WO2019212271A1 - 접촉 대전 발전기 - Google Patents

접촉 대전 발전기 Download PDF

Info

Publication number
WO2019212271A1
WO2019212271A1 PCT/KR2019/005299 KR2019005299W WO2019212271A1 WO 2019212271 A1 WO2019212271 A1 WO 2019212271A1 KR 2019005299 W KR2019005299 W KR 2019005299W WO 2019212271 A1 WO2019212271 A1 WO 2019212271A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode film
electrode
layer
electrode layer
contact
Prior art date
Application number
PCT/KR2019/005299
Other languages
English (en)
French (fr)
Inventor
김태환
전영표
이은정
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2019212271A1 publication Critical patent/WO2019212271A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators

Definitions

  • the present invention relates to a contact charging generator for producing a current through the electrostatic induction action, more specifically, the ultra-thin second electrode film is vibrated by the wind speed and repeatedly contacted with the first electrode film due to the electrostatic induction action
  • a contact charging generator for producing a current is a contact charging generator for producing a current.
  • Wind turbines are one of the energy sources that are in the spotlight.
  • the wind power generator has a problem in that it takes up a lot of initial investment and installation area due to the height and size of the tower for supporting the blade.
  • the object of the present invention is to produce electrical energy through the electrostatic induction action between the first electrode film and the second electrode film does not generate noise and pollutants, and does not require expensive devices such as turbines or towers, installation space It is to provide a contact charging generator that can be manufactured at a low cost without taking a lot of.
  • Contact charger generator for achieving the above object includes a first electrode film and a second electrode film.
  • the first electrode film is disposed in the vertical direction, and is provided in plurality and spaced apart from each other.
  • the second electrode film is disposed in the vertical direction between the first electrode films, is formed in an ultra-thin film, vibrates by wind power acting in the horizontal direction, contacts the first electrode film, and generates a current due to the electrostatic induction action.
  • the case further comprises a case having an opening formed in the direction in which the wind acts, the upper end of the second electrode film is fixed to the inner upper portion of the case, the lower end of the first electrode film is fixed to the inner lower portion of the case .
  • the first electrode film includes a first friction layer formed on one surface of the first electrode layer and the first electrode layer and charged with a negative charge or a positive charge by contact with the second electrode film.
  • the second electrode film is formed on one surface of the second electrode layer and the second electrode layer facing the first electrode film, the second friction that is positively charged by contact with the first friction layer Layer.
  • the first friction layer comprises one selected from Teflon, Silicone, PVC, Polythyylene, polyurethance, Saran, Celluloid, Polyester, Rayon.
  • the first electrode layer and the second electrode layer are provided on the first substrate and the second substrate, respectively.
  • the second substrate is formed of a transparent polymer material
  • the transparent polymer material includes one selected from PET, PEN, PC, PES, PI.
  • the second friction layer is formed of an organic material
  • the organic material is NPB, ⁇ -NPB, TPD, Spiro-TPD, Spiro-NPB, DMFL-TPD, DMFL-NPB, DPFL-TPD, DPFL -NPB, ⁇ -NPD, Spiro-TAD, BPAPF, NPAPF, NPBAPF, Spiro-2NPB, PAPB, 2,2'-Spiro-DBP, Spiro-BPA, TAPC, Spiro-TTB, ⁇ -TNB, HMTPD, ⁇ , ⁇ -TNB, ⁇ -TNB, ⁇ -NPP, PEDOT selected one.
  • the second friction layer and the second electrode layer is formed by vacuum deposition on the second substrate.
  • the first electrode layer and the second electrode layer includes at least one selected from Al, Au, Ag, Cu, Pt, W, Ni, Zn, Ti, Zr, Hf, Cd, Pd.
  • the first electrode layer and the second electrode layer is formed of a metal oxide
  • the metal oxide is TO, Al-doped ZnO (AZO), Ga-doped ZnO (GZO), In, Ga-doped ZnO (IGZO) ), Mg-doped ZnO (MZO), Mo-doped ZnO, Al-doped MgO, Ga-doped MgO, F-doped SnO 2 , Nb-doped TiO 2 . At least one selected from CuAlO 2 .
  • the first electrode layer and the second electrode layer include at least one selected from graphene, SW-CNT, DW-CNT, MW-CNT, and C 60 .
  • the second electrode film is formed of a material having a flexible (flexible).
  • the second electrode film is formed to a thickness of 5 ⁇ m 50 ⁇ m size.
  • the second electrode film is formed to a thickness of 50 ⁇ m size.
  • the contact charge generator according to the present invention includes a case, a first electrode film, and a second electrode film.
  • the case has an opening formed on one surface.
  • the first electrode film is formed long in one direction in the case, is provided with a plurality of spaced apart from each other, is formed of a rigid material that does not bend even when the wind blows.
  • the second electrode film is disposed to extend in parallel to the first electrode film in the case, and is disposed between the first electrode films, and is formed in an ultra-thin film made of a flexible material and vibrated by wind acting in a vertical direction from one surface. 1 electrode contact with the film. An electric current is generated between the first electrode film and the second electrode film due to the electrostatic induction action.
  • the first electrode film and the second electrode film are disposed in the vertical direction on the inner bottom and top of the case, respectively.
  • the first electrode film includes a first friction layer formed on one surface of the first electrode layer and the first electrode layer and charged with a negative charge or a positive charge by contact with the second electrode film.
  • the second electrode film is formed on one surface of the second electrode layer and the second electrode layer facing the first electrode film, and is charged with a polarity opposite to the first friction layer by contact with the first friction layer. And a second friction layer.
  • the second friction layer and the second electrode layer are formed by vacuum deposition on the second substrate.
  • the electrical energy is produced through the electrostatic induction action between the first electrode film and the second electrode film, noise and pollutants do not occur, and thus it is possible to install directly in an urban area consuming electricity.
  • the manufacturing process is simple and light in weight, the process cost is reduced and portable, and various changes in shape and shape are possible, and thus there is an advantage of high utilization.
  • the number of the first electrode film and the second electrode film can increase or decrease the capacity of the electrical energy to be obtained, can be used as a small power source and can be applied to high power generation.
  • FIG. 1 is a perspective view of a contact charging generator according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining the operation of the contact charging generator shown in FIG.
  • FIG. 3 is a view showing a change in the surface charge according to the contact and separation of the first friction layer and the second friction layer of the contact charging generator shown in FIG.
  • FIG. 4 is a graph of voltage formation by the contact charger shown in FIG. 1.
  • FIG. 5 illustrates a first electrode film and a second electrode film according to another embodiment of FIG. 1.
  • FIG. 1 is a perspective view of a contact charger according to an embodiment of the present invention
  • Figure 2 is a view for explaining the operation of the contact charger shown in FIG. 3 is a view showing the change of the surface charge according to the contact and separation of the first friction layer and the second friction layer of the contact charger shown in FIG. 1, and
  • the contact charger generator 100 includes a first electrode film 110 and a second electrode film 120.
  • the contact charging generator 100 is a device for converting the mechanical energy present in the surrounding environment into electrical energy through the electrostatic induction action, in the present embodiment has been described only the mechanical energy as wind power, but also in addition to the wave power, human motion, etc. It can mean all of the mechanical energy generated from.
  • the first electrode film 110 may be provided in plurality and spaced apart from each other. In this case, the first electrode film 110 may be disposed in a vertical direction.
  • the vertical direction refers to a vertical direction from the ground, that is, a Z-axis direction.
  • the first electrode film 110 may be formed of a rigid material which does not shake even when wind is blown. Accordingly, the first electrode film 110 may extend vertically from the bottom surface even if the wind blows inside the case 130. State can be maintained.
  • the first electrode film 110 is formed of a rigid material at least one of the first electrode layer 111 or the first substrate 113 to be described later.
  • the first electrode layer 111 is formed of a rigid material, and the first substrate having rigidity on the first electrode film 110 (
  • the first electrode layer 111 may be coated or formed on the first substrate 113. Therefore, the first electrode layer 111 may not necessarily be formed of a rigid material.
  • the first electrode film 110 includes a first electrode layer 111 and a first friction layer 112.
  • the first electrode layer 111 may be disposed in a vertical direction from the ground and may be formed of a material having excellent electrical conductivity.
  • the first electrode layer 111 may be formed of a metal including at least one selected from Al, Au, Ag, Cu, Pt, W, Ni, Zn, Ti, Zr, Hf, Cd, and Pd.
  • the first electrode layer 111 may be formed of a metal oxide.
  • metal oxides include TO, Al-doped ZnO (AZO), Ga-doped ZnO (GZO), In, Ga-doped ZnO (IGZO), Mg-doped ZnO (MZO), Mo-doped ZnO, Al-doped MgO , Ga-doped MgO, F-doped SnO 2 , Nb-doped TiO 2 . It may include at least one selected from CuAlO 2 .
  • the first electrode layer 111 may include at least one selected from graphene, SW-CNT, DW-CNT, MW-CNT, and C 60 .
  • the first electrode layer 111 may have a single layer structure or a plurality of layers.
  • the first friction layer 112 is formed on one surface of the first electrode layer 111 and may be charged with negative charge by contact with the second electrode film 120.
  • the first friction layer 112 may be formed of a material having excellent negative electrostatic force characteristics.
  • the first friction layer 112 may include one selected from Teflon, Silicone, PVC, Polythyylene, polyurethance, Saran, Celluloid, Polyester, and Rayon.
  • the first friction layer 112 is illustrated as being charged with negative charge by contact with the second electrode film 120, but is not limited thereto.
  • the first friction layer 112 may be a second electrode film. It may be charged positively by the contact of 120.
  • the second electrode film 120 may be disposed in a vertical direction between the first electrode films 110, and each of the first electrode films 110 includes a second electrode film 120 corresponding thereto.
