fluorescence spectra of oleic acid-CdS/ZnS quantum dots, PEG-COOH-CdS/ZnS quantum dots, and MPA-COOH-CdS/ZnS quantum dots are plotted to the same contour map (which can be done using software such as origin).
  • scanning the fluorescence spectrum laser-induced nanosecond time-resolved fluorescence spectrum
  • calculating the derivative fluorescence spectrum by calculation (for example, program or manual calculation);
  • the present disclosure provides a constant matrix derivative nanosecond time-resolved fluorescence spectroscopic in-situ analysis method using a combination of laser-induced nanosecond time-resolved fluorescence spectroscopy and derivative fluorescence spectroscopy.
  • the method for detecting the concentration of adsorbed quantum dots in the root of the plant to be tested can be referred to as follows:
  • the plant root is fixed on the sample holder provided by the present disclosure, and the fixing position is the same as that of the model plant;
  • the fluorescence spectra of different quantum dots are scanned in the same path of the matrix fluorescent signal to obtain a derivative fluorescence spectrum, and the concentration of the corresponding quantum dots in the root epidermal tissue of the plant to be detected is obtained according to a standard curve.
  • hypocotyl hypocotyls of the Haishankou mangrove reserve 24°36′N, 118°14′E
  • wheat Triticum acstivnm L.
  • the culture conditions were: light intensity: 200 ⁇ mol/m 2 s 1 ; light/dark cycle time: 14/10 h; temperature: 298.15 ⁇ 1 K; humidity: 70%.
  • the fluorescence spectra of the three were plotted on the same contour map, and the same scanning path of the base (background) fluorescence signal was selected. Finally, the corresponding nanosecond time-resolved fluorescence spectrum scanning is performed, and the corresponding derivative fluorescence spectrum is obtained.
  • a method for calculating the detection limit of this method is three times the relative standard deviation divided by the slope;
  • b y represents the fluorescence intensity value of CdS/ZnS QDs in the root epidermis of plants;
  • c x represents the CdS/ZnS QDs in the root epidermis content
  • the in situ determination of oleic acid-CdS/ZnS QDs, PEG-COOH-CdS/ZnS QDs and MPA-COOH-CdS adsorbed on K is provided by the present disclosure.
  • the linear ranges of the /ZnSQDs mixed components were: oleic acid-CdS/ZnS QDs, 28.9-1230 ng/g and 20.2-1350 ng/g; PEG-COOH-CdS/ZnS QDs, 41.3-1195 ng/g and 33.7-1180 ng/ g; MPA-COOH-CdS/ZnSQDs, 35.8-1200 ng/g and 23.3-1285 ng/g.
  • the present disclosure provides the ability to quantitatively determine the mixed components of plant root epidermis CdS/ZnS QDs in situ.
  • the recovery results, sensitivity and selectivity of the analytical method of the present disclosure are satisfied to carry out oleic acid-CdS/ZnS QDs, PEG-COOH-CdS/ZnS QDs and MPA-COOH-CdS/ZnSQDs.
  • the in situ determination of the amount of mixed components in the roots of the plant roots is required.
  • the nanosecond time-resolved fluorescence spectroscopy test method is combined with the constant matrix derivative synchronous fluorescence spectroscopy method, thereby not only effectively eliminating the interference of the auto-fluorescence signal of the plant root surface, but also realizing the adsorption to the root surface of the plant root.
  • the in-situ quantitative analysis of the mixed component quantum dots has high accuracy and stability, and excellent recovery and selectivity.
  • the method of the present disclosure does not cause damage to plants, and can perform plant living detection.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法,包括:将植物根部清洗后干燥,涂覆带有不同表面配体的混合组分CdS/ZnS量子点的溶液;对植物根表皮进行激光诱导纳秒时间分辨荧光光谱检测,得到荧光光谱;将不同量子点的荧光光谱进行扫描,得到导数荧光光谱,建立植物根表皮中不同量子点荧光强度与浓度的标准曲线。本方法将纳秒时间分辨的荧光光谱法与恒基体导数同步荧光光谱法结合使用,不仅能够有效消除植物根表自发荧光信号的干扰,同时也能够实现对于植物根表皮所吸附的混合组分量子点的原位定量分析,方法准确度高、稳定性好、回收率和选择性优异;同时,本方法不会对植物造成伤害,可以进行植物活体检测。

