WO2019213917A1 - 数据传输方法、装置、系统及存储介质 - Google Patents

数据传输方法、装置、系统及存储介质 Download PDF

Info

Publication number
WO2019213917A1
WO2019213917A1 PCT/CN2018/086385 CN2018086385W WO2019213917A1 WO 2019213917 A1 WO2019213917 A1 WO 2019213917A1 CN 2018086385 W CN2018086385 W CN 2018086385W WO 2019213917 A1 WO2019213917 A1 WO 2019213917A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
random access
base station
block size
repeated transmission
Prior art date
Application number
PCT/CN2018/086385
Other languages
English (en)
French (fr)
Inventor
牟勤
张明
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112020022928-8A priority Critical patent/BR112020022928A2/pt
Priority to ES18917719T priority patent/ES2954510T3/es
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to JP2020563468A priority patent/JP7142720B2/ja
Priority to KR1020207034994A priority patent/KR102489925B1/ko
Priority to EP23160931.4A priority patent/EP4216648A1/en
Priority to SG11202011158XA priority patent/SG11202011158XA/en
Priority to CN201880000404.7A priority patent/CN108702784B/zh
Priority to PL18917719.9T priority patent/PL3793299T3/pl
Priority to RU2020140341A priority patent/RU2763144C1/ru
Priority to EP18917719.9A priority patent/EP3793299B1/en
Priority to PCT/CN2018/086385 priority patent/WO2019213917A1/zh
Priority to CN202011057396.5A priority patent/CN112261732B/zh
Priority to CN202110144308.3A priority patent/CN112888080B/zh
Publication of WO2019213917A1 publication Critical patent/WO2019213917A1/zh
Priority to US17/094,442 priority patent/US11528744B2/en
Priority to US17/976,742 priority patent/US11641667B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present disclosure relates to the field of wireless communications technologies, and in particular, to a data transmission method, apparatus, system, and storage medium.
  • NB narrowband Internet of Things
  • MTC machine type communication
  • both NB-IoT and MTC can support early data transmission (English: early data transmission; referred to as: EDT) technology.
  • EDT early data transmission
  • the user equipment English: User Equipment; UE for short
  • UE User Equipment
  • the user equipment needs to repeatedly send the uplink data to the base station to ensure the coverage capability of the Internet of Things.
  • the EDT technology how the user equipment repeatedly transmits uplink data to the base station has become an urgent problem to be solved by the EDT technology.
  • the present disclosure provides a data transmission method, apparatus, system, and storage medium, which can solve the problem of how user equipment repeatedly transmits uplink data to a base station in an EDT technology.
  • a data transmission method including:
  • Target random access preamble Sending a target random access preamble to the base station, where the target random access preamble is used to indicate that the user equipment needs to send the target uplink data to the base station in the process of random access;
  • the number of times of the target retransmission is the number of times the user equipment repeatedly sends the target uplink data to the base station in the process of random access, and the target retransmission times is based on the repetition number indication information and target.
  • the transport block size is determined, and the target transport block size is a transport block size used by the user equipment to send the target uplink data to the base station during random access.
  • the user equipment is configured with at least one corresponding relationship set, where each of the corresponding relationship sets includes at least one corresponding relationship, where the corresponding relationship is a correspondence between a transport block size and a repeated transmission times;
  • the method further includes: before the sending the target uplink data to the base station in the process of random access, the method further includes:
  • the number of repeated transmissions corresponding to the target transport block size is determined as the target number of repeated transmissions.
  • the at least one corresponding relationship set is sent by the base station to the user equipment by using high layer signaling.
  • the corresponding relationship set includes a first correspondence relationship and a second correspondence relationship
  • the first correspondence relationship includes a first transmission block size and a first repeated transmission number corresponding to each other
  • the second correspondence relationship includes second transmission block size and frequency indication information corresponding to each other, where the number of times indication information is used to indicate a relative relationship between the number of times of the second repeated transmission and the number of times of the first repeated transmission, where the number of times of the second repeated transmission is the number of repeated transmissions corresponding to the size of the second transmission block.
  • the repetition quantity indication information is used to indicate a third repeated transmission number, and the third repeated transmission quantity corresponds to a third transmission block size; the number of repeated transmissions based on the target, in the process of random access Before the sending, by the base station, the target uplink data, the method further includes:
  • the third number of repeated transmissions is located in a set of repeated transmission times, where the set of repeated transmission times includes at least one of a plurality of repeated transmission times supported by the communication protocol, and the set of repeated transmission times is And sent by the base station to the user equipment by using high layer signaling.
  • the determining, according to the target transport block size, the third transport block size, and the third repeated transmission times, the target repeated transmission times including:
  • the determining, according to the target transport block size, the third transport block size, and the third repeated transmission times, the target repeated transmission times including:
  • the determining, according to the reference repeated transmission times, determining the number of times the target is repeatedly sent including:
  • the target repeated transmission times is a value that is the smallest difference between the target value set and the reference repeated transmission times
  • the target numerical value set includes at least one The value includes a value of the target value set that is an integer multiple of the first preset value, or the target value set includes a value that is an integer power of the second preset value.
  • the determining, according to the reference repeated transmission times, the number of times the target repeatedly sends includes:
  • the target repeated transmission times is a repeated transmission times that the difference between the number of repeated transmissions supported by the communication protocol and the reference repeated transmission times is the smallest.
  • the repetition quantity indication information is carried in an uplink scheduling authorization of the target random access response.
  • a data transmission method including:
  • Target random access preamble sent by the user equipment, where the target random access preamble is used to indicate that the user equipment needs to send target uplink data to the base station in a process of random access;
  • the number-of-times index information and the target transmission block size determine the number of times of the target retransmission, the number of times the target retransmission is the number of times the user equipment repeatedly transmits the target uplink data to the base station in the process of random access, the target transmission
  • the block size is a transport block size used by the user equipment to send the target uplink data to the base station during random access;
  • the target uplink data that is sent by the user equipment based on the number of repeated transmissions of the target is received.
  • the repetition quantity indication information is used to indicate that the user equipment determines a target correspondence relationship set from the at least one corresponding relationship set stored by the user equipment, where the target correspondence relationship set is used by the user equipment according to the user equipment. Querying the target correspondence relationship set by the target transport block size, obtaining a repeated transmission number corresponding to the target transport block size, and determining a number of repeated transmissions corresponding to the target transport block size as the target repeated transmission times ;
  • Each of the at least one corresponding relationship set includes at least one corresponding relationship, where the corresponding relationship is a correspondence between a transport block size and a repeated transmission number.
  • the at least one corresponding relationship set is sent by the base station to the user equipment by using high layer signaling.
  • the corresponding relationship set includes a first correspondence relationship and a second correspondence relationship
  • the first correspondence relationship includes a first transmission block size and a first repeated transmission number corresponding to each other
  • the second correspondence relationship includes second transmission block size and frequency indication information corresponding to each other, where the number of times indication information is used to indicate a relative relationship between the number of times of the second repeated transmission and the number of times of the first repeated transmission, where the number of times of the second repeated transmission is the number of repeated transmissions corresponding to the size of the second transmission block.
  • the repetition quantity indication information is used to indicate a third repeated transmission number, the third repeated transmission number corresponds to a third transmission block size, and the third repeated transmission times and the third transmission block size are used. And determining, by the user equipment, the target repeated transmission times according to the target transport block size, the third transport block size, and the third repeated transmission times.
  • the third number of repeated transmissions is located in a set of repeated transmission times, where the set of repeated transmission times includes at least one of a plurality of repeated transmission times supported by the communication protocol, and the set of repeated transmission times is And sent by the base station to the user equipment by using high layer signaling.
  • the repetition quantity indication information is carried in an uplink scheduling authorization of the target random access response.
  • a data transmission apparatus including:
  • a first sending module configured to send a target random access preamble to the base station, where the target random access preamble is used to indicate that the user equipment needs to send target uplink data to the base station in a process of random access;
  • a receiving module configured to receive a target random access response that is sent by the base station according to the target random access preamble, where the target random access response carries a repetition quantity indication information
  • a second sending module configured to send the target uplink data to the base station in a process of random access based on a target repeated number of transmissions
  • the number of times of the target retransmission is the number of times the user equipment repeatedly sends the target uplink data to the base station in the process of random access, and the target retransmission times is based on the repetition number indication information and target.
  • the transport block size is determined, and the target transport block size is a transport block size used by the user equipment to send the target uplink data to the base station during random access.
  • the user equipment is configured with at least one corresponding relationship set, where each of the corresponding relationship sets includes at least one corresponding relationship, where the corresponding relationship is a correspondence between a transport block size and a repeated transmission times;
  • the first number determining module is included, and the first number determining module includes:
  • a set determining submodule configured to determine, according to the repetition quantity indication information, a target correspondence relationship set from the at least one corresponding relationship set;
  • Querying a sub-module configured to query the target correspondence relationship set according to the target transport block size, and obtain a repeated transmission times corresponding to the target transport block size;
  • the first number determining submodule is configured to determine a number of repeated transmissions corresponding to the target transport block size as the target repeated transmission times.
  • the at least one corresponding relationship set is sent by the base station to the user equipment by using high layer signaling.
  • the corresponding relationship set includes a first correspondence relationship and a second correspondence relationship
  • the first correspondence relationship includes a first transmission block size and a first repeated transmission number corresponding to each other
  • the second correspondence relationship includes second transmission block size and frequency indication information corresponding to each other, where the number of times indication information is used to indicate a relative relationship between the number of times of the second repeated transmission and the number of times of the first repeated transmission, where the number of times of the second repeated transmission is the number of repeated transmissions corresponding to the size of the second transmission block.
  • the repetition quantity indication information is used to indicate a third repeated transmission number, and the third repeated transmission times corresponds to a third transmission block size; the apparatus further includes a second number of times determining module, the second number of times The determining module is configured to: determine the target repeated transmission times according to the target transport block size, the third transport block size, and the third repeated transmission times.
  • the third number of repeated transmissions is located in a set of repeated transmission times, where the set of repeated transmission times includes at least one of a plurality of repeated transmission times supported by the communication protocol, and the set of repeated transmission times is And sent by the base station to the user equipment by using high layer signaling.
  • the second number determining module includes:
  • a first relationship determining submodule configured to determine a first relative relationship according to a relative relationship between the target transport block size and the third transport block size, where the first relative relationship is the target repeated transmission times and the The relative relationship of the third repeated transmission times;
  • the second number determining submodule is configured to determine the target repeated transmission times according to the first relative relationship and the third repeated transmission times.
  • the second number determining module includes:
  • a second relationship determining submodule configured to determine a second relative relationship according to a relative relationship between the target transport block size and the third transport block size, where the second relative relationship is a reference repeated transmission number and the third The relative relationship of the number of repeated transmissions;
  • a third number determining submodule configured to determine the reference repeated sending times according to the second relative relationship and the third repeated sending times
  • a fourth number determining submodule configured to determine the target repeated transmission times according to the reference repeated transmission times.
  • the fourth number determining sub-module is configured to: determine, according to the reference repeated transmission times, the target repeated transmission times, where the target repeated transmission times is a repetition of the target value set in the target value set The value of the difference in the number of transmissions is the smallest value, the target value set includes at least one value, the target value set includes a value that is an integer multiple of the first preset value, or the target value set includes the second value. The integer power of the preset value.
  • the fourth number determining sub-module is specifically configured to: determine, according to the reference repeated transmission times, the target repeated transmission times, where the target repeated transmission times is the number of repeated transmissions supported by the communication protocol. The number of repeated transmissions with the smallest difference from the reference repeated transmission times.
  • the repetition quantity indication information is carried in an uplink scheduling authorization of the target random access response.
  • a data transmission apparatus including:
  • a first receiving module configured to receive a target random access preamble sent by the user equipment, where the target random access preamble is used to indicate that the user equipment needs to send target uplink data to the base station in a process of random access;
  • a sending module configured to send the target random access response to the user equipment according to the target random access, where the target random access response carries a repetition quantity indication information, where the repetition quantity indication information is used for the user
  • the device determines, according to the repetition number index information and the target transmission block size, the number of times of the target transmission, the number of times that the user equipment repeatedly sends the target uplink data to the base station in the process of random access.
  • the target transport block size is a transport block size used by the user equipment to send the target uplink data to the base station in a random access process;
  • a second receiving module configured to receive, in the process of random access, the target uplink data that is sent by the user equipment according to the target repeated transmission times.
  • the repetition quantity indication information is used to indicate that the user equipment determines a target correspondence relationship set from the at least one corresponding relationship set stored by the user equipment, where the target correspondence relationship set is used by the user equipment according to the user equipment. Querying the target correspondence relationship set by the target transport block size, obtaining a repeated transmission number corresponding to the target transport block size, and determining a number of repeated transmissions corresponding to the target transport block size as the target repeated transmission times ;
  • Each of the at least one corresponding relationship set includes at least one corresponding relationship, where the corresponding relationship is a correspondence between a transport block size and a repeated transmission number.
  • the at least one corresponding relationship set is sent by the base station to the user equipment by using high layer signaling.
  • the corresponding relationship set includes a first correspondence relationship and a second correspondence relationship
  • the first correspondence relationship includes a first transmission block size and a first repeated transmission number corresponding to each other
  • the second correspondence relationship includes second transmission block size and frequency indication information corresponding to each other, where the number of times indication information is used to indicate a relative relationship between the number of times of the second repeated transmission and the number of times of the first repeated transmission, where the number of times of the second repeated transmission is the number of repeated transmissions corresponding to the size of the second transmission block.
  • the repetition quantity indication information is used to indicate a third repeated transmission number, the third repeated transmission number corresponds to a third transmission block size, and the third repeated transmission times and the third transmission block size are used. And determining, by the user equipment, the target repeated transmission times according to the target transport block size, the third transport block size, and the third repeated transmission times.
  • the third number of repeated transmissions is located in a set of repeated transmission times, where the set of repeated transmission times includes at least one of a plurality of repeated transmission times supported by the communication protocol, and the set of repeated transmission times is And sent by the base station to the user equipment by using high layer signaling.
  • the repetition quantity indication information is carried in an uplink scheduling authorization of the target random access response.
  • a user equipment including:
  • a memory for storing instructions executable by the processor
  • processor is configured to:
  • Target random access preamble Sending a target random access preamble to the base station, where the target random access preamble is used to indicate that the user equipment needs to send the target uplink data to the base station in the process of random access;
  • the number of times of the target retransmission is the number of times the user equipment repeatedly sends the target uplink data to the base station in the process of random access, and the target retransmission times is based on the repetition number indication information and target.
  • the transport block size is determined, and the target transport block size is a transport block size used by the user equipment to send the target uplink data to the base station during random access.
  • a base station including:
  • a memory for storing instructions executable by the processor
  • processor is configured to:
  • Target random access preamble sent by the user equipment, where the target random access preamble is used to indicate that the user equipment needs to send target uplink data to the base station in a process of random access;
  • the number-of-times index information and the target transmission block size determine the number of times of the target retransmission, the number of times the target retransmission is the number of times the user equipment repeatedly transmits the target uplink data to the base station in the process of random access, the target transmission
  • the block size is a transport block size used by the user equipment to send the target uplink data to the base station during random access;
  • the target uplink data that is sent by the user equipment based on the number of repeated transmissions of the target is received.
  • a data transmission system comprising the data transmission device of any of the above aspects, and the data transmission device of any of the above fourth aspects.
  • a computer readable storage medium having stored therein a computer program capable of implementing the first aspect as described above when executed by the processing component a data transmission method as described;
  • the stored computer program can be implemented by the processing component to implement the data transmission method of any of the above second aspects.
  • the target uplink data is sent to the base station in the process of random access, and the number of repeated transmissions of the target is repeated according to the repetition number indication information carried in the target random access response sent by the base station, and based on the number of repeated transmissions of the target.
  • the number of transmission indication information and the target transmission block size are determined, so that in the EDT technology, the user equipment can repeatedly send the target uplink data to the base station, thereby solving the problem of how the user equipment repeatedly transmits the uplink data to the base station in the EDT technology.
  • FIG. 1 is a schematic diagram of an implementation environment, according to an exemplary embodiment.
  • FIG. 2 is a flowchart of a data transmission method according to an exemplary embodiment.
  • FIG. 3 is a flowchart of a data transmission method according to an exemplary embodiment.
  • FIG. 4 is a flowchart of a data transmission method according to an exemplary embodiment.
