WO2019214187A1 - 一种提高多叶砖砌体墙抗震性能的trc的加固方法 - Google Patents

一种提高多叶砖砌体墙抗震性能的trc的加固方法 Download PDF

Info

Publication number
WO2019214187A1
WO2019214187A1 PCT/CN2018/113890 CN2018113890W WO2019214187A1 WO 2019214187 A1 WO2019214187 A1 WO 2019214187A1 CN 2018113890 W CN2018113890 W CN 2018113890W WO 2019214187 A1 WO2019214187 A1 WO 2019214187A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
wall
brick masonry
improving
trc
Prior art date
Application number
PCT/CN2018/113890
Other languages
English (en)
French (fr)
Inventor
尹世平
荆磊
王菲
李世昌
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2019214187A1 publication Critical patent/WO2019214187A1/zh
Priority to ZA2019/07932A priority Critical patent/ZA201907932B/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • E04G23/0222Replacing or adding wall ties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Definitions

  • the invention relates to the technical field of repairing reinforcement and construction of masonry walls, in particular to a TRC reinforcement method for improving the seismic performance of multi-leaf brick masonry walls.
  • Brick masonry structure still occupies an important position in China's industrial and civil buildings, and many brick masonry structures have high historical and cultural values.
  • Masonry is a typical brittle material with high compressive strength, extremely low tensile and shear strength, and masonry structure made of masonry and mortar, resulting in poor overall performance. To the most serious damage. The lack of shear and bending capacity of brick masonry walls is one of the main reasons for the serious damage or even collapse of masonry structures during earthquakes.
  • Reinforcement is the main way to improve the seismic performance of masonry walls.
  • the main methods include reinforced concrete surface reinforcement, outsourced steel reinforcement, additional ring beams and structural columns. These methods lead to an increase in the self-weight of the structure, a reduction in the use space of the building, a complicated construction process, and durability.
  • FRP Fiber Reinforced Polymer/Plastic
  • ECC Engineered Cementitious Composite
  • the disadvantage of FRP is that epoxy resin is used as a base material, which has certain incompatibility with masonry materials, and has problems such as moisture permeability, fire resistance, durability, and the like.
  • ECC Engineered Cementitious Composite
  • the bond between the bricks in the thickness direction is the weak part of the entire reinforcement wall, which has an important influence on the reinforcement effect.
  • the synergistic force between the reinforcement material and the brick masonry wall must also be effectively guaranteed.
  • the object of the present invention is to overcome the deficiencies of the existing reinforcing materials and reinforcing technologies, and to provide a reinforcing method for reinforcing fiber woven mesh reinforced concrete with high efficiency and convenient construction for improving the seismic performance of the multi-leaf brick masonry wall.
  • the TRC reinforcement method for improving the seismic performance of the multi-leaf brick masonry wall of the present invention comprises the following steps:
  • the through-holes are arranged in a plum blossom shape, and the through-holes adjacent to the edge of the wall are 50-100 mm from the edge of the wall, and the distance between adjacent through-holes should be 300-500 mm.
  • the diameter of the through hole is slightly larger than the diameter of the FRP rib anchor to ensure that the FRP rib anchor can pass through.
  • the length of the FRP reinforcement bolt is greater than the thickness of the wall, and the final use length is determined according to the actual thickness of the reinforcement material to be subsequently implemented.
  • the high-performance concrete coated on the surface of the wall to be reinforced is made of Portland cement, grade I fly ash, silica fume, quartz sand and water; the ratio of each component of high performance concrete: 42.5 silicate 500kg/m 3 cement, 190kg/m 3 of grade I fly ash, 50kg/m 3 of silica fume, 800kg/m 3 of quartz sand with particle size of 0-0.6mm, quartz sand of 400kg/m 3 with particle size of 0.6-1.2mm , water 252kg / m 3 , polycarboxylic acid water reducing agent 4.0kg / m 3 .
  • chopped fibers In order to improve the ductility of high-performance concrete, 0.5% to 2% of chopped fibers are added to high-performance concrete.
  • the types of chopped fibers include: polyvinyl alcohol fiber, polyethylene fiber, carbon fiber, aramid fiber, alkali-resistant glass.
  • the FRP reinforcement bolt is a composite material formed by using a fiber or a fiber fabric as a reinforcement and a resin as a matrix, and the fiber type of the FRP reinforcement bolt includes: one of glass fiber, carbon fiber, basalt fiber or aramid fiber. kind.
  • the material of the fiber woven mesh comprises: carbon fiber, alkali-resistant glass fiber, steel fiber, basalt fiber, aramid fiber, polyethylene fiber, polyvinyl alcohol fiber or flax fiber.
  • the radial and weft woven material of the fiber woven mesh is woven from one or two different fibers.
  • the fiber woven mesh is applied to one side or both sides of the wall; if the fiber woven mesh is applied only to one side of the wall, the other side of the wall is corresponding according to the appearance requirements. deal with.
  • the TRC reinforcement method for improving the seismic performance of the multi-leaf brick masonry wall of the invention can effectively improve the shear resistance and the out-of-plane bending resistance of the multi-leaf brick masonry wall, improve the brittle fracture characteristics, and reduce the masonry.
  • it has the following advantages:
  • TRC uses cement-based materials as the matrix to avoid the incompatibility of the FRP-reinforced epoxy resin with the masonry material. At the same time, the TRC uses the fiber-woven mesh as a reinforcing material, which can improve the ECC reinforcement and low efficiency. ;