Description

定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法
相关申请的交叉引用
本公开要求于2018年5月7日提交中国国家知识产权局的申请号为201810425344.5、名称为“定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及化学检测领域,具体而言,涉及定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法。
背景技术
在过去的30年内,纳米科学取得了举世瞩目的成就。量子点(Quantum dots,QDs)作为其中一类典型的工程纳米材料(Engineered nanomaterials,ENMs),由于其具有粒径小(2-10nm)、电子和空穴被量子限域和分立能级结构等特征,光学性能较为独特,广泛应用于单分子检测、单细胞追踪以及动物活体成像等诸多领域。
随着QDs应用面的不断扩展,其生产量及进入环境的量逐年增加,由此是否带来新的环境污染物并引发新的环境问题,引发科研工作者的担忧。已有的研究证实,QDs对多种类别生物(藻类、微生物、植物、动物等)均具有潜在的危害性。如,Wu等人考察3-巯基丙酸包覆的水溶性的CdTe QDs对秀丽隐杆线虫(Caenorhabditis elegans)的毒性效应,证实此类QDs可诱导幼虫体内产生大量的活性氧,同时在基因水平上抑制谷氨酸、5-羟色胺和多巴胺的转运体和受体的活性,进而造成该类生物产生行为缺陷、损害其学习和记忆行为;Modlitbova等人则说明谷胱甘肽(GSH-)和3-巯基丙酸(MPA-)两种基团包覆的CdS/ZnS QDs对于浮萍(Lemna minor L.)的毒性相似,仅略低于同样Cd摩尔浓度下CdCl 2溶液的毒性。
为更好管控健康风险,需要深入了解QDs环境地球循环、环境归趋过程及机制。大量研究结果证实,QDs在环境-植物根界面上的交换非常活跃,被植物根系吸收的QDs 可在食物链中传递与富集,是动物乃至人类环境暴露的重要途径之一。Al-Salim等人早在2011年即围绕植物根吸收QDs开展研究,证实离体黑麦草(Lolium perenne L.)、洋葱(Allium cepa L.)和菊花(Chrysanthemum L.)根部均可不同程度的富集多种配体(甘氨酸、半胱氨酸、氨基和巯基丁二酸)的CdSe/ZnS QDs。随之,Das等人综合利用原子力显微技术(Atomic force microscopy,AFM)和拉曼成像(Raman imaging,RM)技术考察了活体糖荚豌豆(Pisum sativum L.)根吸收N-乙酰半胱氨酸包覆的锰掺杂的CdS/ZnS QDs的过程,结果显示,虽然离体和活体的禾本植物吸收过程存在不同,但绝大多数此类QDs仍吸附于根表皮上,仅一小部分QDs迁移至豌豆种子。Thwala等人以综述形式介绍了ENMs(包括QDs)与高等植物之间的相互作用工作的研究进展,并得出金属QDs在植物根表(表层和浅表层)的富集及迁移过程是沉积物/水中自由溶解态和结合态QDs进入植物体的重要步骤这一结论。同时,ENMs(包括QDs)在近岸河口区域环境中通常以混合组分形式存在,且不同组分之间可能存在竞争吸附及迁移过程。因此,研究不同表面配体混合组分QDs在植物根表(表层和浅表层)的吸附、迁移过程对于全面探究植物根系吸收QDs的过程机制具有重要的意义。
长期以来,紫外可见吸收光谱法是实验室中最为简便、有效和快速测定QDs含量的分析方法。然而,ENMs(包括QDs)在实际环境中的含量极低,远超出UV-Vis法的检出限。为弥补此法分析能力的不足,科研工作者通过电感耦合等离子体质谱(Inductively coupled plasma mass spectrometry,ICP-MS)法测定金属QDs(CdS/ZnS QDs、CdSe/ZnS QDs和CdTe QDs等)的元素组成,进而推算此类QDs在环境样品(水、沉积物和植物体)中的含量。然而,虽然ICP-MS法具有较高的金属元素分析灵敏度和选择性,但需经提取、净化和测定等一系列步骤,使该法无法定量分析植物根表(表层和浅表层)QDs的含量。此外,在实际环境或模拟生态条件下,植物根表均出现QDs金属释放的现象,而ICP-MS法作为总金属元素的测定方法,难于有效区分QDs本体与其释放出的金属元素。为研究QDs在植物根表的富集、迁移等环境过程,首先需克服上述问题、构建具 备原位定量分析植物根表金属QDs能力的相关方法。
鉴于此类QDs具有较高的荧光量子产率,常规荧光发射光谱作为原位定量分析的重要手段适用于检测水体和其它有机溶剂中的痕量QDs,然而,区别于其它液体基质,植物根表(表层和浅表层)存在强自发荧光信号干扰,这使得该法无法准确获得植物根表QDs的荧光光谱。研究显示,此自发荧光信号主要来自于植物根表吸附的根际分泌物、可发射荧光的根系微生物等,与QDs的荧光信号不同,此自发荧光信号的荧光寿命极短,通常小于10ns。基于此,研究人员最近利用纳秒时间分辨的荧光光谱法(Nanosecond time-resolved fluorescence spectra method,NTFS),通过扣除短寿命荧光信号的方式,初步构建了植物根表QDs的原位定量分析方法,灵敏度达到ng/g的级别。然而,截止目前,此类方法尚无法有效拆分多组分QDs荧光发射光谱,进而进行混合组分QDs的原位定量分析。因而,克服NTFS法无法分析混合组分QDs荧光光谱信号的缺陷,构建植物根表混合组分QDs的原位定量分析方法,是亟待解决的核心问题之一。
有鉴于此,特提出本公开。
发明内容