  • FIG. 5 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • FIG. 6 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • FIG. 7 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • FIG. 8 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • FIG. 9 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • FIG. 10 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • FIG. 11 is a block diagram of a data transmission system, according to an exemplary embodiment.
  • Narrow band Internet of Things (English: narrow band Internet of things; NB-IoT) and machine type communication (English: machine type communication; referred to as: MTC) are two mainly for low power wide coverage (English: low power wide area Abbreviation: LPWA) IoT technology for communication services.
  • both the NB-IoT and the MTC have introduced a mechanism of repeated transmission.
  • the user equipment English: User Equipment; UE
  • the coverage capability can usually be characterized by the maximum coupling loss (English: maximum coupling loss; MCL).
  • MCL maximum coupling loss
  • both NB-IoT and MTC can support data advance transmission (English: early data transmission; referred to as: EDT) technology.
  • EDT technology the UE can transmit uplink data in the process of random access. .
  • the embodiment of the present disclosure provides a data transmission method, which can solve the problem of how the UE repeatedly sends uplink data to the base station in the EDT technology.
  • the base station can send the target random access response to the UE.
  • the number of repetitions indicates that the UE can determine the number of times of repeated transmission based on the repetition number indication information and the target transmission block size (English: transmission block size; TBS for short), wherein the target repeated transmission times is that the UE repeatedly transmits the target to the base station.
  • the number of uplink data is the uplink data sent by the UE in the random access process
  • the target TBS is the TBS used by the UE to send the target uplink data to the base station, and then the UE may repeatedly send the number of times based on the target in the random
  • the target uplink data is sent to the base station, so that the UE repeatedly transmits the uplink data in the EDT technology.
  • FIG. 1 is a schematic diagram of an implementation environment involved in a data transmission method according to an embodiment of the present disclosure.
  • the implementation environment may include a base station 10 and a UE 20, where the UE 20 is in a cell served by the base station 10. Any one of the UEs, the base station 10 and the UE 20 may perform data transmission based on the NB-IoT communication protocol or the MTC communication protocol.
  • FIG. 2 is a flowchart of a data transmission method according to an exemplary embodiment. As shown in FIG. 2, the data transmission method is used in the UE 20 shown in FIG. 1, and the data transmission method includes the following steps.
  • Step 201 The UE sends a target random access preamble to the base station.
  • the target random access preamble is used to indicate that the UE needs to send target uplink data to the base station in the process of random access.
  • the target random access preamble is used to indicate that the UE needs to use the EDT technology to send target uplink data to the base station.
  • Step 202 The UE receives a target random access response sent by the base station based on the target random access preamble, where the target random access response carries the repetition quantity indication information.
  • Step 203 The UE sends the target uplink data to the base station in the process of random access based on the number of repeated transmissions of the target.
  • the target retransmission times is the number of times the UE repeatedly transmits the target uplink data to the base station in the process of random access, and the target retransmission times are determined by the UE according to the repetition quantity indication information and the target TBS, where the target TBS is randomly connected by the UE.
  • the data transmission method receives the repeating number indication information carried in the target random access response sent by the base station, and based on the target repeated transmission times, in the process of random access to the base station.
  • the target uplink data is sent, where the target number of repeated transmissions is determined according to the repeated transmission number indication information and the target transmission block size, so that in the EDT technology, the user equipment can repeatedly send the target uplink data to the base station, thereby solving the EDT technology. How the user equipment repeatedly sends uplink data to the base station.
  • FIG. 3 is a flowchart of a data transmission method according to an exemplary embodiment. As shown in FIG. 3, the data transmission method is used in the base station 10 shown in FIG. 1. The data transmission method includes the following steps.
  • Step 301 The base station receives a target random access preamble sent by the UE.
  • the target random access preamble is used to indicate that the UE needs to send target uplink data to the base station in the process of random access.
  • the target random access preamble is used to indicate that the UE needs to use the EDT technology to send target uplink data to the base station.
  • Step 302 The base station sends a target random access response according to the target random access pre-targeting UE, where the target random access response carries the repetition quantity indication information.
  • the repetition number indication information is used by the UE to determine the target repeated transmission times according to the repetition number index information and the target TBS, where the target repeated transmission times is the number of times the UE repeatedly transmits the target uplink data to the base station in the process of random access,
  • the target TBS is a TBS used by the UE to transmit target uplink data to the base station during random access.
  • Step 303 In the process of random access, the base station receives target uplink data that is sent by the UE according to the target repeated transmission times.
  • the data transmission method sends the number of repetition indications carried in the target random access response to the user equipment, so that the user equipment can repeatedly send the number of times based on the target, in random access.
  • the target uplink data is sent to the base station, where the target number of repeated transmissions is determined by the user equipment according to the repeated transmission times indication information and the target transmission block size, so that in the EDT technology, the user equipment may repeatedly send the target uplink to the base station.
  • the data solves the problem of how the user equipment in the EDT technology repeatedly transmits uplink data to the base station.
  • FIG. 4 is a flowchart of a data transmission method according to an exemplary embodiment. As shown in FIG. 4, the data transmission method is used in the implementation environment shown in FIG. 1, and the data transmission method includes the following steps.
  • Step 401 The base station broadcasts a maximum data packet size that can be transmitted by the current random access procedure.
  • the base station can select an element from the maximum EDT packet set supported by the communication protocol as the maximum packet size supported by the current EDT according to the coverage capability of the current network (that is, the current random number described above).
  • the maximum set of EDT packets includes at least one maximum packet size supported by the communication protocol.
  • the base station can send, by means of broadcast, the maximum data packet size that can be transmitted by the current random access procedure to the UE in the cell served by the base station.
  • the maximum data packet size that can be transmitted by the current random access procedure refers to: the current maximum amount of data that the UE can send to the base station during the random access procedure.
  • the above communication protocol may be an NB-IoT communication protocol or an MTC communication protocol.
  • the maximum packet size selected by the base station may be positively correlated with the coverage capability of the current network, that is, the stronger the coverage capability of the current network, the larger the maximum packet size that the base station selects.
  • the maximum packet size supported by the communication protocol may include 1000 bits (Chinese: bits), 936 bits, 808 bits, 680 bits, 584 bits, 504 bits, 408 bits, and 328 bits.
  • the base station can broadcast the time-frequency location of the target uplink resource, in addition to the maximum data packet size that can be transmitted by the current random access procedure, where the target uplink resource is located in the random access channel, and the target uplink resource can be carried.
  • a random access preamble (English: preamble) for applying uplink data in a random access procedure.
  • the random access preamble may also be referred to as information 1 in the random access procedure (English: message 1).
  • the random access channel can be generally referred to as a NB-IoT physical random access channel (NPR).
  • Step 402 When the size of the data packet that the UE needs to transmit is not greater than the maximum data packet size that can be transmitted by the current random access procedure, the UE sends the target random access preamble to the base station.
  • the UE After receiving the maximum packet size that can be transmitted by the current random access procedure broadcasted by the base station, the UE can determine whether the size of the data packet that needs to be transmitted by itself is greater than the maximum data packet size that can be transmitted by the current random access procedure.
  • the UE When the size of the data packet that the UE needs to transmit is greater than the maximum data packet size that can be transmitted by the current random access procedure, the UE cannot send the data packet that it needs to transmit in the random access procedure. In this case, the UE may perform traditional random access, and after the random access succeeds, send the data packet that the UE needs to transmit to the base station.
  • the UE may send the data packet that it needs to transmit in the random access procedure.
  • the UE may determine the target uplink resource based on the time-frequency location of the target uplink resource broadcasted by the base station, and send the target random access preamble to the base station by using the target uplink resource, where the target random access preamble is used to The base station applies for transmitting the target uplink data in the random access process.
  • the target random access preamble is used to indicate that the UE needs to send the target uplink data to the base station in the process of random access, where the so-called target uplink data refers to It is the data packet that the UE needs to transmit as described above.
  • Step 403 After receiving the target random access preamble sent by the UE, the base station sends a target random access response according to the target random access pre-targeting UE, where the target random access response carries the repetition quantity indication information.
  • the base station may determine that the UE needs to send the target uplink data in the process of random access, in which case the base station may send the target random access response to the UE.
  • the target random access response may carry the repetition number indication information.
  • the target random access response may further carry the uplink resource indication information. It should be noted that, in general, the random access response may also be referred to as information 2 in the random access procedure (English: message 2).
  • the uplink resource indication information may indicate the size of the uplink resource that the base station can allocate for transmitting the single target uplink data, and the size of the uplink resource may be represented by the number of resource units (English: resource unit; short: RU) .
  • the uplink resource indication information may be carried in an uplink scheduling grant (English: UL grant) of the target random access response.
  • the uplink resource indication information may occupy an uplink scheduling grant.
  • Three bits in the modulation and coding scheme field English: modulation and coding scheme field).
  • Table 1 shows an exemplary uplink resource indication information and resource unit (English: resource unit, referred to as RU) provided by the embodiment of the present disclosure when the maximum data packet size of the current random access procedure is 1000 bits. Correspondence.
  • the uplink resource indication information is "011"
  • the base station allocates a single target uplink data to the UE.
  • the uplink resource used is 3 RUs.
  • the repetition number indication information may also be carried in an uplink scheduling grant of the target random access response, and the UE may determine, according to the repetition quantity indication information, that the UE repeatedly sends the target to the base station in the random access procedure.
  • the number of times of uplink data wherein the manner in which the UE determines the number of times the target uplink data is repeatedly transmitted to the base station in the random access procedure will be described in the following steps.
  • Step 404 After receiving the target random access response sent by the base station, the UE determines the target TBS.
  • the target TBS is a TBS used by the UE to transmit target uplink data to the base station in a random access procedure.
  • the UE After receiving the target random access response sent by the base station, the UE determines that the base station allows itself to send the target uplink data in the process of random access. In this case, the UE may determine the target TBS according to the size of the data packet that it needs to transmit (that is, the size of the target uplink data). Optionally, the target TBS is greater than the UE needs to transmit in the TBS available to the UE. The size of the data packet and the TBS that is the smallest difference from the size of the data packet that the UE needs to transmit. For example, if the maximum data packet size that can be transmitted in the current random access procedure is 1000 bits, the total number of TBSs available to the UE is four. , respectively, 328bits, 536bits, 776bits, and 1000bits. If the size of the data packet that the UE needs to transmit is 500bits, the UE can determine 536bits as the target TBS.
  • the UE may determine the TBS available to the UE according to the maximum data packet size that can be transmitted by the current random access procedure broadcasted by the base station (that is, the maximum data packet size supported by the current EDT).
  • Table 2 is a table of correspondence between a maximum packet size and a TBS available to the UE according to an embodiment of the present disclosure.
  • the UE may determine a modulation and coding manner of the target uplink data according to the number of RUs indicated by the uplink resource indication information and the target TBS. Generally, in different modulation and coding modes, the amount of data that can be carried by each RU is different. For example, when the number of RUs indicated by the uplink resource indication information is 4, that is, the base station allocates the UE. If the uplink resource that can be used to transmit the single target uplink data is 4 RUs, if the target TBS determined by the UE is 328 bits, the UE may select a modulation and coding mode according to the 4 RUs and 328 bits, in the modulation and coding mode.
  • the average amount of data that can be carried by one RU can be 82 bits. If the target TBS determined by the UE is 1000 bits, the UE can select another modulation and coding mode according to the four RUs and 1000 bits, in the modulation and coding mode, 1 The average amount of data that can be carried by RUs can be 250 bits.
  • the modulation and coding mode of the target uplink data may be Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (16QAM), and Phase
  • QPSK Quadrature Phase Shift Keying
  • 16QAM Quadrature Amplitude Modulation
  • Phase The embodiment of the present disclosure does not specifically limit the quadrature amplitude modulation (English: 64 Quadrature Amplitude Modulation; 64QAM for short).
  • Step 405 The UE determines the target repeated transmission times based on the repetition quantity indication information and the target TBS.
  • the number of times of repeated transmission of the target refers to the number of times the UE repeatedly transmits the target uplink data to the base station during the random access procedure.
  • the number of target repeated transmissions is affected by the target TBS and is positively correlated with the target TBS, that is, the larger the target TBS, the larger the target repeated transmission times.
  • the larger the target TBS is, the larger the bit rate of the target uplink data is sent by the UE to the base station, and in the case of a large code rate, the UE needs to repeatedly send the target uplink data to the base station more than once. Ensure that the base station can correctly receive the target uplink data.
  • the number of repeated transmissions of the target is also affected by the current channel quality, and is negatively correlated with the current channel quality, that is, the better the current channel quality, the smaller the number of target repeated transmissions, because the current channel quality is better, the UE Sending the target uplink data to the base station for a smaller number of times ensures that the base station can correctly receive the target uplink data.
  • the UE Since the number of repeated transmissions of the target is not only affected by the target TBS, but also affected by the current channel quality, and because the base station cannot predict the size of the data packet that the UE needs to transmit when transmitting the target random access response to the UE, that is, The base station cannot predict the target TBS selected by the UE. Therefore, on one hand, the UE cannot determine the target repeated transmission times according to the target TBS. On the other hand, the base station cannot directly indicate the target repeated transmission times by the repetition number indication information. Therefore, in the present disclosure, In an embodiment, the UE needs to determine the target repeated transmission times according to the repetition quantity indication information and the target TBS, wherein the repetition quantity indication information may be generated by the base station according to the current channel quality.
  • Embodiments of the present disclosure provide two exemplary manners for a UE to determine a target repeated transmission number according to a repetition number indication information and a target TBS, where:
  • the UE determines the target correspondence relationship set from the at least one corresponding relationship set stored by the UE according to the repetition quantity indication information, and then the UE queries the target correspondence relationship set according to the target TBS, and obtains the repeated transmission times corresponding to the target TBS.
  • the UE determines the number of repeated transmissions corresponding to the target TBS as the target number of repeated transmissions.
  • the base station may send the at least one corresponding relationship set to the UE in advance through the high layer signaling, where each corresponding relationship set may include at least one corresponding relationship, where the corresponding relationship is a correspondence between the TBS and the number of repeated transmissions.
  • Table 3 shows four exemplary correspondence sets delivered by the base station to the UE through high layer signaling.
  • the correspondence relationship set 1 includes four correspondences, which are TBS1 - rep_11, TBS2 - rep_21, TBS3 - rep_31 and TBS4 - rep_41, respectively, where TBS1 - rep_11 is TBS1 and the number of repeated transmissions rep_11
  • TBS1 - rep_11 is TBS1 and the number of repeated transmissions rep_11
  • other correspondences are similar thereto, and the embodiments of the present disclosure are not described herein again.
  • the corresponding relationship set sent by the base station to the UE may include a first correspondence relationship and a second correspondence relationship, where the first correspondence relationship includes a first TBS and a first repeated transmission number corresponding to each other, and a second correspondence relationship
  • the second TBS and the number of times indication information corresponding to each other are included, the number of times indication information is used to indicate a relative relationship between the number of times of the second repeated transmission and the number of times of the first repeated transmission, wherein the second number of repeated transmissions is a repeated transmission corresponding to the second TBS. frequency.
  • the relative relationship between the second repeated transmission times and the first repeated transmission times refers to: a difference between the second repeated transmission times and the first repeated transmission times.
  • TBS1_rep_11 may be the first correspondence
  • TBS2_rep_21, TBS3_rep_31, and TBS4_rep_41 may be the second correspondence
  • the rep_11 in a correspondence relationship is the number of repeated transmissions corresponding to the TBS1
  • the rep_11 is an absolute value
  • the rep_21, rep_31, and rep_41 in the second correspondence are the number indication information
  • the indicated number of repeated transmissions corresponding to the TBS2 are respectively
  • the number of repeated transmissions corresponding to TBS3 is smaller than the difference between rep_11 and the number of repeated transmissions corresponding to TBS4 compared with rep_11.
  • the UE After receiving the at least one corresponding relationship set sent by the base station by using the high layer signaling, the UE may store the at least one corresponding relationship set to the UE local.
  • the base station may generate the repetition quantity indication information according to the current channel quality, and send the repetition quantity indication information to the UE by using the target random access response, where the repetition quantity indication information may indicate the at least A set of correspondences in a set of correspondences (that is, a set of target correspondences).
  • the UE may extract the repetition quantity indication information from the target random access response, and then the UE may determine the target correspondence relationship set according to the repetition quantity indication information, and query the target according to the target TBS.
  • the corresponding relationship set obtains the number of repeated transmissions corresponding to the target TBS, and the UE may determine the number of repeated transmissions as the target repeated transmission times.
  • the target correspondence set indicated by the repeating number indication information sent by the base station by the target random access response is the corresponding relationship set 1 shown in Table 2. If the target TBS determined by the UE is TBS1, the UE may query the corresponding relationship set according to TBS1. 1. The number of repeated transmissions corresponding to TBS1 is rep_11, and then the UE can determine the rep_11 as the target number of repeated transmissions.
  • the repetition number indication information may indicate the third repeated transmission number, wherein the third repeated transmission number corresponds to the third TBS, and the UE may determine the target repeated transmission times according to the target TBS, the third TBS, and the third repeated transmission times.
  • the base station may determine, according to the current channel quality, a set of repeated transmission times, where the set of repeated transmission times includes at least one of a plurality of repeated transmission times supported by the communication protocol, and the set of repeated transmission times may further include The TBS corresponding to the at least one repeated transmission times, and then the base station may send the repeated transmission frequency set to the UE by using the high layer signaling. After receiving the set of repeated transmission times, the UE may store the set of repeated transmission times to the UE local.
  • the base station may select one repeated transmission number from the set of repeated transmission times (that is, the third repeated transmission number).
  • the number of repeated transmissions selected by the base station may be The minimum number of repeated transmissions in the set of repeated transmission times, or the number of repeated transmissions selected by the base station may be the maximum number of repeated transmissions in the repeated transmission set.
