WO2019212201A1 - Method for isolating dopamine neurons and pharmaceutical composition for treating parkinson's disease, containing dopamine neurons isolated using same - Google Patents

Method for isolating dopamine neurons and pharmaceutical composition for treating parkinson's disease, containing dopamine neurons isolated using same Download PDF

Info

Publication number
WO2019212201A1
WO2019212201A1 PCT/KR2019/005058 KR2019005058W WO2019212201A1 WO 2019212201 A1 WO2019212201 A1 WO 2019212201A1 KR 2019005058 W KR2019005058 W KR 2019005058W WO 2019212201 A1 WO2019212201 A1 WO 2019212201A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
dopamine neurons
tpbg
neurons
stem cells
Prior art date
Application number
PCT/KR2019/005058
Other languages
French (fr)
Korean (ko)
Inventor
김동욱
유정은
이동진
박상현
김종완
조명수
Original Assignee
(주) 에스바이오메딕스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190048784A external-priority patent/KR102201417B1/en
Application filed by (주) 에스바이오메딕스 filed Critical (주) 에스바이오메딕스
Priority to CN201980002155.XA priority Critical patent/CN110914412B/en
Priority to CA3057166A priority patent/CA3057166C/en
Priority to AU2019240547A priority patent/AU2019240547B2/en
Priority to US16/607,229 priority patent/US20210093673A1/en
Priority to JP2019552919A priority patent/JP7000452B2/en
Priority to EP19772638.3A priority patent/EP3591039A4/en
Publication of WO2019212201A1 publication Critical patent/WO2019212201A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0619Neurons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/01Modulators of cAMP or cGMP, e.g. non-hydrolysable analogs, phosphodiesterase inhibitors, cholera toxin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/13Nerve growth factor [NGF]; Brain-derived neurotrophic factor [BDNF]; Cilliary neurotrophic factor [CNTF]; Glial-derived neurotrophic factor [GDNF]; Neurotrophins [NT]; Neuregulins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/90Substrates of biological origin, e.g. extracellular matrix, decellularised tissue

Definitions

  • the present invention relates to a method for isolating dopamine neurons and a pharmaceutical composition for treating Parkinson's disease comprising dopamine neurons isolated using the same.
  • the present invention was made by the task number HI18C0829 under the support of the Ministry of Health and Welfare of the Republic of Korea, the research and management institution of the task is the Korea Health Industry Development Institute, the research project name is “advanced medical technology development”, the research title is "neural system of pluripotent stem cells In vivo differentiation monitoring and minimum transplant cell number prediction technology for disease application ", The lead organization is Yonsei University Industry-Academic Cooperation Group, Research period 2018.04.30. ⁇ 2021.12.31.
  • Parkinson's disease is one of the neurodegenerative disorders due to focal degeneration of midbrain dopaminergic (mDA) neurons, most suitable for cell-based therapies.
  • mDA midbrain dopaminergic
  • VM fetal ventral mesencephalon
  • transplanted cells which have been pointed out as a problem in previous studies, to develop in close proximity to cells present in vivo, and to compensate for the disadvantages such as limited solubility and batch-to-batch inconsistency of fetal tissue.
  • Alternative studies continued.
  • the results include embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), which show endogenous proliferation in vitro and have a wide range of differentiation into various neurons.
  • ESCs embryonic stem cells
  • iPSCs induced pluripotent stem cells
  • hPSCs Human pluripotent stem cells
  • hPSC-derived mDA neurons are critical for successful transplantation research as well as standardization of transplanted cells.
  • FACS fluorescence-activated cell sorting
  • transcriptomes of mouse fVM tissue and mouse embryonic stem cell (mESC) -derived mDA neuronal progenitor cells have been analyzed to find specific surface markers that can differentiate and enrich mDA neurons. .
  • LMX1A-eGFP and PITX3-mCherry reporter establish hESC cell lines, and to differentiate them LMX1A + mDA neural progenitor cells and PITX3 + mDA separate the nerve cells, cell surface markers associated therefrom and midbrain St. dopamine neurons (TPBG ), The present invention was completed.