本公开的目的包括例如提供一种定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法(建模方法),本公开所述的方法能够在植物活体条件下,实现吸附于根表皮组织中混合组分量子点含量的定量测定。
为了实现本公开的上述目的,特采用以下技术方案:
一种定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法,所述方法包括:
(a)将模型植物的根部清洗后干燥,然后,涂覆带有不同表面配体的混合组分CdS/ZnS量子点的溶液;
(b)对量子点涂覆后的模型植物根的表皮进行激光诱导纳秒时间分辨荧光光谱检测,得到相应的荧光光谱;
将不同量子点的荧光光谱以基体荧光信号相同的路径进行扫描,得到导数荧光光谱, 并建立植物根表皮中不同量子点荧光强度与浓度的标准曲线。
在一种或多种实施方式中,本公开所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法步骤(a)中,所述模型植物由植物胚轴和/或植物种子在无污染基质条件下培养得到。
在一种或多种实施方式中,本公开所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法中,所述培养为沙培种植。
在一种或多种实施方式中,本公开所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法中,所述培养在恒温光照培养箱中进行;其中,光照强度为200μmol/m 2·s,光照/黑暗循环时间为14/10h。
在一种或多种实施方式中,本公开所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法步骤(a)中,所述模型植物的根部为带有分生区和伸长区的主根。
在一种或多种实施方式中,本公开所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法步骤(a)中,带有不同表面配体的混合组分CdS/ZnS量子点包括:带有油酸、巯基乙胺、PEG-COOH,PEG-NH 2、MPA-NH 2或者MPA-COOH配体的CdS/ZnS量子点中的至少两种。
在一种或多种实施方式中,本公开所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法步骤(b)中,还包括将量子点涂覆后的模型植物的根在样品架上定位固定后,再进行激光诱导纳秒时间分辨荧光光谱检测的步骤。
在一种或多种实施方式中,本公开所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法中,所述样品架的顶部中心位置固定设置有带有刻度的石英片;其中,涂覆量子点后的模型植物的根固定于石英片上。
在一种或多种实施方式中,本公开所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法中,所述样品架的尺寸为;(160~170)mm×(70~80)mm×(100~ 110)mm;和/或,所述石英片的尺寸为:(75~80)mm×(23~26)mm×(1~2)mm。
在一种或多种实施方式中,本公开所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法中,激光诱导纳秒时间分辨荧光光谱检测的条件为:物镜0X/0.8和40X/0.65DIC干镜;延迟时间30ns;循环次数24次;激发光波长405nm;脉冲频率40MHz;单次信号累积时间5.00s;图像分辨率256×256像素;像素尺寸49.7nm。
本公开还提供了一种定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法,包括:
(1)对目标植物根的表皮进行激光诱导纳秒时间分辨荧光光谱检测,得到相应的荧光光谱;
(2)根据预先建立的对应目标植物根的模型植物根表皮中不同量子点荧光强度与浓度的标准曲线,由荧光光谱确定或读取目标植物根表皮组织中混合组分CdS/ZnS量子点浓度;
其中所述标准曲线是本文所公开的方法建立的。
在一种或多种实施方式中,所述目标植物的根为带有分生区和伸长区的主根。
在一种或多种实施方式中,所述目标植物根表皮组织中混合组分CdS/ZnS量子包括:带有油酸、巯基乙胺、PEG-COOH、PEG-NH 2、MPA-NH 2或者MPA-COOH配体的CdS/ZnS量子点中的至少两种。
在一种或多种实施方式中,在步骤(1)中,还包括将目标植物的根在样品架上定位固定后,再进行激光诱导纳秒时间分辨荧光光谱检测的步骤。
在一种或多种实施方式中,所述样品架的顶部中心位置固定设置有带有刻度的石英片;其中,目标植物的根固定于石英片上。
在一种或多种实施方式中,所述样品架的尺寸为;(160~170)mm×(70~80)mm× (100~110)mm
和/或,所述石英片的尺寸为:(75~80)mm×(23~26)mm×(1~2)mm。
在一种或多种实施方式中,在步骤(1)中,所述激光诱导纳秒时间分辨荧光光谱检测的条件为:
物镜0X/0.8和40X/0.65DIC干镜;延迟时间30ns;循环次数24次;激发光波长405nm;脉冲频率40MHz;单次信号累积时间5.00s;图像分辨率256×256像素;像素尺寸49.7nm。
与现有技术相比,本公开的有益效果为:
本公开方法中,将纳秒时间分辨的荧光光谱测试法与恒基体导数同步荧光光谱法结合使用,从而不仅能够有效消除植物根表自发荧光信号的干扰,同时也能够实现对于植物根表皮所吸附的混合组分量子点的原位定量分析,方法准确度高、稳定性好,而且回收率、选择性优异;
同时,本公开方法不会对植物造成伤害,可以进行植物活体检测;