  • the base station may generate the repetition number indication information for indicating the number of repeated transmissions of the selection (that is, the third repeated transmission times), and send the repetition quantity indication information to the UE by using the target random access response.
  • the UE may extract the repetition quantity indication information from the target random access response, and then the UE may determine the target repeated transmission times according to the target TBS, the third TBS, and the third repeated transmission times.
  • the embodiments of the present disclosure provide an implementation manner in which two possible UEs determine the number of target repeated transmissions according to the target TBS, the third TBS, and the third repeated transmission times, where:
  • the UE may determine, according to a relative relationship between the target TBS and the third TBS, a first relative relationship, where the first relative relationship is a relative relationship between the number of target repeated transmissions and the third repeated transmission times, and then The UE may determine the target repeated transmission times according to the first relative relationship and the third repeated transmission times.
  • the relative relationship between the target TBS and the third TBS may be a proportional relationship between the target TBS and the third TBS, where the first relative relationship may be a proportional relationship between the target repeated transmission times and the third repeated transmission times.
  • the UE may calculate the target repeated transmission times according to the first formula, where the first formula is:
  • Rep_y is the number of times the target is repeatedly sent, ceil is the rounding up operator, rep_x is the third number of repeated transmissions, TBS_y is the target TBS, and TBS_x is the third TBS.
  • the UE may determine a second relative relationship according to a relative relationship between the target TBS and the third TBS, where the second relative relationship is a relative relationship between the number of repeated transmissions and the third repeated transmission number, and then The UE may determine the reference repeated transmission times according to the second relative relationship and the third repeated transmission times, and determine the target repeated transmission times according to the reference repeated transmission times.
  • the relative relationship between the target TBS and the third TBS may be a proportional relationship between the target TBS and the third TBS, where the second relative relationship may be a proportional relationship between the reference repeated transmission times and the third repeated transmission times.
  • the UE may calculate the reference repeated transmission times according to the second formula, where the second formula is:
  • Rep_z is the reference repeated transmission number, ceil is the upward rounding operator, rep_x is the third repeated transmission number, TBS_y is the target TBS, and TBS_x is the third TBS.
  • the embodiments of the present disclosure provide an implementation manner in which two possible UEs determine the number of target repeated transmissions according to the number of repeated transmissions of reference, where:
  • the UE determines the target repeated transmission times according to the number of repeated transmissions, where the target repeated transmission times is a value that is the smallest difference between the target value set and the reference repeated transmission times, and the target numerical value set
  • the method includes at least one value, the target value set includes a value that is an integer multiple of the first preset value, or the target value set includes a value that is an integer power of the second preset value.
  • the first preset value and the second preset value may be the same or different.
  • the first preset value and the second preset value may be both 2.
  • the UE determines the target repeated transmission times according to the reference repeated transmission times, where the target repeated transmission times is the smallest difference between the repeated transmission times supported by the communication protocol and the reference repeated transmission times The number of transmissions.
  • Step 406 The UE sends the target uplink data to the base station in the process of random access based on the number of repeated transmissions of the target.
  • the UE may send target uplink data to the base station in the information 3 of the random access procedure (English: message 3).
  • the UE may modulate and encode the target uplink data by using the number of the RUs indicated by the uplink resource indication information and the modulation and coding mode determined by the target TBS, and then the UE may repeatedly send the modulated and encoded target uplink data to the base station, where The number of times the UE repeatedly transmits the modulated encoded target uplink data to the base station is the target repeated transmission number.
  • Step 407 In the process of random access, the base station receives target uplink data that is sent by the UE according to the target repeated transmission times.
  • the base station may sequentially detect the uplink resource carrying the target uplink data by using the available TBS, and obtain the TBS that can correctly receive the target uplink data, the TBS. That is the target TBS.
  • the base station may determine the target repeated transmission times according to the target TBS and the repetition quantity indication information, and receive the target uplink data sent by the UE according to the target repeated transmission times.
  • the data transmission method receives the repeating number indication information carried in the target random access response sent by the base station, and based on the target repeated transmission times, in the process of random access to the base station.
  • the target uplink data is sent, where the target number of repeated transmissions is determined according to the repeated transmission number indication information and the target transmission block size, so that in the EDT technology, the user equipment can repeatedly send the target uplink data to the base station, thereby solving the EDT technology. How the user equipment repeatedly sends uplink data to the base station.
  • FIG. 5 is a block diagram of a data transmission apparatus 500, which may be disposed in the UE 20 shown in FIG. 1, according to an exemplary embodiment.
  • the data transmission device 500 includes a first transmitting module 501, a receiving module 502, and a second transmitting module 503.
  • the first sending module 501 is configured to send a target random access preamble to the base station, where the target random access preamble is used to indicate that the UE needs to send the target uplink data to the base station in the process of random access.
  • the receiving module 502 is configured to receive a target random access response sent by the base station according to the target random access preamble, where the target random access response carries the repetition quantity indication information.
  • the second sending module 503 is configured to send the target uplink data to the base station in the process of random access based on the target repeated transmission times.
  • the number of times the target is repeatedly sent is the number of times the UE repeatedly transmits the target uplink data to the base station in the process of random access, and the target number of repeated transmissions is determined according to the repetition number indication information and the target TBS, the target TBS. It is the TBS used by the UE to send the target uplink data to the base station in the process of random access.
  • the repetition number indication information is carried in an uplink scheduling grant of the target random access response.
  • the embodiment of the present disclosure further provides another data transmission device 600.
  • the data transmission device 600 includes a first number determining module 504 in addition to the module included in the data transmission device 500.
  • the embodiment of the present disclosure further provides another data transmission device 700.
  • the data transmission device 700 includes a second number determination module 505 in addition to the module included in the data transmission device 500.
  • the data transmission apparatus may include the first number determining module 504 and the second number determining module 505 in addition to the modules included in the data transmission apparatus 500.
  • the UE is configured with at least one corresponding relationship set, and each corresponding relationship set includes at least one corresponding relationship, where the corresponding relationship is a correspondence between the TBS and the number of repeated transmissions.
  • the first number determining module 504 includes:
  • a set determining submodule configured to determine, according to the repetition quantity indication information, a target correspondence relationship set from the at least one correspondence relationship set;
  • Querying a sub-module configured to query the target correspondence relationship set according to the target TBS, and obtain a repeated transmission number corresponding to the target TBS;
  • the first number determining submodule is configured to determine the number of repeated transmissions corresponding to the target TBS as the number of repeated transmissions of the target.
  • the at least one corresponding relationship set is sent by the base station to the UE by using high layer signaling.
  • the corresponding relationship set includes a first correspondence relationship and a second correspondence relationship;
  • the first correspondence relationship includes a first TBS and a first repeated transmission number corresponding to each other, and the second correspondence relationship includes each other
  • Corresponding second TBS and number indication information the number of times indication information is used to indicate a relative relationship between the number of times of the second repeated transmission and the number of times of the first repeated transmission, and the number of times of the second repeated transmission is the number of repeated transmissions corresponding to the second TBS.
  • the repetition number indication information is used to indicate a third repeated transmission number, and the third repeated transmission number corresponds to the third TBS.
  • the second number determining module 505 is configured to determine the target repeated transmission times according to the target TBS, the third TBS, and the third repeated transmission times.
  • the third number of repeated transmissions is located in a set of repeated transmission times, where the set of repeated transmission times includes at least one of a plurality of repeated transmission times supported by the communication protocol, and the number of repeated transmissions
  • the set is sent by the base station to the UE through higher layer signaling.
  • the second number determining module 505 includes:
  • a first relationship determining submodule configured to determine, according to a relative relationship between the target TBS and the third TBS, a first relative relationship, where the first relative relationship is a relative relationship between the number of repeated transmissions of the target and the number of times of the third repeated transmission;
  • the second number determining submodule is configured to determine the target repeated transmission times according to the first relative relationship and the third repeated transmission times.
  • the second number determining module 505 includes:
  • a second relationship determining submodule configured to determine, according to a relative relationship between the target TBS and the third TBS, a second relative relationship, where the second relative relationship is a relative relationship between the number of repeated transmissions and the third number of repeated transmissions;
  • a third number determining submodule configured to determine the reference repeated transmission times according to the second relative relationship and the third repeated transmission times
  • the fourth number determining submodule is configured to determine the number of repeated transmissions of the target according to the number of repeated transmissions of the reference.
  • the fourth number determining sub-module is specifically configured to: determine the target repeated transmission times according to the reference repeated transmission times, wherein the target repeated transmission times is a repetition of the target value set in the target value set The minimum value of the difference in the number of transmissions, the target value set includes at least one value, the target value set includes a value that is an integer multiple of the first preset value, or the target value set includes a second preset value The power of an integer.
  • the fourth number determining sub-module is specifically configured to: determine, according to the reference repeated transmission times, the target repeated transmission times, wherein the target repeated transmission times is a number of repeated transmissions supported by the communication protocol The number of repeated transmissions with the smallest difference from the number of repeated transmissions of the reference.
  • the data transmission apparatus receives the repeating number indication information carried by the base station and is carried in the target random access response, and based on the target repeated transmission times, in the process of random access to the base station.
  • the target uplink data is sent, where the target number of repeated transmissions is determined according to the repeated transmission number indication information and the target transmission block size, so that in the EDT technology, the user equipment can repeatedly send the target uplink data to the base station, thereby solving the EDT technology. How the user equipment repeatedly sends uplink data to the base station.
  • FIG. 8 is a block diagram of a data transmission device 800, which may be disposed in the base station 10 shown in FIG. 1, according to an exemplary embodiment.
  • the data transmission device 800 includes a first receiving module 701, a transmitting module 702, and a second receiving module 703.
  • the first receiving module 701 is configured to receive a target random access preamble sent by the UE, where the target random access preamble is used to indicate that the UE needs to send target uplink data to the base station in a process of random access.
  • the sending module 702 is configured to send the target random access response to the UE according to the target random access, where the target random access response carries the repetition quantity indication information, where the repetition quantity indication information is used by the UE according to the repetition quantity
  • the index information and the target TBS determine the number of times the target repeatedly transmits, the number of times the target is repeatedly transmitted is the number of times the UE repeatedly transmits the target uplink data to the base station in the process of random access, and the target TBS is a process in which the UE is in random access.
  • the second receiving module 703 is configured to receive the target uplink data that is sent by the UE according to the target repeated transmission times in the process of random access.
  • the repetition quantity indication information is used to indicate that the UE determines a target correspondence relationship set from at least one corresponding relationship set stored by the UE, where the target correspondence relationship set is used by the UE according to the target TBS. Querying the target correspondence set, obtaining the number of repeated transmissions corresponding to the target TBS, and determining the number of repeated transmissions corresponding to the target TBS as the number of repeated transmissions of the target;
  • Each of the at least one corresponding relationship set includes at least one corresponding relationship, where the corresponding relationship is a correspondence between the TBS and the number of repeated transmissions.
  • the at least one corresponding relationship set is sent by the base station to the UE by using high layer signaling.
  • the corresponding relationship set includes a first correspondence relationship and a second correspondence relationship;
  • the first correspondence relationship includes a first TBS and a first repeated transmission number corresponding to each other, and the second correspondence relationship includes each other
  • Corresponding second TBS and number indication information the number of times indication information is used to indicate a relative relationship between the number of times of the second repeated transmission and the number of times of the first repeated transmission, and the number of times of the second repeated transmission is the number of repeated transmissions corresponding to the second TBS.
  • the repetition number indication information is used to indicate a third repeated transmission number
  • the third repeated transmission number corresponds to a third TBS
  • the third repeated transmission number and the third TBS are used for the The UE determines the target repeated transmission times according to the target TBS, the third TBS, and the third repeated transmission times.
  • the third number of repeated transmissions is located in a set of repeated transmission times, where the set of repeated transmission times includes at least one of a plurality of repeated transmission times supported by the communication protocol, and the number of repeated transmissions
  • the set is sent by the base station to the UE through higher layer signaling.
  • the repetition number indication information is carried in an uplink scheduling grant of the target random access response.
  • the data transmission apparatus transmits the repeated number indication information carried in the target random access response to the user equipment, so that the user equipment can repeatedly send the number of times based on the target, in random access.
  • the target uplink data is sent to the base station, where the target number of repeated transmissions is determined by the user equipment according to the repeated transmission times indication information and the target transmission block size, so that in the EDT technology, the user equipment may repeatedly send the target uplink to the base station.
  • the data solves the problem of how the user equipment in the EDT technology repeatedly transmits uplink data to the base station.
  • FIG. 9 is a block diagram of a data transmission device 900, according to an exemplary embodiment.
  • the device 900 may be a terminal capable of communicating Internet of Things based on NB-IoT or MTC, such as a smart meter, a shared bicycle, a smart TV, a smart air conditioner, a smart temperature collecting device, or a smart humidity collecting component.
  • device 900 can include one or more of the following components: processing component 802, memory 804, power component 806, multimedia component 808, audio component 810, input/output (I/O) interface 812, sensor component 814, And a communication component 816.
  • Processing component 802 typically controls the overall operation of device 900, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 802 can include one or more processors 820 to execute instructions to perform all or part of the steps performed by UE 20 in the method embodiments described above.
  • processing component 802 can include one or more modules to facilitate interaction between component 802 and other components.
  • processing component 802 can include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operation at device 900. Examples of such data include instructions for any application or method operating on device 900, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 806 provides power to various components of device 900.
  • Power component 806 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 900.
  • the multimedia component 808 includes a screen between the device 900 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor may sense not only the boundary of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the device 900 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input an audio signal.
  • the audio component 810 includes a microphone (MIC) that is configured to receive an external audio signal when the device 900 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 804 or transmitted via communication component 816.
  • the audio component 810 also includes a speaker for outputting an audio signal.
  • the I/O interface 812 provides an interface between the processing component 802 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 814 includes one or more sensors for providing state assessment of various aspects to device 900.
  • sensor assembly 814 can detect an open/closed state of device 900, relative positioning of components, such as the display and keypad of device 900, and sensor component 814 can also detect a change in position of one component of device 900 or device 900. The presence or absence of user contact with device 900, device 900 orientation or acceleration/deceleration, and temperature variation of device 900.
  • Sensor assembly 814 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 814 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communication between device 900 and other devices.
  • the device 900 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 900 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the technical processes performed by the UE 20 in the above method embodiments.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the technical processes performed by the UE 20 in the above method embodiments.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 804 comprising instructions executable by processor 820 of apparatus 900 to perform UE 20 in the above method embodiments The technical process of execution.
  • the non-transitory computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • FIG. 10 is a block diagram of a data transmission device 1000, according to an exemplary embodiment.
  • data transmission device 1000 can be a base station.
  • the data transmission device 1000 may include a processor 901, a receiver 902, a transmitter 903, and a memory 904.
  • Receiver 902, transmitter 903, and memory 904 are coupled to processor 901 via a bus, respectively.
  • the processor 901 includes one or more processing cores, and the processor 901 executes the method executed by the base station in the data transmission method provided by the embodiment of the present disclosure by running a software program and a module.
  • Memory 904 can be used to store software programs as well as modules. Specifically, the memory 904 can store an application module 9042 required by the operating system 9041 and at least one function.
  • the receiver 902 is configured to receive communication data transmitted by other devices, and the transmitter 903 is configured to transmit communication data to other devices.
  • FIG. 11 is a block diagram of a data transmission system 1100, as shown in FIG. 11, including a base station 1001 and a UE 1002, according to an exemplary embodiment.
  • the base station 1001 is configured to perform a data transmission method performed by a base station in the embodiment shown in FIG.
  • the UE 1002 is configured to perform a data transmission method performed by the UE in the embodiment shown in FIG.
  • a computer readable storage medium which is a non-transitory computer readable storage medium having stored therein a computer program, stored
  • the computer program can be implemented by the processing component to implement the data transmission method provided by the above embodiments of the present disclosure.
  • Embodiments of the present disclosure also provide a computer program product having instructions stored therein that, when run on a computer, enable the computer to perform the data transfer method provided by embodiments of the present disclosure.
  • Embodiments of the present disclosure also provide a chip including programmable logic circuits and/or program instructions capable of executing the data transmission method provided by the embodiments of the present disclosure when the chip is in operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本公开提供了一种数据传输方法、装置、系统及存储介质,属于无线通信技术领域。所述方法包括:向基站发送目标随机接入前导;接收基站基于目标随机接入前导发送的目标随机接入响应,目标随机接入响应携带重复次数指示信息;基于目标重复发送次数,在随机接入的过程中向基站发送目标上行数据;其中,目标重复发送次数是用户设备在随机接入的过程中向基站重复发送目标上行数据的次数,目标重复发送次数是根据重复次数指示信息和目标传输块大小确定的,目标传输块大小是用户设备在随机接入的过程中向基站发送目标上行数据所使用的传输块大小。本公开提供的技术方案可以解决EDT 技术中用户设备如何向基站重复发送上行数据的问题。