  • Another object of the present invention is to provide a pharmaceutical composition for treating Parkinson's disease, including Trophoblast glycoprotein (TPBG) -positive dopamine neurons.
  • TPBG Trophoblast glycoprotein
  • Another object of the present invention is to provide a composition for transplanting dopamine neurons comprising TPBG (Trophoblast glycoprotein) -positive dopamine neurons.
  • TPBG Trophoblast glycoprotein
  • LMX1A-eGFP and PITX3-mCherry reporter establish hESC cell lines, and to differentiate them LMX1A + mDA neural progenitor cells and PITX3 + mDA separate the nerve cells, cell surface markers associated therefrom and midbrain St. dopamine neurons (TPBG ).
  • the inventors have shown that the LMX1A-eGFP reporter hESC cell line engineered to express green fluorescent protein (eGFP) at the same time when the mDA progenitor step-specific gene LMX1A is expressed, and mature mDA neurons ( neuronal step-specific gene PITX3 expression, at the same time the red fluorescent protein (mCherry) engineered to express the PITX3-mCherry reporter hESC cell line, respectively, and established the LMX1A + mDA neuro precursor cells and PITX + mDA neurons Through a comparative analysis of carcasses, cell surface marker candidates specifically expressed in the precursors (neuronal precursor cells) of mDA neurons were selected.
  • eGFP green fluorescent protein
  • mCherry red fluorescent protein
  • TPBG was found as a new cell surface marker, and as a result of cell separation targeting TPBG, it was confirmed that mDA neuroprogenitor cells were concentrated.
  • TPBG-positive cells isolated by magnetic-activated cell sorting (MACS) at the mDA neuroprogenitor cell stage were transplanted into 6-OHDA-damaged Parkinson's disease (PD) rat model. It was confirmed that motor dysfunction was recovered without tumor formation.
  • MCS magnetic-activated cell sorting
  • TPBG is a novel surface marker protein for isolating implantable mDA neuronal progenitor cells, and mDA cells isolated using TPBG are expected to provide safe and effective cell replacement therapy for Parkinson's disease.
  • the present invention provides a method for isolating dopamine neurons, a pharmaceutical composition for treating Parkinson's disease comprising isolated dopamine neurons, enhancing the efficacy of dopamine neurons for improving the cell transplantation therapy of Parkinson's disease and improving graft safety. It relates to a method, and a composition for transplanting dopamine neurons prepared using the same.
  • One aspect of the invention relates to a method for producing dopaminergic neural cells comprising the following steps.
  • neural cells are cells constituting the nervous system and may be used in the same sense as neurons
  • dopaminergic neural cells refers to a neurotransmitter dopamine (dopamine). Means a secreted neuron.
  • the dopamine neurons may be dopaminergic neural progenitors or dopaminergic neural precursor cells or mature dopaminergic neurons, but are not limited thereto.
  • neural progenitor cells refers to undifferentiated progenitor cells that have not yet expressed differentiation traits, and "progenitors”, “precursors” and “precursor cells” may be used in the same sense.
  • the dopamine neuron may be a midbrain dopamine neuron.
  • middle cerebral dopamine neurons refers to dopamine neurons observed in the midbrain region, and for example, may refer to dopamine neurons observed in the midbrain ventral region. It is not limited.
  • mesenchymal dopamine neurons can be expressed A9 region-specific (A9 region-specific).
  • the "A9 region” is a ventrolateral region of the midbrain, and means a part corresponding to the pars compacta of the substantia nigra (substantia nigra), and the cells produced by the manufacturing method of the present invention are mesothelial. It can be seen that the cell.
  • the A9 region is a region where dopamine neurons are concentrated, and is related to the regulation of motor function, and particularly, in the case of Parkinson's disease patients, the dopamine neurons at this region are specifically killed.