同时,本公开的用于固定植物根的样品架可以对各次实验中植物根的位置进行调整,以保证多次实验中植物根样品均能够放置于相同的位置,保持各组实验条件相同,提高本公开方法的稳定性和可重复性。
具体实施方式
下面将结合实施例对本公开的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本公开,而不应视为限制本公开的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
有鉴于现有检测方法无法对吸附于植物根部表皮的混合组分量子点实现单一的定量检测,本公开特提供了一种定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法, 以解决现有技术中所存在的不足之处。
本公开所提供的检测方法包括如下步骤:
(a)将模型植物的根部清洗后干燥,然后,涂覆带有不同表面配体的混合组分CdS/ZnS量子点的溶液;
此步骤中,模型植物优选的为秋茄(Kandelia obovata)或者是小麦(Triticum acstivnm L.);
为了避免由于模型植物受到污染所导致的检测结果不准确,本公开中,优选的是以采集自未被污染区域秋茄胚轴和小麦种子为基材,清洗后晾干,然后在恒温光照培养箱内沙培种植6个月,得到多组秋茄和小麦植株。
在进行混合组分CdS/ZnS量子点污染暴露前,需要对小麦幼苗以及秋茄植株的根部进行清洗,以除去根部所沾染的杂物;待干燥后,选择含有分生区和伸长区的主根,作为实验基材,优选的,是选择尺寸为0.5cm×2.0cm(直径×长度)左右的主根(带根植株)作为实验样品。
然后,将带有不同表面配体的混合组分CdS/ZnS量子点的溶液(优选的为丙酮溶液)涂覆于秋茄或小麦根样品的表面;
本公开中,优选的是以表面配体为油酸、PEG-COOH(羧基改性PEG),以及MPA-COOH的三种不同的CdS/ZnS量子点的混合组分作为待试验量子点原料;
同时,优选的,为了建立植物根表皮中不同量子点荧光强度与其对应浓度的标准曲线,本公开中是不同浓度的混合组分CdS/ZnS量子点溶液(量子点的总浓度和不同量子点的浓度均可进行调整)在相同条件下进行多组平行实验,从而获取相应的标准曲线和线性对应关系。
(b)对量子点涂覆后的模型植物根的表皮进行激光诱导纳秒时间分辨荧光光谱检测,得到相应的荧光光谱;
与植物叶片不同,植物根为圆柱形状。因此,在进行荧光测定,特别是在进行多组 植物根不同浓度混合组分CdS/ZnS量子点污染平行实验过程中,采用常规的固定手段,是难以保证每次所测定的植物根均处于同一位置,而这也会影响检测结果的准确性和重复性。
为了解决这一问题,本公开方法中特采用一种新型样品架,样品架的尺寸优选的为167.5mm×74.2mm×150.0mm(长×宽×高);
同时,样品架顶部的中心位置固定设置有带有毫米刻度的石英片(石英片可沿样品架轴线对称设置,并保持水平),其尺寸优选的为76.2mm×25.4mm×1.2mm(长×宽×高);
进一步的,将量子点污染暴露(量子点涂覆)后的模型植物根固定于石英片后,可以通过石英片上的刻度读数,对各次实验中植物根的位置进行调整,以保证多次实验中植物根样品均能够放置于相同的位置,保持各组实验条件相同,提高本公开方法的稳定性和可重复性。
以吸附于秋茄根样品上油酸(Oleic acid)-CdS/ZnS QDs为例,采用如上的样品架对根样品进行固定后,最大发射峰位置(λ ex=405nm,λ em=455nm)的荧光信号测定值的相对标准偏差(RSD)由10.26%降至2.63%(n=9),重现性显著提高,而该样品架的应用,也是本公开测定方法能够实现的重要原因之一。
在将量子点涂覆后的模型植物根在石英片上固定后,优选的还要调整光线探头位置,使其与样品根的距离保持在4.0mm左右;
然后,在物镜为0X/0.8和40X/0.65DIC干镜;延迟时间为30ns;循环次数为24次;激发光波长为405nm;脉冲频率为40MHz;单次信号累积时间为5.00s;图像分辨率为256×256像素;像素尺寸为49.7nm的检测条件下,进行荧光光谱(激光诱导纳秒时间分辨荧光光谱)检测,并得到不同量子点对应的荧光光谱。
接着,将油酸-CdS/ZnS量子点、PEG-COOH-CdS/ZnS量子点,以及MPA-COOH-CdS/ZnS量子点的荧光光谱绘制到同一张等高线图(可以利用origin等软件完成)中,选择基体荧光信号相同的扫描路径,对荧光光谱(激光诱导纳秒时间分辨 荧光光谱)进行扫描,然后,通过计算(例如程序或者人工计算等)得出导数荧光光谱;
然后,根据实验中混合组分量子点施用浓度和对应计算得到的荧光强度数据,建立植物根表皮中不同量子点荧光强度与浓度的标准曲线。
由如上本公开检测方法步骤可知,本公开中所提供的,是将激光诱导纳秒时间分辨荧光光谱和导数荧光光谱联合使用的一种恒基体导数纳秒时间分辨荧光光谱原位分析方法。
同时,通过如上的(a)、(b)步骤,能够建立测定植物根表皮混合组分油酸-CdS/ZnS QDs,PEG-COOH-CdS/ZnS QDs和MPA-COOH-CdS/ZnS QDs等的恒基体导数纳秒时间分辨荧光光谱原位分析方法的实验体系,而通过采用该体系可以进行待检测植物根部表皮中所吸附的上述三种或者其他更多种量子点的浓度;
同样的,通过对于实验所用量子点的调整,也可以建立用以以其他类型的量子点浓度检测的恒基体导数纳秒时间分辨荧光光谱原位分析方法的实验体系,并进行相应量子点在植物根部吸附浓度的测定。
待检测植物根中吸附量子点浓度的检测方法步骤可参考如下:
(c)将待检测植物根部洗净,选择模型植物相同的根部区域(即带有分生区和生根区的主根,尺寸为0.5cm×2.0cm左右);