Description

数据传输方法、装置、系统及存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种数据传输方法、装置、系统及存储介质。
背景技术
随着无线通信技术的发展,物联网在人们的日常生活中已经越来越常见了,所谓物联网,顾名思义,指的就是连接物与物的通信网络。其中,窄带物联网(英文:narrow band Internet of things;简称:NB-IoT)以及机器类通信(英文:machine type communication;简称:MTC)是两种非常有应用前景的物联网技术。
为了减小传输时延,NB-IoT和MTC都可以支持数据提前传输(英文:early data transmission;简称:EDT)技术。在EDT技术中,用户设备(英文:User Equipment;简称:UE)可以在随机接入的过程中传输上行数据。
通常情况下,在NB-IoT和MTC中,对于某一上行数据,用户设备需要向基站重复发送该上行数据以保证物联网的覆盖能力。在EDT技术中,用户设备如何向基站重复发送上行数据已经成为了EDT技术亟需解决的一个问题。
发明内容
本公开提供了一种数据传输方法、装置、系统及存储介质,可以解决EDT技术中用户设备如何向基站重复发送上行数据的问题。
根据本公开实施例的第一方面,提供一种数据传输方法,包括:
向基站发送目标随机接入前导,所述目标随机接入前导用于指示用户设备 需要在随机接入的过程中向所述基站发送目标上行数据;
接收所述基站基于所述目标随机接入前导发送的目标随机接入响应,所述目标随机接入响应携带重复次数指示信息;
基于目标重复发送次数,在随机接入的过程中向所述基站发送所述目标上行数据;
其中,所述目标重复发送次数是所述用户设备在随机接入的过程中向所述基站重复发送所述目标上行数据的次数,所述目标重复发送次数是根据所述重复次数指示信息和目标传输块大小确定的,所述目标传输块大小是所述用户设备在随机接入的过程中向所述基站发送所述目标上行数据所使用的传输块大小。
可选的,所述用户设备中存储有至少一个对应关系集合,每个所述对应关系集合包括至少一个对应关系,所述对应关系为传输块大小与重复发送次数的对应关系;所述基于目标重复发送次数,在随机接入的过程中向所述基站发送所述目标上行数据之前,所述方法还包括:
根据所述重复次数指示信息,从所述至少一个对应关系集合中确定目标对应关系集合;
根据所述目标传输块大小查询所述目标对应关系集合,得到与所述目标传输块大小对应的重复发送次数;
将与所述目标传输块大小对应的重复发送次数确定为所述目标重复发送次数。
可选的,所述至少一个对应关系集合是由所述基站通过高层信令向所述用户设备发送的。
可选的,所述对应关系集合包括第一对应关系和第二对应关系;
所述第一对应关系包括相互对应的第一传输块大小和第一重复发送次数,所述第二对应关系包括相互对应的第二传输块大小和次数指示信息,所述次数指示信息用于指示第二重复发送次数与所述第一重复发送次数的相对关系,所 述第二重复发送次数为所述第二传输块大小对应的重复发送次数。
可选的,所述重复次数指示信息用于指示第三重复发送次数,所述第三重复发送次数与第三传输块大小对应;所述基于目标重复发送次数,在随机接入的过程中向所述基站发送所述目标上行数据之前,所述方法还包括:
根据所述目标传输块大小、所述第三传输块大小和所述第三重复发送次数确定所述目标重复发送次数。
可选的,所述第三重复发送次数位于重复发送次数集合中,所述重复发送次数集合包括通信协议所支持的多个重复发送次数中的至少一个重复发送次数,所述重复发送次数集合是由所述基站通过高层信令向所述用户设备发送的。
可选的,所述根据所述目标传输块大小、所述第三传输块大小和所述第三重复发送次数确定所述目标重复发送次数,包括:
根据所述目标传输块大小和所述第三传输块大小的相对关系,确定第一相对关系,所述第一相对关系是所述目标重复发送次数和所述第三重复发送次数的相对关系;
根据所述第一相对关系以及所述第三重复发送次数确定所述目标重复发送次数。
可选的,所述根据所述目标传输块大小、所述第三传输块大小和所述第三重复发送次数确定所述目标重复发送次数,包括:
根据所述目标传输块大小和所述第三传输块大小的相对关系,确定第二相对关系,所述第二相对关系是参考重复发送次数和所述第三重复发送次数的相对关系;
根据所述第二相对关系和所述第三重复发送次数确定所述参考重复发送次数;
根据所述参考重复发送次数确定所述目标重复发送次数;
可选的,所述根据所述参考重复发送次数确定所述目标重复发送次数,包 括:
根据所述参考重复发送次数确定所述目标重复发送次数,其中,所述目标重复发送次数是目标数值集合中与所述参考重复发送次数的差值最小的数值,所述目标数值集合包括至少一个数值,所述目标数值集合包括的数值为第一预设数值的整数倍,或者,所述目标数值集合包括的数值为第二预设数值的整数幂。
可选的,所述根据所述参考重复发送次数确定所述目标重复发送次数,包括:
根据所述参考重复发送次数确定所述目标重复发送次数,其中,所述目标重复发送次数是通信协议所支持的重复发送次数中与所述参考重复发送次数的差值最小的重复发送次数。
可选的,所述重复次数指示信息携带于所述目标随机接入响应的上行调度授权中。
根据本公开实施例的第二方面,提供一种数据传输方法,包括:
接收用户设备发送的目标随机接入前导,所述目标随机接入前导用于指示用户设备需要在随机接入的过程中向所述基站发送目标上行数据;
基于所述目标随机接入前导向所述用户设备发送目标随机接入响应,所述目标随机接入响应携带重复次数指示信息,所述重复次数指示信息用于供所述用户设备根据所述重复次数指数信息和目标传输块大小确定目标重复发送次数,所述目标重复发送次数是所述用户设备在随机接入的过程中向所述基站重复发送所述目标上行数据的次数,所述目标传输块大小是所述用户设备在随机接入的过程中向所述基站发送所述目标上行数据所使用的传输块大小;
在随机接入的过程中,接收所述用户设备基于所述目标重复发送次数发送的所述目标上行数据。
可选的,所述重复次数指示信息用于指示所述用户设备从所述用户设备存储的至少一个对应关系集合中确定目标对应关系集合,所述目标对应关系集合 用于供所述用户设备根据所述目标传输块大小查询所述目标对应关系集合,得到与所述目标传输块大小对应的重复发送次数,并将与所述目标传输块大小对应的重复发送次数确定为所述目标重复发送次数;
其中,所述至少一个对应关系集合中的每个所述对应关系集合包括至少一个对应关系,所述对应关系为传输块大小与重复发送次数的对应关系。
可选的,所述至少一个对应关系集合是由所述基站通过高层信令向所述用户设备发送的。
可选的,所述对应关系集合包括第一对应关系和第二对应关系;
所述第一对应关系包括相互对应的第一传输块大小和第一重复发送次数,所述第二对应关系包括相互对应的第二传输块大小和次数指示信息,所述次数指示信息用于指示第二重复发送次数与所述第一重复发送次数的相对关系,所述第二重复发送次数为所述第二传输块大小对应的重复发送次数。
可选的,所述重复次数指示信息用于指示第三重复发送次数,所述第三重复发送次数与第三传输块大小对应,所述第三重复发送次数和所述第三传输块大小用于供所述用户设备根据所述目标传输块大小、所述第三传输块大小和所述第三重复发送次数确定所述目标重复发送次数。
可选的,所述第三重复发送次数位于重复发送次数集合中,所述重复发送次数集合包括通信协议所支持的多个重复发送次数中的至少一个重复发送次数,所述重复发送次数集合是由所述基站通过高层信令向所述用户设备发送的。
可选的,所述重复次数指示信息携带于所述目标随机接入响应的上行调度授权中。
根据本公开实施例的第三方面,提供一种数据传输装置,包括:
第一发送模块,用于向基站发送目标随机接入前导,所述目标随机接入前导用于指示用户设备需要在随机接入的过程中向所述基站发送目标上行数据;
接收模块,用于接收所述基站基于所述目标随机接入前导发送的目标随机 接入响应,所述目标随机接入响应携带重复次数指示信息;
第二发送模块,用于基于目标重复发送次数,在随机接入的过程中向所述基站发送所述目标上行数据;
其中,所述目标重复发送次数是所述用户设备在随机接入的过程中向所述基站重复发送所述目标上行数据的次数,所述目标重复发送次数是根据所述重复次数指示信息和目标传输块大小确定的,所述目标传输块大小是所述用户设备在随机接入的过程中向所述基站发送所述目标上行数据所使用的传输块大小。
可选的,所述用户设备中存储有至少一个对应关系集合,每个所述对应关系集合包括至少一个对应关系,所述对应关系为传输块大小与重复发送次数的对应关系;所述装置还包括第一次数确定模块,所述第一次数确定模块包括:
集合确定子模块,用于根据所述重复次数指示信息,从所述至少一个对应关系集合中确定目标对应关系集合;
查询子模块,用于根据所述目标传输块大小查询所述目标对应关系集合,得到与所述目标传输块大小对应的重复发送次数;
第一次数确定子模块,用于将与所述目标传输块大小对应的重复发送次数确定为所述目标重复发送次数。
可选的,所述至少一个对应关系集合是由所述基站通过高层信令向所述用户设备发送的。
可选的,所述对应关系集合包括第一对应关系和第二对应关系;
所述第一对应关系包括相互对应的第一传输块大小和第一重复发送次数,所述第二对应关系包括相互对应的第二传输块大小和次数指示信息,所述次数指示信息用于指示第二重复发送次数与所述第一重复发送次数的相对关系,所述第二重复发送次数为所述第二传输块大小对应的重复发送次数。
可选的,所述重复次数指示信息用于指示第三重复发送次数,所述第三重复发送次数与第三传输块大小对应;所述装置还包括第二次数确定模块,所述 第二次数确定模块用于:根据所述目标传输块大小、所述第三传输块大小和所述第三重复发送次数确定所述目标重复发送次数。
可选的,所述第三重复发送次数位于重复发送次数集合中,所述重复发送次数集合包括通信协议所支持的多个重复发送次数中的至少一个重复发送次数,所述重复发送次数集合是由所述基站通过高层信令向所述用户设备发送的。
可选的,所述第二次数确定模块,包括:
第一关系确定子模块,用于根据所述目标传输块大小和所述第三传输块大小的相对关系,确定第一相对关系,所述第一相对关系是所述目标重复发送次数和所述第三重复发送次数的相对关系;
第二次数确定子模块,用于根据所述第一相对关系以及所述第三重复发送次数确定所述目标重复发送次数。
可选的,所述第二次数确定模块,包括:
第二关系确定子模块,用于根据所述目标传输块大小和所述第三传输块大小的相对关系,确定第二相对关系,所述第二相对关系是参考重复发送次数和所述第三重复发送次数的相对关系;
第三次数确定子模块,用于根据所述第二相对关系和所述第三重复发送次数确定所述参考重复发送次数;
第四次数确定子模块,用于根据所述参考重复发送次数确定所述目标重复发送次数。
可选的,所述第四次数确定子模块,具体用于:根据所述参考重复发送次数确定所述目标重复发送次数,其中,所述目标重复发送次数是目标数值集合中与所述参考重复发送次数的差值最小的数值,所述目标数值集合包括至少一个数值,所述目标数值集合包括的数值为第一预设数值的整数倍,或者,所述目标数值集合包括的数值为第二预设数值的整数幂。
可选的,所述第四次数确定子模块,具体用于:根据所述参考重复发送次 数确定所述目标重复发送次数,其中,所述目标重复发送次数是通信协议所支持的重复发送次数中与所述参考重复发送次数的差值最小的重复发送次数。
可选的,所述重复次数指示信息携带于所述目标随机接入响应的上行调度授权中。
根据本公开实施例的第四方面,提供一种数据传输装置,包括:
第一接收模块,用于接收用户设备发送的目标随机接入前导,所述目标随机接入前导用于指示用户设备需要在随机接入的过程中向所述基站发送目标上行数据;
发送模块,用于基于所述目标随机接入前导向所述用户设备发送目标随机接入响应,所述目标随机接入响应携带重复次数指示信息,所述重复次数指示信息用于供所述用户设备根据所述重复次数指数信息和目标传输块大小确定目标重复发送次数,所述目标重复发送次数是所述用户设备在随机接入的过程中向所述基站重复发送所述目标上行数据的次数,所述目标传输块大小是所述用户设备在随机接入的过程中向所述基站发送所述目标上行数据所使用的传输块大小;
第二接收模块,用于在随机接入的过程中,接收所述用户设备基于所述目标重复发送次数发送的所述目标上行数据。
可选的,所述重复次数指示信息用于指示所述用户设备从所述用户设备存储的至少一个对应关系集合中确定目标对应关系集合,所述目标对应关系集合用于供所述用户设备根据所述目标传输块大小查询所述目标对应关系集合,得到与所述目标传输块大小对应的重复发送次数,并将与所述目标传输块大小对应的重复发送次数确定为所述目标重复发送次数;
其中,所述至少一个对应关系集合中的每个所述对应关系集合包括至少一个对应关系,所述对应关系为传输块大小与重复发送次数的对应关系。
可选的,所述至少一个对应关系集合是由所述基站通过高层信令向所述用户设备发送的。
可选的,所述对应关系集合包括第一对应关系和第二对应关系;
所述第一对应关系包括相互对应的第一传输块大小和第一重复发送次数,所述第二对应关系包括相互对应的第二传输块大小和次数指示信息,所述次数指示信息用于指示第二重复发送次数与所述第一重复发送次数的相对关系,所述第二重复发送次数为所述第二传输块大小对应的重复发送次数。
可选的,所述重复次数指示信息用于指示第三重复发送次数,所述第三重复发送次数与第三传输块大小对应,所述第三重复发送次数和所述第三传输块大小用于供所述用户设备根据所述目标传输块大小、所述第三传输块大小和所述第三重复发送次数确定所述目标重复发送次数。
可选的,所述第三重复发送次数位于重复发送次数集合中,所述重复发送次数集合包括通信协议所支持的多个重复发送次数中的至少一个重复发送次数,所述重复发送次数集合是由所述基站通过高层信令向所述用户设备发送的。
可选的,所述重复次数指示信息携带于所述目标随机接入响应的上行调度授权中。
根据本公开实施例的第五方面,提供一种用户设备,包括:
处理器;
用于存储处理器可执行的指令的存储器;
其中,所述处理器被配置为:
向基站发送目标随机接入前导,所述目标随机接入前导用于指示用户设备需要在随机接入的过程中向所述基站发送目标上行数据;
接收所述基站基于所述目标随机接入前导发送的目标随机接入响应,所述目标随机接入响应携带重复次数指示信息;
基于目标重复发送次数,在随机接入的过程中向所述基站发送所述目标上行数据;
其中,所述目标重复发送次数是所述用户设备在随机接入的过程中向所述 基站重复发送所述目标上行数据的次数,所述目标重复发送次数是根据所述重复次数指示信息和目标传输块大小确定的,所述目标传输块大小是所述用户设备在随机接入的过程中向所述基站发送所述目标上行数据所使用的传输块大小。
根据本公开实施例的第六方面,提供一种基站,包括:
处理器;
用于存储处理器可执行的指令的存储器;
其中,所述处理器被配置为:
接收用户设备发送的目标随机接入前导,所述目标随机接入前导用于指示用户设备需要在随机接入的过程中向所述基站发送目标上行数据;
基于所述目标随机接入前导向所述用户设备发送目标随机接入响应,所述目标随机接入响应携带重复次数指示信息,所述重复次数指示信息用于供所述用户设备根据所述重复次数指数信息和目标传输块大小确定目标重复发送次数,所述目标重复发送次数是所述用户设备在随机接入的过程中向所述基站重复发送所述目标上行数据的次数,所述目标传输块大小是所述用户设备在随机接入的过程中向所述基站发送所述目标上行数据所使用的传输块大小;
在随机接入的过程中,接收所述用户设备基于所述目标重复发送次数发送的所述目标上行数据。
根据本公开实施例的第七方面,提供一种数据传输系统,包括上述第三方面任一所述的数据传输装置和上述第四方面任一所述的数据传输装置。
根据本公开实施例的第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,存储的所述计算机程序被处理组件执行时能够实现上述第一方面任一所述的数据传输方法;或者,
存储的所述计算机程序被处理组件执行时能够实现上述第二方面任一所述的数据传输方法。
本公开实施例提供的技术方案至少可以包括以下有益效果:
