WO2019214137A1 - 一种基于环阵探头的经颅多普勒系统 - Google Patents
一种基于环阵探头的经颅多普勒系统 Download PDFInfo
- Publication number
- WO2019214137A1 WO2019214137A1 PCT/CN2018/107227 CN2018107227W WO2019214137A1 WO 2019214137 A1 WO2019214137 A1 WO 2019214137A1 CN 2018107227 W CN2018107227 W CN 2018107227W WO 2019214137 A1 WO2019214137 A1 WO 2019214137A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ring
- array probe
- probe
- transcranial
- array
- Prior art date
Links
- 239000000523 sample Substances 0.000 title claims abstract description 130
- 230000003727 cerebral blood flow Effects 0.000 claims abstract description 30
- 238000001228 spectrum Methods 0.000 claims abstract description 7
- 235000012431 wafers Nutrition 0.000 claims description 51
- 238000002604 ultrasonography Methods 0.000 claims description 27
- 238000007917 intracranial administration Methods 0.000 claims description 17
- 239000013078 crystal Substances 0.000 claims description 10
- 230000005540 biological transmission Effects 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 5
- 230000001934 delay Effects 0.000 abstract description 7
- 238000001514 detection method Methods 0.000 abstract description 6
- 230000002708 enhancing effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 6
- 208000006011 Stroke Diseases 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 238000013016 damping Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000002490 cerebral effect Effects 0.000 description 2
- 208000026106 cerebrovascular disease Diseases 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 238000009560 cranial ultrasound Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011982 device technology Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 210000003625 skull Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/06—Measuring blood flow
Definitions
- the present application relates to the field of medical device technology, and in particular to a transcranial Doppler system based on a ring array probe.
- Stroke is the first factor that causes Chinese death.
- the use of safe and effective equipment for the diagnosis of patients with cerebrovascular disease and screening for people at high risk of stroke has an urgent need.
- the existing color Doppler ultrasound diagnostic equipment (TCCD) has clear diagnostic images of intracranial blood vessels and high resolution, but the detection rate is low due to the huge attenuation of the ultrasound on the skull, and the operation is difficult, and the dependence on personnel or equipment. Strong.
- Ultrasound transcranial Doppler (TCD) detection rate is high, but there is no two-dimensional image, the operation is blind, and the personnel dependence is strong.
- DSA is the gold standard for cerebrovascular disease detection.
- CTA is more commonly used, but it has radiation, invasive, contrast agent, not suitable for multiple detection, and no blood flow dynamic data. It has limited clinical application and high cost. It is not suitable for Continuous monitoring, efficacy evaluation, and regular follow-up of stroke patients.
- the present application aims to provide a transcranial Doppler system based on a ring array probe.
- a transcranial Doppler system based on a ring array probe comprising a ring array probe, a transcranial ultrasound acquisition device and a host computer; the ring array probe is connected to the transcranial ultrasound acquisition device, the transcranial ultrasound The acquisition device is connected to the upper computer; the ring array probe generates an ultrasonic signal to the intracranial and transmits an echo signal of the ultrasonic signal to the transcranial ultrasonic acquisition device; the transcranial ultrasonic acquisition device according to the The echo signal acquires cerebral blood flow data, and sends the cerebral blood flow data to the upper computer; the upper computer generates a cerebral blood flow spectrum image according to the cerebral blood flow data.
- the ring array probe-based transcranial Doppler system wherein the ring array probe comprises a housing and an annular array element disposed in the housing, the annular array element for focusing on intracranial emission A depth ultrasonic signal is set and an echo signal of the ultrasonic signal is received.
- the circular array probe-based transcranial Doppler system wherein the annular array element comprises a plurality of annular array element crystals, wherein the plurality of annular array element crystals are arranged concentrically, and the outer diameters of the circular array element crystals are in accordance with The order of the distance from the center of the circle increases in order.
- the circular array probe-based transcranial Doppler system wherein the first annular array element crystals closest to the center of the circle in the plurality of annular array elements are circular, and the center of the first annular array element crystal The center of the concentric circles coincides.
- any two adjacent annular array elements in the plurality of annular array elements are not in contact with each other such that the annular array element has a disc structure.
- the circular array probe-based transcranial Doppler system wherein the array elements of the plurality of annular array elements are equal in area.
- the circular array probe-based transcranial Doppler system wherein a plurality of insulating layers are disposed in the housing, the plurality of insulating layers are alternately arranged with the plurality of annular array elements, and each insulating layer is arranged on both sides There are ring array wafers.
- the circular array probe-based transcranial Doppler system wherein the array element comprises five annular array element wafers, and the array element forms a ring array probe having a diameter of 15 mm.
- the ring array probe-based transcranial Doppler system wherein the ring array probe has a beam diameter of 2 mm to 3.5 mm in a depth range of 20 mm to 100 mm.
- the ring array probe-based transcranial Doppler system wherein the ring array probe is a ring array probe controlled by a mechanical device, and the ring array probe controlled by a mechanical device is detachably disposed on a head frame, And the ring array probe is worn on the head through the head frame such that the ring array probe is in contact with the head.
- the ring array probe-based transcranial Doppler system wherein the ring array probe includes a connection line, one end of the connection line is connected to the ring array probe, and the other end is provided with a connection port to pass the A connection port is coupled to the transcranial ultrasound acquisition device.
- the ring array probe-based transcranial Doppler system wherein the ring array probe further includes a handle, the handle is connected to the housing, and an outlet port is disposed thereon, and the connection line is provided with One end of the connection port passes through the outlet.
- the circular array probe-based transcranial Doppler system wherein the transcranial ultrasonic acquisition device is provided with a wireless communication device to be connected to the upper computer through the wireless communication device.