然后,按照模型植物相同的处理方法,在本公开所提供的样品架上进行植物根固定,并使其固定位置与模型植物相同;
接着,进行激光诱导纳秒时间分辨荧光光谱检测,得到相应的荧光光谱;
然后将不同量子点的荧光光谱以基体荧光信号相同的路径进行扫描,得到导数荧光光谱,并根据标准曲线得出待检测植物根表皮组织中对应量子点的浓度。
实验例1
采集广西北海山口红树林保护区(24°36′N,118°14′E)的秋茄胚轴及购买的小麦(Triticum acstivnm L.)种子。样品用自来水冲洗三次后,自然晾干,置于恒温光照培 养箱,沙培种植6个月。培养条件为:光照强度:200μmol/m 2s 1;光照/黑暗循环时间:14/10h;温度:298.15±1K;湿度:70%。
用蒸馏水清洗小麦幼苗(Triticum acstivnm L.)和秋茄根3次,以除去沙石、沉淀物和淤泥等杂物,自然风干后,选择含有分生区和伸长区的的主根,大小为0.5cm×2.0cm(直径×长度)。
使用20μL微量移液器将不同浓度油酸-CdS/ZnS QDs,PEG-COOH-CdS/ZnS QDs和MPA-COOH-CdS/ZnS QDs的丙酮溶液缓慢涂覆至秋茄或小麦根样品。
将不同浓度的CdS/ZnS QDs污染暴露后的植物根样品置于样品架的石英片上,调整光纤探头位置使之在植物根样品中心正上方4.0mm左右。随后,采用上述激光诱导纳秒时间分辨荧光光谱仪的仪器条件原位测定植物根表皮油酸-CdS/ZnS QDs,PEG-COOH-CdS/ZnS QDs和MPA-COOH-CdS/ZnS QDs的相关荧光光谱(n=9)。
将三者的荧光光谱绘制到同一张等高线图中,选择基体(背景)荧光信号相同的扫描路径。最后,进行相应的纳秒时间分辨荧光光谱扫描,并获得相应的导数荧光光谱。
检测结果如下表1所示。
表1.本公开方法的分析特性
Figure PCTCN2018123239-appb-000001
a本方法的检出限计算方法为三倍的相对标准偏差除以斜率; b y代表的是植物根表皮中CdS/ZnS QDs的荧光强度值; c x代表的根表皮中CdS/ZnS QDs的含量
由表1检测结果数据可知,随着秋茄根表皮油酸-CdS/ZnS QDs,PEG-COOH-CdS/ZnS QDs和MPA-COOH-CdS/ZnSQDs混合组分浓度的升高,其相对荧光强度呈线性增加(R 2分别为:0.9922、0.9901和0.9915)。吸附于小麦(Triticum acstivnm L.)根表皮CdS/ZnS QDs混合组分结果与之类似。
进一步的,本公开所提供的检测方法中,原位测定吸附于秋茄和小麦(Triticum acstivnm L.)根表皮油酸-CdS/ZnS QDs,PEG-COOH-CdS/ZnS QDs和MPA-COOH-CdS/ZnSQDs混合组分的线性范围分别为:油酸-CdS/ZnS QDs,28.9-1230ng/g和20.2-1350ng/g;PEG-COOH-CdS/ZnS QDs,41.3-1195ng/g和33.7-1180ng/g;MPA-COOH-CdS/ZnSQDs,35.8-1200ng/g和23.3-1285ng/g。
由此可见,本公开所提供的具备原位定量测定植物根表皮CdS/ZnS QDs混合组分的能力。
有关本公开检测方法的考察
(1)为验证所建所建方法测定植物根表皮CdS/ZnS QDs混合组分的分析特性,进行加标回收率实验,结果如下表2所示:
表2本公开方法的回收率
Figure PCTCN2018123239-appb-000002
由表2检测结果可知,植物根表皮油酸-CdS/ZnS QDs,PEG-COOH-CdS/ZnS QDs和MPA-COOH-CdS/ZnSQDs的加标回收率实验结果,三者在秋茄根表皮的回收率范围分 别为:91.3%、115.8%和92.6%,在小麦(Triticum acstivnm L.)根表皮的回收率分别为:93.2%、109.5%和94.7%。
(2)在实际环境中,油酸-CdS/ZnS QDs,PEG-COOH-CdS/ZnS QDs和MPA-COOH-CdS/ZnSQDs不仅通常以混合物形式存在,且不同区域植物根表皮吸附的油酸-CdS/ZnS QDs,PEG-COOH-CdS/ZnS QDs和MPA-COOH-CdS/ZnSQDs的比例存在显著差异。因此,为确保分析方法的准确度,需进行干扰实验,结果如表3所示。
表3本公开方法的干扰实验
Figure PCTCN2018123239-appb-000003
由如上表3实验结果可知,吸附于植物根的PEG-COOH-CdS/ZnS QDs和MPA-COOH-CdS/ZnSQDs的浓度固定于线性范围的中间浓度400.0ng/g,油酸-CdS/ZnS QDs的浓度变化对其测定无影响。其它两种物质亦存在该现象。
综合如上检测方法考察实验结果可知,本公开所建分析方法的回收率、灵敏度以及选择性均满足进行油酸-CdS/ZnS QDs,PEG-COOH-CdS/ZnS QDs和MPA-COOH-CdS/ZnSQDs混合组分在植物根表皮的赋存量的原位测定要求。
尽管已用具体实施例来说明和描述了本公开,然而应意识到,在不背离本公开的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本公开范围内的所有这些变化和修改。
工业实用性:
本公开方法中,将纳秒时间分辨的荧光光谱测试法与恒基体导数同步荧光光谱法结合使用,从而不仅能够有效消除植物根表自发荧光信号的干扰,同时也能够实现对于植物根表皮所吸附的混合组分量子点的原位定量分析,方法准确度高、稳定性好,而且回收率、选择性优异;同时,本公开方法不会对植物造成伤害,可以进行植物活体检测。

