WO2019213924A1 - 通信方法、通信装置和系统 - Google Patents

通信方法、通信装置和系统 Download PDF

Info

Publication number
WO2019213924A1
WO2019213924A1 PCT/CN2018/086400 CN2018086400W WO2019213924A1 WO 2019213924 A1 WO2019213924 A1 WO 2019213924A1 CN 2018086400 W CN2018086400 W CN 2018086400W WO 2019213924 A1 WO2019213924 A1 WO 2019213924A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
data packet
cache
mac
delay
Prior art date
Application number
PCT/CN2018/086400
Other languages
English (en)
French (fr)
Inventor
柴丽
王宏
唐珣
张戬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18918125.8A priority Critical patent/EP3793138A4/en
Priority to CN201880093323.6A priority patent/CN112106325B/zh
Priority to PCT/CN2018/086400 priority patent/WO2019213924A1/zh
Publication of WO2019213924A1 publication Critical patent/WO2019213924A1/zh
Priority to US17/091,821 priority patent/US11576068B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4604LAN interconnection over a backbone network, e.g. Internet, Frame Relay
    • H04L12/462LAN interconnection over a bridge based backbone
    • H04L12/4625Single bridge functionality, e.g. connection of two networks over a single bridge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • H04L47/283Flow control; Congestion control in relation to timing considerations in response to processing delays, e.g. caused by jitter or round trip time [RTT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communications and, more particularly, to communication methods, communication devices and systems.
  • End-to-end delay is an important parameter used to characterize the delay of traffic transmission.
  • the end-to-end delay may be the delay from the user equipment (UE) to the application server, or the delay from the user equipment to the user equipment.
  • NR new radio access technology
  • URLLC ultra-reliable and low latency communication
  • the access network device hopes to more accurately understand the end-to-end delay, thereby reasonably scheduling resources for the user equipment and improving the delay gain.
  • the present application provides a communication method, a communication device, and a system, so that an access network device accurately acquires a waiting time of a data packet in a cache, which is advantageous for the access network device to more accurately understand the end-to-end delay.
  • a communication method comprising:
  • the first communication device determines cache delay information, where the cache delay information is determined by a buffer delay of one or more data packets, where the buffer delay indicates that a data packet arrives at the access layer AS to the corresponding buffer.
  • the time interval of the buffer status report (BSR), or the buffer delay indicates a time interval from when the data packet arrives at the AS to the corresponding uplink grant (UL grant);
  • the first communication device sends the cache delay information.
  • the second communication device receives the cache delay information.
  • the first communication device may be a terminal device or a chip configured in the terminal device
  • the second communication device may be an access network device or a chip configured in the access network device.
  • the time required for the data packet to arrive at the AS to the transmission resource scheduling request is quantized, or the data packet arrives at the AS until the uplink grant is received.
  • the time is quantized so that the terminal device reports to the access network device.
  • the terminal device reports the cache delay information determined by the buffer delay of one or more data packets to the access network device, so that the access network device can more accurately understand the end-to-end delay, which is beneficial to the access network device.
  • a reasonable resource scheduling strategy to reduce the cache delay which helps to reduce the end-to-end delay, improve the delay gain, and improve the user experience.
  • the buffering delay information can reach the different protocol layers in the AS (for example, the Service Data Adaptation Protocol (SDAP) layer and the Packet Data Convergence Protocol (PDCP) layer.
  • SDAP Service Data Adaptation Protocol
  • PDCP Packet Data Convergence Protocol
  • the time of the (Radio Link Control (RLC) layer or the medium access control (Media Access Control (MAC) layer) is used as the start time for calculating the buffer delay.
  • the terminal device can obtain, according to requirements, a buffer delay of different types of data packets (ie, SDAP layer data packets, PDCP layer data packets, RLC layer data packets, or MAC layer data packets) corresponding to the protocol layers enumerated above, so that the terminal device It can be flexibly reported, which makes it easier for access network devices to understand end-to-end delay.
  • the cache delay information is used to indicate:
  • the average, maximum, minimum, or cumulative value of the cache delay for multiple packets is the average, maximum, minimum, or cumulative value of the cache delay for multiple packets.
  • the terminal device can directly report the buffering delay of the data packet, and can also report the buffering delay of the multiple data packets after being processed, thereby reducing the bit overhead reported by the terminal device, and reducing the bit overhead reported by the terminal device.
  • the processing burden of the access network device can directly report the buffering delay of the data packet, and can also report the buffering delay of the multiple data packets after being processed, thereby reducing the bit overhead reported by the terminal device, and reducing the bit overhead reported by the terminal device.
  • the first communications device determines cache delay information, including:
  • the first communication device determines the cache delay information based on a data packet type.
  • the data packet type may include: a SDAP service data unit (SDU), a SDAP protocol data unit (PDU), a PDCP PDU, an RLC PDU, or a MAC PDU.
  • SDU SDAP service data unit
  • PDU SDAP protocol data unit
  • PDCP PDU PDCP PDU
  • RLC PDU RLC PDU
  • MAC PDU MAC PDU
  • the terminal device can determine the cache delay based on different packet types according to requirements, which is very flexible.
  • the packet type may be indicated by the access network device, ie, may be semi-static or dynamically configured; it may also be predefined, as defined by the protocol, ie, static configuration. This application does not limit this.
  • the method further includes:
  • the first communication device receives indication information indicating the type of the data packet.
  • the second communication device transmits indication information indicating the type of the data packet.
  • the first communications device determines cache delay information, including:
  • the reporting granularity includes: a data packet, a logical channel, a logical channel group, a network slice, or a radio bearer.
  • the cache delay information determined by the terminal device based on the reporting granularity may be cache delay information of one or more data packets corresponding to the reporting granularity.
  • the terminal device can report the cache delay information based on different reporting granularities according to requirements.
  • the method further includes:
  • the first communication device sends an identifier corresponding to the reporting granularity.
  • the second communication device receives an identifier corresponding to the reporting granularity.
  • the cache delay information may be determined based on the reporting granularity, that is, based on the cache delay of one or more data packets corresponding to the reporting granularity.
  • the reporting granularity may be One or more data packets are referred to as measurement objects, and the identifier corresponding to the report granularity of the buffer delay information is the identifier of the measurement object.
  • the access network device can preferentially perform resource priority scheduling on the logical channel, the logical channel group, the network slice, or the radio bearer with a large delay value based on the buffer delay information.
  • the buffering delay information of the reported data packet other data packets consecutive to the serial number of the data packet can be reasonably resource-scheduled, so as to delay the buffering of multiple data packets with consecutive serial numbers. The value is controlled at a close delay value, which helps to reduce jitter and improve the user experience.
  • the reporting granularity may be indicated by the access network device, ie, may be semi-static or dynamically configured; or may be predefined, as defined by a protocol, ie, static configuration. This application does not limit this.
  • the method further includes:
  • the first communication device receives indication information for indicating the reporting granularity.
  • the second communication device sends indication information for indicating the reporting granularity
  • the first communications apparatus sends the cache delay information, including:
  • the first communication device sends the cache delay information if the reporting condition is met.
  • the terminal device can report the buffer delay information to the access network device when the cache delay information meets the reporting condition. Therefore, the terminal device does not need to determine and report the cache delay information in real time, and can reduce the air interface overhead and the processing load of the terminal device.
  • the access network device does not need to perform statistics and processing according to the cache delay information reported by the terminal device in real time. Therefore, the processing load of the access network device can also be reduced.
  • the reporting condition may be indicated by the access network device, such as a semi-static configuration or a dynamic configuration; or may be defined in advance, as defined by a protocol, that is, a static configuration, which is not limited in this application.
  • the method further includes:
  • the first communication device receives indication information for indicating a reporting condition.
  • the second communication device transmits indication information for indicating a reporting condition.
  • the first communications apparatus sends the cache delay information, including:
  • the first communication device sends the cache delay information based on a reporting period.
  • the overhead and processing load of the terminal device can be reduced on the one hand; on the other hand, when the access network device does not need to cache the terminal device in real time.
  • the statistics and processing of the extended information can also reduce the processing load of the access network device.
  • the reporting period may be indicated by the access network device, such as a semi-static configuration or a dynamic configuration. It may also be defined in advance, as defined by a protocol, that is, a static configuration, which is not limited in this application.
  • the method further includes:
  • the first communication device receives indication information for indicating a reporting period.
  • the second communication device sends indication information for indicating the reporting period.
  • reporting conditions and the reporting period may be used separately or in combination, which is not limited in this application.
  • the method further comprises:
  • the first communication device sends the first report capability information, where the first report capability information is used to indicate that the first communication device has the capability of reporting the cache delay information.
  • the second communication device receives the first reporting capability information.
  • the access network device may determine, according to the first reporting capability information sent by the terminal device, whether to send the first indication information of the enumerated granularity, the first indication information of the data packet type, the first indication information of the reporting condition, or the reporting to the terminal device.
  • the first indication of the cycle may send the foregoing enumerated indication information when the terminal device has the capability of reporting the buffer delay information, and does not send the enumerated indication information when the terminal device does not have the capability of reporting the buffer delay information, thereby avoiding unnecessary Signaling overhead.
  • the method further comprises:
  • the first communication device receives first statistical capability information, where the first statistical capability information is used to indicate that the second communication device has the capability of counting the cache delay information.
  • the second communication device sends the first statistical capability information.
  • the terminal device may determine whether to report the cache delay information to the access network device according to the first statistical capability information sent by the access network device.
  • the terminal device may report when the access network device has the capability of collecting the buffering delay information, and does not report when the access network device does not have the capability of collecting the buffering delay information, so as to avoid unnecessary signaling overhead.
  • the cache delay information is carried in a MAC control element (CE).
  • CE MAC control element
  • the first communication device sends the cache delay information, including:
  • the first communication device sends a MAC CE, and the MAC CE carries the cache delay information.
  • the second communication device receives the cache delay information, including:
  • the second communication device receives a MAC CE, and the MAC CE carries the cache delay information.
  • the identifier corresponding to the reporting granularity may be carried in the MAC CE.
  • the following two possible designs of the MAC CE are provided to report the cache delay information to the access network device.
  • the MAC CE includes a first field and a second field corresponding to the first field
  • the first field indicates an identifier of a logical channel
  • the second field indicates a cache delay information of a data packet carried by the logical channel
  • the first field indicates an identifier of a logical channel group
  • the second field indicates a cache delay information of a data packet carried by each logical channel in the logical channel group
  • the first field indicates an identifier of a network slice
  • the second field indicates cache delay information of a data packet transmitted by the network slice
  • the first field indicates an identifier of a radio bearer
  • the second field indicates a cache delay information of a data packet carried by the radio bearer
  • This design can be viewed as a new MAC CE that can be sent separately from other MAC CEs.
  • the identity of the measurement object may be indicated by a first field, such as a data packet, a logical channel, a logical channel group, a network slice, or a radio bearer, and the second field may use cache delay information indicating the measurement object.
  • the MAC CE includes a MAC CE including a first field, a second field corresponding to the first field, and a third field corresponding to the first field;
  • the first field indicates an identifier of a logical channel
  • the second field indicates a buffer delay information of a data packet carried by the logical channel
  • the third field indicates a size of a data packet carried by the logical channel
  • the first field indicates an identifier of a logical channel group
  • the second field indicates a buffer delay information of a data packet carried by each logical channel in the logical channel group
  • the third field indicates each of the logical channel groups The size of the data packet carried by the logical channel;
  • the first field indicates an identifier of a network slice
  • the second field indicates cache delay information of a data packet transmitted by the network slice
  • the third field indicates a size of a data packet transmitted by the network slice
  • the first field indicates an identifier of a radio bearer
  • the second field indicates a buffer delay information of a data packet carried by the radio bearer
  • the third field indicates a size of a data packet carried by the radio bearer.
  • This design can be seen as an extension to the existing BSR MAC CE.
  • the first field and the third field may inherit the existing BSR MAC CE, and the second field may use the cache delay information indicating the measurement object indicated by the first field.
  • the cache delay information is carried in a radio resource control (RRC) message.
  • RRC radio resource control
  • the first communication device sends the cache delay information, including:
  • the first communications device sends an RRC message, where the RRC message carries the cache delay information.
  • the second communication device receives the cache delay information, including:
  • the second communication device receives the RRC message, where the RRC message carries the cache delay information.
  • the foregoing identifier corresponding to the reporting granularity of the buffering delay information is carried in the RRC message.
  • the first communication device may notify the RRC layer of the jitter level by using an inter-layer primitive, and the RRC layer generates a MAC CE that carries the cache delay information.
  • the first RRC message may be a new RRC message, or may be an extension of an existing RRC message, which is not limited in this application.
  • a communication method including:
  • the first communication device determines a jitter level according to a buffer delay of the plurality of data packets, where the buffer delay indicates a time interval when a data packet arrives at the access layer AS to send a corresponding buffer status report BSR, or the cache The delay indicates the time interval from the arrival of the data packet to the arrival of the corresponding uplink grant.
  • the first communication device transmits the information of the jitter level.
  • the second communication device receives the information of the jitter level.
  • the terminal device may determine the jitter level according to the buffer delay of the multiple data packets, and report the jitter level information to the access network device, so that the access network device may be adjacent to multiple data packets.
  • the cache delay is controlled so that the delay is reduced to the same level to reduce jitter and improve the user experience.
  • the first communications device determines a jitter level according to a buffering delay of the plurality of data packets, including:
  • the first communication device determines a jitter level according to a buffering delay of a plurality of data packets corresponding to the data packet type based on a data packet type.
  • the packet type may include: a SDAP SDU, a SDAP PDU, a PDCP PDU, an RLC PDU, or a MAC PDU, and the like.
  • the terminal device can determine the cache delay based on different packet types according to requirements, which is very flexible.
  • the packet type may be indicated by the access network device, ie, may be semi-static or dynamically configured; it may also be predefined, as defined by the protocol, ie, static configuration. This application does not limit this.
  • the method further includes:
  • the first communication device receives indication information indicating the type of the data packet.
  • the second communication device transmits indication information indicating the type of the data packet.
  • the first communications device determines a jitter level, comprising:
  • the first communication device determines the jitter level according to a buffering delay of a plurality of data packets corresponding to the reporting granularity based on the reporting granularity.
  • the jitter level is determined according to a buffering delay of a plurality of data packets corresponding to the reporting granularity in a predetermined time period.
  • the reporting granularity includes: a logical channel, a logical channel group, a network slice, or a radio bearer.
  • the jitter level determined by the terminal device based on the reporting granularity may be a jitter level determined by a buffer delay of a plurality of data packets corresponding to the reporting granularity.
  • the terminal device can report the jitter level information based on different reporting granularities according to requirements.
  • the reporting granularity and the predetermined time period may be that the access network device indicates the terminal device, such as a semi-static configuration or a dynamic configuration; or may be predefined, as defined by a protocol, which is not limited in this application.
  • the method further includes:
  • the second communication device receives the indication information for indicating the reporting granularity.
  • the first communication device sends indication information indicating the reporting granularity.
  • the method further includes:
  • the second communication device receives the indication information for indicating the predetermined time period.
  • the first communication device transmits the indication information for indicating the predetermined time period.
  • the method further includes:
  • the first communication device sends an identifier corresponding to the reporting granularity.
  • the second communication device receives an identifier corresponding to the reporting granularity.
  • the access network device can reasonably perform reasonable signaling on the logical channel, the logical channel group, the network slice, or the data packet in the radio bearer with different delay differences based on the jitter level.
  • Resource scheduling in order to control the buffer delay value of multiple packets transmitted later to a close delay value, which is beneficial to reduce jitter and improve user experience.
  • the first communications device sends the information of the jitter level, including:
  • the first communication device transmits the information of the jitter level if the reporting condition is satisfied.
  • the terminal device can report the jitter level information based on the reporting condition, and the terminal device can report the information to the access network device when the information of the jitter level satisfies the reporting condition. Therefore, the terminal device does not need to determine and report the jitter level information in real time, and can reduce the air interface overhead and the processing load of the terminal device; the access network device does not need to perform statistics and processing according to the jitter level information reported by the terminal device in real time. Therefore, the processing load of the access network device can also be reduced.
  • the reporting condition may be indicated by the access network device, such as a semi-static configuration or a dynamic configuration; or may be defined in advance, as defined by a protocol, that is, a static configuration, which is not limited in this application.
  • the method further includes:
  • the first communication device receives indication information for indicating a reporting condition.
  • the second communication device transmits indication information for indicating a reporting condition.
  • the first communications device sends the information of the jitter level, including:
  • the first communication device transmits the information of the jitter level based on a reporting period.
  • the overhead and processing load of the terminal device can be reduced on the one hand, and the jitter level reported to the terminal device in real time by the access network device on the other hand.
  • the statistics and processing of the information can also reduce the processing load of the access network device.
  • the reporting period may be indicated by the access network device, such as a semi-static configuration or a dynamic configuration. It may also be defined in advance, as defined by a protocol, that is, a static configuration, which is not limited in this application.
  • the method further includes:
  • the first communication device receives indication information for indicating a reporting period.
  • the second communication device sends indication information for indicating a reporting period.
  • reporting conditions and the reporting period may be used separately or in combination, which is not limited in this application.
  • the method further includes:
  • the first communication device sends second reporting capability information, and the second reporting capability information indicates that the first communication device has the capability of reporting a jitter level.
  • the second communication device receives the second reporting capability information.
  • the access network device may determine, according to the second reporting capability information sent by the terminal device, whether to send the first indication information of the enumerated granularity, the indication information of the predetermined time period, the first indication information of the data packet type, and the reporting condition to the terminal device.
  • the access network device may send the foregoing enumerated indication information when the terminal device has the capability of reporting the jitter level information, and does not send the enumerated indication information when the terminal device does not have the capability of the jitter level information, thereby avoiding unnecessary Signaling overhead.
  • the method further comprises:
  • the first communication device receives second statistical capability information, and the second statistical capability information is used to indicate that the second communication device has the ability to count the jitter level.
  • the second communication device sends the second statistical capability information.
  • the terminal device may determine, according to the second statistical capability information sent by the access network device, whether to report the jitter level information to the access network device.
  • the terminal device can report when the access network device has the capability of the statistics jitter level, and does not report when the access network device does not have the capability of the statistics jitter level, so as to avoid unnecessary signaling overhead.
  • the information of the jitter level is carried in the MAC CE.
  • the information that the first communications device sends the jitter level includes:
  • the first communication device sends a MAC CE, where the MAC CE carries the information of the jitter level.
  • the second communication device receives the information of the jitter level, including:
  • the second communication device receives the MAC CE, and the MAC CE carries the information of the jitter level.
  • the identifier corresponding to the reporting granularity may be carried in the MAC CE.
  • the MAC CE may be a new MAC CE or an extension of the existing MAC CE, which is not limited in this application.
  • the MAC CE includes a fourth field and a fifth field corresponding to the fourth field; wherein the fourth field indicates an identifier of a logical channel, and the fifth field indicates The jitter level determined by the buffer delay of the plurality of data packets carried by the logical channel; or
  • the fourth field indicates an identifier of a logical channel group
  • the fifth field indicates a jitter level determined by a buffer delay of a plurality of data packets carried by the logical channel group
  • the fourth field indicates an identifier of a network slice
  • the fifth field indicates a jitter level determined by a buffer delay of a plurality of data packets carried by the network slice
  • the fourth field indicates an identifier of a radio bearer
  • the fifth field indicates a jitter level determined by a buffer delay of a plurality of data packets carried by the radio bearer.
  • the information of the jitter level is carried in an RRC message.
  • the information that the first communications device sends the jitter level includes:
  • the first communication device sends an RRC message, where the RRC message carries the information of the jitter level.
  • the second communication device receives the information of the jitter level, including:
  • the second communication device receives the RRC message, and the second RRC message carries information of the jitter level.
  • the identifier corresponding to the reporting granularity is carried in the RRC message.
  • the jitter level is notified to the RRC layer by using an inter-layer primitive, and the RRC layer generates an RRC message carrying the information of the jitter level.
  • the RRC message may be a new RRC message, or may be an extension of an existing RRC message, which is not limited in this application.
  • the cache delay information in the foregoing first aspect and the jitter level information in the second aspect may be carried in the same MAC CE; or may be carried in different MAC CEs; may be carried in the same RRC message.
  • the information may be carried in different RRC messages.
  • the information may also be carried in the signaling of different protocol layers.
  • the buffering delay information is carried in the MAC CE, and the jitter level information is carried in the RRC message. This application does not limit this.
  • a terminal device having the function of implementing the first communication device in the method design of the first aspect or the second aspect described above. These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • an access network device having the function of implementing the second communication device in the method design of the first aspect or the second aspect described above.
  • These functions can be implemented in hardware or in software by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • a terminal device including a transceiver and a processor.
  • the terminal device further includes a memory.
  • the processor is configured to control a transceiver transceiver signal for storing a computer program, the processor for calling and running the computer program from the memory, such that the terminal device performs the method design of the first aspect or the second aspect described above A method performed by a communication device.
  • an access network device including a transceiver and a processor.
  • the access network device further includes a memory.
  • the processor is configured to control a transceiver transceiver signal for storing a computer program, the processor for calling and running the computer program from the memory, such that the access network device performs the method design of the first aspect or the second aspect described above The method performed by the second communication device.
  • a communication system comprising the terminal device in the above third aspect and the access network device in the fourth aspect; or the system comprising the terminal device in the fifth aspect and the sixth aspect Access network device in the middle.
  • a communication device which may be a terminal device or a chip disposed in the terminal device.
  • the communication device includes a processor and an interface component coupled to the memory for executing instructions in the memory through the interface component to implement the first communication device in the method design of the first aspect or the second aspect described above Methods.
  • the communication device further includes the memory.
  • the interface component may be a transceiver, or an input/output interface.
  • the interface component may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a communication device which may be an access network device or a chip disposed in an access network device.
  • the communication device includes a processor and an interface component coupled to the memory for reading and executing instructions in the memory through the interface component to implement the second communication in the method design of the first aspect or the second aspect described above The method performed by the device.
  • the communication device further comprises a memory.
  • the interface component can be a transceiver, or an input/output interface.
  • the interface component may be an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a tenth aspect a computer readable medium, comprising instructions, when executed on a communication device, causing the communication device to perform the method of any of the first aspect or the first aspect, Alternatively, the method of any of the possible implementations of the second aspect or the second aspect above.
  • a computer program product comprising instructions, when executed on a communication device, causing the communication device to perform: the method of any of the possible implementations of the first aspect or the first aspect, or The method of any of the possible implementations of the second aspect or the second aspect above.
  • FIG. 1 is a schematic diagram of a communication system suitable for the communication method of the embodiment of the present application.
  • FIG. 2 is a schematic diagram of a protocol stack provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a BSR MAC CE in a short BSR format and a shortened BSR format according to an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a BSR MAC CE in a long BSR format according to an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 6 to FIG. 14 are schematic diagrams of a MAC CE provided by an embodiment of the present application.
  • FIG. 15 is a schematic flowchart of a communication method according to another embodiment of the present application.
  • FIG. 16 and FIG. 17 are schematic diagrams of a MAC CE according to another embodiment of the present application.
  • FIG. 18 is a schematic block diagram of a communication apparatus according to an embodiment of the present application.
  • FIG. 19 is a schematic block diagram of a communication apparatus according to another embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 21 is a schematic structural diagram of an access network device according to an embodiment of the present application.
  • the technical solution of the embodiment of the present application can be applied to various communication systems, such as, but not limited to, a Narrow Band-Internet of Things (NB-IoT), and a Global System of Mobile communication (GSM) system.
  • Code Division Multiple Access (CDMA) system Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (Long Term Evolution) , LTE) system, LTE Frequency Division Duplex (FDD) system, LTE Time Division Duplex (TDD), Universal Mobile Telecommunication System (UMTS), Global Interconnected Microwave Access ( Worldwide Interoperability for Microwave Access, WiMAX) communication system, 5G system or NR.
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE Long Term Evolution Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Micro
  • the communication system 100 can include at least one access network device (e.g., the access network device 102 shown in the figure) and at least two terminal devices (e.g., the terminal device 104 shown in the figure and The terminal device 106), the access network device 102 can wirelessly communicate with the terminal device 104 and the terminal device 106, respectively.
  • the communication system 100 may further include more access network devices and/or more terminal devices, which is not limited in this application.
  • the access network device may include a device in the access network that communicates with the wireless terminal over one or more sectors on the air interface.
  • the access network system can be used to convert the received air frame with an Internet Protocol (IP) packet as a router between the wireless terminal and the rest of the access network, wherein the rest of the access network can include IP network.
  • IP Internet Protocol
  • the radio access network system can also coordinate attribute management of the air interface. It should be understood that the access network device includes, but is not limited to, an evolved Node B (eNB), a Radio Network Controller (RNC), a Node B (NB), and a base station controller (Base).
  • eNB evolved Node B
  • RNC Radio Network Controller
  • NB Node B
  • Base base station controller
  • BSC Base Transceiver Station
  • BTS Base Transceiver Station
  • HNB Home Node B
  • BBU BaseBand Unit
  • Wireless Fidelity Wireless Fidelity
  • AP Access point
  • AP wireless relay node
  • TRP or transmission point, TP transmission point
  • NR NR
  • gNB in the system
  • TRP or TP transmission point
  • a network node constituting a gNB or a transmission point such as a baseband unit (BBU), or a distributed unit (DU), and the like.
  • BBU baseband unit
  • DU distributed unit
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU implements radio resource control (RRC), the function of the packet data convergence protocol (PDCP) layer, and the DU implements the wireless chain.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU implements the wireless chain.
  • the functions of the radio link control (RLC), the media access control (MAC), and the physical (PHY) layer Since the information of the RRC layer eventually becomes information of the PHY layer or is transformed by the information of the PHY layer, in this architecture, higher layer signaling, such as RRC layer signaling, can also be considered to be sent by the DU.
  • the access network device can be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into access network devices in a radio access network (RAN), and the CU may be divided into access network devices in a core network (CN), which is not limited herein.
  • RAN radio access network
  • CN core network
  • a terminal device may also be called a user equipment (UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user.
  • Agent or user device may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal.
  • VR virtual reality
  • AR augmented reality
  • the embodiment of the present application does not limit the application scenario.
  • the terminal device 104 and the terminal device 106 can be in a serving cell of the access network device 102.
  • the terminal device 104 When the terminal device 104 is in communication with the terminal device 106, for example, when the terminal device 104 transmits data to the terminal device 106, the terminal device 104 can forward to a physical uplink resource (eg, a physical uplink shared channel) scheduled by the access network device 102.
  • the access network device 102 transmits the data, and after receiving the data, the access network device can further send the data to the core network device, for example, a serving gateway (SGW) and a packet data network gateway.
  • SGW serving gateway
  • the core network equipment completes the Internet Protocol (IP) allocation, billing, etc., and sends the data to the Internet server. Thereafter, the data is sent to the terminal device 106 through the core network device, the access network device (eg, the access network device 102).
  • IP Internet Protocol
  • the end-to-end delay may include: a delay of processing by the terminal device, an air interface transmission delay between the terminal device and the access network device, a delay of processing by the access network device, a delay of processing by the core network device, and access The delay between the network device and the core network device, the delay between the core network and the Internet server, and even the delay caused by resource scheduling.
  • the communication system 100 may also include a core network device, an Internet server, etc., which are not shown in the drawings.
  • terminal device 104 and terminal device 106 can be terminal devices that are in different cells.
  • the access network devices of different cells may be connected to different core network devices. This application does not limit the network connection between two terminal devices.
  • the figure shows a scenario of communication between two user devices for ease of understanding only, but this should not limit the scenarios to which the communication method provided by the present application applies.
  • the communication method provided by the present application is also applicable to a communication scenario between a user equipment and an application server.
  • the end-to-end delay described above considers each network element that may be involved in communication between two terminal devices.
  • the access network device fails to accurately understand the data packet inside the terminal device.
  • the delay caused by waiting for the scheduling of physical uplink resources, so the judgment of the cause of the end-to-end delay is not accurate enough.
  • the data packet may be sent to the MAC layer through operations of each protocol layer group packet, encapsulation, etc., and the MAC layer sends a scheduling request for the uplink resource to the access network device, for example, a scheduling request (schedueling request, SR), buffer status report (BSR), etc., after receiving the uplink grant (UL grant), transmitting data through the authorized physical uplink resource.
  • a scheduling request scheduling request
  • BSR buffer status report
  • the access network device receives the time interval from the BSR MAC CE whose buffer size is greater than 0 to the BSR MAC CE whose buffer size is equal to 0.
  • the data packet arrives at the AS layer (for example, the SDAP layer, the PDCP layer, or the RLC layer) to the time when the BSR MAC CE is sent.
  • the AS layer for example, the SDAP layer, the PDCP layer, or the RLC layer
  • the access network device does not know the main location and the main cause of the delay. It is impossible to make a reasonable scheduling strategy to reduce this part of the delay, so that the end-to-end delay cannot be really reduced, and the delay gain cannot be improved.
  • the present application provides a communication method to enable an access network device to accurately acquire the time that a data packet waits in the cache.
  • FIG. 2 is a schematic structural diagram of a user plane and a control plane protocol stack in LTE.
  • four protocol layers may be included, which may be a PDCP layer, an RLC layer, a MAC layer, and a physical (PHY) layer from top to bottom.
  • protocol layer A The data generated by the transmitting device at any protocol layer (for example, referred to as protocol layer A, it can be understood that protocol layer A can be any one of the PDCP layer, the RLC layer, the MAC layer, and the PHY layer) needs to pass through the lower layer.
  • the processing of the protocol layer is finally sent to the receiving device through the physical channel.
  • the data received by the receiving end device on the physical channel also needs to be processed by the protocol layer of the PHY layer and its upper layer until the protocol layer A can acquire the data.
  • the LTE user plane protocol stack structure may include an RRC layer in addition to the above four protocol layers.
  • the signaling device generated by the transmitting device at any protocol layer (for example, referred to as protocol layer B, it can be understood that protocol layer B can be any one of the RRC layer, the PDCP layer, the RLC layer, the MAC layer, and the PHY layer) It needs to be processed by the protocol layer of its lower layer and finally sent to the receiving end device through the physical channel.
  • the data received by the receiving end device on the physical channel also needs to be processed by the protocol layer of the PHY layer and its upper layer until the protocol layer A can acquire the data.
  • the RRC layer, the PDCP layer, the RLC layer, the MAC layer, and the PHY layer enumerated above may be referred to as an access stratum (AS), and the access layer may be understood as a protocol working by the access network.
  • the process of the access layer is the process that the access network device needs to participate in. For example, it may include a public land mobile network (PLMN) selection, a cell selection, and a radio resource management procedure. Access layer signaling is handled by the access network device.
  • PLMN public land mobile network
  • the non-access stratum (NAS) is also shown in the figure, and the non-access stratum can be understood as the protocol layer in which the core network operates.
  • the process of the non-access stratum is the process that the terminal device and the core network need to process, and the access network device does not need to be processed.
  • the process of the non-access stratum may include establishment, release, and mobility management of services.
  • the non-access stratum signaling may be transparently transmitted by the access network to the core network device, and the access network device does not process it.
  • the signaling interaction of the access layer can be used to establish a connection path between the terminal device and the core network device, so that the non-access layer signaling process is performed between the terminal device and the core network.
  • the protocol stack in LTE is taken as an example, but this should not constitute any limitation on the present application, and the present application does not exclude the future agreement in the protocol stack in LTE.
  • the possibility of combining one or more layers or adding one or more protocol layers For example, in the user plane protocol stack in the NR protocol, a new protocol layer, such as the SDAP layer, may be added to the PDCP layer.
  • the data packets from the upper layer can be received at each protocol layer, and the data packet can be processed to generate a new data packet and then transmitted to the next protocol layer.
  • a data packet from an upper layer may be referred to as a service data unit (SDU), and a data packet generated by the protocol layer may be referred to as a protocol data unit (PDU). Therefore, among the two adjacent protocol layers, the PDU of the previous protocol layer can be regarded as the SDU of the next protocol layer.
  • SDU service data unit
  • PDU protocol data unit
  • the RLC layer processes the RLC SDU to generate an RLD PDU.
  • each protocol layer data packet when describing each protocol layer data packet, it may refer to an SDU, and may also refer to a PDU, which can be understood by those skilled in the art.
  • the terminal device can perform header compression on the Internet Protocol (IP) packet from the upper layer at the PDCP layer to reduce the number of bits transmitted on the wireless interface, and further encrypt and generate the data packet.
  • IP Internet Protocol
  • the PDCP PDU is sent to the RLC layer.
  • the IP data packet from the upper layer may be obtained by processing the data generated by the application layer through a Transmission Layer Control Protocol (TCP) layer or an IP layer.