- the ring array probe-based transcranial Doppler system wherein the transcranial ultrasound acquisition device is provided with a USB interface and/or a network interface to connect the USB interface and/or the network interface with the upper computer.
- the ring array probe-based transcranial Doppler system wherein the transcranial ultrasound acquisition device is provided with a plurality of PW transmission/reception channels, the number of the plurality of PW transmission/reception channels being configured with the ring array probe
- the number of array elements is the same, and the PW transmit/receive channels are in one-to-one correspondence with the array elements.
- the present application provides a transmural Doppler system based on a ring array probe, which includes a ring array probe, a transcranial ultrasonic acquisition device, and a host computer; Transmitting an ultrasonic signal and transmitting the echo signal of the ultrasonic signal to a transcranial ultrasonic acquiring device; the transcranial ultrasonic collecting device extracts the echo signal and carries cerebral blood flow data, and the cerebral blood flow data Sending to the upper computer; the upper computer generates a three-dimensional cerebrovascular and/or three-dimensional cerebral blood flow image according to the cerebral blood flow data.
- the ring array probe of the present application sends different low frequency pulse signals to the intracranial, so that the low frequency pulse signals with different delays are focused at a preset depth, and the echo signals of the ultrasonic signals are received by focusing, so that the echo signals are enhanced and The accuracy of the echo signal improves the clarity and detection rate of the three-dimensional cerebrovascular and/or cerebral blood flow images.
- FIG. 1 is a structural schematic diagram of a transmural Doppler system based on a ring array probe provided by the present application.
- FIG. 2 is a schematic structural view of a ring array transducer in a ring array probe-based transcranial Doppler system provided by the present application.
- FIG. 3 is a schematic diagram of a perspective view of a ring array transducer in a ring array probe based transcranial Doppler system provided by the present application.
- FIG. 4 is a schematic diagram of another perspective view of a ring array transducer in a ring array probe based transcranial Doppler system provided by the present application.
- FIG. 5 is a schematic diagram of a perspective view of a ring array probe in an embodiment of a ring array probe-based transcranial Doppler system provided by the present application.
- FIG. 6 is a schematic diagram of another perspective view of a ring array probe in one embodiment of a ring array probe-based transcranial Doppler system provided by the present application.
- FIG. 7 is a schematic structural diagram of a ring array probe according to another embodiment of a ring array probe-based transcranial Doppler system provided by the present application.
- FIG. 8 is a schematic structural view of a ring array probe worn on a head according to another embodiment of a ring array probe-based transcranial Doppler system provided by the present application.
- the present application provides a transcranial Doppler system based on a ring array probe.
- a transcranial Doppler system based on a ring array probe.
- the embodiment provides a transcranial Doppler system based on a ring array probe, as shown in FIG. 1 , which includes a ring array probe 100, a transcranial ultrasonic acquisition device 200, and a host computer 300; the ring array probe 100 and The transcranial ultrasound acquisition devices 200 are coupled to form a signal acquisition branch, and the transcranial ultrasound acquisition device 200 is coupled to the upper computer 300 to form an image generation branch.
- the signal acquisition branch collects intracranial cerebral blood flow data, and transmits the cerebral blood flow data to an image generation branch, and the image generation branch generates a cerebral blood flow spectrum image according to the cerebral blood flow data.
- the present application collects intracranial cerebral blood flow data by using a mechanically controlled ring array probe that can focus at a preset depth in the brain, and scans the intracranial portion by focusing ultrasonic information, thereby enhancing the intensity of the echo. And precision, which can improve the clarity of the cerebral blood flow spectrum image.
- the ring array probe has the characteristics of small volume and low frequency, and can be easily worn on the head, and can realize three-dimensional scanning and long-time monitoring of intracranial cerebral blood vessels.
- the ring array probe 100 generates low-frequency pulse signals with different delays for intracranial, and the low-frequency pulse signals with different delays are focused within a preset depth range of the beam axial direction to perform intracranial pre-exposure by the focused ultrasonic signals.
- the depth range is scanned, and the echo signal of the focused ultrasonic signal is received.
- the ring array probe 100 transmits the received echo signal to a transcranial ultrasound acquisition device, and the transcranial ultrasound acquisition device receives and extracts the echo signal through the deployed PW transmission/reception channel to carry cerebral blood flow data. And transmitting the cerebral blood flow data to the upper computer.
- the host computer receives the cerebral blood flow data, and generates a cerebral blood flow spectrum image according to the cerebral blood flow data.
- the transcranial ultrasonic acquisition device has the same structure as the existing transcranial ultrasonic device, and the only difference is that the transcranial ultrasonic acquisition device is provided with a plurality of PW transmitting/receiving channels, and the number of the plurality of PW transmitting/receiving channels is
- the loop array probes have the same number of array element wafers, and the PW transmit/receive channels are connected to the annular array element wafers one by one, so that the ring array probes can be simultaneously received by the transcranial ultrasound apparatus
- the echo signal formed by the ultrasonic signal generated by the array element wafer is provided with a plurality of PW transmitting/receiving channels, and the number of the plurality of PW transmitting/receiving channels is
- the loop array probes have the same number of array element wafers, and the PW transmit/receive channels are connected to the annular array element wafers one by one, so that the ring array probes can be simultaneously received by the trans
- the transcranial ultrasonic acquisition device may be provided with one of a USB interface, a wired network interface, and a wireless module, and the configured communication mode communicates with the upper computer to improve the transcranial ultrasonic acquisition device and the upper computer.
- the upper computer is configured with a display interface, and displays the three-dimensional image through the display interface.
- the upper computer may be a PC, an iPad, a mobile terminal, or the like.