Claims (20)

  1. 一种定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法,其特征在于,所述方法包括:
    (a)将模型植物的根部清洗后干燥,然后,涂覆带有不同表面配体的混合组分CdS/ZnS量子点的溶液;
    (b)对量子点涂覆后的模型植物根的表皮进行激光诱导纳秒时间分辨荧光光谱检测,得到相应的荧光光谱;
    将不同量子点的荧光光谱以基体荧光信号相同的路径进行扫描,得到导数荧光光谱,并建立植物根表皮中不同量子点荧光强度与浓度的标准曲线。
  2. 根据权利要求1所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法,其特征在于,步骤(a)中,所述模型植物由植物胚轴和/或植物种子在无污染基质条件下培养得到。
  3. 根据权利要求2所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法,其特征在于,所述培养为沙培种植。
  4. 根据权利要求2或3所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法,其特征在于,所述培养在恒温光照培养箱中进行;
    其中,光照强度为200μmol/m 2·s,光照/黑暗循环时间为14/10h。
  5. 根据前述权利要求中任一项所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法,其特征在于,步骤(a)中,所述模型植物的根部为带有分生区和伸长区的主根。
  6. 根据前述权利要求中任一项所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法,其特征在于,步骤(a)中,带有不同表面配体的混合组分CdS/ZnS 量子点包括:带有油酸、巯基乙胺、PEG-COOH、PEG-NH 2、MPA-NH 2或者MPA-COOH配体的CdS/ZnS量子点中的至少两种。
  7. 根据前述权利要求中任一项所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法,其特征在于,步骤(b)中,还包括将量子点涂覆后的模型植物的根在样品架上定位固定后,再进行激光诱导纳秒时间分辨荧光光谱检测的步骤。
  8. 根据权利要求7所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法,其特征在于,所述样品架的顶部中心位置固定设置有带有刻度的石英片;
    其中,涂覆量子点后的模型植物的根固定于石英片上。
  9. 根据权利要求8所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法,其特征在于,所述样品架的尺寸为;(160~170)mm×(70~80)mm×(100~110)mm
    和/或,所述石英片的尺寸为:(75~80)mm×(23~26)mm×(1~2)mm。
  10. 根据前述权利要求中任一项所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法,其特征在于,激光诱导纳秒时间分辨荧光光谱检测的条件为:
    物镜0X/0.8和40X/0.65DIC干镜;延迟时间30ns;循环次数24次;激发光波长405nm;脉冲频率40MHz;单次信号累积时间5.00s;图像分辨率256×256像素;像素尺寸49.7nm。
  11. 根据前述权利要求中任一项所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法,其特征在于,所述模型植物是秋茄或小麦。
  12. 根据权利要求5所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法,其特征在于,所述主根的直径为约0.5cm,所述主根的长度为约2.0cm。
  13. 根据前述权利要求中任一项所述的定量测定植物根表皮组织中混合组分 CdS/ZnS量子点的方法,其特征在于,在步骤(a)中,所述混合组分CdS/ZnS量子点的溶液为所述混合组分CdS/ZnS量子点的丙酮溶液。
  14. 根据前述权利要求中任一项所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法,其特征在于,所述导数荧光光谱通过一下步骤获得:将所述混合组分CdS/ZnS量子点中的各个不同量子点的荧光光谱绘制到同一张等高线图中,优选地利用origin软件完成,以基体荧光信号相同的扫描路径对所述荧光光谱进行扫描,然后通过程序或人工计算。
  15. 根据权利要求7-9中任一项所述的定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法,其特征在于,在所述固定步骤后,还包括调整用于所述激光诱导纳秒时间分辨荧光光谱检测的光线探头位置,使所述光线探头与所述量子点涂覆后的模型植物的根的距离在约4.0mm。
  16. 一种定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法,其特征在于,包括:
    (1)对目标植物根的表皮进行激光诱导纳秒时间分辨荧光光谱检测,得到相应的荧光光谱;
    (2)根据预先建立的对应所述目标植物根的模型植物根表皮中不同量子点荧光强度与CdS/ZnS量子点浓度的标准曲线,由荧光光谱确定或读取所述目标植物根表皮组织中混合组分CdS/ZnS量子点浓度;
    其中所述标准曲线是通过权利要求1至15任一项所述的方法建立的。
  17. 根据权利要求16所述的方法,其特征在于,步骤(1)中,所述目标植物的根为带有分生区和伸长区的主根。
  18. 根据权利要求16或17所述的方法,其特征在于,所述目标植物根表皮组织中 混合组分CdS/ZnS量子包括:带有油酸、巯基乙胺、PEG-COOH、PEG-NH 2、MPA-NH 2或者MPA-COOH配体的CdS/ZnS量子点中的至少两种。
  19. 根据权利要求16-18中任一项所述的方法,其特征在于,步骤(1)中,还包括将目标植物的根在样品架上定位固定后,再进行激光诱导纳秒时间分辨荧光光谱检测的步骤;并且,所述样品架的顶部中心位置固定设置有带有刻度的石英片;
    其中,目标植物的根固定于所述石英片上。
  20. 根据权利要求16-19中任一项所述的方法,其特征在于,所述目标植物是秋茄或小麦。
PCT/CN2018/123239 2018-05-07 2018-12-24 定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法 WO2019214249A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810425344.5 2018-05-07
CN201810425344.5A CN108872169B (zh) 2018-05-07 2018-05-07 定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法