  • the second electrode film 120 may be formed in the same number as the number of the first electrode films 110. That is, a plurality of second electrode films 120 may be provided to intersect the first electrode film 110.
  • the second electrode film 120 may be formed in an ultra-thin film having flexibility. When the wind blows into the case 130 as the second electrode film 120 is formed of a flexible material, the second electrode film 120 may be shaken while fluttering with the upper end fixed to the inside of the case 130. have.
  • the second electrode film 120 may selectively use a thickness that can have a constant movement by the wind.
  • the thickness of the second electrode film 120 may vary depending on the material used. This is because when the thickness of the second electrode film 120 is too thin, it is difficult to process and the formation of electrodes on it becomes difficult, resulting in high cost and difficulty in contact-separation operation by wind power. In addition, when the thickness of the second electrode film 120 is thick, it may not have smooth movement due to wind power because flexibility is not good.
  • the second substrate 123 to be described later may be formed of a polymer material polyethersulfone (PES), and the thickness of the second substrate 123 may be 5 ⁇ m to 50 ⁇ m, specifically, 50 ⁇ m.
  • the thickness of the second electrode film 120 is determined by the second substrate 123, which will be described later, and the second electrode layer 121 and the second friction layer 122, which will be described later, are deposited on the second substrate 123. As the thickness is in nm unit can be said to be negligible.
  • the second electrode film 120 is formed as an ultra-thin film having flexibility, as shown in FIG. 2, the second electrode film 120 is vibrated by the wind force acting in the horizontal direction to be in contact with the first electrode film 110 and is electrostatically induced. It is possible to generate a current due to.
  • the second electrode film 120 may include a second electrode layer 121, a second friction layer 122, and a second substrate 123.
  • the second electrode layer 121 may be disposed to face the first electrode film 110. That is, the second electrode layer 121 may be disposed in the vertical direction from the ground to cross the first electrode layer 111. Like the first electrode layer 111, the second electrode layer 121 may be formed of a material having excellent electrical conductivity. For example, the second electrode layer 121 may be formed of a metal including at least one selected from Al, Au, Ag, Cu, Pt, W, Ni, Zn, Ti, Zr, Hf, Cd, and Pd.
  • the second electrode layer 121 may be formed of a metal oxide.
  • metal oxides include TO, Al-doped ZnO (AZO), Ga-doped ZnO (GZO), In, Ga-doped ZnO (IGZO), Mg-doped ZnO (MZO), Mo-doped ZnO, Al-doped MgO , Ga-doped MgO, F-doped SnO 2 , Nb-doped TiO 2 . It may include at least one selected from CuAlO 2 .
  • the second electrode layer 121 may include at least one selected from graphene, SW-CNT, DW-CNT, MW-CNT, and C 60 .
  • the first electrode layer 111 may have a single layer structure or a plurality of layers.
  • the second friction layer 122 is formed on one surface of the second electrode layer 121 and may be charged with positive charge by contact with the first friction layer 112.
  • the second friction layer 122 may be formed of a material having excellent positive electrostatic force characteristics.
  • the second friction layer 122 may be formed of an organic material, and the organic material may be NPB, ⁇ -NPB, TPD, Spiro-TPD, Spiro-NPB, DMFL-TPD, DMFL-NPB, DPFL-TPD, or DPFL.
  • -NPB ⁇ -NPD
  • Spiro-TAD BPAPF, NPAPF, NPBAPF, Spiro-2NPB, PAPB, 2,2'-Spiro-DBP, Spiro-BPA, TAPC, Spiro-TTB, ⁇ -TNB, HMTPD, ⁇
  • It may include one selected from ⁇ -TNB, ⁇ -TNB, ⁇ -NPP, PEDOT.
  • the second friction layer 122 is illustrated as being positively charged by the contact with the first electrode film 110, but is not limited thereto, and the second friction layer 122 may be the first electrode film. It may be charged negatively by the contact of 110.
  • the second electrode layer 121 may be formed on the second substrate 123 by vacuum deposition. This is because the vacuum deposition method is hypothetically effective to form the second electrode layer 121 on the very thin second substrate 123 as the second substrate 123 is formed of an ultra-thin film having a thickness of 5 ⁇ m to 50 ⁇ m. .
  • the second friction layer 122 may be formed by vacuum deposition on the second electrode layer 121, which is a very thin shape as in the case of depositing the second electrode layer 121 on the second substrate 123. This is because the vacuum deposition method is hypothetically effective to form the second friction layer 122 on the second substrate 123.
  • the contact charging generator 100 may further include a case 130 having an opening formed in a direction in which wind power acts.
  • the first electrode film 110 and the second electrode film 120 may be supported in the case 130.
  • an upper end of the second electrode film 120 may be fixed to an inner upper part of the case 130
  • a lower end of the first electrode film 110 may be fixed to an inner lower part of the case 130.
  • the first electrode film 110 is fixed to the inner upper part of the case 130 and the second electrode film 120 is fixed to the lower part
  • the second electrode film 120 is formed in an ultra-thin film form. Since the support force is weak when there is a possibility that the case 130 is fixed to the lower part of the case 130, the second electrode film 120 may be fixed to the upper part of the case 130.
  • an opening of the case 130 is formed on a surface of the second electrode film 120 that faces the lower surface of the second electrode film 120.
  • wind is vertically applied to the second electrode film 120.
  • the lower portion of the second electrode film 120 is bent and vibrated to be in contact with and separated from the first electrode film 110.
  • the intensity of vibration of the second electrode film 120 may vary depending on the magnitude of the wind speed.
  • FIG. 5 is a diagram illustrating a first electrode film and a second electrode film according to another embodiment of FIG. 1. As illustrated in FIG. 5, the first electrode layer 111 and the second electrode layer 121 may be provided on the first substrate 113 and the second substrate 123, respectively.
  • the first electrode film 110 may include the first substrate 113, the first electrode layer 111 formed on the first substrate 113, and the first friction layer 112 formed on the first electrode layer 111. It can be formed into).
  • the first substrate 113 may be formed in the form of a rectangular substrate, and may be formed of a material having high strength, such as a silicon wafer or glass.
  • the second electrode film 120 includes a second substrate 123, a second electrode layer 121 formed on the second substrate 123, and a second friction layer 122 formed on the second electrode layer 121. It can be formed into).
  • the second substrate 123 may be formed of a transparent polymer material having good elasticity.
  • the second substrate 123 may be formed of one selected from PET, PEN, PC, PES, and PI.
  • the second electrode film 120 may include a second electrode layer 121 deposited on the second substrate 123 and a second friction layer 122 deposited on the second electrode layer 121. have.
  • the thickness of the second electrode film 120 may be determined by the thickness of the second substrate 123 as described above. same.
  • the first substrate 113 is formed of a good strength material and the second substrate 123 is formed of a flexible material, only the second electrode film 120 vibrates when wind speed is applied to the contact charger generator 100. Once this moves. Accordingly, when the wind speed is applied, both the first electrode film 110 and the second electrode film 120 may move in the same direction, thereby preventing the contactability from deteriorating.
  • the lower portion of the second electrode film 120 having the upper end fixed to the inner upper portion of the case 130 vibrates in the direction in which the wind enters.
  • the wind may be applied in a direction perpendicular to one surface of the second electrode film 120. That is, since the second electrode film 120 is disposed in the Z-axis direction, when one surface of the second electrode film 120 is disposed in the X-axis direction, wind is applied in the X-axis direction, and the second electrode film 120 is disposed. If one surface of is disposed in the Y-axis direction wind may be applied in the Y-axis direction. The direction of the wind can be adjusted through the opening direction of the case 130.
  • the second electrode film 120 is in contact with and separated from the first electrode film 110 spaced apart from each other. Will repeat.
  • the first friction layer 112 and the second friction layer 122 are formed to face each other, so that the vibration of the second electrode film 120 of the first friction layer 112 and the second friction layer 122 It is preferable that one surface is in contact.
  • first friction layer 112 having the strong negative electrostatic force and the second friction layer 122 having the strong positive electrostatic force are in contact with each other, as shown in FIG.
  • the first friction layer 112 is charged to the cathode, and the second friction layer 122 having a positive positive power is charged to the anode.
  • the first friction layer 112 and the second friction layer 122 are charged with both electrodes to achieve an equilibrium state as the charged interface is separated from each other. Is formed.
  • FIG. 3 (c) when the first friction layer 112 and the second friction layer 122 are in contact with each other again, the state is returned to the previous state. Electricity is formed and flows in the opposite direction (see FIG. 3 (d)).
  • electricity can be formed by converting the kinetic energy of contact and separation into electrical energy caused by a change in the state of the electrostatic force.
  • the open circuit voltage of the generated electrical energy is as shown in FIG. 4.
  • the magnitude of the electrical energy formed by this process is closely related to the electrostatic force generated while the first electrode layer 111 and the second electrode layer 121 are in contact with each other. That is, the magnitude of the electric energy generated according to the number of the first electrode layer 111 and the second electrode layer 121 can be increased or decreased.
  • the contact charge generator 100 produces electrical energy through the electrostatic induction action between the first electrode film 110 and the second electrode film 120, so that noise and pollutants do not occur, thereby generating electricity. Can be installed directly in consuming urban areas.
  • the manufacturing process is simple and light in weight, the process cost is reduced and portable, and various changes in shape and shape are possible, and thus there is an advantage of high utilization.
  • the capacity of the electric energy to be obtained can be increased or decreased, so that it can be used not only as a small power source but also applied to high power generation. Or may be applied to a sensor for detecting wind.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Wind Motors (AREA)