- the annular array element of the ring array probe 100 generates a low frequency pulse signal with different delays, and applies the low frequency pulse signal to the annular array element; the annular array element of the ring array probe receives the ultrasonic signal back
- the wave signal is sent to the transcranial ultrasound acquisition device.
- the ultrasonic signal generated by the annular array element is focused at a preset depth range to enable intracranial scanning by the focused ultrasonic signal.
- the annular array element of the ring array probe delays receiving the echo signal of the ultrasonic signal, and accumulates the received echo signals through an adder to obtain a focused echo signal.
- the ring array probe 100 includes a ring array transducer 110; the ring array transducer 110 includes a housing 111 and an annular array element 112.
- the housing 111 is a cylindrical structure having a receiving space, and the annular array element 112 is located in the receiving space.
- the annular array probe When the annular array probe is in contact with the head, the annular array element contacts the head and The intracranial ultrasound signal is emitted.
- a configuration layer 113 is disposed between the annular array element and the housing, and is fixed by the arrangement layer 113.
- the annular array element 112 includes a plurality of annular array elements, the plurality of annular array elements being arranged concentrically to form a disc structure.
- the outer diameters of the plurality of annular array wafers are sequentially increased in the order of arrangement, and the inner diameter of the annular array element wafers on the outer circumference of any two adjacent annular array wafers is larger than the outer array of annular array elements on the inner circumference.
- the diameters are matched such that any two adjacent annular array wafers are not in contact with each other.
- the first annular array wafer at the center of the disc structure has a circular structure, and the center of the first annular array wafer coincides with the center of the disc structure.
- the housing is further provided with a plurality of insulating layers, the plurality of insulating layers are alternately arranged with the plurality of annular array elements, and annular arrays are arranged on both sides of each insulating layer. Meta chip. That is, the insulating layers are respectively disposed between adjacent two annular array wafers to isolate two adjacent annular array wafers.
- the ring array probe may select 4-10 annular array elements, preferably including 5 annular array elements, which are respectively recorded as a first circular array element wafer, and a second circular array element wafer, A three-ring array wafer, a fourth annular array wafer, and a fifth annular array wafer.
- the first annular array element wafer, the second annular array element wafer, the third circular array element wafer, the fourth circular array element wafer and the fifth circular array element wafer are sequentially arranged in a concentric manner, wherein the first annular array element The wafer is circular, and the center of the first annular array wafer is a center of concentric circles, and the second annular array wafer is located at the periphery of the first annular array wafer and is concentric with the first annular array wafer, the third annular array wafer Located at the periphery of the second annular array wafer and concentric with the second annular array wafer, the fourth annular array wafer is located at the periphery of the third annular array wafer and is concentric with the third annular array wafer, and the fifth annular array wafer is located at the The periphery of the quadrangular array element wafer is concentric with the fourth annular array element wafer, and the first annular array element wafer, the second annular array element wafer, the
- the ring array probe may form a beam diameter of 2 mm to 3.5 in a preset depth range. Mm, wherein the outer diameter of the concentric annular array formed by the five array wafers having a diameter of 15 mm.
- Mm the outer diameter of the concentric annular array formed by the five array wafers having a diameter of 15 mm.
- it is a single wafer with a diameter (transverse resolution) of 6 mm and 4.5 mm (-6 dB bandwidth) at a beam with a frequency ranging from 1.6 MHz to 2.0 MHz and a depth range of 20 mm to 100 mm.
- the resolution of the near end or the far end is 10 mm or more.
- the ring array probe of the present application has a beam diameter ranging from 2 mm to 3.5 mm in the range of 1.6 MHz to 2.0 MHz and a depth ranging from 20 mm to 100 mm. It is about 1/3 of TCD, so that at the same low frequency/the same depth, the beam diameter of the ultrasonic wave emitted by the ring array probe is much smaller than the ultrasonic beam diameter emitted by the TCD probe, so that the accuracy and resolution of the three-dimensional image can be improved. rate.
- the outer diameter of the largest annular array element of the ring array probe can be increased (for example, 18 mm, etc.), so that the ultrasonic beam diameter generated by the array element can be better, thereby improving the echo. strength.
- the ring array probe 100 includes a connection line 130. One end of the connection line 130 is connected to the ring array probe 100, and the other end is provided with a connection port through which the connection port and the The cranial ultrasound acquisition device 200 is connected.
- the ring array probe 100 can be detachably coupled to the transcranial ultrasound acquisition device 200 to enable quick connection and disassembly of the ring array probe 100 and the transcranial ultrasound acquisition device 200.
- the connecting line 130 is disposed at an end of the housing 111 away from the annular array element, and the annular array element transmits an ultrasonic signal to the intracranial body, and receives an echo signal of the ultrasonic signal, and then The echo signal is transmitted to the transcranial ultrasound acquisition device through the connection line, so that the transcranial ultrasound acquisition device collects intracranial cerebral blood flow data.
- the ring probe 100 can also include a handle 140 for hand-held, the handle 140 being coupled to a cylindrical surface of the housing that is not provided with an opening.
- An end of the handle 140 that is in contact with the housing is provided with an inner hole extending away from the housing, and the handle is provided with an outlet port 150, and the inner hole is connected to the outlet port 150.
- the connecting line 130 is connected to the transcranial ultrasonic acquisition device 200 after passing through the inner hole and the outlet port 150, and the connection between the connecting line 130 and the housing 111 is located in the inner hole, The joint is protected by the wall of the bore of the inner bore.
- the ring array probe includes a probe box 120, the ring array transducer 110 is disposed in the probe box 120, and the probe box 120 is disposed There are two connecting rods and two stepping motors, the two connecting rods are respectively connected to the ring array transducer, and the two connecting rods are respectively connected with their corresponding stepping motors to pass the stepping motor And the connecting rod drives the ring array transducer to swing.