  • FIG. 1 is a schematic view showing the structure of a TRC-reinforced multi-leaf brick masonry wall of the present invention.
  • the TRC reinforcement method for the seismic performance of the high multi-leaf brick masonry wall of the present invention is as follows:
  • a plurality of through-holes are drilled in the wall to be reinforced by a drilling machine; the number of round holes is determined according to the actual situation on site.
  • the through hole is arranged in a plum blossom shape, and the through hole adjacent to the edge of the wall is 50-100 mm from the edge of the wall, and the distance between the adjacent through holes is 300-500 mm; It is larger than the diameter of the FRP rib anchor to ensure that the FRP rib anchor can pass through.
  • step 3 Remove the loose material on the surface of the wall to be reinforced, and clean the ash layer on the surface due to drilling to ensure the interface bonding between the reinforcing material and the wall; the loose material and ash layer on the wall surface may
  • the interface between the reinforcing material and the wall forms a weak area, so the purpose of step 3) is to ensure the interfacial bonding performance between the reinforcing material and the wall.
  • the high-performance concrete coated on the surface of the wall to be reinforced is made of Portland cement, grade I fly ash, silica fume, quartz sand and water, and the production process of high performance concrete : Select 42.2 Portland cement, stir 42.5 Portland cement, I grade fly ash, silica fume and quartz sand by mixer for 2 ⁇ 3 minutes according to mass ratio, stir evenly, add water to stir, then add polycarboxylic acid The water reducing agent is stirred for another 2 to 3 minutes.
  • the ratio of each component of high performance concrete 42.5 Portland cement 500kg/m 3 , I grade fly ash 190kg/m 3 , silica fume 50kg/m 3 , quartz sand with particle size 0 ⁇ 0.6mm 800kg/m 3 , quartz sand particle diameter of 0.6 ⁇ 1.2mm 400kg / m 3, water 252kg / m 3, polycarboxylate superplasticizer 4.0kg / m 3.
  • 0.5% to 2% of chopped fibers are added to high-performance concrete and stirred for 3 to 5 minutes.
  • Types of chopped fibers include one or more of polyvinyl alcohol fibers, polyethylene fibers, carbon fibers, aramid fibers, alkali-resistant glass fibers, basalt fibers, or polypropylene fibers.
  • the fiber woven mesh is epoxy immersed, and then the fiber woven mesh is passed through the FRP rib anchor on the surface of the wall, and laid on the surface of the high performance concrete. After the fiber woven mesh is finished, gently press it into the woven mesh.
  • High-performance concrete ensures that the fiber woven mesh and high-performance concrete can be in good contact to improve the interfacial bonding performance of the two; the purpose of passing the fiber woven mesh through the FRP rib anchor is to improve the integrity of the reinforcing material and the wall and the Force synergy, the reinforcement material has been guaranteed to fully exert its mechanical properties.
  • the FRP reinforcement bolt is a composite material formed by using a fiber or a fiber fabric as a reinforcement and a resin as a matrix, and the fiber type of the FRP reinforcement bolt includes: one of glass fiber, carbon fiber, basalt fiber or aramid fiber.
  • the material of the fiber woven mesh comprises: carbon fiber, alkali-resistant glass fiber, steel fiber, basalt fiber, aramid fiber, polyethylene fiber, polyvinyl alcohol fiber or flax fiber.
  • the radial and weft woven material of the fiber woven mesh is woven from one or two different fibers.
  • the fiber woven mesh is applied to one side or both sides of the wall; if the fiber woven mesh is applied only to one side of the wall, the other side of the wall is corresponding according to the appearance requirements. deal with;
  • the fiber woven mesh dipping is used to reduce the slip between the fiber filaments in the fiber bundle during the stress process, and at the same time improve the interfacial bonding performance between the fiber woven mesh and the high performance concrete. At the same time, the dipping improves the hardness of the fiber woven mesh, making the laying process more convenient and reducing the construction time.
  • the fiber woven mesh dipping process is: cutting the fiber woven mesh according to the required size and tiling it on the thin plate; uniformly spreading the configured epoxy resin on the fiber woven mesh, and then hanging it in a ventilated room after completion Dry it out.
  • the epoxy resin is prepared by mixing and stirring the epoxy resin, the curing agent and the diluent in a ratio of 1:1:0.5. The entire mixing process should be carried out indoors, taking care to ventilate and avoid direct sunlight.
  • the materials used in this construction method include:
  • Fiber woven mesh A continuous fiber coarse sand with high tensile strength and good corrosion resistance, and a fiber woven fabric made by a weaving technique.
  • the types of fiber woven mesh mainly include: carbon fiber, alkali-resistant glass fiber, steel fiber, basalt fiber, aramid fiber, polyethylene fiber, polyvinyl alcohol fiber, and flax fiber.
  • a braided fiber woven mesh in which the radial and weft directions are respectively woven from two different fibers can be selected.
  • High performance concrete The composition is cement, grade I fly ash, silica fume, quartz sand and water.
  • 0.5% to 2% of chopped fibers may be additionally added.
  • the types of chopped fibers include: polyvinyl alcohol fiber, polyethylene fiber, carbon fiber, aramid fiber, alkali-resistant glass fiber. , basalt fiber or polypropylene fiber.
  • FRP rib anchor is a composite material formed by using fiber or fiber fabric as reinforcement and resin as matrix. It is usually made by pultrusion with special mold.
  • the fiber types of FRP tendons include: glass fiber, carbon fiber, basalt fiber, and aramid fiber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Ceramic Engineering (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