Publications (1)

Publication Number Publication Date
WO2019214249A1 true WO2019214249A1 (zh) 2019-11-14

Family

ID=64327136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123239 WO2019214249A1 (zh) 2018-05-07 2018-12-24 定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法

Country Status (2)

Country Link
CN (1) CN108872169B (zh)
WO (1) WO2019214249A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108872169B (zh) * 2018-05-07 2021-02-05 广西大学 定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030141459A1 (en) * 2002-01-30 2003-07-31 Hegazi Ezzat M. Method for characterization of petroleum oils using normalized time-resolved fluorescence spectra
CN101776601A (zh) * 2010-01-25 2010-07-14 泸州老窖集团有限责任公司 一种快速检测农药残留的方法
CN103472045A (zh) * 2013-09-22 2013-12-25 王雅娜 一种快速在线水体荧光仪
CN108872169A (zh) * 2018-05-07 2018-11-23 广西大学 定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010002939A2 (en) * 2008-06-30 2010-01-07 Life Technologies Corporation Methods for real time single molecule sequencing
CN101525668B (zh) * 2009-03-11 2013-11-06 中国人民解放军第三军医大学第一附属医院 量子点标记核酸探针及其制备方法和应用
CN101654715B (zh) * 2009-09-15 2012-04-25 中国科学院上海微系统与信息技术研究所 基于量子点共振能量转移检测hbv dna及单碱基突变的方法
CN101709261B (zh) * 2009-12-11 2013-06-19 香港城市大学深圳研究院 一种微流控微珠阵列芯片及其在病毒分析中的应用
CN102288765B (zh) * 2011-07-07 2013-12-04 清华大学深圳研究生院 一种基于量子点的免疫荧光检测氯霉素的方法及专用试剂盒
KR101387493B1 (ko) * 2012-05-30 2014-04-25 포항공과대학교 산학협력단 폭발물 검출용 센서 및 그 제조 방법
EP3105280A4 (en) * 2014-02-14 2017-12-27 The Arizona Board of Regents for and on behalf of Arizona State University Sulfur composites and polymeric materials from elemental sulfur
CN105363487A (zh) * 2015-12-16 2016-03-02 广西大学 一种分子印迹型多相类Fenton催化剂及其制备方法和应用
US10768154B2 (en) * 2016-03-21 2020-09-08 Colgate-Palmolive Company Ratiometric quantum dot-rhodamine B sensing compound and device made from the compound
CN106198474B (zh) * 2016-07-20 2018-10-16 郑州大学 一种汞离子检测试纸条及其使用方法
CN106566525A (zh) * 2016-09-27 2017-04-19 广西师范学院 葡萄糖基修饰量子点荧光探针的制备方法及其应用
CN106556584A (zh) * 2016-11-15 2017-04-05 广西师范学院 利用InP/ZnS QDs探针检测甲拌磷浓度的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030141459A1 (en) * 2002-01-30 2003-07-31 Hegazi Ezzat M. Method for characterization of petroleum oils using normalized time-resolved fluorescence spectra
CN101776601A (zh) * 2010-01-25 2010-07-14 泸州老窖集团有限责任公司 一种快速检测农药残留的方法
CN103472045A (zh) * 2013-09-22 2013-12-25 王雅娜 一种快速在线水体荧光仪
CN108872169A (zh) * 2018-05-07 2018-11-23 广西大学 定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, R.L. ET AL.: "Retention of CdS/ZnS quantum dots (QDs) on the root epidermis of woody plant and its implications by benzo[a]pyrene: evidence from the in situ synchronous nanosecond time-resolved fluorescence spectra method", J. AGRIC. FOOD. CHEM., vol. 66, no. 4, 4 January 2018 (2018-01-04), pages 814 - 821, XP055650757, DOI: 10.1021/acs.jafc.7b04258 *
YANG Y.-N., ET. AL.: "In situ determination of Phenanthrene adsorbed onto surface of mangrove leaves using a laser-induced nanosecond time-resolved fluorescence system", CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, vol. 41, no. 10, 31 October 2013 (2013-10-31), pages 1465 - 1469, XP055650763, DOI: 10.1016/S1872-2040(13)60687-8 *

