WO2019140696A1 - 信息传输方法、装置、系统和存储介质 - Google Patents

信息传输方法、装置、系统和存储介质 Download PDF

Info

Publication number
WO2019140696A1
WO2019140696A1 PCT/CN2018/073659 CN2018073659W WO2019140696A1 WO 2019140696 A1 WO2019140696 A1 WO 2019140696A1 CN 2018073659 W CN2018073659 W CN 2018073659W WO 2019140696 A1 WO2019140696 A1 WO 2019140696A1
Authority
WO
WIPO (PCT)
Prior art keywords
downlink control
control information
information
time
sub
Prior art date
Application number
PCT/CN2018/073659
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN201880000023.9A priority Critical patent/CN110178430B/zh
Priority to PCT/CN2018/073659 priority patent/WO2019140696A1/zh
Publication of WO2019140696A1 publication Critical patent/WO2019140696A1/zh
Priority to US16/921,164 priority patent/US11445492B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of wireless communications, and in particular, to an information transmission method, apparatus, system, and storage medium.
  • an information transmission method including:
  • first downlink control information that is sent by the base station by using the first sub-slot, where the first downlink control information includes time-frequency position indication information and repetition number indication information;
  • the time-frequency position indication information is used to indicate a time-frequency location of a downlink resource that carries target communication data in the first sub-slot, and the repetition quantity indication information is used to instruct the base station to repeatedly send the target. The number of times the data was communicated.
  • the first downlink control information that is sent by the receiving base station by using the first sub-slot includes:
  • the first downlink control information is blindly detected in the physical downlink control channel PDCCH carried by the first sub-slot according to the preset blind detection policy, where the preset blind detection policy is the same as the blind detection sDCI of the user equipment UE.
  • Blind detection strategy is the same as the blind detection sDCI of the user equipment UE.
  • the length of the first downlink control information is the same as the length of the short downlink control information sDCI.
  • the first downlink control information includes an indication identifier, where the indication identifier is used to indicate that the first downlink control information is downlink control including the time-frequency position indication information and the repetition quantity indication information. information.
  • the indicator identifier has a length of one bit.
  • n second sub-time slots Determining, according to the number of times n indicated by the repetition number indication information and a preset time-frequency position determination rule, n second sub-time slots, wherein the n second sub-time slots repeatedly transmit the target communication data for the base station Subslot
  • the operation of receiving the second downlink control information is not performed on the n second sub-time slots, where the second downlink control information is the downlink control information of the same type as the first downlink control information.
  • an information transmission method including:
  • the first downlink control information includes time-frequency position indication information and repetition number indication information
  • the time-frequency position indication information is used to indicate a time-frequency location of a downlink resource that carries target communication data in the first sub-slot, and the repetition quantity indication information is used to instruct the base station to repeatedly send the target. The number of times the data was communicated.
  • the first downlink control information is scrambled according to the preset radio network temporary identifier RNTI, where the type of the preset RNTI is the same as the type of the RNTI used by the base station to scramble the sDCI;
  • the length of the first downlink control information is the same as the length of the short downlink control information sDCI.
  • the first downlink control information includes an indication identifier, where the indication identifier is used to indicate that the first downlink control information is downlink control including the time-frequency position indication information and the repetition quantity indication information. information.
  • an information transmission apparatus including:
  • a receiving module configured to receive first downlink control information that is sent by the base station by using the first sub-slot, where the first downlink control information includes time-frequency position indication information and repetition number indication information;
  • the receiving module is configured to:
  • the first downlink control information is blindly detected in the physical downlink control channel PDCCH carried by the first sub-slot according to the preset blind detection policy, where the preset blind detection policy is the same as the blind detection sDCI of the user equipment UE.
  • Blind detection strategy is the same as the blind detection sDCI of the user equipment UE.
  • the length of the first downlink control information is the same as the length of the short downlink control information sDCI.
  • the first downlink control information includes an indication identifier, where the indication identifier is used to indicate that the first downlink control information is downlink control including the time-frequency position indication information and the repetition quantity indication information. information.
  • the indicator identifier has a length of one bit.
  • the device further includes a time-frequency position determining module
  • the time-frequency position determining module is configured to determine n second sub-time slots according to the number of times n indicated by the repetition quantity indication information and a preset time-frequency position determination rule, where the n second sub-time slots are The base station repeatedly transmits a sub-time slot of the target communication data;
  • the receiving module is configured to perform the operation of receiving the second downlink control information on the n second sub-time slots, where the second downlink control information is the same type as the first downlink control information Control information.
  • an information transmission apparatus including:
  • a sending module configured to send first downlink control information to the user equipment UE by using the first sub-time slot, where the first downlink control information includes time-frequency position indication information and repetition number indication information;
  • the sending module is configured to:
  • the first downlink control information is scrambled according to the preset radio network temporary identifier RNTI, where the type of the preset RNTI is the same as the type of the RNTI used by the base station to scramble the sDCI;
  • the length of the first downlink control information is the same as the length of the short downlink control information sDCI.
  • the first downlink control information includes an indication identifier, where the indication identifier is used to indicate that the first downlink control information is downlink control including the time-frequency position indication information and the repetition quantity indication information. information.
  • the indicator identifier has a length of one bit.
  • an information transmission apparatus including:
  • a memory for storing instructions executable by the processor
  • first downlink control information that is sent by the base station by using the first sub-slot, where the first downlink control information includes time-frequency position indication information and repetition number indication information;
  • the time-frequency position indication information is used to indicate a time-frequency location of a downlink resource that carries target communication data in the first sub-slot, and the repetition quantity indication information is used to instruct the base station to repeatedly send the target. The number of times the data was communicated.
  • a memory for storing instructions executable by the processor
  • processor is configured to:
  • the first downlink control information includes time-frequency position indication information and repetition number indication information
  • the time-frequency position indication information is used to indicate a time-frequency location of a downlink resource that carries target communication data in the first sub-slot, and the repetition quantity indication information is used to instruct the base station to repeatedly send the target. The number of times the data was communicated.
  • an information transmission system including:
  • a computer readable storage medium having stored therein a computer program, the stored computer program being executable by a processing component capable of implementing the first aspect as described above Any of the described information transmission methods; or,
  • the stored computer program can be implemented by the processing component to implement the information transmission method according to any of the above second aspects.
  • the UE Receiving the first downlink control information sent by the base station by the user equipment UE, to receive the target communication data according to the scheduling of the first downlink control information, where the first downlink control information is used to indicate the first sub-timeslot
  • the downlink resources in the sub-slots are scheduled.
  • the time-domain granularity of the first downlink control information scheduling is smaller than that of the downlink control information for scheduling the downlink resources in one subframe. Therefore, the UE is configured according to the UE.
  • the scheduling of the first downlink control information has a small delay in receiving the target communication data
  • the first downlink control information may, on the other hand, indicate the number of times the base station repeatedly transmits the target communication data based on the repetition number indication information, so that the UE according to the repetition number
  • the indication of the indication information repeatedly receives the target communication data to improve the probability that the UE correctly receives the target communication data, thereby ensuring Standard data transmission reliability of communication, therefore, the present disclosure low latency high reliability embodiment the first downlink control information provided to meet the traffic uRLLC embodiment.
  • FIG. 1 is a schematic diagram of an implementation environment, according to an exemplary embodiment.
  • FIG. 2 is a flowchart of an information transmission method according to an exemplary embodiment.
  • FIG. 3 is a flowchart of an information transmission method according to an exemplary embodiment.
  • FIG. 4 is a flowchart of an information transmission method according to an exemplary embodiment.
  • FIG. 5A is a block diagram of an information transmission apparatus according to an exemplary embodiment.
  • FIG. 6 is a block diagram of an information transmission apparatus according to an exemplary embodiment.
  • FIG. 7 is a block diagram of an information transmission system, according to an exemplary embodiment.
  • FIG. 8 is a block diagram of an information transmission apparatus according to an exemplary embodiment.
  • FIG. 9 is a block diagram of an information transmission apparatus according to an exemplary embodiment.
  • one radio frame may generally include 10 subframes, and each subframe may include 2 slots, where each subframe has a length of 1 ms, and the length of each slot. It is 0.5ms.
  • the implementation environment involved in the embodiments of the present disclosure is as follows: As shown in FIG. 1 , the implementation environment involved in the embodiments of the present disclosure includes a base station 10, a UE (User Equipment) 20, a base station 10, and a UE 20.
  • the connection may be made through a communication network, and the UE 20 is any one of the cells served by the base station 10, wherein the communication network may be a 5G communication network, or another communication network similar to the 5G communication network.
  • FIG. 2 is a flowchart of an information transmission method according to an exemplary embodiment. As shown in FIG. 2, the information transmission method is used in the UE 20 shown in FIG. 1, and the information transmission method includes the following steps.
  • Step 201 The UE receives the first downlink control information that is sent by the base station by using the first sub-slot, where the first downlink control information includes time-frequency position indication information and repetition number indication information.
  • the time-frequency position indication information is used to indicate a time-frequency location of a downlink resource that carries the target communication data in the first sub-slot, and the repetition frequency indication information is used to indicate the number of times the base station repeatedly transmits the target communication data.
  • the information transmission method receives the first downlink control information sent by the base station by the UE, to receive the target communication data according to the scheduling of the first downlink control information, where the first downlink