一种提高多叶砖砌体墙抗震性能的TRC的加固方法,首先在待加固墙体钻取多个贯穿圆孔,用FRP筋锚杆穿过该贯穿圆孔;然后在待加固墙体表面涂抹高性能混凝土,对纤维编织网进行环氧树脂浸胶,在纤维编织网表面再涂抹一层高性能混凝土;若一层纤维编织网无法满足墙体抗震性能提升要求时,可铺设两层或两层以上的纤维编织网;湿水养护至所述高性能混凝土龄期。该加固方法提高了多叶砖砌体墙面内抗剪和墙面外抗弯性能,并有效提高了多叶砖砌体墙的整体性。

Description

一种提高多叶砖砌体墙抗震性能的TRC的加固方法 技术领域
本发明涉及砌体墙的修复加固和施工技术领域,具体涉及一种提高多叶砖砌体墙抗震性能的TRC的加固方法。
技术背景
砖砌体结构目前仍在我国工业与民用建筑中占有重要地位,且许多砖砌体结构具有较高的历史和文化价值。砌体属于典型的脆性材料,抗压强度较高,抗拉、抗剪强度极低,且砌体结构由砌块和砂浆砌筑而成,导致其整体性较差,在历次地震中均遭到最为严重的破坏。砖砌体墙抗剪和抗弯承载力不足是砌体结构在地震中发生严重破坏甚至倒塌的主要原因之一。
加固是提高砌体墙抗震性能的主要方式,主要方法包括钢筋混凝土面层加固法、外包型钢加固法、增设圈梁和构造柱等。这些方法存在导致结构自重增加,减少建筑使用空间、施工工序复杂、耐久性等问题。随着高性能材料的发展,高强、轻质、施工便捷的纤维增强材料,纤维增强复合材料(Fiber Reinforced Polymer/Plastic,简称FRP)和工程水泥基复合材料(Engineered Cementitious Composite,简称ECC)逐渐被应用于砌体结构加固领域。FRP的不足在于使用环氧树脂作为基体材料,与砌体材料产生一定不适应性,且存在不透湿性、耐火性、耐久性等方面的问题。ECC的不足在于基体中短切纤维呈乱向、随机分布,使得ECC加固的增强效率较低,尤其在砌体墙面外抗弯增强方面。
对于多叶砖砌体墙的加固,由于墙体厚度较大,厚度方向砖块之间的粘结是整个加固墙体的薄弱部位,对加固效果具有重要影响。同时,为提高加固措施的增强效率,加固材料与砖砌体墙之间的协同受力性也必须得到有效保证。
发明内容
技术问题:本发明的目的是要克服现有加固材料与加固技术存在的不足,提供一种提高多叶砖砌体墙抗震性能的增强效率高、施工便捷的纤维编织网增强混凝土的加固方法。
技术方案:本发明的提高多叶砖砌体墙抗震性能的TRC的加固方法,包括如下步骤:
1)根据被加固砖砌体墙的尺寸,利用钻孔机在待加固墙体钻取多个贯穿圆孔;
2)用FRP筋锚杆穿过所述的圆孔,并通过FRP材质的螺母在锚杆两端施加锚固力,使待加固墙体两端产生拉结效应,以提高多叶砖砌体墙的整体性;
3)去除待加固墙体表面发生松动的材料,清洗其表面因钻孔产生的灰层,以保证加固材料与墙体之间的界面粘结性能;
4)对待加固墙体表面进行润湿,然后在待加固墙体表面涂抹高性能混凝土,高性能混凝土的涂抹厚度应正好覆盖待加固墙体表面FRP材质的螺母;
5)对纤维编织网进行环氧树脂浸胶,然后将纤维编织网穿过墙体表面的FRP筋锚杆,铺设在高性能混凝土的表面,轻轻按压进入高性能混凝土,保证纤维编织网与高性能混凝土能够良好接触,以提高二者的界面粘结性能;
6)在所述纤维编织网表面再涂抹一层高性能混凝土;若一层纤维编织网无法满足墙体抗震性能提升要求时,可铺设两层或两层以上的纤维编织网;
7)湿水养护28天至所述高性能混凝土龄期。
所述贯穿圆孔呈梅花状布置,临近墙体边缘的贯穿圆孔距墙体边缘50~100mm,相邻贯穿圆孔之间的距离应为300~500mm。