Also Published As

Publication number Publication date
CN108872169A (zh) 2018-11-23
CN108872169B (zh) 2021-02-05

Similar Documents

Publication Publication Date Title
Buschmann et al. Imaging of the blue, green, and red fluorescence emission of plants: an overview
Aiginger et al. A method for quantitative X-ray fluorescence analysis in the nanogram region
Krystofova et al. Sunflower plants as bioindicators of environmental pollution with lead (II) ions
Hong et al. Sensitive and label-free liquid crystal-based optical sensor for the detection of malathion
Bulska et al. In Vivo Investigation of the Distribution and the Local Speciation of Selenium in Allium c epa L. by Means of Microscopic X-ray Absorption Near-Edge Structure Spectroscopy and Confocal Microscopic X-ray Fluorescence Analysis
CN106583747B (zh) 鱼精蛋白金纳米簇的制备及在模拟酶比色和荧光检测中的应用
Alvarez et al. Determination of calcium, potassium, manganese, iron, copper and zinc levels in representative samples of two onion cultivars using total reflection X-ray fluorescence and ultrasound extraction procedure
CN104914089A (zh) 用表面增强拉曼光谱对痕量混合物进行半定量分析的方法
US20170199123A1 (en) Detection method of heavy metal ions and sensor using the same
Ma et al. Transparent and flexible AuNSs/PDMS-based SERS substrates for in-situ detection of pesticide residues
Watmough et al. Development of solid calibration standards for trace elemental analyses of tree rings by laser ablation inductively coupled plasma-mass spectrometry
Modlitbová et al. Detail investigation of toxicity, bioaccumulation, and translocation of Cd-based quantum dots and Cd salt in white mustard
Li et al. In situ investigation of the mechanisms of the transport to tissues of polycyclic aromatic hydrocarbons adsorbed onto the root surface of Kandelia obovata seedlings
Taylor et al. Single-cell growth rates in photoautotrophic populations measured by stable isotope probing and resonance Raman microspectrometry
WO2019214249A1 (zh) 定量测定植物根表皮组织中混合组分CdS/ZnS量子点的方法
CN108020533B (zh) 基于石墨烯量子点的荧光淬灭法对植物根表吸附杂环多环芳香烃的原位活体定量分析方法
Holub et al. The potential of combining laser-induced breakdown spectroscopy and Raman spectroscopy data for the analysis of wood samples
Popa et al. Application of the laser technology on the effect of Cd phytotoxicity in the detection of NH3, C2H4, C2H5OH and CO2 biomolecules at Triticum aestivum plantlets
Ma et al. Using optimized particle imaging of micro-Raman to characterize microplastics in water samples
CN110836800B (zh) 对植物根际有效性硅分布进行二维可视化的方法
da Silva Monitoring photosynthesis by in vivo chlorophyll fluorescence: application to high-throughput plant phenotyping
Harskamp et al. Determining the fluxes of Tl+ and K+ at the root surface of wheat and canola using Tl (I) and K ion-selective microelectrodes
Tiwari et al. Precision phenotyping for mapping of traits for abiotic stress tolerance in crops
CN111812251B (zh) 一种测定植物地上部中三种典型季铵盐化合物的方法
Brennecke et al. Imaging the distribution of nutrient elements and the uptake of toxic metals in industrial hemp and white mustard with laser-induced breakdown spectroscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917982

Country of ref document: EP

Kind code of ref document: A1