  • the row control information includes time-frequency location indication information indicating a time-frequency location of a downlink resource carrying the target communication data in the first sub-slot, and repetition number indication information indicating a number of times the base station repeatedly transmits the target communication data, such that
  • the first downlink control information may be used to schedule downlink resources in the first sub-slot, and the first downlink control is compared to the downlink control information that is scheduled for downlink resources in one subframe.
  • the time domain granularity of the information scheduling is small.
  • the delay of receiving the target communication data by the UE according to the scheduling of the first downlink control information is small, and the first downlink control information may, on the other hand, indicate that the base station repeatedly sends the information according to the repetition quantity indication information.
  • the number of times the target communication data is such that the UE repeatedly receives the target communication data according to the indication of the repetition number indication information to improve the positive of the UE.
  • Target probability of receiving the communication data thereby ensuring the reliability of the transmission target data communication, and therefore, high reliability low latency embodiment the first downlink control information provided to meet the traffic uRLLC embodiment of the present disclosure.
  • FIG. 3 is a flowchart of an information transmission method according to an exemplary embodiment. As shown in FIG. 3, the information transmission method is used in the base station 10 shown in FIG. 1, and the information transmission method includes the following steps.
  • Step 301 The base station sends first downlink control information to the UE by using the first sub-slot, where the first downlink control information includes time-frequency position indication information and repetition number indication information.
  • the information transmission method sends the first downlink control information to the UE by the base station, so that the UE receives the target communication data according to the scheduling of the first downlink control information, where the first
  • the downlink control information includes time-frequency position indication information indicating a time-frequency position of a downlink resource carrying the target communication data in the first sub-slot, and repetition number indication information indicating a number of times the base station repeatedly transmits the target communication data,
  • the first downlink control information can be used to schedule the downlink resources in the first sub-slot, and the first downlink is compared to the downlink control information that is scheduled for the downlink resources in one subframe.
  • the time domain granularity of the control information scheduling is small.
  • FIG. 4 is a flowchart of an information transmission method according to an exemplary embodiment. As shown in FIG. 4, the information transmission method is used in the implementation environment shown in FIG. 1, and the information transmission method includes the following steps.
  • Step 401 The base station sends the first downlink control information to the UE by using the first sub-slot.
  • the embodiments of the present disclosure provide downlink control information for scheduling uRLLC communication data, where the downlink control information is For the first downlink control information, the base station may send the first downlink control information to the UE to instruct the UE to receive the uRLLC communication data according to the first downlink control information.
  • the base station may send the first downlink control information to the UE according to the re-structured subframe proposed in the standardization discussion of the current 5G communication system (hereinafter referred to as a target subframe), that is, the base station may pass A downlink sub-slot in the target subframe sends the first downlink control information to the UE, where the embodiment of the present disclosure refers to the “one downlink sub-slot in the target subframe” as the first sub-subsection. Time slot.
  • the first downlink control information may include time-frequency position indication information and repetition number indication information.
  • the time-frequency position indication information is used to indicate a time-frequency position of a downlink resource that carries the target communication data in the first sub-slot, in other words, the first downlink control information may be a downlink resource in the first sub-time slot.
  • Schedule The downlink control information in the LTE communication system is usually used to schedule downlink resources in one subframe, that is, the downlink control information in the LTE communication system is generally used to indicate that the communication data is carried in one subframe.
  • the time-frequency location of the downstream resources Therefore, the first downlink control information in the embodiment of the present disclosure has a smaller time domain granularity than the downlink control information in the LTE communication system, so that the UE is within the length of one subframe.
  • the communication data may be received multiple times according to the scheduling of the base station. For example, taking one sub-frame including 6 sub-slots as an example, within a length of one subframe, the UE may receive 6 communication data according to the scheduling of the base station, for one receiving process.
  • the delay is 1/6 ms, and the downlink control information in the LTE communication system is to schedule the downlink resources in one subframe. Therefore, the UE can receive according to the scheduling of the base station within the length of one subframe.
  • the delay is 1 ms for a single receiving process. Therefore, it can be known that scheduling the downlink resources based on the first downlink control information can reduce the transmission delay.
  • the target communication data is the communication data that is sent by the base station to the UE, and the downlink resource that carries the target communication data may be located on the PDSCH (Physical Downlink Shared Channel) carried in the first sub-slot. .
  • PDSCH Physical Downlink Shared Channel
  • the repetition number indication information is used to indicate the number of times n (n is a positive integer greater than or equal to 2) that the base station repeatedly transmits the target communication data, and the UE may determine the base station according to the indication of the repetition quantity indication information and the preset time-frequency position determination rule.
  • the location of the n downlink resources of the target communication data is repeatedly transmitted. In this way, the UE can sequentially receive the target communication data on the n downlink resources until the UE correctly receives the target communication data. Since the UE has the opportunity to receive the target communication data n times, the UE correctly receives the target communication data. The probability of the transmission is high, so the reliability of the target communication data transmission is high.
  • the first downlink control information in the embodiment of the present disclosure can meet the low latency and high reliability requirements of the uRLLC communication service to a certain extent.
  • the base station may send the first downlink control information by using a PDCCH (Physical Downlink Control Channel) carried by the first sub-slot, and the UE needs to The PDCCH channel performs blind detection to receive the first downlink control information sent by the base station in the PDCCH channel.
  • PDCCH Physical Downlink Control Channel
  • the embodiment of the present disclosure can ensure that the UE can blind the first downlink control information based on the same blind detection policy as the short downlink control information (short downlink control information).
  • the detection that is, the UE can perform blind detection on the sDCI and the first downlink control information based on the same blind detection policy, thereby reducing the complexity of the UE's blind detection on the PDCCH channel, and simultaneously, the UE is based on the same blind detection policy.
  • the blind detection of the sDCI and the first downlink control information may reduce the number of blind detections of the PDCCH channel by the UE. If the blind control is performed on the sDCI and the first downlink control information respectively according to different blind detection policies, the sDCI and the first downlink are blindly detected. The total number of line control messages is likely to double.)
  • the sDCI is a type of downlink control information proposed in the standardization discussion of the current 5G communication system. The sDCI is transmitted through the PDCCH carried by the sub-slot, and is used to schedule the sub-timeslot carrying the sDCI.
  • the length of the first downlink control information may be the same as the length of the sDCI, and the base station sends the first downlink to the UE.
  • the first downlink control information may be scrambled based on the preset RNTI (Radio Network Tempory Identity), for example, the base station may perform CRC on the first downlink control information based on the preset RNTI (Cyclic Redundancy). Check, Cyclic Redundancy Check) performs scrambling, where the type of the preset RNTI is the same as the type of RNTI used by the base station to scramble sDCI.
  • RNTI Radio Network Tempory Identity
  • the first downlink control information may further include an indication identifier, where the indication identifier may indicate that the first downlink control information includes the time-frequency location indication information and the repetition
  • the downlink control information of the number indication information may be 1 bit in length when actually implemented.
  • Step 402 The UE receives the first downlink control information that is sent by the base station by using the first sub-time slot.
  • the UE may perform blind detection on the PDCCH channel carried by the first sub-slot to receive the first downlink control information, and in the process of performing blind detection on the PDCCH, the blind detection strategy adopted by the UE is blind.
  • the blind detection strategy used when checking sDCI is the same.
  • the blind detection policy may be: the UE performs blind detection on the common search space and/or the UE-specific search space in the PDCCH channel based on the length of the first downlink control information (that is, the length of the sDCI), and the blind detection is performed.
  • the UE may attempt to descramble the information in the common search space and/or the UE-specific search space by using the preset RNTI.
  • the UE may determine that the information is the sDCI sent by the base station to itself or The first downlink control information, and then the UE may determine whether the information is the first downlink control information based on the indication identifier.
  • Step 403 The UE receives the target communication data according to the scheduling of the first downlink control information.
  • the UE may determine, according to the time-frequency position indication information in the first downlink control information, a time-frequency location of the downlink resource that carries the target communication data in the first sub-slot, and The target communication data is received at the time-frequency location.
  • the UE after determining the location of the n downlink resources that the base station repeatedly transmits the target communication data, the UE does not need to receive the target communication data sequentially on the n downlink resources based on the scheduling of the base station, and therefore, In this case, the UE may not receive the second downlink control information in the n second sub-time slots in which the n downlink resources are respectively located, where the second downlink control information is of the same type as the first downlink control information.
  • the downlink control information in this way, can further reduce the complexity of the blind detection of the UE and the number of blind detections.
  • the information transmission method receives the first downlink control information sent by the base station by the UE, to receive the target communication data according to the scheduling of the first downlink control information, where the first downlink
  • the row control information includes time-frequency location indication information indicating a time-frequency location of a downlink resource carrying the target communication data in the first sub-slot, and repetition number indication information indicating a number of times the base station repeatedly transmits the target communication data, such that
  • the first downlink control information may be used to schedule downlink resources in the first sub-slot, and the first downlink control is compared to the downlink control information that is scheduled for downlink resources in one subframe.
  • the time domain granularity of the information scheduling is small.
  • FIG. 5A is a block diagram of an information transmission apparatus 500, which may be the UE 20 shown in FIG. 1, according to an exemplary embodiment.
  • the information transmission device 500 includes a receiving module 501.
