WO2019191938A1 - 数据传输方法、装置、系统及存储介质 - Google Patents

数据传输方法、装置、系统及存储介质 Download PDF

Info

Publication number
WO2019191938A1
WO2019191938A1 PCT/CN2018/081913 CN2018081913W WO2019191938A1 WO 2019191938 A1 WO2019191938 A1 WO 2019191938A1 CN 2018081913 W CN2018081913 W CN 2018081913W WO 2019191938 A1 WO2019191938 A1 WO 2019191938A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink data
target uplink
uplink
target
data
Prior art date
Application number
PCT/CN2018/081913
Other languages
English (en)
French (fr)
Inventor
赵群
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2018/081913 priority Critical patent/WO2019191938A1/zh
Priority to CN201880000273.2A priority patent/CN110574465B/zh
Publication of WO2019191938A1 publication Critical patent/WO2019191938A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present disclosure relates to the field of wireless communications, and in particular, to a data transmission method, apparatus, system, and storage medium.
  • the UE In a wireless communication system, before transmitting each uplink data, the UE (User Equipment) needs to send a scheduling request to the base station, and the scheduling request may carry the QoS (Quality of Service) of the uplink data to be sent by the UE.
  • the base station After receiving the scheduling request, the base station may allocate an uplink resource to the UE based on the QoS, so that the UE transmits the uplink data by using the uplink resource allocated by the base station.
  • uplink resources allocated by the base station for high QoS uplink data and uplink resources allocated for low QoS uplink data are likely to overlap. In this case, the UE needs to discard low QoS uplink data to ensure high QoS. Normal transmission of uplink data, which affects the transmission reliability of low QoS uplink data.
  • the present disclosure provides a data transmission method, apparatus, system, and storage medium, which can ensure transmission reliability of uplink data with low QoS.
  • a data transmission method including:
  • the at least two target uplink resources When at least two target uplink resources occupy overlapping time-frequency positions, and at least two target uplink data can be multiplexed and transmitted, the at least two target uplink data are multiplexed to a specified uplink resource for transmission;
  • the at least two target uplink resources are in one-to-one correspondence with the at least two target uplink data, and each of the target uplink resources is a resource allocated by the base station to the user equipment UE for transmitting corresponding target uplink data.
  • the at least two target uplink data includes uplink data whose service quality level is greater than a preset level threshold and uplink data whose service quality level is less than or equal to the preset level threshold.
  • the method further includes: determining whether the at least two target uplink data can be multiplexed and transmitted.
  • the determining whether the at least two target uplink data can be multiplexed and transmitted includes:
  • the at least two target uplink data can be multiplexed and transmitted.
  • the determining whether the at least two target uplink data can be multiplexed and transmitted includes:
  • the determining whether the at least two target uplink data can be multiplexed and transmitted includes:
  • the first uplink grant carries the multiplexing indication information, where the multiplexing indication information is used to indicate whether the at least two target uplink data can be multiplexed and transmitted.
  • the method further includes:
  • the uplink resource indicated by the first uplink grant is obtained as the designated uplink resource.
  • the method further includes:
  • the method further includes:
  • the first target uplink resource exists in the at least two target uplink resources
  • the first target uplink resource is acquired as the specified uplink resource, where the first target uplink resource includes the at least two targets A target uplink resource in the uplink resource.
  • the method further includes:
  • any one of the uplink resources configured by using the DCI Get the specified uplink resource for the specified is possible.
  • the multiplexing the at least two target uplink data to the specified uplink resource including:
  • the at least two target uplink data are sequentially mapped to the specified uplink resource in an order of the highest quality of the service quality level until the specified uplink resource is fully occupied;
  • the transmission maps to data in the specified uplink resource.
  • the at least two target uplink data are sequentially mapped to the specified uplink resource according to the order of the quality of service level, including:
  • the at least two target uplink data are sequentially mapped to the specified uplink resource according to the order of the quality of service level, including:
  • the k+1th target uplink data is mapped to the specified uplink resource, where k is a positive integer.
  • the at least two target uplink data are sequentially mapped to the specified uplink resource according to the order of the quality of service level, including:
  • the k+1th target uplink data is corresponding according to the corresponding The number of occupied REs is mapped to the specified uplink resource, where k is a positive integer.
  • the determining the number of available resource unit REs corresponding to each of the target uplink data includes:
  • the first formula is:
  • the G RE is the number of occupant REs corresponding to the ith target uplink data
  • is an offset coefficient corresponding to the QoS level of the ith target uplink data
  • b 1 is the ith target
  • b 2 is the data amount of all the target uplink data except the ith target uplink data in the at least two target uplink data
  • the K RE is the uplink that can be mapped in the specified uplink resource.
  • the number of REs of the data, M RE is the number of REs that can be occupied by the i-th target uplink data
  • is an adjustment coefficient obtained according to the modulation and coding method of the i-th target uplink data.
  • the determining the number of available resource unit REs corresponding to each of the target uplink data includes:
  • the first uplink grant is used to schedule the at least two target uplink data
  • the first uplink grant carries the RE number indication information, and the RE number indication information And indicating the number of available REs corresponding to each of the target uplink data.
  • a data transmission method including:
  • the first uplink grant is generated when the base station overlaps the time-frequency positions occupied by the at least two target uplink resources for transmitting the at least two target uplink data, where the at least In the two target uplink data, the uplink data with the service quality level greater than the preset level threshold and the uplink data with the service quality level less than or equal to the preset level threshold are present;
  • the first uplink grant is used to indicate a time-frequency location of the specified uplink resource.
  • the first uplink authorization carries the RE number indication information, where the RE number indication information is used to indicate the number of available REs corresponding to each of the target uplink data.
  • a data transmission apparatus including:
  • a multiplexing module configured to overlap at a time-frequency location occupied by at least two target uplink resources, and multiplexing the at least two target uplink data to a specified uplink resource when at least two target uplink data can be multiplexed and transmitted Transfer
  • the at least two target uplink resources are in one-to-one correspondence with the at least two target uplink data, and each of the target uplink resources is a resource allocated by the base station to the user equipment UE for transmitting corresponding target uplink data.
  • the at least two target uplink data includes uplink data whose service quality level is greater than a preset level threshold and uplink data whose service quality level is less than or equal to the preset level threshold.
  • the device further includes a determining module, where the determining module is configured to determine whether the at least two target uplink data can be multiplexed and transmitted.
  • the determining module includes a first determining sub-module, where the first determining sub-module is configured to: determine whether the starting positions of the at least two target uplink resources in the time domain are the same; When the two target uplink resources have the same starting position in the time domain, it is determined that the at least two target uplink data can be multiplexed and transmitted.
  • the determining module includes a second determining submodule, where the second determining submodule is configured to: determine whether the starting positions of the at least two target uplink resources in the time domain are the same; When the two target uplink resources have different starting positions in the time domain, it is determined that the at least two target uplink data cannot be multiplexed and transmitted.
  • the determining module includes a receiving submodule and a third determining submodule
  • the receiving submodule is configured to receive a first uplink grant sent by the base station, where the first uplink grant is used to schedule the at least two target uplink data, where the first uplink grant is determined by the base station When the time-frequency positions occupied by the at least two target uplink resources are overlapped, the first uplink grant carries the multiplexing indication information, where the multiplexing indication information is used to indicate whether the at least two target uplink data can be Multiplex transmission
  • the third determining submodule is configured to determine, according to the multiplexing indication information, whether the at least two target uplink data can be multiplexed and transmitted.
  • the device further includes a first acquiring module, where the first acquiring module is configured to: when the multiplexing indication information indicates that the at least two target uplink data can be multiplexed and transmitted, The uplink resource obtained by the uplink grant indication is the specified uplink resource.
  • the device further includes a receiving module and a second acquiring module;
  • the receiving module is configured to receive, by the base station, at least two second uplink grants that are in one-to-one correspondence with the at least two target uplink resources, where each of the second uplink grants is used to indicate a corresponding target uplink resource.
  • Time-frequency position ;
  • the second acquiring module is configured to select one uplink resource from the at least two target uplink resources as the designated uplink resource according to the sequence of receiving the at least two second uplink grants.
  • the device further includes a third acquiring module, where the third acquiring module is configured to acquire the first target uplink resource when the first target uplink resource exists in the at least two target uplink resources And the specified uplink resource, where the first target uplink resource includes a target uplink resource of the at least two target uplink resources.
  • the third acquiring module is configured to acquire the first target uplink resource when the first target uplink resource exists in the at least two target uplink resources And the specified uplink resource, where the first target uplink resource includes a target uplink resource of the at least two target uplink resources.
  • the device further includes a fourth acquiring module, where the fourth acquiring module is configured to simultaneously have an uplink resource configured by using high layer signaling and a downlink control information DCI in the at least two target uplink resources.
  • the fourth acquiring module is configured to simultaneously have an uplink resource configured by using high layer signaling and a downlink control information DCI in the at least two target uplink resources.
  • the configured uplink resource is configured, any one of the uplink resources configured by using the DCI is obtained as the specified uplink resource.
  • the multiplexing module includes a mapping submodule and a transmitting submodule;
  • the mapping sub-module is configured to sequentially map the at least two target uplink data to the specified uplink resource in an order of highest to lowest quality of service, until the specified uplink resource is fully occupied;
  • the transmission submodule is configured to transmit data mapped to the specified uplink resource.
  • the mapping sub-module is configured to sequentially map the at least two target uplink data to the specified uplink resource according to a sequence of quality of service, wherein the second target uplink data is The occupied time-frequency position is before the time-frequency position occupied by the third target uplink data in the time domain, and the quality of service level of the second target uplink data is higher than the service quality level of the third target uplink data.
  • the mapping submodule is configured to sort the at least two target uplink data according to a sequence of service quality levels from high to low; when the kth target uplink data is all mapped to the specified uplink resource And, when the specified uplink resource is not completely occupied, mapping the k+1th target uplink data to the specified uplink resource, where k is a positive integer.
  • the mapping sub-module is configured to sort the at least two target uplink data according to a sequence of service quality levels from high to low; and determine an occupant resource unit RE corresponding to each target uplink data. If the kth target uplink data is mapped to the specified uplink resource according to the corresponding number of available REs, and the specified uplink resource is not completely occupied, the k+1th target uplink data is followed. The corresponding number of occupied REs is mapped to the specified uplink resource, where k is a positive integer.
  • the mapping sub-module is configured to calculate, according to the first formula, the number of occupable REs corresponding to the i-th target uplink data, where i is a positive integer;
  • the first formula is:
  • the G RE is the number of occupant REs corresponding to the ith target uplink data
  • is an offset coefficient corresponding to the QoS level of the ith target uplink data
  • b 1 is the ith target
  • b 2 is the data amount of all the target uplink data except the ith target uplink data in the at least two target uplink data
  • the K RE is the uplink that can be mapped in the specified uplink resource.
  • the number of REs of the data, M RE is the number of REs that can be occupied by the i-th target uplink data
  • is an adjustment coefficient obtained according to the modulation and coding method of the i-th target uplink data.
  • the mapping submodule is configured to receive a first uplink grant sent by the base station, where the first uplink grant is used to schedule the at least two target uplink data, and the first uplink grant carries an RE
  • the number of indication information is used to indicate the number of available REs corresponding to each of the target uplink data.
  • a data transmission apparatus including:
  • a generating module configured to generate a first uplink grant, where the first uplink grant is used to schedule at least two target uplink data, where the first uplink grant carries multiplexing indication information, where the multiplexing indication information is used to indicate Whether the at least two target uplink data can be multiplexed, and the first uplink grant is generated by the base station when the time-frequency positions occupied by the at least two target uplink resources used for transmitting the at least two target uplink data are overlapped.
  • the uplink data of the at least two target uplink data that has a QoS level greater than a preset level threshold and the uplink data whose QoS level is less than or equal to the preset level threshold;
  • a sending module configured to send the first uplink grant to the user equipment UE, where the UE is configured to: when the multiplexing indication information indicates that the at least two target uplink data can be multiplexed and transmitted, the at least two The target uplink data is multiplexed to the specified uplink resource for transmission.
  • the first uplink grant is used to indicate a time-frequency location of the specified uplink resource.
  • the first uplink authorization carries the RE number indication information, where the RE number indication information is used to indicate the number of available REs corresponding to each of the target uplink data.
  • a data transmission apparatus including:
  • a memory for storing instructions executable by the processor
  • processor is configured to:
  • the at least two target uplink resources When at least two target uplink resources occupy overlapping time-frequency positions, and at least two target uplink data can be multiplexed and transmitted, the at least two target uplink data are multiplexed to a specified uplink resource for transmission;
  • the at least two target uplink resources are in one-to-one correspondence with the at least two target uplink data, and each of the target uplink resources is a resource allocated by the base station to the user equipment UE for transmitting corresponding target uplink data.
  • the at least two target uplink data includes uplink data whose service quality level is greater than a preset level threshold and uplink data whose service quality level is less than or equal to the preset level threshold.
  • a data transmission apparatus including:
  • a memory for storing instructions executable by the processor
  • processor is configured to:
  • the first uplink grant is generated when the base station overlaps the time-frequency positions occupied by the at least two target uplink resources for transmitting the at least two target uplink data, where the at least In the two target uplink data, the uplink data with the service quality level greater than the preset level threshold and the uplink data with the service quality level less than or equal to the preset level threshold are present;
  • a data transmission system comprising the data transmission device according to any of the above third aspects, and the data transmission device according to any of the above fourth aspects.
  • a computer readable storage medium having stored therein at least one instruction loaded by a processor and executed to implement the first aspect as described above Any of the described data transmission methods; or,
  • the instructions are loaded and executed by a processor to implement the data transfer method of any of the above second aspects.
  • the at least two target uplink data are multiplexed to the specified uplink resource for transmission.
  • the at least two target uplink data includes low QoS uplink data and high QoS uplink data, so that uplink resources allocated by the base station for high QoS uplink data and uplink data allocated for low QoS can be avoided to some extent.
  • the UE discards the low QoS uplink data, thereby ensuring the reliability of the low QoS uplink data transmission.
  • FIG. 1 is a schematic diagram of an implementation environment, according to an exemplary embodiment.
  • FIG. 2 is a flowchart of a data transmission method according to an exemplary embodiment.
  • FIG. 3 is a flowchart of a data transmission method according to an exemplary embodiment.
  • FIG. 4 is a flowchart of a data transmission method according to an exemplary embodiment.
  • FIG. 5 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • FIG. 6 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • FIG. 7 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • FIG. 8 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • FIG. 9 is a block diagram of a data transmission apparatus according to an exemplary embodiment.
  • FIG. 10 is a block diagram of a data transmission system, according to an exemplary embodiment.
  • the UE may send a scheduling request to the base station, where the scheduling request may be an SR (Scheduling Request) and/or a BSR (Buffer). Status Report, buffer status report, etc.
  • the base station may send an uplink grant (English: UL grant) to the UE to schedule uplink data to be sent in the UE, where the uplink grant is used to indicate that the base station allocates the UE to the UE.
  • the UE may send uplink data by using the uplink resource indicated by the uplink grant.
  • the scheduling request sent by the UE to the base station may carry the QoS (Quality of Service) of the uplink data to be sent in the UE,
  • the base station may send an uplink grant to the UE based on the QoS carried in the scheduling request.
  • the uplink data used by the base station to send the uplink grant is smaller than the uplink resource indicated by the uplink grant in the time domain, and the uplink data is sent by the base station for the low QoS uplink data.
  • the downlink resource used by the uplink grant and the uplink resource indicated by the uplink grant have a larger interval in the time domain.
  • the downlink resources used by the base station to send the uplink grants are different from the uplink resources indicated by the uplink grants in the time domain. Therefore, in actual applications, uplink data scheduling conflicts with different QoS are easy to occur. Case.