Abstract

정전 유도 작용을 통해 전류를 생산하는 접촉 대전 발전기에 관한 것이다. 접촉 대전 발전기는 제1 전극 필름 및 제2 전극 필름을 포함한다. 제1 전극 필름은 수직 방향으로 배치되며, 복수로 구비되어 상호 이격된다. 제2 전극 필름은 제1 전극 필름의 사이마다 수직 방향으로 배치되고, 초박막형으로 형성되어 수평방향으로 작용하는 풍력에 의해 진동하여 제1 전극 필름과 접촉되며 정전유도 작용으로 인한 전류를 발생시킨다.

Description

접촉 대전 발전기
본 발명은 정전 유도 작용을 통해 전류를 생산하는 접촉 대전 발전기에 관한 것으로, 보다 상세하게는 초박막 형태의 제2 전극 필름이 풍속에 의해 진동하며 제1 전극 필름과 반복적으로 접촉됨으로써 정전 유도 작용으로 인한 전류를 생산하는 접촉 대전 발전기에 관한 것이다.
최근 유한한 화석에너지에 의한 에너지 가격 상승과 환경 문제에 대한 대처 방안으로써, 친환경 에너지 자원 개발이 크게 요구되고 있다. 이에 따라, 환경의 훼손을 줄이면서도 기존의 화석에너지를 대체하여 안정적으로 공급할 수 있는 새로운 신재생에너지 자원 개발에 대한 연구와, 기존 에너지 효율 향상 및 에너지 저감 기술에 대한 연구가 상당히 집중 받고 있다.
전술한 문제의 대처 방안으로써 풍력발전기는 각광받고 있는 에너지원 중의 하나이다. 그러나, 풍력발전기는 블레이드를 지지하기 위한 탑의 높이와 규모로 인해 초기 투자비용 및 설치면적을 많이 차지하는 문제가 있었다.
특히 터빈에 의한 소음과 설치 면적이 큰 공간적 한계로 인해 도심 지역에는 설치하기가 어렵고 해상이나 목축지에 설치하게 되는데, 이는 전기를 주로 소비하는 도심 지역과는 거리가 멀리 떨어져 있기 때문에 별도의 에너지 저장 및 공급 시설이 더 필요한 문제가 있었다.
본 발명의 과제는 제1 전극 필름 및 제2 전극 필름 사이의 정전유도 작용을 통해 전기 에너지를 생산함으로써 소음 및 오염물질이 발생하지 않으며, 터빈이나 탑과 같은 고가의 장치를 필요로 하지 않아 설치 공간을 많이 차지하지 않으면서도 저렴한 비용으로 제작 가능한 접촉 대전 발전기를 제공함에 있다.
상기의 과제를 달성하기 위한 본 발명에 따른 접촉 대전 발전기는 제1 전극 필름 및 제2 전극 필름을 포함한다. 제1 전극 필름은 수직 방향으로 배치되며, 복수로 구비되어 상호 이격된다. 제2 전극 필름은 제1 전극 필름의 사이마다 수직 방향으로 배치되고, 초박막형으로 형성되어 수평방향으로 작용하는 풍력에 의해 진동하여 제1 전극 필름과 접촉되며 정전유도 작용으로 인한 전류를 발생시킨다.
일 실시예에 따르면, 풍력이 작용하는 방향으로 개구가 형성된 케이스를 더 포함하며, 케이스의 내측 상부에는 제2 전극 필름의 상단이 고정되고, 케이스의 내측 하부에는 제1 전극 필름의 하단이 고정된다.
일 실시예에 따르면, 제1 전극 필름은 제1 전극층과, 제1 전극층의 일면에 형성되며, 제2 전극 필름과의 접촉에 의해 음전하 또는 양전하로 대전되는 제1 마찰층을 포함한다.
일 실시예에 따르면, 제2 전극 필름은 제1 전극 필름과 마주하게 배치된 제2 전극층과, 제2 전극층의 일면에 형성되며, 제1 마찰층과의 접촉에 의해 양전하로 대전되는 제2 마찰층을 포함한다.
일 실시예에 따르면, 제1 마찰층은 Teflon, Silicone, PVC, Polythyylene, polyurethance, Saran, Celluloid, Polyester, Rayon 중 선택된 하나를 포함한다.
일 실시예에 따르면, 제1 전극층 및 제2 전극층은 각각 제1 기판 및 제2 기판 상에 마련된다.
일 실시예에 따르면, 제2 기판은 투명 고분자 소재로 형성되며, 상기 투명 고분자 소재는 PET, PEN, PC, PES, PI 중 선택된 하나를 포함한다.
일 실시예에 따르면, 제2 마찰층은 유기물질로 형성되며, 상기 유기물질은 NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, DMFL-TPD, DMFL-NPB, DPFL-TPD, DPFL-NPB, α-NPD, Spiro-TAD, BPAPF, NPAPF, NPBAPF, Spiro-2NPB, PAPB, 2,2'-Spiro-DBP, Spiro-BPA, TAPC, Spiro-TTB, β-TNB, HMTPD, α,β-TNB, α-TNB, β- NPP, PEDOT 중 선택된 하나를 포함한다.
일 실시예에 따르면, 제2 마찰층 및 제2 전극층은 제2 기판 상에 진공 증착되어 형성된다.
일 실시예에 따르면, 제1 전극층 및 제2 전극층은 Al, Au, Ag, Cu, Pt, W, Ni, Zn, Ti, Zr, Hf, Cd, Pd 중 선택된 적어도 하나를 포함한다.
일 실시예에 따르면, 제1 전극층 및 제2 전극층은 금속 산화물로 형성되며, 상기 금속 산화물은 TO, Al-doped ZnO (AZO), Ga-doped ZnO (GZO), In,Ga-doped ZnO (IGZO), Mg-doped ZnO (MZO), Mo-doped ZnO, Al-doped MgO, Ga-doped MgO, F-doped SnO2, Nb-doped TiO2. CuAlO2 중 선택된 적어도 하나를 포함한다.
일 실시예에 따르면, 제1 전극층 및 제2 전극층은 그래핀, SW-CNT, DW-CNT, MW-CNT, C60 중 선택된 적어도 하나를 포함한다.
일 실시예에 따르면, 제2 전극 필름은 유연성(flexible)을 갖는 재질로 형성된다.
일 실시예에 따르면, 제2 전극 필름은 5㎛ 내지 50㎛ 크기의 두께로 형성된다.
일 실시예에 따르면, 제2 전극 필름은 50㎛ 크기의 두께로 형성된다.
본 발명에 따른 접촉 대전 발전기는 케이스와, 제1 전극 필름, 및 제2 전극 필름을 포함한다. 케이스는 일면에 개구가 형성된다. 제1 전극 필름은 케이스 내에 일방향으로 길게 형성되며, 복수로 구비되어 상호 이격 배치되고, 바람이 불어도 휘어지지 않는 강성이 있는 재질로 형성된다. 제2 전극 필름은 케이스 내에 상기 제1 전극 필름과 나란하게 연장되도록 배치되되 제1 전극 필름의 사이마다 배치되고, 유연한 재질의 초박막형으로 형성되어 일면으로부터 수직 방향으로 작용하는 풍력에 의해 진동하여 제1 전극 필름과 접촉된다. 제1 전극 필름 및 제2 전극 필름 사이에는 정전유도 작용으로 인한 전류를 발생한다.