通过接收基站发送的携带于目标随机接入响应中的重复次数指示信息,并基于目标重复发送次数,在随机接入的过程中向基站发送目标上行数据,其中,该目标重复发送次数是根据重复发送次数指示信息和目标传输块大小确定的,使得在EDT技术中,用户设备可以向基站重复发送目标上行数据,从而解决了EDT技术中用户设备如何向基站重复发送上行数据的问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种实施环境的示意图。
图2是根据一示例性实施例示出的一种数据传输方法的流程图。
图3是根据一示例性实施例示出的一种数据传输方法的流程图。
图4是根据一示例性实施例示出的一种数据传输方法的流程图。
图5是根据一示例性实施例示出的一种数据传输装置的框图。
图6是根据一示例性实施例示出的一种数据传输装置的框图。
图7是根据一示例性实施例示出的一种数据传输装置的框图。
图8是根据一示例性实施例示出的一种数据传输装置的框图。
图9是根据一示例性实施例示出的一种数据传输装置的框图。
图10是根据一示例性实施例示出的一种数据传输装置的框图。
图11是根据一示例性实施例示出的一种数据传输系统的框图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
窄带物联网(英文:narrow band Internet of things;简称:NB-IoT)以及机器类通信(英文:machine type communication;简称:MTC)是两种主要针对低功耗广覆盖(英文:low power wide area;简称:LPWA)类通信业务的物联网技术。
为了增强覆盖能力,NB-IoT和MTC中都引入了重复发送的机制,在重复发送的机制中,对于某一上行数据,用户设备(英文:User Equipment;简称:UE)需要向基站重复多次发送该上行数据。其中,覆盖能力通常可以使用最大耦合路损(英文:maximum coupling loss;简称:MCL)来进行表征,NB-IoT的MLC可以达到164db,MTC的MCL可以达到155.7db。
此外,为了减小传输时延,NB-IoT和MTC都可以支持数据提前传输(英文:early data transmission;简称:EDT)技术,在EDT技术中,UE可以在随机接入的过程中传输上行数据。
当前,如何在EDT技术中引入重复发送的机制,也即是,如何在EDT技术中使UE向基站重复发送上行数据已经成为了一个亟待解决的问题。
本公开实施例提供了一种数据传输方法,该数据传输方法可以解决EDT技术中UE如何向基站重复发送上行数据的问题,在该数据传输方法中,基站可以通过目标随机接入响应向UE发送重复次数指示信息,UE可以基于该重复次数指示信息和目标传输块大小(英文:transmission block size;简称:TBS)确定目标重复发送次数,其中,该目标重复发送次数即为UE向基站重复发送目标上行数据的次数,该目标上行数据是UE在随机接入过程中发送的上行数据,该目标TBS是UE向基站发送目标上行数据所使用的TBS,而后,UE可 以基于该目标重复发送次数在随机接入的过程中向基站发送目标上行数据,从而实现EDT技术中UE对上行数据的重复发送。
下面,将对本公开实施例提供的数据传输方法所涉及到的实施环境进行说明。
图1为本公开实施例提供的数据传输方法所涉及到的实施环境的示意图,如图1所示,该实施环境可以包括基站10和UE 20,其中,UE 20是基站10所服务的小区中的任意一个UE,基站10和UE 20可以基于NB-IoT通信协议或MTC通信协议进行数据传输。
图2是根据一示例性实施例示出的一种数据传输方法的流程图,如图2所示,该数据传输方法用于图1所示的UE 20中,该数据传输方法包括以下步骤。
步骤201、UE向基站发送目标随机接入前导。
该目标随机接入前导用于指示UE需要在随机接入的过程中向基站发送目标上行数据,换句话说,该目标随机接入前导用于指示UE需要利用EDT技术向基站发送目标上行数据。
步骤202、UE接收基站基于目标随机接入前导发送的目标随机接入响应,该目标随机接入响应携带重复次数指示信息。
步骤203、UE基于目标重复发送次数,在随机接入的过程中向基站发送目标上行数据。
其中,目标重复发送次数是UE在随机接入的过程中向基站重复发送目标上行数据的次数,目标重复发送次数是UE根据重复次数指示信息和目标TBS确定的,该目标TBS是UE在随机接入的过程中向基站发送目标上行数据所使用的TBS。
综上所述,本公开实施例提供的数据传输方法,通过接收基站发送的携带于目标随机接入响应中的重复次数指示信息,并基于目标重复发送次数,在随 机接入的过程中向基站发送目标上行数据,其中,该目标重复发送次数是根据重复发送次数指示信息和目标传输块大小确定的,使得在EDT技术中,用户设备可以向基站重复发送目标上行数据,从而解决了EDT技术中用户设备如何向基站重复发送上行数据的问题。
图3是根据一示例性实施例示出的一种数据传输方法的流程图,如图3所示,该数据传输方法用于图1所示的基站10中,该数据传输方法包括以下步骤。
步骤301、基站接收UE发送的目标随机接入前导。
该目标随机接入前导用于指示UE需要在随机接入的过程中向基站发送目标上行数据,换句话说,该目标随机接入前导用于指示UE需要利用EDT技术向基站发送目标上行数据。
步骤302、基站基于目标随机接入前导向UE发送目标随机接入响应,该目标随机接入响应携带重复次数指示信息。
其中,该重复次数指示信息用于供UE根据该重复次数指数信息和目标TBS确定目标重复发送次数,该目标重复发送次数是UE在随机接入的过程中向基站重复发送目标上行数据的次数,该目标TBS是UE在随机接入的过程中向基站发送目标上行数据所使用的TBS。
步骤303、在随机接入的过程中,基站接收UE基于目标重复发送次数发送的目标上行数据。
综上所述,本公开实施例提供的数据传输方法,通过向用户设备发送携带于目标随机接入响应中的重复次数指示信息,从而使用户设备能够基于目标重复发送次数,在随机接入的过程中向基站发送目标上行数据,其中,该目标重复发送次数是用户设备根据重复发送次数指示信息和目标传输块大小确定的,这样,在EDT技术中,用户设备就可以向基站重复发送目标上行数据,从而解决了EDT技术中用户设备如何向基站重复发送上行数据的问题。
图4是根据一示例性实施例示出的一种数据传输方法的流程图,如图4所示,该数据传输方法用于图1所示的实施环境中,该数据传输方法包括以下步骤。
步骤401、基站广播当前随机接入过程所能传输的最大数据包大小。
在EDT技术中,基站可以根据当前网络的覆盖能力,从通信协议所支持的最大EDT数据包集合中选择一个元素作为当前EDT所支持的最大数据包大小(也即是上文所述的当前随机接入过程所能传输的最大数据包大小),其中,最大EDT数据包集合包括通信协议所支持的至少一个最大数据包大小。而后,基站可以通过广播的方式向该基站所服务的小区中的UE发送该当前随机接入过程所能传输的最大数据包大小。其中,当前随机接入过程所能传输的最大数据包大小指的是:当前,UE在随机接入过程中能够向基站发送的最大数据量的大小。上述通信协议可以为NB-IoT通信协议或MTC通信协议。
实际实现时,基站选择的最大数据包大小可以与当前网络的覆盖能力正相关,也即是,当前网络的覆盖能力越强,基站选择的最大数据包大小可以越大。通常情况下,通信协议所支持的最大数据包大小可以包括1000bits(中文:比特)、936bits、808bits、680bits、584bits、504bits、408bits和328bits等。
基站除了可以广播当前随机接入过程所能传输的最大数据包大小之外,还可以广播目标上行资源的时频位置,其中,该目标上行资源位于随机接入信道中,该目标上行资源能够承载用于申请在随机接入过程中发送上行数据的随机接入前导(英文:preamble)。
需要指出的是,通常情况下,随机接入前导也可以被称为随机接入过程中的信息1(英文:message 1)。在NB-IoT通信协议中,随机接入信道通常可以被称为NB-IoT物理随机接入信道(英文:Narrow band IoT physical random access channel;简称:NPRACH)。
步骤402、当UE所需传输的数据包的大小不大于当前随机接入过程所能 传输的最大数据包大小时,UE向基站发送目标随机接入前导。
在接收到基站广播的当前随机接入过程所能传输的最大数据包大小之后,UE可以判断自身所需传输的数据包的大小是否大于该当前随机接入过程所能传输的最大数据包大小。
当UE所需传输的数据包的大小大于该当前随机接入过程所能传输的最大数据包大小时,说明UE无法在随机接入过程中发送自身所需传输的数据包。在这种情况下,UE可以进行传统的随机接入,并在随机接入成功之后,向基站发送该UE所需传输的数据包。
当UE所需传输的数据包的大小不大于该当前随机接入过程所能传输的最大数据包大小时,说明UE可以在随机接入过程中发送自身所需传输的数据包。在这种情况下,UE可以基于基站广播的目标上行资源的时频位置确定目标上行资源,并通过该目标上行资源向基站发送目标随机接入前导,其中,该目标随机接入前导用于向基站申请在随机接入过程中发送目标上行数据,换句话说,该目标随机接入前导用于指示UE需要在随机接入的过程中向基站发送目标上行数据,这里所谓的目标上行数据指的就是上文所述的UE所需传输的数据包。
步骤403、在接收到UE发送的目标随机接入前导后,基站基于目标随机接入前导向UE发送目标随机接入响应,该目标随机接入响应携带重复次数指示信息。
在上述目标上行资源上接收到目标随机接入前导后,基站可以确定UE需要在随机接入的过程中发送目标上行数据,在这种情况下,基站可以向UE发送目标随机接入响应(英文:Random Access Response;简称:RAR),该目标随机接入响应可以携带重复次数指示信息,在本公开的一个实施例中,该目标随机接入响应还可以携带上行资源指示信息。需要指出的是,通常情况下,随机接入响应也可以被称为随机接入过程中的信息2(英文:message 2)。
该上行资源指示信息可以指示基站为UE分配的传输单个目标上行数据所 能使用的上行资源的大小,该上行资源的大小可以由资源单位(英文:resource unit;简称:RU)的个数进行表征。在本公开的一个实施例中,该上行资源指示信息可以携带于目标随机接入响应的上行调度授权(英文:UL grant)中,可选的,该上行资源指示信息可以占据上行调度授权中的调制编码方式域(英文:modulation and coding scheme field)中的3个比特位。
表1为在当前随机接入过程所能传输的最大数据包大小为1000bits时,本公开实施例提供的一种示例性的上行资源指示信息与资源单位(英文:resource unit,简称RU)个数的对应关系。
表1
Figure PCTCN2018086385-appb-000001
如表1所示,在当前随机接入过程所能传输的最大数据包大小为1000bits的情况下,当上行资源指示信息为“011”时,说明基站为UE分配的传输单个目标上行数据所能使用的上行资源为3个RU。
在本公开的一个实施例中,上述重复次数指示信息也可以携带于目标随机接入响应的上行调度授权中,UE可以根据该重复次数指示信息确定UE在随机接入过程中向基站重复发送目标上行数据的次数,其中,UE确定在随机接入过程中向基站重复发送目标上行数据的次数的方式将在下述步骤中进行说明。
步骤404、在接收到基站发送的目标随机接入响应后,UE确定目标TBS。
目标TBS是UE在随机接入过程中向基站发送目标上行数据所使用的TBS。
在接收到基站发送的目标随机接入响应后,UE确定基站允许自身在随机接入的过程中发送目标上行数据。在这种情况下,UE可以根据自身所需传输的数据包的大小(也即是目标上行数据的大小)确定目标TBS,可选的,目标TBS是UE可用的TBS中大于UE所需传输的数据包的大小,且与UE所需传输的数据包的大小相差最小的TBS,例如,在当前随机接入过程所能传输的最大数据包大小为1000bits的情况下,UE可用的TBS共有4个,分别为328bits、536bits、776bits和1000bits,若UE所需传输的数据包的大小为500bits,UE可以将536bits确定为目标TBS。
可选的,UE可以根据基站广播的当前随机接入过程所能传输的最大数据包大小(也即是当前EDT所支持的最大数据包大小)确定UE可用的TBS。表2为本公开实施例提供的一种最大数据包大小与UE可用的TBS的对应关系表。
表2
Figure PCTCN2018086385-appb-000002
在确定了目标TBS之后,UE可以根据上行资源指示信息所指示的RU个数以及目标TBS确定目标上行数据的调制编码方式。通常情况下,在不同的调制编码方式下,每个RU所能承载的数据量的大小不同,例如,当上行资源指示信息所指示的RU个数为4时,也即是,基站为UE分配的传输单个目标上行数据所能使用的上行资源为4个RU时,若UE确定的目标TBS为328bits,则UE可以根据该4个RU以及328bits选择一种调制编码方式,在该调制编码方式下,1个RU所能平均承载的数据量可以为82bits,若UE确定的目标TBS 为1000bits时,UE可以根据该4个RU以及1000bits选择另一种调制编码方式,在该调制编码方式下,1个RU所能平均承载的数据量可以为250bits。
可选的,目标上行数据的调制编码方式可以为正交相移键控(英文:Quadrature Phase Shift Keyin;简称:QPSK)、正交幅度调制(英文:16 Quadrature Amplitude Modulation;简称:16QAM)和相正交振幅调制(英文:64 Quadrature Amplitude Modulation;简称:64QAM)等,本公开实施例对其不做具体限定。
步骤405、UE基于重复次数指示信息和目标TBS确定目标重复发送次数。
目标重复发送次数指的是UE在随机接入过程中向基站重复发送目标上行数据的次数。
通常情况下,在相同的信道条件和资源分配量的情况下,目标重复发送次数受到目标TBS的影响,且与目标TBS正相关,也即是,目标TBS越大,目标重复发送次数也越大,这是因为,目标TBS越大,UE向基站发送目标上行数据的码率也就越大,而在码率较大的情况下,UE需要向基站重复较多次发送该目标上行数据才可以保证基站能够正确接收到该目标上行数据。此外,目标重复发送次数还受到当前信道质量的影响,且与当前信道质量负相关,也即是,当前信道质量越好,目标重复发送次数越小,这是因为,当前信道质量越好,UE向基站重复越少次数发送该目标上行数据就可以保证基站能够正确接收到该目标上行数据。
由于目标重复发送次数不仅受到目标TBS的影响,还受到当前信道质量的影响,同时,由于在向UE发送目标随机接入响应时,基站无法预知UE所需传输的数据包的大小,也即是基站无法预知UE选择的目标TBS,因此,一方面,UE无法单独根据目标TBS确定目标重复发送次数,另一方面,基站无法通过重复次数指示信息直接指示目标重复发送次数,故而,在本公开的实施例中,UE需要根据重复次数指示信息和目标TBS确定目标重复发送次数,其中,重复次数指示信息可以由基站根据当前信道质量生成。
本公开实施例提供了两种示例性的UE根据重复次数指示信息和目标TBS 确定目标重复发送次数的方式,其中:
第一种方式,UE根据重复次数指示信息,从UE存储的至少一个对应关系集合中确定目标对应关系集合,而后,UE根据目标TBS查询目标对应关系集合,得到与目标TBS对应的重复发送次数,UE将该与目标TBS对应的重复发送次数确定为目标重复发送次数。
在这种方式中,基站可以预先通过高层信令向UE发送至少一个对应关系集合,其中,每个对应关系集合可以包括至少一个对应关系,该对应关系为TBS与重复发送次数的对应关系。
表3示出了基站通过高层信令向UE下发的4个示例性的对应关系集合。
表3
Figure PCTCN2018086385-appb-000003