  • the receiving module 501 is configured to receive first downlink control information that is sent by the base station by using the first sub-slot, where the first downlink control information includes time-frequency position indication information and repetition number indication information.
  • the time-frequency location indication information is used to indicate a time-frequency location of the downlink resource that carries the target communication data in the first sub-slot, and the repetition frequency indication information is used to indicate the number of times the base station repeatedly transmits the target communication data.
  • the indication identifier is one bit in length.
  • the time-frequency position determining module 502 is configured to determine n second sub-time slots according to the number of times n indicated by the repetition quantity indication information and a preset time-frequency position determination rule, where the n second sub-time slots are The base station repeatedly transmits the sub-timeslot of the target communication data.
  • the receiving module 501 is configured to perform the operation of receiving the second downlink control information on the n second sub-time slots, where the second downlink control information is the downlink control information of the same type as the first downlink control information.
  • the information transmission apparatus receives the first downlink control information sent by the base station, and receives the target communication data according to the scheduling of the first downlink control information, where the first downlink is
  • the control information includes time-frequency position indication information indicating a time-frequency position of the downlink resource carrying the target communication data in the first sub-slot, and repetition number indication information indicating the number of times the base station repeatedly transmits the target communication data, so that
  • the first downlink control information may be used to schedule downlink resources in the first sub-slot, and the first downlink control information is compared to the downlink control information that is scheduled for downlink resources in one subframe.
  • the time domain granularity of the scheduling is small.
  • the delay of receiving the target communication data by the UE according to the scheduling of the first downlink control information is small, and the first downlink control information may, on the other hand, indicate that the base station repeatedly transmits the target according to the repetition quantity indication information.
  • the number of times of communication data so that the UE repeatedly receives the target communication data according to the indication of the repetition number indication information to improve the correctness of the UE.
  • the probability of the target communication data is received, so as to ensure the reliability of the transmission of the target communication data. Therefore, the first downlink control information provided by the embodiment of the present disclosure can meet the low latency and high reliability requirements of the uRLLC communication service.
  • FIG. 6 is a block diagram of an information transmission apparatus 600, which may be the base station 10 shown in FIG. 1, according to an exemplary embodiment.
  • the information transmission device 600 includes a transmission module 601.
  • the sending module 601 is configured to send first downlink control information to the user equipment UE by using the first sub-time slot, where the first downlink control information includes time-frequency position indication information and repetition number indication information.
  • the sending module 601 is configured to perform scrambling on the first downlink control information based on a preset radio network temporary identifier RNTI, where the type of the preset RNTI is used when the base station scrambles the sDCI.
  • the RNTIs are of the same type and are used to send the scrambled first downlink control information to the UE by using the first subslot.
  • the length of the first downlink control information is the same as the length of the short downlink control information sDCI.
  • the first downlink control information includes an indication identifier, where the indication identifier is used to indicate that the first downlink control information is downlink control including the time-frequency position indication information and the repetition quantity indication information. information.
  • the indication identifier is one bit in length.
  • the information transmission apparatus transmits the first downlink control information to the UE, so that the UE receives the target communication data according to the scheduling of the first downlink control information, where the first downlink
  • the row control information includes time-frequency location indication information indicating a time-frequency location of a downlink resource carrying the target communication data in the first sub-slot, and repetition number indication information indicating a number of times the base station repeatedly transmits the target communication data, such that
  • the first downlink control information may be used to schedule downlink resources in the first sub-slot, and the first downlink control is compared to the downlink control information that is scheduled for downlink resources in one subframe.
  • the time domain granularity of the information scheduling is small.
  • the delay of receiving the target communication data by the UE according to the scheduling of the first downlink control information is small, and the first downlink control information may, on the other hand, indicate that the base station repeatedly sends the information according to the repetition quantity indication information.
  • the number of times of the target communication data so that the UE repeatedly receives the target communication data according to the indication of the repetition number indication information to improve the correct connection of the UE. Probability of target data communication, thereby ensuring the reliability of the transmission target data communication, and therefore, high reliability low latency embodiment the first downlink control information provided to meet the traffic uRLLC embodiment of the present disclosure.
  • FIG. 7 is a block diagram of an information transmission system 700 according to an exemplary embodiment. As shown in FIG. 7, the information transmission system 700 includes a base station 701 and a UE 702.
  • the base station 701 is configured to perform the information transmission method performed by the base station in the embodiment shown in FIG.
  • the UE 702 is configured to perform an information transmission method performed by the UE in the embodiment shown in FIG.
  • FIG. 8 is a block diagram of an information transmission device 800, according to an exemplary embodiment.
  • device 800 can be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a gaming console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • device 800 can include one or more of the following components: processing component 802, memory 804, power component 806, multimedia component 808, audio component 810, input/output (I/O) interface 812, sensor component 814, And a communication component 816.
  • Processing component 802 typically controls the overall operation of device 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • Processing component 802 can include one or more processors 820 to execute instructions to perform all or part of the steps of the above described methods.
  • processing component 802 can include one or more modules to facilitate interaction between component 802 and other components.
  • processing component 802 can include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operation at device 800. Examples of such data include instructions for any application or method operating on device 800, contact data, phone book data, messages, pictures, videos, and the like.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM Electrically erasable programmable read only memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Disk Disk or Optical Disk.
  • Power component 806 provides power to various components of device 800.
  • Power component 806 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 800.
  • the multimedia component 808 includes a screen between the device 800 and the user that provides an output interface.
  • the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor may sense not only the boundary of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • the audio component 810 is configured to output and/or input an audio signal.
  • the audio component 810 includes a microphone (MIC) that is configured to receive an external audio signal when the device 800 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 804 or transmitted via communication component 816.
  • the audio component 810 also includes a speaker for outputting an audio signal.
  • the I/O interface 812 provides an interface between the processing component 802 and the peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
  • Sensor assembly 814 includes one or more sensors for providing device 800 with a status assessment of various aspects.
  • sensor assembly 814 can detect an open/closed state of device 800, relative positioning of components, such as the display and keypad of device 800, and sensor component 814 can also detect a change in position of one component of device 800 or device 800. The presence or absence of user contact with device 800, device 800 orientation or acceleration/deceleration, and temperature variation of device 800.
  • Sensor assembly 814 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 814 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communication between device 800 and other devices.
  • the device 800 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast associated information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short range communication.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • device 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), a controller, a microcontroller, a microprocessor, or other electronic component implementation is used to perform the method performed by the UE in the information transmission method provided by the embodiments of the present disclosure.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller a controller
  • microcontroller a microcontroller
  • microprocessor or other electronic component implementation is used to perform the method performed by the UE in the information transmission method provided by the embodiments of the present disclosure.
  • a non-transitory computer readable storage medium comprising instructions, such as a memory 804 comprising instructions executable by processor 820 of apparatus 800 to perform the information provided by embodiments of the present disclosure.
  • the method performed by the UE in the transmission method may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • FIG. 9 is a block diagram of an information transmission device 900, according to an exemplary embodiment.
  • the information transmission device 900 may be a base station.
  • the information transmission device 900 may include a processor 901, a receiver 902, a transmitter 903, and a memory 904.
  • Receiver 902, transmitter 903, and memory 904 are coupled to processor 901 via a bus, respectively.
  • the processor 901 includes one or more processing cores, and the processor 901 executes the method executed by the base station in the information transmission method provided by the embodiment of the present disclosure by running a software program and a module.
  • Memory 904 can be used to store software programs as well as modules. Specifically, the memory 904 can store an application module 9042 required by the operating system 9041 and at least one function.
  • the receiver 902 is configured to receive communication data transmitted by other devices, and the transmitter 903 is configured to transmit communication data to other devices.
  • the information transmission method may be: receiving first downlink control information that is sent by the base station by using the first sub-slot, where the first downlink control information includes time-frequency position indication information and repetition number indication information, where the time-frequency position indication information a time-frequency position indicating a downlink resource carrying the target communication data in the first sub-slot, where the repetition number indication information is used to indicate the number of times the base station repeatedly transmits the target communication data;
  • the information transmission method may be: sending the first downlink control information to the user equipment UE by using the first sub-time slot, where the first downlink control information includes time-frequency position indication information and repetition number indication information;
  • the frequency position indication information is used to indicate a time-frequency location of the downlink resource carrying the target communication data in the first sub-slot, and the repetition quantity indication information is used to indicate the number of times the base station repeatedly transmits the target communication data.
  • a and /B may represent three cases: A exists alone, B exists separately, and both A and B exist.