所述贯穿圆孔孔径的选取略大于FRP筋锚杆的直径,保证FRP筋锚杆能正好穿过。
所述FRP筋锚杆的长度大于墙体厚度,其最终使用长度根据后续实施加固材料的实际厚度确定。
所述在待加固墙体表面涂抹的高性能混凝土由硅酸盐水泥、I级粉煤灰、硅灰、石英砂和水混合而成;高性能混凝土各组分的配比:42.5硅酸盐水泥500kg/m 3,I级粉煤灰190kg/m 3,硅灰50kg/m 3,粒径0~0.6mm的石英砂800kg/m 3,粒径0.6~1.2mm的石英砂400kg/m 3,水252kg/m 3,聚羧酸减水剂4.0kg/m 3
为提高高性能混凝土的延性,在高性能混凝土中掺加0.5%~2%的短切纤维,短切纤维的类型包括:聚乙烯醇纤维、聚乙烯纤维、碳纤维、芳纶纤维、耐碱玻璃纤维、玄武岩纤维或聚丙烯纤维中的一种或几种。
所述的FRP筋锚杆是以纤维或纤维织物为增强体,以树脂为基体所形成的复合材料,FRP筋锚杆的纤维类型包括:玻璃纤维、碳纤维、玄武纤维或芳纶纤维中的一种。
所述的纤维编织网的材料包括:碳纤维、耐碱玻璃纤维、钢纤维、玄武岩纤维、芳纶纤维、聚乙烯纤维、聚乙烯醇纤维或亚麻纤维。
所述纤维编织网的径向和纬向编织材料由一种或两种不同纤维编织而成。
根据墙体抗震性能的增强需求或其他实际情况,纤维编织网施加在墙体的一侧或两侧;若纤维编织网仅施加在墙体一侧,则墙体另一侧根据外观要求进行相应处理。
有益效果:本发明的提高多叶砖砌体墙抗震性能的TRC的加固方法,能有效提高多叶砖砌体墙面内抗剪和面外抗弯性能,改善其脆性破坏特征,降低砌体结构在地震中发生严重破坏甚至倒塌的风险,以减少地震带来的人员伤亡和财产损失。与现有加固材料和加固技术相比,具有如下优点:
1)TRC使用水泥基材料作为基体,可以避免FRP加固使用环氧树脂带来的与砌体材料的不适应性;同时,TRC使用纤维编织网作为增强材料,可以改善ECC加固增强效率低的不足;
2)通过在砖砌体墙上施加FRP筋锚杆,并在其上施加锚固力,使墙体两端产生拉结效应,可以有效提高多叶砖砌体墙的整体性;
3)通过将FRP筋锚杆伸长进入TRC加固层内部,可以有效增强TRC加固层与砖砌体墙的协同受力性,保证加固材料充分发挥其力学性能。
附图说明
图1是本发明的TRC加固多叶砖砌体墙的结构示意图。
具体实施方式
下面结合附图中的实施例对本发明作进一步的描述:
本发明的高多叶砖砌体墙抗震性能的TRC的加固方法,具体步骤如下:
1)根据被加固砖砌体墙的尺寸,利用钻孔机在待加固墙体钻取多个贯穿圆孔;圆孔的数量根据现场实际情况确定。所述贯穿圆孔呈梅花状布置,临近墙体边缘的贯穿圆孔距墙体边缘50~100mm,相邻贯穿圆孔之间的距离应为300~500mm;所述贯穿圆孔孔径的选取略大于FRP筋锚杆的直径,保证FRP筋锚杆能正好穿过。
2)用FRP筋锚杆穿过所述的圆孔,并通过FRP材质的螺母在锚杆两端施加锚固力,使待加固墙体两端产生拉结效应,以提高多叶砖砌体墙的整体性;所述FRP筋锚杆的长度大于墙体厚度,其最终使用长度根据后续实施加固材料的实际厚度确定。
3)去除待加固墙体表面发生松动的材料,清洗其表面因钻孔产生的灰层,以保证加固材料与墙体之间的界面粘结性能;墙体表面发生松动的材料和灰层可能导致加固材料与墙体之间的界面形成薄弱区域,因此步骤3)的目的是保证加固材料与墙体之间的界面粘结性能。