  • the scheduling conflict refers to an uplink resource overlap indicated by an uplink resource indicated by an uplink grant for scheduling high QoS uplink data and an uplink grant for scheduling low QoS uplink data.
  • the base station sends an uplink grant A to the UE in slot 1, the uplink grant A is used to schedule low QoS uplink data, the uplink resource indicated by the uplink grant A is slot 4, and the base station sends an uplink grant to the UE in slot 3. B.
  • the uplink grant B is used to schedule uplink data with high QoS.
  • the uplink resource indicated by the uplink grant B is also slot 4.
  • the uplink resources indicated by the uplink grant A and the uplink grant B overlap. Therefore, scheduling occurs. conflict.
  • the UE when a scheduling conflict occurs, the UE needs to discard low-QoS uplink data to ensure normal transmission of high-QoS uplink data, which affects the transmission reliability of low-QoS uplink data.
  • the UE needs to discard the low QoS uplink data scheduled by the uplink grant A and transmit the high QoS uplink data scheduled by the uplink grant B through the time slot 4, which affects the uplink.
  • the transmission reliability of the low QoS uplink data scheduled by the authorization A is the transmission reliability of the low QoS uplink data scheduled by the authorization A.
  • the embodiment of the present disclosure provides a data transmission method, in which an uplink resource allocated by a base station to different QoS uplink data overlaps, and when the uplink data of the different QoS can be multiplexed and transmitted, the different QoS is used.
  • the uplink data is multiplexed to the specified uplink resource for transmission, so that the UE can discard the low-QoS uplink data when the scheduling conflict occurs, and then ensure the low-QoS uplink data transmission reliability.
  • the implementation environment may include a base station 10 and a UE 20.
  • the base station 10 and the UE 20 may be connected through a communication network.
  • the UE 20 is any one of the cells served by the base station 10.
  • the communication network may be a 5G communication network, an LTE (Long Term Evolution) communication network, or another communication network similar to an LTE communication network or a 5G communication network.
  • LTE Long Term Evolution
  • FIG. 2 is a flowchart of a data transmission method used in the UE 20 shown in FIG. 1 according to an exemplary embodiment. As shown in FIG. 2, the data transmission method may include the following steps.
  • Step 201 When the time-frequency positions occupied by the at least two target uplink resources overlap, and the at least two target uplink data can be multiplexed and transmitted, the UE multiplexes the at least two target uplink data to the specified uplink resource for transmission.
  • the at least two target uplink resources are in one-to-one correspondence with the at least two target uplink data, and each target uplink resource is a resource allocated by the base station to the UE for transmitting corresponding target uplink data, and the at least two target uplink data.
  • the data transmission method when the target uplink resources allocated by the base station to the at least two target uplink data overlap, and the at least two target uplink data can be multiplexed and transmitted, At least two target uplink data are multiplexed to transmit on a specified uplink resource, where the at least two target uplink data includes low QoS uplink data and high QoS uplink data, so that the base station can be avoided for a certain degree of high QoS.
  • the uplink resource allocated by the uplink data overlaps with the uplink resource allocated for the low QoS uplink data, the UE discards the low QoS uplink data, thereby ensuring the transmission reliability of the low QoS uplink data.
  • FIG. 3 is a flowchart of a data transmission method according to an exemplary embodiment.
  • the data transmission method is used in the base station 10 shown in FIG. 1. As shown in FIG. 3, the data transmission method may include the following steps.
  • Step 301 The base station generates a first uplink authorization.
  • the first uplink grant is used to schedule at least two target uplink data, and the first uplink grant carries the multiplexing indication information, where the multiplexing indication information is used to indicate whether the at least two target uplink data can be multiplexed and transmitted.
  • the first uplink grant is generated by the base station when the time-frequency positions occupied by the at least two target uplink resources for transmitting the at least two target uplink data are overlapped.
  • the at least two target uplink data includes uplink data whose service quality level is greater than a preset level threshold and uplink data whose service quality level is less than or equal to the preset level threshold.
  • Step 302 The base station sends a first uplink grant to the UE.
  • the UE is configured to multiplex the at least two target uplink data to the specified uplink resource for transmission when the multiplexing indication information indicates that the at least two target uplink data can be multiplexed and transmitted.
  • the data transmission method provided by the embodiment of the present disclosure generates, by the base station, a first uplink grant, which is used to indicate whether at least two target uplink data can be multiplexed and transmitted. And multiplexing the indication information, the at least two target uplink data includes low QoS uplink data and high QoS uplink data, so that the UE recovers the at least two target uplink data when the at least two target uplink data can be multiplexed and transmitted.
  • the transmission to the specified uplink resource is used, so that the uplink data of the UE to the low QoS when the uplink resource allocated by the base station for the high QoS uplink data and the uplink resource allocated for the low QoS uplink data overlap may be avoided to some extent. Discarding is performed to ensure the reliability of transmission of uplink data with low QoS.
  • FIG. 4 is a flowchart of a data transmission method according to an exemplary embodiment.
  • the data transmission method is used in the implementation environment shown in FIG. 1. As shown in FIG. 4, the data transmission method may include the following steps.
  • Step 401 The UE determines whether the time-frequency positions occupied by the at least two target uplink resources overlap.
  • the at least two target uplink resources are in one-to-one correspondence with the at least two target uplink data, and each target uplink resource is a resource allocated by the base station to the UE for transmitting the corresponding target uplink data.
  • the uplink data with the QoS greater than the preset level threshold and the uplink data with the QoS less than or equal to the preset level threshold exist in the at least two target uplink data, that is, the uplink data with high QoS exists in the at least two target uplink data.
  • Low QoS upstream data may be specified by a communication protocol or may be configured by a base station, which is not specifically limited in this embodiment of the disclosure.
  • the base station may schedule the uplink data by using the uplink grant, where the uplink grant may indicate the time-frequency location of the target uplink resource allocated by the base station for the target uplink data scheduled by the uplink grant, that is, the uplink grant may be And indicating a time-frequency location of the target uplink resource corresponding to the target uplink data scheduled by the uplink grant.
  • the UE may receive, by the base station, at least two second uplink grants that are in one-to-one correspondence with the at least two target uplink data, where each second uplink grant is used to schedule the corresponding Target uplink data, and then, the UE may determine, according to the indication of the at least two second uplink grants, whether the time-frequency positions occupied by the at least two target uplink resources overlap.
  • the UE may receive the second uplink grant A and the second uplink grant B sent by the base station, where the second uplink grant A is used to schedule the target uplink data a, and the second uplink grant B is used to schedule the target uplink data b, where
  • the second uplink grant A may indicate the time-frequency location of the target uplink resource x1 allocated by the base station to the UE for transmitting the target uplink data a
  • the second uplink grant B may indicate the target allocated by the base station to the UE for transmitting the target uplink data b.
  • the time-frequency position of the uplink resource x2 the UE may determine, according to the indications of the second uplink grant A and the second uplink grant B, whether the time-frequency positions occupied by the target uplink resource x1 and the target uplink resource x2 overlap.
  • the base station may determine, by the target uplink resource indicated by the uplink grant, at least one uplink grant that is sent by the base station. Whether the time-frequency positions occupied by the target uplink resources overlap, wherein each of the at least one uplink grant is used for scheduling target uplink data.
  • the base station may cancel the sending of the uplink grant and generate the first uplink grant.
  • the first uplink grant is used to schedule at least two target uplink data, where the at least two target uplink data includes target uplink data scheduled by the canceled uplink grant and target uplink data scheduled by the at least one uplink grant that the base station has sent.
  • the UE may determine that the time-frequency positions occupied by the at least two target uplink resources overlap.
  • the base station may determine, after sending the second uplink grant B to the UE, the target uplink resource x2 indicated by the second uplink grant B and the target uplink resource x1 indicated by the second uplink grant A that the base station has sent. Whether the occupied time-frequency positions overlap, when the target uplink resource x2 overlaps with the time-frequency position occupied by the target uplink resource x1, the base station may cancel the transmission of the second uplink grant B, and generate a first uplink grant, the first The uplink grant is used to schedule the target uplink data a and the target uplink data b. After receiving the first uplink grant, the UE may determine that the time-frequency location occupied by the target uplink resource x2 and the target uplink resource x1 overlap.
  • the overlap of the time-frequency positions occupied by the at least two target uplink resources means that there is an intersection of the time-frequency positions occupied by the at least two target uplink resources.
  • Step 402 When the time-frequency positions occupied by the at least two target uplink resources overlap, the UE determines whether at least two target uplink data can be multiplexed and transmitted.
  • the at least two target uplink data multiplexing transmissions refer to: transmitting the at least two target uplink data by using the same uplink resource.
  • the UE may obtain the multiplexing indication information carried by the first uplink authorization, where the multiplexing indication information is used to indicate the at least two target uplinks. Whether the data can be multiplexed and transmitted, the UE may determine, according to the multiplexing indication information, whether at least two target uplink data can be multiplexed and transmitted.
  • the UE may determine, according to the indication of the at least two second uplink grants that are in one-to-one correspondence with the at least two target uplink data, time-frequency positions of the at least two target uplink resources, respectively, according to the Whether the starting positions of the at least two target uplink resources in the time domain are the same or not, and determining whether the at least two target uplink data can be multiplexed and transmitted.
  • the UE Before the uplink data is transmitted, the UE needs to process the uplink data for a period of time. After the uplink data processing is completed, the UE may transmit the uplink data on the uplink resource allocated by the base station. If the uplink data is transmitted in advance, that is, if the uplink data is transmitted on an uplink resource before the uplink resource allocated by the base station, the UE may not have sufficient time to process the uplink data, thereby affecting the uplink data. Normal transmission. Therefore, when the starting positions of the at least two target uplink resources are different in the time domain, if the at least two target uplink data are multiplexed and transmitted, some of the at least two target uplink data are uplinked.
  • the UE may determine whether the at least two target uplink data can be multiplexed according to whether the starting positions of the at least two target uplink resources in the time domain are the same.
  • the UE may determine that the at least two target uplink data can be multiplexed and transmitted.
  • the UE may determine that the at least two target uplink data cannot be multiplexed for transmission.
  • the UE may determine the starting positions of the target uplink resource x1 and the target uplink resource x2 in the time domain according to the indications of the second uplink grant A and the second uplink grant B, respectively.
  • the UE determines that the target uplink resource x1 and the target uplink resource x2 are in the same starting position in the time domain, for example, the UE determines that the target uplink resource x1 and the target uplink resource x2 are in the time domain.
  • the UE can determine that the target uplink data a and the target uplink data b can be multiplexed and transmitted; in another case, when the UE determines that the target uplink resource x1 and the target uplink resource x2 are
  • the start positions of the time domain are different, for example, when the UE determines that the target uplink resource x1 and the target uplink resource x2 start positions in the time domain are time slot 1 and time slot 2, respectively, the UE may determine the target uplink.
  • Data a and target uplink data b cannot be multiplexed for transmission.
  • Step 403 When at least two target uplink data can be multiplexed and transmitted, the UE determines the designated uplink resource.
  • the designated uplink resource is an uplink resource used for the at least two target uplink data multiplexing transmissions.
  • the first mode when the UE receives the first uplink grant sent by the base station, and the multiplexing indication information carried by the first uplink grant indicates that the at least two target uplink data can be multiplexed and transmitted, the UE may be the first
  • the uplink resource acquisition indicated by the uplink grant is the specified uplink resource.
  • the second mode after receiving the at least two second uplink grants that are in one-to-one correspondence with the at least two target uplink data, the UE may obtain the at least two according to the sequence of receiving the at least two second uplink grants.
  • One of the target uplink resources is selected as the designated uplink resource.
  • the UE may obtain the target uplink resource indicated by the first uplink grant received as the specified uplink resource, or the UE may obtain the target uplink resource indicated by the last received second uplink grant as the designated uplink resource.
  • the UE may acquire the target uplink resource indicated by the preset number of the received second uplink grants as the specified uplink resource.
  • the preset number may be specified by a communication protocol, or may be configured by a base station, which is not specifically limited in this embodiment of the disclosure.
  • the UE may receive the first uplink grant A indicated by the first uplink.
  • the target uplink resource x1 is obtained as the designated uplink resource.
  • the UE may acquire the target uplink resource x2 indicated by the second received uplink grant B as the designated uplink resource.
  • the UE acquires the first target uplink resource as the specified uplink resource.
  • the first target uplink resource includes a target uplink resource of the at least two target uplink resources, that is, the time-frequency location occupied by the target uplink resource is a time-frequency location occupied by the first target uplink resource. a subset of.
  • the UE may
  • the target uplink resource x2 is obtained as the specified uplink resource.
  • the UE when the uplink resource configured by the high-layer signaling and the uplink resource configured by the DCI (downlink control information) are simultaneously present in the at least two target uplink resources, the UE is configured by DCI. Any one of the uplink resources of the uplink resource is obtained as the designated uplink resource.
  • the base station may send an uplink grant to indicate the time-frequency location of the uplink resource allocated by the base station to the UE, where the uplink grant may be sent through the DCI or may be sent through the high-layer signaling, where the high-layer signaling is adopted.
  • the uplink grant to be sent may also be referred to as a configured grant (English: configured grant).
  • the target uplink resource indicated by the uplink grant sent by the base station by using the DCI exists in the at least two target uplink resources, and the target indicated by the uplink grant sent by the base station by using the high layer signaling exists in the at least two target uplink resources.
  • the UE may acquire any one of the target uplink resources indicated by the uplink grant sent by the base station through the DCI as the designated uplink resource.
  • the UE may uplink the target indicated by the second uplink grant A.
  • Resource x1 is obtained as the specified uplink resource.
  • Step 404 The UE multiplexes at least two target uplink data to transmit on the specified uplink resource.
  • the UE may sequentially map the at least two target uplink data to the specified uplink resource according to the QoS from high to low until the specified uplink resource is fully occupied, and then the UE may transmit. Maps to the data in the specified uplink resource.
  • the UE needs to ensure that the target uplink data with higher QoS is mapped to the top position in the specified uplink resource in the time domain, and the target uplink data with lower QoS is mapped to the specified uplink resource.
  • the UE In the backward position in the time domain, that is, the UE needs to ensure that the time-frequency position occupied by the second target uplink data is located in the time domain before the time-frequency position occupied by the third target uplink data, where the The QoS of the second target uplink data is higher than the QoS of the third target uplink data.
  • the UE may first map the target uplink data a to the target uplink resource x1, and the UE needs to ensure that the target uplink data a is mapped to the top position in the target uplink resource x1 in the time domain.
  • the location may be the location of the target uplink resource x1 adjacent to the demodulation reference symbol.
  • the UE may map the target uplink data b to the target uplink resource x1, and The UE needs to ensure that the target uplink data b is mapped to a position in the target uplink resource x1 that is later in the time domain.
  • the UE may sort the at least two target uplink data according to the order of the QoS from high to low.
  • the kth target uplink data is all mapped to the specified uplink resource, and the specified uplink resource is not completely occupied.
  • the UE maps the k+1th target uplink data to the specified uplink resource, where k is a positive integer.
  • the UE may map the high-QoS target uplink data to the designated uplink resource. If the specified uplink resource is not fully occupied after the mapping is completed, the UE may use the second highest QoS. The target uplink data is mapped to the specified uplink resource, and the UE may repeatedly perform the process until the specified uplink resource is completely occupied.
  • the UE may first map the target uplink data a to the target uplink resource x1. If the target uplink resource x1 is not completely occupied after the mapping of the target uplink data a is completed, the UE may target the target. The uplink data b is mapped to the target uplink resource x1.
  • the UE may map the target uplink data b to all. On the target uplink resource x1, if the data amount of the target uplink data b is greater than the remaining capacity of the target uplink resource x1, the UE may map part of the data of the target uplink data b equal to the remaining capacity of the target uplink resource x1 to the target uplink resource x1. .
  • the UE may sort the at least two target uplink data according to the order of the QoS from high to low, and the UE may determine the RE (Resource Element) corresponding to each target uplink data. If the kth target uplink data is mapped to the specified uplink resource according to the corresponding number of available REs, and the specified uplink resource is not completely occupied, the UE selects the k+1th target uplink data according to the corresponding The number of occupied REs is mapped to the specified uplink resource, where k is a positive integer.
  • the UE may map data of the high-QoS target uplink data equal to the RE number of REs that can occupy the RE to the specified uplink resource, and if the mapping is completed, the designated uplink