- the probe case may further be provided with an elastic damping component, the ring array transducer is fixed in the probe box by the elastic damping component, and the ring array transducer may be opposite to the probe The box swings.
- the connecting rod and the stepping motor are eccentrically disposed, and rotate with the rotation of the stepping motor, and the angle change of the ring array transducer on the elastic damping member can be pulled, so that The ring array transducer swings relative to the probe box.
- the two stepping motors are arranged orthogonally to drive the ring array transducer to swing by two orthogonal stepping motors to adjust the position and angle of the ring array transducer, thereby realizing control by mechanical means.
- the ring array probe automatically swings.
- three stepping motors and three connecting rods may be disposed in the probe box to drive the ring array transducers through the three stepping motors. Swing in the direction.
- the ring array probe 100 further includes a head frame 160.
- the probe box 120 is detachably disposed on the head frame 160, and the probe box 120 is worn by the head frame 160.
- the head is such that the loop probe is in contact with the head.
- the ring array probe can be worn on the head for a long time by the head frame 160 to realize three-dimensional scanning and long-time monitoring of the intracranial cerebral blood vessels.
- the ring array probe may further include a connection line, one end of the connection line is connected to the ring array transducer, and the other end is provided with a connection port to pass through the connection port and the transcranial ultrasonic acquisition device. Connected. In this way, the detachable connection between the ring array probe and the transcranial ultrasound acquisition device can be realized, and the convenience of using the ring array probe-based transcranial Doppler system improved by the present application is improved.
- the ring array probe may include a mechanical arm and a ring array transducer, and the ring array transducer is connected to the mechanical arm and controlled by the mechanical arm
- the ring array transducer moves, wherein the motion can be a swing, a move, or the like.
- the structure of the ring array transducer is the same as that of the above embodiment, and details are not described herein again.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Hematology (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
一种基于环阵探头的经颅多普勒系统,包括:环阵探头(100)、经颅超声采集装置(200)和上位机(300)。所述环阵探头(100)对颅内发射超声波信号,并将超声波信号的回波信号发送至经颅超声采集装置(200);所述经颅超声采集装置(200)根据回波信号获取脑血流数据,并将脑血流数据发送至上位机(300);所述上位机(300)根据脑血流数据生成脑血流频谱图像。该系统的环阵探头(100)向颅内发送延时不同的低频脉冲信号,使得延时不同的低频脉冲信号聚焦在预设深度,并通过聚焦接收回波信号,使得回波信号增强,增强了脑血流频谱图像的清晰度和检出率。
Description
本申请涉及医疗设备技术领域,特别涉及一种基于环阵探头的经颅多普勒系统。