일 실시예에 따르면, 제1 전극 필름 및 제2 전극 필름은 케이스의 내측 하부 및 상부에 각각 수직 방향으로 배치된다.
일 실시예에 따르면, 상기 제1 전극 필름은 제1 전극층과, 제1 전극층의 일면에 형성되며, 제2 전극 필름과의 접촉에 의해 음전하 또는 양전하로 대전되는 제1 마찰층을 포함한다. 그리고, 상기 제2 전극 필름은 제1 전극 필름과 마주하게 배치된 제2 전극층과, 제2 전극층의 일면에 형성되며, 제1 마찰층과의 접촉에 의해 상기 제1 마찰층 반대 극성으로 대전되는 제2 마찰층을 포함한다.
일 실시예에 따르면, 제2 마찰층 및 제2 전극층은 상기 제2 기판 상에 진공 증착되어 형성된다.
본 발명에 따르면, 제1 전극 필름 및 제2 전극 필름 사이의 정전유도 작용을 통해 전기 에너지를 생산하므로, 소음 및 오염물질이 발생하지 않아 전기를 소모하는 도심 지역에 직접 설치할 수 있게 된다.
또한, 터빈이나 탑과 같은 고가의 장치를 필요로 하지 않으므로, 종래의 풍력 발전기와 비교하여 설치 공간을 많이 차지하지 않으면서도 저렴한 비용으로 전기 에너지를 생산할 수 있게 된다.
또한, 종래의 풍력 발전기와 비교할 때 제조 공정이 간단하고 무게가 가벼워 공정 비용이 줄어들고 휴대가 가능하며, 모양과 형태의 다양한 변경이 가능하여 활용도가 높은 장점이 있다.
아울러, 제1 전극 필름 및 제2 전극 필름의 개수를 적절히 조절하면 획득하고자 하는 전기 에너지의 용량을 증감시킬 수 있으므로, 소형 전력원으로 사용될 수 있을 뿐 아니라 고출력 발전에도 적용될 수 있다.
도 1은 본 발명의 일 실시예에 따른 접촉 대전 발전기의 사시도.
도 2는 도 1에 도시된 접촉 대전 발전기의 동작을 설명하기 위한 도면.
도 3은 도 1에 도시된 접촉 대전 발전기의 제1 마찰층 및 제2 마찰층의 접촉 및 분리에 따른 표면 전하의 변화를 나타낸 도면.
도 4는 도 1에 도시된 접촉 대전 발전기에 의한 전압 형성 그래프.
도 5는 도 1에 있어서, 다른 실시예에 따른 제1 전극 필름과 제2 전극 필름을 도시한 도면.
이하 첨부된 도면을 참조하여, 바람직한 실시예에 따른 접촉 대전 발전기에 대해 상세히 설명하면 다음과 같다. 여기서, 동일한 구성에 대해서는 동일부호를 사용하며, 반복되는 설명, 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 발명의 실시형태는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서, 도면에서의 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
도 1은 본 발명의 일 실시예에 따른 접촉 대전 발전기의 사시도이고, 도 2는 도 1에 도시된 접촉 대전 발전기의 동작을 설명하기 위한 도면이다. 그리고, 도 3은 도 1에 도시된 접촉 대전 발전기의 제1 마찰층 및 제2 마찰층의 접촉 및 분리에 따른 표면 전하의 변화를 나타낸 도면이고, 도 4는 도 1에 도시된 접촉 대전 발전기에 의한 전압 형성 그래프이다.
도 1 내지 도 4에 도시된 바와 같이, 접촉 대전 발전기(100)는 제1 전극 필름(110)과, 제2 전극 필름(120)를 포함한다. 여기서, 접촉 대전 발전기(100)란 주변 환경에 존재하는 기계적 에너지를 정전 유도 작용을 통해 전기 에너지로 변환하는 장치로, 본 실시예에서는 기계적 에너지를 풍력으로만 설명하였으나, 이밖에도 파력, 인간의 움직임 등으로부터 발생되는 기계적 에너지 모두를 의미할 수 있다.
제1 전극 필름(110)은 복수로 구비되어 상호 이격 배치될 수 있다. 이때, 제1 전극 필름(110)은 수직 방향으로 배치될 수 있다. 여기서 수직 방향이라 함은 지면으로부터 상하 방향, 즉 Z축 방향을 의미한다.
제1 전극 필름(110)은 바람이 불더라도 흔들리지 않는 강성이 있는 재질로 형성될 수 있고, 이에 따라 제1 전극 필름(110)은 케이스(130) 내부에 바람이 불더라도 저면에서 수직으로 연장되는 상태를 유지할 수 있다.
제1 전극 필름(110)에서 강성이 있는 재질로 형성되는 것은 후술하는 제1 전극층(111) 또는 제1 기판(113) 가운데 적어도 하나이다. 제1 전극 필름(110)에 제1 기판(113)이 포함되지 않는 경우에는 제1 전극층(111)이 강성이 있는 재질로 형성되고, 제1 전극 필름(110)에 강성이 있는 제1 기판(113)이 포함되는 경우에는 제1 기판(113)에 제1 전극층(111)이 도포 내지 형성되면 되므로, 제1 전극층(111)이 반드시 강성이 있는 재질로 형성될 필요는 없다.
구체적으로, 제1 전극 필름(110)은 제1 전극층(111)과, 제1 마찰층(112)을 포함한다.
제1 전극층(111)은 지면으로부터 수직 방향으로 배치될 수 있으며, 전기전도성이 우수한 물질로 형성될 수 있다. 예를 들어, 제1 전극층(111)은 Al, Au, Ag, Cu, Pt, W, Ni, Zn, Ti, Zr, Hf, Cd, Pd 중 선택된 적어도 하나를 포함하는 금속으로 형성될 수 있다.
또한, 제1 전극층(111)은 금속 산화물로 형성될 수 있다. 일례로 금속 산화물은 TO, Al-doped ZnO (AZO), Ga-doped ZnO (GZO), In,Ga-doped ZnO (IGZO), Mg-doped ZnO (MZO), Mo-doped ZnO, Al-doped MgO, Ga-doped MgO, F-doped SnO2, Nb-doped TiO2. CuAlO2 중 선택된 적어도 하나를 포함할 수 있다.
또한, 제1 전극층(111)은 그래핀, SW-CNT, DW-CNT, MW-CNT, C60 중 선택된 적어도 하나를 포함할 수 있다. 이러한 제1 전극층(111)은 단층 구조 또는 복수 층의 구조를 가질 수 있다.
제1 마찰층(112)은 제1 전극층(111)의 일면에 형성되며, 제2 전극 필름(120)과의 접촉에 의해 음전하로 대전될 수 있다. 이러한 제1 마찰층(112)은 음의 정전기력 특성이 우수한 소재로 형성될 수 있다. 일례로, 제1 마찰층(112)은 Teflon, Silicone, PVC, Polythyylene, polyurethance, Saran, Celluloid, Polyester, Rayon 중 선택된 하나를 포함하여 형성될 수 있다.