  • the cells produced by the method for preparing may be used for the purpose of preventing and / or treating Parkinson's disease.
  • the "cell population” includes human stem cells; Progenitors or precursors; And / or dopaminergic neural progenitors differentiated from human stem cells or progenitor cells, dopaminergic neurons and neural derivatives derived therefrom, but are not limited thereto. It is not.
  • the human stem cells or progenitor cells are embryonic stem cells, embryonic germ cells, embryonic carcinoma cells, induced pluripotent stem cells (iPSCs).
  • the stem cells may be adult stem cells or fetal cells, but are not limited thereto.
  • the fetal cells may be derived from fetal neural tissue or derivatives thereof, and may be, for example, fetal ventral mesencephalic cells (fVM cells), but are not limited thereto. .
  • fVM cells fetal ventral mesencephalic cells
  • TPBG can be used in the same sense as Wnt-Activated Inhibitory Factor 1 or WAIF1, and is known as an antagonist of the Wnt / ⁇ -catenin signaling pathway, but has not been reported for the isolation of dopamine neurons through the expression of TPBG. none.
  • the nucleotide sequence of the gene is shown in SEQ ID NO: 53.
  • the gene is readily available to those skilled in the art because the nucleotide sequence is registered in the gene bank.
  • TPBG-positive dopamine neurons means dopamine neurons that bind to TPBG antibodies.
  • TPBG antibody refers to an antibody that specifically binds to TPBG.
  • the method for separating TPBG-positive dopamine neurons may be used as long as it is a method for separating cells by specifying a target, for example, fluorescence-activated flow cytometry (FACS) and / or magnetic-activated cells.
  • FACS fluorescence-activated flow cytometry
  • MCS magnetic-activated cells.
  • the TPBG-positive dopamine neurons can alleviate the symptoms of Parkinson's disease.
  • the TPBG-positive dopamine neurons can enhance the safety of cell transplantation therapy.
  • Another aspect of the present invention relates to a pharmaceutical composition for treating Parkinson's disease, including Trophoblast glycoprotein (TPBG) -positive dopamine neurons.
  • TPBG Trophoblast glycoprotein
  • the pharmaceutical composition according to the present invention may include a pharmaceutically acceptable carrier in addition to the active ingredient.
  • the pharmaceutically acceptable carrier is commonly used in the preparation, lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose , Polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propyl hydroxybenzoate, talc, magnesium stearate and mineral oil, and the like.
  • lubricants, wetting agents, sweetening agents, flavoring agents, emulsifiers, suspending agents, preservatives and the like may be further included.
  • compositions of the present invention can be administered orally or parenterally (eg, applied intravenously, subcutaneously, intraperitoneally or topically) according to the desired method, and the dosage is determined by the condition and weight of the patient, Depending on the extent, drug form, route of administration, and time, it may be appropriately selected by those skilled in the art.
  • the pharmaceutical composition of the present invention is administered in a pharmaceutically effective amount.
  • pharmaceutically effective amount means an amount sufficient to treat a disease at a reasonable benefit / risk ratio applicable to medical treatment, and the effective amount may be applied to the type, severity, drug activity, or drug of the patient. Sensitivity, time of administration, route of administration and rate of excretion, duration of treatment, factors including concurrent use of drugs, and other factors well known in the medical arts.
  • the pharmaceutical composition according to the present invention may be administered as a separate therapeutic agent or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be single or multiple administrations. Taking all of the above factors into consideration, it is important to administer an amount that can achieve the maximum effect with a minimum amount without side effects, which can be readily determined by one skilled in the art.
  • the effective amount of the pharmaceutical composition of the present invention may vary depending on the age, sex, condition, weight of the patient, the absorption of the active ingredient in the body, the inactivation rate and excretion rate, the type of disease, the drug used in combination.
  • Another aspect of the invention relates to a method for treating Parkinson's disease comprising administering to a subject said TPBG-positive dopamine neurons.