  • the UE may be configured to perform the process until the specified uplink is performed.
  • the UE may perform the process on the specified uplink resource by using the data in the target uplink data of the next highest QoS, which is equal to the RE capacity of the RE. When the resource is completely occupied.
  • the UE may first determine the number of occupant REs corresponding to the target uplink data a and the number of contiguous REs corresponding to the target uplink data b.
  • the number of occupant REs corresponding to the target uplink data a may be 2
  • the number of occupant REs corresponding to the target uplink data b may be 1
  • the UE may obtain data equal to the capacity of the two REs from the target uplink data a, and map the data to the target uplink resource x1, if After the mapping of the target uplink data a is completed, the target uplink resource x1 is not completely occupied, the UE may acquire data equal to the capacity of one RE from the target uplink data b, and map the data to the target uplink resource x1.
  • the UE may map the data to the target uplink resource x1, if the data volume of the data More than the remaining capacity of the target uplink resource x1, the UE may map part of the data that is equal to the remaining capacity of the target uplink resource x1 to the target uplink resource x1.
  • the UE calculates the number of occupable REs corresponding to the i-th target uplink data in the at least two target uplink data according to the first formula, where i is a positive integer.
  • the first formula is:
  • G RE is the number of occupied REs corresponding to the i-th target uplink data
  • is an offset coefficient corresponding to the QoS of the i-th target uplink data
  • the offset coefficient can be configured by the base station.
  • the data may be specified by a communication protocol, where b 1 is the data amount of the i-th target uplink data, and b 2 is the data of all the target uplink data of the at least two target uplink data except the i-th target uplink data.
  • K RE is the number of REs that can map the uplink data in the specified uplink resource
  • M RE is the number of REs that can be occupied by the i-th target uplink data
  • is the modulation according to the i-th target uplink data.
  • the adjustment coefficient obtained by the coding method, min() is the minimum operation.
  • the UE obtains the RE number indication information in the first uplink grant sent by the base station, where the RE number indication information is used to indicate the number of available REs corresponding to each target uplink data.
  • the data transmission method when the target uplink resources allocated by the base station to the at least two target uplink data overlap, and the at least two target uplink data can be multiplexed and transmitted, At least two target uplink data are multiplexed to transmit on a specified uplink resource, where the at least two target uplink data includes low QoS uplink data and high QoS uplink data, so that the base station can be avoided for a certain degree of high QoS.
  • the uplink resource allocated by the uplink data overlaps with the uplink resource allocated for the low QoS uplink data, the UE discards the low QoS uplink data, thereby ensuring the transmission reliability of the low QoS uplink data.
  • FIG. 5 is a block diagram of a data transmission device 500, which may be the UE 20 shown in FIG. 1, according to an exemplary embodiment.
  • the data transmission device 500 includes a multiplexing module 501.
  • the multiplexing module 501 is configured to overlap the time-frequency positions occupied by the at least two target uplink resources, and when the at least two target uplink data can be multiplexed and transmitted, the at least two target uplink data are multiplexed to the specified uplink. Transfer on the resource.
  • the at least two target uplink resources are in one-to-one correspondence with the at least two target uplink data, and each target uplink resource is a resource allocated by the base station to the UE for transmitting corresponding target uplink data, and the at least two target uplink data.
  • the multiplexing module 501 includes a mapping sub-module and a transmission sub-module.
  • the mapping sub-module is configured to sequentially map the at least two target uplink data to the specified uplink resource in an order of highest to lowest quality of service, until the designated uplink resource is fully occupied.
  • the transmission submodule is configured to transmit data mapped to the specified uplink resource.
  • the mapping submodule is configured to sequentially map the at least two target uplink data to the specified uplink resource according to a sequence of quality of service, wherein the second target uplink The time-frequency position occupied by the data is before the time-frequency position occupied by the third target uplink data in the time domain, and the quality of service level of the second target uplink data is higher than the quality of service level of the third target uplink data.
  • the mapping submodule is configured to sort the at least two target uplink data according to a service quality level from high to low; when the kth target uplink data is all mapped to the designation The uplink resource, and when the specified uplink resource is not completely occupied, the k+1th target uplink data is mapped to the specified uplink resource, where k is a positive integer.
  • the mapping submodule is configured to sort the at least two target uplink data according to a sequence of quality of service from high to low; and determine an occupant RE corresponding to each target uplink data.
  • the kth target uplink data is mapped to the specified uplink resource according to the corresponding number of available REs, and the specified uplink resource is not completely occupied, the k+1th target uplink data is corresponding according to the corresponding The number of occupied REs is mapped to the specified uplink resource, and k is a positive integer.
  • the mapping sub-module is configured to calculate, according to the first formula, the number of occupable REs corresponding to the i-th target uplink data, where i is a positive integer;
  • the first formula is:
  • the G RE is the number of occupied REs corresponding to the i-th target uplink data
  • is an offset coefficient corresponding to the quality of service level of the i-th target uplink data
  • b 1 is the i-th target uplink data.
  • the amount of data b 2 is the data amount of all target uplink data except the ith target uplink data in the at least two target uplink data
  • K RE is the number of REs in the specified uplink resource that can map the uplink data.
  • M RE is the number of REs that can be occupied by the i-th target uplink data
  • is an adjustment coefficient obtained according to the modulation and coding method of the i-th target uplink data.
  • the mapping submodule is configured to receive a first uplink grant sent by the base station, where the first uplink grant is used to schedule the at least two target uplink data, where the first uplink grant carries the RE
  • the number of indication information is used to indicate the number of available REs corresponding to each target uplink data.
  • the embodiment of the present disclosure further provides another data transmission device 600.
  • the data transmission device 600 further includes a determination module 502, a first acquisition module 503, and a receiving.
  • the determining module 502 is configured to determine whether the at least two target uplink data can be multiplexed and transmitted.
  • the determining module 502 includes a first determining sub-module, configured to: determine whether the starting positions of the at least two target uplink resources in the time domain are the same; When the starting positions of the at least two target uplink resources are the same in the time domain, determining that the at least two target uplink data can be multiplexed and transmitted; when the starting positions of the at least two target uplink resources in the time domain are different And determining that the at least two target uplink data cannot be multiplexed for transmission.
  • the determining module 502 includes a receiving submodule and a second determining submodule.
  • the receiving submodule is configured to receive a first uplink grant sent by the base station, where the first uplink grant is used to schedule the at least two target uplink data, where the first uplink grant is that the base station determines the at least two target uplink resources When the occupied time-frequency positions are overlapped, the first uplink grant carries the multiplexing indication information, where the multiplexing indication information is used to indicate whether the at least two target uplink data can be multiplexed and transmitted.
  • the second determining submodule is configured to determine, according to the multiplexing indication information, whether the at least two target uplink data can be multiplexed and transmitted.
  • the first obtaining module 503 is configured to: when the multiplexing indication information indicates that the at least two target uplink data can be multiplexed, the uplink resource indicated by the first uplink grant is obtained as The specified uplink resource.
  • the receiving module 504 is configured to receive, by the base station, at least two second uplink grants that are in one-to-one correspondence with the at least two target uplink resources, where each second uplink grant is used to indicate The time-frequency location of the corresponding target uplink resource.
  • the second obtaining module 505 is configured to select one uplink resource from the at least two target uplink resources as the designated uplink resource according to the sequence of receiving the at least two second uplink grants.
  • the third acquiring module 506 is configured to acquire the first target uplink resource as the specified uplink resource when the first target uplink resource exists in the at least two target uplink resources, where The first target uplink resource includes a target uplink resource of the at least two target uplink resources.
  • the fourth obtaining module 507 is configured to: when the uplink resource configured by the high layer signaling and the uplink resource configured by using the DCI exist in the at least two target uplink resources, Any one of the uplink resources configured by the DCI is obtained as the specified uplink resource.
  • the data transmission apparatus when the target uplink resources allocated to the at least two target uplink data by the base station overlap, and the at least two target uplink data can be multiplexed and transmitted, At least two target uplink data are multiplexed to transmit on a specified uplink resource, where the at least two target uplink data includes low QoS uplink data and high QoS uplink data, so that the base station can be avoided for a certain degree of high QoS.
  • the uplink resource allocated by the uplink data overlaps with the uplink resource allocated for the low QoS uplink data, the UE discards the low QoS uplink data, thereby ensuring the transmission reliability of the low QoS uplink data.
  • FIG. 7 is a block diagram of a data transmission apparatus 700, which may be the base station 10 shown in FIG. 1, according to an exemplary embodiment.
  • the data transmission device 700 includes a generation module 701 and a transmission module 702.
  • the generating module 701 is configured to generate a first uplink grant, where the first uplink grant is used to schedule at least two target uplink data, where the first uplink grant carries the multiplexing indication information, where the multiplexing indication information is used to indicate Whether the at least two target uplink data can be multiplexed, where the first uplink grant is generated when the base station overlaps the time-frequency positions occupied by the at least two target uplink resources for transmitting the at least two target uplink data,
  • the at least two target uplink data includes uplink data whose service quality level is greater than a preset level threshold and uplink data whose service quality level is less than or equal to the preset level threshold.
  • the sending module 702 is configured to send the first uplink grant to the UE, where the UE is configured to multiplex the at least two target uplink data when the multiplexing indication information indicates that the at least two target uplink data can be multiplexed and transmitted. Transfer to the specified uplink resource.
  • the first uplink grant is used to indicate a time-frequency location of the specified uplink resource.
  • the first uplink grant carries the RE number indication information, where the RE number indication information is used to indicate the number of available REs corresponding to each target uplink data.
  • the data transmission apparatus generates and sends a first uplink grant to the UE, where the first uplink grant carries a complex for indicating whether at least two target uplink data can be multiplexed and transmitted.
  • the at least two target uplink data includes low QoS uplink data and high QoS uplink data, so that the UE multiplexes the at least two target uplink data when the at least two target uplink data can be multiplexed and transmitted.
  • the transmission to the specified uplink resource is performed, so that the uplink data of the low QoS is performed by the UE when the uplink resource allocated by the base station for the high QoS uplink data and the uplink resource allocated for the low QoS uplink data overlap to some extent. Discard, thereby ensuring the reliability of transmission of low QoS uplink data.
  • FIG. 8 is a block diagram of an information transmission device 800, according to an exemplary embodiment.
  • device 800 can be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a gaming console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • device 800 can include one or more of the following components: processing component 802, memory 804, power component 806, multimedia component 808, audio component 810, input/output (I/O) interface 812, sensor component 814, And a communication component 816.
  • Processing component 802 typically controls the overall operation of device 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 802 can include one or more processors 820 to execute instructions to perform all or part of the steps performed by UE 20 in the method embodiments described above.
  • processing component 802 can include one or more modules to facilitate interaction between component 802 and other components.
  • processing component 802 can include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operation at device 800. Examples of such data include instructions for any application or method operating on device 800, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Electrically erasable programmable read only memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 806 provides power to various components of device 800.
  • Power component 806 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 800.
  • the multimedia component 808 includes a screen between the device 800 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor may sense not only the boundary of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. The front camera and/or the rear camera can receive external multimedia data when the device 800 is in an operational mode, such as a shooting mode or a video mode. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input an audio signal.
  • the audio component 810 includes a microphone (MIC) that is configured to receive an external audio signal when the device 800 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 804 or transmitted via communication component 816.
  • the audio component 810 also includes a speaker for outputting an audio signal.
  • the I/O interface 812 provides an interface between the processing component 802 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 814 includes one or more sensors for providing device 800 with a status assessment of various aspects.
  • sensor assembly 814 can detect an open/closed state of device 800, relative positioning of components, such as the display and keypad of device 800, and sensor component 814 can also detect a change in position of one component of device 800 or device 800. The presence or absence of user contact with device 800, device 800 orientation or acceleration/deceleration, and temperature variation of device 800.
  • Sensor assembly 814 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 814 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communication between device 800 and other devices.
  • the device 800 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the technical processes performed by the UE 20 in the above method embodiments.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the technical processes performed by the UE 20 in the above method embodiments.
  • non-transitory computer readable storage medium comprising instructions, such as a memory 804 comprising instructions executable by processor 820 of apparatus 800 to perform UE 20 in the above method embodiments The technical process of execution.
  • the non-transitory computer readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • FIG. 9 is a block diagram of a data transmission device 900, according to an exemplary embodiment.
  • data transmission device 900 can be a base station.
  • the data transmission device 900 can include a processor 901, a receiver 902, a transmitter 903, and a memory 904.
  • Receiver 902, transmitter 903, and memory 904 are coupled to processor 901 via a bus, respectively.
  • the processor 901 includes one or more processing cores, and the processor 901 executes the method executed by the base station in the data transmission method provided by the embodiment of the present disclosure by running a software program and a module.
  • Memory 904 can be used to store software programs as well as modules. Specifically, the memory 904 can store an application module 9042 required by the operating system 9041 and at least one function.
  • the receiver 902 is configured to receive communication data transmitted by other devices, and the transmitter 903 is configured to transmit communication data to other devices.
  • FIG. 10 is a block diagram of a data transmission system 1000, as shown in FIG. 10, including a base station 1001 and a UE 1002, according to an exemplary embodiment.
  • the base station 1001 is configured to perform a data transmission method performed by a base station in the embodiment shown in FIG.
  • the UE 1002 is configured to perform a data transmission method performed by the UE in the embodiment shown in FIG.
  • a computer readable storage medium which is a non-transitory computer readable storage medium having stored therein a computer program, stored When the computer program is executed by the processing component, the data transmission method provided by the embodiment of the present disclosure can be implemented.
  • the data transmission method may be: when the time-frequency positions occupied by the at least two target uplink resources overlap, and at least two When the target uplink data can be multiplexed and transmitted, the at least two target uplink data are multiplexed to the specified uplink resource for transmission; wherein the at least two target uplink resources are in one-to-one correspondence with the at least two target uplink data, and each target The uplink resource is a resource allocated by the base station to the UE for transmitting the corresponding target uplink data, and the at least two target uplink data has uplink data whose service quality level is greater than a preset level threshold, and the service quality level is less than or equal to the preset level.
  • Uplink data of the threshold is a resource allocated by the base station to the UE for transmitting the corresponding target uplink data
  • the at least two target uplink data has uplink data whose service quality level is greater than a preset level threshold, and the service quality level is less than or equal to the preset level.
  • the data transmission method may be: generating a first uplink grant, where the first uplink grant is used to schedule at least two target uplink data, where the first uplink grant carries the multiplexing indication information, where the multiplexing indication information is used to indicate Whether the at least two target uplink data can be multiplexed, where the first uplink grant is generated when the base station overlaps the time-frequency positions occupied by the at least two target uplink resources for transmitting the at least two target uplink data, The uplink data of the at least two target uplink data that has a QoS level greater than a preset level threshold and the uplink data whose QoS level is less than or equal to the preset level threshold; sending the first uplink grant to the UE, where the UE is used to And the multiplexing indication information indicates that the at least two target uplink data are multiplexed and transmitted, and the at least two target uplink data are multiplexed to the specified uplink resource for transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种数据传输方法、装置、系统及存储介质,属于无线通信领域。所述方法包括:当至少两个目标上行资源所占据的时频位置重叠,且,至少两个目标上行数据能够复用传输时,将至少两个目标上行数据复用至指定上行资源上传输;其中,至少两个目标上行资源与至少两个目标上行数据一一对应,每个目标上行资源是基站分配给用户设备UE的用于传输对应的目标上行数据的资源,至少两个目标上行数据中存在服务质量等级大于预设等级阈值的上行数据以及服务质量等级小于或等于预设等级阈值的上行数据。本公开提供的技术方案能够保证低QoS的上行数据的传输可靠性。