본 실시예에는 제1 마찰층(112)이 제2 전극 필름(120)과의 접촉에 의해 음전하로 대전되는 것으로 예시되었지만, 이에 한정되는 것은 아니며, 제1 마찰층(112)은 제2 전극 필름(120)의 접촉에 의해 양전하로 대전될 수도 있다.
제2 전극 필름(120)은 제1 전극 필름(110)의 사이마다 수직 방향으로 배치될 수 있으며, 각각의 제1 전극 필름(110)은 이에 대응되는 제2 전극 필름(120)을 구비하고, 제2 전극 필름(120)은 제1 전극 필름(110)의 개수와 동일한 개수로 형성될 수 있다. 즉, 제2 전극 필름(120)은 복수로 구비되어 제1 전극 필름(110)과 교차하도록 배치될 수 있다. 이러한 제2 전극 필름(120)은 유연성(flexible)을 갖는 초박막형으로 형성될 수 있다. 제2 전극 필름(120)이 유연한 재질로 형성됨에 따라 케이스(130) 내부로 바람이 불어 들어오는 경우 제2 전극 필름(120)은 상단이 케이스(130) 내부에 고정된 상태로 펄럭거리면서 흔들릴 수 있다.
제2 전극 필름(120)은 풍력에 의해 일정한 움직임을 가질 수 있는 두께를 선택적으로 사용할 수 있다. 이때, 제2 전극 필름(120)의 두께는 사용되는 소재에 따라 달라 질 수 있다. 이는 제2 전극 필름(120)의 두께가 너무 얇을 경우에는 가공이 어렵고 그 위에 전극 형성이 어려워 지기 때문에 제작에 비용이 높아지게 되고 풍력에 의해 접촉-분리 동작에 어려움이 발생할 수 있기 때문이다. 그리고 제2 전극 필름(120)의 두께가 두꺼울 경우에는 유연성이 좋지 않기 때문에 풍력에 의한 원활한 움직임을 가질 수 없다. 예를 들어, 후술할 제2 기판(123)은 고분자 소재인 polyethersulfone(PES)로 형성될 수 있고, 이러한 제2 기판(123)의 두께를 5㎛ ~ 50㎛의 크기, 구체적으로는 50㎛의 크기의 두께로 형성하는 것이 바람직하다. 제2 전극 필름(120)의 두께는 후술할 제2 기판(123)에 의하여 정해지며, 후술할 제2 전극층(121) 및 제2 마찰층(122)은 제2 기판(123)에 증착되는 물질로서 그 두께가 nm 단위라서 무시할 정도라고 할 수 있다.
이처럼 제2 전극 필름(120)이 유연성(flexible)을 갖는 초박막형으로 형성됨에 따라, 도 2와 같이 수평방향으로 작용하는 풍력에 의해 진동하여 제1 전극 필름(110)과 접촉되며 정전유도 작용으로 인한 전류를 발생할 수 있게 된다.
구체적으로, 제2 전극 필름(120)은 제2 전극층(121)과, 제2 마찰층(122), 제2 기판(123)을 포함할 수 있다.
제2 전극층(121)은 제1 전극 필름(110)과 마주하게 배치될 수 있다. 즉, 제2 전극층(121)은 지면으로부터 수직 방향으로 배치되어 제1 전극층(111)과 교차로 배치될 수 있다. 이러한 제2 전극층(121)은 제1 전극층(111)과 마찬가지로 전기전도성이 우수한 물질로 형성될 수 있다. 예를 들어, 제2 전극층(121)은 Al, Au, Ag, Cu, Pt, W, Ni, Zn, Ti, Zr, Hf, Cd, Pd 중 선택된 적어도 하나를 포함하는 금속으로 형성될 수 있다.
또한, 제2 전극층(121)은 금속 산화물로 형성될 수 있다. 일례로 금속 산화물은 TO, Al-doped ZnO (AZO), Ga-doped ZnO (GZO), In,Ga-doped ZnO (IGZO), Mg-doped ZnO (MZO), Mo-doped ZnO, Al-doped MgO, Ga-doped MgO, F-doped SnO2, Nb-doped TiO2. CuAlO2 중 선택된 적어도 하나를 포함할 수 있다.
또한, 제2 전극층(121)은 그래핀, SW-CNT, DW-CNT, MW-CNT, C60 중 선택된 적어도 하나를 포함할 수 있다. 이러한 제1 전극층(111)은 단층 구조 또는 복수 층의 구조를 가질 수 있다.
제2 마찰층(122)은 제2 전극층(121)의 일면에 형성되며, 제1 마찰층(112)과의 접촉에 의해 양전하로 대전될 수 있다. 이러한 제2 마찰층(122)은 양의 정전기력 특성이 우수한 소재로 형성될 수 있다. 일례로 제2 마찰층(122)은 유기물질로 형성될 수 있으며, 유기물질은 NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, DMFL-TPD, DMFL-NPB, DPFL-TPD, DPFL-NPB, α-NPD, Spiro-TAD, BPAPF, NPAPF, NPBAPF, Spiro-2NPB, PAPB, 2,2'-Spiro-DBP, Spiro-BPA, TAPC, Spiro-TTB, β-TNB, HMTPD, α,β-TNB, α-TNB, β- NPP, PEDOT 중 선택된 하나를 포함할 수 있다.
본 실시예에는 제2 마찰층(122)이 제1 전극 필름(110)과의 접촉에 의해 양전하로 대전되는 것으로 예시되었지만, 이에 한정되는 것은 아니며, 제2 마찰층(122)은 제1 전극 필름(110)의 접촉에 의해 음전하로 대전될 수도 있다.
제2 전극층(121)은 제2 기판(123)에 진공 증착의 방법으로 형성될 수 있다. 이것은 제2 기판(123)이 5㎛ ~ 50㎛의 초박막으로 형성됨에 따라 이러한 매우 얇은 형상의 제2 기판(123)에 제2 전극층(121)을 형성하기 위해서는 진공 증착 방법이 가정 효과적이기 때문이다. 제2 마찰층(122)은 제2 전극층(121) 상에 진공 증착되어 형성될 수 있으며, 이는 위의 제2 전극층(121)을 제2 기판(123)에 증착하는 경우와 마찬가지로 이러한 매우 얇은 형상의 제2 기판(123)에 제2 마찰층(122)을 형성하기 위해서는 진공 증착 방법이 가정 효과적이기 때문이다.
한편, 접촉 대전 발전기(100)는 풍력이 작용하는 방향으로 개구가 형성된 케이스(130)를 더 포함할 수 있다.
이처럼 케이스(130)가 구비됨에 따라, 제1 전극 필름(110) 및 제2 전극 필름(120)은 케이스(130) 내에 지지될 수 있게 된다. 구체적으로, 케이스(130)의 내측 상부에는 제2 전극 필름(120)의 상단이 고정되고, 케이스(130)의 내측 하부에는 제1 전극 필름(110)의 하단이 고정될 수 있다. 반대로, 케이스(130)의 내측 상부에 제1 전극 필름(110)이 고정되고 하부에 제2 전극 필름(120)이 고정되는 것도 가능하기는 하나, 제2 전극 필름(120)이 초박막 형태로 형성되어 있어 케이스(130)의 하부에 고정시킬 경우 지지력이 약해 휘어질 우려가 있으므로, 제2 전극 필름(120)은 케이스(130)의 상부에 고정되는 것이 바람직하다.