4)对待加固墙体表面进行润湿,以避免因墙体吸水导致高性能混凝土表面产生干缩裂缝,然后在待加固墙体表面涂抹高性能混凝土,高性能混凝土的涂抹厚度应正好覆盖待加固墙体表面FRP材质的螺母;所述在待加固墙体表面涂抹的高性能混凝土由硅酸盐水泥、I级粉煤灰、硅灰、石英砂和水混合而成,高性能混凝土的制作过程:选用42.2硅酸盐水泥,按质量比先将42.5硅酸盐水泥、I级粉煤灰、硅灰和石英砂用搅拌机搅拌2~3分钟,搅拌均匀后加入水搅拌,然后加入聚羧酸减水剂再搅拌2~3分钟。高性能混凝土各组分的配比:42.5硅酸盐水泥500kg/m 3,I级粉煤灰190kg/m 3,硅灰50kg/m 3,粒径0~0.6mm的石英砂800kg/m 3,粒径0.6~1.2mm的石英砂400kg/m 3,水252kg/m 3,聚羧酸减水剂4.0kg/m 3。为提高高性能混凝土的延性,在高性能混凝土中掺加0.5%~2%的短切纤维,再搅拌3~5分钟。短切纤维的类型包括:聚乙烯醇纤维、聚乙烯纤维、碳纤维、芳纶纤维、耐碱玻璃纤维、玄武岩纤维或 聚丙烯纤维中的一种或几种。
5)对纤维编织网进行环氧树脂浸胶,然后将纤维编织网穿过墙体表面的FRP筋锚杆,铺设在高性能混凝土的表面,纤维编织网铺设完成后,将其轻轻按压进入高性能混凝土,保证纤维编织网与高性能混凝土能够良好接触,以提高二者的界面粘结性能;将纤维编织网穿过FRP筋锚杆的目的是提高加固材料与墙体的整体性以及受力协同性,已保证加固材料充分发挥其力学性能。所述的FRP筋锚杆是以纤维或纤维织物为增强体,以树脂为基体所形成的复合材料,FRP筋锚杆的纤维类型包括:玻璃纤维、碳纤维、玄武纤维或芳纶纤维中的一种。所述的纤维编织网的材料包括:碳纤维、耐碱玻璃纤维、钢纤维、玄武岩纤维、芳纶纤维、聚乙烯纤维、聚乙烯醇纤维或亚麻纤维。
所述纤维编织网的径向和纬向编织材料由一种或两种不同纤维编织而成。
根据墙体抗震性能的增强需求或其他实际情况,纤维编织网施加在墙体的一侧或两侧;若纤维编织网仅施加在墙体一侧,则墙体另一侧根据外观要求进行相应处理;
所述的纤维编织网浸胶,是为了减少受力过程中纤维束内部纤维丝之间的滑移,同时提高纤维编织网与高性能混凝土之间的界面粘结性能。同时,浸胶提高了纤维编织网的硬度,使其铺设过程较为便捷,能减少施工时间。
纤维编织网浸胶过程为:按所需尺寸裁剪纤维编织网,并将其平铺在薄板上;将配置好的环氧树脂均匀涂抹在纤维编织网上,完成后将其悬空放置在通风的室内进行晾干。所述环氧树脂的制作过程:环氧树脂、固化剂、稀释剂按1:1:0.5的比例进行充分混合搅拌。整个搅拌过程应在室内进行,注意通风且避免阳光直射。
6)在所述纤维编织网表面再涂抹一层高性能混凝土,高性能混凝土的涂抹厚度为2~3mm,若一层纤维编织网无法满足墙体抗震性能提升要求时,可铺设两层或两层以上的纤维编织网;在涂抹最后一层高性能混凝土时,若所述FRP筋锚杆外露长度较长,为满足外观要求,适当剪去多余的FRP筋锚杆。
7)湿水养护28天至所述高性能混凝土龄期。
该施工方法中使用的材料包括:
1.纤维编织网:将抗拉强度高、耐腐蚀性好的连续纤维粗砂,通过编织技术制成的纤维纺织物。纤维编织网的类型主要包括:碳纤维、耐碱玻璃纤维、钢纤维、玄武岩纤维、芳纶纤维、聚乙烯纤维、聚乙烯醇纤维、亚麻纤维。此外,可选取径向和纬向分别由两种不同纤维编织而成的混编纤维编织网。
2.高性能混凝土:成分为水泥、I级粉煤灰、硅灰、石英砂和水。此外,为提高高性能混凝土的延性,可以额外掺加0.5%~2%的短切纤维,短切纤维的类型包括:聚乙烯醇纤维、 聚乙烯纤维、碳纤维、芳纶纤维、耐碱玻璃纤维、玄武岩纤维或聚丙烯纤维等。
3.FRP筋锚杆:FRP筋锚杆是以纤维或纤维织物为增强体,以树脂为基体所形成的复合材料,通常利用特殊模具经拉挤制作而成。FRP筋锚杆的纤维类型主要包括:玻璃纤维、碳纤维、玄武纤维、芳纶纤维。