脑卒中是导致中国人死亡的第一因数。采用安全有效的设备对脑血管病患者进行诊断及对脑卒中风险高危人群进行筛查,有迫切巨大的需求。现有彩色多普勒超声诊断设备(TCCD)对颅内血管的诊断图像清晰,分辨率高,但由于颅骨对超声的巨大衰减使得检出率低,操作难度大,对人员或设备的依赖性强。超声经颅多普勒(TCD)检出率高,但没有二维图像,操作为盲打,人员依赖性强。DSA是脑血管病变检测的金标准,CTA更常用,但有辐射、有创、需造影剂,不适合多次检测,且无血流动态数据,临床应用有局限,成本高,不适用于对脑卒中患者的连续监测、疗效评估和定期随访。
发明内容
针对现有技术的不足,本申请旨在提供一种基于环阵探头的经颅多普勒系统。
为了解决上述技术问题,本申请所采用的技术方案如下:
一种基于环阵探头的经颅多普勒系统,其包括环阵探头、经颅超声采集装置以及上位机;所述环阵探头与所述经颅超声采集装置相连接,所述经颅超声采集装置与所述上位机相连接;所述环阵探头对颅内发生超声波信号,并将所述超声波信号的回波信号发送至经颅超声采集装置;所述经颅超声采集装置根据所述回波信号获取脑血流数据,并将所述脑血流数据发送至上位机;所述上位机根据所述脑血流数据生成脑血流频谱图像。
所述基于环阵探头的经颅多普勒系统,其中,所述环阵探头包括壳体以及设置于所述壳体内的环形阵元,所述环形阵元用于向颅内发射聚焦于预设深度的超声波信号,并接收所述超声波信号的回波信号。
所述基于环阵探头的经颅多普勒系统,其中,所述环形阵元包括若干环形阵元晶体,所述若干环形阵元晶体呈同心圆布置,并各环形阵元晶体的外径按照距离圆心距离的顺序依次增大。
所述基于环阵探头的经颅多普勒系统,其中,所述若干环形阵元晶体中距离 圆心最近的第一环形阵元晶体为圆形,并且所述第一环形阵元晶体的圆心与同心圆的圆心重合。
所述基于环阵探头的经颅多普勒系统,其中,所述若干环形阵元晶体中任意相邻的两个环形阵元晶体相互不接触,以使得所述环形阵元呈圆盘结构。
所述基于环阵探头的经颅多普勒系统,其中,所述若干环形阵元晶体的阵元面积相等。
所述基于环阵探头的经颅多普勒系统,其中,所述壳体内设置有若干绝缘层,所述若干绝缘层与所述若干环形阵元晶片交替设置,并且各绝缘层两侧均布置有环形阵元晶片。
所述基于环阵探头的经颅多普勒系统,其中,所述所述阵元包括5个环形阵元晶片,并且所述阵元形成的环阵探头的直径为15mm。
所述基于环阵探头的经颅多普勒系统,其中,所述环阵探头在20mm至100mm的深度范围内的波束直径在2mm至3.5mm。
所述基于环阵探头的经颅多普勒系统,其中,所述环阵探头为利用机械装置控制的环阵探头,所述利用机械装置控制的环阵探头可拆卸的设置于一头架上,并通过所述头架将所述环阵探头戴于头部,以使得所述环阵探头与头部相接触。
所述基于环阵探头的经颅多普勒系统,其中,所述环阵探头包括连接线,所述连接线一端与所述环阵探头相连接,另一端设置有连接端口,以通过所述连接端口与所述经颅超声采集装置相连接。
所述基于环阵探头的经颅多普勒系统,其中,所述环阵探头还包括手柄,所述手柄与所述壳体相连接,并且其上设置有出线口,所述连接线设置有连接端口的一端穿过所述出线口。
所述基于环阵探头的经颅多普勒系统,其中,所述经颅超声采集装置设置有无线通讯装置,以通过所述无线通讯装置与上位机相连接。
所述基于环阵探头的经颅多普勒系统,其中,所述经颅超声采集装置设置有USB接口和/或网络接口,以使得所述USB接口和/或网络接口与上位机相连接。
所述基于环阵探头的经颅多普勒系统,其中,所述经颅超声采集装置设置有若干PW发射/接收通道,所述若干PW发射/接收通道的数量与所述环阵探头配置的阵元晶片数量相同,并且所述PW发射/接收通道接与所述阵元晶片一一对 应。
有益效果:与现有技术相比,本申请提供了一种基于环阵探头的经颅多普勒系统,其包括环阵探头、经颅超声采集装置以及上位机;所述环阵探头对颅内发射超声波信号,并将所述超声波信号的回波信号发送至经颅超声采集装置;所述经颅超声采集装置提取所述回波信号携带脑血流数据,并将所述脑血流数据发送至上位机;所述上位机根据所述脑血流数据生成三维脑血管和/或三维脑血流图像。本申请环阵探头向颅内发送延时不同的低频脉冲信号,使得延时不同的低频脉冲信号聚焦在预设深度,并通过聚焦接收所述超声波信号的回波信号,使得回波信号增强和回波信号的精度,提高了三维脑血管和/或脑血流图像的清晰度和检出率。
图1为本申请提供的基于环阵探头的经颅多普勒系统的结构原理图。
图2为本申请提供的基于环阵探头的经颅多普勒系统中环阵换能器的结构示意图。
图3为本申请提供的基于环阵探头的经颅多普勒系统中环阵换能器的一个视角的示意图。
图4为本申请提供的基于环阵探头的经颅多普勒系统中环阵换能器的另一个视角的示意图。
图5为本申请提供的基于环阵探头的经颅多普勒系统一个实施例中环阵探头的一个视角的示意图。
图6为本申请提供的基于环阵探头的经颅多普勒系统一个实施例中环阵探头的另一个视角的示意图。
图7为本申请提供的基于环阵探头的经颅多普勒系统另一个实施例中环阵探头的结构示意图。
图8为本申请提供的基于环阵探头的经颅多普勒系统另一个实施例中环阵探头佩戴于头部的结构示意图。
本申请提供一种基于环阵探头的经颅多普勒系统,为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
下面结合附图,通过对实施例的描述,对申请内容作进一步说明。
本实施例提供了一种基于环阵探头的经颅多普勒系统,如图1所示,其包括环阵探头100、经颅超声采集装置200以及上位机300;所述环阵探头100与所述经颅超声采集装置200相连接以形成信号采集支路,所述经颅超声采集装置200与所述上位机300相连接以形成图像生成支路。所述信号采集支路采集颅内脑血流数据,并将所述脑血流数据传输至图像生成支路,图像生成支路根据所述脑血流数据生成脑血流频谱图像。本申请通过利用机械控制的环阵探头采集颅内脑血流数据,所述环阵探头可以在颅内预设深度产生聚焦,通过聚焦超声波信息对颅内进行扫描,这样可以增强回波的强度和精度,从而可以提高脑血流频谱图像的清晰度。同时,所述环阵探头具有体积小频率低的特点,其可以方便佩戴于头部,可实现对颅内脑血管的三维扫描和长时间监控。
所述环阵探头100对颅内产生延时不同的低频脉冲信号,所述延时不同的低频脉冲信号在波束轴向的预设深度范围内聚焦,以通过聚焦后的超声波信号对颅内预设深度范围进行扫描,并接收聚焦后的超声波信号的回波信号。所述环阵探头100将接收到的回波信号发送至经颅超声采集装置,所述经颅超声采集装置通过其部署的PW发射/接收通道接收并提取所述回波信号携带脑血流数据,并将所述脑血流数据发送至上位机。所述上位机接收所述脑血流数据,并根据所述脑血流数据生成脑血流频谱图像。