由表3可知,对应关系集合1包括4个对应关系,该4个对应关系分别为TBS1—rep_11,TBS2—rep_21,TBS3—rep_31和TBS4—rep_41,其中,TBS1—rep_11为TBS1与重复发送次数rep_11的对应关系,其他对应关系与其同理,本公开实施例在此不再赘述。
在实际实现时,基站向UE下发的对应关系集合可以包括第一对应关系和第二对应关系,其中,第一对应关系包括相互对应的第一TBS和第一重复发送次数,第二对应关系包括相互对应的第二TBS和次数指示信息,该次数指示信息用于指示第二重复发送次数与第一重复发送次数的相对关系,其中,该第二重复发送次数为第二TBS对应的重复发送次数。可选的,第二重复发送次数与第一重复发送次数的相对关系指的是:第二重复发送次数与第一重复发送次数的差值。
例如,在上述表2的对应关系集合1包括的4个对应关系中,TBS1—rep_11可以是第一对应关系,TBS2—rep_21,TBS3—rep_31和TBS4—rep_41可以是第二对应关系,其中,第一对应关系中的rep_11是TBS1对应的重复发送次数,该rep_11是一个绝对的数值,而第二对应关系中的rep_21、rep_31和rep_41是次数指示信息,其指示的分别是TBS2对应的重复发送次数相较于rep_11的差值、TBS3对应的重复发送次数相较于rep_11的差值和TBS4对应的重复发送次数相较于rep_11的差值。
在接收到基站通过高层信令发送的至少一个对应关系集合之后,UE可以将该至少一个对应关系集合存储至UE本地。
在接收到UE发送的目标随机接入前导之后,基站可以根据当前信道质量生成重复次数指示信息,并通过目标随机接入响应向UE发送该重复次数指示信息,该重复次数指示信息可以指示该至少一个对应关系集合中的一个对应关系集合(也即是目标对应关系集合)。
UE在接收到目标随机接入响应后,可以从该目标随机接入响应中提取该重复次数指示信息,而后,UE可以根据该重复次数指示信息确定目标对应关系集合,并根据目标TBS查询该目标对应关系集合,得到与目标TBS对应的重复发送次数,UE可以将该重复发送次数确定为目标重复发送次数。
例如,基站通过目标随机接入响应发送的重复次数指示信息所指示的目标对应关系集合为表2所示的对应关系集合1,UE确定的目标TBS为TBS1,则UE可以根据TBS1查询对应关系集合1,得到与TBS1对应的重复发送次数为rep_11,而后,UE可以将该rep_11确定为目标重复发送次数。
第二种方式,重复次数指示信息可以指示第三重复发送次数,其中,第三重复发送次数与第三TBS对应,UE可以根据目标TBS、第三TBS和第三重复发送次数确定目标重复发送次数。
在这种方式中,基站可以根据当前信道质量确定重复发送次数集合,该重复发送次数集合包括通信协议所支持的多个重复发送次数中的至少一个重复 发送次数,该重复发送次数集合还可以包括该至少一个重复发送次数分别对应的TBS,而后,基站可以通过高层信令向UE发送该重复发送次数集合。UE在接收到该重复发送次数集合后,可以将该重复发送次数集合存储至UE本地。
在接收到UE发送的目标随机接入前导后,基站可以从该重复发送次数集合中选择一个重复发送次数(也即是第三重复发送次数),可选的,基站选择的重复发送次数可以是该重复发送次数集合中最小的重复发送次数,或者,基站选择的重复发送次数可以是该重复发送集合中最大的重复发送次数。
而后,基站可以生成用于指示该选择的重复发送次数(也即是第三重复发送次数)的重复次数指示信息,并通过目标随机接入响应向UE发送该重复次数指示信息。
UE在接收到目标随机接入响应后,可以从该目标随机接入响应中提取该重复次数指示信息,而后,UE可以根据目标TBS、第三TBS和第三重复发送次数确定目标重复发送次数。
本公开实施例提供了两种可能的UE根据目标TBS、第三TBS和第三重复发送次数确定目标重复发送次数的实现方式,其中:
在第一种可能的实现方式中,UE可以根据目标TBS和第三TBS的相对关系,确定第一相对关系,该第一相对关系是目标重复发送次数和第三重复发送次数的相对关系,而后,UE可以根据第一相对关系以及第三重复发送次数确定目标重复发送次数。
可选的,目标TBS和第三TBS的相对关系指的可以是目标TBS和第三TBS的比例关系,该第一相对关系指的可以是目标重复发送次数和第三重复发送次数的比例关系。
在这种实现方式中,UE可以根据第一公式计算目标重复发送次数,其中,第一公式为:
rep_y=ceil[rep_x*(TBS_y/TBS_x)];
rep_y是目标重复发送次数,ceil是向上取整运算符,rep_x是第三重复发 送次数,TBS_y是目标TBS,TBS_x是第三TBS。
在第二种可能的实现方式中,UE可以根据目标TBS和第三TBS的相对关系,确定第二相对关系,该第二相对关系是参考重复发送次数和第三重复发送次数的相对关系,而后,UE可以根据第二相对关系和第三重复发送次数确定参考重复发送次数,并根据参考重复发送次数确定目标重复发送次数。
可选的,目标TBS和第三TBS的相对关系指的可以是目标TBS和第三TBS的比例关系,该第二相对关系指的可以是参考重复发送次数和第三重复发送次数的比例关系。
在这种实现方式中,UE可以根据第二公式计算参考重复发送次数,其中,第二公式为:
rep_z=ceil[rep_x*(TBS_y/TBS_x)];
rep_z是参考重复发送次数,ceil是向上取整运算符,rep_x是第三重复发送次数,TBS_y是目标TBS,TBS_x是第三TBS。
本公开实施例提供了两种可能的UE根据参考重复发送次数确定目标重复发送次数的实现方式,其中:
在第一种可能的实现方式中,UE根据参考重复发送次数确定目标重复发送次数,其中,该目标重复发送次数是目标数值集合中与参考重复发送次数的差值最小的数值,该目标数值集合包括至少一个数值,该目标数值集合包括的数值为第一预设数值的整数倍,或者,该目标数值集合包括的数值为第二预设数值的整数幂。
可选的,该第一预设数值和该第二预设数值可以相同,也可以不相同,在本公开的一个实施例中,该第一预设数值和该第二预设数值可以均为2。
在第二种可能的实现方式中,UE根据参考重复发送次数确定目标重复发送次数,其中,该目标重复发送次数是通信协议所支持的重复发送次数中与参考重复发送次数的差值最小的重复发送次数。
步骤406、UE基于目标重复发送次数,在随机接入的过程中向基站发送 目标上行数据。
在EDT技术中,UE可以在随机接入过程的信息3(英文:message 3)中向基站发送目标上行数据。
UE可以利用自身基于上行资源指示信息所指示的RU个数以及目标TBS确定的调制编码方式对目标上行数据进行调制编码,而后,UE可以向基站重复发送该经过调制编码的目标上行数据,其中,UE向基站重复发送该经过调制编码的目标上行数据的次数为目标重复发送次数。
步骤407、在随机接入的过程中,基站接收UE基于目标重复发送次数发送的目标上行数据。
由于基站无法预知UE选择的目标TBS,因此,在步骤407中,基站可以利用可用的TBS依次对承载有目标上行数据的上行资源进行检测,直至获取能够正确接收该目标上行数据的TBS,该TBS即为目标TBS。
基站可以根据该目标TBS和重复次数指示信息确定目标重复发送次数,并基于该目标重复发送次数接收UE发送的目标上行数据。
综上所述,本公开实施例提供的数据传输方法,通过接收基站发送的携带于目标随机接入响应中的重复次数指示信息,并基于目标重复发送次数,在随机接入的过程中向基站发送目标上行数据,其中,该目标重复发送次数是根据重复发送次数指示信息和目标传输块大小确定的,使得在EDT技术中,用户设备可以向基站重复发送目标上行数据,从而解决了EDT技术中用户设备如何向基站重复发送上行数据的问题。
图5是根据一示例性实施例示出的一种数据传输装置500的框图,该数据传输装置500可以设置于图1所示的UE 20中。参照图5,该数据传输装置500包括第一发送模块501、接收模块502和第二发送模块503。
该第一发送模块501,用于向基站发送目标随机接入前导,该目标随机接入前导用于指示UE需要在随机接入的过程中向该基站发送目标上行数据。
该接收模块502,用于接收该基站基于该目标随机接入前导发送的目标随机接入响应,该目标随机接入响应携带重复次数指示信息。
该第二发送模块503,用于基于目标重复发送次数,在随机接入的过程中向该基站发送该目标上行数据。
其中,该目标重复发送次数是该UE在随机接入的过程中向该基站重复发送该目标上行数据的次数,该目标重复发送次数是根据该重复次数指示信息和目标TBS确定的,该目标TBS是该UE在随机接入的过程中向该基站发送该目标上行数据所使用的TBS。
在本公开的一个实施例中,该重复次数指示信息携带于该目标随机接入响应的上行调度授权中。
如图6所示,本公开实施例还提供了另一种数据传输装置600,该数据传输装置600除了包括数据传输装置500包括的模块外,还包括第一次数确定模块504。
如图7所示,本公开实施例还提供了另一种数据传输装置700,该数据传输装置700除了包括数据传输装置500包括的模块外,还包括第二次数确定模块505。
当然,本公开实施例提供的数据传输装置除了包括数据传输装置500包括的模块外,还可以同时包括第一次数确定模块504和第二次数确定模块505。
在本公开的一个实施例中,该UE中存储有至少一个对应关系集合,每个对应关系集合包括至少一个对应关系,该对应关系为TBS与重复发送次数的对应关系。该第一次数确定模块504包括:
集合确定子模块,用于根据该重复次数指示信息,从该至少一个对应关系集合中确定目标对应关系集合;
查询子模块,用于根据该目标TBS查询该目标对应关系集合,得到与该目标TBS对应的重复发送次数;
第一次数确定子模块,用于将与该目标TBS对应的重复发送次数确定为 该目标重复发送次数。
在本公开的一个实施例中,该至少一个对应关系集合是由该基站通过高层信令向该UE发送的。
在本公开的一个实施例中,该对应关系集合包括第一对应关系和第二对应关系;该第一对应关系包括相互对应的第一TBS和第一重复发送次数,该第二对应关系包括相互对应的第二TBS和次数指示信息,该次数指示信息用于指示第二重复发送次数与该第一重复发送次数的相对关系,该第二重复发送次数为该第二TBS对应的重复发送次数。
在本公开的一个实施例中,该重复次数指示信息用于指示第三重复发送次数,该第三重复发送次数与第三TBS对应。该第二次数确定模块505用于:根据该目标TBS、该第三TBS和该第三重复发送次数确定该目标重复发送次数。
在本公开的一个实施例中,该第三重复发送次数位于重复发送次数集合中,该重复发送次数集合包括通信协议所支持的多个重复发送次数中的至少一个重复发送次数,该重复发送次数集合是由该基站通过高层信令向该UE发送的。
在本公开的一个实施例中,该第二次数确定模块505,包括:
第一关系确定子模块,用于根据该目标TBS和该第三TBS的相对关系,确定第一相对关系,该第一相对关系是该目标重复发送次数和该第三重复发送次数的相对关系;
第二次数确定子模块,用于根据该第一相对关系以及该第三重复发送次数确定该目标重复发送次数。
在本公开的一个实施例中,该第二次数确定模块505,包括:
第二关系确定子模块,用于根据该目标TBS和该第三TBS的相对关系,确定第二相对关系,该第二相对关系是参考重复发送次数和该第三重复发送次数的相对关系;
第三次数确定子模块,用于根据该第二相对关系和该第三重复发送次数确定该参考重复发送次数;
第四次数确定子模块,用于根据该参考重复发送次数确定该目标重复发送次数。
在本公开的一个实施例中,该第四次数确定子模块,具体用于:根据该参考重复发送次数确定该目标重复发送次数,其中,该目标重复发送次数是目标数值集合中与该参考重复发送次数的差值最小的数值,该目标数值集合包括至少一个数值,该目标数值集合包括的数值为第一预设数值的整数倍,或者,该目标数值集合包括的数值为第二预设数值的整数幂。
在本公开的一个实施例中,该第四次数确定子模块,具体用于:根据该参考重复发送次数确定该目标重复发送次数,其中,该目标重复发送次数是通信协议所支持的重复发送次数中与该参考重复发送次数的差值最小的重复发送次数。
综上所述,本公开实施例提供的数据传输装置,通过接收基站发送的携带于目标随机接入响应中的重复次数指示信息,并基于目标重复发送次数,在随机接入的过程中向基站发送目标上行数据,其中,该目标重复发送次数是根据重复发送次数指示信息和目标传输块大小确定的,使得在EDT技术中,用户设备可以向基站重复发送目标上行数据,从而解决了EDT技术中用户设备如何向基站重复发送上行数据的问题。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图8是根据一示例性实施例示出的一种数据传输装置800的框图,该数据传输装置800可以设置于图1所示的基站10中。参照图8,该数据传输装置800包括第一接收模块701、发送模块702和第二接收模块703。
该第一接收模块701,用于接收UE发送的目标随机接入前导,该目标随 机接入前导用于指示UE需要在随机接入的过程中向该基站发送目标上行数据。
该发送模块702,用于基于该目标随机接入前导向该UE发送目标随机接入响应,该目标随机接入响应携带重复次数指示信息,该重复次数指示信息用于供该UE根据该重复次数指数信息和目标TBS确定目标重复发送次数,该目标重复发送次数是该UE在随机接入的过程中向该基站重复发送该目标上行数据的次数,该目标TBS是该UE在随机接入的过程中向该基站发送该目标上行数据所使用的TBS。
该第二接收模块703,用于在随机接入的过程中,接收该UE基于该目标重复发送次数发送的该目标上行数据。
在本公开的一个实施例中,该重复次数指示信息用于指示该UE从该UE存储的至少一个对应关系集合中确定目标对应关系集合,该目标对应关系集合用于供该UE根据该目标TBS查询该目标对应关系集合,得到与该目标TBS对应的重复发送次数,并将与该目标TBS对应的重复发送次数确定为该目标重复发送次数;
其中,该至少一个对应关系集合中的每个对应关系集合包括至少一个对应关系,该对应关系为TBS与重复发送次数的对应关系。
在本公开的一个实施例中,该至少一个对应关系集合是由该基站通过高层信令向该UE发送的。
在本公开的一个实施例中,该对应关系集合包括第一对应关系和第二对应关系;该第一对应关系包括相互对应的第一TBS和第一重复发送次数,该第二对应关系包括相互对应的第二TBS和次数指示信息,该次数指示信息用于指示第二重复发送次数与该第一重复发送次数的相对关系,该第二重复发送次数为该第二TBS对应的重复发送次数。
在本公开的一个实施例中,该重复次数指示信息用于指示第三重复发送次数,该第三重复发送次数与第三TBS对应,该第三重复发送次数和该第三TBS 用于供该UE根据该目标TBS、该第三TBS和该第三重复发送次数确定该目标重复发送次数。
在本公开的一个实施例中,该第三重复发送次数位于重复发送次数集合中,该重复发送次数集合包括通信协议所支持的多个重复发送次数中的至少一个重复发送次数,该重复发送次数集合是由该基站通过高层信令向该UE发送的。
在本公开的一个实施例中,该重复次数指示信息携带于该目标随机接入响应的上行调度授权中。
综上所述,本公开实施例提供的数据传输装置,通过向用户设备发送携带于目标随机接入响应中的重复次数指示信息,从而使用户设备能够基于目标重复发送次数,在随机接入的过程中向基站发送目标上行数据,其中,该目标重复发送次数是用户设备根据重复发送次数指示信息和目标传输块大小确定的,这样,在EDT技术中,用户设备就可以向基站重复发送目标上行数据,从而解决了EDT技术中用户设备如何向基站重复发送上行数据的问题。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图9是根据一示例性实施例示出的一种数据传输装置900的框图。例如,装置900可以是智慧电表、共享单车、智慧电视、智慧空调、智慧温度采集装置或者智慧湿度采集组件等能够基于NB-IoT或MTC进行物联网通信的终端。