Abstract

本公开公开了一种信息传输方法、装置、系统和存储介质,属于无线通信领域。所述方法包括:接收基站通过第一子时隙发送的第一下行控制信息,该第一下行控制信息包括时频位置指示信息和重复次数指示信息;其中,该时频位置指示信息用于指示该第一子时隙中承载有目标通信数据的下行资源的时频位置,该重复次数指示信息用于指示该基站重复发送该目标通信数据的次数。本公开的技术方案能够满足uRLLC通信业务的低时延高可靠性要求。

Description

信息传输方法、装置、系统和存储介质 技术领域
本公开涉及无线通信领域,尤其涉及一种信息传输方法、装置、系统和存储介质。
背景技术
为了适应不断涌现的物联网、自动驾驶和远程医疗等互联网应用,通信系统需要能够支持多种不同类型的通信业务,其中,uRLLC(Ultra Reliable&Low Latency Communication,低时延高可靠)通信业务就是一种较为热门的通信业务类型,也是未来5G(The Fifth Generation Mobile Communication Technology,第五代移动通信技术)通信系统所能支持的最主要的一种通信业务,uRLLC通信业务对通信数据传输的时延和通信数据传输的可靠性都有着较高的要求,而当前用于调度通信数据的下行控制信息难以满足这一要求,因此目前亟需一种能够满足uRLLC通信业务的低时延高可靠性要求的下行控制信息。
发明内容
本公开提供了一种信息传输方法、装置、系统和存储介质,能够满足uRLLC通信业务的低时延高可靠性要求。
根据本公开实施例的第一方面,提供一种信息传输方法,包括:
接收基站通过第一子时隙发送的第一下行控制信息,所述第一下行控制信息包括时频位置指示信息和重复次数指示信息;
其中,所述时频位置指示信息用于指示所述第一子时隙中承载有目标通信数据的下行资源的时频位置,所述重复次数指示信息用于指示所述基站重复发 送所述目标通信数据的次数。
可选的,所述接收基站通过第一子时隙发送的第一下行控制信息,包括:
基于预设盲检策略在所述第一子时隙所承载的物理下行控制信道PDCCH中盲检所述第一下行控制信息,所述预设盲检策略为与用户设备UE盲检sDCI相同的盲检策略。
可选的,所述第一下行控制信息的长度与短下行控制信息sDCI的长度相同。
可选的,所述第一下行控制信息包括指示标识,所述指示标识用于指示所述第一下行控制信息为包括所述时频位置指示信息和所述重复次数指示信息的下行控制信息。
可选的,所述指示标识的长度为一个比特。
可选的,所述方法还包括:
根据所述重复次数指示信息所指示的次数n以及预设的时频位置确定规则确定n个第二子时隙,所述n个第二子时隙为所述基站重复发送所述目标通信数据的子时隙;
在所述n个第二子时隙上不执行接收第二下行控制信息的操作,所述第二下行控制信息为与所述第一下行控制信息类型相同的下行控制信息。
根据本公开实施例的第二方面,提供一种信息传输方法,包括:
通过第一子时隙向用户设备UE发送第一下行控制信息,所述第一下行控制信息包括时频位置指示信息和重复次数指示信息;
其中,所述时频位置指示信息用于指示所述第一子时隙中承载有目标通信数据的下行资源的时频位置,所述重复次数指示信息用于指示所述基站重复发送所述目标通信数据的次数。
可选的,所述通过第一子时隙向用户设备UE发送第一下行控制信息,包括:
基于预设无线网络临时标识RNTI对所述第一下行控制信息进行加扰,所 述预设RNTI的类型与基站加扰sDCI时所使用的RNTI的类型相同;
通过所述第一子时隙向所述UE发送经过加扰后的所述第一下行控制信息。
可选的,所述第一下行控制信息的长度与短下行控制信息sDCI的长度相同。
可选的,所述第一下行控制信息包括指示标识,所述指示标识用于指示所述第一下行控制信息为包括所述时频位置指示信息和所述重复次数指示信息的下行控制信息。
可选的,所述指示标识的长度为一个比特。
根据本公开实施例的第三方面,提供一种信息传输装置,包括:
接收模块,用于接收基站通过第一子时隙发送的第一下行控制信息,所述第一下行控制信息包括时频位置指示信息和重复次数指示信息;
其中,所述时频位置指示信息用于指示所述第一子时隙中承载有目标通信数据的下行资源的时频位置,所述重复次数指示信息用于指示所述基站重复发送所述目标通信数据的次数。
可选的,所述接收模块,用于:
基于预设盲检策略在所述第一子时隙所承载的物理下行控制信道PDCCH中盲检所述第一下行控制信息,所述预设盲检策略为与用户设备UE盲检sDCI相同的盲检策略。
可选的,所述第一下行控制信息的长度与短下行控制信息sDCI的长度相同。
可选的,所述第一下行控制信息包括指示标识,所述指示标识用于指示所述第一下行控制信息为包括所述时频位置指示信息和所述重复次数指示信息的下行控制信息。
可选的,所述指示标识的长度为一个比特。
可选的,所述装置还包括时频位置确定模块;
所述时频位置确定模块,用于根据所述重复次数指示信息所指示的次数n以及预设的时频位置确定规则确定n个第二子时隙,所述n个第二子时隙为所述基站重复发送所述目标通信数据的子时隙;
所述接收模块,用于在所述n个第二子时隙上不执行接收第二下行控制信息的操作,所述第二下行控制信息为与所述第一下行控制信息类型相同的下行控制信息。
根据本公开实施例的第四方面,提供一种信息传输装置,包括:
发送模块,用于通过第一子时隙向用户设备UE发送第一下行控制信息,所述第一下行控制信息包括时频位置指示信息和重复次数指示信息;
其中,所述时频位置指示信息用于指示所述第一子时隙中承载有目标通信数据的下行资源的时频位置,所述重复次数指示信息用于指示所述基站重复发送所述目标通信数据的次数。
可选的,所述发送模块,用于:
基于预设无线网络临时标识RNTI对所述第一下行控制信息进行加扰,所述预设RNTI的类型与基站加扰sDCI时所使用的RNTI的类型相同;
通过所述第一子时隙向所述UE发送经过加扰后的所述第一下行控制信息。
可选的,所述第一下行控制信息的长度与短下行控制信息sDCI的长度相同。
可选的,所述第一下行控制信息包括指示标识,所述指示标识用于指示所述第一下行控制信息为包括所述时频位置指示信息和所述重复次数指示信息的下行控制信息。
可选的,所述指示标识的长度为一个比特。
根据本公开实施例的第五方面,提供一种信息传输装置,包括:
处理器;
用于存储处理器可执行的指令的存储器;
其中,所述处理器被配置为:
接收基站通过第一子时隙发送的第一下行控制信息,所述第一下行控制信息包括时频位置指示信息和重复次数指示信息;
其中,所述时频位置指示信息用于指示所述第一子时隙中承载有目标通信数据的下行资源的时频位置,所述重复次数指示信息用于指示所述基站重复发送所述目标通信数据的次数。
根据本公开实施例的第六方面,提供一种信息传输装置,包括:
处理器;
用于存储处理器可执行的指令的存储器;
其中,所述处理器被配置为:
通过第一子时隙向用户设备UE发送第一下行控制信息,所述第一下行控制信息包括时频位置指示信息和重复次数指示信息;
其中,所述时频位置指示信息用于指示所述第一子时隙中承载有目标通信数据的下行资源的时频位置,所述重复次数指示信息用于指示所述基站重复发送所述目标通信数据的次数。
根据本公开实施例的第七方面,提供一种信息传输系统,包括:
如上述第三方面任一所述的信息传输装置和如上述第四方面任一所述的信息传输装置。
根据本公开实施例的第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,存储的所述计算机程序被处理组件执行时能够实现如上述第一方面任一所述的信息传输方法;或者,
存储的所述计算机程序被处理组件执行时能够实现如上述第二方面任一所述的信息传输方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过用户设备UE接收基站发送的第一下行控制信息,以根据该第一下行控制信息的调度接收目标通信数据,其中,该第一下行控制信息包括用于指示 第一子时隙中承载有目标通信数据的下行资源的时频位置的时频位置指示信息和用于指示基站重复发送目标通信数据的次数的重复次数指示信息,这样,第一下行控制信息一方面可以对第一子时隙中的下行资源进行调度,相较于传统的对一个子帧中的下行资源进行调度的下行控制信息而言,第一下行控制信息调度的时域粒度较小,因此,UE根据第一下行控制信息的调度接收目标通信数据的时延较小,第一下行控制信息另一方面可以基于重复次数指示信息指示基站重复发送目标通信数据的次数,以使UE根据该重复次数指示信息的指示重复接收该目标通信数据以提高UE正确接收目标通信数据的概率,从而保证目标通信数据的传输可靠性,因此,本公开实施例所提供的第一下行控制信息能够满足uRLLC通信业务的低时延高可靠性要求。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种实施环境的示意图。
图2是根据一示例性实施例示出的一种信息传输方法的流程图。
图3是根据一示例性实施例示出的一种信息传输方法的流程图。
图4是根据一示例性实施例示出的一种信息传输方法的流程图。
图5A是根据一示例性实施例示出的一种信息传输装置的框图。
图5B是根据一示例性实施例示出的一种信息传输装置的框图。
图6是根据一示例性实施例示出的一种信息传输装置的框图。
图7是根据一示例性实施例示出的一种信息传输系统的框图。
图8是根据一示例性实施例示出的一种信息传输装置的框图。
图9是根据一示例性实施例示出的一种信息传输装置的框图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
为了使本公开实施例所提供的技术方案易于理解,下面将先对本公开实施例所涉及到的子时隙(subslot)的技术概念进行解释。
在LTE(Long Term Evolution,长期演进)通信系统中,一个无线帧通常可以包括10个子帧,每个子帧可以包括2个时隙,其中,每个子帧的长度为1ms,每个时隙的长度为0.5ms。
在目前5G(The Fifth Generation Mobile Communication Technology,第五代移动通信技术)通信系统的标准化讨论中,为了降低通信时延,对于子帧的结构进行了重新设计,重新设计后的子帧可以包括2个以上的子时隙,例如,一个子帧可以包括6个子时隙等,其中,重新设计后的每个子帧的长度仍然为1ms。