  • TCP Transmission Layer Control Protocol
  • the terminal device may perform header compression on the PDU from the SDAP layer at the PDCP layer, generate a PDCP PDU, and send it to the RLC layer.
  • the terminal device may divide or concatenate the PDUs from the PDCP layer at the RLC layer, generate an RLC PDU, and send it to the MAC layer.
  • the RLC layer can serve the PDCP layer.
  • the upper layer data packets may not be cascaded.
  • the terminal device can determine the format transmitted by the air interface at the MAC layer, such as the size of the data block, the physical resource matching the size of the data block, and the MCS matching the physical resource.
  • the terminal device may generate a MAC PDU (ie, a transport block (TB)) that matches the size of the MCS and then send it to the physical layer.
  • the MAC layer can serve the RLC layer in the form of a logical channel (LC).
  • the MAC layer may also generate MAC layer control information, such as a MAC control element (Control Element, CE), for reporting data buffer information, power headroom, etc., for base station scheduling. Therefore, the MAC PDU generated by the MAC layer may further include MAC layer control information, which is not limited in this application.
  • the terminal device may perform channel coding, rate matching, interleaving, scrambling, and modulation on the transport block (TB) from the MAC layer at the physical layer, and then transmit the modulated generated signal through the antenna.
  • the physical layer can provide services to the MAC layer in the form of a transport channel (TCH).
  • the above enumeration combines the protocol stack structure in LTE to simply describe the operation performed by the terminal equipment on the uplink data at each protocol layer, and the processing of the downlink data by the access network device side is similar.
  • the processing of the downlink data by the terminal device and the processing of the uplink data by the access network device are reversed from the above process, and are not described again.
  • the specific implementation process of each of the above processes may be the same as the prior art, and a detailed description of the specific process thereof is omitted here for the sake of brevity.
  • the access network device may configure one or more logical channels for each terminal device, and each logical channel may correspond to a QoS requirement of one service.
  • a terminal device may require both an Internet service and a voice service, and thus may be configured with two or more different logical channels to receive or transmit data of different services.
  • data of different services may be separately processed and processed in the PDCP layer and the RLC layer, respectively, corresponding to one logical channel.
  • the MAC layer can also generate MAC layer control information and assign corresponding logical channels thereto.
  • the MAC entity can multiplex one or more logical channels into one transport channel, and will PDU and/or MAC from the RLC layer.
  • Layer control information is mapped into PDUs (ie, MAC PDUs) of the same MAC layer. Therefore, through the above mapping, multiple logical channels can be multiplexed onto the same transport channel.
  • End-to-end (E2E) delay can be understood as the delay of end-to-end communication, for example, the delay from the terminal device to the terminal device, or the delay from the terminal device to the application server. Further, the end-to-end delay may include: a delay of processing by the terminal device, an air interface transmission delay between the terminal device and the access network device, a delay of processing by the access network device, a delay of processing by the core network device, and a delay The delay between the network access device and the core network device, the delay between the core network and the Internet server, and even the delay caused by resource scheduling.
  • Each MAC CE may include a logical channel identifier (LCID), and an LCID may be used to uniquely identify a MAC CE. By using the LCID, the MAC SDU or MAC CE no longer needs to be identified by an additional field in the MAC header.
  • LCID logical channel identifier
  • BSR MAC CE When the terminal device has the uplink data transmission requirement, the physical uplink resource can be obtained by sending the BSR.
  • the BSR can be a BSR MAC CE.
  • the BSR MAC CE may include an LCG ID field and a Buffer Size field.
  • the LCG ID field is used to indicate the logical channel group corresponding to the buffer status report, and can occupy 2 bits; the total data of all logical channels in the LCG ID logical channel group after all MAC PDUs in the Buffer Size field are generated.
  • the total amount of data can be indicated by the number of bytes.
  • the total amount of data can include all of the data available for transmission in the RLC layer and the PDCP layer.
  • the access network device can schedule physical uplink resources for the terminal device based on the total amount of data reported by the terminal device.
  • the buffer area mentioned here may be a buffer area of the RLC layer and a buffer area of the PDCP layer, which is not limited in this application.
  • the BSR MAC CE can be classified into a short BSR (short BSR) format, a shortened BSR (truncated BSR) format, and a long BSR (long BSR) format.
  • the BSR MAC CE of the short BSR format and the shortened BSR format may include one LCG ID field and one corresponding Buffer Size field
  • FIG. 3 shows the BSR MAC CE of the short BSR format and the shortened BSR format.
  • the BSR MAC CE of the long BSR format may include four Buffer Size fields corresponding to LCG IDs #0 to #3
  • FIG. 4 shows the BSR MAC CE of the long BSR format.
  • An octet in the figure represents a byte of 8 bits.
  • the format of the BSR MAC CE shown in the figure is two possible formats defined in the existing protocol (for example, the LTE protocol), and is merely exemplified for ease of understanding, and should not be construed as limiting the application.
  • the embodiment of the present application provides an improvement on the basis of the format of the BSR MAC CE, which will be described later in detail in conjunction with specific embodiments.
  • Uplink authorization After receiving the BSR MAC CE or SR from the terminal device, the access network device can schedule physical uplink resources for the terminal device, and the indication of the scheduled physical uplink resource can be obtained through uplink authorization. Indicates modulation coding scheme (MCS) and resource allocation.
  • MCS modulation coding scheme
  • the physical uplink resource may be dynamically scheduled, and the uplink authorization may be physical layer signaling, and downlink control information (DCI); the physical uplink resource may also be semi-statically scheduled, and the uplink authorization may be It is high-level signaling, such as RRC messages, and can also be physical layer signaling, such as DCI. This application does not limit this.
  • Logical channel group According to the content in the logical channel, one or more logical channels can be classified into one logical channel group, and the same logical channel group can correspond to one service type.
  • the logical channel group may include a control channel group and a traffic channel group, and the control channel group may include, for example, a broadcast control channel (BCCH), a paging control channel (PCCH), and a common control channel (common).
  • the traffic channel group may include, for example, a dedicated traffic channel (DTCH), a common traffic channel (CTCH), and the like.
  • Radio bearer A bearer between a terminal device and an access network device in an Evolved Packet System (EPS) bearer is called a radio bearer.
  • the radio bearers can be classified into a signaling radio bearer (signaling RB, SRB) and a data radio bearer (data RB, DRB) based on different bearer contents.
  • the SRB can be used to carry control plane data, that is, signaling.
  • SRB In LTE or NR, it can be divided into SRB0, SRB1, and SRB2 according to different bearer signaling; DRB is used to carry user plane data.
  • DRB is used to carry user plane data.
  • QoS quality of service
  • Network slice Based on different service requirements, the physical network can be further divided into multiple virtual networks. Each virtual network can be based on different service requirements, such as delay, bandwidth, security, or reliability. Divided to flexibly respond to different network application scenarios. Network slices are more granular in granularity than wireless bearers.
  • network slicing can be divided into network slices for enhanced mobile broadband (eMBB) and used for mass machine type communication (massive machine type communication).
  • eMBB enhanced mobile broadband
  • mass machine type communication massive machine type communication
  • URLLC ultra-reliable and low latency communication
  • Network slicing can be achieved through network function virtualization. That is, different types of network slices are implemented by functionally virtualized network nodes. The data packets transmitted on the network slice can also be sent out through the processing of each protocol layer.
  • Jitter The absolute value of the difference between the forwarding delays of two adjacent frames transmitted sequentially in IP-based video and audio services.
  • the first and second are merely for facilitating the differentiation of different objects, and should not be construed as limiting the application.
  • different MAC CEs, different RRC messages, different indication information, and the like are distinguished.
  • the indication information for indicating the type of the data packet listed in the method 200 is recorded as the first indication information of the packet type, and the method listed in the method 300 is used for indication.
  • the indication information of the packet type is recorded as the second indication information of the packet type; the indication information for indicating the reporting granularity listed in the method 200 is recorded as the first indication information of the reporting granularity, and the indications listed in the method 300 are used for indicating The indication information of the reporting granularity is recorded as the second indication information of the reporting granularity, and so on, and will not be enumerated here.
  • the MAC CE for carrying the buffer delay information listed in the method 200 is referred to as the first MAC CE, and the MAC CE for carrying the buffer delay information listed in the method 300 is recorded as the first
  • the second RRC message is recorded as the first RRC message, and the RRC message for carrying the jitter level information listed in the method 300 is recorded as the second RRC message.
  • pre-acquisition may include indication by the access network device signaling or predefined, for example, a protocol definition.
  • pre-definition may be implemented by pre-storing corresponding codes, tables or other manners that can be used to indicate related information in the device (for example, including the terminal device and the access network device), and the specific implementation manner of the present application is Not limited.
  • “save” as used in the embodiments of the present application may refer to being stored in one or more memories.
  • the one or more memories may be separate arrangements or integrated in an encoder or decoder, processor, or communication device.
  • the one or more memories may also be partially provided separately, and some of them may be integrated in a decoder, a processor, or a communication device.
  • the type of the memory may be any form of storage medium, which is not limited herein.
  • protocol in the embodiment of the present application may refer to a standard protocol in the field of communication, for example, may include an LTE protocol, an NR protocol, and a related protocol applied in a future communication system, which is not limited in this application.
  • the communication method provided by the present application can be applied to a wireless communication system, such as the wireless communication system 100 shown in FIG.
  • a wireless communication connection between two communication devices in a wireless communication system, and one of the two communication devices may correspond to the terminal device 104 or the terminal device 106 shown in FIG. 1, for example, may be in FIG.
  • the terminal device 104 may also be a chip disposed in the terminal device 104; or it may be the terminal device 106 in FIG. 1 or a chip disposed in the terminal device 106; another of the two communication devices
  • a communication device may correspond to the access network device 102 shown in FIG. 1, for example, the access network device 102 in FIG. 1 or a chip disposed in the access network device 102.
  • FIG. 5 is a schematic flowchart of a communication method 200 provided by an embodiment of the present application, which is shown from the perspective of device interaction. As shown, the method 200 shown in FIG. 5 can include steps 210 through 280. This communication method will be described in detail below with reference to FIG.
  • the terminal device determines cache delay information, which may be determined by a cache delay of the measured one or more data packets.
  • the cache delay information is used to indicate:
  • the cache delay information can be used to indicate any of a), b) and c), for example, either the indication a), or the indication b), or the indication c).
  • the specific content of the cache delay information reported by the terminal device may be instructed by the access network device in advance, or may be defined in advance, such as a protocol definition, which is not limited in this application.
  • the buffering delay may refer to a time interval in which a data packet arrives at the AS to the corresponding BSR, or may also be a time interval in which a data packet arrives at the AS to receive the corresponding uplink grant.
  • the start time of the cache delay may be the time when the data packet arrives at the AS
  • the end time of the buffer delay may be the time when the BSR is sent, or the time when the uplink grant is received.
  • the BSR may be a BSR for the terminal device to request to send the data packet
  • the uplink authorization may be an uplink authorization issued by the access network device for the physical uplink resource scheduled by the BSR.
  • the AS may include an SDAP layer, a PDCP layer, an RLC layer, a MAC layer, and a PHY layer. Since the terminal device starts to perform the MAC layer grouping of the data packet from the upper layer after the MAC layer receives the uplink authorization, in this embodiment, the data packet arriving at the AS may refer to the data packet reaching the SDAP layer, the PDCP layer, or Any protocol layer in the RLC layer.
  • the data packet arriving at the SDAP layer may be referred to as a SDAP SDU
  • the data packet arriving at the PDCP layer may be referred to as a PDCP SDU or a SDAP PDU
  • the data packet arriving at the RLC layer may be referred to as an RLCSDU or a PDCP PDU
  • a data packet may be referred to as a MAC SDU or an RLC PDU
  • a data packet arriving at the physical layer may be referred to as a MAC PDU.
  • the packet type includes: a SDAP SDU, a SDAP PDU, a PDCP PDU, an RLC PDU, or a MAC PDU.
  • the sequence numbers at the respective layers may be different, but may have a corresponding relationship.
  • the PDCP PDU may be divided or concatenated.
  • the PDCP PDU may carry a sequence number.
  • the RLC layer divides or concatenates the PDCP PDU to obtain one or more RLC PDUs, the RLC is obtained.
  • the sequence number of the PDU can obtain the correspondence between the sequence number of the PDCP PDU and the sequence number of the RLC PDU, and the RLC layer can notify the corresponding relationship layer to the adjacent protocol layer through the inter-layer primitive; for example, multiple RLC PDUs.
  • the same MAC PDU may be multiplexed.
  • the RLC PDU may carry its sequence number at the RLC layer.
  • the MAC PDU can be obtained.
  • the serial number so that the correspondence between the sequence number of the RLC PDU and the sequence number of the MAC PDU can be obtained, and the MAC layer can also notify the adjacent protocol layer through the inter-layer primitive. Therefore, the MAC layer can determine the cache delay of any one of the above-listed data packets based on the correspondence between the sequence numbers of the data packets of the respective protocol layers.
  • step 210 specifically includes:
  • the terminal device determines the cache delay information based on the packet type.
  • the cache delay information may be determined by a cache delay of one or more data packets corresponding to the packet type.
  • the terminal device may predetermine the type of the data packet that needs to report the cache delay, that is, determine the start time of the cache delay.
  • the type of the data packet may be predefined.
  • the protocol defines that the data packet reported by the terminal device is a SDAP PDU, a PDCP PDU, or an RLC PDU.
  • the type of the data packet may also be indicated in advance by the access network device to the terminal device.
  • Step 220 The terminal device receives the first indication information of the data packet type.
  • the access network device sends the first indication information of the data packet type.
  • the packet type may be related to the start time of the buffer delay, and the packet type is determined, that is, the cache delay is determined from which protocol layer the packet arrives.
  • the terminal device calculates a cache delay from a time when the data packet reaches the SDAP layer, that is, when the data packet arrives at the SDAP layer, when the cache is calculated. The starting moment of the delay.
  • the terminal device when the data packet arrives at each protocol layer, the terminal device adds a time stamp to the data packet to identify the time when the data packet arrives at each protocol layer. Thereafter, the terminal device can further determine the cache delay of the required data packet according to the type of the data packet. It should be understood that a possible implementation manner for determining the cache delay of the data packet is listed for ease of understanding, but this should not be construed as limiting the present application. The specific implementation manner of determining the cache delay of the data packet is not Make a limit.
  • the terminal device may also determine the reporting granularity before determining the buffer delay.
  • the reporting granularity may include: a data packet, a logical channel, a logical channel group, a network slice, or a radio bearer.
  • the reporting granularity may be predefined, such as a protocol definition, or may be instructed by the access network device to the terminal device in advance.
  • Step 230 The terminal device receives the first indication information of the reported granularity.
  • the access network device sends the first indication information of the reporting granularity.
  • the terminal device may report the cache delay information to the access network device based on different granularities.
  • the step 210 includes: determining, by the terminal device, the cache delay information based on the reporting granularity.
  • the cache delay information may be determined by a cache delay of one or more data packets corresponding to the reporting granularity.
  • the terminal device may determine the cache delay as the minimum unit of the data packet. Therefore, the cache delay information must be cached by one or more data packets. The delay is determined, and the one or more data packets may be data packets corresponding to the reporting granularity. In other words, the terminal device can determine the cache delay information in combination with the foregoing packet type and the reporting granularity to report to the access network device.
  • the data packet may be any one of an SDAP layer data packet, a PDCP layer data packet, or an RLC layer data packet.
  • the terminal device can calculate a corresponding cache delay based on each data packet, and report the buffer delay of each data packet to the access network device. In the case that the number of the data packets is multiple, the terminal device may report the average value, the maximum value, the minimum value, or the accumulated value of the buffer delays of the multiple data packets to the access network device.
  • the corresponding data packet may be an RLC PDU carried in a logical channel, or may be a data packet of another protocol layer corresponding to the RLC PDU, for example, a PDCP PDU or a MAC PDU.
  • the terminal device can calculate the corresponding cache delay based on each data packet, and directly report the buffer delay of each data packet to the access network device. In the case that there are multiple data packets, the terminal device may also report the average value, the maximum value, the minimum value, or the accumulated value of the buffer delays of the multiple data packets to the access network device.
  • the corresponding data packet may be an RLC PDU, or may be a data packet of another protocol layer corresponding to the RLC PDU.
  • the terminal device may report the buffer delay of the RLC data packet carried in each logical channel to the access network device based on the logical channel included in each logical channel group, or may also use the RLC data carried in each logical channel. The average, maximum, minimum, or cumulative value of the buffer delay of the packet is reported to the access network device.
  • the corresponding data packet may be any one of a SDAP PDU, a PDCP PDU, an RLC PDU, or a MAC PDU. Since the data transmitted by the same network slice can be carried in one or more data packets, the terminal device can determine the cache delay information based on the data packet in which the data in each network slice is located. A packet in which data in the same network slice is located may be referred to as a packet corresponding to the network slice. The terminal device may report the buffer delay of one or more data packets corresponding to the same network slice to the access network device. In the case that the same network slice corresponds to multiple data packets, the terminal device may also use the same network. The average, maximum, minimum, or cumulative value of the buffer delay of the multiple packets corresponding to the slice is reported to the access network device.
  • the corresponding data packet may be any one of a SDAP PDU, a PDCP PDU, an RLC PDU, or a MAC PDU. Since the data transmitted by the same radio bearer can be carried in one or more data packets, the terminal device can determine the buffer delay information based on the data packet in which the data in each radio bearer is located. A data packet in which data in the same radio bearer is located may be referred to as a data packet corresponding to the radio bearer. The terminal device may report the buffer delay of one or more data packets corresponding to the same radio bearer to the access network device. In the case that the same radio bearer corresponds to multiple data packets, the terminal device may also use the same wireless device. The average, maximum, minimum, or cumulative value of the buffer delay of the multiple packets corresponding to the bearer is reported to the access network device.
  • the cache delay of one or more data packets is measured based on the reporting granularity, and the cache delay information corresponding to the reporting granularity may be determined, and the measured one or more data packets may be referred to as Measuring object.
  • Measuring object can correspond to one cache delay information, and each measurement object can be defined based on the report granularity.
  • step 240 the terminal device sends the cache delay information.
  • the access network device receives the cache delay information.
  • the terminal device may report the cache delay information to the access network device.
  • the method 200 further includes:
  • the terminal device sends an identifier corresponding to the reporting granularity.
  • the access network device receives an identifier corresponding to the reporting granularity.
  • the measured one or more data packets corresponding to the reporting granularity are referred to as measurement objects, and the identifier corresponding to the reporting granularity of the buffering delay information is referred to as an identifier of the measurement object.
  • the cache delay information and the identifier corresponding to the reporting granularity of the cache delay information may be carried in the same signaling. For example, it is carried in the same MAC CE, or the same RRC message is medium. This application does not limit this.
  • the access network device can more accurately determine the main location of the delay according to the identifier of the measurement object of the buffering delay information, thereby being targeted. Dispatched resources. For example, when it is determined that the buffering delay indicated by the buffering delay information of a certain logical channel is larger than the buffering delay indicated by the buffering delay information of the other logical channel, the resource may be preferentially scheduled for the logical channel to be reduced. The buffer latency that this logical channel may generate the next time a packet is transmitted. For other reporting granularities, the access network device can also use the same method to reduce the cache delay.
  • the sequence numbers of the data packets in different protocol layers may be different due to different types of data packets.
  • the PDCP PDU may be divided into multiple RLC PDUs after reaching the RLC layer, and the multiple RLC PDUs.
  • the sequence number of the RLC layer may be continuous; or, multiple PDCP PDUs may be concatenated into one RLC PDU after reaching the RLC layer, so the sequence number of one PDCP PDU may correspond to multiple RLC PDUs at the RLC layer.
  • the serial number, the serial number of multiple PDCP PDUs may also correspond to the serial number of one RLC PDU at the RLC layer.
  • multiple RLC PDUs may be multiplexed into one MAC PDU after arriving at the MAC layer, so the sequence numbers of multiple RLC PDUs may correspond to the sequence number of the same MAC PDU at the MAC layer.
  • the access network device may perform priority resource scheduling on the RLC PDU of the adjacent sequence number according to the sequence number of the RLC PDU. Therefore, the buffer delay of the entire PDCP PDU is reduced, and the delay of the data packet of the entire PDCP PDU is controlled to be close to the time delay, thereby reducing jitter and improving the user experience.
  • the terminal device may also report the cache delay information based on one or both of the following:
  • the terminal device may report the cache delay information only when the reporting condition is met, or may report the cache delay information based on only a certain reporting period, or may be based on the case that the reporting condition is met.
  • the cache delay information is reported in the reporting period.
  • the reporting condition can be understood as a condition for triggering the terminal device to report the buffering delay information.
  • the terminal device determines to start reporting the buffering delay information to the access network device. That is, the step 240 specifically includes: the terminal device sends the cache delay information if the reporting condition is met.
  • the terminal device does not collect the buffer delay before the reporting condition is met.
  • the terminal device can collect the cache delay and collect the cache delay information in real time or periodically, and meet the reporting conditions. The time to start reporting the cache delay information.
  • the terminal device may also start to collect the buffering delay after the reporting condition is met, or start to collect the buffering delay information to report the buffering delay information to the access network device. This application does not limit this.
  • the reporting condition is independent of the buffering delay, and whether the terminal device collects the buffering delay or the statistical buffering delay information may not be directly related to whether the reporting condition is met. For example, the number of packets saved in the buffer is greater than or equal to a preset threshold.
  • the reporting condition is related to the buffering delay, and the terminal device may also determine whether the reporting condition is met based on the buffering delay.
  • the reporting condition may be: the buffering delay of a certain data packet is greater than a preset threshold; or the buffering information of a certain network slice is greater than a preset threshold.
  • reporting conditions are merely exemplary and should not be construed as limiting the present application.
  • the specific content of the reporting conditions is not limited.
  • the reporting condition may be predefined, such as a protocol definition, or the terminal device may be notified in advance by the access network device. If the reporting condition is notified to the terminal device by the access network device, the method 200 further includes: Step 250: The terminal device receives the first indication information of the reporting condition.
  • the first indication information of the reporting condition refers to the indication information used to indicate the reporting condition.
  • the expressions of the various indication information (for example, the first indication information and the second indication information) in the present application can be referred to the above understanding, and are not described below.
  • the access network device sends the first indication information of the reporting condition.
  • the terminal network device may report the cache delay information to the access network device. Therefore, when the cache delay is severe, the access network device can perform reasonable resource scheduling based on the buffer delay, so as to reduce the cache delay by timely processing, thereby facilitating the end-to-end test.
  • the step 240 specifically includes: the terminal device sends the cache delay information based on the reporting period.
  • the reporting period of the buffering delay information reported by the terminal device may be predefined, as defined by the protocol, or may be notified to the terminal device by the access network device in advance. If the reporting period is notified to the terminal device by the access network device, the method 200 further includes: Step 260: The terminal device receives the first indication information of the reporting period.
  • step 260 the access network device sends the first indication information of the reporting period.
  • the reporting period may be 5 ms, 10 ms, 15 ms, 20 ms, 25 ms, 30 ms, 35 ms, 40 ms, 45 ms, 50 ms, 55 ms, 60 ms, 65 ms, 70 ms, 75 ms, 80 ms, 85 ms, 90 ms, 95 ms, 100 ms, 110 ms. 120ms, 130ms, 140ms, 150ms, 160ms, 170ms, 180ms, 190ms or 200ms.
  • the terminal device periodically reports the cache information to the access network device. Compared with the real-time report, on the one hand, the overhead and processing load of the terminal device can be reduced. On the other hand, the access network device does not need to use the terminal in real time. The cache delay information reported by the device is counted and processed, and the processing load of the access network device can also be reduced.
  • the method 200 further includes: Step 270: The terminal device sends the first report capability information, where the first report capability information is used to indicate that the terminal device has the report buffer delay information. ability.
  • the access network device receives the first reporting capability information.
  • the terminal device may first send the first reporting capability information to the access network device, so that the access network device provides a corresponding response based on the reporting capability.
  • the method 200 further includes: Step 280: The terminal device receives the first statistical capability information, where the first statistical capability information is used to indicate that the access network device has the capability of collecting cache delay information.
  • step 280 the access network device sends the first statistical capability information.
  • the first statistical capability information may be used as a response to the first reporting capability information sent by the terminal device in step 270, or may be sent to the terminal device before step 270, so that the access network device can know whether the terminal device has the reported buffer delay information.
  • the capability of the present application is not limited to the order of execution of steps 270 and 280.
  • the terminal device may perform the above step 210 to determine the cache delay information.
  • the access network device may not send the first statistical capability information, but may directly send the first indication information of the reporting granularity to the terminal device, Any one of the first indication information of the data packet type, the first indication information of the reporting period, and the first indication information of the reporting condition, to implicitly notify the terminal device that the access network has the capability of collecting the cache delay information.
  • first indication information may be carried in different information or cells, or may be carried in the same information or cells.
  • a first indication information indicates both the reporting granularity and the reporting period.
  • other indication information for example, the second indication information
  • the cache delay information may be carried in the high layer signaling.
  • step 240 specifically includes:
  • the terminal device sends the first MAC CE, and the first MAC CE carries the cache delay information.
  • the access network device receives the first MAC CE, and the first MAC CE carries the cache delay information.
  • the first MAC CE may be a MAC CE added by the terminal device, or a single MAC CE, where the MAC CE carries the cache delay information; the first MAC CE may also be the terminal device pair.
  • the MAC CE (for example, BSR MAC CE) field has been extended to generate the MAC CE. This application does not limit this.
  • the first MAC CE includes a first field and a second field corresponding to the first field, where the first field is used to indicate an identifier of the measurement object, and the second field is used to indicate the Measure the cache delay information of the object.
  • the first MAC CE includes N first fields and N second fields, where the N first fields are in one-to-one correspondence with the N second fields, and N is an integer greater than or equal to 1.
  • the nth first field is used to indicate the identifier of the measurement object
  • the nth second field is used to indicate the buffer delay information of the measurement object indicated by the nth first field; 1 ⁇ n ⁇ N,n is Integer.
  • the nth first field is used to indicate the identifier of the logical channel
  • the nth second field is used to indicate the buffer delay information of the data packet carried by the logical channel indicated by the nth first field
  • the nth first field is used to indicate the identifier of the logical channel group
  • the nth second field is used to indicate the buffer delay information of the data packet carried by each logical channel in the logical channel group indicated by the nth first field.
  • the nth first field is used to indicate the identifier of the network slice
  • the nth second field is used to indicate the cache delay information of the data packet transmitted by the network slice indicated by the nth first field
  • the nth first field is used to indicate the identifier of the radio bearer
  • the nth second field is used to indicate the buffer delay information of the data packet carried by the radio bearer indicated by the nth first field.
  • a first MAC CE may include one or more cache delay information, and the granularity of the cache delay information may be one of a logical channel, a logical channel group, a network slice, or a radio bearer, that is, a measurement object. It can be one of a logical channel, a logical channel group, a network slice, or a radio bearer.
  • One or more cache delay information included in the first MAC CE is in one-to-one correspondence with the identifiers of one or more measurement objects.
  • FIG. 6 to FIG. 10 are schematic diagrams showing a first MAC CE provided by an embodiment of the present application.
  • the first MAC CE shown in FIG. 6 to FIG. 9 may include N first fields and N second fields, where the first field is used to indicate the identifier of the measurement object of the buffer delay information.
  • the second field is used to indicate the cache delay information.
  • the first MAC CE in FIG. 6 carries a buffering delay information, and the reporting granularity of the buffering delay information is a logical channel.
  • the measurement object of the buffering delay information carried by the first MAC CE is a logical channel, the first field is used to indicate the identifier of the measured logical channel, and the second field is used to indicate the buffering delay information of the logical channel.
  • the first MAC CE in FIG. 7 carries a buffering delay information, and the reporting granularity of the buffering delay information is a logical channel group.
  • the measurement object of the cache delay information carried by the first MAC CE is a logical channel group, the first field is used to indicate the identifier of the measured logical channel group, and the second field is used to indicate the cache delay information of the logical channel group.
  • the first MAC CE in FIG. 8 carries multiple cache delay information, and the reporting granularity of each cache delay information is a logical channel group.
  • the measurement object of the cache delay information carried by the first MAC CE is a logical channel group, the first field is used to indicate the identifier of the logical channel group corresponding to each cache delay information, and the second field is used to indicate the logic with each logic.
  • the first MAC CE in FIG. 9 carries multiple cache delay information, and the reporting granularity of each cache delay information is a network slice.
  • the measurement object of the cache delay information carried by the first MAC CE is a logical channel, the first field is used to indicate the identifier of the network slice corresponding to each cache delay information, and the second field is used to indicate that the network slice corresponds to each network slice. Cache delay information.
  • the cache delay information carried in the first MAC CE listed above may be a buffer delay of one or more data packets, or may be an average value and a maximum value of a buffer delay of multiple data packets. , minimum or cumulative value.
  • the first MAC CE When N is greater than 1, the first MAC CE includes a plurality of first fields and a plurality of second fields, and the format of the first MAC CE may be predefined, such as a protocol definition.
  • the format of the first MAC CE may be expressed as an arrangement order of N first fields and N second fields and a bit overhead occupied respectively.
  • the first MAC CE may be separately placed by N first fields and N second fields, and the N first fields occupy consecutive B 1 *N bits, where B 1 represents each a number of bits occupied by the first field; N occupy consecutive second field B 2 * N bits, where, B 2 each represents a number of bits occupied by the second field.
  • B 1 represents each a number of bits occupied by the first field
  • N occupy consecutive second field B 2 * N bits
  • B 2 each represents a number of bits occupied by the second field.
  • the eight first fields occupy consecutive 8 bits, each first field occupies 1 bit
  • 8 second fields occupy consecutive 8 bytes
  • each second field occupies 1 Bytes, ie 8 bits.
  • the first MAC CE may be a group of a first field and a second field, occupying consecutive B 1 + B 2 bits, and the first MAC CE may be occupied in total (B 1 + B 2 ) * N bits.
  • the first field and the second field of each group are corresponding, that is, each second field is used to indicate the cache delay information of the measurement object indicated by the first field of the same group.
  • the terminal device may map the identifiers of the multiple measurement objects and the multiple cache delay information to multiple first fields and multiple according to a predefined rule. In the second field. For example, the terminal device may sequentially map the corresponding cache delay information into the plurality of second fields according to the order of the identifiers of the measurement objects indicated in the plurality of first fields.
  • the first MAC CE includes eight logical channel groups whose logical channel groups are identified from 0 to 7. The terminal devices are sequentially placed from left to right in the order of LCG 7 to LCG 0 according to the identifier of the logical channel group.
  • the terminal device may further map the eight cache delay information corresponding to the identifiers LCG 7 to LCG 0 of the logical channel group one by one to the upper one according to the order of the identification of the logical channel group. Go to the next two eight fields.
  • the terminal device may sequentially identify and correspond to the eight groups of measurement objects in descending order of the identifier of the measurement object.
  • the cache delay information is mapped to eight sets of first and second fields arranged from top to bottom.
  • mapping of the identifiers of multiple measurement objects and multiple cache delay information to one of the plurality of first fields and the plurality of second fields is exemplified, but this is not The present application is not limited in any way.
  • the first MAC CE may be a new MAC CE, and only carries information related to the cache delay information.
  • the cache delay information carried by the first MAC CE may be determined based on any one of the foregoing enumerated data packet types, or may be determined based on any one of the enumerated reporting granularities listed above, or may be based on the foregoing enumeration. Any one of the packet types and the reporting granularity are jointly determined, which is not limited in this application.
  • the buffering delay information carried by the first MAC CE may be determined based on a buffering delay of one or more data packets, where the buffering delay may be a time interval between a data packet arriving at the AS and the corresponding BSR. It can also refer to the time interval when a data packet arrives at the AS to receive the corresponding uplink grant.
  • the BSR is sent by the access network device for the physical uplink resource scheduled by the terminal device, and the physical uplink resource is in the time domain.
  • the location of the physical uplink resource can be known in advance. Therefore, the terminal device can know the transmission time of the BSR in advance. Therefore, the first MAC CE may be sent before the BSR is sent, or may be sent after the BSR is sent. The application does not limit this.
  • the terminal device may not be able to predict in advance that the uplink grant is sent by the access network device to the terminal device. The time of the uplink grant, therefore, the first MAC CE may be sent after receiving the uplink grant.
  • the foregoing first MAC CE may be further simplified to include only N second fields, where the N second fields are respectively used to indicate N cache delay information. It can be understood that the N second fields may be It is one-to-one corresponding to N measurement objects.
  • the rule of mapping of the N second fields in the first MAC CE may be predefined. For example, N cache delay information may be sequentially mapped in N second fields in order from top to bottom according to the order of the measurement object identifiers, as shown in FIG. 10 .
  • the first MAC CE shown in FIG. 10 includes only N second fields.
  • the measurement object of the N cache delay information indicated by the N second fields may be a data packet, a logical channel, a logical channel group, a network slice or a radio bearer, and the N measurement objects may indicate the terminal device in advance through the access network device. Therefore, the terminal device and the access network device can perform reporting and statistics of the cache delay information based on the same N measurement objects and corresponding mapping rules.
  • the foregoing first MAC CE includes a first field, a second field corresponding to the first field, and a third field corresponding to the first field.
  • the first field is used to indicate the identifier of the measurement object
  • the second field is used to indicate the cache delay information of the measurement object
  • the third field is used to indicate the cache size of the measurement object.
  • the first MAC CE includes N first fields, N second fields, and N third fields, where the N first fields are in one-to-one correspondence with the N second fields, and the N first fields are The N third fields correspond one-to-one, and N is an integer greater than or equal to 1.
  • the nth first field is used to indicate the identifier of the measurement object
  • the nth second field is used to indicate the cache delay information of the measurement object used by the nth first field
  • the nth third field is used.
  • the size of the measurement object used to indicate the nth first field is indicated; 1 ⁇ n ⁇ N, n is an integer.
  • the nth first field is used to indicate the identifier of the logical channel
  • the nth second field is used to indicate the buffer delay information of the data packet carried by the logical channel indicated by the nth first field
  • the nth The third field is used to indicate the size of the data packet carried by the logical channel indicated by the nth first field
  • the nth first field is used to indicate the identifier of the logical channel group
  • the nth second field is used to indicate the buffer delay information of the data packet carried by each logical channel in the logical channel group indicated by the nth first field
  • the nth third field is used to indicate the size of the data packet carried by each logical channel in the logical channel group indicated by the nth first field; or
  • the nth first field is used to indicate the identifier of the network slice
  • the nth second field is used to indicate the cache delay information of the data packet of the network slice transmission indicated by the nth first field