所述经颅超声采集装置与现有的经颅超声装置结构相同,其不同点仅在于所述经颅超声采集装置设置有若干PW发射/接收通道,所述若干PW发射/接收通道的数量与所述环阵探头配置的阵元晶片数量相同,并且所述PW发射/接收通道接与所述环形阵元晶片一一对应,这样可以通过所述经颅超声装置同时接收所述环阵探头各阵元晶片产生的超声波信号形成的回波信号。此外,所述经颅超声采集装置可以设置有USB接口、有线网络接口以及无线模块中的一种,并且所述其配置的通讯方式与上位机进行通讯,以提高经颅超声采集装置与上位机连接 的灵活性。所述上位机配置有显示界面,并通过所述显示界面显示所述三维图像。在本实施例中,所述上位机可以为PC机、ipad以及移动终端等。
所述环阵探头100的环形阵元产生延时不同的低频脉冲信号,并将所述低频脉冲信号作用于所述环形阵元;所述环阵探头的环形阵元接收所述超声波信号的回波信号,并将所述回波信号发送至经颅超声采集装置。其中,所述环形阵元产生的超声波信号在预设深度范围聚焦,以实现通过聚焦的超声波信号对颅内进行扫描。所述环阵探头的环形阵元延时接收所述超声波信号的回波信号,并通过加法器对接收到的各回波信号进行累加,以得到聚焦回波信号。
如图2-4所示,所述环阵探头100包括环阵换能器110;所述环阵换能器110包括壳体111以及环形阵元112。所述壳体111为具有容纳空间的圆柱结构,所述环形阵元112位于所述容纳空间内,当环阵探头与头部相接触时,所述环形阵元与头部相接触,并向颅内发射超声波信号。此外,所述环形阵元与所述壳体之间设置有配置层113,并通过所述配置层113固定。
如图3-4所示,所述环形阵元112包括若干环形阵元晶片,所述若干环形阵元晶片呈同心圆布置以形成圆盘结构。所述若干环形阵元晶片的外径按照布置顺序依次增大,并且任意相邻的两个环形阵元晶片中位于外圈的环形阵元晶片的内径大于位于内圈的环形阵元晶片的外径相配合,以使得任意相邻的两个环形阵元晶片相互不接触。其中,位于所述圆盘结构中心的第一环形阵元晶片为圆形结构,并且所述第一环形阵元晶片的圆心与所述圆盘结构的中心重合。进一步,为了提高环阵探头各环形阵元晶片产生的超声波信号的强度的一致性,各环形阵元晶片沿垂直于中心线的方向的剖面的面积相等,即各环形阵元晶片的阵元面积相等。此外,为了避免各环形阵元晶片相同影响,所述壳体内还设置有若干绝缘层,所述若干绝缘层与所述若干环形阵元晶片交替设置,并且各绝缘层两侧均布置有环形阵元晶片。也就是说,所述各绝缘层分别设置于相邻两个环形阵元晶片之间,以隔离两个相邻的环形阵元晶片。
同时在本实施例中,所述环阵探头可选4-10个环形阵元晶片,优选包括5个环形阵元晶片,分别记为第一环形阵元晶片,第二环形阵元晶片,第三环形阵元晶片、第四环形阵元晶片以及第五环形阵元晶片。所述第一环形阵元晶片,第二环形阵元晶片,第三环形阵元晶片,第四环形阵元晶片以及第五环形阵元晶片 依次按同心圆方式排列,其中,第一环形阵元晶片为圆形,并且第一环形阵元晶片的圆心为同心圆的圆心,第二环形阵元晶片位于第一环形阵元晶片外围并与第一环形阵元晶片同心,第三环形阵元晶片位于第二环形阵元晶片外围并与第二环形阵元晶片同心,第四环形阵元晶片位于第三环形阵元晶片外围并与第三环形阵元晶片同心,第五环形阵元晶片位于第四环形阵元晶片外围并与第四环形阵元晶片同心,并且第一环形阵元晶片,第二环形阵元晶片,第三环形阵元晶片、第四环形阵元晶片以及第五环形阵元晶片的面积相等。此外,当所述5个阵元晶片构成的环阵探头的直径为15mm,预设深度范围为20mm至100mm范围时,所述环阵探头在预设深度范围形成的波束直径可以为2mm至3.5mm,其中,所述直径为15mm指的5个阵元晶片构成的同心形环阵的外径。相对于现有的TCD探头为单晶片,在频率为1.6MHz至2.0MHz,深度范围为20mm至100mm内波束方向的焦点处直径(横向分辨率)为6mm、4.5mm(-6dB带宽),在近端或远端的分辨率为10mm以上,本申请的环阵阵探头在频率为1.6MHz至2.0MHz,深度范围为20mm至100mm范围内的波束直径在2mm至3.5mm范围内变动,波束直径约为TCD的1/3,从而在同样低的频率/同样的深度情况下,环阵探头发射的超声波的波束直径比TCD探头发射的超声波波束直径小很多,从而可以提高三维图像的精度和分辨率。当然,在实际应用中,所述环阵探头的最大环形阵元晶片的外径可以增大(例如,18mm等),这样了可以使得阵元产生的超声波波束直径更好,从而提高回波的强度。
如图5所示,所述环阵探头100包括连接线130,所述连接线130一端与所述环阵探头100相连接,另一端设置有连接端口,以通过所述连接端口与所述经颅超声采集装置200相连接。这样所述环阵探头100可以与所述经颅超声采集装置200可拆卸连接,以使得环阵探头100与经颅超声采集装置200的可快速连接与拆卸。在本实施例中,所述连接线130设置于所述壳体111远离环形阵元的一端,所述环形阵元向颅内发射超声波信号,并接收所述超声波信号的回波信号,再将所述回波信号通过所述连接线发射至经颅超声采集装置,以使得所述经颅超声采集装置采集颅内的脑血流数据。
如图6所示,所述环阵探头100还可以包括用于手持的手柄140,所述手柄140与所述壳体未设置有开口的一个圆柱面相连接。所述手柄140与所述壳体相 接触的一端设置有向远离壳体的方向延伸的内孔,所述手柄上设置有出线口150,所述内孔与所述出线口150相连接。所述连接线130穿过所内孔和所述出线口150后与所述经颅超声采集装置200相连接,并且所述连接线130与所述壳体111连接处位于所述内孔内,以通过所述内孔的孔壁对所述连接处起到保护作用。
在本发明的一个实施例中,如图7所示,所述环阵探头包括探头盒120,所述环阵换能器110设置于所述探头盒120内,并且所述探头盒120内设置有两个连杆两个步进电机,所述两个连杆分别连接所述环阵换能器上,并且两个连杆分别与其对应的步进电机相连接,以通过所述步进电机以及连杆带动所述环阵换能器摆动。其中,所述探头盒内还可以设置有弹性阻尼部件,所述环阵换能器通过所述弹性阻尼部件固定于所述探头盒内,并且所述环阵换能器可以相对于所述探头盒摆动。在实际应用中,所述连杆与所述步进电机偏心设置,其随步进电机的转动而转动,可以拉动所述环阵换能器在所述弹性阻尼件上的角度变化,以使得所述环阵换能器相对于所述探头盒摆动。此外,所述两个步进电机呈正交设置,以通过两个正交的步进电机带动环阵换能器摆动以实现调节环阵换能器的位置和角度,从而实现利用机械装置控制环阵探头自动摆动。当然,在本实施例的变形实施例中,所述探头盒内可以设置有三个步进电机以及三个连杆,以通过所述三个步进电机带动所述环阵换能器在三个方向上摆动。