Description

数据传输方法、装置、系统及存储介质 技术领域
本公开涉及无线通信领域,尤其涉及一种数据传输方法、装置、系统及存储介质。
背景技术
无线通信系统中,在发送每一上行数据之前,UE(User Equipment,用户设备)都需要向基站发送调度请求,该调度请求可以携带UE所要发送的上行数据的QoS(Quality of Service,服务质量等级),基站接收到该调度请求后,可以基于该QoS向UE分配上行资源,以使UE通过基站分配的上行资源传输上行数据。实际应用中,基站为高QoS的上行数据分配的上行资源和为低QoS的上行数据分配的上行资源很可能存在重叠,在这种情况下,UE需要丢弃低QoS的上行数据以保证高QoS的上行数据的正常传输,这会影响低QoS的上行数据的传输可靠性。
发明内容
本公开提供了一种数据传输方法、装置、系统及存储介质,能够保证低QoS的上行数据的传输可靠性。
根据本公开实施例的第一方面,提供一种数据传输方法,包括:
当至少两个目标上行资源所占据的时频位置重叠,且,至少两个目标上行数据能够复用传输时,将所述至少两个目标上行数据复用至指定上行资源上传输;
其中,所述至少两个目标上行资源与所述至少两个目标上行数据一一对 应,每个所述目标上行资源是基站分配给用户设备UE的用于传输对应的目标上行数据的资源,所述至少两个目标上行数据中存在服务质量等级大于预设等级阈值的上行数据以及服务质量等级小于或等于所述预设等级阈值的上行数据。
可选的,所述方法还包括:判断所述至少两个目标上行数据是否能够复用传输。
可选的,所述判断所述至少两个目标上行数据是否能够复用传输,包括:
判断所述至少两个目标上行资源在时域上的起始位置是否相同;
当所述至少两个目标上行资源在时域上的起始位置相同时,确定所述至少两个目标上行数据能够复用传输。
可选的,所述判断所述至少两个目标上行数据是否能够复用传输,包括:
判断所述至少两个目标上行资源在时域上的起始位置是否相同;
当所述至少两个目标上行资源在时域上的起始位置不相同时,确定所述至少两个目标上行数据不能复用传输。
可选的,所述判断所述至少两个目标上行数据是否能够复用传输,包括:
接收所述基站发送的第一上行授权,所述第一上行授权用于调度所述至少两个目标上行数据,所述第一上行授权是所述基站在确定所述至少两个目标上行资源所占据的时频位置重叠时生成的,所述第一上行授权携带有复用指示信息,所述复用指示信息用于指示所述至少两个目标上行数据是否能够复用传输;
根据所述复用指示信息判断所述至少两个目标上行数据是否能够复用传输。
可选的,所述方法还包括:
当所述复用指示信息指示所述至少两个目标上行数据能够复用传输时,将所述第一上行授权指示的上行资源获取为所述指定上行资源。
可选的,所述方法还包括:
接收所述基站发送的与所述至少两个目标上行资源一一对应的至少两个第二上行授权,每个所述第二上行授权用于指示对应的目标上行资源的时频位置;
根据接收到所述至少两个第二上行授权的先后顺序,从所述至少两个目标上行资源中选择一个上行资源作为所述指定上行资源。
可选的,所述方法还包括:
当所述至少两个目标上行资源中存在第一目标上行资源时,将所述第一目标上行资源获取为所述指定上行资源,其中,所述第一目标上行资源包括所述至少两个目标上行资源中的某目标上行资源。
可选的,所述方法还包括:
当所述至少两个目标上行资源中同时存在通过高层信令进行配置的上行资源和通过下行控制信息DCI进行配置的上行资源时,将通过DCI进行配置的所述上行资源中的任一个上行资源获取为所述指定上行资源。
可选的,所述将所述至少两个目标上行数据复用至指定上行资源上传输,包括:
按照服务质量等级由高至低的顺序,将所述至少两个目标上行数据依次映射至所述指定上行资源中,直至所述指定上行资源被全部占用时为止;
传输映射至所述指定上行资源中的数据。
可选的,所述按照服务质量等级由高至低的顺序,将所述至少两个目标上行数据依次映射至所述指定上行资源中,包括:
按照服务质量等级由高至低的顺序,将所述至少两个目标上行数据依次映射至所述指定上行资源中,其中,第二目标上行数据所占据的时频位置在时域上位于第三目标上行数据所占据的时频位置之前,所述第二目标上行数据的服务质量等级高于所述第三目标上行数据的服务质量等级。
可选的,所述按照服务质量等级由高至低的顺序,将所述至少两个目标上行数据依次映射至所述指定上行资源中,包括:
按照服务质量等级由高至低的顺序,对所述至少两个目标上行数据进行排序;
当第k个目标上行数据全部映射于所述指定上行资源,且,所述指定上行资源未被完全占用时,将第k+1个目标上行数据映射至所述指定上行资源,k为正整数。
可选的,所述按照服务质量等级由高至低的顺序,将所述至少两个目标上行数据依次映射至所述指定上行资源中,包括:
按照服务质量等级由高至低的顺序,对所述至少两个目标上行数据进行排序;
确定每个所述目标上行数据对应的可占用资源单元RE个数;
当第k个目标上行数据按照对应的可占用RE个数映射至所述指定上行资源上,且,所述指定上行资源未被完全占用时,将第k+1个目标上行数据按照对应的可占用RE个数映射至所述指定上行资源上,k为正整数。
可选的,所述确定每个所述目标上行数据对应的可占用资源单元RE个数,包括:
根据第一公式计算第i个目标上行数据对应的可占用RE个数,i为正整数;
所述第一公式为:
Figure PCTCN2018081913-appb-000001
或者,
Figure PCTCN2018081913-appb-000002
其中,G RE为所述第i个目标上行数据对应的可占用RE个数,α为所述第i个目标上行数据的服务质量等级对应的偏移系数,b 1为所述第i个目标上行数据的数据量,b 2为所述至少两个目标上行数据中除所述第i个目标上行数据之外的所有目标上行数据的数据量,K RE为所述指定上行资源中能够映射上行数 据的RE的个数,M RE为所述第i个目标上行数据最多能占用的RE的个数,β为根据所述第i个目标上行数据的调制编码方式得到的调整系数。
可选的,所述确定每个所述目标上行数据对应的可占用资源单元RE个数,包括:
接收所述基站发送的第一上行授权,所述第一上行授权用于调度所述至少两个目标上行数据,所述第一上行授权携带有RE个数指示信息,所述RE个数指示信息用于指示每个所述目标上行数据对应的可占用RE个数。
根据本公开实施例的第二方面,提供一种数据传输方法,包括:
生成第一上行授权,所述第一上行授权用于调度至少两个目标上行数据,所述第一上行授权携带有复用指示信息,所述复用指示信息用于指示所述至少两个目标上行数据是否能够复用传输,所述第一上行授权是基站在确定用于传输所述至少两个目标上行数据的至少两个目标上行资源所占据的时频位置重叠时生成的,所述至少两个目标上行数据中存在服务质量等级大于预设等级阈值的上行数据以及服务质量等级小于或等于所述预设等级阈值的上行数据;
向用户设备UE发送所述第一上行授权,所述UE用于在所述复用指示信息指示所述至少两个目标上行数据能够复用传输时,将所述至少两个目标上行数据复用至指定上行资源上传输。
可选的,所述第一上行授权用于指示所述指定上行资源的时频位置。
可选的,所述第一上行授权携带有RE个数指示信息,所述RE个数指示信息用于指示每个所述目标上行数据对应的可占用RE个数。
根据本公开实施例的第三方面,提供一种数据传输装置,包括:
复用模块,用于在至少两个目标上行资源所占据的时频位置重叠,且,至少两个目标上行数据能够复用传输时,将所述至少两个目标上行数据复用至指定上行资源上传输;
其中,所述至少两个目标上行资源与所述至少两个目标上行数据一一对应,每个所述目标上行资源是基站分配给用户设备UE的用于传输对应的目标 上行数据的资源,所述至少两个目标上行数据中存在服务质量等级大于预设等级阈值的上行数据以及服务质量等级小于或等于所述预设等级阈值的上行数据。
可选的,所述装置还包括判断模块,所述判断模块,用于判断所述至少两个目标上行数据是否能够复用传输。
可选的,所述判断模块包括第一判断子模块,所述第一判断子模块,用于:判断所述至少两个目标上行资源在时域上的起始位置是否相同;当所述至少两个目标上行资源在时域上的起始位置相同时,确定所述至少两个目标上行数据能够复用传输。
可选的,所述判断模块包括第二判断子模块,所述第二判断子模块,用于:判断所述至少两个目标上行资源在时域上的起始位置是否相同;当所述至少两个目标上行资源在时域上的起始位置不相同时,确定所述至少两个目标上行数据不能复用传输。
可选的,所述判断模块包括接收子模块和第三判断子模块;
所述接收子模块,用于接收所述基站发送的第一上行授权,所述第一上行授权用于调度所述至少两个目标上行数据,所述第一上行授权是所述基站在确定所述至少两个目标上行资源所占据的时频位置重叠时生成的,所述第一上行授权携带有复用指示信息,所述复用指示信息用于指示所述至少两个目标上行数据是否能够复用传输;
所述第三判断子模块,用于根据所述复用指示信息判断所述至少两个目标上行数据是否能够复用传输。
可选的,所述装置还包括第一获取模块,所述第一获取模块,用于在所述复用指示信息指示所述至少两个目标上行数据能够复用传输时,将所述第一上行授权指示的上行资源获取为所述指定上行资源。
可选的,所述装置还包括接收模块和第二获取模块;
所述接收模块,用于接收所述基站发送的与所述至少两个目标上行资源一 一对应的至少两个第二上行授权,每个所述第二上行授权用于指示对应的目标上行资源的时频位置;
所述第二获取模块,用于根据接收到所述至少两个第二上行授权的先后顺序,从所述至少两个目标上行资源中选择一个上行资源作为所述指定上行资源。
可选的,所述装置还包括第三获取模块,所述第三获取模块,用于在所述至少两个目标上行资源中存在第一目标上行资源时,将所述第一目标上行资源获取为所述指定上行资源,其中,所述第一目标上行资源包括所述至少两个目标上行资源中的某目标上行资源。
可选的,所述装置还包括第四获取模块,所述第四获取模块,用于在所述至少两个目标上行资源中同时存在通过高层信令进行配置的上行资源和通过下行控制信息DCI进行配置的上行资源时,将通过DCI进行配置的所述上行资源中的任一个上行资源获取为所述指定上行资源。
可选的,所述复用模块包括映射子模块和传输子模块;
所述映射子模块,用于按照服务质量等级由高至低的顺序,将所述至少两个目标上行数据依次映射至所述指定上行资源中,直至所述指定上行资源被全部占用时为止;
所述传输子模块,用于传输映射至所述指定上行资源中的数据。
可选的,所述映射子模块,用于按照服务质量等级由高至低的顺序,将所述至少两个目标上行数据依次映射至所述指定上行资源中,其中,第二目标上行数据所占据的时频位置在时域上位于第三目标上行数据所占据的时频位置之前,所述第二目标上行数据的服务质量等级高于所述第三目标上行数据的服务质量等级。
可选的,所述映射子模块,用于按照服务质量等级由高至低的顺序,对所述至少两个目标上行数据进行排序;当第k个目标上行数据全部映射于所述指定上行资源,且,所述指定上行资源未被完全占用时,将第k+1个目标上行数 据映射至所述指定上行资源,k为正整数。
可选的,所述映射子模块,用于按照服务质量等级由高至低的顺序,对所述至少两个目标上行数据进行排序;确定每个所述目标上行数据对应的可占用资源单元RE个数;当第k个目标上行数据按照对应的可占用RE个数映射至所述指定上行资源上,且,所述指定上行资源未被完全占用时,将第k+1个目标上行数据按照对应的可占用RE个数映射至所述指定上行资源上,k为正整数。
可选的,所述映射子模块,用于根据第一公式计算第i个目标上行数据对应的可占用RE个数,i为正整数;
所述第一公式为:
Figure PCTCN2018081913-appb-000003
或者,
Figure PCTCN2018081913-appb-000004
其中,G RE为所述第i个目标上行数据对应的可占用RE个数,α为所述第i个目标上行数据的服务质量等级对应的偏移系数,b 1为所述第i个目标上行数据的数据量,b 2为所述至少两个目标上行数据中除所述第i个目标上行数据之外的所有目标上行数据的数据量,K RE为所述指定上行资源中能够映射上行数据的RE的个数,M RE为所述第i个目标上行数据最多能占用的RE的个数,β为根据所述第i个目标上行数据的调制编码方式得到的调整系数。
可选的,所述映射子模块,用于接收所述基站发送的第一上行授权,所述第一上行授权用于调度所述至少两个目标上行数据,所述第一上行授权携带有RE个数指示信息,所述RE个数指示信息用于指示每个所述目标上行数据对应的可占用RE个数。
根据本公开实施例的第四方面,提供一种数据传输装置,包括:
生成模块,用于生成第一上行授权,所述第一上行授权用于调度至少两个目标上行数据,所述第一上行授权携带有复用指示信息,所述复用指示信息用于指示所述至少两个目标上行数据是否能够复用传输,所述第一上行授权是基站在确定用于传输所述至少两个目标上行数据的至少两个目标上行资源所占据的时频位置重叠时生成的,所述至少两个目标上行数据中存在服务质量等级大于预设等级阈值的上行数据以及服务质量等级小于或等于所述预设等级阈值的上行数据;
发送模块,用于向用户设备UE发送所述第一上行授权,所述UE用于在所述复用指示信息指示所述至少两个目标上行数据能够复用传输时,将所述至少两个目标上行数据复用至指定上行资源上传输。
可选的,所述第一上行授权用于指示所述指定上行资源的时频位置。
可选的,所述第一上行授权携带有RE个数指示信息,所述RE个数指示信息用于指示每个所述目标上行数据对应的可占用RE个数。
根据本公开实施例的第五方面,提供一种数据传输装置,包括:
处理器;
用于存储处理器可执行的指令的存储器;
其中,所述处理器被配置为:
当至少两个目标上行资源所占据的时频位置重叠,且,至少两个目标上行数据能够复用传输时,将所述至少两个目标上行数据复用至指定上行资源上传输;
其中,所述至少两个目标上行资源与所述至少两个目标上行数据一一对应,每个所述目标上行资源是基站分配给用户设备UE的用于传输对应的目标上行数据的资源,所述至少两个目标上行数据中存在服务质量等级大于预设等级阈值的上行数据以及服务质量等级小于或等于所述预设等级阈值的上行数据。
根据本公开实施例的第六方面,提供一种数据传输装置,包括:
处理器;
用于存储处理器可执行的指令的存储器;
其中,所述处理器被配置为:
生成第一上行授权,所述第一上行授权用于调度至少两个目标上行数据,所述第一上行授权携带有复用指示信息,所述复用指示信息用于指示所述至少两个目标上行数据是否能够复用传输,所述第一上行授权是基站在确定用于传输所述至少两个目标上行数据的至少两个目标上行资源所占据的时频位置重叠时生成的,所述至少两个目标上行数据中存在服务质量等级大于预设等级阈值的上行数据以及服务质量等级小于或等于所述预设等级阈值的上行数据;
向用户设备UE发送所述第一上行授权,所述UE用于在所述复用指示信息指示所述至少两个目标上行数据能够复用传输时,将所述至少两个目标上行数据复用至指定上行资源上传输。
根据本公开实施例的第七方面,提供一种数据传输系统,所述系统包括如上述第三方面任一所述的数据传输装置和如上述第四方面任一所述的数据传输装置。
根据本公开实施例的第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如上述第一方面任一所述的数据传输方法;或者,