  • the third field is used for Instructing the first field to indicate the size of the data packet transmitted by the network slice;
  • the nth first field is used to indicate the identifier of the radio bearer
  • the nth second field is used to indicate the buffer delay information of the data packet carried by the radio bearer indicated by the nth first field
  • the nth The three fields are used to indicate the size of the data packet carried by the radio bearer indicated by the nth first field.
  • one or more cache delay information and one or more cache sizes may be included in one first MAC CE.
  • the granularity of the buffering delay information may be one of a logical channel, a logical channel group, a network slice, or a radio bearer, that is, the measurement object may be one of a logical channel, a logical channel group, a network slice, or a radio bearer.
  • One or more cache delay information included in the first MAC CE is in one-to-one correspondence with identifiers of one or more measurement objects, and one or more cache sizes included in the first MAC CE are compared with one or more The identifiers of the measurement objects correspond one-to-one.
  • FIG. 11 to FIG. 14 are schematic diagrams showing a first MAC CE provided by an embodiment of the present application.
  • the first MAC CE shown in FIG. 11 to FIG. 13 may include N first fields, N second fields, and N third fields, where the first field is used to indicate cache delay information.
  • the first MAC CE in FIG. 11 carries a buffer delay information and a buffer size, and the reporting granularity of the buffer delay information is a logical channel.
  • the measurement object of the buffer delay information carried by the first MAC CE is a logical channel, and the first field is used to indicate the identifier of the measured logical channel.
  • the first MAC CE in FIG. 12 carries a buffering delay information and a buffer size, and the reporting granularity of the buffering delay information is a logical channel group.
  • the measurement object of the buffer delay information carried by the first MAC CE is a logical channel, and the first field is used to indicate the identifier of the measured logical channel group.
  • the first MAC CE is a BSR MAC CE.
  • the first MAC CE shown in FIG. 12 may be a MAC CE obtained by extending the field of the existing BSR MAC CE. Compared to FIG. 3, the first MAC CE shown in FIG. 12 has more fields for indicating cache delay information than the first MAC CE shown in FIG.
  • the first MAC CE in FIG. 13 carries multiple cache delay information and multiple cache sizes, and the reporting granularity of each cache delay information is a logical channel group.
  • the measurement object of the buffer delay information carried by the first MAC CE is a logical channel group, and the first field is used to indicate an identifier of a logical channel group corresponding to each cache delay information.
  • the cache delay information carried in the first MAC CE listed above may be a buffer delay of one or more data packets, or may be an average value and a maximum value of a buffer delay of multiple data packets. , minimum or cumulative value.
  • the size of the cache carried in the first MAC CE may be determined by the prior art. For the sake of brevity, a detailed description of the specific process is omitted here.
  • the first MAC CE may be that the N first fields are separated from the N second fields and the N third fields, and the N first fields occupy consecutive B 1 *N bits.
  • B 1 represents the number of bits occupied by each first field.
  • the N second fields and the N third fields may also be separated, the N second fields occupy consecutive B 2 *N bits, and the N third fields occupy consecutive B 3 *N bits, where B 2 represents The number of bits occupied by each second field, and B 3 represents the number of bits occupied by each third field.
  • a second field and a third field can also be used as a group, occupying consecutive B 1 + B 2 bits, and the N second fields and the N third fields can occupy a total of consecutive (B 2 + B 3 ) *N bits.
  • 8 first fields occupy 8 consecutive bits, each first field occupies 1 bit, 8 second fields and 8 third fields can be used as 8 groups, occupying 16 consecutive lines. Bytes, each group occupies 2 bytes, each second field occupies 1 byte, and each third field occupies 1 byte.
  • first MAC CE formats are listed above with reference to FIG. 11 to FIG. 13 , but the present application should not be limited in any way.
  • the order of the second field and the third field may be adjusted, and
  • a first field, a second field, and a third field may be grouped together, occupying consecutive (B 1 + B 2 + B 3 ) bits.
  • This application does not limit the specific design of the first MAC CE format.
  • the terminal device and the access network device can generate and parse the first MAC CE according to a predefined format.
  • the terminal device may set multiple measurement object identifiers, multiple cache delays, and multiple cache sizes according to a predefined rule.
  • One is mapped into a plurality of first fields, a plurality of second fields, and a plurality of third fields.
  • the first MAC CE includes eight logical channel groups whose logical channel groups are identified from 0 to 7. The terminal devices are sequentially placed from left to right in the order of LCG7 to LCG0 according to the identification of the logical channel group.
  • the terminal device may further map the eight sets of cache size and the cache delay information corresponding to the identifiers LCG 7 to LCG 0 of the logical channel group in turn according to the order of the identification of the logical channel group. Up to eight sets of third and second fields arranged from top to bottom.
  • mapping of the identifiers of multiple measurement objects and multiple cache delay information to one of the plurality of first fields and the plurality of second fields is exemplified, but this is not The present application is not limited in any way.
  • the first MAC CE may be a new MAC CE, or may be an extended MAC CE for the existing MAC CE field.
  • the cache delay information carried by the first MAC CE may be determined based on any one of the foregoing enumerated data packet types, or may be determined based on any one of the enumerated reporting granularities listed above, or may be based on the foregoing enumeration. Any one of the packet types and the reporting granularity are jointly determined, which is not limited in this application.
  • the buffering delay information carried by the first MAC CE may be determined based on a buffering delay of one or more data packets, where the buffering delay may be a time interval between a data packet arriving at the AS and the corresponding BSR. It can also refer to the time interval when a data packet arrives at the AS to receive the corresponding uplink grant.
  • the buffering delay may be used to indicate a time interval when a data packet arrives at the AS to the corresponding BSR, and may also be used to indicate that a data packet arrives at the AS to be received.
  • the time interval of the corresponding uplink grant. Therefore, the first MAC CE may be sent before the BSR is sent, or may be sent after the BSR is sent.
  • the buffering delay may be used to indicate a time interval when a data packet arrives at the AS to the corresponding BSR, because the terminal device is transmitting.
  • the BSR may not know the time of arrival of the uplink grant scheduled for the data packet, so the first MAC CE may be sent after the BSR.
  • the first MAC CE may be further simplified to include only N second fields and N third fields.
  • the N second fields are respectively used to indicate N cache delay information
  • the N third fields are respectively used to indicate N cache sizes.
  • the N second fields may be in one-to-one correspondence with the N measurement objects
  • the N third fields may also be in one-to-one correspondence with the N measurement objects.
  • the rules for mapping the N second fields and the N third fields in the first MAC CE may be predefined.
  • the N second fields and the N third fields may be alternately designed in order from top to bottom in the order of the identification of the measurement object, as shown in FIG. 14; The identification is in the order of small, and the N second fields are placed in front, and the N third fields are placed behind. This application does not limit this.
  • the first MAC CE shown in FIG. 14 includes only N second fields and N third fields.
  • the measurement object of the N cache delay information indicated by the N second fields may be the same as the measurement object of the N cache sizes indicated by the N third fields.
  • it may be a data packet, a logical channel, a logical channel group, a network slice or a radio bearer, and the N measurement objects may indicate the terminal device in advance through the access network device, so the terminal device and the access network device may be based on the same N
  • the measurement object and the corresponding mapping rule are used to report and count the cache delay information.
  • the first MAC CE shown in FIG. 14 is a BSR MAC CE.
  • the first MAC CE shown in FIG. 14 may also be a MAC CE obtained by extending the field of the existing BSR MAC CE. Compared to FIG. 4, the first MAC CE shown in FIG. 14 has more fields for indicating cache delay information than the first MAC CE shown in FIG.
  • first MAC CE format the format of the multiple possible first MAC CEs is listed above with reference to FIG. 6 to FIG. 14 , but this application should not be construed as limiting.
  • the specific design of the first MAC CE format is not limited.
  • the terminal device and the access network device can generate and parse the first MAC CE according to a predefined format.
  • the cache delay information may be a cache delay of one or more data packets, or may be a maximum value, a minimum value, an average value, or an accumulated value of a buffer delay of multiple data packets.
  • the delay information is also essentially a delay value.
  • the terminal device may report the absolute value of the cache delay information to the access network device, or report the index of the cache delay information to the access network device.
  • the terminal device and the access network device may pre-define an index of the delay value, that is, a unique index may be separately defined for the delay value of the arbitrary interval.
  • Tables 1 and 2 show a one-to-one correspondence between multiple delay values and multiple indexes. Specifically, Table 1 shows a case where the delay value is indicated by 5 bits, and the index number may be 0 to 31. Table 2 shows the case where the delay value is indicated by 8 bits, and the index number may be 0 to 255.
  • Tables 1 and 2 only show two examples of the correspondence between the delay value and the index, and should not constitute any limitation to the present application.
  • the correspondence between the delay value and the index may be predefined, such as a protocol definition.
  • the terminal device may be notified in advance by the access network device, which is not limited in this application. It can be seen that the higher the bit number of the index, the smaller the granularity of the delay value that can be indicated, or the higher the bit number of the index, the larger the range of the delay value.
  • the resulting cost is an increase in bit overhead. Therefore, a trade-off can be made between the bit overhead of the index and the range of the delay value and the granularity of the partition to determine a reasonable correspondence between the delay value and the index.
  • step 240 specifically includes:
  • the terminal device sends a first RRC message, where the first RRC message carries the cache delay information.
  • the access network device receives the first RRC message, where the first RRC message carries the cache delay information.
  • the first RRC message may be an RRC message added by the terminal device, or a single RRC message, where the first RRC message carries the cache delay information; the first RRC message may also be a terminal device pair.
  • the field of the existing RRC message is extended to generate an RRC message. This application does not limit this.
  • the MAC layer may determine the buffer delay information according to the specific process of determining the buffer delay information described in the foregoing, and may notify the RRC layer by using the inter-layer primitive, so that the RRC layer A first RRC message carrying the cache delay information is generated.
  • the time that the data packet arrives from the AS to the time when the resource scheduling request is sent or the time that the data packet arrives at the time when the data packet arrives at the AS to receive the uplink grant is quantized.
  • the terminal device reports to the access network device.
  • the terminal device reports the cache delay information determined by the buffer delay of one or more data packets to the access network device, so that the access network device can more accurately understand the end-to-end delay, which is beneficial to the access network device.
  • a reasonable resource scheduling strategy to reduce the cache delay which helps to reduce the end-to-end delay, improve the delay gain, and improve the user experience.
  • the terminal device can report the buffering delay information of the different types of data packets to the access network device based on different reporting granularities, so that the access network device can make a reasonable resource scheduling policy according to the buffering delay information, so as to reduce
  • the small cache delay is beneficial to reduce the end-to-end delay, which is beneficial to improve the delay gain and improve the user experience.
  • the present application further provides a communication method capable of reporting a jitter level based on a buffer delay of a plurality of data packets.
  • FIG. 15 is a schematic flowchart of a communication method 300 of another embodiment of the present application, which is shown from the perspective of device interaction. As shown, the method 300 shown in FIG. 15 can include steps 310 through 390. The communication method will be described in detail below with reference to the accompanying drawings.
  • the terminal device determines a jitter level that is determined based on a buffering delay of the plurality of data packets.
  • the level of jitter can be used to indicate the difference in latency levels for different data packets.
  • the jitter level is determined by a cache latency of a plurality of data packets determined based on the packet type.
  • the buffering delay indicates a time interval when a data packet arrives at the access layer AS to send the corresponding advertising BSR, or the buffering delay indicates a time interval from when the data packet arrives at the AS to when the corresponding uplink authorization is received. .
  • the specific content of the cache delay is described in detail in the method 200 above, and is not described here for brevity.
  • the packet type may include, for example, a SDAP SDU, a SDAP PDU, a PDCP PDU, an RLC PDU, or a MAC PDU, and the like.
  • the data packet type may be predefined, such as a protocol definition, or may be previously indicated by the access network device.
  • the step 310 specifically includes: determining, by the terminal device, the jitter level according to the buffering delay of the multiple data packets corresponding to the data packet type, based on the data packet type.
  • the method 300 further includes: Step 320: The terminal device receives the second indication information of the data packet type.
  • the access network device transmits second indication information of the data packet type.
  • the data packet type corresponding to the jitter level information may be the same as or different from the data packet type corresponding to the cache delay information in the method 200 above.
  • step 320 is similar to step 220 in method 200 above, since the packet type and step 220 have been made above. Detailed description, for the sake of brevity, will not be described here.
  • the step 310 includes: determining, by the terminal device, the jitter level according to the reporting granularity, where the jitter level is determined according to a buffering delay of the multiple data packets corresponding to the reporting granularity in the buffering period.
  • the reporting granularity may be a logical channel or a logical channel group, or may be a network slice or a radio bearer.
  • the jitter level may be a cache delay determination of multiple data packets transmitted on the same logical channel in a predetermined time period, or may be a cache delay determination of multiple data packets transmitted on the same logical channel group in a predetermined time period. It may also be a cache delay determination of a plurality of data packets transmitted by the same network slice in a predetermined time period, and may also be a cache delay determination of a plurality of data packets transmitted by the same radio bearer in a predetermined time period.
  • the sequence number of the data packet has consecutive Sex. Therefore, when the delay difference of multiple data packets received by the receiving device of the data is large, large jitter may be caused, and therefore, multiple consecutive serial numbers in the same logical channel or the same logical channel group are used.
  • the delay of the data packet is controlled, so that the delay value of the multiple data packets is controlled to a close delay value, so that the delay difference between multiple data packets with consecutive serial numbers can be reduced, which is beneficial to reduce jitter. To improve the user experience.
  • the reporting granularity may be predefined, such as a protocol definition, or may be previously indicated by the access network device.
  • the method 300 further includes: Step 330: The terminal device receives the second indication information of the reported granularity.
  • the access network device sends the second indication information of the reporting granularity.
  • the reporting granularity of the jitter level information may be the same as or different from the reporting granularity of the buffering delay information in the method 200 above.
  • the predetermined time period may be predefined, such as a protocol definition, or may be pre-indicated by the access network device.
  • the access network device transmits indication information of a predetermined time period.
  • the indication information of the preset time period may include a start time and a time period length. It should be understood that the preset time period indicated by the protocol definition or the access network is only two possible implementations, and should not be construed as limiting the application. For example, the two modes may also be used in combination.
  • the start time of the preset time period may be indicated by an access network device, and the time length may be defined by a protocol.
  • the terminal device may also report the jitter level information based on the reporting condition and/or the reporting period.
  • the method 300 further includes: Step 350: The terminal device receives the second indication information of the reporting condition.
  • the access network device sends second indication information of the reporting condition.
  • step 360 the access network device sends the second indication information of the reporting period.
  • the reporting period of the jitter level information may be the same as or different from the reporting period of the buffering delay information in the method 200 above. This application does not limit this.
  • reporting conditions and the reporting period has been described in detail in the method 200 above, and the specific processes of steps 350 and 360 are similar to steps 250 and 260 in the method 200 above, since The reporting conditions, the reporting period, and the steps 250 and 260 are described in detail. For brevity, details are not described herein again.
  • the terminal device After determining the information of the jitter level, the terminal device can report the jitter level information to the access network device.
  • the access device can control the buffer delay of the adjacent multiple data packets, so that the delay is reduced to the same level, so as to reduce jitter and improve users.
  • the access device can control the buffer delay of the adjacent multiple data packets, so that the delay is reduced to the same level, so as to reduce jitter and improve users.
  • the method 300 further includes: Step 380: The terminal device sends the second reporting capability information, where the second reporting capability information indicates that the terminal device has the capability of reporting the jitter level.
  • the method 300 further includes: Step 390: The terminal device receives the second statistical capability information, where the second statistical capability information indicates the capability of the access network device to have a statistical jitter level.
  • the access network device sends the second statistical capability information, where the second statistical capability information indicates the ability of the access network device to have a statistical jitter level.
  • steps 380 and 390 are similar to the specific processes of steps 270 and 280 of method 200 above. Since the above detailed description has been made in connection with steps 270 and 280, for brevity, no further details are provided herein.
  • the step 370 specifically includes: the terminal device sends a second MAC CE, where the second MAC CE carries information of a jitter level.
  • the access network device receives the second MAC CE, and the second MAC CE carries information of the jitter level.
  • the second MAC CE includes a fourth field and a fifth field corresponding to the fourth field.
  • the fourth field is used to indicate the identifier of the measurement object
  • the fifth field is used to indicate the jitter level of the measurement object.
  • the second MAC CE includes M fourth fields and M fifth fields, and the M fourth fields are in one-to-one correspondence with the M fifth fields, where M is an integer greater than or equal to 1;
  • the mth fourth field may be used to indicate the identifier of the measurement object, and the mth fifth field may be used to indicate the jitter level of the measurement object indicated by the mth fourth field; 1 ⁇ m ⁇ M, where m is an integer.
  • the mth fourth field may be used to indicate an identifier of the logical channel group, and the mth fifth field may be used to indicate a jitter of the cache delay determined by the plurality of data packets carried by the logical channel group indicated by the mth fourth field Level; or
  • the mth fourth field may be used to indicate an identifier of the radio bearer
  • the mth fifth field may be used to indicate a jitter level determined by a buffer delay of the plurality of data packets carried by the radio bearer indicated by the mth fourth field .
  • the second MAC CE may be similar to the format of the first MAC CE listed in FIG. 6 to FIG. 16 in the above method 200.
  • the description will not be repeated herein with reference to the accompanying drawings.
  • the second MAC CE and the first MAC CE in the above method 200 can be combined into one MAC CE, such as shown in FIG.
  • the fourth field in the second MAC CE is the same as the first field in the first MAC CE in the method 200 above.
  • the MAC CE may further include a cache delay information.
  • the second field and the fifth field used to indicate the jitter level. It should be understood that the figure shows only one possible design for the example, but this should not constitute any limitation to the present application.
  • the format of the MAC CE is not particularly limited.
  • the step 320 includes: the terminal device sends a second RRC message, where the second RRC message carries information of a jitter level.
  • the access network device receives the second RRC message, and the second RRC message carries information of the jitter level.
  • the terminal device may determine the jitter level according to the buffering delay of the multiple data packets, and report the information of the jitter level to the access network device, so that the access network device controls the adjacent data packet.
  • the buffer delay value of multiple data packets with consecutive serial numbers is controlled to a close delay value, so that the delay difference between multiple data packets with consecutive serial numbers can be reduced, which is beneficial to reduce jitter and provide Smooth data transfer for improved user experience.
  • the first indication information in the method 200 and the second indication information in the method 300 may be the same indication information, or may be different indication information, which is not limited in this application.
  • the first indication information of the reporting granularity and the second indication information of the reporting granularity may be the same indication information, and the terminal device may report the buffering delay information and the jitter level based on the same reporting granularity; or may be different indication information, the terminal The device can report cache delay information and jitter levels based on different reporting granularities.
  • the determining unit 410 is configured to determine cache delay information, where the cache delay information is determined by a buffer delay of one or more data packets, where the buffer delay indicates that a data packet arrives at the access layer.
  • the interval at which the AS reports the BSR to the corresponding buffer status, or the buffer delay indicates the time interval from the arrival of the data packet to the arrival of the corresponding uplink grant.
  • the communication unit 420 is configured to send the buffer delay information by the first communication device.
  • the cache delay information is used to indicate:
  • the communication unit 420 is further configured to receive indication information for indicating a type of the data packet.
  • the reporting granularity includes: a data packet, a logical channel, a logical channel group, a network slice, or a radio bearer.
  • the communication unit 420 is further configured to receive the indication information used to indicate the reporting granularity.
  • the communication unit 420 is further configured to receive indication information used to indicate a reporting period.
  • the communication unit 420 is further configured to send first reporting capability information, where the first reporting capability information is used to indicate that the communications device 400 has the capability of reporting the cache delay information.
  • the communication unit 420 is further configured to send a MAC CE, where the MAC CE carries the cache delay information.
  • the MAC CE includes a first field and a second field corresponding to the first field
  • the first field indicates an identifier of a logical channel
  • the second field indicates a cache delay information of a data packet carried by the logical channel
  • the first field indicates an identifier of a logical channel group
  • the second field indicates a cache delay information of a data packet carried by each logical channel in the logical channel group
  • the first field indicates an identifier of a network slice
  • the second field indicates cache delay information of a data packet transmitted by the network slice
  • the third field indicates a size of a data packet transmitted by the network slice
  • the first field indicates an identifier of a radio bearer
  • the second field indicates a buffer delay information of a data packet carried by the radio bearer
  • the third field indicates a size of a data packet carried by the radio bearer.
  • the MAC CE is a BSR MAC CE.
  • the communication unit 420 is further configured to send an RRC message, where the RRC message carries the cache delay information.
  • the determining unit 410 is configured to determine a jitter level according to a buffer delay of the plurality of data packets, where the buffer delay indicates that a data packet arrives at the access layer AS to send a corresponding buffer status report.
  • the time interval of the BSR, or the buffer delay indicates the time interval from the arrival of the data packet to the arrival of the corresponding uplink grant. ;
  • the communication unit 420 is configured to transmit the information of the jitter level.
  • the determining unit 410 is specifically configured to determine, according to a data packet type, a jitter level according to a buffer delay of multiple data packets corresponding to the data packet type.
  • the data packet type includes: a SDAP SDU, a SDAP PDU, a PDCP PDU, an RLC PDU, or a MAC PDU.
  • the communication unit 420 is further configured to receive indication information for indicating a type of the data packet.
  • the determining unit 410 is specifically configured to determine, according to the reporting granularity, a jitter level, where the jitter level is determined according to a buffering delay of the multiple data packets corresponding to the reporting granularity in the buffering period.
  • the reporting granularity includes: a logical channel, a logical channel group, a network slice, or a radio bearer.
  • the communication unit 420 is further configured to receive indication information of a predetermined time period.
  • the communication unit 420 is specifically configured to send the information of the jitter level if the reporting condition is met.
  • the communication unit 420 is further configured to receive indication information for indicating a reporting condition.
  • the communication unit 420 is specifically configured to send the information about the jitter level based on a reporting period.
  • the communication unit 420 is further configured to send second reporting capability information, where the second reporting capability information is used to indicate that the communications device 400 has the capability of reporting information of a jitter level.
  • the communication unit 420 is further configured to receive second statistical capability information, where the second statistical capability information is used to indicate that the second communications device has the information of the statistics jitter level.
  • the communication unit 420 is further configured to send a MAC CE, where the MAC CE carries the information of the jitter level.
  • the MAC CE includes a fourth field and a fifth field corresponding to the fourth field; wherein the fourth field indicates an identity of a logical channel, and the fifth field indicates a plurality of data packets carried by the logical channel The jitter level determined by the cache delay; or
  • the fourth field indicates an identifier of a logical channel group
  • the fifth field indicates a jitter level determined by a buffer delay of a plurality of data packets carried by the logical channel group
  • the fourth field indicates an identifier of a network slice
  • the fifth field indicates a jitter level determined by a buffer delay of a plurality of data packets carried by the network slice
  • the fourth field indicates an identifier of a radio bearer
  • the fifth field indicates a jitter level determined by a buffer delay of a plurality of data packets carried by the radio bearer.
  • the communication device 400 may correspond to a terminal device in the communication method 300 according to an embodiment of the present application, or a chip configured in the terminal device.
  • the communication device 400 can include means for performing the method performed by the terminal device of the communication method 300 of FIG.
  • the respective units in the communication device 400 and the other operations and/or functions described above are respectively used to implement the corresponding processes of the communication method 300 in FIG. 15, and the specific processes in which the respective units perform the above-mentioned respective steps have been described in detail in the method 300, for the sake of brevity. , will not repeat them here.
  • the communication unit 510 is configured to receive buffer delay information, where the cache delay information is determined by a buffer delay of one or more data packets, where the buffer delay indicates that a data packet arrives.
  • the time interval of the inbound layer AS to the corresponding buffer status report BSR, or the buffer delay indicates the time interval from the arrival of the data packet to the arrival of the corresponding uplink grant.
  • the cache delay information is used to indicate:
  • the average, maximum, minimum, or cumulative value of the cache delay for multiple packets is the average, maximum, minimum, or cumulative value of the cache delay for multiple packets.
  • the communication unit 510 is further configured to send indication information for indicating a type of the data packet.
  • the data packet type includes: a SDAP SDU, a SDAP PDU, a PDCP PDU, an RLC PDU, or a MAC PDU.
  • the communication unit 510 is further configured to send indication information used to indicate the reporting granularity.
  • the reporting granularity includes: a data packet, a logical channel, a logical channel group, a network slice, or a radio bearer.
  • the communication unit 510 is further configured to receive an identifier corresponding to the reporting granularity.
  • the communication unit 510 is further configured to send indication information for indicating a reporting condition.
  • the communication unit 510 is further configured to send indication information for indicating a reporting period.
  • the communication unit 510 is further configured to send first statistical capability information, where the first statistical capability information is used to indicate that the communication device 500 has the capability of counting the cache delay information.
  • the communication unit 510 is specifically configured to receive a MAC CE, where the MAC CE carries the cache delay information.
  • the MAC CE includes a first field and a second field corresponding to the first field
  • the first field indicates an identifier of a logical channel
  • the second field indicates a cache delay information of a data packet carried by the logical channel
  • the first field indicates an identifier of a network slice
  • the second field indicates cache delay information of a data packet transmitted by the network slice
  • the first field indicates an identifier of a radio bearer
  • the second field indicates a cache delay information of a data packet carried by the radio bearer
  • the MAC CE includes a first field, a second field corresponding to the first field, and a third field corresponding to the first field;
  • the first field indicates an identifier of a logical channel group
  • the second field indicates a buffer delay information of a data packet carried by each logical channel in the logical channel group
  • the third field indicates each of the logical channel groups The size of the data packet carried by the logical channel;
  • the first field indicates an identifier of a radio bearer
  • the second field indicates a buffer delay information of a data packet carried by the radio bearer
  • the third field indicates a size of a data packet carried by the radio bearer.
  • the communication unit 510 is specifically configured to receive an RRC message, where the RRC message carries the cache delay information.
  • the communication device 500 may correspond to an access network device in the communication method 200 according to an embodiment of the present application, or a chip configured in the access network device.
  • the communication device 500 can include means for performing the method performed by the access network device of the communication method 200 of FIG.
  • the respective units in the communication device 500 and the other operations and/or functions described above are respectively used to implement the corresponding processes of the communication method 200 in FIG. 5, and the specific processes in which the respective units perform the above-mentioned corresponding steps have been described in detail in the method 200, for the sake of brevity. , will not repeat them here.
  • the communication unit 510 is configured to receive information of a jitter level, where the information of the jitter level is determined by a buffer delay of one or more data packets, where the buffer delay indicates that a data packet arrives.
  • the interval at which the access layer AS reports the BSR to the corresponding buffer status, or the buffer delay indicates the time interval from the arrival of the data packet to the arrival of the corresponding uplink grant.
  • the cache delay information is used to indicate:
  • the average, maximum, minimum, or cumulative value of the cache delay for multiple packets is the average, maximum, minimum, or cumulative value of the cache delay for multiple packets.
  • the communication unit 510 is further configured to send indication information for indicating a type of the data packet.
  • the data packet type includes: a SDAP SDU, a SDAP PDU, a PDCP PDU, an RLC PDU, or a MAC PDU.
  • the communication unit 510 is further configured to send indication information used to indicate the reporting granularity.
  • the reporting granularity includes: a data packet, a logical channel, a logical channel group, a network slice, or a radio bearer.
  • the communication unit 510 is further configured to send indication information for indicating a predetermined time period.
  • the communication unit 510 is further configured to receive an identifier corresponding to the reporting granularity.
  • the communication unit 510 is further configured to send indication information for indicating a reporting condition.
  • the communication unit 510 is further configured to send indication information for indicating a reporting period.
  • the communication unit 510 is further configured to receive second reporting capability information, where the second reporting capability information is used to indicate that the first communications device has the capability to report the information of the jitter level.
  • the communication unit 510 is further configured to send second statistical capability information, where the second statistical capability information is used to indicate that the communications device 500 has the capability to collect information about the jitter level.
  • the communication unit 510 is specifically configured to receive a MAC CE, where the MAC CE carries the information of the jitter level.
  • the fourth field indicates an identifier of a logical channel group
  • the fifth field indicates a jitter level determined by a buffer delay of a plurality of data packets carried by the logical channel group
  • the fourth field indicates an identifier of a network slice
  • the fifth field indicates a jitter level determined by a buffer delay of a plurality of data packets carried by the network slice
  • the communication unit 510 is specifically configured to receive an RRC message, where the RRC message carries the information of the jitter level.
  • FIG. 20 is a schematic structural diagram of a terminal device 600 according to an embodiment of the present application.
  • the terminal device 600 includes a processor 601 and a transceiver 602.
  • the terminal device 600 further includes a memory 603.
  • the processor 601, the transceiver 602, and the memory 603 can communicate with each other through an internal connection path for transmitting control and/or data signals.
  • the memory 603 is used to store a computer program, and the processor 601 is configured to be used from the memory 603.
  • the computer program is invoked and run to control the transceiver 602 to send and receive signals.
  • the terminal device 600 may further include an antenna 504, configured to send the uplink data or the uplink control signaling output by the transceiver 602 by using a wireless signal.
  • the above processor 601 and memory 603 can synthesize a processing device, and the processor 601 is configured to execute the program code stored in the memory 603 to implement the above functions.
  • the memory 603 may also be integrated in the processor 601 or independent of the processor 601.
  • the terminal device 600 may correspond to a terminal device in the communication method 200 according to an embodiment of the present application, and the terminal device 600 may include a unit for performing a method performed by the terminal device of the communication method 200 of FIG. Moreover, each unit in the terminal device 600 and the other operations and/or functions described above are respectively implemented to implement the corresponding flow of the communication method 200 in FIG. The specific process in which each unit performs the above-mentioned corresponding steps has been described in detail in the method 200. For brevity, no further details are provided herein.
  • the processor 601 when the program instructions stored in the memory 603 are executed by the processor 601, the processor 601 is configured to determine the jitter level information, and the control transceiver 602 transmits the jitter level information.
  • the communication device 400 may correspond to a terminal device in the communication method 300 according to an embodiment of the present application, or a chip configured in the terminal device.
  • the communication device 400 can include means for performing the method performed by the terminal device of the communication method 300 of FIG.
  • the respective units in the communication device 400 and the other operations and/or functions described above are respectively used to implement the corresponding processes of the communication method 300 in FIG. 15, and the specific processes in which the respective units perform the above-mentioned respective steps have been described in detail in the method 300, for the sake of brevity. , will not repeat them here.
  • the determining unit 410 in FIG. 18 may correspond to the processor 601 in FIG. 20, and the communication unit 420 in FIG. 18 may correspond to the transceiver 602 in FIG.
  • FIG. 21 is a schematic structural diagram of an access network device 700 according to an embodiment of the present application.
  • the access network device 700 includes a processor 710 and a transceiver 720.
  • the access network device 700 further includes a memory 730.
  • the processor 710, the transceiver 720, and the memory 730 communicate with each other through an internal connection path for transferring control and/or data signals.
  • the memory 730 is configured to store a computer program, and the processor 710 is configured to be called from the memory 730.
  • the computer program is run to control the transceiver 720 to send and receive signals.
  • the above processor 710 and memory 730 can synthesize a processing device, and the processor 710 is configured to execute the program code stored in the memory 730 to implement the above functions.
  • the memory 730 can also be integrated in the processor 710 or independent of the processor 710.
  • processor 710 when program instructions stored in memory 730 are executed by processor 710, the processor 710 is configured to control transceiver 720 to receive buffer latency information.
  • the access network device 700 may correspond to an access network device in the communication method 200 according to an embodiment of the present application, and the access network device 700 may include an access network device for performing the communication method 200 of FIG.
  • each unit in the access network device 700 and the other operations and/or functions described above are respectively implemented to implement the corresponding flow of the communication method 200 in FIG.
  • the specific process in which each unit performs the above-mentioned corresponding steps has been described in detail in the method 200. For brevity, no further details are provided herein.
  • processor 710 when program instructions stored in memory 730 are executed by processor 710, the processor 710 is configured to control transceiver 720 to receive information on jitter levels.
  • the access network device 700 may correspond to an access network device in the communication method 300 according to an embodiment of the present application, and the access network device 700 may include an access network device for performing the communication method 300 of FIG.
  • each unit in the access network device 700 and the other operations and/or functions described above are respectively configured to implement the corresponding flow of the communication method 300 in FIG.
  • the specific process in which each unit performs the above-mentioned corresponding steps has been described in detail in the method 300. For brevity, details are not described herein again.
  • the foregoing processor 710 may be configured to perform the actions implemented by the access network device described in the foregoing method embodiments, and the transceiver 720 may be configured to perform the access network device described in the foregoing method embodiment to send or receive from the terminal device. The action received by the terminal device.
  • the transceiver 720 may be configured to perform the access network device described in the foregoing method embodiment to send or receive from the terminal device. The action received by the terminal device.
  • processors in the embodiment of the present application may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (application specific integrated circuit, ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
  • the volatile memory can be a random access memory (RAM) that acts as an external cache.
  • RAM random access memory
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic randomness synchronous dynamic randomness.
  • Synchronous DRAM SDRAM
  • DDR SDRAM double data rate synchronous DRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory Take memory
  • DR RAM direct memory bus random access memory
  • the application further provides a computer program product, comprising: computer program code, when the computer program code is run on a computer, causing the computer to execute FIG. 2 or FIG. 15
  • a computer program product comprising: computer program code, when the computer program code is run on a computer, causing the computer to execute FIG. 2 or FIG. 15
  • the method in the examples is shown.
  • the present application further provides a computer readable medium storing program code, when the program code is run on a computer, causing the computer to execute FIG. 2 or FIG. 15
  • the method in the examples is shown.
  • the application further provides a system, including the foregoing one or more terminal devices and one or more access network devices.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