Claims (10)

  1. 一种提高多叶砖砌体墙抗震性能的TRC的加固方法,其特征在于,包括如下步骤:
    1)根据被加固砖砌体墙的尺寸,利用钻孔机在待加固墙体钻取多个贯穿圆孔;
    2)用FRP筋锚杆穿过所述的圆孔,并通过FRP材质的螺母在锚杆两端施加锚固力,使待加固墙体两端产生拉结效应,以提高多叶砖砌体墙的整体性;
    3)去除待加固墙体表面发生松动的材料,清洗其表面因钻孔产生的灰层,以保证加固材料与墙体之间的界面粘结性能;
    4)对待加固墙体表面进行润湿,然后在待加固墙体表面涂抹高性能混凝土,高性能混凝土的涂抹厚度应正好覆盖待加固墙体表面FRP材质的螺母;
    5)对纤维编织网进行环氧树脂浸胶,然后将纤维编织网穿过墙体表面的FRP筋锚杆,铺设在高性能混凝土的表面,轻轻按压进入高性能混凝土,保证纤维编织网与高性能混凝土能够良好接触,以提高二者的界面粘结性能;
    6)在所述纤维编织网表面再涂抹一层高性能混凝土;若一层纤维编织网无法满足墙体抗震性能提升要求时,可铺设两层或两层以上的纤维编织网;
    7)湿水养护28天至所述高性能混凝土龄期。
  2. 根据权利要求1所述的一种提高多叶砖砌体墙抗震性能的TRC的加固方法,其特征在于:所述贯穿圆孔呈梅花状布置,临近墙体边缘的贯穿圆孔距墙体边缘50~100mm,相邻贯穿圆孔之间的距离应为300~500mm。
  3. 根据权利要求1所述的一种提高多叶砖砌体墙抗震性能的TRC的加固方法,其特征在于:所述贯穿圆孔孔径的选取略大于FRP筋锚杆的直径,保证FRP筋锚杆能正好穿过。
  4. 根据权利要求1所述的一种提高多叶砖砌体墙抗震性能的TRC的加固方法,其特征在于:所述FRP筋锚杆的长度大于墙体厚度,其最终使用长度根据后续实施加固材料的实际厚度确定。
  5. 根据权利要求1所述的一种提高多叶砖砌体墙抗震性能的TRC的加固方法,其特征在于:所述在待加固墙体表面涂抹的高性能混凝土由硅酸盐水泥、I级粉煤灰、硅灰、石英砂和水混合而成;高性能混凝土各组分的配比:42.5硅酸盐水泥500kg/m 3,I级粉煤灰190kg/m 3,硅灰50kg/m 3,粒径0~0.6mm的石英砂800kg/m 3,粒径0.6~1.2mm的石英砂400kg/m 3,水252kg/m 3,聚羧酸减水剂4.0kg/m 3
  6. 根据权利要求1所述的一种提高多叶砖砌体墙抗震性能的TRC的加固方法,其特征在于:为提高高性能混凝土的延性,在高性能混凝土中掺加0.5%~2%的短切纤维,短切纤维的类型包括:聚乙烯醇纤维、聚乙烯纤维、碳纤维、芳纶纤维、耐碱玻璃纤维、玄武岩纤维或聚丙烯纤维中的一种或几种。
  7. 根据权利要求1所述的一种提高多叶砖砌体墙抗震性能的TRC的加固方法,其特征在于:所述的FRP筋锚杆是以纤维或纤维织物为增强体,以树脂为基体所形成的复合材料,FRP筋锚杆的纤维类型包括:玻璃纤维、碳纤维、玄武纤维或芳纶纤维中的一种。
  8. 根据权利要求1所述的一种提高多叶砖砌体墙抗震性能的TRC的加固方法,其特征在于:所述的纤维编织网的材料包括:碳纤维、耐碱玻璃纤维、钢纤维、玄武岩纤维、芳纶纤维、聚乙烯纤维、聚乙烯醇纤维或亚麻纤维。
  9. 根据权利要求1所述的一种提高多叶砖砌体墙抗震性能的TRC的加固方法,其特征在于:所述纤维编织网的径向和纬向编织材料由一种或两种不同纤维编织而成。
  10. 根据权利要求1所述的一种提高多叶砖砌体墙抗震性能的TRC的加固方法,其特征在于:根据墙体抗震性能的增强需求或其他实际情况,纤维编织网施加在墙体的一侧或两侧;若纤维编织网仅施加在墙体一侧,则墙体另一侧根据外观要求进行相应处理。
PCT/CN2018/113890 2018-05-07 2018-11-05 一种提高多叶砖砌体墙抗震性能的trc的加固方法 WO2019214187A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2019/07932A ZA201907932B (en) 2018-05-07 2019-11-28 Trc reinforcement method for improving anti-earthquake performance of multi-piece brick masonry wall