所述指令由处理器加载并执行以实现如上述第二方面任一所述的数据传输方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过在基站分配给至少两个目标上行数据的目标上行资源出现重叠,且,该至少两个目标上行数据能够复用传输时,将该至少两个目标上行数据复用至指定上行资源上传输,其中,该至少两个目标上行数据包括低QoS的上行数据和高QoS的上行数据,这样,就可以一定程度上避免在基站为高QoS的上行数据分配的上行资源和为低QoS的上行数据分配的上行资源出现重叠时,UE 对低QoS的上行数据进行丢弃,从而保证低QoS的上行数据的传输可靠性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种实施环境的示意图。
图2是根据一示例性实施例示出的一种数据传输方法的流程图。
图3是根据一示例性实施例示出的一种数据传输方法的流程图。
图4是根据一示例性实施例示出的一种数据传输方法的流程图。
图5是根据一示例性实施例示出的一种数据传输装置的框图。
图6是根据一示例性实施例示出的一种数据传输装置的框图。
图7是根据一示例性实施例示出的一种数据传输装置的框图。
图8是根据一示例性实施例示出的一种数据传输装置的框图。
图9是根据一示例性实施例示出的一种数据传输装置的框图。
图10是根据一示例性实施例示出的一种数据传输系统的框图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
无线通信系统中,在UE(User Equipment,用户设备)需要向基站发送上行数据时,该UE可以向基站发送调度请求,该调度请求可以为SR(Scheduling Request,调度请求)和/或BSR(Buffer Status Report,缓冲区状态上报)等。基站在接收到UE发送的调度请求后可以向该UE发送上行授权(英文:UL grant)以对UE中待发送的上行数据进行调度,其中,该上行授权用于指示基站分配给该UE的用于传输上行数据的上行资源的时频位置。UE在接收到该上行授权后,可以通过该上行授权指示的上行资源发送上行数据。
在5G(The Fifth Generation Mobile Communication Technology,第五代移动通信技术)通信系统中,UE向基站发送的调度请求中可以携带UE中待发送的上行数据的QoS(Quality of Service,服务质量等级),基站可以基于该调度请求中携带的QoS向UE发送上行授权。其中,对于高QoS的上行数据而言,基站发送上行授权所使用的下行资源与该上行授权所指示的上行资源在时域上的间隔较小,而对于低QoS的上行数据而言,基站发送上行授权所使用的下行资源与该上行授权所指示的上行资源在时域上的间隔较大。
由于对于不同QoS的上行数据,基站发送上行授权所使用的下行资源与上行授权所指示的上行资源在时域上的间隔不同,因此,实际应用中,很容易出现对不同QoS的上行数据调度冲突的情况。其中,所谓调度冲突指的是调度高QoS上行数据的上行授权所指示的上行资源与调度低QoS上行数据的上行授权所指示的上行资源重叠。
例如,基站在时隙1向UE发送上行授权A,该上行授权A用于调度低QoS的上行数据,该上行授权A指示的上行资源为时隙4,基站在时隙3向UE发送上行授权B,该上行授权B用于调度高QoS的上行数据,该上行授权B指示的上行资源也为时隙4,由于上行授权A和上行授权B所指示的上行资源重叠,因此,就出现了调度冲突。
相关技术中,在出现调度冲突时,UE需要丢弃低QoS的上行数据以保证高QoS的上行数据的正常传输,而这会影响低QoS上行数据的传输可靠性。
例如,在上述举例中,由于出现了调度冲突,UE需要丢弃上行授权A所调度的低QoS的上行数据,并通过时隙4传输上行授权B调度的高QoS的上行数据,而这会影响上行授权A所调度的低QoS的上行数据的传输可靠性。
本公开实施例提供了一种数据传输方法,该数据传输方法中,在基站分配给不同QoS上行数据的上行资源出现重叠,且,该不同QoS的上行数据能够复用传输时,将该不同QoS的上行数据复用至指定上行资源上传输,从而能够在一定程度上避免出现调度冲突时UE对低QoS的上行数据的丢弃,继而保证低QoS的上行数据的传输可靠性。
下面,本公开实施例将对该数据传输方法所涉及到的实施环境进行说明:如图1所示,该实施环境可以包括基站10和UE 20,基站10和UE 20可以通过通信网络进行连接,UE 20为基站10所服务的小区中的任一个UE。上述通信网络可以为5G通信网络,也可以为LTE(Long Term Evolution,长期演进)通信网络,或者,其他的与LTE通信网络或5G通信网络类似的通信网络。
图2是根据一示例性实施例示出的一种数据传输方法的流程图,该数据传输方法用于图1所示的UE 20中,如图2所示,该数据传输方法可以包括以下步骤。
步骤201、当至少两个目标上行资源所占据的时频位置重叠,且,至少两个目标上行数据能够复用传输时,UE将该至少两个目标上行数据复用至指定上行资源上传输。
其中,该至少两个目标上行资源与该至少两个目标上行数据一一对应,每个目标上行资源是基站分配给UE的用于传输对应的目标上行数据的资源,该至少两个目标上行数据中存在服务质量等级大于预设等级阈值的上行数据以及服务质量等级小于或等于该预设等级阈值的上行数据。
综上所述,本公开实施例提供的数据传输方法,通过在基站分配给至少两个目标上行数据的目标上行资源出现重叠,且,该至少两个目标上行数据能够 复用传输时,将该至少两个目标上行数据复用至指定上行资源上传输,其中,该至少两个目标上行数据包括低QoS的上行数据和高QoS的上行数据,这样,就可以一定程度上避免在基站为高QoS的上行数据分配的上行资源和为低QoS的上行数据分配的上行资源出现重叠时,UE对低QoS的上行数据进行丢弃,从而保证低QoS的上行数据的传输可靠性。
图3是根据一示例性实施例示出的一种数据传输方法的流程图,该数据传输方法用于图1所示的基站10中,如图3所示,该数据传输方法可以包括以下步骤。
步骤301、基站生成第一上行授权。
该第一上行授权用于调度至少两个目标上行数据,该第一上行授权携带有复用指示信息,该复用指示信息用于指示该至少两个目标上行数据是否能够复用传输。该第一上行授权是基站在确定用于传输该至少两个目标上行数据的至少两个目标上行资源所占据的时频位置重叠时生成的。
该至少两个目标上行数据中存在服务质量等级大于预设等级阈值的上行数据以及服务质量等级小于或等于所述预设等级阈值的上行数据。
步骤302、基站向UE发送第一上行授权。
该UE用于在复用指示信息指示该至少两个目标上行数据能够复用传输时,将该至少两个目标上行数据复用至指定上行资源上传输。
综上所述,本公开实施例提供的数据传输方法,通过基站生成并向UE发送第一上行授权,其中,该第一上行授权携带用于指示至少两个目标上行数据是否能够复用传输的复用指示信息,该至少两个目标上行数据包括低QoS的上行数据和高QoS的上行数据,使得UE在该至少两个目标上行数据能够复用传输时,将该至少两个目标上行数据复用至指定上行资源上传输,这样,就可以一定程度上避免在基站为高QoS的上行数据分配的上行资源和为低QoS的上行数据分配的上行资源出现重叠时,UE对低QoS的上行数据进行丢弃,从而 保证低QoS的上行数据的传输可靠性。
图4是根据一示例性实施例示出的一种数据传输方法的流程图,该数据传输方法用于图1所示的实施环境中,如图4所示,该数据传输方法可以包括以下步骤。
步骤401、UE判断至少两个目标上行资源所占据的时频位置是否重叠。
其中,该至少两个目标上行资源与至少两个目标上行数据一一对应,每个目标上行资源是基站分配给UE的用于传输对应的目标上行数据的资源。
该至少两个目标上行数据中存在QoS大于预设等级阈值的上行数据以及QoS小于或等于预设等级阈值的上行数据,也即是,该至少两个目标上行数据中存在高QoS的上行数据和低QoS的上行数据。需要指出的是,上述预设等级阈值可以由通信协议规定也可以由基站进行配置,本公开实施例对此不作具体限定。
实际应用中,基站可以通过上行授权对目标上行数据进行调度,其中,上行授权可以指示基站为该上行授权所调度的目标上行数据分配的目标上行资源的时频位置,也即是,上行授权可以指示与该上行授权所调度的目标上行数据对应的目标上行资源的时频位置。
因此,在一种可能的实现方式中,UE可以接收基站发送的与该至少两个目标上行数据一一对应的至少两个第二上行授权,其中,每个第二上行授权用于调度对应的目标上行数据,而后,UE可以根据该至少两个第二上行授权的指示确定该至少两个目标上行资源所占据的时频位置是否重叠。
例如,UE可以接收基站发送的第二上行授权A和第二上行授权B,该第二上行授权A用于调度目标上行数据a,该第二上行授权B用于调度目标上行数据b,其中,第二上行授权A可以指示基站分配给UE的用于传输目标上行数据a的目标上行资源x1的时频位置,第二上行授权B可以指示基站分配给UE的用于传输目标上行数据b的目标上行资源x2的时频位置,UE可以根据 第二上行授权A和第二上行授权B的指示判断目标上行资源x1和目标上行资源x2所占据的时频位置是否重叠。
在另一种可能的实现方式中,基站在向UE发送用于调度某一目标上行数据的上行授权之前,可以确定该上行授权所指示的目标上行资源与基站已经发送的至少一个上行授权所指示的目标上行资源占据的时频位置是否重叠,其中,该至少一个上行授权中的每一个上行授权均用于调度目标上行数据。当确定该上行授权所指示的目标上行资源与基站已经发送的至少一个上行授权所指示的目标上行资源占据的时频位置重叠时,基站可以取消对该上行授权的发送,并生成第一上行授权,该第一上行授权用于调度至少两个目标上行数据,该至少两个目标上行数据包括取消的上行授权所调度的目标上行数据和基站已经发送的至少一个上行授权所调度的目标上行数据。UE在接收到该第一上行授权后,即可确定该至少两个目标上行资源所占据的时频位置重叠。
例如,上述举例中,基站在向UE发送第二上行授权B之前,可以确定该第二上行授权B所指示的目标上行资源x2与基站已经发送的第二上行授权A所指示的目标上行资源x1所占据的时频位置是否重叠,当目标上行资源x2与目标上行资源x1所占据的时频位置重叠时,基站可以取消对第二上行授权B的传输,并生成第一上行授权,该第一上行授权用于调度目标上行数据a和目标上行数据b,UE接收到该第一上行授权后,即可确定目标上行资源x2和目标上行资源x1所占据的时频位置重叠。
需要指出的是,在本公开实施例中,至少两个目标上行资源所占据的时频位置重叠指的是:该至少两个目标上行资源所占据的时频位置存在交集。
步骤402、当该至少两个目标上行资源所占据的时频位置重叠时,UE判断至少两个目标上行数据是否能够复用传输。
需要指出的是,在本公开实施例中,至少两个目标上行数据复用传输指的是:通过同一上行资源传输该至少两个目标上行数据。
一种可能的实现方式中,在接收到基站发送的第一上行授权后,UE可以 获取该第一上行授权所携带的复用指示信息,该复用指示信息用于指示该至少两个目标上行数据是否能够复用传输,UE可以根据该复用指示信息判断至少两个目标上行数据是否能够复用传输。
另一种可能的实现方式中,UE可以根据与该至少两个目标上行数据一一对应的至少两个第二上行授权的指示分别确定该至少两个目标上行资源的时频位置,并根据该至少两个目标上行资源在时域上的起始位置是否相同判断该至少两个目标上行数据是否能够复用传输。
通常情况下,UE在传输上行数据之前,需要一段时间对上行数据进行处理,在对上行数据处理完成后,UE可以在基站分配的上行资源上传输该上行数据。如果提前传输上行数据,也即是,如果在基站分配的上行资源之前的某一上行资源上传输该上行数据,就很可能会导致UE没有充足的时间对上行数据进行处理,从而影响上行数据的正常传输。因此,当该至少两个目标上行资源在时域上的起始位置不相同时,若将该至少两个目标上行数据进行复用传输,那么该至少两个目标上行数据中的某些目标上行数据很可能就需要提前传输,而这可能会对这些目标上行数据的正常传输带来影响。故此,在本公开实施例中,UE可以根据该至少两个目标上行资源在时域上的起始位置是否相同判断该至少两个目标上行数据是否能够复用传输。
在一种情况下,当该至少两个目标上行资源在时域上的起始位置相同时,UE可以确定该至少两个目标上行数据能够复用传输。
在另一种情况下,当该至少两个目标上行资源在时域上的起始位置不相同时,UE可以确定该至少两个目标上行数据不能复用传输。
例如,在上述举例中,UE可以根据第二上行授权A和第二上行授权B的指示分别确定目标上行资源x1和目标上行资源x2在时域上的起始位置。在一种情况下,当UE确定该目标上行资源x1和该目标上行资源x2在时域上的起始位置相同时,例如,UE确定该目标上行资源x1和该目标上行资源x2在时域上的起始位置均为时隙1时,UE可以确定目标上行数据a和目标上行数据b 能够复用传输;在另一种情况下,当UE确定该目标上行资源x1和该目标上行资源x2在时域上的起始位置不相同时,例如,UE确定该目标上行资源x1和该目标上行资源x2在时域上的起始位置分别为时隙1和时隙2时,UE可以确定目标上行数据a和目标上行数据b不能复用传输。
步骤403、当至少两个目标上行数据能够复用传输时,UE确定指定上行资源。
该指定上行资源为该至少两个目标上行数据复用传输所使用的上行资源。
本公开实施例提供了四种示例性的UE确定指定上行资源的方式:
第一种方式、在UE接收到基站发送的第一上行授权,且,该第一上行授权所携带的复用指示信息指示该至少两个目标上行数据能够复用传输时,UE可以将第一上行授权所指示的上行资源获取为指定上行资源。
第二种方式、UE在接收到与该至少两个目标上行数据一一对应的至少两个第二上行授权后,可以根据接收到该至少两个第二上行授权的先后顺序,从该至少两个目标上行资源中选择一个上行资源作为指定上行资源。
可选的,UE可以将最先接收到的第二上行授权所指示的目标上行资源获取为指定上行资源,或者,UE可以将最后接收到的第二上行授权所指示的目标上行资源获取为指定上行资源,或者,UE可以将第预设个数个接收到的第二上行授权所指示的目标上行资源获取为指定上行资源。其中,该预设个数可以由通信协议进行规定,也可以由基站进行配置,本公开实施例对此不作具体限定。
例如,在上述举例中,若UE先接收到第二上行授权A后接收到第二上行授权B,则在一种可能的情况中,UE可以将先接收到的第二上行授权A所指示的目标上行资源x1获取为指定上行资源,在另一种可能的情况中,UE可以将后接收到的第二上行授权B所指示的目标上行资源x2获取为指定上行资源。
第三种方式、当该至少两个目标上行资源中存在第一目标上行资源时,UE将该第一目标上行资源获取为指定上行资源。
其中,该第一目标上行资源包括至少两个目标上行资源中的某目标上行资源,也即是,该某目标上行资源所占据的时频位置是该第一目标上行资源所占据的时频位置的子集。
例如,在上述举例中,若第二上行授权A所指示的目标上行资源x1占据的时频位置是第二上行授权B所指示的目标上行资源x2占据的时频位置的子集,UE可以将目标上行资源x2获取为指定上行资源。
第四种方式、当该至少两个目标上行资源中同时存在通过高层信令进行配置的上行资源和通过DCI(Downlink Control Information,下行控制信息)进行配置的上行资源时,UE将通过DCI进行配置的上行资源中的任一个上行资源获取为指定上行资源。
如上所述,基站可以下发上行授权以指示基站给UE分配的上行资源的时频位置,其中,该上行授权可以通过DCI进行发送,也可以通过高层信令进行发送,其中,通过高层信令进行发送的上行授权也可以称为配置授权(英文:configured grant)。