参照图9,装置900可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置900的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法实施例中UE20所执行的全部或 部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置900的操作。这些数据的示例包括用于在装置900上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为装置900的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为装置900生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置900和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置900处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置900处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被 进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置900提供各个方面的状态评估。例如,传感器组件814可以检测到装置900的打开/关闭状态,组件的相对定位,例如所述组件为装置900的显示器和小键盘,传感器组件814还可以检测装置900或装置900一个组件的位置改变,用户与装置900接触的存在或不存在,装置900方位或加速/减速和装置900的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置900和其他设备之间有线或无线方式的通信。装置900可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信部件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信部件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置900可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法实施例中UE20所执行的技术过程。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介 质,例如包括指令的存储器804,上述指令可由装置900的处理器820执行以完成上述方法实施例中UE20所执行的技术过程。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图10是根据一示例性实施例示出的一种数据传输装置1000的框图。例如,数据传输装置1000可以是基站。如图10所示,数据传输装置1000可以包括:处理器901、接收机902、发射机903和存储器904。接收机902、发射机903和存储器904分别通过总线与处理器901连接。
其中,处理器901包括一个或者一个以上处理核心,处理器901通过运行软件程序以及模块以执行本公开实施例提供的数据传输方法中基站所执行的方法。存储器904可用于存储软件程序以及模块。具体的,存储器904可存储操作系统9041、至少一个功能所需的应用程序模块9042。接收机902用于接收其他设备发送的通信数据,发射机903用于向其他设备发送通信数据。
图11是根据一示例性实施例示出的一种数据传输系统1100的框图,如图11所示,该数据传输系统1100包括基站1001和UE 1002。
其中,基站1001用于执行图4所示实施例中基站所执行的数据传输方法。
UE 1002用于执行图4所示实施例中UE所执行的数据传输方法。
在示例性实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质为非易失性的计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,存储的计算机程序被处理组件执行时能够实现本公开上述实施例提供的数据传输方法。
本公开实施例还提供了一种计算机程序产品,该计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机能够执行本公开实施例提供的数据 传输方法。
本公开实施例还提供了一种芯片,该芯片包括可编程逻辑电路和/或程序指令,当该芯片运行时能够执行本公开实施例提供的数据传输方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (24)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    向基站发送目标随机接入前导,所述目标随机接入前导用于指示用户设备需要在随机接入的过程中向所述基站发送目标上行数据;
    接收所述基站基于所述目标随机接入前导发送的目标随机接入响应,所述目标随机接入响应携带重复次数指示信息;
    基于目标重复发送次数,在随机接入的过程中向所述基站发送所述目标上行数据;
    其中,所述目标重复发送次数是所述用户设备在随机接入的过程中向所述基站重复发送所述目标上行数据的次数,所述目标重复发送次数是根据所述重复次数指示信息和目标传输块大小确定的,所述目标传输块大小是所述用户设备在随机接入的过程中向所述基站发送所述目标上行数据所使用的传输块大小。
  2. 根据权利要求1所述的方法,其特征在于,所述用户设备中存储有至少一个对应关系集合,每个所述对应关系集合包括至少一个对应关系,所述对应关系为传输块大小与重复发送次数的对应关系;所述基于目标重复发送次数,在随机接入的过程中向所述基站发送所述目标上行数据之前,所述方法还包括:
    根据所述重复次数指示信息,从所述至少一个对应关系集合中确定目标对应关系集合;
    根据所述目标传输块大小查询所述目标对应关系集合,得到与所述目标传输块大小对应的重复发送次数;
    将与所述目标传输块大小对应的重复发送次数确定为所述目标重复发送次数。
  3. 根据权利要求2所述的方法,其特征在于,所述至少一个对应关系集合是由所述基站通过高层信令向所述用户设备发送的。
  4. 根据权利要求2所述的方法,其特征在于,所述对应关系集合包括第一对应关系和第二对应关系;
    所述第一对应关系包括相互对应的第一传输块大小和第一重复发送次数,所述第二对应关系包括相互对应的第二传输块大小和次数指示信息,所述次数指示信息用于指示第二重复发送次数与所述第一重复发送次数的相对关系,所述第二重复发送次数为所述第二传输块大小对应的重复发送次数。
  5. 根据权利要求1所述的方法,其特征在于,所述重复次数指示信息用于指示第三重复发送次数,所述第三重复发送次数与第三传输块大小对应;所述基于目标重复发送次数,在随机接入的过程中向所述基站发送所述目标上行数据之前,所述方法还包括:
    根据所述目标传输块大小、所述第三传输块大小和所述第三重复发送次数确定所述目标重复发送次数。
  6. 根据权利要求5所述的方法,其特征在于,所述第三重复发送次数位于重复发送次数集合中,所述重复发送次数集合包括通信协议所支持的多个重复发送次数中的至少一个重复发送次数,所述重复发送次数集合是由所述基站通过高层信令向所述用户设备发送的。
  7. 根据权利要求5所述的方法,其特征在于,所述根据所述目标传输块大小、所述第三传输块大小和所述第三重复发送次数确定所述目标重复发送次数,包括:
    根据所述目标传输块大小和所述第三传输块大小的相对关系,确定第一相对关系,所述第一相对关系是所述目标重复发送次数和所述第三重复发送次数 的相对关系;
    根据所述第一相对关系以及所述第三重复发送次数确定所述目标重复发送次数。
  8. 根据权利要求5所述的方法,其特征在于,所述根据所述目标传输块大小、所述第三传输块大小和所述第三重复发送次数确定所述目标重复发送次数,包括:
    根据所述目标传输块大小和所述第三传输块大小的相对关系,确定第二相对关系,所述第二相对关系是参考重复发送次数和所述第三重复发送次数的相对关系;
    根据所述第二相对关系和所述第三重复发送次数确定所述参考重复发送次数;
    根据所述参考重复发送次数确定所述目标重复发送次数。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述参考重复发送次数确定所述目标重复发送次数,包括:
    根据所述参考重复发送次数确定所述目标重复发送次数,其中,所述目标重复发送次数是目标数值集合中与所述参考重复发送次数的差值最小的数值,所述目标数值集合包括至少一个数值,所述目标数值集合包括的数值为第一预设数值的整数倍,或者,所述目标数值集合包括的数值为第二预设数值的整数幂。
  10. 根据权利要求8所述的方法,其特征在于,所述根据所述参考重复发送次数确定所述目标重复发送次数,包括:
    根据所述参考重复发送次数确定所述目标重复发送次数,其中,所述目标重复发送次数是通信协议所支持的重复发送次数中与所述参考重复发送次数的 差值最小的重复发送次数。
  11. 根据权利要求1至10任一所述的方法,其特征在于,所述重复次数指示信息携带于所述目标随机接入响应的上行调度授权中。
  12. 一种数据传输方法,其特征在于,所述方法包括:
    接收用户设备发送的目标随机接入前导,所述目标随机接入前导用于指示用户设备需要在随机接入的过程中向所述基站发送目标上行数据;
    基于所述目标随机接入前导向所述用户设备发送目标随机接入响应,所述目标随机接入响应携带重复次数指示信息,所述重复次数指示信息用于供所述用户设备根据所述重复次数指数信息和目标传输块大小确定目标重复发送次数,所述目标重复发送次数是所述用户设备在随机接入的过程中向所述基站重复发送所述目标上行数据的次数,所述目标传输块大小是所述用户设备在随机接入的过程中向所述基站发送所述目标上行数据所使用的传输块大小;
    在随机接入的过程中,接收所述用户设备基于所述目标重复发送次数发送的所述目标上行数据。
  13. 根据权利要求12所述的方法,其特征在于,所述重复次数指示信息用于指示所述用户设备从所述用户设备存储的至少一个对应关系集合中确定目标对应关系集合,所述目标对应关系集合用于供所述用户设备根据所述目标传输块大小查询所述目标对应关系集合,得到与所述目标传输块大小对应的重复发送次数,并将与所述目标传输块大小对应的重复发送次数确定为所述目标重复发送次数;
    其中,所述至少一个对应关系集合中的每个所述对应关系集合包括至少一个对应关系,所述对应关系为传输块大小与重复发送次数的对应关系。
  14. 根据权利要求13所述的方法,其特征在于,所述至少一个对应关系集 合是由所述基站通过高层信令向所述用户设备发送的。
  15. 根据权利要求13所述的方法,其特征在于,所述对应关系集合包括第一对应关系和第二对应关系;
    所述第一对应关系包括相互对应的第一传输块大小和第一重复发送次数,所述第二对应关系包括相互对应的第二传输块大小和次数指示信息,所述次数指示信息用于指示第二重复发送次数与所述第一重复发送次数的相对关系,所述第二重复发送次数为所述第二传输块大小对应的重复发送次数。
  16. 根据权利要求12所述的方法,其特征在于,所述重复次数指示信息用于指示第三重复发送次数,所述第三重复发送次数与第三传输块大小对应,所述第三重复发送次数和所述第三传输块大小用于供所述用户设备根据所述目标传输块大小、所述第三传输块大小和所述第三重复发送次数确定所述目标重复发送次数。
  17. 根据权利要求16所述的方法,其特征在于,所述第三重复发送次数位于重复发送次数集合中,所述重复发送次数集合包括通信协议所支持的多个重复发送次数中的至少一个重复发送次数,所述重复发送次数集合是由所述基站通过高层信令向所述用户设备发送的。
  18. 根据权利要求12至17任一所述的方法,其特征在于,所述重复次数指示信息携带于所述目标随机接入响应的上行调度授权中。
  19. 一种数据传输装置,其特征在于,所述装置包括:
    第一发送模块,用于向基站发送目标随机接入前导,所述目标随机接入前导用于指示用户设备需要在随机接入的过程中向所述基站发送目标上行数据;
    接收模块,用于接收所述基站基于所述目标随机接入前导发送的目标随机 接入响应,所述目标随机接入响应携带重复次数指示信息;
    第二发送模块,用于基于目标重复发送次数,在随机接入的过程中向所述基站发送所述目标上行数据;
    其中,所述目标重复发送次数是所述用户设备在随机接入的过程中向所述基站重复发送所述目标上行数据的次数,所述目标重复发送次数是根据所述重复次数指示信息和目标传输块大小确定的,所述目标传输块大小是所述用户设备在随机接入的过程中向所述基站发送所述目标上行数据所使用的传输块大小。
  20. 一种数据传输装置,其特征在于,所述装置包括:
    第一接收模块,用于接收用户设备发送的目标随机接入前导,所述目标随机接入前导用于指示用户设备需要在随机接入的过程中向所述基站发送目标上行数据;
    发送模块,用于基于所述目标随机接入前导向所述用户设备发送目标随机接入响应,所述目标随机接入响应携带重复次数指示信息,所述重复次数指示信息用于供所述用户设备根据所述重复次数指数信息和目标传输块大小确定目标重复发送次数,所述目标重复发送次数是所述用户设备在随机接入的过程中向所述基站重复发送所述目标上行数据的次数,所述目标传输块大小是所述用户设备在随机接入的过程中向所述基站发送所述目标上行数据所使用的传输块大小;
    第二接收模块,用于在随机接入的过程中,接收所述用户设备基于所述目标重复发送次数发送的所述目标上行数据。
  21. 一种用户设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行的指令的存储器;
    其中,所述处理器被配置为:
    向基站发送目标随机接入前导,所述目标随机接入前导用于指示用户设备需要在随机接入的过程中向所述基站发送目标上行数据;
    接收所述基站基于所述目标随机接入前导发送的目标随机接入响应,所述目标随机接入响应携带重复次数指示信息;
    基于目标重复发送次数,在随机接入的过程中向所述基站发送所述目标上行数据;
    其中,所述目标重复发送次数是所述用户设备在随机接入的过程中向所述基站重复发送所述目标上行数据的次数,所述目标重复发送次数是根据所述重复次数指示信息和目标传输块大小确定的,所述目标传输块大小是所述用户设备在随机接入的过程中向所述基站发送所述目标上行数据所使用的传输块大小。
  22. 一种基站,其特征在于,包括:
    处理器;
    用于存储处理器可执行的指令的存储器;
    其中,所述处理器被配置为:
    接收用户设备发送的目标随机接入前导,所述目标随机接入前导用于指示用户设备需要在随机接入的过程中向所述基站发送目标上行数据;
    基于所述目标随机接入前导向所述用户设备发送目标随机接入响应,所述目标随机接入响应携带重复次数指示信息,所述重复次数指示信息用于供所述用户设备根据所述重复次数指数信息和目标传输块大小确定目标重复发送次数,所述目标重复发送次数是所述用户设备在随机接入的过程中向所述基站重复发送所述目标上行数据的次数,所述目标传输块大小是所述用户设备在随机接入的过程中向所述基站发送所述目标上行数据所使用的传输块大小;
    在随机接入的过程中,接收所述用户设备基于所述目标重复发送次数发送 的所述目标上行数据。
  23. 一种数据传输系统,其特征在于,所述数据传输系统包括如权利要求19所述的数据传输装置和如权利要求20所述的数据传输装置。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,存储的所述计算机程序被处理组件执行时能够实现如权利要求1至11任一所述的数据传输方法;或者,
    存储的所述计算机程序被处理组件执行时能够实现如权利要求12至18任一所述的数据传输方法。
PCT/CN2018/086385 2018-05-10 2018-05-10 数据传输方法、装置、系统及存储介质 WO2019213917A1 (zh)