그리고, 제2 전극 필름(120)의 하측 일면과 마주하는 면에 케이스(130)의 개구가 형성되어 있어, 바람이 개구를 통해 입사되면, 제2 전극 필름(120)에 바람이 수직으로 압력을 가하고, 제2 전극 필름(120)의 하부가 휘어져 진동하며 제1 전극 필름(110)과 접촉 및 분리하게 된다. 이러한 제2 전극 필름(120)에 대한 진동의 세기는 풍속의 크기에 따라 달라질 수 있다.
도 5는 도 1에 있어서, 다른 실시예에 따른 제1 전극 필름과 제2 전극 필름을 도시한 도면이다. 도 5에 도시된 바와 같이, 제1 전극층(111) 및 제2 전극층(121)은 각각 제1 기판(113) 및 제2 기판(123) 상에 마련될 수 있다.
즉, 제1 전극 필름(110)은 제1 기판(113)과, 제1 기판(113) 상에 형성된 제1 전극층(111)과, 제1 전극층(111) 상에 형성된 제1 마찰층(112)으로 형성될 수 있다. 이러한 제1 기판(113)은 사각 기판의 형태로 형성될 수 있으며, 실리콘 웨이퍼 또는 글라스 등과 같이 강도가 좋은 소재로 형성될 수 있다.
그리고, 제2 전극 필름(120)은 제2 기판(123)과, 제2 기판(123) 상에 형성된 제2 전극층(121)과, 제2 전극층(121) 상에 형성된 제2 마찰층(122)으로 형성될 수 있다. 이러한 제2 기판(123)은 탄성이 좋은 투명 고분자 소재로 형성될 수 있으며, 일례로 제2 기판(123)은 PET, PEN, PC, PES, PI 중 선택된 하나로 형성될 수 있다.
구체적으로, 제2 전극 필름(120)은 제2 기판(123) 상에 증착된 제2 전극층(121)과, 제2 전극층(121) 상에 증착된 제2 마찰층(122)을 포함할 수 있다. 여기서, 제2 전극층(121)과 제2 마찰층(122)은 nm 단위로 형성되므로, 제2 전극 필름(120)의 두께는 제2 기판(123)의 두께에 의해 결정될 수 있는 것은 상술한 바와 같다.
이처럼 제1 기판(113)이 강도가 좋은 소재로 형성되고 제2 기판(123)이 유연한 소재로 형성됨에 따라, 접촉 대전 발전기(100)로 풍속이 가해질 경우 제2 전극 필름(120)만 진동하며 일단이 이동하게 된다. 이에 따라, 풍속이 가해질 때 제1 전극 필름(110) 및 제2 전극 필름(120) 모두가 같은 방향으로 이동하여 접촉성이 저하되는 것을 미연에 방지할 수 있게 된다.
도 1 내지 도 5를 참조하여, 접촉 대전 발전기(100)의 동작을 설명하면 다음과 같다.
먼저, 케이스(130)로 바람이 들어오면 케이스(130)의 내측 상부에 상단이 고정된 제2 전극 필름(120)의 하부는 바람이 들어오는 방향으로 진동하게 된다. 이때, 바람은 제2 전극 필름(120)의 일면과 수직되는 방향으로 가해질 수 있다. 즉 제2 전극 필름(120)이 Z축 방향으로 배치되어 있으므로, 제2 전극 필름(120)의 일면이 X축 방향으로 배치된 경우 바람은 X축 방향으로 가해지고, 제2 전극 필름(120)의 일면이 Y축 방향으로 배치된 경우 바람은 Y축 방향으로 가해질 수 있다. 이러한 바람의 방향은 케이스(130)의 개구 방향을 통해 조절할 수 있게 된다.
이처럼 바람에 의해 제2 전극 필름(120)의 하부가 휘어져 진동함에 따라, 도 2에 도시된 바와 같이 제2 전극 필름(120)은 이격 배치된 제1 전극 필름(110)에 접촉 및 분리 동작을 반복하게 된다. 이때, 제1 마찰층(112)과 제2 마찰층(122)은 서로 마주보도록 형성되어, 제2 전극 필름(120)의 진동시 제1 마찰층(112)과 제2 마찰층(122)의 일면이 접촉되는 것이 바람직하다.
이처럼 음의 정전력이 강한 제1 마찰층(112)과 양의 정전력이 강한 제2 마찰층(122)이 접촉됨에 따라, 도 3(a)에 도시된 바와 같이 음의 정전력이 강한 제1 마찰층(112)은 음극으로 대전되고 양의 정전력이 강한 제2 마찰층(122)은 양극으로 대전된다. 그리고, 도 3(b)에 도시된 바와 같이 대전된 경계면이 분리되는 순간 제1 마찰층(112) 및 제2 마찰층(122)은 평형상태를 이루기 위해 양 쪽 전극이 전하를 띄게 되면서 전기가 형성된다. 이후 도 3(c)에 도시된 바와 같이 평형을 이룬 제1 마찰층(112) 및 제2 마찰층(122)이 다시 접촉되면 이전의 상태로 돌아가게 되고, 이때 다시 이전 분리 동작에서 형성된 전기와 반대 방향으로 전기가 형성되어 흐르게 된다(도 3(d) 참조).
이와 같은 과정을 반복하게 되면 접촉과 분리의 운동 에너지를 정전기력의 상태 변화로 일어나는 전기 에너지로 변환하여 전기를 형성할 수 있다. 이때 발생한 전기 에너지의 개로 전압(Open circuit voltage)은 도 4에 도시된 바와 같다. 이러한 과정에 의해 형성된 전기 에너지의 크기는 제1 전극층(111) 및 제2 전극층(121)이 접촉하면서 일으키는 정전기력과 밀접하게 연관된다. 즉, 제1 전극층(111) 및 제2 전극층(121)에 대한 개수에 따라 발생하는 전기 에너지의 크기를 증감시킬 수 있게 된다.
전술한 바와 같이, 접촉 대전 발전기(100)는 제1 전극 필름(110) 및 제2 전극 필름(120) 사이의 정전유도 작용을 통해 전기 에너지를 생산하므로, 소음 및 오염물질이 발생하지 않아 전기를 소모하는 도심 지역에 직접 설치할 수 있게 된다.
또한, 터빈이나 탑과 같은 고가의 장치를 필요로 하지 않으므로, 종래의 풍력 발전기와 비교하여 설치 공간을 많이 차지하지 않으면서도 저렴한 비용으로 전기 에너지를 생산할 수 있게 된다.
또한, 종래의 풍력 발전기와 비교할 때 제조 공정이 간단하고 무게가 가벼워 공정 비용이 줄어들고 휴대가 가능하며, 모양과 형태의 다양한 변경이 가능하여 활용도가 높은 장점이 있다.
아울러, 제1 전극 필름(110) 및 제2 전극 필름(120)의 개수를 적절히 조절하면 획득하고자 하는 전기 에너지의 용량을 증감시킬 수 있으므로, 소형 전력원으로 사용될 수 있을 뿐 아니라 고출력 발전에도 적용될 수 있고, 또는 바람을 감지하기 위한 센서에도 적용될 수 있다.
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.