进一步,如图8所示,所述环阵探头100还包括头架160,所述探头盒120可拆卸设置于所述头架160上,并通过所述头架160将所述探头盒120佩戴于头部,以使得所述环阵探头与头部相接触。这样可以通过所述头架160将环阵探头长时间佩戴于头部,以实现对颅内脑血管的三维扫描和长时间监控。同时,所述环阵探头还可以包括连接线,所述连接线一端与所述环阵换能器相连接,另一端设置有连接端口,以通过所述连接端口与所述经颅超声采集装置相连接。这样可以实现环阵探头与经颅超声采集装置的可拆卸连接,提高了本申请提高的基于环阵探头的经颅多普勒系统使用的方便性。
另外,在本申请的再一个实施例中,所述环阵探头可以包括机械臂和环阵换能器,所述环阵换能器与所述机械臂相连接,并通过所述机械臂控制所述环阵换能器运动,其中,所述运动可以为摆动以及移动等。此外,所述环阵换能器的结构与上述实施例的结构相同,这里就不再赘述。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (15)
- 一种基于环阵探头的经颅多普勒系统,其特征在于,其包括环阵探头、经颅超声采集装置以及上位机;所述环阵探头与所述经颅超声采集装置相连接,所述经颅超声采集装置与所述上位机相连接;所述环阵探头对颅内发生超声波信号,并将所述超声波信号的回波信号发送至经颅超声采集装置;所述经颅超声采集装置根据所述回波信号获取脑血流数据,并将所述脑血流数据发送至上位机;所述上位机根据所述脑血流数据生成脑血流频谱图像。
- 根据权利要求1所述基于环阵探头的经颅多普勒系统,其特征在于,所述环阵探头包括壳体以及设置于所述壳体内的环形阵元,所述环形阵元用于向颅内发射聚焦于预设深度的超声波信号,并接收所述超声波信号的回波信号。
- 根据权利要求2所述基于环阵探头的经颅多普勒系统,其特征在于,所述环形阵元包括若干环形阵元晶体,所述若干环形阵元晶体呈同心圆布置,并各环形阵元晶体的外径按照距离圆心距离的顺序依次增大。
- 根据权利要求2所述基于环阵探头的经颅多普勒系统,其特征在于,所述若干环形阵元晶体中距离圆心最近的第一环形阵元晶体为圆形,并且所述第一环形阵元晶体的圆心与同心圆的圆心重合。
- 根据权利要求2所述基于环阵探头的经颅多普勒系统,其特征在于,所述若干环形阵元晶体中任意相邻的两个环形阵元晶体相互不接触,以使得所述环形阵元呈圆盘结构。
- 根据权利要求2所述基于环阵探头的经颅多普勒系统,其特征在于,所述若干环形阵元晶体的阵元面积相等。
- 根据权利要求2所述基于环阵探头的经颅多普勒系统,其特征在于,所述壳体内设置有若干绝缘层,所述若干绝缘层与所述若干环形阵元晶片交替设置,并且各绝缘层两侧均布置有环形阵元晶片。
- 根据权利要求2所述基于环阵探头的经颅多普勒系统,其特征在于,所述所述阵元包括5个环形阵元晶片,并且所述阵元形成的环阵探头的直径为15mm。
- [根据细则26改正09.11.2018]
根据权利要求8所述基于环阵探头的经颅多普勒系统,其特征在于,所述环阵探头在20mm至100mm的深度范围内的波束直径在2mm至3.5mm。 - 根据权利要求2所述基于环阵探头的经颅多普勒系统,其特征在于,所述环阵探头为利用机械装置控制的环阵探头,所述利用机械装置控制的环阵探头可拆卸的设置于一头架上,并通过所述头架将所述环阵探头戴于头部,以使得所述环阵探头与头部相接触。
- 根据权利要求2所述基于环阵探头的经颅多普勒系统,其特征在于,所述环阵探头包括连接线,所述连接线一端与所述环阵探头相连接,另一端设置有连接端口,以通过所述连接端口与所述经颅超声采集装置相连接。
- [根据细则26改正09.11.2018]
根据权利要求11所述基于环阵探头的经颅多普勒系统,其特征在于,所述环阵探头还包括手柄,所述手柄与所述壳体相连接,并且其上设置有出线口,所述连接线设置有连接端口的一端穿过所述出线口。 - 根据权利要求1所述基于环阵探头的经颅多普勒系统,其特征在于,所述经颅超声采集装置设置有无线通讯装置,以通过所述无线通讯装置与上位机相连接。
- 根据权利要求1所述基于环阵探头的经颅多普勒系统,其特征在于,所述经颅超声采集装置设置有USB接口和/或网络接口,以使得所述USB接口和/或网络接口与上位机相连接。
- 根据权利要求1所述基于环阵探头的经颅多普勒系统,其特征在于,所述经颅超声采集装置设置有若干PW发射/接收通道,所述若干PW发射/接收通道的数量与所述环阵探头配置的阵元晶片数量相同,并且所述PW发射/接收通道接与所述阵元晶片一一对应。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201820666744.0U CN209004039U (zh) | 2018-05-07 | 2018-05-07 | 一种基于环阵探头的经颅多普勒系统 |
CN201820666744.0 | 2018-05-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019214137A1 true WO2019214137A1 (zh) | 2019-11-14 |
Family
ID=66827906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/107227 WO2019214137A1 (zh) | 2018-05-07 | 2018-09-25 | 一种基于环阵探头的经颅多普勒系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN209004039U (zh) |
WO (1) | WO2019214137A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110215230B (zh) * | 2019-06-27 | 2021-11-26 | 深圳市德力凯医疗设备股份有限公司 | 一种双模态聚焦的环阵探头的制备方法及环阵探头 |
CN110448334A (zh) * | 2019-08-12 | 2019-11-15 | 云南中医药大学 | 一种血管成像的检测方法 |
CN110897655A (zh) * | 2019-12-10 | 2020-03-24 | 深圳大学 | 一种经颅超声成像方法、装置及计算机可读存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070016031A1 (en) * | 2000-11-28 | 2007-01-18 | Allez Physionix Limited | Systems and methods for making noninvasive assessments of cardiac tissue and parameters |