Abstract

本申请提供了一种通信方法、通信装置和系统,有利于接入网设备更准确地了解端到端时延。该方法包括:第一通信装置确定缓存时延信息,该缓存时延信息由一个或多个数据包的缓存时延确定,该缓存时延指示一数据包到达接入层AS到发送所对应的缓冲区状态报告BSR的时间间隔,或,该缓存时延指示一数据包从到达AS到接收到所对应的上行授权的时间间隔;该第一通信装置发送该缓存时延信息。

Description

通信方法、通信装置和系统 技术领域
本申请涉及通信领域,并且更具体地,涉及通信方法、通信装置和系统。
背景技术
端到端时延是用于表征业务传输时延的一个重要参数。端到端时延,可以是指用户设备(User Equipment,UE)到应用服务器的时延,也可以是指用户设备到用户设备的时延。
目前,在某些通信系统中,希望提高降低端到端时延来提高用户体验。例如,在第五代(5th generation,5G)通信系统的新空口接入技术(new radio access technology,NR)中,希望将端到端时延控制在1毫秒(ms)。尤其是一些对于时延要求较高的业务,比如超可靠低延迟通信(ultra-reliable and low latency communication,URLLC)等,对端到端时延提出了更高的要求。
因此,接入网设备希望能够更准确地了解端到端时延,从而合理地为用户设备调度资源,提高时延增益。
发明内容
本申请提供一种通信方法、通信装置和系统,以使接入网设备准确地获取数据包在缓存中等待的时间,有利于接入网设备更准确地了解端到端时延。
第一方面,提供了一种通信方法,包括:
第一通信装置确定缓存时延信息,所述缓存时延信息由一个或多个数据包的缓存时延确定,所述缓存时延指示一数据包到达接入层AS到发送所对应的缓冲区状态报告(buffer status report,BSR)的时间间隔,或,所述缓存时延指示一数据包从到达AS到接收到所对应的上行授权(uplink grant,UL grant)的时间间隔;
所述第一通信装置发送所述缓存时延信息。
相应地,第二通信装置接收所述缓存时延信息。
在上述通信方法中,第一通信装置可以为终端设备,或配置于终端设备中的芯片,第二通信装置可以为接入网设备,或配置于接入网设备中的芯片。
基于上述技术方案,通过定义数据包的缓存时延,从而将数据包到达AS至发送资源调度请求这一时段等待的时间量化,或者,将数据包到达AS至接收到上行授权这一时段等待的时间量化,以便于终端设备向接入网设备上报。终端设备将由一个或多个数据包的缓存时延确定的缓存时延信息上报给接入网设备,使得接入网设备可以更准确地了解端到端时延,有利于接入网设备做出合理的资源调度策略,以便减小缓存时延,从而有助于减小端到端时延,提高时延增益,提高用户体验。
并且,由于该缓存时延信息可以将数据包到达AS中不同协议层(例如,业务数据自适应协议(Service Data Adaptation Protocol,SDAP)层、分组数据汇聚层协议(Packet Data  Convergence Protocol,PDCP)层、(Radio Link Control,RLC)层或媒体接入控制媒体接入控制(Media Access Control,MAC)层)的时间作为计算该缓存时延的起始时间。终端设备可以根据需求获取与上述列举的协议层相对应的不同类型数据包(即,SDAP层数据包、PDCP层数据包、RLC层数据包或MAC层数据包)的缓存时延,从而终端设备可以灵活上报,便于接入网设备更全面地了解端到端时延。
结合第一方面,在第一方面的某些实现方式中,所述缓存时延信息用于指示:
一个或多个数据包中每个数据包的缓存时延;或者
多个数据包的缓存时延的平均值、最大值、最小值或累计值。
即,终端设备可以将数据包的缓存时延直接上报,也可以将多个数据包的缓存时延做处理后在上报,一方面可以减小终端设备上报的比特开销,另一方面可以减小接入网设备的处理负担。
结合第一方面,在第一方面的某些实现方式中,所述第一通信装置确定缓存时延信息,包括:
所述第一通信装置基于数据包类型确定所述缓存时延信息。
作为示例而非限定,该数据包类型可以包括:SDAP服务数据单元(service data unit,SDU)、SDAP协议数据单元(protocol data unit,PDU)、PDCP PDU、RLC PDU或MAC PDU等。
终端设备可以根据需求,基于不同的数据包类型确定缓存时延,非常灵活。
该数据包类型可以由接入网设备指示,即,可以半静态或动态配置;也可以预先定义,如由协议定义,即,静态配置。本申请对此不做限定。
可选地,所述方法还包括:
所述第一通信装置接收用于指示所述数据包类型的指示信息。
相应地,所述第二通信装置发送用于指示所述数据包类型的指示信息。
结合第一方面,在第一方面的某些实现方式中,所述第一通信装置确定缓存时延信息,包括:
所述第一通信装置基于上报粒度确定所述缓存时延信息;
其中,所述上报粒度包括:数据包、逻辑信道、逻辑信道组、网络切片或无线承载。
终端设备基于上报粒度确定的缓存时延信息可以是与上报粒度相对应的一个或多个数据包的缓存时延信息。终端设备可以根据需求,基于不同的上报粒度上报缓存时延信息。
可选地,所述方法还包括:
所述第一通信装置发送与所述上报粒度相对应的标识。
相应地,所述第二通信装置接收与所述上报粒度相对应的标识。
由于缓存时延信息可以是基于上报粒度而确定的,也就是基于与该上报粒度对应的一个或多个数据包的缓存时延来确定,在本申请实施例中,可以将与上报粒度对应的一个或多个数据包称为测量对象,与缓存时延信息的上报粒度相对应的标识即测量对象的标识。
通过发送与缓存时延信息相对应的标识,便于接入网设备基于缓存时延信息有针对性地对时延值较大的逻辑信道、逻辑信道组、网络切片或无线承载进行资源的优先调度;此外,根据已上报的数据包的缓存时延信息,可以将与此数据包的序列号相连续的其他数据包进行合理的资源调度,以便将序列号连续的多个数据包的缓存时延值控制在接近的时延 值,有利于减少抖动,提高用户体验。
上报粒度可以由接入网设备指示,即,可以半静态或动态配置;也可以预先定义,如由协议定义,即,静态配置。本申请对此不做限定。
若该上报粒度由接入网设备指示,则可选地,所述方法还包括:
所述第一通信装置接收用于指示所述上报粒度的指示信息。
相应地,所述第二通信装置发送用于指示所述上报粒度的指示信息;
结合第一方面,在第一方面的某些实现方式中,所述第一通信装置发送所述缓存时延信息,包括;
所述第一通信装置在满足上报条件的情况下发送所述缓存时延信息。
通过基于上报条件发送缓存时延信息,终端设备可以在缓存时延信息满足上报条件的时候向接入网设备上报。因此,终端设备不需要实时地确定和上报缓存时延信息,可以减小空口开销和终端设备的处理负担;接入网设备也不需要实时地根据终端设备上报的缓存时延信息做统计和处理,故也可以减小接入网设备的处理负担。
该上报条件可以由接入网设备指示,如半静态配置或动态配置;也可以预先定义,如由协议定义,即,静态配置,本申请对此不做限定。
若该上报条件由接入网设备指示,则可选地,所述方法还包括:
所述第一通信装置接收用于指示上报条件的指示信息。
相应地,所述第二通信装置发送用于指示上报条件的指示信息。
结合第一方面,在第一方面的某些实现方式中,所述第一通信装置发送所述缓存时延信息,包括;
所述第一通信装置基于上报周期发送所述缓存时延信息。
通过基于上报周期发送缓存时延信息,相比于实时上报而言,一方面可以减小终端设备的开销和处理负担;另一方面,由于接入网设备不用实时地对终端设备上报的缓存时延信息进行统计和处理,也可以减小接入网设备的处理负担。
该上报周期可以由接入网设备指示,如半静态配置或动态配置;也可以预先定义,如由协议定义,即,静态配置,本申请对此不做限定。
若该上报周期由接入网设备指示,则可选地,所述方法还包括:
所述第一通信装置接收用于指示上报周期的指示信息。
相应地,所述第二通信装置发送用于指示所述上报周期的指示信息。
应理解,上述上报条件和上报周期可以单独使用,也可以结合使用,本申请对此不做限定。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:
所述第一通信装置发送第一上报能力信息,所述第一上报能力信息用于指示所述第一通信装置具有上报所述缓存时延信息的能力。
相应地,所述第二通信装置接收第一上报能力信息。
接入网设备可以根据终端设备发送的第一上报能力信息确定是否向终端设备发送上述列举的上报粒度的第一指示信息、数据包类型的第一指示信息、上报条件的第一指示信息或上报周期的第一指示信息。接入网设备可以在终端设备具有上报缓存时延信息的能力时发送上述列举的指示信息,在终端设备不具有上报缓存时延信息的能力时不发送上述列 举的指示信息,以避免不必要的信令开销。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:
所述第一通信装置接收第一统计能力信息,所述第一统计能力信息用于指示第二通信装置具有统计所述缓存时延信息的能力。
相应地,所述第二通信装置发送第一统计能力信息。
终端设备可以根据接入网设备发送的第一统计能力信息,确定是否向该接入网设备上报缓存时延信息。终端设备可以在接入网设备具有统计缓存时延信息的能力时上报,在接入网设备不具有统计缓存时延信息的能力时不上报,以避免不必要的信令开销。
结合第一方面,在第一方面的某些实现方式中,所述缓存时延信息携带在MAC控制元素(control element,CE)中。
其中,所述第一通信装置发送所述缓存时延信息,包括:
所述第一通信装置发送MAC CE,所述MAC CE携带所述缓存时延信息。
相应地,所述第二通信装置接收所述缓存时延信息,包括:
所述第二通信装置接收MAC CE,所述MAC CE携带所述缓存时延信息。
可选地,上述与所述上报粒度对应的标识可以携带在该MAC CE中。
以下提供了MAC CE的两种可能的设计,以将上述缓存时延信息上报给接入网设备。
在一种可能的设计中,所述MAC CE包括第一字段和与所述第一字段对应的第二字段;
其中,所述第一字段指示逻辑信道的标识,所述第二字段指示所述逻辑信道承载的数据包的缓存时延信息;或者
所述第一字段指示逻辑信道组的标识,所述第二字段指示所述逻辑信道组中各逻辑信道承载的数据包的缓存时延信息;或者
所述第一字段指示网络切片的标识,所述第二字段指示所述网络切片传输的数据包的缓存时延信息;或者
所述第一字段指示无线承载的标识,所述第二字段指示所述无线承载所承载的数据包的缓存时延信息。
这种设计可视为一种新增的MAC CE,可以独立于其他MAC CE单独发送。在这种设计中,可以通过第一字段指示测量对象的标识,例如,数据包、逻辑信道、逻辑信道组、网络切片或无线承载,第二字段可以用指示该测量对象的缓存时延信息。
在另一种可能的设计中,所述MAC CE包括MAC CE包括第一字段、与所述第一字段对应的第二字段和与所述第一字段对应的第三字段;
其中,所述第一字段指示逻辑信道的标识,所述第二字段指示所述逻辑信道承载的数据包的缓存时延信息,所述第三字段指示所述逻辑信道承载的数据包的大小;或者
所述第一字段指示逻辑信道组的标识,所述第二字段指示所述逻辑信道组中各逻辑信道承载的数据包的缓存时延信息,所述第三字段指示所述逻辑信道组中各逻辑信道承载的数据包的大小;或者
所述第一字段指示网络切片的标识,所述第二字段指示所述网络切片传输的数据包的缓存时延信息,所述第三字段指示所述网络切片传输的数据包的大小;或者
所述第一字段指示无线承载的标识,所述第二字段指示所述无线承载所承载的数据包 的缓存时延信息,所述第三字段指示所述无线承载所承载的数据包的大小。
这种设计可视为对现有的BSR MAC CE的扩展。在这种设计中,第一字段和第三字段可沿用现有的BSR MAC CE,第二字段可以用指示第一字段所指示的测量对象的缓存时延信息。
结合第一方面,在第一方面的某些实现方式中,所述缓存时延信息携带在无线资源控制(radio resource control,RRC)消息中。
其中,所述第一通信装置发送所述缓存时延信息,包括:
所述第一通信装置发送RRC消息,所述RRC消息携带所述缓存时延信息。
相应地,所述第二通信装置接收所述缓存时延信息,包括:
所述第二通信装置接收所述RRC消息,所述RRC消息中携带所述缓存时延信息。
可选地,上述与缓存时延信息的上报粒度相对应的标识携带在该RRC消息中。
第一通信装置可以在MAC层确定上述缓存时延信息后,通过层间原语将该抖动级别通知给RRC层,由RRC层生成携带该缓存时延信息的MAC CE。该第一RRC消息可以是新增的RRC消息,也可以是对已有的RRC消息的扩展,本申请对此不做限定。
第二方面,提供了一种通信方法,包括:
第一通信装置根据多个数据包的缓存时延确定抖动级别,所述缓存时延指示一数据包到达接入层AS到发送所对应的缓冲区状态报告BSR的时间间隔,或,所述缓存时延指示一数据包从到达AS到接收到所对应的上行授权的时间间隔。
所述第一通信装置发送所述抖动级别的信息。
相应地,第二通信装置接收所述抖动级别的信息。
基于上述技术方案,终端设备可以根据多个数据包的缓存时延确定抖动级别,并将抖动级别的信息上报给接入网设备,以便于接入网设备可以对相邻的多个数据包的缓存时延进行控制,使得时延减小至同一水平,以便减小抖动,提高用户体验。
结合第二方面,在第二方面的某些实现方式中,所述第一通信装置根据多个数据包的缓存时延确定抖动级别,包括:
所述第一通信装置基于数据包类型,根据与所述数据包类型对应的多个数据包的缓存时延确定抖动级别。
作为示例而非限定,该数据包类型可以包括:SDAP SDU、SDAP PDU、PDCP PDU、RLC PDU或MAC PDU等。
终端设备可以根据需求,基于不同的数据包类型确定缓存时延,非常灵活。
该数据包类型可以由接入网设备指示,即,可以半静态或动态配置;也可以预先定义,如由协议定义,即,静态配置。本申请对此不做限定。
可选地,所述方法还包括:
所述第一通信装置接收用于指示所述数据包类型的指示信息。
相应地,所述第二通信装置发送用于指示所述数据包类型的指示信息。
结合第二方面,在第二方面的某些实现方式中,所述第一通信装置确定抖动级别,包括:
所述第一通信装置基于所述上报粒度,根据与所述上报粒度对应的多个数据包的缓存时延确定所述抖动级别。
换句话说,所述抖动级别是根据预定时段内所述上报粒度所对应的多个数据包的缓存时延确定的。
其中,所述上报粒度包括:逻辑信道、逻辑信道组、网络切片或无线承载。
终端设备基于上报粒度确定的抖动级别可以是与上报粒度相对应的多个数据包的缓存时延确定的抖动级别。终端设备可以根据需求,基于不同的上报粒度上报抖动级别的信息。
该上报粒度和预定时段可以是接入网设备指示终端设备的,如,半静态配置或动态配置;也可以是预先定义的,如由协议定义,本申请对此不做限定。
若上报粒度由接入网设备指示终端设备,则可选地,该方法还包括:
第二通信装置接收用于指示上报粒度的指示信息。
相应地,第一通信装置发送用于指示上报粒度的指示信息。
若预定时段由接入网设备指示终端设备,则可选地,该方法还包括:
第二通信装置接收用于指示预定时段的指示信息。
相应地,第一通信装置发送用于指示预定时段的指示信息。
进一步可选地,所述方法还包括:
所述第一通信装置发送与所述上报粒度相对应的标识。
相应地,所述第二通信装置接收与所述上报粒度相对应的标识。
通过发送与抖动级别的信息相对应的标识,便于接入网设备基于抖动级别有针对性地对时延差异较大的逻辑信道、逻辑信道组、网络切片或无线承载中的数据包进行合理的资源调度,以便将此后传输的多个数据包的缓存时延值控制在接近的时延值,有利于减少抖动,提高用户体验。
结合第二方面,在第二方面的某些实现方式中,所述第一通信装置发送所述抖动级别的信息,包括:
所述第一通信装置在满足上报条件的情况下,发送所述抖动级别的信息。
通过基于上报条件发送抖动级别的信息,终端设备可以在抖动级别的信息满足上报条件的时候向接入网设备上报。因此,终端设备不需要实时地确定和上报抖动级别的信息,可以减小空口开销和终端设备的处理负担;接入网设备也不需要实时地根据终端设备上报的抖动级别的信息做统计和处理,故也可以减小接入网设备的处理负担。
该上报条件可以由接入网设备指示,如半静态配置或动态配置;也可以预先定义,如由协议定义,即,静态配置,本申请对此不做限定。
若该上报条件由接入网设备指示,则可选地,所述方法还包括:
所述第一通信装置接收用于指示上报条件的指示信息。
相应地,所述第二通信装置发送用于指示上报条件的指示信息。
结合第二方面,在第二方面的某些实现方式中,所述第一通信装置发送所述抖动级别的信息,包括;
所述第一通信装置基于上报周期发送所述抖动级别的信息。
通过基于上报周期发送抖动级别的信息,相比于实时上报而言,一方面可以减小终端设备的开销和处理负担;另一方面,由于接入网设备不用实时地对终端设备上报的抖动级别的信息进行统计和处理,也可以减小接入网设备的处理负担。
该上报周期可以由接入网设备指示,如半静态配置或动态配置;也可以预先定义,如由协议定义,即,静态配置,本申请对此不做限定。
若该上报周期由接入网设备指示,则可选地,所述方法还包括:
所述第一通信装置接收用于指示上报周期的指示信息。
相应地,所述第二通信装置发送用于指示上报周期的指示信息。
应理解,上述上报条件和上报周期可以单独使用,也可以结合使用,本申请对此不做限定。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:
所述第一通信装置发送第二上报能力信息,所述第二上报能力信息指示所述第一通信装置具有上报抖动级别的能力。
相应地,第二通信装置接收第二上报能力信息。
接入网设备可以根据终端设备发送的第二上报能力信息确定是否向终端设备发送上述列举的上报粒度的第一指示信息、预定时段的指示信息、数据包类型的第一指示信息、上报条件的第一指示信息或上报周期的第一指示信息。接入网设备可以在终端设备具有上报抖动级别的信息的能力时发送上述列举的指示信息,在终端设备不具有上抖动级别的信息的能力时不发送上述列举的指示信息,以避免不必要的信令开销。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:
所述第一通信装置接收第二统计能力信息,所述第二统计能力信息用于指示第二通信装置具有统计所述抖动级别的能力。
相应地,所述第二通信装置发送第二统计能力信息。
终端设备可以根据接入网设备发送的第二统计能力信息,确定是否向该接入网设备上报抖动级别的信息。终端设备可以在接入网设备具有统计抖动级别的能力时上报,在接入网设备不具有统计抖动级别的能力时不上报,以避免不必要的信令开销。
结合第二方面,在第二方面的某些实现方式中,所述抖动级别的信息携带在MAC CE中。
其中,所述第一通信装置发送所述抖动级别的信息,包括:
所述第一通信装置发送MAC CE,所述MAC CE中携带所述抖动级别的信息。
相应地,所述第二通信装置接收所述抖动级别的信息,包括:
所述第二通信装置接收MAC CE,所述MAC CE中携带所述抖动级别的信息。
可选地,上述与所述上报粒度对应的标识可以携带在该MAC CE中。
应理解,该MAC CE可以是新增的MAC CE,也可以是对已有的MAC CE的扩展,本申请对此不做限定。
在一种可能的设计中,所述MAC CE包括第四字段和与所述第四字段对应的第五字段;其中,所述第四字段指示逻辑信道的标识,所述第五字段指示由所述逻辑信道承载的多个数据包的缓存时延确定的抖动级别;或者
所述第四字段指示逻辑信道组的标识,所述第五字段指示由所述逻辑信道组承载的多个数据包的缓存时延确定的抖动级别;或者
所述第四字段指示网络切片的标识,所述第五字段指示由所述网络切片承载的多个数据包的缓存时延确定的抖动级别;或者
所述第四字段指示无线承载的标识,所述第五字段指示由所述无线承载所承载的多个数据包的缓存时延确定的抖动级别。
结合第二方面,在第二方面的某些实现方式中,所述抖动级别的信息携带在RRC消息中。
其中,所述第一通信装置发送所述抖动级别的信息,包括:
所述第一通信装置发送RRC消息,所述RRC消息携带所述抖动级别的信息。
相应地,所述第二通信装置接收所述抖动级别的信息,包括:
所述第二通信装置接收所述RRC消息,所述第二RRC消息携带所述抖动级别的信息。
可选地,上述与所述上报粒度相对应的标识携带在该RRC消息中。
第一通信装置可在MAC层确定上述抖动级别后,通过层间原语将该抖动级别通知给RRC层,由RRC层生成携带该抖动级别的信息的RRC消息。该RRC消息可以是新增的RRC消息,也可以是对已有的RRC消息的扩展,本申请对此不做限定。
应理解,上述第一方面中的缓存时延信息和第二方面中的抖动级别的信息可以携带在同一个MAC CE中;也可以为携带在不同的MAC CE中;可以携带在同一个RRC消息中;也可以携带在不同的RRC消息中;还可以携带在不同协议层的信令中,例如,缓存时延信息携带在MAC CE中,抖动级别的信息携带在RRC消息中。本申请对此不做限定。
第三方面,提供了一种终端设备,具有实现上述第一方面或第二方面的方法设计中的第一通信装置的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第四方面,提供了一种接入网设备,具有实现上述第一方面或第二方面的方法设计中的第二通信装置的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第五方面,提供了一种终端设备,包括收发器和处理器。可选地,该终端设备还包括存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行上述第一方面或第二方面的方法设计中第一通信装置执行的方法。
第六方面,提供了一种接入网设备,包括收发器和处理器。可选地,该接入网设备还包括存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该接入网设备执行上述第一方面或第二方面的方法设计中第二通信装置执行的方法。
第七方面,提供了一种通信系统,该系统包括上述第三方面中的终端设备以及第四方面中的接入网设备;或者,该系统包括上述第五方面中的终端设备以及第六方面中的接入网设备。
第八方面,提供了一种通信装置,该通信装置可以为终端设备,或者为设置在终端设备中的芯片。该通信装置包括:处理器和接口组件,该处理器与存储器耦合,可用于通过该接口组件执行存储器中的指令,以实现上述第一方面或第二方面的方法设计中第一通信装置所执行的方法。可选地,该通信装置还包括该存储器。
当所述通信装置为终端设备时,所述接口组件可以是收发器,或,输入/输出接口。
当所述通信装置为配置于终端设备中的芯片时,所述接口组件可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第九方面,提供了一种通信装置,该通信装置可以为接入网设备,或者为设置在接入网设备中的芯片。该通信装置包括:处理器和接口组件,该处理器与存储器耦合,可用于通过接口组件读取并执行存储器中的指令,以实现上述第一方面或或第二方面的方法设计中第二通信装置所执行的方法。可选地,该通信装置还包括存储器。
当所述通信装置为接入网设备时,所述接口组件可以是收发器,或,输入/输出接口。
当所述通信装置为配置于接入网设备中的芯片时,所述接口组件可以是输入/输出接口。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第十方面,提供了一种计算机可读介质,包括指令,当其在通信装置上运行时,使得所述通信装置执行:上述第一方面或第一方面任一种可能实现方式中的方法,或者,上述第二方面或第二方面任一种可能实现方式中的方法。
第十一方面,提供了一种计算机程序产品,包括指令,当其在通信装置上运行时,使得所述通信装置执行:第一方面或第一方面任一种可能实现方式中的方法,或者,上述第二方面或第二方面任一种可能实现方式中的方法。
附图说明
图1是适用于本申请实施例的通信方法的通信系统的示意图;
图2是本申请实施例提供的协议栈的示意图;
图3是本申请实施例提供的短BSR格式和缩短的BSR格式的BSR MAC CE的示意图;
图4是本申请实施例提供的长BSR格式的BSR MAC CE的示意图;
图5是本申请实施例提供的通信方法的示意性流程图;
图6至图14是本申请实施例提供的MAC CE的示意图;
图15是本申请另一实施例提供的通信方法的示意性流程图;
图16和图17是本申请另一实施例提供的MAC CE的示意图;
图18是本申请实施例提供的通信装置是示意性框图;
图19是本申请另一实施例提供的通信装置是示意性框图;
图20是本申请实施例提供的终端设备的结构示意图;
图21是本申请实施例提供的接入网设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如但不限于,窄带物联网系统(Narrow Band-Internet of Things,NB-IoT)、全球移动通信(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系 统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、5G系统或NR等。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1是适用于本申请实施例的通信方法的通信系统100的示意图。如图1所示,该通信系统100可包括至少一个接入网设备(例如,图中示出的接入网设备102)和至少两个终端设备(例如,图中示出的终端设备104和终端设备106),接入网设备102可分别与终端设备104、终端设备106无线通信。可选地,该通信系统100还可包括更多的接入网设备和/或更多的终端设备,本申请对此不做限定。
其中,接入网设备可以包括接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。接入网系统可用于将收到的空中帧与网际协议(Internet Protocol,IP)分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。无线接入网系统还可协调对空中接口的属性管理。应理解,接入网设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),无线保真(Wireless Fidelity,WIFI)系统中的接入点(Access Point,AP)、无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,接入网设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的接入网设备,也可以将CU划分为核心网(core network,CN)中的接入网设备,在此不做限制。
终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、 无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。
在该通信系统100中,假设终端设备104和终端设备106可以处于接入网设备102的服务小区中。当终端设备104与终端设备106通信时,例如,终端设备104向终端设备106发送数据时,终端设备104可以向在接入网设备102调度的物理上行资源(例如,物理上行共享信道)上向接入网设备102传输该数据,接入网设备在接收到该数据后,可以将该数据进一步发送至核心网设备,例如,服务网关(serving gateway,SGW)和分组数据网关(packet data network gateway,PDN GW)等,核心网设备完成网际协议(Internet Protocol,IP)分配、计费等操作,并将数据发送至互联网服务器。此后,再将该数据通过核心网设备、接入网设备(例如,接入网设备102)发送至终端设备106。
因此,端到端时延可以包括:终端设备处理的时延、终端设备与接入网设备间的空口传输时延、接入网设备处理的时延、核心网设备处理的时延以及接入网设备与核心网设备之间的回传时延,核心网与互联网服务器之间的时延,甚至还包括资源调度带来的时延。
应理解,图中仅为便于理解而示例,不应对本申请构成任何限定。例如,该通信系统100还可以包括核心网设备、互联网服务器等,图中并未予以画出。又例如,终端设备104和终端设备106可以为处于不同小区中的终端设备。再例如,当终端设备104和终端设备106处于不同小区中时,不同小区的接入网设备可以与不同的核心网设备连接。本申请对于两个终端设备之间的网络连接不做限定。
还应理解,图中仅为便于理解,示出了两个用户设备之间通信的场景,但这不应对本申请所提供的通信方法所适用的场景构成限定。例如,本申请提供的通信方法还可适用于用户设备与应用服务器之间的通信场景。
上文所描述的端到端时延考虑了两个终端设备之间通信时所可能涉及的各个网元,然而,在当前技术中,接入网设备未能准确地了解数据包在终端设备内部的等待物理上行资源的调度而产生的时延,因此对端到端时延的产生原因的判断也不够准确。具体地,数据包在应用层生成之后,可经过各协议层组包、封装等操作,到达MAC层,由MAC层向接入网设备发送上行资源的调度请求,例如,调度请求(schedueling request,SR)、缓存区状态报告(BSR)等,在接收到上行授权(UL grant)之后,通过授权的物理上行资源发送数据。
在当前技术中,在终端设备请求资源发送上行数据的过程中,接入网设备将接收到缓存大小(Buffer Size)大于0的BSR MAC CE至接收到缓存大小等于0的BSR MAC CE的时间间隔作为资源调度带来的时延,但事实上,终端设备在发出BSR MAC CE之前,数据包从到达AS层(例如,SDAP层、PDCP层或者RLC层)到发出BSR MAC CE的这一段时间内,数据包在缓存区中等待的过程也会产生一定的时延。
若无法准确了解数据包在终端设备内部的等待时延,在等待时延占端到端时延的比重较大的情况下,因接入网设备并不知道时延产生的主要位置和主要原因,就有无法作出合理的调度策略来减小这部分时延,从而无法真正地降低端到端时延,也就无法提高时延增益。