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810428133.7A CN108532981A (zh) 2018-05-07 2018-05-07 一种提高多叶砖砌体墙抗震性能的trc的加固方法
CN201810428133.7 2018-05-07

Publications (1)

Publication Number Publication Date
WO2019214187A1 true WO2019214187A1 (zh) 2019-11-14

Family

ID=63475649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113890 WO2019214187A1 (zh) 2018-05-07 2018-11-05 一种提高多叶砖砌体墙抗震性能的trc的加固方法

Country Status (3)

Country Link
CN (1) CN108532981A (zh)
WO (1) WO2019214187A1 (zh)
ZA (1) ZA201907932B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108532981A (zh) * 2018-05-07 2018-09-14 中国矿业大学 一种提高多叶砖砌体墙抗震性能的trc的加固方法
CN108999424A (zh) * 2018-09-28 2018-12-14 浙江省东阳市横店园林古典建筑公司 加强墙体结构强度的构造方法
CN111764682A (zh) * 2020-07-09 2020-10-13 江苏华源建筑设计研究院股份有限公司 一种减少工业建筑外墙裂缝的墙体加固方法
CN112482817A (zh) * 2020-12-03 2021-03-12 武汉大学 Frp/高延性高渗透混凝土双向加固受损钢筋混凝土板及其制备方法
CN113216672B (zh) * 2021-05-24 2022-02-15 陕西省建筑科学研究院有限公司 一种玄武岩纤维混凝土加固砌体结构房屋的施工方法
CN114575620A (zh) * 2022-04-13 2022-06-03 中建八局第三建设有限公司 用于砌体加固的免支模配筋高延性混凝土施工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071377A (ja) * 2001-08-31 2003-03-11 Nippon Steel Composite Co Ltd コンクリート補強用frp格子材の付着性強化方法、コンクリート補強用frp格子材、及びコンクリート構造物の補強方法
US20130008111A1 (en) * 2011-07-05 2013-01-10 City University Of Hong Kong Construction Structure and Method of Making Thereof
CN203066505U (zh) * 2013-01-31 2013-07-17 江苏龙坤集团有限公司 一种砌体结构加固墙
CN106760207A (zh) * 2016-12-16 2017-05-31 中国矿业大学 一种trc模板钢筋混凝土柱的制备方法
KR20170097525A (ko) * 2016-02-18 2017-08-28 한국교통대학교산학협력단 Frp 바와 목자재를 이용한 목조 건축물용 보수 공법
CN107311571A (zh) * 2017-07-26 2017-11-03 湖南东方红建设集团有限公司 纳米增强trc复合材料的制备方法
CN108532981A (zh) * 2018-05-07 2018-09-14 中国矿业大学 一种提高多叶砖砌体墙抗震性能的trc的加固方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8424835B2 (en) * 2008-04-03 2013-04-23 Paladin Industrial, Llc Method of supporting panel structures over concrete footings utilizing tie system for forming poured concrete walls
DE102012109950A1 (de) * 2012-10-18 2014-05-08 Hering Bau Gmbh & Co. Kg Verbundsystem zur Verstärkung von Bauteilen
CN207920142U (zh) * 2018-01-23 2018-09-28 西安建筑科技大学 一种砖砌体墙加固结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071377A (ja) * 2001-08-31 2003-03-11 Nippon Steel Composite Co Ltd コンクリート補強用frp格子材の付着性強化方法、コンクリート補強用frp格子材、及びコンクリート構造物の補強方法
US20130008111A1 (en) * 2011-07-05 2013-01-10 City University Of Hong Kong Construction Structure and Method of Making Thereof
CN203066505U (zh) * 2013-01-31 2013-07-17 江苏龙坤集团有限公司 一种砌体结构加固墙
KR20170097525A (ko) * 2016-02-18 2017-08-28 한국교통대학교산학협력단 Frp 바와 목자재를 이용한 목조 건축물용 보수 공법
CN106760207A (zh) * 2016-12-16 2017-05-31 中国矿业大学 一种trc模板钢筋混凝土柱的制备方法
CN107311571A (zh) * 2017-07-26 2017-11-03 湖南东方红建设集团有限公司 纳米增强trc复合材料的制备方法
CN108532981A (zh) * 2018-05-07 2018-09-14 中国矿业大学 一种提高多叶砖砌体墙抗震性能的trc的加固方法