CN101313854A (zh) * | 2007-06-01 | 2008-12-03 | 深圳市德力凯电子有限公司 | 一种脑血流检测探头架的自动调节装置 |
CN102406511A (zh) * | 2010-09-21 | 2012-04-11 | 株式会社东芝 | 超声波探头及超声波诊断装置 |
CN102824190A (zh) * | 2012-09-24 | 2012-12-19 | 深圳大学 | 一种二维环型相控阵超声换能器结构 |
CN103284753A (zh) * | 2012-02-22 | 2013-09-11 | 香港理工大学 | 超声波成像系统及成像方法 |
CN103549977A (zh) * | 2013-11-05 | 2014-02-05 | 深圳大学 | 一种经颅多普勒平面环形相控阵探头 |
-
2018
- 2018-05-07 CN CN201820666744.0U patent/CN209004039U/zh active Active
- 2018-09-25 WO PCT/CN2018/107227 patent/WO2019214137A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070016031A1 (en) * | 2000-11-28 | 2007-01-18 | Allez Physionix Limited | Systems and methods for making noninvasive assessments of cardiac tissue and parameters |
CN101313854A (zh) * | 2007-06-01 | 2008-12-03 | 深圳市德力凯电子有限公司 | 一种脑血流检测探头架的自动调节装置 |
CN102406511A (zh) * | 2010-09-21 | 2012-04-11 | 株式会社东芝 | 超声波探头及超声波诊断装置 |
CN103284753A (zh) * | 2012-02-22 | 2013-09-11 | 香港理工大学 | 超声波成像系统及成像方法 |
CN102824190A (zh) * | 2012-09-24 | 2012-12-19 | 深圳大学 | 一种二维环型相控阵超声换能器结构 |
CN103549977A (zh) * | 2013-11-05 | 2014-02-05 | 深圳大学 | 一种经颅多普勒平面环形相控阵探头 |
Also Published As
Publication number | Publication date |
---|---|
CN209004039U (zh) | 2019-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11944500B2 (en) | Determining material stiffness using multiple aperture ultrasound | |
WO2019214127A1 (zh) | 一种经颅三维脑血管复合成像方法及系统 | |
JP7190590B2 (ja) | プログラム可能な生体構造及びフロー撮像を有する超音波撮像デバイス | |
WO2019214134A1 (zh) | 一种经颅三维脑血管成像方法及系统 | |
CN104620128B (zh) | 多孔径超声探头的校准 | |
JP5492091B2 (ja) | 複数の撮像トランスデューサアレイを含む超音波アセンブリに対するシステム | |
CN107613882B (zh) | 用于对生物组织结构进行成像的系统和方法 | |
CN107530060B (zh) | 用于对生物组织结构进行成像的系统和方法 | |
EP3329854B1 (en) | Three-dimensional imaging ultrasonic scanning method | |
WO2019214137A1 (zh) | 一种基于环阵探头的经颅多普勒系统 | |
JP2018531727A (ja) | 干渉分析器を含むボリューム領域の超音波画像を可変周波数で提供するための超音波システム | |
CN103549977A (zh) | 一种经颅多普勒平面环形相控阵探头 | |
KR20080093281A (ko) | 초음파 진단용 프로브 | |
JP2015085201A (ja) | 被検体情報取得装置 | |
JPS63142283A (ja) | 超音波画像化検出アツセンブリ | |
KR20190094821A (ko) | 초음파 진단 장치 및 그 제어 방법 | |
US10980517B2 (en) | Ultrasonic diagnostic apparatus for estimating position of probe and method for controlling the same | |
US20210278515A1 (en) | Transmitting/receiving dual-mode focused ultrasonic transducer and microbubble cavitation image visualization method using same | |
KR20160007516A (ko) | 다수의 어레이가 병렬구조로 연결된 초음파 프로브 및 이를 구비한 초음파 영상 진단장치 | |
JP2008188162A (ja) | 超音波診断装置、及び超音波プローブ | |
WO2019214136A1 (zh) | 一种经颅三维脑血管成像系统 | |
WO2006057092A1 (ja) | 超音波撮像装置 | |
KR101772098B1 (ko) | 다양한 포커싱을 통해 다중 선택 가능한 초음파 프로브 및 이를 구비한 초음파 영상 진단장치 | |
US20250121219A1 (en) | Non-imaging tfus systems | |
JP2008119270A (ja) | 超音波診断装置及び該装置の診断プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18918063 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18918063 Country of ref document: EP Kind code of ref document: A1 |