有鉴于此,本申请提供过一种通信方法,以使接入网设备准确地获取数据包在缓存中等待的时间。
为便于理解本申请实施例,下面首先结合图2简单说明LTE中的协议栈结构以及各协议层对数据包的操作。图2是LTE中用户面和控制面协议栈的结构示意图。如图所示,在当前的LTE的用户面协议栈结构中,可以包括4个协议层,自上而下分别可以为PDCP层、RLC层、MAC层和物理(Physical,PHY)层。发送端设备在任意一个协议层(例如,记作协议层A,可以理解,协议层A可以为PDCP层、RLC层、MAC层和PHY层中任意一个协议层)生成的数据都需要经过其下层的协议层的处理,最终通过物理信道发送给接收端设备。相应地,接收端设备在物理信道上接收到的数据也需要通过PHY层及其上层的协议层的处理,一直到协议层A,才可以获取该数据。
LTE的用户面协议栈结构中除包括上述4个协议层之外,还可以包括RRC层。发送端设备在任意一个协议层(例如,记作协议层B,可以理解,协议层B可以为RRC层、PDCP层、RLC层、MAC层和PHY层中任意一个协议层)生成的信令都需要经过其下层的协议层的处理,最终通过物理信道发送给接收端设备。相应地,接收端设备在物理信道上接收到的数据也需要通过PHY层及其上层的协议层的处理,一直到协议层A,才可以获取该数据。
可以理解的是,上文所列举的RRC层、PDCP层、RLC层、MAC层和PHY层可以称为接入层(access stratum,AS),接入层可理解为接入网所工作的协议层。接入层的流程,也就是接入网设备需要参与处理的流程。例如,可包括公共陆地移动网络(public land mobile network,PLMN)选择、小区选择以及无线资源管理流程等。接入层信令由接入网设备处理。
另外,图中出于完整性的考虑,还示出了非接入层(Non-Access Stratum,NAS),非接入层可理解为核心网所工作的协议层。非接入层的流程,也就是终端设备与核心网需要处理的流程,接入网设备不需要处理。例如,非接入层的流程可包括业务的建立、释放以及移动性管理等。非接入层信令可由接入网透传至核心网设备,接入网设备对其不做处理。接入层的信令交互可用于在终端设备与核心网设备之间建立连接通路,以便终端设备与核心网之间进行非接入层的信令流程。
应理解,上文仅为便于理解,以LTE中的协议栈为例进行了说明,但这不应对本申请构成任何限定,本申请并不排除在未来的协议中将LTE中的协议栈中的一个或多个层合并、或者新增一个或多个协议层的可能。例如,在NR协议中的用户面协议栈中,可能在PDCP层上增加新的协议层,如SDAP层。
下面结合图2中所示的协议栈,以上行传输为例,简单说明终端设备对在各协议层对数据的处理。
可以理解的是,在各协议层可接收到来自上层的数据包,可以对该数据包进行处理,生成新的数据包再传至下一协议层。在各协议层,可以将来自上层的数据包称为服务数据单元(SDU),将该协议层生成的数据包称为协议数据单元(PDU)。因此,相邻的两个协议层中,上一协议层的PDU可视为下一协议层的SDU。
例如,PDCP PDU传至RLC层后,可称为RLC SDU,RLC层对该RLC SDU进行处理后可生成RLD PDU。
在本申请实施例中,在描述各协议层数据包的时候,可以指代SDU,也可以指代PDU,本领域的技术人员可以理解其含义。
首先,在LTE中,终端设备可在PDCP层对来自上层的网际协议(Internet Protocol,IP)数据包进行包头压缩,以减少无线接口上传输的比特数,并可进一步对数据包进行加密,生成PDCP PDU后发送至RLC层。其中,来自上层的IP数据包可以是应用层产生的数据经由传输层控制协议(Transmission Control Protocol,TCP)层、IP层处理后得到的。
或者,在NR中,终端设备也可在PDCP层对来自SDAP层的PDU进行包头压缩,生成PDCP PDU后发送至RLC层。
此后,终端设备可在RLC层将来自PDCP层的PDU进行分割或级联,生成RLC PDU后发送至MAC层。RLC层可为PDCP层提供服务。在NR中,也可以不对上层的数据包进行级联。
此后,终端设备可在MAC层确定空中接口发送的格式,如数据块的大小、与数据块的大小相匹配的物理资源以及物理资源相匹配的MCS等。终端设备可根据MCS生成与之大小匹配的MAC PDU(即,传输块(transport block,TB))后发送至物理层。MAC层可以逻辑信道(logical channel,LC)的形式为RLC层提供服务。此外,MAC层也可以生成MAC层控制信息,例如MAC控制元素(Control Element,CE),用于上报数据缓存区信息,功率余量等,用于基站调度。因此,MAC层生成的MAC PDU还可包括MAC层控制信息,本申请对此不做限定。
此后,终端设备可在物理层对来自MAC层的传输块(transport block,TB)进行信道编码、速率匹配、交织、加扰和调制等处理,然后通过天线将调制生成的信号发射出去。物理层可以传输信道(transport channel,TCH)的形式向MAC层提供服务。
应理解,上述列举结合LTE中的协议栈结构对终端设备在各协议层对上行数据执行的操作了简单的说明,接入网设备侧对下行数据的处理与之类似。此外,终端设备对下行数据的处理,和接入网设备对上行数据的处理与上述过程相反,不再赘述。以上各个过程具体的实现过程可以与现有技术相同,为了简洁,这里省略对其具体过程的详细说明。
为了满足终端设备多种业务的需求,接入网设备可以为每个终端设备配置一个或多个逻辑信道,每个逻辑信道可对应一种业务的QoS要求。例如,终端设备可能同时需要上网业务以及语音业务,因此可能被配置两个或更多个不同的逻辑信道,以接收或发送不同业务的数据。
以上行数据发送过程为例,不同业务的数据可分别在PDCP层和RLC层建立单独的实体(entity)并进行处理,分别对应一个逻辑信道。如前所述,MAC层也可以生成MAC层控制信息,为之分配对应的逻辑信道,MAC实体可将一个或多个逻辑信道复用到一个传输信道,将来自RLC层的PDU和/或MAC层控制信息映射到同一个MAC层的PDU(即,MAC PDU)中。因此通过上述映射,可将多个逻辑信道复用到同一个传输信道上。
为便于理解本申请实施例,首先对本实施例中涉及的几个概念做简单说明。
1、端到端(end to end,E2E)时延:可理解为端到端通信的时延,例如,可以是终端设备到终端设备的时延,或者,终端设备到应用服务器的时延。进一步地,端到端时延可以包括:终端设备处理的时延、终端设备与接入网设备间的空口传输时延、接入网设备处理的时延、核心网设备处理的时延以及接入网设备与核心网设备之间的回传时延,核心 网与互联网服务器之间的时延,甚至还包括资源调度带来的时延。
2、MAC CE:用于传输MAC层的控制信令。每个MAC CE中可包括一个逻辑信道标识(LCID),一个LCID可用来唯一地标识一个MAC CE。通过使用LCID,MAC SDU或MAC CE中不再需要在MAC头中通过额外的字段来标识。
3、BSR MAC CE:当终端设备有上行数据的传输需求时,可通过发送BSR来获得物理上行资源。
在一种可能的设计中,BSR可以为BSR MAC CE。BSR MAC CE可以包括LCG ID字段和Buffer Size字段。其中,LCG ID字段用于表示缓存区状态报告对应的逻辑信道组,可占用2个比特;Buffer Size字段所有MAC PDU生成后LCG ID逻辑信道组中所有逻辑信道的数据总量。数据总量可以字节数进行指示。该数据总量可以包括RLC层和PDCP层中可用于传输的所有数据。通过向接入网设备发送BSR MAC CE,接入网设备可以基于终端设备所上报的数据总量,为终端设备调度物理上行资源。换句话说,这里所说的缓存区可以是RLC层的缓存区和PDCP层的缓存区,本申请对此不做限定。
BSR MAC CE可以分为短BSR(short BSR)格式、缩短的BSR(truncated BSR)格式和长BSR(long BSR)格式。其中,短BSR格式和缩短的BSR格式的BSR MAC CE可以包括一个LCG ID字段和一个对应的Buffer Size字段,图3示出了短BSR格式和缩短的BSR格式的BSR MAC CE。长BSR格式的BSR MAC CE可以包括四个Buffer Size字段,对应于LCG ID#0至#3,图4示出了长BSR格式的BSR MAC CE。图中的一个八位组(Oct,octet)表示8比特(bits)构成的一个字节(byte)。
应理解,图中示出的BSR MAC CE的格式是现有协议中(例如,LTE协议)定义的两种可能的格式,这里仅为便于理解而示例,不应对本申请构成任何限定。本申请实施例在该BSR MAC CE的格式的基础上做出了改进,后文中将结合具体的实施例详细说明。
4、上行授权(UL grant):接入网设备在接收到来自终端设备的BSR MAC CE或者SR后,可以为终端设备调度物理上行资源,该被调度的物理上行资源的指示可以通过上行授权来指示调制编码方式(modulation coding scheme,MCS)和资源分配(resource allocation)。例如,该物理上行资源可以是动态调度的,该上行授权可以是物理层信令,如下行控制信息(downlink control information,DCI);该物理上行资源也可以是半静态调度的,该上行授权可以是高层信令,如RRC消息,也可以是物理层信令,如DCI。本申请对此不做限定。
5、逻辑信道组(logical channel group,LCG):根据逻辑信道中的内容可将一个或多个逻辑信道归为一个逻辑信道组,同一个逻辑信道组可对应一种业务类型。例如,逻辑信道组可以包括控制信道组和业务信道组,控制信道组例如可包括:广播控制信道(broadcast control channel,BCCH)、寻呼控制信道(paging control channel,PCCH)、公共控制信道(common control channel,CCCH)、(dedicated control channel,DCCH)等;业务信道组例如可包括:专用业务信道(dedicated traffic channel,DTCH)、公共业务信道(common traffic channel,CTCH)等。
应理解,上文列举的逻辑信道和逻辑信道组仅为示例,不应对本申请构成任何限定。
6、无线承载(radio bearer,RB):演进分组系统(Evolved Packet System,EPS)承载中终端设备到接入网设备之间的承载称为无线承载。基于不同的承载内容,可以将无线 承载分为信令无线承载(signaling RB,SRB)和数据无线承载(data RB,DRB)。其中,SRB可用于承载控制面数据,即,信令。在LTE或NR中,根据承载的信令不同可分为SRB0、SRB1和SRB2;DRB用于承载用户面数据。在LTE或NR中,根据服务质量(quality of service,QoS)不同,终端设备与接入网设备之间可同时建立8个DRB。
7、网络切片(network slice):基于不同的业务需求,可以进一步将物理网络划分为多个虚拟网络,每个虚拟网络可以根据不同的服务需求,如时延、带宽、安全性或可靠性来划分,以灵活地应对不同的网络应用场景。相比于无线承载而言,网络切片的划分粒度更细。
例如在NR中,根据三类应用场景对网络服务的不同需求,可将网络切片分为用于增强移动宽带(enhanced mobile broadband,eMBB)的网络切片、用于海量机器类型通信(massive machine type communication,mMTC)的网络切片和用于超可靠低延迟通信(ultra-reliable and low latency communication,URLLC)的网络切片。
网络切片可通过网络功能虚拟化(network function virtualization)来实现。即,通过功能虚拟化的网络节点来实现不同类型的网络切片。传输在网络切片上的数据包同样可依次经过各协议层的处理而被发送出去。
8、抖动(jitter):基于IP的视频和音频业务中,顺序传递的相邻两个帧的转发时延之差的绝对值。
下面将结合附图详细说明本申请实施例。
应理解,在下文示出的实施例中,第一、第二仅为便于区分不同的对象,而不应对本申请构成任何限定。例如,区分不同的MAC CE、不同的RRC消息或不同的指示信息等。在下文示出的实施例中,为便于区分和说明,将方法200中列举的用于指示数据包类型的指示信息记作数据包类型的第一指示信息,将方法300中列举的用于指示数据包类型的指示信息记作数据包类型的第二指示信息;将方法200中列举的用于指示上报粒度的指示信息记作上报粒度的第一指示信息,将方法300中列举的用于指示上报粒度的指示信息记作上报粒度的第二指示信息,以此类推,这里不再一一列举。此外,为便于区分和说明,将方法200中列举的用于携带缓存时延信息的MAC CE记作第一MAC CE,将方法300中列举的用于携带缓存时延信息的MAC CE记作第二MAC CE;将方法200中列举的用于携带抖动级别的信息的RRC消息记作第一RRC消息,将方法300中列举的用于携带抖动级别的信息的RRC消息记作第二RRC消息。
还应理解,在下文示出的实施例中,“预先获取”可包括由接入网设备信令指示或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括终端设备和接入网设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
还应理解,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
还应理解,本申请实施例中,名词“网络”和“系统”经常交替使用,但本领域的技术人 员可以理解其含义。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
还应理解,本申请实施例中的“协议”可以是指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
还应理解,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或一个以上;“A和B中的至少一个”,类似于“A和/或B”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和B中的至少一个,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
应理解,本申请提供的通信方法可以适用于无线通信系统,例如,图1中所示的无线通信系统100。处于无线通信系统中的两个通信装置间具有无线通信连接,该两个通信装置中的一个通信装置可对应于图1中所示的终端设备104或终端设备106,例如,可以为图1中的终端设备104,也可以为配置于终端设备104中的芯片;或者,也可以为图1中的终端设备106,也可以为配置于终端设备106中的芯片;该两个通信装置中的另一个通信装置可对应于图1中所示的接入网设备102,例如,可以为图1中的接入网设备102,也可以为配置于接入网设备102中的芯片。
以下,不失一般性,以终端设备与接入网设备之间的交互过程为例详细说明本申请实施例。可以理解,处于无线通信系统中的任意一个终端设备可以基于相同的方法向接入网设备上报时延。本申请对此不做限定。
图5是从设备交互的角度示出的本申请实施例提供的通信方法200的示意性流程图。如图所示,图5中所示的方法200可以包括步骤210至步骤280。下面将结合图5详细描述该通信方法。
在步骤210中,终端设备确定缓存时延信息,该缓存时延信息可以是由被测量的一个或多个数据包的缓存时延确定的。
可选地,该缓存时延信息用于指示:
a)一个数据包的缓存时延;或
b)多个数据包中每个数据包的缓存时延;或
c)多个数据包的缓存时延的平均值、最大值、最小值或累计值。
具体地,该缓存时延信息可用于指示a)、b)和c)中的任意一项,例如,可以用指示a),或者用于指示b),或者用于指示c)。
应理解,终端设备上报的缓存时延信息的具体内容可以由接入网设备预先指示,或者也可以预先定义,如协议定义,本申请对此不做限定。这里,缓存时延可以是指一个数据包到达AS到发送所对应的BSR的时间间隔,或者,也可以是指一个数据包到达AS到接收到所对应的上行授权的时间间隔。换句话说,该缓存时延的起始时刻可以是数据包到达AS的时刻,该缓存时延的结束时刻可以为发送BSR的时刻,也可以是接收到上行授权的时刻。其中,该BSR可以是终端设备用于请求发送该数据包的BSR,上行授权可以是接入网设备针对该BSR调度的物理上行资源而下发的上行授权。
如前所述,AS可以包括SDAP层、PDCP层、RLC层、MAC层和PHY层。由于终 端设备在MAC层接收到上行授权之后才开始对来自上层的数据包进行MAC层的组包,因此,在本实施例中,数据包到达AS可以是指数据包到达SDAP层、PDCP层或RLC层中的任意一个协议层。与此对应地,到达SDAP层的数据包可以称为SDAP SDU,到达PDCP层的数据包可以称为PDCP SDU或SDAP PDU,到达RLC层的数据包可以称为RLCSDU或PDCP PDU;到达MAC层的数据包可以称为MAC SDU或RLC PDU;到达物理层的数据包可以称为MAC PDU。
作为示例而非限定,该数据包类型包括:SDAP SDU、SDAP PDU、PDCP PDU、RLC PDU或MAC PDU。
由于数据包在各协议层之间传输时,在各个层的序列号可能是不同的,但是可以具有对应关系。例如,当PDCP PDU到达RLC层时,可能被分割或级联,该PDCP PDU中可携带序列号,RLC层对该PDCP PDU进行分割或级联得到一个或多个RLC PDU后,便可得到RLC PDU的序列号从而可以获取到PDCP PDU的序列号与RLC PDU的序列号的对应关系,RLC层可将该对应关系通过层间原语通知给相邻的协议层;又例如,多个RLC PDU到达MAC层时,可能会复用同一个MAC PDU,RLC PDU中可携带其在RLC层的序列号,MAC层对多个RLC PDU进行组包得到一个MAC PDU后,便可得到该MAC PDU的序列号,从而可以获取到RLC PDU的序列号与MAC PDU的序列号的对应关系,MAC层也可将该对应关系通过层间原语通知给相邻的协议层。因此,MAC层可以基于各个协议层的数据包的序列号的对应关系确定上述列举的任意一种类型的数据包的缓存时延。
因此,可选地,步骤210具体包括:
终端设备基于该数据包类型确定缓存时延信息。
即,该缓存时延信息可以是由与该数据包类型对应的一个或多个数据包的缓存时延确定的。
具体地,终端设备在确定缓存时延之前,可以预先确定需要上报缓存时延的数据包的类型,也就是确定该缓存时延的起始时间。该数据包的类型可以是预先定义的,如协议定义终端设备上报的数据包是SDAP PDU、PDCP PDU或者RLC PDU等。该数据包的类型也可以是由接入网设备预先向终端设备指示的。
若该数据包的类型是由接入网设备指示的,则可选地,该方法200还包括:步骤220,终端设备接收数据包类型的第一指示信息。
相应地,在步骤220中,接入网设备发送数据包类型的第一指示信息。
具体地,该数据包类型可以与缓存时延的起始时刻有关,确定了数据包类型,也就是确定了从数据包到达哪个协议层开始计算缓存时延。
举例而言,若接入网设备指示数据包类型为SDAP PDU,则该终端设备从数据包到达SDAP层的时刻开始计算缓存时延,即,将数据包到达SDAP层的时刻作为计算该缓存时延的起始时刻。
在一种可能的实现方式中,终端设备在数据包到达每一个协议层时,在该数据包中加时间戳,以标识该数据包到达各协议层的时间。此后,终端设备可以进一步根据数据包类型,确定所需要的数据包的缓存时延。应理解,这里仅为便于理解列举了一种确定数据包的缓存时延的可能的实现方式,但这不应对本申请构成任何限定,本申请对于确定数据包的缓存时延的具体实现方式不做限定。
此外,终端设备在确定缓存时延之前,还可以预先确定上报粒度。可选地,上报粒度可以包括:数据包、逻辑信道、逻辑信道组、网络切片或无线承载。
该上报粒度可以是预先定义的,如协议定义,也可以是由接入网设备预先向终端设备指示的。
若该上报粒度是由接入网指示的,则可选地,该方法200还包括:步骤230,终端设备接收上报粒度的第一指示信息。
相应地,在步骤230中,接入网设备发送上报粒度的第一指示信息。
具体地,终端设备可以基于不同的粒度向接入网设备上报缓存时延信息。
进一步可选地,步骤210具体包括:终端设备基于上报粒度确定缓存时延信息。
即,该缓存时延信息可以是与上报粒度对应的一个或多个数据包的缓存时延确定的。
不管基于哪一种上报粒度来上报缓存时延信息,终端设备都可以是以数据包为最小单位来确定缓存时延的,因此,该缓存时延信息必然是由一个或多个数据包的缓存时延确定,且该一个或多个数据包可以是与上报粒度相对应的数据包。换句话说,终端设备可以结合上述数据包类型和上报粒度,确定缓存时延信息,以便向接入网设备上报。
举例而言,若上报粒度是数据包,则该数据包可以是SDAP层数据包、PDCP层数据包或RLC层数据包中的任意一种。终端设备可以基于每个数据包计算相应的缓存时延,将每个数据包的缓存时延上报给接入网设备。在数据包数量为多个的情况下,终端设备也可以将多个数据包的缓存时延的平均值、最大值、最小值或累计值上报给接入网设备。
若上报粒度是逻辑信道,则对应的数据包可以是承载在逻辑信道中的RLC PDU,也可以是与该RLC PDU对应的其他协议层的数据包,例如,PDCP PDU或者MAC PDU等。终端设备可以基于每个数据包计算相应的缓存时延,直接将每个数据包的缓存时延上报给接入网设备。在数据包为多个的情况下,终端设备也可以将多个数据包的缓存时延的平均值、最大值、最小值或累计值上报给接入网设备。
若上报粒度是逻辑信道组,则对应的数据包可以是RLC PDU,也可以是与该RLC PDU对应的其他协议层的数据包。终端设备可以基于每个逻辑信道组中所包括的逻辑信道,将承载在各逻辑信道中的RLC数据包的缓存时延上报给接入网设备,也可以将承载在各逻辑信道中的RLC数据包的缓存时延的平均值、最大值、最小值或累计值上报给接入网设备。
若上报粒度是网络切片,则对应的数据包可以是SDAP PDU、PDCP PDU、RLC PDU或MAC PDU中的任意一种。由于同一个网络切片传输的数据可以承载在一个或多个数据包中,因此,终端设备可以基于每个网络切片中的数据所在的数据包确定缓存时延信息。同一个网络切片中的数据所在的数据包可称为与该网络切片对应的数据包。终端设备可以将同一个网络切片所对应的一个或多个数据包的缓存时延上报给接入网设备,在同一个网络切片对应多个数据包的情况下,终端设备也可以将同一个网络切片所对应的多个数据包的缓存时延的平均值、最大值、最小值或累计值上报给接入网设备。
若上报粒度是无线承载,则对应的数据包可以是SDAP PDU、PDCP PDU、RLC PDU或MAC PDU中的任意一种。由于同一个无线承载传输的数据可以承载在一个或多个数据包中,因此,终端设备可以基于每个无线承载中的数据所在的数据包确定缓存时延信息。同一个无线承载中的数据所在的数据包可称为与该无线承载对应的数据包。终端设备可以 将同一个无线承载所对应的一个或多个数据包的缓存时延上报给接入网设备,在同一个无线承载对应多个数据包的情况下,终端设备也可以将同一个无线承载所对应的多个数据包的缓存时延的平均值、最大值、最小值或累计值上报给接入网设备。
应理解,上文中所列举的上报粒度仅为几种可能的实现方式,而不应对本申请构成任何限定。本申请也并不排除在未来的协议中定义更多或更少的上报粒度的可能。
在本申请实施例中,基于上报粒度对一个或多个数据包的缓存时延进行测量,可确定与该上报粒度对应的缓存时延信息,该被测量的一个或多个数据包可以称为测量对象。可以理解,每个测量对象可对应一个缓存时延信息,每个测量对象可以基于上报粒度而定义。
在步骤240中,终端设备发送该缓存时延信息。
相应地,接入网设备接收该缓存时延信息
终端设备在确定了缓存时延信息之后,便可以向接入网设备上报该缓存时延信息。
可选地,该方法200还包括:
该终端设备发送与该上报粒度相对应的标识。
相应地,接入网设备接收与该上报粒度相对应的标识。
如前所述,将与上报粒度对应的被测量的一个或多个数据包称为测量对象,则与该缓存时延信息的上报粒度所对应的标识称为测量对象的标识。
在本申请实施例中,该缓存时延信息以及与该缓存时延信息的上报粒度相对应的标识可以携带在同一信令中发送。例如,携带在同一MAC CE中,或者同一RRC消息中等,本申请对此不做限定。
通过发送缓存时延信息以及该缓存时延信息的测量对象的标识,接入网设备可以根据缓存时延信息的测量对象的标识,更准确地判断出产生时延的主要位置,从而有针对性地调度资源。例如,在确定某一个逻辑信道的缓存时延信息所指示的缓存时延相比于其他逻辑信道的缓存时延信息所指示的缓存时延大时,可以针对该逻辑信道优先调度资源,以减小该逻辑信道在下一次传输数据包时可能产生的缓存时延。对于其他的上报粒度,接入网设备同样可以采用相同的方式来减小缓存时延。
可以理解的是,由于数据包的类型不同,在不同协议层数据包的序列号可能是不同的,例如,PDCP PDU在到达RLC层后可能会被分割成多个RLC PDU,该多个RLC PDU在RLC层的序列号可以是连续的;或者,多个PDCP PDU在到达RLC层后可能会被级联成一个RLC PDU,因此一个PDCP PDU的序列号可能在RLC层对应了多个RLC PDU的序列号,多个PDCP PDU的序列号也可能在RLC层对应一个RLC PDU的序列号。又例如,多个RLC PDU在到达MAC层后可能会被复用到一个MAC PDU中,因此多个RLC PDU的序列号可能在MAC层对应了同一个MAC PDU的序列号。
若PDCP PDU在到达RLC层被分割成多个RLC PDU,当上报粒度为数据包时且MAC CE中携带有RLC PDU的序列号时,如果该RLC PDU的缓存时延占总时延的比重较大,则接入网设备可以根据该RLC PDU的序列号对其相邻序列号的RLC PDU进行优先资源调度。从而有利于减小整个PDCP PDU的缓存时延,并且有助于整个PDCP PDU的数据包的时延控制在接近的时延长度,从而可以减少抖动,提高用户体验。
为了减小开销和接入网设备的处理负担,终端设备还可以基于以下一项或两项上报缓存时延信息:
1)上报条件;和
2)上报周期。
也就是说,终端设备可以仅在满足上报条件的情况下上报缓存时延信息,也可以仅基于某一确定的上报周期上报缓存时延信息,或者,还可以是在满足上报条件的情况下基于上报周期上报缓存时延信息。
下面分别对1)和2)做详细说明。
1)上报条件
上报条件可以理解为触发终端设备上报缓存时延信息的条件,当终端设备满足某一上报条件时,终端设备即确定开始向接入网设备上报缓存时延信息。即,可选地,步骤240具体包括:终端设备在满足上报条件的情况下发送缓存时延信息。
需要注意的是,这并不代表终端设备在满足上报条件之前没有进行缓存时延的采集,终端设备可以实时地或周期性地采集缓存时延并统计缓存时延信息,并在满足上报条件的时候开始上报缓存时延信息。终端设备也可以在满足上报条件之后才开始采集缓存时延,或者才开始统计缓存时延信息,以便向接入网设备上报缓存时延信息。本申请对此不做限定。
在一种可能的设计中,该上报条件与缓存时延无关,终端设备是否采集缓存时延或统计缓存时延信息与是否满足上报条件可以没有直接关系。例如,缓存区中保存的数据包的数量大于或等于预设门限值。
在另一种可能的设计中,该上报条件与缓存时延相关,终端设备也可以基于缓存时延确定是否满足上报条件。例如,该上报条件可以是:某一数据包的缓存时延大于预设门限值;或者,某一网络切片的缓存信息大于预设门限值。
应理解,上文列举的上报条件仅为示例性说明,不应对本申请构成任何限定,本申请对于上报条件的具体内容不做限定。
在本申请实施例中,该上报条件可以是预先定义,如协议定义,或者,也可以由接入网设备预先通知终端设备。若该上报条件由接入网设备预先通知终端设备,则可选地,该方法200还包括:步骤250,终端设备接收上报条件的第一指示信息。可以理解,上报条件的第一指示信息,是指用于指示上报条件的指示信息。本申请中各种指示信息的表达(例如第一指示信息、第二指示信息)都可以参照上述理解,以下不作赘述。
相应地,在步骤250中,接入网设备发送上报条件的第一指示信息。
当终端设备确定当前缓存的数据包满足上报条件时,便可以向接入网设备上报缓存时延信息。因此,接入网设备在缓存时延较严重的时候可以基于缓存时延进行合理的资源调度,以便通过及时处理来减小缓存时延,从而有利于减小端到端试验。
2)上报周期
可选地,步骤240具体包括:终端设备基于上报周期发送缓存时延信息。
终端设备上报缓存时延信息的上报周期可以预先定义,如协议定义,也可以由接入网设备预先通知终端设备。若该上报周期由接入网设备预先通知终端设备,则可选地,该方法200还包括:步骤260,终端设备接收上报周期的第一指示信息。
相应地,在步骤260中,接入网设备发送上报周期的第一指示信息。
可选地,该上报周期可以是5ms、10ms、15ms、20ms、25ms、30ms、35ms、40ms、 45ms、50ms、55ms、60ms、65ms、70ms、75ms、80ms、85ms、90ms、95ms、100ms、110ms、120ms、130ms、140ms、150ms、160ms、170ms、180ms、190ms或200ms。
终端设备周期性地向接入网设备上报缓存信息,相比于实时上报而言,一方面,可以减小终端设备的开销和处理负担;另一方面,由于接入网设备不用实时地对终端设备上报的缓存时延信息进行统计和处理,也可以减小接入网设备的处理负担。
可选地,在上述步骤210至步骤260之前,该方法200还包括:步骤270,终端设备发送第一上报能力信息,该第一上报能力信息用于指示该终端设备具有上报缓存时延信息的能力。
相应地,在步骤270中,接入网设备接收第一上报能力信息。
终端设备在接入至该接入网设备之后,可以首先向接入网设备发送第一上报能力信息,以便于接入网设备基于该上报能力给出相应的响应。