Claims (19)

  1. 수직 방향으로 배치되며, 복수로 구비되어 상호 이격된 제1 전극 필름; 및
    상기 제1 전극 필름의 사이마다 수직 방향으로 배치되고, 수평방향으로 작용하는 풍력에 의해 진동하여 상기 제1 전극 필름과 접촉되며 정전유도 작용으로 인한 전류를 발생하는 초박막형 제2 전극 필름;
    을 포함하는 접촉 대전 발전기.
  2. 제1항에 있어서,
    상기 풍력이 작용하는 방향으로 개구가 형성된 케이스를 더 포함하고,
    상기 케이스의 내측 상부에는 상기 제2 전극 필름의 상단이 고정되고, 상기 케이스의 내측 하부에는 상기 제1 전극 필름의 하단이 고정된 접촉 대전 발전기.
  3. 제1항에 있어서,
    상기 제1 전극 필름은,
    제1 전극층과,
    상기 제1 전극층의 일면에 형성되며, 상기 제2 전극 필름과의 접촉에 의해 음전하 또는 양전하로 대전되는 제1 마찰층을 포함하는 접촉 대전 발전기.
  4. 제3항에 있어서,
    상기 제2 전극 필름은,
    상기 제1 전극 필름과 마주하게 배치된 제2 전극층과,
    상기 제2 전극층의 일면에 형성되며, 상기 제1 마찰층과의 접촉에 의해 양전하 또는 음전하로 대전되는 제2 마찰층을 포함하는 접촉 대전 발전기.
  5. 제3항에 있어서,
    상기 제1 마찰층은 Teflon, Silicone, PVC, Polythyylene, polyurethance, Saran, Celluloid, Polyester, Rayon 중 선택된 하나를 포함하는 접촉 대전 발전기.
  6. 제3에 있어서,
    상기 제1 전극층 및 제2 전극층은 각각 상기 제1 기판 및 제2 기판 상에 마련된 접촉 대전 발전기.
  7. 제6항에 있어서,
    상기 제2 기판은 투명 고분자 소재로 형성되며,
    상기 투명 고분자 소재는 PET, PEN, PC, PES, PI 중 선택된 하나를 포함하는 접촉 대전 발전기.
  8. 제4항에 있어서,
    상기 제2 마찰층은 유기물질로 형성되며,
    상기 유기물질은 NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, DMFL-TPD, DMFL-NPB, DPFL-TPD, DPFL-NPB, α-NPD, Spiro-TAD, BPAPF, NPAPF, NPBAPF, Spiro-2NPB, PAPB, 2,2'-Spiro-DBP, Spiro-BPA, TAPC, Spiro-TTB, β-TNB, HMTPD, α,β-TNB, α-TNB, β- NPP, PEDOT 중 선택된 하나를 포함하는 접촉 대전 발전기.
  9. 제4항에 있어서,
    상기 제2 마찰층 및 상기 제2 전극층은 상기 제2 기판 상에 진공 증착되어 형성된 접촉 대전 발전기.
  10. 제4항에 있어서,
    상기 제1 전극층 및 제2 전극층은,
    Al, Au, Ag, Cu, Pt, W, Ni, Zn, Ti, Zr, Hf, Cd, Pd 중 선택된 적어도 하나를 포함하는 금속으로 형성된 접촉 대전 발전기.
  11. 제4항에 있어서,
    상기 제1 전극층 및 제2 전극층은 금속 산화물로 형성되며,
    상기 금속 산화물은 TO, Al-doped ZnO (AZO), Ga-doped ZnO (GZO), In,Ga-doped ZnO (IGZO), Mg-doped ZnO (MZO), Mo-doped ZnO, Al-doped MgO, Ga-doped MgO, F-doped SnO2, Nb-doped TiO2. CuAlO2 중 선택된 적어도 하나를 포함하는 접촉 대전 발전기.
  12. 제4항에 있어서,
    상기 제1 전극층 및 제2 전극층은 그래핀, SW-CNT, DW-CNT, MW-CNT, C60 중 선택된 적어도 하나를 포함하는 접촉 대전 발전기.
  13. 제1항에 있어서,
    상기 제2 전극 필름은 유연성(flexible)을 갖는 재질로 형성되는 접촉 대전 발전기.
  14. 제1항에 있어서,
    상기 제2 전극 필름은 5㎛ ~ 50㎛ 크기의 두께로 형성된 접촉 대전 발전기.
  15. 제14항에 있어서,
    상기 제2 전극 필름은 50㎛ 크기의 두께로 형성된 접촉 대전 발전기.
  16. 일면에 개구가 형성된 케이스;
    상기 케이스 내에 일방향으로 길게 형성되며, 복수로 구비되어 상호 이격되고, 바람이 불어도 휘어지지 않는 강성이 있는 재질로 형성되는 제1 전극 필름; 및
    상기 케이스 내에 상기 제1 전극 필름과 나란하게 연장되도록 배치되되 상기 제1 전극 필름의 사이마다 배치되고, 일면으로부터 수직 방향으로 작용하는 풍력에 의해 진동하여 상기 제1 전극 필름과 접촉되며 유연한 재질로 형성되는 초박막형 제2 전극 필름;
    을 포함하고,
    상기 제1 전극 필름 및 상기 제2 전극 필름 사이에 정전유도 작용으로 인한 전류를 발생하는 는 접촉 대전 발전기.
  17. 제16항에 있어서,
    상기 제1 전극 필름 및 상기 제2 전극 필름은 상기 케이스의 내측 하부 및 상부에 각각 수직 방향으로 배치된 접촉 대전 발전기.
  18. 제16항에 있어서,
    상기 제1 전극 필름은,
    제1 전극층과, 상기 제1 전극층의 일면에 형성되며, 상기 제2 전극 필름과의 접촉에 의해 음전하 또는 양전하로 대전되는 제1 마찰층을 포함하고,
    상기 제2 전극 필름은,
    상기 제1 전극 필름과 마주하게 배치된 제2 전극층과, 상기 제2 전극층의 일면에 형성되며, 상기 제1 마찰층과의 접촉에 의해 상기 제1 마찰층과 반대 극성으로 대전되는 제2 마찰층을 포함하는 접촉 대전 발전기.
  19. 제18항에 있어서,
    상기 제2 마찰층 및 상기 제2 전극층은 상기 제2 기판 상에 진공 증착되어 형성된 접촉 대전 발전기.
PCT/KR2019/005299 2018-05-03 2019-05-03 접촉 대전 발전기 WO2019212271A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180051141A KR102026429B1 (ko) 2018-05-03 2018-05-03 접촉 대전 발전기
KR10-2018-0051141 2018-05-03