当该至少两个目标上行资源中存在由基站通过DCI发送的上行授权所指示的目标上行资源,且,该至少两个目标上行资源中存在由基站通过高层信令发送的上行授权所指示的目标上行资源时,UE可以将由基站通过DCI发送的上行授权所指示的目标上行资源中的任一个目标上行资源获取为指定上行资源。
例如,在上述举例中,若第二上行授权A由基站通过DCI进行发送,而第二上行授权B由基站通过高层信令进行发送,那么,UE可以将第二上行授权A所指示的目标上行资源x1获取为指定上行资源。
步骤404、UE将至少两个目标上行数据复用至指定上行资源上传输。
在本公开实施例中,UE可以按照QoS由高至低的顺序,将该至少两个目标上行数据依次映射至指定上行资源中,直至该指定上行资源被全部占用时为止,而后,UE可以传输映射至该指定上行资源中的数据。
可选的,在映射过程中,UE需要保证将QoS较高的目标上行数据映射至指定上行资源中在时域上靠前的位置上,将QoS较低的目标上行数据映射至指定上行资源中在时域上靠后的位置上,也即是,UE需要保证第二目标上行数据所占据的时频位置在时域上位于第三目标上行数据所占据的时频位置之前,其中,该第二目标上行数据的QoS高于该第三目标上行数据的QoS。
例如,在上述举例中,若UE需要将目标上行数据a和目标上行数据b复用至目标上行资源x1(也即是指定上行资源)上传输,其中,目标上行数据a的QoS高于目标上行数据b的QoS,那么,UE可以先将目标上行数据a映射至目标上行资源x1上,同时,UE需要保证将目标上行数据a映射至目标上行资源x1中在时域上靠前的位置上,其中,该位置可以为目标上行资源x1中与解调参考符号相邻的位置上,在完成对目标上行数据a的映射后,UE可以将目标上行数据b映射至目标上行资源x1上,同时,UE需要保证将目标上行数据b映射至目标上行资源x1中在时域上靠后的位置上。
本公开实施例提供了两种UE按照QoS由高至低的顺序将至少两个目标上行数据依次映射至指定上行资源中的方式:
第一种方式、UE可以按照QoS由高至低的顺序,对至少两个目标上行数据进行排序,当第k个目标上行数据全部映射于指定上行资源,且,该指定上行资源未被完全占用时,UE将第k+1个目标上行数据映射至该指定上行资源,其中,k为正整数。
换句话说,在第一种方式中,UE可以将高QoS的目标上行数据全部映射至指定上行资源上,若映射完成后,该指定上行资源还未被完全占用,UE可以将次高QoS的目标上行数据映射至指定上行资源上,UE可以重复执行该过程,直至该指定上行资源被完全占用时为止。
例如,在上述举例中,若UE需要将目标上行数据a和目标上行数据b复用至目标上行资源x1(也即是指定上行资源)上传输,其中,目标上行数据a的QoS高于目标上行数据b的QoS,那么,UE可以先将目标上行数据a全部 映射至目标上行资源x1上,若在完成对目标上行数据a的映射后,目标上行资源x1未被完全占用,则UE可以将目标上行数据b映射至目标上行资源x1上,在映射目标上行数据b的过程中,若目标上行数据b的数据量小于或等于目标上行资源x1剩余的容量,UE可以将目标上行数据b全部映射至目标上行资源x1上,若目标上行数据b的数据量大于目标上行资源x1剩余的容量,UE可以将目标上行数据b中与目标上行资源x1剩余的容量相等的部分数据映射至目标上行资源x1上。
第二种方式、UE可以按照QoS由高至低的顺序,对该至少两个目标上行数据进行排序,同时,UE可以确定每个目标上行数据对应的可占用RE(Resource Element,资源单元)个数,当第k个目标上行数据按照对应的可占用RE个数映射至指定上行资源上,且,该指定上行资源未被完全占用时,UE将第k+1个目标上行数据按照对应的可占用RE个数映射至该指定上行资源上,其中,k为正整数。
换句话说,在第二种方式中,UE可以将高QoS的目标上行数据中的与可占用RE个数个RE容量相等的数据映射至该指定上行资源上,若映射完成后,该指定上行资源还未被完全占用,UE可以将次高QoS的目标上行数据中的与可占用RE个数个RE容量相等的数据映射至该指定上行资源上,UE可以重复执行该过程,直至该指定上行资源被完全占用时为止。
例如,在上述举例中,若UE需要将目标上行数据a和目标上行数据b复用至目标上行资源x1(也即是指定上行资源)上传输,其中,目标上行数据a的QoS高于目标上行数据b的QoS,那么,UE可以先确定目标上行数据a对应的可占用RE个数和目标上行数据b对应的可占用RE个数,例如,目标上行数据a对应的可占用RE个数可以为2,目标上行数据b对应的可占用RE个数可以为1,则UE可以从目标上行数据a中获取与2个RE的容量相等的数据,并将该数据映射至目标上行资源x1上,若在完成对目标上行数据a的映射后,目标上行资源x1未被完全占用,则UE可以从目标上行数据b中获取 与1个RE的容量相等的数据,并将该数据映射至目标上行资源x1上,在映射过程中,若该数据的数据量小于或等于目标上行资源x1剩余的容量,UE可以将该数据全部映射至目标上行资源x1上,若该数据的数据量大于目标上行资源x1剩余的容量,UE可以将该数据中与目标上行资源x1剩余的容量相等的部分数据映射至目标上行资源x1上。
其中,本公开实施例提供了两种确定目标上行数据对应的可占用RE个数的方式:
第一种方式、UE根据第一公式计算该至少两个目标上行数据中的第i个目标上行数据对应的可占用RE个数,i为正整数。
其中,第一公式为:
Figure PCTCN2018081913-appb-000005
或者,
Figure PCTCN2018081913-appb-000006
在第一公式中,G RE为该第i个目标上行数据对应的可占用RE个数,α为第i个目标上行数据的QoS对应的偏移系数,该偏移系数可以由基站进行配置,也可以由通信协议进行规定,b 1为该第i个目标上行数据的数据量,b 2为该至少两个目标上行数据中除该第i个目标上行数据之外的所有目标上行数据的数据量,K RE为指定上行资源中能够映射上行数据的RE的个数,M RE为该第i个目标上行数据最多能占用的RE的个数,β为根据该第i个目标上行数据的调制编码方式得到的调整系数,min()为求最小值运算。
第二种方式、UE在基站发送的第一上行授权中获取RE个数指示信息,该RE个数指示信息用于指示每个目标上行数据对应的可占用RE个数。
综上所述,本公开实施例提供的数据传输方法,通过在基站分配给至少两个目标上行数据的目标上行资源出现重叠,且,该至少两个目标上行数据能够 复用传输时,将该至少两个目标上行数据复用至指定上行资源上传输,其中,该至少两个目标上行数据包括低QoS的上行数据和高QoS的上行数据,这样,就可以一定程度上避免在基站为高QoS的上行数据分配的上行资源和为低QoS的上行数据分配的上行资源出现重叠时,UE对低QoS的上行数据进行丢弃,从而保证低QoS的上行数据的传输可靠性。
图5是根据一示例性实施例示出的一种数据传输装置500的框图,该数据传输装置500可以为图1所示的UE 20。参照图5,该数据传输装置500包括复用模块501。
该复用模块501,用于在至少两个目标上行资源所占据的时频位置重叠,且,至少两个目标上行数据能够复用传输时,将该至少两个目标上行数据复用至指定上行资源上传输。
其中,该至少两个目标上行资源与该至少两个目标上行数据一一对应,每个目标上行资源是基站分配给UE的用于传输对应的目标上行数据的资源,该至少两个目标上行数据中存在服务质量等级大于预设等级阈值的上行数据以及服务质量等级小于或等于该预设等级阈值的上行数据。
在本公开的一个实施例中,该复用模块501包括映射子模块和传输子模块。
该映射子模块,用于按照服务质量等级由高至低的顺序,将该至少两个目标上行数据依次映射至该指定上行资源中,直至该指定上行资源被全部占用时为止。
该传输子模块,用于传输映射至该指定上行资源中的数据。
在本公开的一个实施例中,该映射子模块,用于按照服务质量等级由高至低的顺序,将该至少两个目标上行数据依次映射至该指定上行资源中,其中,第二目标上行数据所占据的时频位置在时域上位于第三目标上行数据所占据的时频位置之前,该第二目标上行数据的服务质量等级高于该第三目标上行数据的服务质量等级。
在本公开的一个实施例中,该映射子模块,用于按照服务质量等级由高至低的顺序,对该至少两个目标上行数据进行排序;当第k个目标上行数据全部映射于该指定上行资源,且,该指定上行资源未被完全占用时,将第k+1个目标上行数据映射至该指定上行资源,k为正整数。
在本公开的一个实施例中,该映射子模块,用于按照服务质量等级由高至低的顺序,对该至少两个目标上行数据进行排序;确定每个目标上行数据对应的可占用RE个数;当第k个目标上行数据按照对应的可占用RE个数映射至该指定上行资源上,且,该指定上行资源未被完全占用时,将第k+1个目标上行数据按照对应的可占用RE个数映射至该指定上行资源上,k为正整数。
在本公开的一个实施例中,该映射子模块,用于根据第一公式计算第i个目标上行数据对应的可占用RE个数,i为正整数;
该第一公式为:
Figure PCTCN2018081913-appb-000007
或者,
Figure PCTCN2018081913-appb-000008
其中,G RE为该第i个目标上行数据对应的可占用RE个数,α为该第i个目标上行数据的服务质量等级对应的偏移系数,b 1为该第i个目标上行数据的数据量,b 2为该至少两个目标上行数据中除该第i个目标上行数据之外的所有目标上行数据的数据量,K RE为该指定上行资源中能够映射上行数据的RE的个数,M RE为该第i个目标上行数据最多能占用的RE的个数,β为根据该第i个目标上行数据的调制编码方式得到的调整系数。
在本公开的一个实施例中,该映射子模块,用于接收该基站发送的第一上行授权,该第一上行授权用于调度该至少两个目标上行数据,该第一上行授权携带有RE个数指示信息,该RE个数指示信息用于指示每个目标上行数据对 应的可占用RE个数。
如图6所示,本公开实施例还提供了另一种数据传输装置600,该数据传输装置600除了包括数据传输装置500包括的模块外,还包括判断模块502、第一获取模块503、接收模块504、第二获取模块505、第三获取模块506和第四获取模块507。
在本公开的一个实施例中,该判断模块502,用于判断该至少两个目标上行数据是否能够复用传输。
在本公开的一个实施例中,该判断模块502包括第一判断子模块,该第一判断子模块,用于:判断该至少两个目标上行资源在时域上的起始位置是否相同;当该至少两个目标上行资源在时域上的起始位置相同时,确定该至少两个目标上行数据能够复用传输;当该至少两个目标上行资源在时域上的起始位置不相同时,确定该至少两个目标上行数据不能复用传输。
在本公开的一个实施例中,该判断模块502包括接收子模块和第二判断子模块。
该接收子模块,用于接收该基站发送的第一上行授权,该第一上行授权用于调度该至少两个目标上行数据,该第一上行授权是该基站在确定该至少两个目标上行资源所占据的时频位置重叠时生成的,该第一上行授权携带有复用指示信息,该复用指示信息用于指示该至少两个目标上行数据是否能够复用传输。
该第二判断子模块,用于根据该复用指示信息判断该至少两个目标上行数据是否能够复用传输。
在本公开的一个实施例中,该第一获取模块503,用于在该复用指示信息指示该至少两个目标上行数据能够复用传输时,将该第一上行授权指示的上行资源获取为该指定上行资源。
在本公开的一个实施例中,该接收模块504,用于接收该基站发送的与该至少两个目标上行资源一一对应的至少两个第二上行授权,每个第二上行授权 用于指示对应的目标上行资源的时频位置。
该第二获取模块505,用于根据接收到该至少两个第二上行授权的先后顺序,从该至少两个目标上行资源中选择一个上行资源作为该指定上行资源。
在本公开的一个实施例中,该第三获取模块506,用于在该至少两个目标上行资源中存在第一目标上行资源时,将该第一目标上行资源获取为该指定上行资源,其中,该第一目标上行资源包括该至少两个目标上行资源中的某目标上行资源。
在本公开的一个实施例中,该第四获取模块507,用于在该至少两个目标上行资源中同时存在通过高层信令进行配置的上行资源和通过DCI进行配置的上行资源时,将通过DCI进行配置的该上行资源中的任一个上行资源获取为该指定上行资源。
综上所述,本公开实施例提供的数据传输装置,通过在基站分配给至少两个目标上行数据的目标上行资源出现重叠,且,该至少两个目标上行数据能够复用传输时,将该至少两个目标上行数据复用至指定上行资源上传输,其中,该至少两个目标上行数据包括低QoS的上行数据和高QoS的上行数据,这样,就可以一定程度上避免在基站为高QoS的上行数据分配的上行资源和为低QoS的上行数据分配的上行资源出现重叠时,UE对低QoS的上行数据进行丢弃,从而保证低QoS的上行数据的传输可靠性。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图7是根据一示例性实施例示出的一种数据传输装置700的框图,该数据传输装置700可以为图1所示的基站10。参照图7,该数据传输装置700包括生成模块701和发送模块702。
其中,该生成模块701,用于生成第一上行授权,该第一上行授权用于调度至少两个目标上行数据,该第一上行授权携带有复用指示信息,该复用指示 信息用于指示该至少两个目标上行数据是否能够复用传输,该第一上行授权是基站在确定用于传输该至少两个目标上行数据的至少两个目标上行资源所占据的时频位置重叠时生成的,该至少两个目标上行数据中存在服务质量等级大于预设等级阈值的上行数据以及服务质量等级小于或等于该预设等级阈值的上行数据。
该发送模块702,用于向UE发送该第一上行授权,该UE用于在该复用指示信息指示该至少两个目标上行数据能够复用传输时,将该至少两个目标上行数据复用至指定上行资源上传输。
在本公开的一个实施例中,该第一上行授权用于指示该指定上行资源的时频位置。
在本公开的一个实施例中,该第一上行授权携带有RE个数指示信息,该RE个数指示信息用于指示每个目标上行数据对应的可占用RE个数。
综上所述,本公开实施例提供的数据传输装置,通过生成并向UE发送第一上行授权,其中,该第一上行授权携带用于指示至少两个目标上行数据是否能够复用传输的复用指示信息,该至少两个目标上行数据包括低QoS的上行数据和高QoS的上行数据,使得UE在该至少两个目标上行数据能够复用传输时,将该至少两个目标上行数据复用至指定上行资源上传输,这样,就可以一定程度上避免在基站为高QoS的上行数据分配的上行资源和为低QoS的上行数据分配的上行资源出现重叠时,UE对低QoS的上行数据进行丢弃,从而保证低QoS的上行数据的传输可靠性。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图8是根据一示例性实施例示出的一种信息传输装置800的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图8,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法实施例中UE20所执行的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为装置800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或 视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信部件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信部件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB) 技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法实施例中UE20所执行的技术过程。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由装置800的处理器820执行以完成上述方法实施例中UE20所执行的技术过程。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图9是根据一示例性实施例示出的一种数据传输装置900的框图。例如,数据传输装置900可以是基站。如图9所示,数据传输装置900可以包括:处理器901、接收机902、发射机903和存储器904。接收机902、发射机903和存储器904分别通过总线与处理器901连接。