下面将对本公开实施例所涉及到的实施环境进行说明:如图1所示,本公开实施例所涉及到的实施环境包括基站10和UE(User Equipment,用户设备)20,基站10和UE 20可以通过通信网络进行连接,UE 20为基站10所服务的小区中的任一个UE,其中,上述通信网络可以为5G通信网络,或者,其他的与5G通信网络类似的通信网络。
图2是根据一示例性实施例示出的一种信息传输方法的流程图,如图2所示,该信息传输方法用于图1所示的UE 20中,该信息传输方法包括以下步骤。
步骤201、UE接收基站通过第一子时隙发送的第一下行控制信息,该第一下行控制信息包括时频位置指示信息和重复次数指示信息。
其中,该时频位置指示信息用于指示第一子时隙中承载有目标通信数据的下行资源的时频位置,该重复次数指示信息用于指示基站重复发送目标通信数据的次数。
综上所述,本公开实施例提供的信息传输方法,通过UE接收基站发送的第一下行控制信息,以根据该第一下行控制信息的调度接收目标通信数据,其中,该第一下行控制信息包括用于指示第一子时隙中承载有目标通信数据的下行资源的时频位置的时频位置指示信息和用于指示基站重复发送目标通信数据的次数的重复次数指示信息,这样,第一下行控制信息一方面可以对第一子时隙中的下行资源进行调度,相较于传统的对一个子帧中的下行资源进行调度的下行控制信息而言,第一下行控制信息调度的时域粒度较小,因此,UE根据第一下行控制信息的调度接收目标通信数据的时延较小,第一下行控制信息另一方面可以基于重复次数指示信息指示基站重复发送目标通信数据的次数,以使UE根据该重复次数指示信息的指示重复接收该目标通信数据以提高UE正确接收目标通信数据的概率,从而保证目标通信数据的传输可靠性,因此,本公开实施例所提供的第一下行控制信息能够满足uRLLC通信业务的低时延高可靠性要求。
图3是根据一示例性实施例示出的一种信息传输方法的流程图,如图3所示,该信息传输方法用于图1所示的基站10中,该信息传输方法包括以下步骤。
步骤301、基站通过第一子时隙向UE发送第一下行控制信息,该第一下行控制信息包括时频位置指示信息和重复次数指示信息。
其中,该时频位置指示信息用于指示第一子时隙中承载有目标通信数据的下行资源的时频位置,该重复次数指示信息用于指示基站重复发送目标通信数据的次数。
综上所述,本公开实施例提供的信息传输方法,通过基站向UE发送第一下行控制信息,以使UE根据该第一下行控制信息的调度接收目标通信数据,其中,该第一下行控制信息包括用于指示第一子时隙中承载有目标通信数据的下行资源的时频位置的时频位置指示信息和用于指示基站重复发送目标通信数据的次数的重复次数指示信息,这样,第一下行控制信息一方面可以对第一子时隙中的下行资源进行调度,相较于传统的对一个子帧中的下行资源进行调度的下行控制信息而言,第一下行控制信息调度的时域粒度较小,因此,UE根据第一下行控制信息的调度接收目标通信数据的时延较小,第一下行控制信息另一方面可以基于重复次数指示信息指示基站重复发送目标通信数据的次数,以使UE根据该重复次数指示信息的指示重复接收该目标通信数据以提高UE正确接收目标通信数据的概率,从而保证目标通信数据的传输可靠性,因此,本公开实施例所提供的第一下行控制信息能够满足uRLLC通信业务的低时延高可靠性要求。
图4是根据一示例性实施例示出的一种信息传输方法的流程图,如图4所示,该信息传输方法用于图1所示的实施环境中,该信息传输方法包括以下步骤。
步骤401、基站通过第一子时隙向UE发送第一下行控制信息。
为了保证uRLLC(Ultra Reliable&Low Latency Communication,低时延高可靠)通信业务对时延和可靠性的要求,本公开实施例提供了一种用于调度uRLLC通信数据的下行控制信息,该下行控制信息即为上文所述的第一下行控制信息,基站可以通过向UE发送该第一下行控制信息以指示UE根据该第一下行控制信息接收uRLLC通信数据。实际实现时,基站可以基于当前5G通信 系统的标准化讨论中提出的重新进行结构设计的子帧(下文称为目标子帧)向UE发送该第一下行控制信息,也即是,基站可以通过目标子帧中的一个下行子时隙向UE发送该第一下行控制信息,其中,本公开实施例将上文所述的“目标子帧中的一个下行子时隙”简称为第一子时隙。
该第一下行控制信息可以包括时频位置指示信息和重复次数指示信息。
该时频位置指示信息用于指示该第一子时隙中承载有目标通信数据的下行资源的时频位置,换句话说,第一下行控制信息可以对第一子时隙中的下行资源进行调度。而LTE通信系统中既有的下行控制信息通常是对一个子帧中的下行资源进行调度,也即是,LTE通信系统中既有的下行控制信息通常用于指示一个子帧中承载有通信数据的下行资源的时频位置。因此,本公开实施例中的第一下行控制信息相较于LTE通信系统中既有的下行控制信息而言,其调度的时域粒度较小,这样,在一个子帧的长度内,UE可以根据基站的调度多次接收通信数据,例如,以一个子帧包括6个子时隙为例,在一个子帧的长度内,UE可以根据基站的调度接收6次通信数据,对于一次接收过程而言,其时延为1/6ms,而LTE通信系统中既有的下行控制信息是对一个子帧中的下行资源进行调度,因此,在一个子帧的长度内,UE可以根据基站的调度接收一次通信数据,对于一次接收过程而言,其时延为1ms,由此可知,基于第一下行控制信息对下行资源进行调度可以减小传输时延。
需要指出的是,上述目标通信数据为基站发送给该UE的通信数据,上述承载有目标通信数据的下行资源可以位于第一子时隙承载的PDSCH(Physical Downlink Shared Channel,物理下行共享信道)上。
重复次数指示信息用于指示基站重复发送目标通信数据的次数n(n为大于或等于2的正整数),UE可以根据该重复次数指示信息的指示和预设的时频位置确定规则,确定基站重复发送该目标通信数据的n个下行资源的位置。这样UE就可以在该n个下行资源上依次接收目标通信数据,直至UE正确接收到该目标通信数据为止,由于UE有n次接收目标通信数据的机会,因此,UE 正确接收到该目标通信数据的概率较高,故而目标通信数据传输的可靠性较高。
由以上说明可知,本公开实施例中的第一下行控制信息能够在一定程度上满足uRLLC通信业务的低时延高可靠要求。
实际实现中,基站通常可以通过第一子时隙承载的PDCCH(Physical Downlink Control Channel,物理下行控制信道)发送该第一下行控制信息,UE在接收该第一下行控制信息时,需要对PDCCH信道进行盲检,以在PDCCH信道中接收基站发送的第一下行控制信息。为了降低UE对PDCCH信道盲检的复杂度,本公开实施例可以保证UE能够基于与盲检sDCI(short Downlink Control Information,短下行控制信息)相同的盲检策略对第一下行控制信息进行盲检,也即是,UE可以基于相同的盲检策略对sDCI和第一下行控制信息进行盲检,从而可以降低UE对PDCCH信道盲检的复杂度,同时,UE基于相同的盲检策略对sDCI和第一下行控制信息进行盲检可以减少UE对PDCCH信道盲检的次数(若基于不同的盲检策略分别对sDCI和第一下行控制信息进行盲检,盲检sDCI和第一下行控制信息的总次数很可能会翻倍)。其中,sDCI是目前5G通信系统的标准化讨论中提出的一种下行控制信息,sDCI通过子时隙承载的PDCCH进行传输,用于调度承载该sDCI的子时隙。
为了保证UE能够基于相同的盲检策略对sDCI和第一下行控制信息进行盲检,第一下行控制信息的长度可以与sDCI的长度相同,同时,基站在向UE发送该第一下行控制信息之前可以基于预设RNTI(Radio Network Tempory Identity,无线网络临时标识)对第一下行控制信息进行加扰,例如,基站可以基于预设RNTI对第一下行控制信息的CRC(Cyclic Redundancy Check,循环冗余校验)进行加扰,其中,该预设RNTI的类型与基站加扰sDCI时所使用的RNTI的类型相同。
此外,为了保证UE能够正确区分sDCI和第一下行控制信息,该第一下行控制信息还可以包括指示标识,该指示标识可以指示第一下行控制信息为包 括时频位置指示信息和重复次数指示信息的下行控制信息,在实际实现时,该指示标识的长度可以为1个比特。
步骤402、UE接收基站通过第一子时隙发送的第一下行控制信息。
如上所述,UE可以对第一子时隙承载的PDCCH信道进行盲检以接收该第一下行控制信息,且,在对PDCCH进行盲检的过程中,UE所采用的盲检策略与盲检sDCI时所采用的盲检策略相同。
其中,该盲检策略可以为:UE基于第一下行控制信息的长度(也即是sDCI的长度)对PDCCH信道中的公共搜索空间和/或UE专属的搜索空间进行盲检,盲检的过程中,UE可以尝试采用预设RNTI对该公共搜索空间和/或UE专属的搜索空间中的信息进行解扰,当解扰成功时,UE可以确定该信息即为基站发送给自身的sDCI或第一下行控制信息,而后,UE可以基于指示标识确定该信息是否为第一下行控制信息。
步骤403、UE基于第一下行控制信息的调度接收目标通信数据。
UE在接收到该第一下行控制信息后,可以基于该第一下行控制信息中的时频位置指示信息确定第一子时隙中承载有目标通信数据的下行资源的时频位置,并在该时频位置上接收目标通信数据。
此外,UE可以基于该第一下行控制信息中的重复次数指示信息确定基站重复发送目标通信数据的次数n,该次数n不包括基站在第一子时隙上发送目标通信数据的次数,而后,UE可以根据该次数n和预设的时频位置确定规则,确定基站重复发送该目标通信数据的n个下行资源的时频位置,其中,该n个下行资源可以分别位于n个第二子时隙中,第二子时隙为与第一子时隙不同的子时隙。而后,UE可以在该n个下行资源上依次接收目标通信数据,直至UE正确接收到该目标通信数据为止。
需要指出的是,由于在确定了基站重复发送该目标通信数据的n个下行资源的位置后,UE不需要基于基站的调度就能够在该n个下行资源上依次接收目标通信数据,因此,在这种情况下,UE可以不在该n个下行资源分别所在 的n个第二子时隙上接收第二下行控制信息,其中,该第二下行控制信息为与第一下行控制信息类型相同的下行控制信息,这样,可以进一步降低UE盲检的复杂度和盲检的次数。