Publications (1)

Publication Number Publication Date
WO2019212271A1 true WO2019212271A1 (ko) 2019-11-07

Family

ID=68096864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005299 WO2019212271A1 (ko) 2018-05-03 2019-05-03 접촉 대전 발전기

Country Status (2)

Country Link
KR (1) KR102026429B1 (ko)
WO (1) WO2019212271A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102396313B1 (ko) 2020-02-19 2022-05-10 경희대학교 산학협력단 정전 발전기
CN111560868B (zh) * 2020-05-21 2021-11-05 德清县海杰包装有限公司 一种市政弯道处警示设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052915A1 (en) * 2009-10-27 2011-05-05 Korea University Research And Business Foundation Piezoelectric nanodevices
KR20170053993A (ko) * 2015-11-09 2017-05-17 한국과학기술원 풍력을 이용한 접촉 대전 발전 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052915A1 (en) * 2009-10-27 2011-05-05 Korea University Research And Business Foundation Piezoelectric nanodevices
KR20170053993A (ko) * 2015-11-09 2017-05-17 한국과학기술원 풍력을 이용한 접촉 대전 발전 장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. SUTKA: "PEDOT electrodes for triboelectric generator devices", ORGANIC ELECTRONICS, vol. 51, pages 446 - 451, XP085320412, DOI: 10.1016/j.orgel.2017.09.052 *
BO CHEN: "Scavenging Wind Energy by Triboelectric Nanogenerators", ADVANCED ENERGY MATERIALS, vol. 8, no. 10, 5 April 2018 (2018-04-05), pages 1 - 13, XP055649224 *
T HOMAS SANNICOLO: "Metallic Nanowire-Based Transparent Electrodes for Next Generation Flexible Devices: a Review", SMALL, vol. 12, no. 44, 18 October 2016 (2016-10-18), pages 6052 - 6075, XP055649225 *

Also Published As

Publication number Publication date
KR102026429B1 (ko) 2019-09-27

Similar Documents

Publication Publication Date Title
CN103780127B (zh) 一种摩擦纳米发电机
Su et al. Photoinduced enhancement of a triboelectric nanogenerator based on an organolead halide perovskite
CN103391020B (zh) 一种基于摩擦纳米发电机的多自由度能量采集装置
CN103780129B (zh) 旋转式静电发电机
WO2009104899A2 (en) Method of etching asymmetric wafer, solar cell including the asymmetrically etched wafer, and method of manufacturing the same
WO2019212271A1 (ko) 접촉 대전 발전기
CN103780126A (zh) 摩擦纳米发电机和陀螺仪
CN203851062U (zh) 一种接触-分离式摩擦纳米发电机
CN103997253B (zh) 一种包括柔性拍打面的摩擦发电装置和发电方法
WO2011078630A2 (ko) 태양광 발전장치
WO2010053301A2 (ko) 기능성 시트 및 이를 포함하는 태양전지 모듈
CN104426425A (zh) 具有发电单元的惯性发电装置和加速方向检测装置
CN104734556A (zh) 一种非接触式静电感应纳米发电机、发电机组和发电方法
CN208063066U (zh) 一种基于摩擦纳米发电机的波浪能高效发电装置
WO2014193182A1 (ko) 마찰전기 발생장치
CN113489122B (zh) 一种直流液滴发电机及其制备方法
CN103780135A (zh) 一种直流摩擦电发电机
WO2011043609A2 (ko) 태양광 발전장치 및 이의 제조방법
KR101976541B1 (ko) 구 모양의 접촉대전 나노 발전기
WO2012169826A2 (ko) 나노와이어를 이용한 발전 장치
CN107276495B (zh) 基于风能和太阳能的复合发电机和复合发电系统
CN110427678A (zh) 一种多振子空间型拾振俘能实验装置及其使用方法
CN108400723B (zh) 一种冲击式多方向压电发电装置
JP2013153078A (ja) 太陽電池モジュールおよびそれを用いた太陽電池アレイ
WO2017073812A1 (ko) 압전 에너지 하베스터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19795996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19795996

Country of ref document: EP

Kind code of ref document: A1