其中,处理器901包括一个或者一个以上处理核心,处理器901通过运行软件程序以及模块以执行本公开实施例提供的数据传输方法中基站所执行的方法。存储器904可用于存储软件程序以及模块。具体的,存储器904可存储操作系统9041、至少一个功能所需的应用程序模块9042。接收机902用于接收其他设备发送的通信数据,发射机903用于向其他设备发送通信数据。
图10是根据一示例性实施例示出的一种数据传输系统1000的框图,如图10所示,该数据传输系统1000包括基站1001和UE 1002。
其中,基站1001用于执行图4所示实施例中基站所执行的数据传输方法。
UE 1002用于执行图4所示实施例中UE所执行的数据传输方法。
在示例性实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质为非易失性的计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,存储的计算机程序被处理组件执行时能够实现本公开实施例提供的一种数据传输方法,例如,该数据传输方法可以为:当至少两个目标上行资源所占据的时频位置重叠,且,至少两个目标上行数据能够复用传输时,将该至少两个目标上行数据复用至指定上行资源上传输;其中,该至少两个目标上行资源与该至少两个目标上行数据一一对应,每个目标上行资源是基站分配给UE的用于传输对应的目标上行数据的资源,该至少两个目标上行数据中存在服务质量等级大于预设等级阈值的上行数据以及服务质量等级小于或等于该预设等级阈值的上行数据;
或者,该数据传输方法可以为:生成第一上行授权,该第一上行授权用于调度至少两个目标上行数据,该第一上行授权携带有复用指示信息,该复用指示信息用于指示该至少两个目标上行数据是否能够复用传输,该第一上行授权是基站在确定用于传输该至少两个目标上行数据的至少两个目标上行资源所占据的时频位置重叠时生成的,该至少两个目标上行数据中存在服务质量等级大于预设等级阈值的上行数据以及服务质量等级小于或等于该预设等级阈值的上行数据;向UE发送该第一上行授权,该UE用于在该复用指示信息指示该至少两个目标上行数据能够复用传输时,将该至少两个目标上行数据复用至指定上行资源上传输。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结 构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (24)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    当至少两个目标上行资源所占据的时频位置重叠,且,至少两个目标上行数据能够复用传输时,将所述至少两个目标上行数据复用至指定上行资源上传输;
    其中,所述至少两个目标上行资源与所述至少两个目标上行数据一一对应,每个所述目标上行资源是基站分配给用户设备UE的用于传输对应的目标上行数据的资源,所述至少两个目标上行数据中存在服务质量等级大于预设等级阈值的上行数据以及服务质量等级小于或等于所述预设等级阈值的上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    判断所述至少两个目标上行数据是否能够复用传输。
  3. 根据权利要求2所述的方法,其特征在于,所述判断所述至少两个目标上行数据是否能够复用传输,包括:
    判断所述至少两个目标上行资源在时域上的起始位置是否相同;
    当所述至少两个目标上行资源在时域上的起始位置相同时,确定所述至少两个目标上行数据能够复用传输。
  4. 根据权利要求2所述的方法,其特征在于,所述判断所述至少两个目标上行数据是否能够复用传输,包括:
    判断所述至少两个目标上行资源在时域上的起始位置是否相同;
    当所述至少两个目标上行资源在时域上的起始位置不相同时,确定所述至少两个目标上行数据不能复用传输。
  5. 根据权利要求2所述的方法,其特征在于,所述判断所述至少两个目标上行数据是否能够复用传输,包括:
    接收所述基站发送的第一上行授权,所述第一上行授权用于调度所述至少两个目标上行数据,所述第一上行授权是所述基站在确定所述至少两个目标上行资源所占据的时频位置重叠时生成的,所述第一上行授权携带有复用指示信息,所述复用指示信息用于指示所述至少两个目标上行数据是否能够复用传输;
    根据所述复用指示信息判断所述至少两个目标上行数据是否能够复用传输。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    当所述复用指示信息指示所述至少两个目标上行数据能够复用传输时,将所述第一上行授权指示的上行资源获取为所述指定上行资源。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述基站发送的与所述至少两个目标上行资源一一对应的至少两个第二上行授权,每个所述第二上行授权用于指示对应的目标上行资源的时频位置;
    根据接收到所述至少两个第二上行授权的先后顺序,从所述至少两个目标上行资源中选择一个上行资源作为所述指定上行资源。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述至少两个目标上行资源中存在第一目标上行资源时,将所述第一目标上行资源获取为所述指定上行资源,其中,所述第一目标上行资源包括所述至少两个目标上行资源中的某目标上行资源。
  9. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当所述至少两个目标上行资源中同时存在通过高层信令进行配置的上行资源和通过下行控制信息DCI进行配置的上行资源时,将通过DCI进行配置的所 述上行资源中的任一个上行资源获取为所述指定上行资源。
  10. 根据权利要求1所述的方法,其特征在于,所述将所述至少两个目标上行数据复用至指定上行资源上传输,包括:
    按照服务质量等级由高至低的顺序,将所述至少两个目标上行数据依次映射至所述指定上行资源中,直至所述指定上行资源被全部占用时为止;
    传输映射至所述指定上行资源中的数据。
  11. 根据权利要求10所述的方法,其特征在于,所述按照服务质量等级由高至低的顺序,将所述至少两个目标上行数据依次映射至所述指定上行资源中,包括:
    按照服务质量等级由高至低的顺序,将所述至少两个目标上行数据依次映射至所述指定上行资源中,其中,第二目标上行数据所占据的时频位置在时域上位于第三目标上行数据所占据的时频位置之前,所述第二目标上行数据的服务质量等级高于所述第三目标上行数据的服务质量等级。
  12. 根据权利要求10所述的方法,其特征在于,所述按照服务质量等级由高至低的顺序,将所述至少两个目标上行数据依次映射至所述指定上行资源中,包括:
    按照服务质量等级由高至低的顺序,对所述至少两个目标上行数据进行排序;
    当第k个目标上行数据全部映射于所述指定上行资源,且,所述指定上行资源未被完全占用时,将第k+1个目标上行数据映射至所述指定上行资源,k为正整数。
  13. 根据权利要求10所述的方法,其特征在于,所述按照服务质量等级由高至低的顺序,将所述至少两个目标上行数据依次映射至所述指定上行资源中, 包括:
    按照服务质量等级由高至低的顺序,对所述至少两个目标上行数据进行排序;
    确定每个所述目标上行数据对应的可占用资源单元RE个数;
    当第k个目标上行数据按照对应的可占用RE个数映射至所述指定上行资源上,且,所述指定上行资源未被完全占用时,将第k+1个目标上行数据按照对应的可占用RE个数映射至所述指定上行资源上,k为正整数。
  14. 根据权利要求13所述的方法,其特征在于,所述确定每个所述目标上行数据对应的可占用资源单元RE个数,包括:
    根据第一公式计算第i个目标上行数据对应的可占用RE个数,i为正整数;
    所述第一公式为:
    Figure PCTCN2018081913-appb-100001
    或者,
    Figure PCTCN2018081913-appb-100002
    其中,G RE为所述第i个目标上行数据对应的可占用RE个数,α为所述第i个目标上行数据的服务质量等级对应的偏移系数,b 1为所述第i个目标上行数据的数据量,b 2为所述至少两个目标上行数据中除所述第i个目标上行数据之外的所有目标上行数据的数据量,K RE为所述指定上行资源中能够映射上行数据的RE的个数,M RE为所述第i个目标上行数据最多能占用的RE的个数,β为根据所述第i个目标上行数据的调制编码方式得到的调整系数。
  15. 根据权利要求13所述的方法,其特征在于,所述确定每个所述目标上行数据对应的可占用资源单元RE个数,包括:
    接收所述基站发送的第一上行授权,所述第一上行授权用于调度所述至少两个目标上行数据,所述第一上行授权携带有RE个数指示信息,所述RE个数指示信息用于指示每个所述目标上行数据对应的可占用RE个数。
  16. 一种数据传输方法,其特征在于,所述方法包括:
    生成第一上行授权,所述第一上行授权用于调度至少两个目标上行数据,所述第一上行授权携带有复用指示信息,所述复用指示信息用于指示所述至少两个目标上行数据是否能够复用传输,所述第一上行授权是基站在确定用于传输所述至少两个目标上行数据的至少两个目标上行资源所占据的时频位置重叠时生成的,所述至少两个目标上行数据中存在服务质量等级大于预设等级阈值的上行数据以及服务质量等级小于或等于所述预设等级阈值的上行数据;
    向用户设备UE发送所述第一上行授权,所述UE用于在所述复用指示信息指示所述至少两个目标上行数据能够复用传输时,将所述至少两个目标上行数据复用至指定上行资源上传输。
  17. 根据权利要求16所述的方法,其特征在于,所述第一上行授权用于指示所述指定上行资源的时频位置。
  18. 根据权利要求16所述的方法,其特征在于,所述第一上行授权携带有RE个数指示信息,所述RE个数指示信息用于指示每个所述目标上行数据对应的可占用RE个数。
  19. 一种数据传输装置,其特征在于,所述装置包括:
    复用模块,用于在至少两个目标上行资源所占据的时频位置重叠,且,至少两个目标上行数据能够复用传输时,将所述至少两个目标上行数据复用至指定上行资源上传输;
    其中,所述至少两个目标上行资源与所述至少两个目标上行数据一一对应, 每个所述目标上行资源是基站分配给用户设备UE的用于传输对应的目标上行数据的资源,所述至少两个目标上行数据中存在服务质量等级大于预设等级阈值的上行数据以及服务质量等级小于或等于所述预设等级阈值的上行数据。
  20. 一种数据传输装置,其特征在于,所述装置包括:
    生成模块,用于生成第一上行授权,所述第一上行授权用于调度至少两个目标上行数据,所述第一上行授权携带有复用指示信息,所述复用指示信息用于指示所述至少两个目标上行数据是否能够复用传输,所述第一上行授权是基站在确定用于传输所述至少两个目标上行数据的至少两个目标上行资源所占据的时频位置重叠时生成的,所述至少两个目标上行数据中存在服务质量等级大于预设等级阈值的上行数据以及服务质量等级小于或等于所述预设等级阈值的上行数据;
    发送模块,用于向用户设备UE发送所述第一上行授权,所述UE用于在所述复用指示信息指示所述至少两个目标上行数据能够复用传输时,将所述至少两个目标上行数据复用至指定上行资源上传输。
  21. 一种数据传输装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行的指令的存储器;
    其中,所述处理器被配置为:
    当至少两个目标上行资源所占据的时频位置重叠,且,至少两个目标上行数据能够复用传输时,将所述至少两个目标上行数据复用至指定上行资源上传输;
    其中,所述至少两个目标上行资源与所述至少两个目标上行数据一一对应,每个所述目标上行资源是基站分配给用户设备UE的用于传输对应的目标上行数据的资源,所述至少两个目标上行数据中存在服务质量等级大于预设等级阈 值的上行数据以及服务质量等级小于或等于所述预设等级阈值的上行数据。
  22. 一种数据传输装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行的指令的存储器;
    其中,所述处理器被配置为:
    生成第一上行授权,所述第一上行授权用于调度至少两个目标上行数据,所述第一上行授权携带有复用指示信息,所述复用指示信息用于指示所述至少两个目标上行数据是否能够复用传输,所述第一上行授权是基站在确定用于传输所述至少两个目标上行数据的至少两个目标上行资源所占据的时频位置重叠时生成的,所述至少两个目标上行数据中存在服务质量等级大于预设等级阈值的上行数据以及服务质量等级小于或等于所述预设等级阈值的上行数据;
    向用户设备UE发送所述第一上行授权,所述UE用于在所述复用指示信息指示所述至少两个目标上行数据能够复用传输时,将所述至少两个目标上行数据复用至指定上行资源上传输。
  23. 一种数据传输系统,其特征在于,所述数据传输系统包括如权利要求19所述的数据传输装置和如权利要求20所述的数据传输装置。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如权利要求1至15任一所述的数据传输方法;或者,
    所述指令由处理器加载并执行以实现如权利要求16至18任一所述的数据传输方法。
PCT/CN2018/081913 2018-04-04 2018-04-04 数据传输方法、装置、系统及存储介质 WO2019191938A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/081913 WO2019191938A1 (zh) 2018-04-04 2018-04-04 数据传输方法、装置、系统及存储介质
CN201880000273.2A CN110574465B (zh) 2018-04-04 2018-04-04 数据传输方法、装置、系统及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/081913 WO2019191938A1 (zh) 2018-04-04 2018-04-04 数据传输方法、装置、系统及存储介质