综上所述,本公开实施例提供的信息传输方法,通过UE接收基站发送的第一下行控制信息,以根据该第一下行控制信息的调度接收目标通信数据,其中,该第一下行控制信息包括用于指示第一子时隙中承载有目标通信数据的下行资源的时频位置的时频位置指示信息和用于指示基站重复发送目标通信数据的次数的重复次数指示信息,这样,第一下行控制信息一方面可以对第一子时隙中的下行资源进行调度,相较于传统的对一个子帧中的下行资源进行调度的下行控制信息而言,第一下行控制信息调度的时域粒度较小,因此,UE根据第一下行控制信息的调度接收目标通信数据的时延较小,第一下行控制信息另一方面可以基于重复次数指示信息指示基站重复发送目标通信数据的次数,以使UE根据该重复次数指示信息的指示重复接收该目标通信数据以提高UE正确接收目标通信数据的概率,从而保证目标通信数据的传输可靠性,因此,本公开实施例所提供的第一下行控制信息能够满足uRLLC通信业务的低时延高可靠性要求。
图5A是根据一示例性实施例示出的一种信息传输装置500的框图,该信息传输装置500可以为图1所示的UE 20。参照图5A,该信息传输装置500包括接收模块501。
该接收模块501,用于接收基站通过第一子时隙发送的第一下行控制信息,该第一下行控制信息包括时频位置指示信息和重复次数指示信息。
其中,该时频位置指示信息用于指示该第一子时隙中承载有目标通信数据的下行资源的时频位置,该重复次数指示信息用于指示该基站重复发送该目标通信数据的次数。
在本公开的一个实施例中,该接收模块501,用于基于预设盲检策略在该 第一子时隙所承载的物理下行控制信道PDCCH中盲检该第一下行控制信息,该预设盲检策略为与用户设备UE盲检sDCI相同的盲检策略。
在本公开的一个实施例中,该第一下行控制信息的长度与短下行控制信息sDCI的长度相同。
在本公开的一个实施例中,该第一下行控制信息包括指示标识,该指示标识用于指示该第一下行控制信息为包括该时频位置指示信息和该重复次数指示信息的下行控制信息。
在本公开的一个实施例中,该指示标识的长度为一个比特。
如图5B所示,本公开实施例还提供了一种信息传输装置5001,该信息传输装置5001除了包括信息传输装置500包括的各个模块外,还包括时频位置确定模块502。
其中,该时频位置确定模块502,用于根据该重复次数指示信息所指示的次数n以及预设的时频位置确定规则确定n个第二子时隙,该n个第二子时隙为该基站重复发送该目标通信数据的子时隙。
该接收模块501,用于在该n个第二子时隙上不执行接收第二下行控制信息的操作,该第二下行控制信息为与该第一下行控制信息类型相同的下行控制信息。
综上所述,本公开实施例提供的信息传输装置,通过接收基站发送的第一下行控制信息,以根据该第一下行控制信息的调度接收目标通信数据,其中,该第一下行控制信息包括用于指示第一子时隙中承载有目标通信数据的下行资源的时频位置的时频位置指示信息和用于指示基站重复发送目标通信数据的次数的重复次数指示信息,这样,第一下行控制信息一方面可以对第一子时隙中的下行资源进行调度,相较于传统的对一个子帧中的下行资源进行调度的下行控制信息而言,第一下行控制信息调度的时域粒度较小,因此,UE根据第一下行控制信息的调度接收目标通信数据的时延较小,第一下行控制信息另一方面可以基于重复次数指示信息指示基站重复发送目标通信数据的次数,以 使UE根据该重复次数指示信息的指示重复接收该目标通信数据以提高UE正确接收目标通信数据的概率,从而保证目标通信数据的传输可靠性,因此,本公开实施例所提供的第一下行控制信息能够满足uRLLC通信业务的低时延高可靠性要求。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图6是根据一示例性实施例示出的一种信息传输装置600的框图,该信息传输装置600可以为图1所示的基站10。参照图6,该信息传输装置600包括发送模块601。
该发送模块601,用于通过第一子时隙向用户设备UE发送第一下行控制信息,该第一下行控制信息包括时频位置指示信息和重复次数指示信息。
其中,该时频位置指示信息用于指示该第一子时隙中承载有目标通信数据的下行资源的时频位置,该重复次数指示信息用于指示该基站重复发送该目标通信数据的次数。
在本公开的一个实施例中,该发送模块601,用于基于预设无线网络临时标识RNTI对该第一下行控制信息进行加扰,该预设RNTI的类型与基站加扰sDCI时所使用的RNTI的类型相同,并用于通过该第一子时隙向该UE发送经过加扰后的该第一下行控制信息。
在本公开的一个实施例中,该第一下行控制信息的长度与短下行控制信息sDCI的长度相同。
在本公开的一个实施例中,该第一下行控制信息包括指示标识,该指示标识用于指示该第一下行控制信息为包括该时频位置指示信息和该重复次数指示信息的下行控制信息。
在本公开的一个实施例中,该指示标识的长度为一个比特。
综上所述,本公开实施例提供的信息传输装置,通过向UE发送第一下行 控制信息,以使UE根据该第一下行控制信息的调度接收目标通信数据,其中,该第一下行控制信息包括用于指示第一子时隙中承载有目标通信数据的下行资源的时频位置的时频位置指示信息和用于指示基站重复发送目标通信数据的次数的重复次数指示信息,这样,第一下行控制信息一方面可以对第一子时隙中的下行资源进行调度,相较于传统的对一个子帧中的下行资源进行调度的下行控制信息而言,第一下行控制信息调度的时域粒度较小,因此,UE根据第一下行控制信息的调度接收目标通信数据的时延较小,第一下行控制信息另一方面可以基于重复次数指示信息指示基站重复发送目标通信数据的次数,以使UE根据该重复次数指示信息的指示重复接收该目标通信数据以提高UE正确接收目标通信数据的概率,从而保证目标通信数据的传输可靠性,因此,本公开实施例所提供的第一下行控制信息能够满足uRLLC通信业务的低时延高可靠性要求。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图7是根据一示例性实施例示出的一种信息传输系统700的框图,如图7所示,该信息传输系统700包括基站701和UE 702。
其中,基站701用于执行图4所示实施例中基站所执行的信息传输方法。
UE 702用于执行图4所示实施例中UE所执行的信息传输方法。
图8是根据一示例性实施例示出的一种信息传输装置800的框图。例如,装置800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图8,装置800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制装置800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在装置800的操作。这些数据的示例包括用于在装置800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为装置800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为装置800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当装置800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当装置800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为装置800提供各个方面的状态评估。例如,传感器组件814可以检测到装置800的打开/关闭状态,组件的相对定位,例如所述组件为装置800的显示器和小键盘,传感器组件814还可以检测装置800或装置800一个组件的位置改变,用户与装置800接触的存在或不存在,装置800方位或加速/减速和装置800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于装置800和其他设备之间有线或无线方式的通信。装置800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信部件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信部件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑 器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行本公开实施例提供的信息传输方法中UE所执行的方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由装置800的处理器820执行以完成本公开实施例提供的信息传输方法中UE所执行的方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图9是根据一示例性实施例示出的一种信息传输装置900的框图。例如,信息传输装置900可以是基站。如图9所示,信息传输装置900可以包括:处理器901、接收机902、发射机903和存储器904。接收机902、发射机903和存储器904分别通过总线与处理器901连接。
其中,处理器901包括一个或者一个以上处理核心,处理器901通过运行软件程序以及模块以执行本公开实施例提供的信息传输方法中基站所执行的方法。存储器904可用于存储软件程序以及模块。具体的,存储器904可存储操作系统9041、至少一个功能所需的应用程序模块9042。接收机902用于接收其他设备发送的通信数据,发射机903用于向其他设备发送通信数据。
在示例性实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,存储的计算机程序被处理组件执行时能够实现一种信息传输方法,例如,该信息传输方法可以为:接收基站通过第一子时隙发送的第一下行控制信息,该第一下行控制信息包括时频位置指示信息和重复次数指示信息,其中,该时频位置指示信息用于指示该第一子时隙中承载有目标通信数据的下行资源的时频位置,该重复次数指示信息用于指示该基站重复发送该目标通信数据的次数;
或者,该信息传输方法可以为:通过第一子时隙向用户设备UE发送第一下行控制信息,该第一下行控制信息包括时频位置指示信息和重复次数指示信息;其中,该时频位置指示信息用于指示该第一子时隙中承载有目标通信数据的下行资源的时频位置,该重复次数指示信息用于指示该基站重复发送该目标通信数据的次数。
需要指出的是,本公开实施例中的“和/或”可以表示三种逻辑关系,例如,A和/B可以表示:单独存在A、单独存在B和既存在A又存在B三种情况。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (26)