Also Published As

Publication number Publication date
CN108532981A (zh) 2018-09-14
ZA201907932B (en) 2021-04-28

Similar Documents

Publication Publication Date Title
WO2019214187A1 (zh) 一种提高多叶砖砌体墙抗震性能的trc的加固方法
JP4368796B2 (ja) 無機マトリックス布装置及び方法
WO2021003860A1 (zh) 一种可拼装永久性模板叠合frp筋海水海砂再生混凝土梁及其制作方法
Lövgren Fibre-reinforced Concrete for Industrial Construction–a fracture mechanics approach to material testing and structural analysis
Löfgren Fibre-reinforced concrete for industrial construction
Kaur et al. Different types of Fibres used in FRC.
CN105781141A (zh) 一种用于混凝土受弯构件加固的纤维编织网增强水泥基复合板材及其制作方法
CN102889003B (zh) 一种砖砌体墙增设构造柱的方法
Swamy et al. Fibre Reinforced Cement and Concretes: Recent Developments
CN107311571A (zh) 纳米增强trc复合材料的制备方法
JP5608225B2 (ja) セメント系モルタルおよび建物構造体の改良された補強方法
CN102912893B (zh) 一种高延性纤维混凝土组合砌块砌体墙及其施工方法
WO1999003796A1 (fr) Materiau de renforcement, procede de production associe, procede de renforcement/reparation a l'aide de ce materiau, structure de renforcement/reparation, et element structurel
Greco et al. A novel biocomposite material for sustainable constructions: Metakaolin lime mortar and Spanish broom fibers
Tomaževič et al. Seismic strengthening of stone masonry walls with polymer coating
CN102912892A (zh) 一种高延性纤维混凝土组合砖砌体墙及其施工方法
Lyngkhoi et al. Use of steel wire mesh for compressive strength enhancement of AAC masonry wall
CN211572710U (zh) 一种砌体砖柱的预制高延性混凝土加固装置
RU88372U1 (ru) Композитная арматура "астрофлекс" (варианты)
Lanivschi State of the art for strengthening masonry with fibre reinforced polymers
CN102889004B (zh) 一种砖砌体墙增设圈梁的方法
JP5918094B2 (ja) 硬化型セメント系複合材料を用いた補修工法
Garbin et al. Experimental characterization of glass and carbon FRCMs for masonry retrofitting
KR102236651B1 (ko) 무기계 세라믹 시트를 복층으로 접착하고 보강한 기둥과 바닥면, 보강한 기둥과 슬라브를 고탄성 보강꺽쇠를 이용하여 앙카로 고정하는 보강꺽쇠 일체형 내진보강공법
Čejka et al. Grouting methods for the rehabilitation and reinforcement of masonry structures damaged by cracks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918175

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18918175

Country of ref document: EP

Kind code of ref document: A1