Publications (1)

Publication Number Publication Date
WO2019191938A1 true WO2019191938A1 (zh) 2019-10-10

Family

ID=68099891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081913 WO2019191938A1 (zh) 2018-04-04 2018-04-04 数据传输方法、装置、系统及存储介质

Country Status (2)

Country Link
CN (1) CN110574465B (zh)
WO (1) WO2019191938A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113225810B (zh) * 2020-01-21 2023-08-15 维沃移动通信有限公司 一种上行传输的方法、移动终端和网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160960A (zh) * 2015-04-15 2016-11-23 上海朗帛通信技术有限公司 一种功分复用的通信方法和装置
CN106559791A (zh) * 2015-09-24 2017-04-05 电信科学技术研究院 一种数据传输方法和设备
CN106688261A (zh) * 2015-06-16 2017-05-17 华为技术有限公司 资源分配的方法、发送端设备和接收端设备
WO2017176435A1 (en) * 2016-04-06 2017-10-12 Qualcomm Incorporated Unified reference signal design for enhanced component carriers

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1794623A (zh) * 2004-12-24 2006-06-28 北京三星通信技术研究有限公司 基于QoS的MAC-e PDU的重传功率偏移量削减值的设置方法
CN101778343B (zh) * 2009-01-14 2014-03-12 中兴通讯股份有限公司 长期演进系统中mbms的物理资源块的设置方法与装置
CN101790201B (zh) * 2009-01-22 2014-07-02 中兴通讯股份有限公司 单载波正交频分复用系统无线资源分配的方法和装置
JP5577709B2 (ja) * 2010-01-13 2014-08-27 ソニー株式会社 基地局、端末装置、通信制御方法及び無線通信システム
CN102271409B (zh) * 2010-06-02 2013-11-27 鼎桥通信技术有限公司 一种增强的高速包接入调度方法和装置
CN102056174B (zh) * 2010-12-16 2014-03-12 大唐移动通信设备有限公司 一种资源调度的方法、装置和基站
CN102970761A (zh) * 2011-09-01 2013-03-13 华为技术有限公司 数据发送方法和用户设备
US8977302B1 (en) * 2013-03-22 2015-03-10 Sprint Spectrum L.P. Providing a voice message page in a wireless communication system
WO2014209204A1 (en) * 2013-06-26 2014-12-31 Telefonaktiebolaget L M Ericsson (Publ) Methods and network node for activation of connection configuration for a secondary base station
CN107211400B (zh) * 2015-09-25 2020-09-29 华为技术有限公司 网络准入控制方法、接入点及接入控制器
CN105430677A (zh) * 2015-11-10 2016-03-23 深圳市金立通信设备有限公司 一种授权频谱辅助接入方法,网络设备及终端设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160960A (zh) * 2015-04-15 2016-11-23 上海朗帛通信技术有限公司 一种功分复用的通信方法和装置
CN106688261A (zh) * 2015-06-16 2017-05-17 华为技术有限公司 资源分配的方法、发送端设备和接收端设备
CN106559791A (zh) * 2015-09-24 2017-04-05 电信科学技术研究院 一种数据传输方法和设备
WO2017176435A1 (en) * 2016-04-06 2017-10-12 Qualcomm Incorporated Unified reference signal design for enhanced component carriers

Also Published As

Publication number Publication date
CN110574465B (zh) 2023-08-15
CN110574465A (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
US11424869B2 (en) Method, device, and system for transmitting information, and storage medium
US11877280B2 (en) Buffer status report transmission and device
KR102486803B1 (ko) 업 링크 전송 방법 및 장치
WO2020181460A1 (zh) 传输指示方法及装置
RU2763144C1 (ru) Способ, устройство и система передачи данных, а также носитель информации
CN109156028B (zh) 上行消息传输方法、装置及存储介质
WO2018218491A1 (zh) 传输数据的方法及装置
WO2019191948A1 (zh) 下行控制信息格式大小的确定方法及装置
CN108886789B (zh) 确定上下行切换点的方法及装置
CN110326353B (zh) 控制信息传输方法及装置
EP3911086A1 (en) Uplink transmission resource selection method, terminal and storage medium
WO2019104481A1 (zh) 上行反馈信息指示方法和上行反馈信息传输方法
US11418290B2 (en) Method and apparatus for transmitting data
CN108702778B (zh) 信息传输方法及装置
WO2019191878A1 (zh) 数据传输方法、装置、系统及存储介质
EP3751892B1 (en) Trigger hold method and trigger hold apparatus
WO2019205022A1 (zh) 信息指示、解读方法及装置、基站和用户设备
WO2019218367A1 (zh) 信息传输方法及装置
WO2019127250A1 (zh) 数据传输方法、装置、系统及计算机可读存储介质
WO2019191938A1 (zh) 数据传输方法、装置、系统及存储介质
CN112514294A (zh) 反馈信息传输方法及装置、用户设备和基站
WO2019033431A1 (zh) 上行资源分配方法、装置和终端
WO2019140696A1 (zh) 信息传输方法、装置、系统和存储介质
CN114982154A (zh) 解调性能确定方法和装置、解调性能接收方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913655

Country of ref document: EP

Kind code of ref document: A1