  1. 一种信息传输方法,其特征在于,所述方法包括:
    接收基站通过第一子时隙发送的第一下行控制信息,所述第一下行控制信息包括时频位置指示信息和重复次数指示信息;
    其中,所述时频位置指示信息用于指示所述第一子时隙中承载有目标通信数据的下行资源的时频位置,所述重复次数指示信息用于指示所述基站重复发送所述目标通信数据的次数。
  2. 根据权利要求1所述的方法,其特征在于,所述接收基站通过第一子时隙发送的第一下行控制信息,包括:
    基于预设盲检策略在所述第一子时隙所承载的物理下行控制信道PDCCH中盲检所述第一下行控制信息,所述预设盲检策略为与用户设备UE盲检sDCI相同的盲检策略。
  3. 根据权利要求1所述的方法,其特征在于,所述第一下行控制信息的长度与短下行控制信息sDCI的长度相同。
  4. 根据权利要求1所述的方法,其特征在于,所述第一下行控制信息包括指示标识,所述指示标识用于指示所述第一下行控制信息为包括所述时频位置指示信息和所述重复次数指示信息的下行控制信息。
  5. 根据权利要求4所述的方法,其特征在于,所述指示标识的长度为一个比特。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述重复次数指示信息所指示的次数n以及预设的时频位置确定规则确定n个第二子时隙,所述n个第二子时隙为所述基站重复发送所述目标通信数据的子时隙;
    在所述n个第二子时隙上不执行接收第二下行控制信息的操作,所述第二下行控制信息为与所述第一下行控制信息类型相同的下行控制信息。
  7. 一种信息传输方法,其特征在于,所述方法包括:
    通过第一子时隙向用户设备UE发送第一下行控制信息,所述第一下行控制信息包括时频位置指示信息和重复次数指示信息;
    其中,所述时频位置指示信息用于指示所述第一子时隙中承载有目标通信数据的下行资源的时频位置,所述重复次数指示信息用于指示所述基站重复发送所述目标通信数据的次数。
  8. 根据权利要求7所述的方法,其特征在于,所述通过第一子时隙向用户设备UE发送第一下行控制信息,包括:
    基于预设无线网络临时标识RNTI对所述第一下行控制信息进行加扰,所述预设RNTI的类型与基站加扰sDCI时所使用的RNTI的类型相同;
    通过所述第一子时隙向所述UE发送经过加扰后的所述第一下行控制信息。
  9. 根据权利要求7所述的方法,其特征在于,所述第一下行控制信息的长度与短下行控制信息sDCI的长度相同。
  10. 根据权利要求7所述的方法,其特征在于,所述第一下行控制信息包括指示标识,所述指示标识用于指示所述第一下行控制信息为包括所述时频位置指示信息和所述重复次数指示信息的下行控制信息。
  11. 根据权利要求10所述的方法,其特征在于,所述指示标识的长度为一 个比特。
  12. 一种信息传输装置,其特征在于,所述装置包括:
    接收模块,用于接收基站通过第一子时隙发送的第一下行控制信息,所述第一下行控制信息包括时频位置指示信息和重复次数指示信息;
    其中,所述时频位置指示信息用于指示所述第一子时隙中承载有目标通信数据的下行资源的时频位置,所述重复次数指示信息用于指示所述基站重复发送所述目标通信数据的次数。
  13. 根据权利要求12所述的装置,其特征在于,所述接收模块,用于:
    基于预设盲检策略在所述第一子时隙所承载的物理下行控制信道PDCCH中盲检所述第一下行控制信息,所述预设盲检策略为与用户设备UE盲检sDCI相同的盲检策略。
  14. 根据权利要求12所述的装置,其特征在于,所述第一下行控制信息的长度与短下行控制信息sDCI的长度相同。
  15. 根据权利要求12所述的装置,其特征在于,所述第一下行控制信息包括指示标识,所述指示标识用于指示所述第一下行控制信息为包括所述时频位置指示信息和所述重复次数指示信息的下行控制信息。
  16. 根据权利要求15所述的装置,其特征在于,所述指示标识的长度为一个比特。
  17. 根据权利要求12所述的装置,其特征在于,所述装置还包括时频位置确定模块;
    所述时频位置确定模块,用于根据所述重复次数指示信息所指示的次数n 以及预设的时频位置确定规则确定n个第二子时隙,所述n个第二子时隙为所述基站重复发送所述目标通信数据的子时隙;
    所述接收模块,用于在所述n个第二子时隙上不执行接收第二下行控制信息的操作,所述第二下行控制信息为与所述第一下行控制信息类型相同的下行控制信息。
  18. 一种信息传输装置,其特征在于,所述装置包括:
    发送模块,用于通过第一子时隙向用户设备UE发送第一下行控制信息,所述第一下行控制信息包括时频位置指示信息和重复次数指示信息;
    其中,所述时频位置指示信息用于指示所述第一子时隙中承载有目标通信数据的下行资源的时频位置,所述重复次数指示信息用于指示所述基站重复发送所述目标通信数据的次数。
  19. 根据权利要求18所述的装置,其特征在于,所述发送模块,用于:
    基于预设无线网络临时标识RNTI对所述第一下行控制信息进行加扰,所述预设RNTI的类型与基站加扰sDCI时所使用的RNTI的类型相同;
    通过所述第一子时隙向所述UE发送经过加扰后的所述第一下行控制信息。
  20. 根据权利要求18所述的装置,其特征在于,所述第一下行控制信息的长度与短下行控制信息sDCI的长度相同。
  21. 根据权利要求18所述的装置,其特征在于,所述第一下行控制信息包括指示标识,所述指示标识用于指示所述第一下行控制信息为包括所述时频位置指示信息和所述重复次数指示信息的下行控制信息。
  22. 根据权利要求21所述的装置,其特征在于,所述指示标识的长度为一个比特。
  23. 一种信息传输装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行的指令的存储器;
    其中,所述处理器被配置为:
    接收基站通过第一子时隙发送的第一下行控制信息,所述第一下行控制信息包括时频位置指示信息和重复次数指示信息;
    其中,所述时频位置指示信息用于指示所述第一子时隙中承载有目标通信数据的下行资源的时频位置,所述重复次数指示信息用于指示所述基站重复发送所述目标通信数据的次数。
  24. 一种信息传输装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行的指令的存储器;
    其中,所述处理器被配置为:
    通过第一子时隙向用户设备UE发送第一下行控制信息,所述第一下行控制信息包括时频位置指示信息和重复次数指示信息;
    其中,所述时频位置指示信息用于指示所述第一子时隙中承载有目标通信数据的下行资源的时频位置,所述重复次数指示信息用于指示所述基站重复发送所述目标通信数据的次数。
  25. 一种信息传输系统,其特征在于,所述信息传输系统包括如权利要求12至17任一所述的信息传输装置和如权利要求18至22任一所述的信息传输装置。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,存储的所述计算机程序被处理组件执行时能够实现如权利 要求1至6任一所述的信息传输方法;或者,
    存储的所述计算机程序被处理组件执行时能够实现如权利要求7至11任一所述的信息传输方法。
PCT/CN2018/073659 2018-01-22 2018-01-22 信息传输方法、装置、系统和存储介质 WO2019140696A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880000023.9A CN110178430B (zh) 2018-01-22 2018-01-22 信息传输方法、装置、系统和存储介质
PCT/CN2018/073659 WO2019140696A1 (zh) 2018-01-22 2018-01-22 信息传输方法、装置、系统和存储介质
US16/921,164 US11445492B2 (en) 2018-01-22 2020-07-06 Methods for receiving and sending downlink control information, user equipment, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/073659 WO2019140696A1 (zh) 2018-01-22 2018-01-22 信息传输方法、装置、系统和存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/921,164 Continuation US11445492B2 (en) 2018-01-22 2020-07-06 Methods for receiving and sending downlink control information, user equipment, and base station