可选地,该方法200还包括:步骤280,终端设备接收第一统计能力信息,该第一统计能力信息用于指示该接入网设备具有统计缓存时延信息的能力。
相应地,在步骤280中,接入网设备发送该第一统计能力信息。
该第一统计能力信息可以作为对步骤270中终端设备发送的第一上报能力信息的响应,也可以在步骤270之前发送给终端设备,以便接入网设备了解终端设备是否具有上报缓存时延信息的能力,本申请对于步骤270和步骤280的执行的先后顺序不做限定。
在终端设备和接入网设备互相通知对方分别具有上报缓存时延信息的能力和统计缓存时延信息的能力之后,终端设备便可以执行上述步骤210以确定缓存时延信息。
可替换地,若终端设备先向接入网设备发送第一上报能力信息,接入网设备也可以不发送第一统计能力信息,而可以直接向终端设备发送上述上报粒度的第一指示信息、数据包类型的第一指示信息、上报周期的第一指示信息、上报条件的第一指示信息中的任意一项,以隐式地通知终端设备该接入网具有统计缓存时延信息的能力。可以理解,上述各种第一指示信息可以是承载在不同的信息或者信元中,也可以承载在相同的信息或者信元中。例如一个第一指示信息既指示了上报粒度,也同时指示了上报周期。本申请中,其他指示信息(例如第二指示信息)也可以参考上述理解,本申请不作赘述。
在本申请实施例中,上述缓存时延信息可以携带高层信令中。
可选地,步骤240具体包括:
终端设备发送第一MAC CE,该第一MAC CE中携带该缓存时延信息。
相应地,接入网设备接收第一MAC CE,该第一MAC CE中携带该缓存时延信息。
具体地,该第一MAC CE可以是终端设备新增的MAC CE,或者说是一个单独的MAC CE,该MAC CE中携带缓存时延信息;该第一MAC CE也可以是终端设备对已有的MAC CE(例如,BSR MAC CE)的字段做了扩展生成的MAC CE。本申请对此不做限定。
在一种可能的设计中,上述第一MAC CE包括第一字段和与所述第一字段对应的第二字段,其中,第一字段用于指示测量对象的标识,第二字段用于指示该测量对象的缓存时延信息。
可选地,第一MAC CE包括N个第一字段和N个第二字段,所述N个第一字段与所述N个第二字段一一对应,N为大于或等于1的整数。
其中,第n个第一字段用于指示测量对象的标识,第n个第二字段用于指示第n个第 一字段所指示的测量对象的缓存时延信息;1≤n≤N,n为整数。
具体地,第n个第一字段用于指示逻辑信道的标识,第n个第二字段指用于示所述第n个第一字段指示的逻辑信道承载的数据包的缓存时延信息;或者
第n个第一字段用于指示逻辑信道组的标识,第n个第二字段用于指示所述第n个第一字段指示的逻辑信道组中各逻辑信道承载的数据包的缓存时延信息;或者
第n个第一字段用于指示网络切片的标识,第n个第二字段用于指示所述第n个第一字段指示的网络切片传输的数据包的缓存时延信息;或者
第n个第一字段用于指示无线承载的标识,第n个第二字段用于指示所述第n个第一字段指示的无线承载所承载的数据包的缓存时延信息。
也就是说,一个第一MAC CE中可以包括一个或多个缓存时延信息,该缓存时延信息的粒度可以是逻辑信道、逻辑信道组、网络切片或无线承载中的一种,即测量对象可以是逻辑信道、逻辑信道组、网络切片或无线承载中的一种。第一MAC CE中所包括的一个或多个缓存时延信息与一个或多个测量对象的标识一一对应。
图6至图10示出了本申请实施例提供的第一MAC CE的示意图。
如图所示,图6至图9所示出的第一MAC CE可包括N个第一字段和N个第二字段,其中,第一字段用于指示缓存时延信息的测量对象的标识,第二字段用于指示该缓存时延信息。
具体地,图6中的第一MAC CE携带了一个缓存时延信息,且该缓存时延信息的上报粒度为逻辑信道。该第一MAC CE携带的缓存时延信息的测量对象为逻辑信道,第一字段用于指示所测量的逻辑信道的标识,第二字段用于指示该逻辑信道的缓存时延信息。
图7中的第一MAC CE携带了一个缓存时延信息,且该缓存时延信息的上报粒度为逻辑信道组。该第一MAC CE携带的缓存时延信息的测量对象为逻辑信道组,第一字段用于指示所测量的逻辑信道组的标识,第二字段用于指示该逻辑信道组的缓存时延信息。
图8中的第一MAC CE携带了多个缓存时延信息,且每个缓存时延信息的上报粒度均为逻辑信道组。该第一MAC CE携带的缓存时延信息的测量对象为逻辑信道组,第一字段用于指示与每个缓存时延信息对应的逻辑信道组的标识,第二字段用于指示与每个逻辑信道组对应的缓存时延信息。
图9中的第一MAC CE携带了多个缓存时延信息,且每个缓存时延信息的上报粒度均为网络切片。该第一MAC CE携带的缓存时延信息的测量对象为逻辑信道,第一字段用于指示与每个缓存时延信息对应的网络切片的标识,第二字段用于指示与每个网络切片对应的缓存时延信息。
如前所述,上文列举的第一MAC CE中携带的缓存时延信息可以是一个或多个数据包的缓存时延,也可以是多个数据包的缓存时延的平均值、最大值、最小值或累计值。
当N大于1时,第一MAC CE中包括多个第一字段和多个第二字段,该第一MAC CE的格式可以是预先定义的,如协议定义。该第一MAC CE的格式可表现为N个第一字段和N个第二字段的排布顺序以及分别占用的比特开销。
在一种实现方式中,该第一MAC CE可以是将N个第一字段和N个第二字段分开放置,N个第一字段占用连续的B 1*N个比特,其中,B 1表示每个第一字段占用的比特数;N个第二字段占用连续的B 2*N个比特,其中,B 2表示每个第二字段占用的比特数。如图 8中所示,8个第一字段占用连续的8个比特,每个第一字段占用1个比特,8个第二字段占用连续的8个字节,每个第二字段占用1个字节,即8个比特。
在另一种实现方式中,该第一MAC CE可以是将一个第一字段和一个第二字段作为一组,占用连续的B 1+B 2个比特,该第一MAC CE一共可占用(B 1+B 2)*N个比特。其中,每一组第一字段和第二字段是相对应的,即,每个第二字段用于指示同一组的第一字段所指示的测量对象的缓存时延信息。
另外,当第一MAC CE中携带多个缓存时延信息时,终端设备可以根据预先定义的规则,将多个测量对象的标识与多个缓存时延信息一一映射至多个第一字段和多个第二字段中。例如,终端设备可以根据在多个第一字段中所指示的测量对象的标识的顺序,将相应的缓存时延信息依次映射至多个第二字段中。如图8所示,第一MAC CE中包括逻辑信道组的标识从0至7的八个逻辑信道组,终端设备按照逻辑信道组的标识从LCG 7至LCG 0的顺序从左至右依次放在八个第一字段中,终端设备可以进一步按照逻辑信道组的标识的放置顺序,将与逻辑信道组的标识LCG 7至LCG 0分别一一对应的八个缓存时延信息依次映射至从上到下排布的八个第二字段中。
又例如,当第一MAC CE中将一个第一字段和一个第二字段作为一组来设计时,终端设备可以按照测量对象的标识从小到大的顺序,依次将八组测量对象的标识和对应的缓存时延信息映射至从上到下排布的八组第一字段和第二字段中。
应理解,这里仅为便于理解,举例说明了将多个测量对象的标识与多个缓存时延信息映射至多个第一字段和多个第二字段中的一种可能的映射规则,但这不应对本申请构成任何限定,本申请对此不做限定。
在这种设计中,该第一MAC CE可以是新增的MAC CE,仅携带了与缓存时延信息相关的信息。该第一MAC CE所携带的缓存时延信息可以是基于上述列举的数据包类型中的任意一种确定,也可以是基于上述列举的上报粒度中的任意一种确定,还可以是基于上述列举的数据包类型中的任意一种和上报粒度中的任意一种共同确定,本申请对此不做限定。
此外,该第一MAC CE所携带的缓存时延信息可以是基于一个或多个数据包的缓存时延确定,该缓存时延可以是指一个数据包到达AS到发送所对应的BSR的时间间隔,也可以是指一个数据包到达AS到接收到所对应的上行授权的时间间隔。
若该缓存时延用于表示一个数据包到达AS到发送所对应的BSR的时间间隔,由于BSR是通过接入网设备为终端设备调度的物理上行资源发送的,该物理上行资源在时域上的位置可以通过该物理上行资源的上行授权预先获知,故终端设备可以预先知道BSR的发送时间,因此,该第一MAC CE可以是在BSR发送之前发送,也可以是在BSR发送之后发送,本申请对此不做限定。
若该缓存时延用于表示一个数据包到达AS到接收到所对应的上行授权的时间间隔,由于该上行授权是由接入网设备发送给终端设备的,终端设备可能无法提前预知接收到该上行授权的时间,因此,该第一MAC CE可以是在接收到该上行授权之后发送。
在这种设计中,上述第一MAC CE可进一步简化为仅包括N个第二字段,该N个第二字段分别用于指示N个缓存时延信息,可以理解,该N个第二字段可以是与N个测量对象一一对应的。当N大于1时,该N个第二字段在第一MAC CE中的映射的规则可以 预先定义。例如,可以按照测量对象的标识从小到大的顺序,依次将N个缓存时延信息按照从上到下的顺序依次映射在N个第二字段中,如图10所示。图10中示出的第一MAC CE仅包括N个第二字段。该N个第二字段指示的N个缓存时延信息的测量对象可以是数据包、逻辑信道、逻辑信道组、网络切片或者无线承载,该N个测量对象可以通过接入网设备预先指示终端设备,因此终端设备和接入网设备可以基于相同的N个测量对象以及预先对应的映射规则进行缓存时延信息的上报和统计。
在另一种可能的设计中,上述第一MAC CE包括第一字段、与所述第一字段对应的第二字段和与所述第一字段对应的第三字段。其中,第一字段用于指示测量对象的标识,第二字段用于指示该测量对象的缓存时延信息,第三字段用于指示该测量对象的缓存大小。
可选地,上述第一MAC CE包括N个第一字段、N个第二字段和N个第三字段,N个第一字段与N个第二字段一一对应,且N个第一字段与N个第三字段一一对应,N为大于或等于1的整数。
其中,第n个第一字段用于指示测量对象的标识,第n个第二字段用于指示第n个第一字段用于指示的测量对象的缓存时延信息,第n个第三字段用于指示第n个第一字段用于指示的测量对象的大小;1≤n≤N,n为整数。
具体地,第n个第一字段用于指示逻辑信道的标识,第n个第二字段用于指示第n个第一字段用于指示的逻辑信道承载的数据包的缓存时延信息,第n个第三字段用于指示第n个第一字段用于指示的逻辑信道承载的数据包的大小;或者
第n个第一字段用于指示逻辑信道组的标识,第n个第二字段用于指示第n个第一字段用于指示的逻辑信道组中各逻辑信道承载的数据包的缓存时延信息,第n个第三字段用于指示第n个第一字段用于指示的逻辑信道组中各逻辑信道承载的数据包的大小;或者
第n个第一字段用于指示网络切片的标识,第n个第二字段用于指示第n个第一字段用于指示的网络切片传输的数据包的缓存时延信息,第三字段用于指示第一字段用于指示的网络切片传输的数据包的大小;或者
第n个第一字段用于指示无线承载的标识,第n个第二字段用于指示第n个第一字段用于指示的无线承载所承载的数据包的缓存时延信息,第n个第三字段用于指示第n个第一字段用于指示的无线承载所承载的数据包的大小。
也就是说,一个第一MAC CE中可以包括一个或多个缓存时延信息和一个或多个缓存大小。该缓存时延信息的粒度可以是逻辑信道、逻辑信道组、网络切片或无线承载中的一种,即测量对象可以是逻辑信道、逻辑信道组、网络切片或无线承载中的一种。第一MAC CE中所包括的一个或多个缓存时延信息与一个或多个测量对象的标识一一对应,且该第一MAC CE中所包括的一个或多个缓存大小与一个或多个测量对象的标识一一对应。
图11至图14示出了本申请实施例提供的第一MAC CE的示意图。
如图所示,图11至图13所示出的第一MAC CE可包括N个第一字段、N个第二字段和N个第三字段,其中,第一字段用于指示缓存时延信息的测量对象的标识,第二字段用于指示该缓存时延信息,第三字段用于指示缓存大小。
具体地,图11中的第一MAC CE携带了一个缓存时延信息和一个缓存大小,且该缓存时延信息的上报粒度为逻辑信道。该第一MAC CE携带的缓存时延信息的测量对象为 逻辑信道,第一字段用于指示所测量的逻辑信道的标识。
图12中的第一MAC CE携带了一个缓存时延信息和一个缓存大小,且该缓存时延信息的上报粒度为逻辑信道组。该第一MAC CE携带的缓存时延信息的测量对象为逻辑信道,第一字段用于指示所测量的逻辑信道组的标识。
可选地,该第一MAC CE为BSR MAC CE。
图12中示出的第一MAC CE可以是对已有的BSR MAC CE的字段做了扩展后得到的MAC CE。相比于图3而言,图12中示出的第一MAC CE较图3中示出的第一MAC CE多了用于指示缓存时延信息的字段。
图13中的第一MAC CE携带了多个缓存时延信息和多个缓存大小,且每个缓存时延信息的上报粒度均为逻辑信道组。该第一MAC CE携带的缓存时延信息的测量对象为逻辑信道组,第一字段用于指示与每个缓存时延信息对应的逻辑信道组的标识。
如前所述,上文列举的第一MAC CE中携带的缓存时延信息可以是一个或多个数据包的缓存时延,也可以是多个数据包的缓存时延的平均值、最大值、最小值或累计值。第一MAC CE中携带的缓存大小可以是通过现有技术来确定,为了简洁,这里省略对该具体过程的详细说明。
在一种实现方式中,该第一MAC CE可以是将N个第一字段与N个第二字段、N个第三字段分开放置,N个第一字段占用连续的B 1*N个比特,其中,B 1表示每个第一字段占用的比特数。N个第二字段和N个第三字段也可以分开,N个第二字段占用连续的B 2*N个比特,N个第三字段占用连续的B 3*N个比特,其中,B 2表示每个第二字段占用的比特数,B 3表示每个第三字段占用的比特数。一个第二字段和以个第三字段也可以作为一组,占用连续的B 1+B 2个比特,N个第二字段和N个第三字段一共可占用连续的(B 2+B 3)*N个比特。如图13中所示,8个第一字段占用连续的8个比特,每个第一字段占用1个比特,8个第二字段和8个第三字段可作为8组,占用连续的16个字节,每组占用2个字节,每个第二字段占用1个字节,每个第三字段占用1个字节。
应理解,上文中结合图11至图13列举了多种可能的第一MAC CE的格式,但者不应对本申请构成任何限定,例如,第二字段和第三字段的先后顺序可以调整,又例如,可以将一个第一字段、一个第二字段和一个第三字段作为一组,占用连续的(B 1+B 2+B 3)个比特。本申请对于第一MAC CE格式的具体设计并不做限定。终端设备和接入网设备可以根据预定义的格式将生成和解析该第一MAC CE。
另外,当第一MAC CE中携带多个缓存时延信息和多个缓存大小时,终端设备可以根据预先定义的规则,将多个测量对象的标识、多个缓存时延以及多个缓存大小一一映射至多个第一字段、多个第二字段和多个第三字段中。如图13中所示,第一MAC CE中包括逻辑信道组的标识从0至7的八个逻辑信道组,终端设备按照逻辑信道组的标识从LCG7至LCG 0的顺序从左至右依次放在八个第一字段中,终端设备可以进一步按照逻辑信道组的标识的放置顺序,将与逻辑信道组的标识LCG 7至LCG 0分别一一对应的八组缓存大小和缓存时延信息依次映射至从上到下排布的八组第三字段和第二字段中。
应理解,这里仅为便于理解,举例说明了将多个测量对象的标识与多个缓存时延信息映射至多个第一字段和多个第二字段中的一种可能的映射规则,但这不应对本申请构成任何限定,本申请对此不做限定。
在这种设计中,第一MAC CE可以是新增的MAC CE,也可以是对已有的MAC CE的字段做了扩展后的MAC CE。该第一MAC CE所携带的缓存时延信息可以是基于上述列举的数据包类型中的任意一种确定,也可以是基于上述列举的上报粒度中的任意一种确定,还可以是基于上述列举的数据包类型中的任意一种和上报粒度中的任意一种共同确定,本申请对此不做限定。
此外,该第一MAC CE所携带的缓存时延信息可以是基于一个或多个数据包的缓存时延确定,该缓存时延可以是指一个数据包到达AS到发送所对应的BSR的时间间隔,也可以是指一个数据包到达AS到接收到所对应的上行授权的时间间隔。
若该第一MAC CE是新增的MAC CE,则该缓存时延可以用于表示一个数据包到达AS到发送所对应的BSR的时间间隔,也可以用于表示一个数据包到达AS到接收到所对应的上行授权的时间间隔。故该第一MAC CE可以在BSR发送之前发送,也可以是在BSR发送之后发送。
若该第一MAC CE是对已有的MAC CE的扩展,如BSR MAC CE,则该缓存时延可以用于表示一个数据包到达AS到发送所对应的BSR的时间间隔,由于终端设备在发送BSR之前可能无法获知为数据包调度的上行授权到达的时间,故该第一MAC CE可以是在BSR之后发送。
在这种设计中,上述第一MAC CE也可进一步简化为仅包括N个第二字段和N个第三字段。该N个第二字段分别用于指示N个缓存时延信息,该N个第三字段分别用于指示N个缓存大小。可以理解,该N个第二字段可以是与N个测量对象一一对应的,该N个第三字段也可以是与该N个测量对象一一对应的。当N大于1时,该N个第二字段和N个第三字段在第一MAC CE中映射的规则可以预先定义。例如,可以按照测量对象的标识从小到大的顺序,依次将N个第二字段和N个第三字段按照从上到下的顺序交替地设计,如图14所示;也可以按照测量对象的标识从小大的顺序,依次地将N个第二字段放在前面,将N个第三字段放在后面。本申请对此不做限定。
图14中示出的第一MAC CE仅包括N个第二字段和N个第三字段。该N个第二字段指示的N个缓存时延信息的测量对象与N个第三字段指示的N个缓存大小的测量对象可以是相同的。例如,可以是数据包、逻辑信道、逻辑信道组、网络切片或者无线承载,该N个测量对象可以通过接入网设备预先指示终端设备,因此终端设备和接入网设备可以基于相同的N个测量对象以及预先对应的映射规则进行缓存时延信息的上报和统计。
可选地,图14中示出的第一MAC CE为BSR MAC CE。
图14中示出的第一MAC CE也可以是对已有的BSR MAC CE的字段做了扩展后得到的MAC CE。相比于图4中而言,图14中示出的第一MAC CE较图4中示出的第一MAC CE多了用于指示缓存时延信息的字段。
应理解,上文中结合图6至图14列举了多种可能的第一MAC CE的格式,但这不应对本申请构成任何限定,本申请对于第一MAC CE格式的具体设计并不做限定。终端设备和接入网设备可以根据预定义的格式将生成和解析该第一MAC CE。
如前所述,缓存时延信息可以是一个或多个数据包的缓存时延,也可以是多个数据包的缓存时延的最大值、最小值、平均值或累计值,因此,缓存时延信息实质上也是一个时延值。在本申请实施例中,终端设备可以将该缓存时延信息的绝对值上报给接入网设备, 也可以将该缓存时延信息的索引上报给接入网设备。
为减小比特开销,终端设备和接入网设备可以预先定义时延值的索引,即,对于任意区间的时延值可分别定义唯一的一个索引。例如,表一和表二示出了多个时延值与多个索引的一一对应关系。具体地,表一示出了通过5个比特来指示时延值的情形,索引号可以为0至31。表二示出了通过8个比特来指示时延值的情形,索引号可以为0至255。
表一
Figure PCTCN2018086400-appb-000001
表二
Figure PCTCN2018086400-appb-000002
Figure PCTCN2018086400-appb-000003
Figure PCTCN2018086400-appb-000004
应理解,表一和表二仅示出了时延值与索引的对应关系的两个例子,而不应对本申请构成任何限定,该时延值与索引的对应关系可以预先定义,如协议定义,也可以由接入网设备预先通过信令通知终端设备,本申请对此不做限定。可以看到,索引的比特位数越高,可以指示的时延值的划分粒度可以更细;或者,索引的比特位数越高,时延值的范围可以更大。而由此带来的代价就是比特开销增大。因此,可以在索引的比特开销和时延值的范围和划分粒度之间作出权衡,以确定出合理的时延值与索引的对应关系。
可选地,步骤240具体包括:
终端设备发送第一RRC消息,该第一RRC消息中携带该缓存时延信息。
相应地,接入网设备接收第一RRC消息,该第一RRC消息中携带该缓存时延信息。
具体地,该第一RRC消息可以是终端设备新增的RRC消息,或者说是一个单独的RRC消息,该第一RRC消息中携带缓存时延信息;该第一RRC消息也可以是终端设备对已有的RRC消息的字段做了扩展生成的RRC消息。本申请对此不做限定。
在本申请实施例中,MAC层可以根据上文中描述的确定缓存时延信息的具体过程确定缓存时延信息,并且可通过层间原语将该缓存时延信息通知给RRC层,以便RRC层生成携带该缓存时延信息的第一RRC消息。
基于上述技术方案,通过定义数据包的缓存时延,从而将数据包到达AS至发送资源调度请求这一时段等待的时间或者数据包到达AS至接收到上行授权这一时段等待的时间量化,以便于终端设备向接入网设备上报。终端设备将由一个或多个数据包的缓存时延确定的缓存时延信息上报给接入网设备,使得接入网设备可以更准确地了解端到端时延,有利于接入网设备做出合理的资源调度策略,以便减小缓存时延,从而有助于减小端到端时延,提高时延增益,提高用户体验。
并且,终端设备可以基于不同的上报粒度,将不同类型的数据包的缓存时延信息上报给接入网设备,使得接入网设备可以根据缓存时延信息做出合理的资源调度策略,以便减小缓存时延,从而有利于减小端到端时延,有利于提高时延增益,有利于提高用户体验。
本申请另提供了一种通信方法,能够基于多个数据包的缓存时延上报抖动级别。
图15是从设备交互的角度示出的本申请另一实施例的通信方法300的示意性流程图。如图所示,图15中所示的方法300可包括步骤310至步骤390。下面结合附图详细描述该通信方法。
在步骤310中,终端设备确定抖动级别,该抖动级别是根据多个数据包的缓存时延确定。具体地,抖动级别的可用于指示不同的数据包的时延水平的差异。
可选地,该抖动级别是由基于数据包类型确定的多个数据包的缓存时延确定。
其中,该缓存时延指示一数据包到达接入层AS到发送所对应的告BSR的时间间隔,或,该缓存时延指示一数据包从到达AS到接收到所对应的上行授权的时间间隔。缓存时 延的具体内容在上文方法200中做了详细说明,为了简洁,这里不再赘述。
作为示例而非限定,该数据包类型例如可以包括:SDAP SDU、SDAP PDU、PDCP PDU、RLC PDU或MAC PDU等。
其中,该数据包类型可以是预先定义的,如协议定义,也可以是接入网设备预先指示的。
可选地,步骤310具体包括:终端设备基于数据包类型,根据与数据包类型对应的多个数据包的缓存时延确定抖动级别。
可选地,该方法300还包括:步骤320,终端设备接收数据包类型的第二指示信息。
相应地,在步骤320中,接入网设备发送数据包类型的第二指示信息。
在本申请实施例中,抖动级别的信息对应的数据包类型可以与上文方法200中缓存时延信息对应的数据包类型相同或不同。
应理解,关于数据包类型的详细说明在上文方法200中已经做了详细说明,步骤320的具体过程与上文方法200中的步骤220相似,由于上文中已经对数据包类型和步骤220做了详细说明,为了简洁,这里不再赘述。
可选地,步骤310具体包括:终端设备基于上报粒度确定抖动级别,该抖动级别是根据缓存时段内所述上报粒度对应的多个数据包的缓存时延确定的。
其中,该上报粒度可以是逻辑信道或逻辑信道组,也可以是网络切片或无线承载。
具体地,该抖动级别可以是预定时段内同一逻辑信道上传输的多个数据包的缓存时延确定,也可以是预定时段内同一逻辑信道组上传输的多个数据包的缓存时延确定,还可以是预定时段内同一网络切片传输的多个数据包的缓存时延确定,还可以是预定时段内同一无线承载传输的多个数据包的缓存时延确定。
由于在一个时间段内,同一逻辑信道、同一逻辑信道组、同一网络切片或同一无线承载中的数据包可以是由上层的一个数据包分割得到的多个数据包,数据包的序列号具有连续性。因此,当数据的接收端设备接收到的多个数据包的时延差异较大时,可能会造成较大的抖动,因此,通过对同一逻辑信道或同一逻辑信道组中序列号连续的多个数据包的时延进行控制,使得该多个数据包时延值控制在接近的时延值,从而可以使得序列号连续的多个数据包之间的时延差异减小,有利于减小抖动,提高用户体验。
该上报粒度可以是预先定义的,如协议定义,也可以是接入网设备预先指示的。
可选地,该方法300还包括:步骤330,终端设备接收上报粒度的第二指示信息。
相应地,在步骤330中,接入网设备发送上报粒度的第二指示信息。
在本申请实施例中,抖动级别的信息的上报粒度可以与上文方法200中缓存时延信息的上报粒度相同或不同。
应理解,关于上报粒度的详细说明在上文方法200中已经做了详细说明,步骤330的具体过程与上文方法200中的步骤230相似,由于上文中已经对上报粒度和步骤230做了详细说明,为了简洁,这里不再赘述。
该预定时段可以是预先定义的,如协议定义,也可以是接入网设备预先指示的。
可选地,该方法300还包括:步骤340,终端设备接收预定时段的指示信息。
相应地,在步骤340中,接入网设备发送预定时段的指示信息。
该预设时段的指示信息可包括起始时间和时段长度。应理解,通过协议定义或接入网 指示预设时段仅为两种可能的实现方式,不应对本申请构成任何限定。例如,该两种方式也可结合使用,如,该预设时段的起始时间可以由接入网设备指示,时段长度可以由协议定义。
为了减小开销和接入网设备的处理负担,终端设备还可以基于上报条件和/或上报周期上报抖动级别的信息。
其中,上报条件和上报周期可以是预先定义的,如协议定义,也可以是接入网设备预先向终端设备指示的。
可选地,该方法300还包括:步骤350,终端设备接收上报条件的第二指示信息。
相应地,在步骤350中,接入网设备发送上报条件的第二指示信息。
在本申请实施例中,抖动级别的信息的上报条件可以与上文方法200中缓存时延信息的上报条件相同或不同。例如,该上报条件可以是:抖动级别达到预定门限值;又例如,该上报条件可以是:某一个或多个数据包的缓存时延信息达到预定门限值。应理解,这里所列举的上报条件仅为示例,不应对本申请构成任何限定,本申请对于抖动级别的信息的上报条件的具体内容不做限定。
可选地,该方法300还包括:步骤360,终端设备接收上报周期的第二指示信息。
相应地,在步骤360中,接入网设备发送上报周期的第二指示信息。
在本申请实施例中,抖动级别的信息的上报周期可以与上文方法200中缓存时延信息的上报周期相同或不同。本申请对此不做限定。
应理解,关于上报条件和上报周期的详细说明在上文方法200中已经做了详细说,步骤350和步骤360的具体过程与上文方法200中的步骤250和步骤260相似,由于上文中已经对上报条件、上报周期以及步骤250、步骤260做了详细说明,为了简洁,这里不再赘述。
在步骤370中,终端设备发送抖动级别的信息。
相应地,在步骤370中,接入网设备接收抖动级别的信息。
终端设备在确定了抖动级别的信息之后,便可以向接入网设备上报该抖动级别的信息。
应理解,步骤370与上文中步骤240的具体过程相似,由于上文中对步骤240已经做了详细说明,为了简洁,这里不再赘述。
因此,终端设备通过向接入网设备上报抖动级别,接入网设备可以对相邻的多个数据包的缓存时延进行控制,使得时延减小至同一水平,以便减小抖动,提高用户体验。
可选地,该方法300还包括:步骤380,终端设备发送第二上报能力信息,该第二上报能力信息指示终端设备具有上报抖动级别的能力。
相应地,在步骤380中,接入网设备接收第二上报能力信息,该第二上报能力信息指示该终端设备具有上报抖动级别的能力。
可选地,该方法300还包括:步骤390,终端设备接收第二统计能力信息,该第二统计能力信息指示接入网设备具有统计抖动级别的能力。
相应地,在步骤390中,接入网设备发送第二统计能力信息,该第二统计能力信息指示接入网设备具有统计抖动级别的能力。
应理解,步骤380和步骤390的具体过程与上文方法200中步骤270和步骤280的具 体过程相似,由于上文中已经结合步骤270和步骤280做了详细说明,为了简洁,这里不再赘述。
可选地,步骤370具体包括:终端设备发送第二MAC CE,该第二MAC CE携带抖动级别的信息。
相应地,接入网设备接收第二MAC CE,该第二MAC CE携带抖动级别的信息。
第一通信装置可在MAC层确定上述抖动级别后,可在MAC层生成第二MAC CE,将该抖动级别的信息携带在该第二MAC CE中,以便上报给接入网设备。其中,该第二MAC CE可以是新增的MAC CE,也可以是对已有的MAC CE的扩展,本申请对此不做限定。
在一种可能的设计中,该第二MAC CE包括第四字段和与第四字段对应的第五字段。其中,第四字段用于指示测量对象的标识,第五字段用于指示由该测量对象的抖动级别。
可选地,该第二MAC CE包括M个第四字段和M个第五字段所述M个第四字段与所述M个第五字段一一对应,M为大于或等于1的整数;
其中,第m个第四字段可用于指示测量对象的标识,第m个第五字段可用于指示第m个第四字段所指示的测量对象的抖动级别;1≤m≤M,m为整数。
具体地,第m个第四字段可用于指示逻辑信道的标识,第m个第五字段可用于指示所述第m个第一字段指示的逻辑信道承载的多个数据包的缓存时延确定的抖动级别;或者
第m个第四字段可用于指示逻辑信道组的标识,第m个第五字段可用于指示所述第m个第四字段指示的逻辑信道组承载的多个数据包的缓存时延确定的抖动级别;或者
第m个第四字段可用于指示网络切片的标识,第m个第五字段可用于指示所述第m个第四字段指示的网络切片承载的多个数据包的缓存时延确定的抖动级别;或者
第m个第四字段可用于指示无线承载的标识,第m个第五字段可用于指示所述第m个第四字段指示的无线承载所承载的多个数据包的缓存时延确定的抖动级别。
图16是本申请另一实施例提供的第二MAC CE的示意图。图16中的第二MAC CE携带了一个抖动级别的信息,且该抖动级别的信息的上报粒度为逻辑信道组。该第二MAC CE携带的抖动级别的测量对象为逻辑信道组,第四字段用于指示所测量的逻辑信道组的标识,第五字段用于指示该逻辑信道组的抖动级别。
应理解,该第二MAC CE可以与上文方法中200中结合图6至图16列举的第一MAC CE的格式相似,为了简洁,这里不再一一结合附图举例说明。
还应理解,该第二MAC CE和上文方法200中的第一MAC CE可以结合为一个MAC CE,例如图17所示。此情况下,该第二MAC CE中的第四字段与上文方法200中的第一MAC CE中的第一字段为相同的字段,此外,该MAC CE还可包括用于指示缓存时延信息的第二字段和用于指示抖动级别的第五字段。应理解,图中仅为示例示出了一种可能的设计,但这不应对本申请构成任何限定,本申请对于MAC CE的格式并未特别限定。