Priority Applications (15)

Application Number Priority Date Filing Date Title
RU2020140341A RU2763144C1 (ru) 2018-05-10 2018-05-10 Способ, устройство и система передачи данных, а также носитель информации
PL18917719.9T PL3793299T3 (pl) 2018-05-10 2018-05-10 Sposób, urządzenie, system transmisji danych i nośnik pamięci
JP2020563468A JP7142720B2 (ja) 2018-05-10 2018-05-10 データを送信するための方法、装置、およびシステム、ならびに記憶媒体
ES18917719T ES2954510T3 (es) 2018-05-10 2018-05-10 Medio de almacenamiento, sistema, aparato y método de transmisión de datos
EP23160931.4A EP4216648A1 (en) 2018-05-10 2018-05-10 Methods, apparatuses and systems for transmitting data, and storage medium
SG11202011158XA SG11202011158XA (en) 2018-05-10 2018-05-10 Methods, apparatuses and systems for transmitting data, and storage medium
EP18917719.9A EP3793299B1 (en) 2018-05-10 2018-05-10 Data transmission method, apparatus, system, and storage medium
BR112020022928-8A BR112020022928A2 (pt) 2018-05-10 2018-05-10 métodos, aparelhos e sistemas para transmitir dados e meio de armazenamento
KR1020207034994A KR102489925B1 (ko) 2018-05-10 2018-05-10 정보 표시 및 해석 장치와 방법, 기지국 및 사용자 장비
CN201880000404.7A CN108702784B (zh) 2018-05-10 2018-05-10 数据传输方法、装置、系统及存储介质
PCT/CN2018/086385 WO2019213917A1 (zh) 2018-05-10 2018-05-10 数据传输方法、装置、系统及存储介质
CN202011057396.5A CN112261732B (zh) 2018-05-10 2018-05-10 数据传输方法、装置、系统及存储介质
CN202110144308.3A CN112888080B (zh) 2018-05-10 2018-05-10 数据传输方法、装置、系统及存储介质
US17/094,442 US11528744B2 (en) 2018-05-10 2020-11-10 Methods, apparatuses and systems for transmitting data, and storage medium
US17/976,742 US11641667B2 (en) 2018-05-10 2022-10-28 Methods, apparatuses and systems for transmitting data, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/086385 WO2019213917A1 (zh) 2018-05-10 2018-05-10 数据传输方法、装置、系统及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/094,442 Continuation US11528744B2 (en) 2018-05-10 2020-11-10 Methods, apparatuses and systems for transmitting data, and storage medium

Publications (1)

Publication Number Publication Date
WO2019213917A1 true WO2019213917A1 (zh) 2019-11-14

Family

ID=63841405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086385 WO2019213917A1 (zh) 2018-05-10 2018-05-10 数据传输方法、装置、系统及存储介质

Country Status (11)

Country Link
US (2) US11528744B2 (zh)
EP (2) EP3793299B1 (zh)
JP (1) JP7142720B2 (zh)
KR (1) KR102489925B1 (zh)
CN (3) CN112261732B (zh)
BR (1) BR112020022928A2 (zh)
ES (1) ES2954510T3 (zh)
PL (1) PL3793299T3 (zh)
RU (1) RU2763144C1 (zh)
SG (1) SG11202011158XA (zh)
WO (1) WO2019213917A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113825243A (zh) * 2021-11-23 2021-12-21 成都爱瑞无线科技有限公司 上行数据处理方法、系统、装置及存储介质
CN115516992A (zh) * 2020-05-06 2022-12-23 高通股份有限公司 用于随机接入过程的重复指示

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190208411A1 (en) * 2018-03-16 2019-07-04 Intel Corporation Security framework for msg3 and msg4 in early data transmission
CN111132360B (zh) * 2018-11-01 2023-10-17 中兴通讯股份有限公司 消息发送、消息配置方法及装置、存储介质
WO2020194235A1 (en) * 2019-03-28 2020-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Indication of user equipment reply to early data transmission
CN113767705A (zh) * 2019-05-02 2021-12-07 株式会社Ntt都科摩 用户装置及基站装置
CN110234129B (zh) * 2019-06-12 2021-08-17 东北大学 一种NB-IoT网络中终端重传次数优化方法
CN111800858B (zh) * 2019-07-11 2023-01-03 维沃移动通信有限公司 Edt数据的发送方法和设备
US20230361971A1 (en) * 2019-10-11 2023-11-09 Beijing Xiaomi Mobile Software Co., Ltd. Methods for transmitting or receiving data, terminal, and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101057516A (zh) * 2004-11-09 2007-10-17 株式会社Ntt都科摩 移动通信系统、移动台、无线基站及无线网络控制站
WO2013181808A1 (zh) * 2012-06-06 2013-12-12 华为技术有限公司 一种消息的重传方法及终端、基站
CN105992379A (zh) * 2015-03-02 2016-10-05 电信科学技术研究院 一种调度方法及终端
US20170265193A1 (en) * 2016-03-09 2017-09-14 Qualcomm Incorporated Narrow-band broadcast/multi-cast design

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6813252B2 (en) * 2000-01-07 2004-11-02 Lucent Technologies Inc. Method and system for interleaving of full rate channels suitable for half duplex operation and statistical multiplexing
KR100810281B1 (ko) * 2002-03-30 2008-03-07 삼성전자주식회사 부호분할다중접속 이동통신시스템에서 전송 포맷 선택을위한 검색시간 최소화 방법
WO2006051827A1 (ja) 2004-11-09 2006-05-18 Ntt Docomo, Inc. 移動通信システム、移動局、無線基地局及び無線回線制御局
RU2373649C2 (ru) * 2004-11-09 2009-11-20 Нтт Докомо, Инк. Система мобильной связи, контроллер радиосети, мобильная станция и базовая станция радиосвязи
KR20150023148A (ko) 2013-08-23 2015-03-05 삼성전자주식회사 전자기기에서 이미지를 관리하는 방법 및 장치
EP2869489B1 (en) * 2013-10-31 2018-09-12 HTC Corporation Method of handling coverage enhancement in wireless communication system
US9503362B2 (en) * 2015-01-07 2016-11-22 Vmware, Inc. Reverse path maximum transmission unit (PMTU) discovery
US20160239200A1 (en) 2015-02-16 2016-08-18 Futurewei Technologies, Inc. System and Method for Multi-Touch Gestures
CN107926062A (zh) * 2015-08-13 2018-04-17 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
EP3744147B1 (en) * 2018-01-24 2024-03-13 Telefonaktiebolaget LM Ericsson (publ) Multiple tbs for msg3 in data transmission during random access

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101057516A (zh) * 2004-11-09 2007-10-17 株式会社Ntt都科摩 移动通信系统、移动台、无线基站及无线网络控制站
WO2013181808A1 (zh) * 2012-06-06 2013-12-12 华为技术有限公司 一种消息的重传方法及终端、基站
CN105992379A (zh) * 2015-03-02 2016-10-05 电信科学技术研究院 一种调度方法及终端
US20170265193A1 (en) * 2016-03-09 2017-09-14 Qualcomm Incorporated Narrow-band broadcast/multi-cast design

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3793299A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115516992A (zh) * 2020-05-06 2022-12-23 高通股份有限公司 用于随机接入过程的重复指示
CN113825243A (zh) * 2021-11-23 2021-12-21 成都爱瑞无线科技有限公司 上行数据处理方法、系统、装置及存储介质

Also Published As

Publication number Publication date
ES2954510T3 (es) 2023-11-22
KR20210008846A (ko) 2021-01-25
CN108702784B (zh) 2021-01-26
EP3793299B1 (en) 2023-07-05
PL3793299T3 (pl) 2023-12-04
JP7142720B2 (ja) 2022-09-27
SG11202011158XA (en) 2020-12-30
US11528744B2 (en) 2022-12-13
EP3793299A4 (en) 2021-05-19
US11641667B2 (en) 2023-05-02
CN112888080B (zh) 2023-11-24
CN112261732B (zh) 2023-03-17
US20210058963A1 (en) 2021-02-25
CN112261732A (zh) 2021-01-22
CN112888080A (zh) 2021-06-01
EP4216648A1 (en) 2023-07-26
KR102489925B1 (ko) 2023-01-18
EP3793299A1 (en) 2021-03-17
US20230084192A1 (en) 2023-03-16
BR112020022928A2 (pt) 2021-02-02
RU2763144C1 (ru) 2021-12-27
CN108702784A (zh) 2018-10-23
JP2021525022A (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
WO2019213917A1 (zh) 数据传输方法、装置、系统及存储介质
WO2019169634A1 (zh) 信息传输方法、装置、系统及存储介质
US20210058948A1 (en) Uplink transmission method and apparatus
WO2019204995A1 (zh) 调度请求传输方法及装置和资源分配方法及装置
US11483819B2 (en) Data transmission method and apparatus and user equipment
WO2019191948A1 (zh) 下行控制信息格式大小的确定方法及装置
WO2020000447A1 (zh) 传输信息的方法和装置、基站及用户设备
WO2021007823A1 (zh) 信息指示、确定方法及装置、通信设备及存储介质
US11991709B2 (en) Information scheduling methods and apparatuses, transceiving methods and apparatuses, base stations and user equipment
US11722283B2 (en) Information transmission method, device, system, and storage medium
JP7397098B2 (ja) 制御情報伝送方法及び装置
WO2019205022A1 (zh) 信息指示、解读方法及装置、基站和用户设备
WO2018195720A1 (zh) 确定调制编码方式的方法及装置
WO2018213985A1 (zh) 数据传输方法及装置
CN109076323B (zh) 数据传输方法、装置及存储介质
WO2019028756A1 (zh) 一种下行控制信息的配置方法及装置
WO2018000322A1 (zh) 数据传输方法及装置
CN109451855A (zh) 上行资源分配方法、装置和终端
WO2020087464A1 (zh) 传输信息的方法、装置、基站及终端
US20220174650A1 (en) Methods and apparatuses for configuring a control region
WO2019191938A1 (zh) 数据传输方法、装置、系统及存储介质
WO2022213367A1 (zh) 直连通信方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917719

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563468

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020022928

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207034994

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018917719

Country of ref document: EP

Effective date: 20201210

ENP Entry into the national phase

Ref document number: 112020022928

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201110