Publications (1)

Publication Number Publication Date
WO2019140696A1 true WO2019140696A1 (zh) 2019-07-25

Family

ID=67301258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073659 WO2019140696A1 (zh) 2018-01-22 2018-01-22 信息传输方法、装置、系统和存储介质

Country Status (3)

Country Link
US (1) US11445492B2 (zh)
CN (1) CN110178430B (zh)
WO (1) WO2019140696A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111935838B (zh) * 2020-08-13 2021-09-17 深圳职业技术学院 一种控制信息传输方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541018A (zh) * 2008-03-21 2009-09-23 中兴通讯股份有限公司 一种宽带无线通信系统控制信息的传输方法
CN102651890A (zh) * 2011-02-24 2012-08-29 电信科学技术研究院 一种系统信息的传输方法及装置
CN103648175A (zh) * 2010-03-22 2014-03-19 华为技术有限公司 多子帧调度方法、系统和设备
CN106454694A (zh) * 2015-08-11 2017-02-22 中兴通讯股份有限公司 下行控制信息发送、接收方法及装置
US20170289877A1 (en) * 2016-04-01 2017-10-05 Htc Corporation Device and Method of Handling Connection Transfer

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101761624B1 (ko) * 2010-01-26 2017-08-04 엘지전자 주식회사 무선 통신 시스템에서 릴레이가 하향링크 신호를 처리하는 방법 및 그 장치
CN102186251B (zh) * 2011-04-29 2016-09-28 中兴通讯股份有限公司 下行控制信息的传输方法及系统
MY164191A (en) * 2011-05-03 2017-11-30 ERICSSON TELEFON AB L M (publ) Search area based control channel monitoring
CN103716841A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 信息传输方法及装置
CN104009820B (zh) * 2013-02-26 2018-01-23 华为技术有限公司 用于传输下行控制信息dci的方法及其装置
CN103179670B (zh) * 2013-04-03 2016-08-24 华为技术有限公司 传输信道的方法及其装置
CN108418669A (zh) * 2013-04-25 2018-08-17 华为技术有限公司 下行控制信息的传输方法及设备
WO2017075822A1 (zh) * 2015-11-06 2017-05-11 华为技术有限公司 数据传输的方法、接入网设备及用户设备
CN106817774B (zh) * 2015-12-01 2019-07-19 展讯通信(上海)有限公司 用户终端调度方法及装置
CN107295680B (zh) * 2016-04-01 2021-03-19 展讯通信(上海)有限公司 下行数据调度配置方法和系统、基站和用户设备
CN106793099B (zh) * 2016-04-11 2020-02-14 北京展讯高科通信技术有限公司 基站及上行数据的harq反馈方法
CN107396406B (zh) * 2016-05-17 2019-08-30 电信科学技术研究院 基于业务的网络分片选择的方法、装置及系统
CN109923914B (zh) * 2017-03-24 2021-10-22 Lg 电子株式会社 用于接收寻呼消息的方法和无线设备
CN110959265B (zh) * 2017-07-21 2023-07-25 株式会社Ntt都科摩 用户终端以及无线通信方法
US10863494B2 (en) * 2018-01-22 2020-12-08 Apple Inc. Control signaling for uplink multiple input multiple output, channel state information reference signal configuration and sounding reference signal configuration

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101541018A (zh) * 2008-03-21 2009-09-23 中兴通讯股份有限公司 一种宽带无线通信系统控制信息的传输方法
CN103648175A (zh) * 2010-03-22 2014-03-19 华为技术有限公司 多子帧调度方法、系统和设备
CN102651890A (zh) * 2011-02-24 2012-08-29 电信科学技术研究院 一种系统信息的传输方法及装置
CN106454694A (zh) * 2015-08-11 2017-02-22 中兴通讯股份有限公司 下行控制信息发送、接收方法及装置
US20170289877A1 (en) * 2016-04-01 2017-10-05 Htc Corporation Device and Method of Handling Connection Transfer

Also Published As

Publication number Publication date
CN110178430B (zh) 2023-11-21
CN110178430A (zh) 2019-08-27
US20200337034A1 (en) 2020-10-22
US11445492B2 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
US11159294B2 (en) Method for obtaining time-frequency resource position of common control resource set of remaining system information
CN113825241B (zh) 时隙格式指示方法、装置、设备、系统及存储介质
CN109076558B (zh) 识别下行传输的方法及装置
WO2019191948A1 (zh) 下行控制信息格式大小的确定方法及装置
WO2018129936A1 (zh) 信息反馈方法、装置、基站和用户设备
US11917613B2 (en) Uplink transmission resource selection method, terminal and storage medium
WO2018086069A1 (zh) 用于发送和接收系统消息的方法、装置、用户设备及基站
WO2020191631A1 (zh) 时隙格式指示方法及装置
WO2022041084A1 (zh) 盲重传方法和装置、盲重传指示方法和装置
US11722283B2 (en) Information transmission method, device, system, and storage medium
US11394495B2 (en) Hybrid automatic repeat request (HARQ) feedback method and device and data receiving apparatus
WO2019218367A1 (zh) 信息传输方法及装置
US20210029734A1 (en) Method and apparatus for indicating occupation of semi-persistent scheduling unit, and base station
CN105099644B (zh) 半双工通信方法及相关装置
WO2019148465A1 (zh) 控制信令的传输方法、终端及基站
WO2018120779A1 (zh) 下行链路数据的传输方法及装置
US11271684B2 (en) Data transmission method and apparatus, electronic device, and computer-readable storage medium
US11956755B2 (en) Method and apparatus for transmitting paging signaling
WO2019140696A1 (zh) 信息传输方法、装置、系统和存储介质
WO2019210488A1 (zh) 信息发送方法及装置、基站和用户设备
CN108702262B (zh) 数据传输方法、装置、系统及计算机可读存储介质
WO2018195872A1 (zh) 上行资源获取方法、装置及计算机可读存储介质
WO2020168513A1 (zh) 数据传输方法、装置、系统及存储介质
CN109565649B (zh) 传输同步指示信息的方法及装置
CN109792749B (zh) 数据调度方法和装置、数据传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18900635

Country of ref document: EP

Kind code of ref document: A1