可选地,步骤320具体包括:终端设备发送第二RRC消息,该第二RRC消息携带抖动级别的信息。
相应地,接入网设备接收第二RRC消息,该第二RRC消息携带抖动级别的信息。
第一通信装置可在MAC层确定上述抖动级别后,通过层间原语将该抖动级别通知给 RRC层,由RRC层生成携带该抖动级别的信息的第二RRC消息。应理解,该RRC消息可以是新增的RRC消息,也可以是对已有的RRC消息的扩展,本申请对此不做限定。
基于上述技术方案,终端设备可以根据多个数据包的缓存时延确定抖动级别,并将该抖动级别的信息上报给接入网设备,以便于接入网设备对于相邻的数据包进行控制,使得序列号连续的多个数据包的缓存时延值控制在一个接近的时延值,从而可以使得序列号连续的多个数据包之间的时延差异减小,有利于减小抖动,提供平稳的数据传输,提高用户体验。
应理解,上文中方法200中的第一指示信息与方法300中的第二指示信息可以为同一个指示信息,也可以为不同的指示信息,本申请对此不做限定。例如,上报粒度的第一指示信息和上报粒度的第二指示信息可以为同一个指示信息,终端设备可以基于相同的上报粒度上报缓存时延信息和抖动级别;也可以为不同的指示信息,终端设备可以基于不同的上报粒度分别上报缓存时延信息和抖动级别。
以上,结合图2至图17详细说明了本申请实施例的通信方法。以下,结合图18至图21详细说明本申请实施例的通信装置。
图18是本申请实施例提供的通信装置400的示意性框图。如图所示,该装置400包括:确定单元410和通信单元420。
在一种可能的设计中,该确定单元410用于确定缓存时延信息,该缓存时延信息由一个或多个数据包的缓存时延确定,该缓存时延指示一数据包到达接入层AS到发送所对应的缓冲区状态报告BSR的时间间隔,或,该缓存时延指示一数据包从到达AS到接收到所对应的上行授权的时间间隔;
该通信单元420用于第一通信装置发送该缓存时延信息。
可选地,该缓存时延信息用于指示:
一个或多个数据包中每个数据包的缓存时延;或者
多个数据包的缓存时延的平均值、最大值、最小值或累计值。
可选地,该确定单元410具体用于基于数据包类型确定该缓存时延信息。
其中,该数据包类型包括:SDAP SDU、SDAP PDU、PDCP PDU、RLC PDU或MAC PDU。
可选地,该通信单元420还用于接收用于指示数据包类型的指示信息。
可选地,该确定单元410具体用于基于该上报粒度,确定该缓存时延信息。
其中,该上报粒度包括:数据包、逻辑信道、逻辑信道组、网络切片或无线承载。
可选地,该通信单元420还用于发送与该上报粒度相对应的标识。
可选地,该通信单元420还用于接收该用于指示上报粒度的指示信息。
可选地,该通信单元420还用于接收用于指示上报条件的指示信息。
可选地,该通信单元420还用于接收用于指示上报周期的指示信息。
可选地,该通信单元420还用于发送第一上报能力信息,该第一上报能力信息用于指示该通信装置400具有上报该缓存时延信息的能力。
可选地,该通信单元420还用于接收第一统计能力信息,该第一统计能力信息用于指示第二通信装置具有统计该缓存时延信息的能力。
可选地,该通信单元420还用于发送MAC CE,该MAC CE携带该缓存时延信息。
可选地,该MAC CE包括第一字段和与所述第一字段对应的第二字段;
其中,所述第一字段指示逻辑信道的标识,所述第二字段指示所述逻辑信道承载的数据包的缓存时延信息;或者
所述第一字段指示逻辑信道组的标识,所述第二字段指示所述逻辑信道组中各逻辑信道承载的数据包的缓存时延信息;或者
所述第一字段指示网络切片的标识,所述第二字段指示所述网络切片传输的数据包的缓存时延信息;或者
所述第一字段指示无线承载的标识,所述第二字段指示所述无线承载所承载的数据包的缓存时延信息。可选地,该MAC CE包括第一字段、与所述第一字段对应的第二字段和与所述第一字段对应的第三字段;
其中,所述第一字段指示逻辑信道的标识,所述第二字段指示所述逻辑信道承载的数据包的缓存时延信息,所述第三字段指示所述逻辑信道承载的数据包的大小;或者
所述第一字段指示逻辑信道组的标识,所述第二字段指示所述逻辑信道组中各逻辑信道承载的数据包的缓存时延信息,所述第三字段指示所述逻辑信道组中各逻辑信道承载的数据包的大小;或者
所述第一字段指示网络切片的标识,所述第二字段指示所述网络切片传输的数据包的缓存时延信息,所述第三字段指示所述网络切片传输的数据包的大小;或者
所述第一字段指示无线承载的标识,所述第二字段指示所述无线承载所承载的数据包的缓存时延信息,所述第三字段指示所述无线承载所承载的数据包的大小。可选地,该MAC CE为BSR MAC CE。
可选地,该通信单元420还用于发送RRC消息,该RRC消息携带该缓存时延信息。
具体地,该通信装置400可对应于根据本申请实施例的通信方法200中的终端设备,或配置于该终端设备中的芯片。该通信装置400可以包括用于执行图5中通信方法200的终端设备执行的方法的单元。并且,该通信装置400中的各单元和上述其他操作和/或功能分别为了实现图5中通信方法200的相应流程,各单元执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
在另一种可能的设计中,该确定单元410用于根据多个数据包的缓存时延确定抖动级别,该缓存时延指示一数据包到达接入层AS到发送所对应的缓冲区状态报告BSR的时间间隔,或,该缓存时延指示一数据包从到达AS到接收到所对应的上行授权的时间间隔。;
该通信单元420用于发送该抖动级别的信息。
可选地,该确定单元410具体用于基于数据包类型,根据与该数据包类型对应的多个数据包的缓存时延确定抖动级别。
其中,数据包类型包括:SDAP SDU、SDAP PDU、PDCP PDU、RLC PDU或MAC PDU。
可选地,该通信单元420还用于接收用于指示数据包类型的指示信息。
可选地,该确定单元410具体用于基于上报粒度确定抖动级别,该抖动级别是根据缓存时段内该上报粒度对应的多个数据包的缓存时延确定的。
其中,上报粒度包括:逻辑信道、逻辑信道组、网络切片或无线承载。
可选地,该通信单元420还用于接收用于指示上报粒度的指示信息。
可选地,该通信单元420还用于接收预定时段的指示信息。
可选地,该通信单元420具体用于在满足上报条件的情况下发送该抖动级别的信息。
可选地,该通信单元420还用于接收用于指示上报条件的指示信息。
可选地,该通信单元420具体用于基于上报周期发送该抖动级别的信息。
可选地,该通信单元420还用于接收用于指示上报周期的指示信息。
可选地,该通信单元420还用于发送第二上报能力信息,该第二上报能力信息用于指示该通信装置400具有上报抖动级别的信息的能力。
可选地,该通信单元420还用于接收第二统计能力信息,该第二统计能力信息用于指示第二通信装置具有统计抖动级别的信息的能力。
可选地,该通信单元420还用于发送MAC CE,该MAC CE携带该抖动级别的信息。
该MAC CE包括第四字段和与所述第四字段对应的第五字段;其中,所述第四字段指示逻辑信道的标识,所述第五字段指示由所述逻辑信道承载的多个数据包的缓存时延确定的抖动级别;或者
所述第四字段指示逻辑信道组的标识,所述第五字段指示由所述逻辑信道组承载的多个数据包的缓存时延确定的抖动级别;或者
所述第四字段指示网络切片的标识,所述第五字段指示由所述网络切片承载的多个数据包的缓存时延确定的抖动级别;或者
所述第四字段指示无线承载的标识,所述第五字段指示由所述无线承载所承载的多个数据包的缓存时延确定的抖动级别。
可选地,该通信单元420还用于发送RRC消息,该RRC消息携带该抖动级别的信息。
具体地,该通信装置400可对应于根据本申请实施例的通信方法300中的终端设备,或配置于该终端设备中的芯片。该通信装置400可以包括用于执行图15中通信方法300的终端设备执行的方法的单元。并且,该通信装置400中的各单元和上述其他操作和/或功能分别为了实现图15中通信方法300的相应流程,各单元执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
图19是本申请另一实施例提供的通信装置500的示意性框图。如图所示,该通信装置500包括:通信单元510。
在一种可能的设计中,该通信单元510用于接收缓存时延信息,该缓存时延信息是由一个或多个数据包的缓存时延确定的,该缓存时延指示一数据包到达接入层AS到发送所对应的缓冲区状态报告BSR的时间间隔,或,该缓存时延指示一数据包从到达AS到接收到所对应的上行授权的时间间隔。
可选地,该缓存时延信息用于指示:
一个或多个数据包中每个数据包的缓存时延;或者
多个数据包的缓存时延的平均值、最大值、最小值或累计值。
可选地,该通信单元510还用于发送用于指示数据包类型的指示信息。
其中,该数据包类型包括:SDAP SDU、SDAP PDU、PDCP PDU、RLC PDU或MAC PDU。
可选地,该通信单元510还用于发送用于指示上报粒度的指示信息。
其中,该上报粒度包括:数据包、逻辑信道、逻辑信道组、网络切片或无线承载。
可选地,该通信单元510还用于接收与该上报粒度相对应的标识。
可选地,该通信单元510还用于发送用于指示上报条件的指示信息。
可选地,该通信单元510还用于发送用于指示上报周期的指示信息。
可选地,该通信单元510还用于接收第一上报能力信息,该第一上报能力信息用于指示该第一通信装置具有上报该缓存时延信息的能力。
可选地,该通信单元510还用于发送第一统计能力信息,该第一统计能力信息用于指示该通信装置500具有统计该缓存时延信息的能力。
可选地,该通信单元510具体用于接收MAC CE,该MAC CE携带该缓存时延信息。
可选地,该MAC CE包括第一字段和与所述第一字段对应的第二字段;
其中,所述第一字段指示逻辑信道的标识,所述第二字段指示所述逻辑信道承载的数据包的缓存时延信息;或者
所述第一字段指示逻辑信道组的标识,所述第二字段指示所述逻辑信道组中各逻辑信道承载的数据包的缓存时延信息;或者
所述第一字段指示网络切片的标识,所述第二字段指示所述网络切片传输的数据包的缓存时延信息;或者
所述第一字段指示无线承载的标识,所述第二字段指示所述无线承载所承载的数据包的缓存时延信息。
可选地,该MAC CE包括第一字段、与所述第一字段对应的第二字段和与所述第一字段对应的第三字段;
其中,所述第一字段指示逻辑信道的标识,所述第二字段指示所述逻辑信道承载的数据包的缓存时延信息,所述第三字段指示所述逻辑信道承载的数据包的大小;或者
所述第一字段指示逻辑信道组的标识,所述第二字段指示所述逻辑信道组中各逻辑信道承载的数据包的缓存时延信息,所述第三字段指示所述逻辑信道组中各逻辑信道承载的数据包的大小;或者
所述第一字段指示网络切片的标识,所述第二字段指示所述网络切片传输的数据包的缓存时延信息,所述第三字段指示所述网络切片传输的数据包的大小;或者
所述第一字段指示无线承载的标识,所述第二字段指示所述无线承载所承载的数据包的缓存时延信息,所述第三字段指示所述无线承载所承载的数据包的大小。
可选地,该通信单元510具体用于接收RRC消息,该RRC消息中携带该缓存时延信息。
具体地,该通信装置500可对应于根据本申请实施例的通信方法200中的接入网设备,或配置于该接入网设备中的芯片。该通信装置500可以包括用于执行图5中通信方法200的接入网设备执行的方法的单元。并且,该通信装置500中的各单元和上述其他操作和/或功能分别为了实现图5中通信方法200的相应流程,各单元执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
在另一种可能的设计中,该通信单元510用于接收抖动级别的信息,该抖动级别的信息是由一个或多个数据包的缓存时延确定的,该缓存时延指示一数据包到达接入层AS到发送所对应的缓冲区状态报告BSR的时间间隔,或,该缓存时延指示一数据包从到达AS到接收到所对应的上行授权的时间间隔。
可选地,该缓存时延信息用于指示:
一个或多个数据包中每个数据包的缓存时延;或者
多个数据包的缓存时延的平均值、最大值、最小值或累计值。
可选地,该通信单元510还用于发送用于指示数据包类型的指示信息。
其中,该数据包类型包括:SDAP SDU、SDAP PDU、PDCP PDU、RLC PDU或MAC PDU。
可选地,该通信单元510还用于发送用于指示上报粒度的指示信息。
其中,该上报粒度包括:数据包、逻辑信道、逻辑信道组、网络切片或无线承载。
可选地,该通信单元510还用于发送用于指示预定时段的指示信息。
可选地,该通信单元510还用于接收与该上报粒度相对应的标识。
可选地,该通信单元510还用于发送用于指示上报条件的指示信息。
可选地,该通信单元510还用于发送用于指示上报周期的指示信息。
可选地,该通信单元510还用于接收第二上报能力信息,该第二上报能力信息用于指示第一通信装置具有上报该抖动级别的信息的能力。
可选地,该通信单元510还用于发送第二统计能力信息,该第二统计能力信息用于指示该通信装置500具有统计该抖动级别的信息的能力。
可选地,该通信单元510具体用于接收MAC CE,该MAC CE携带该抖动级别的信息。
可选地,该MAC CE包括第四字段和与所述第四字段对应的第五字段;其中,所述第四字段指示逻辑信道的标识,所述第五字段指示由所述逻辑信道承载的多个数据包的缓存时延确定的抖动级别;或者
所述第四字段指示逻辑信道组的标识,所述第五字段指示由所述逻辑信道组承载的多个数据包的缓存时延确定的抖动级别;或者
所述第四字段指示网络切片的标识,所述第五字段指示由所述网络切片承载的多个数据包的缓存时延确定的抖动级别;或者
所述第四字段指示无线承载的标识,所述第五字段指示由所述无线承载所承载的多个数据包的缓存时延确定的抖动级别。
可选地,该通信单元510具体用于接收RRC消息,该RRC消息携带该抖动级别的信息。
具体地,该通信装置500可对应于根据本申请实施例的通信方法300中的接入网设备,或配置于该接入网设备中的芯片。该通信装置500可以包括用于执行图15中通信方法300的接入网设备执行的方法的单元。并且,该通信装置500中的各单元和上述其他操作和/或功能分别为了实现图15中通信方法300的相应流程,各单元执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
图20是本申请实施例提供的终端设备600的结构示意图。如图所示,该终端设备600包括处理器601和收发器602。可选地,该终端设备600还包括存储器603。其中,处理器601、收发器602和存储器603之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器603用于存储计算机程序,该处理器601用于从该存储器603中调用并运行该计算机程序,以控制该收发器602收发信号。可选地,终端设备600还可以包括天线504,用于将收发器602输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器601和存储器603可以合成一个处理装置,处理器601用于执行存储器603中存储的程序代码来实现上述功能。具体实现时,该存储器603也可以集成在处理器601中,或者独立于处理器601。
在一种可能的设计中,当存储器603中存储的程序指令被处理器601执行时,该处理器601用于确定缓存时延信息,控制收发器602发送该缓存时延信息。
具体地,该终端设备600可对应于根据本申请实施例的通信方法200中的终端设备,该终端设备600可以包括用于执行图5中通信方法200的终端设备执行的方法的单元。并且,该终端设备600中的各单元和上述其他操作和/或功能分别为了实现图5中通信方法200的相应流程。各单元执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
在另一种可能的设计中,当存储器603中存储的程序指令被处理器601执行时,该处理器601用于确定抖动级别的信息,控制收发器602发送该抖动级别的信息。
具体地,该通信装置400可对应于根据本申请实施例的通信方法300中的终端设备,或配置于该终端设备中的芯片。该通信装置400可以包括用于执行图15中通信方法300的终端设备执行的方法的单元。并且,该通信装置400中的各单元和上述其他操作和/或功能分别为了实现图15中通信方法300的相应流程,各单元执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
上述处理器601可以用于执行前面方法实施例中描述的由终端设备内部实现的动作,而收发器602可以用于执行前面方法实施例中描述的终端设备向接入网设备发送或从接入网设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选地,上述终端设备600还可以包括电源605,用于给终端设备中的各种器件或提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备600还可以包括输入单元606、显示单元607、音频电路608、摄像头609和传感器610等中的一个或多个,所述音频电路还可以包括扬声器6082、麦克风6084等。
在某些可能的实现方式中,图18中的确定单元410可对应于图20中的处理器601,图18中的通信单元420可对应于图20中的收发器602。
图21是本申请实施例提供的接入网设备700的结构示意图。如图所示,该接入网设备700包括包括处理器710和收发器720。可选地,该接入网设备700还包括存储器730。其中,处理器710、收发器720和存储器730之间通过内部连接通路互相通信,传递控制和/或数据信号,该存储器730用于存储计算机程序,该处理器710用于从该存储器730中调用并运行该计算机程序,以控制该收发器720收发信号。
上述处理器710和存储器730可以合成一个处理装置,处理器710用于执行存储器730中存储的程序代码来实现上述功能。具体实现时,该存储器730也可以集成在处理器710中,或者独立于处理器710。
上述接入网设备700还可以包括天线740,用于将收发器720输出的下行数据或下行控制信令通过无线信号发送出去。
在一种可能的设计中,当存储器730中存储的程序指令被处理器710执行时,该处理器710用于控制收发器720接收缓存时延信息。
具体地,该接入网设备700可对应于根据本申请实施例的通信方法200中的接入网设备,该接入网设备700可以包括用于执行图5中通信方法200的接入网设备执行的方法的单元。并且,该接入网设备700中的各单元和上述其他操作和/或功能分别为了实现图5中通信方法200的相应流程。各单元执行上述相应步骤的具体过程在方法200中已经详细说明,为了简洁,在此不再赘述。
在另一种可能的设计中,当存储器730中存储的程序指令被处理器710执行时,该处理器710用于控制收发器720接收抖动级别的信息。
具体地,该接入网设备700可对应于根据本申请实施例的通信方法300中的接入网设备,该接入网设备700可以包括用于执行图15中通信方法300的接入网设备执行的方法的单元。并且,该接入网设备700中的各单元和上述其他操作和/或功能分别为了实现图15中通信方法300的相应流程。各单元执行上述相应步骤的具体过程在方法300中已经详细说明,为了简洁,在此不再赘述。
上述处理器710可以用于执行前面方法实施例中描述的由接入网设备内部实现的动作,而收发器720可以用于执行前面方法实施例中描述的接入网设备向终端设备发送或从终端设备接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
在某些可能的实现方式中,图19中的收发单元510可对应于图21中的收发器720。
应理解,本申请实施例中的处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图2或图15所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读解释存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图2或图15所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个终端设备以及一个或多个接入网设备。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种通信方法,其特征在于,包括:
    第一通信装置确定缓存时延信息,所述缓存时延信息由一个或多个数据包的缓存时延确定,所述缓存时延指示一数据包到达接入层AS到发送所对应的缓冲区状态报告BSR的时间间隔,或,所述缓存时延指示一数据包从到达AS到接收到所对应的上行授权的时间间隔;
    所述第一通信装置发送所述缓存时延信息。
  2. 如权利要求1所述的方法,其特征在于,所述缓存时延信息用于指示:
    一个或多个数据包中每个数据包的缓存时延;或者
    多个数据包的缓存时延的平均值、最大值、最小值或累计值。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一通信装置确定缓存时延信息,包括:
    所述第一通信装置基于数据包类型确定所述缓存时延信息;
    其中,所述数据包类型包括:业务数据自适应协议SDAP服务数据单元SDU、SDAP协议数据单元PDU、分组数据汇聚层协议PDCP PDU、无线链路控制RLC PDU或媒体接入控制MAC PDU。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收用于指示所述数据包类型的指示信息。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述第一通信装置确定缓存时延信息,包括:
    所述第一通信装置基于上报粒度,确定所述缓存时延信息;
    其中,所述上报粒度包括:数据包、逻辑信道、逻辑信道组、网络切片或无线承载。
  6. 如权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置发送与所述上报粒度相对应的标识。
  7. 如权利要求5或6所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收用于指示所述上报粒度的指示信息。
  8. 如权利要求1至7中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收用于指示上报条件的指示信息。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收用于指示上报周期的指示信息。
  10. 如权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置发送第一上报能力信息,所述第一上报能力信息用于指示所述第一通信装置具有上报所述缓存时延信息的能力。
  11. 如权利要求1至10中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一通信装置接收第一统计能力信息,所述第一统计能力信息用于指示第二通信装置具有统计所述缓存时延信息的能力。
  12. 一种通信方法,其特征在于,包括:
    第二通信装置接收缓存时延信息,所述缓存时延信息由第一通信装置中的一个或多个数据包的缓存时延确定,所述缓存时延指示所述第一通信装置中的一数据包到达接入层AS到发送所对应的缓冲区状态报告BSR的时间间隔,或,所述缓存时延指示一数据包从到达AS到接收到所对应的上行授权的时间间隔。
  13. 如权利要求12所述的方法,其特征在于,所述缓存时延信息用于指示:
    一个或多个数据包中每个数据包的缓存时延;或者
    多个数据包的缓存时延的平均值、最大值、最小值或累计值。
  14. 如权利要求12或13所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置发送用于指示数据包类型的指示信息;
    其中,所述数据包类型包括:业务数据自适应协议SDAP服务数据单元SDU、SDAP协议数据单元PDU、分组数据汇聚层协议PDCP PDU、无线链路控制RLC PDU或媒体接入控制MAC PDU。
  15. 如权利要求12至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置发送用于指示上报粒度的指示信息;
    其中,所述上报粒度包括:数据包、逻辑信道、逻辑信道组、网络切片或无线承载。
  16. 如权利要求15所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收与所述上报粒度相对应的标识。
  17. 如权利要求12至16中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置发送用于指示上报条件的指示信息。
  18. 如权利要求12至17中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置发送用于指示上报周期的指示信息。
  19. 如权利要求12至18中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置接收第一上报能力信息,所述第一上报能力信息用于指示所述第一通信装置具有上报所述缓存时延信息的能力。
  20. 如权利要求12至19中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二通信装置发送第一统计能力信息,所述第一统计能力信息用于指示所述第二通信装置具有统计所述缓存时延信息的能力。
  21. 如权利要求1至20中任一项所述的方法,其特征在于,所述缓存时延信息携带在MAC控制元素CE中。
  22. 如权利要求21所述的方法,其特征在于,所述第一MAC CE包括第一字段和与所述第一字段对应的第二字段;
    其中,所述第一字段指示逻辑信道的标识,所述第二字段指示所述逻辑信道承载的数据包的缓存时延信息;或者
    所述第一字段指示逻辑信道组的标识,所述第二字段指示所述逻辑信道组中各逻辑信道承载的数据包的缓存时延信息;或者
    所述第一字段指示网络切片的标识,所述第二字段指示所述网络切片传输的数据包的缓存时延信息;或者
    所述第一字段指示无线承载的标识,所述第二字段指示所述无线承载所承载的数据包的缓存时延信息。
  23. 如权利要求21所述的方法,其特征在于,所述MAC CE包括第一字段、与所述第一字段对应的第二字段和与所述第一字段对应的第三字段;
    其中,所述第一字段指示逻辑信道的标识,所述第二字段指示所述逻辑信道承载的数据包的缓存时延信息,所述第三字段指示所述逻辑信道承载的数据包的大小;或者
    所述第一字段指示逻辑信道组的标识,所述第二字段指示所述逻辑信道组中各逻辑信道承载的数据包的缓存时延信息,所述第三字段指示所述逻辑信道组中各逻辑信道承载的数据包的大小;或者
    所述第一字段指示网络切片的标识,所述第二字段指示所述网络切片传输的数据包的缓存时延信息,所述第三字段指示所述网络切片传输的数据包的大小;或者
    所述第一字段指示无线承载的标识,所述第二字段指示所述无线承载所承载的数据包的缓存时延信息,所述第三字段指示所述无线承载所承载的数据包的大小。
  24. 如权利要求23所述的方法,其特征在于,所述MAC CE为BSR MAC CE。
  25. 如权利要求1至20中任一项所述的方法,其特征在于,所述缓存时延信息携带在无线资源控制RRC消息中。
  26. 一种通信装置,其特征在于,包括:处理器和接口组件;
    所述处理器用于通过所述接口组件读取并执行存储器中的指令,以实现如权利要求1至25中任一项所述的方法。
  27. 如权利要求26所述的装置,其特征在于,所述装置还包括:
    所述存储器。
  28. 一种计算机可读存储介质,包括指令,当其在通信装置上运行时,使得所述通信装置执行如权利要求1至25中任一项所述的方法。
  29. 一种计算机程序产品,包括指令,当其在通信装置上运行时,使得所述通信装置执行如权利要求1至25中任一项所述的方法。
PCT/CN2018/086400 2018-05-10 2018-05-10 通信方法、通信装置和系统 WO2019213924A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18918125.8A EP3793138A4 (en) 2018-05-10 2018-05-10 COMMUNICATION METHOD, COMMUNICATION DEVICE AND SYSTEM
CN201880093323.6A CN112106325B (zh) 2018-05-10 2018-05-10 通信方法、通信装置和系统
PCT/CN2018/086400 WO2019213924A1 (zh) 2018-05-10 2018-05-10 通信方法、通信装置和系统
US17/091,821 US11576068B2 (en) 2018-05-10 2020-11-06 Communication method, communications apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086400 WO2019213924A1 (zh) 2018-05-10 2018-05-10 通信方法、通信装置和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/091,821 Continuation US11576068B2 (en) 2018-05-10 2020-11-06 Communication method, communications apparatus, and system

Publications (1)

Publication Number Publication Date
WO2019213924A1 true WO2019213924A1 (zh) 2019-11-14

Family

ID=68467250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086400 WO2019213924A1 (zh) 2018-05-10 2018-05-10 通信方法、通信装置和系统

Country Status (4)

Country Link
US (1) US11576068B2 (zh)
EP (1) EP3793138A4 (zh)
CN (1) CN112106325B (zh)
WO (1) WO2019213924A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021204259A1 (zh) * 2020-04-10 2021-10-14 华为技术有限公司 信息传输方法以及相关设备

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111066272B (zh) * 2017-09-12 2022-09-09 诺基亚通信公司 移动无线电接入网络中的分组延迟减少
US11765094B2 (en) * 2018-12-12 2023-09-19 Telefonaktiebolaget Lm Ericsson (Publ) Communication system with de-jitter buffer for reducing jitter
US20220174485A1 (en) * 2020-11-30 2022-06-02 At&T Intellectual Property I, L.P. Network application programming interface service for application guidance and control
CN115551006A (zh) * 2021-06-30 2022-12-30 华为技术有限公司 一种数据传输方法、装置及系统
WO2023003969A1 (en) * 2021-07-21 2023-01-26 Commscope Technologies Llc Real time physical layer processing in distributed units
CN115884113A (zh) * 2021-09-30 2023-03-31 大唐移动通信设备有限公司 一种信息反馈方法、装置、终端及网络设备
CN117412301A (zh) * 2022-07-05 2024-01-16 华为技术有限公司 数据的传输方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101534222A (zh) * 2008-03-10 2009-09-16 中国移动通信集团公司 端到端网络时延抖动测量方法、装置及系统
WO2016061976A1 (zh) * 2014-10-23 2016-04-28 中兴通讯股份有限公司 上行业务的调度方法、基站和计算机存储介质
CN107277856A (zh) * 2017-05-05 2017-10-20 电信科学技术研究院 一种配置、触发缓冲区状态上报的方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8699487B2 (en) * 2008-02-04 2014-04-15 Qualcomm Incorporated Uplink delay budget feedback
US8873474B2 (en) * 2008-10-17 2014-10-28 Telefonaktiebolaget L M Ericsson (Publ) Method and mobile terminal providing priority-based uplink scheduling information
US9363753B2 (en) * 2011-07-19 2016-06-07 Qualcomm Incorporated Sleep mode for user equipment relays
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
CN104918232A (zh) * 2014-03-14 2015-09-16 中国移动通信集团公司 一种缓存状态的上报方法、装置、终端及基站
US20160285775A1 (en) * 2015-03-24 2016-09-29 Qualcomm Incorporated Wireless resource allocation and buffer status reporting based on packet size
CN106162728B (zh) * 2015-04-01 2020-11-17 中兴通讯股份有限公司 一种接入网间数据传输时延的测量和上报方法及终端
EP3297318A4 (en) * 2015-05-15 2018-10-24 Kyocera Corporation User terminal
US20160338074A1 (en) 2015-05-15 2016-11-17 Mediatek Inc. Method and Apparatus of Latency Measurement for LTE-WLAN Aggregation
US10305767B2 (en) * 2015-07-28 2019-05-28 Nokia Solutions And Networks Oy Methods and apparatuses for measurement of packet delay in uplink in E-UTRAN

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101534222A (zh) * 2008-03-10 2009-09-16 中国移动通信集团公司 端到端网络时延抖动测量方法、装置及系统
WO2016061976A1 (zh) * 2014-10-23 2016-04-28 中兴通讯股份有限公司 上行业务的调度方法、基站和计算机存储介质
CN107277856A (zh) * 2017-05-05 2017-10-20 电信科学技术研究院 一种配置、触发缓冲区状态上报的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3793138A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021204259A1 (zh) * 2020-04-10 2021-10-14 华为技术有限公司 信息传输方法以及相关设备

Also Published As

Publication number Publication date
CN112106325B (zh) 2022-10-04
US20210058812A1 (en) 2021-02-25
EP3793138A4 (en) 2021-04-21
CN112106325A (zh) 2020-12-18
EP3793138A1 (en) 2021-03-17
US11576068B2 (en) 2023-02-07

Similar Documents

Publication Publication Date Title
WO2019213924A1 (zh) 通信方法、通信装置和系统
US10999890B2 (en) Data processing method, apparatus, and system
US20210014722A1 (en) Communication Method And Apparatus
US20230115085A1 (en) Communication Method and Apparatus for Sending Quality of Experience Measurement Result
KR101335869B1 (ko) 무선 통신 시스템에서 논리채널에 대한 자원 할당 방법 및 장치
US20180098241A1 (en) Method and apparatus for ordering of protocol data unit delivery
US11856448B2 (en) Method and device for processing buffer status report on basis of network request in next generation mobile communication system
CN111565411B (zh) 时延测量方法、网络设备和终端设备
US11700543B2 (en) Method and apparatus for transmitting data and communication system
WO2018202037A1 (zh) 传输数据的方法、终端设备和网络设备
KR102278948B1 (ko) 데이터 표시 방법, 디바이스 및 통신 시스템
CN106162728B (zh) 一种接入网间数据传输时延的测量和上报方法及终端
WO2020199829A1 (zh) 一种缓冲区状态报告传输方法及装置
WO2021164526A1 (zh) 一种通信方法及装置
CN109246753A (zh) 一种传输数据的方法、网络设备和终端设备
EP3694249B1 (en) Method for transmitting data, terminal device and network device
US20240015580A1 (en) Communication control method
WO2021062700A1 (zh) 数据传输的方法、装置及计算机可读存储介质
WO2024007291A1 (zh) 调度资源的方法和通信装置
WO2023125310A1 (zh) 一种通信方法及通信装置
TW202329730A (zh) 通信裝置及通信方法
CN116762397A (zh) 信号的发送和接收方法、装置和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018918125

Country of ref document: EP

Effective date: 20201209