  • the term "individual” means a subject in need of treatment of a disease, and more specifically, a mammal, such as a primate, mouse, dog, cat, horse and cow, which is human or non-human.
  • Another aspect of the invention relates to the use of said TPBG-positive dopamine neurons for the treatment of Parkinson's disease.
  • the overlapping with the method for producing the dopamine neurons is omitted in consideration of the complexity of the present specification.
  • Another aspect of the invention is directed to a method of enhancing the efficacy and improving transplant safety of dopamine neurons for cell transplantation therapy of Parkinson's disease, comprising the following steps.
  • the content overlapping with the production method of the dopamine neurons is omitted in consideration of the complexity of the present specification.
  • Another aspect of the present invention relates to a composition for transplanting dopamine neurons comprising TPBG (Trophoblast glycoprotein) -positive dopamine neurons.
  • TPBG Trophoblast glycoprotein
  • the TPBG-positive dopamine neurons may be cultured by a method for producing dopamine neurons, and the TPBG-positive dopamine neurons cultured by the above method may be enhanced cell efficacy and improved transplant safety.
  • the transplantation of the dopamine neurons is selected in the appropriate graft site known in the art (for example, the putamen or the caudate nucleus of the brain, or a striatum including all of them, etc.), It may be carried out through a method known at the site of implantation (eg, a stereotactic system, etc.).
  • composition of the present invention can be used for the treatment of Parkinson's disease.
  • the composition of the present invention may include only dopamine neurons alone as transplanted cells, or may include bioderived and / or biodegradable stabilizers in addition to the active ingredient (graft cells).
  • the stabilizer is to stably disperse the dopamine neurons, and is a bio-derived material so that there are no side effects when transplanted in the body, or it should be biodegradable.
  • Biodegradability in the present invention means a property that is slowly decomposed and absorbed in the body, and does not have a meaning in particular the rate of degradation.
  • the stabilizer may include hyaluronic acid, collagen, thrombin, elastin, chondroitin sulfate, albumin and mixtures thereof.
  • the hyaluronic acid, collagen, thrombin, elastin, chondroitin sulfate, albumin, and the like are bio-derived substances, and have biodegradable properties that can be naturally degraded in vivo.
  • the synthesized compound is also a biodegradable material and may be used for the purposes of the present invention.
  • dopamine neurons When formulated with the stabilizer dopamine neurons, dopamine neurons may be present evenly dispersed without floating or sedimentation in the medium.
  • composition for implantation of dopamine neurons comprising the TPBG-positive dopamine neurons
  • the description overlapping with the preparation method of the dopamine neurons is omitted in consideration of the complexity of the present specification.
  • the present invention relates to a method for isolating dopamine neurons and a pharmaceutical composition for treating Parkinson's disease comprising dopamine neurons isolated using the same, wherein the method for separating dopamine neurons is a step of separating TPBG-positive dopamine neurons.
  • dopamine neurons isolated according to the present method is characterized in that the efficiency of the cells at the time of transplantation and improved transplant safety, it can be usefully used for cell transplantation for the treatment of Parkinson's disease.
  • FIG. 1 is a diagram schematically illustrating a method for producing dopamine neurons of the present invention.
  • FIG. 2 is a diagram schematically illustrating a method for preparing an LMX1A-eGFP hES reporter cell line according to one embodiment of the present invention.
  • FIG. 3 is a diagram schematically illustrating a method for preparing a PITX3-mCherry hES reporter cell line according to one embodiment of the present invention.
  • Figure 4 is a diagram confirming the mDA neuroprogenitor differentiation process of the LMX1A-eGFP hES reporter cell line prepared according to one embodiment of the present invention.
  • FIG. 5 is a diagram confirming the mDA neuronal (neuron) differentiation process of the PITX3-mCherry hES reporter cell line prepared according to an embodiment of the present invention.
  • 6A and 6B are diagrams confirming the characteristics of differentiated LMX1A-expressing mDA neuroprogenitor cells according to one embodiment of the present invention.
  • FIG. 7A and 7B are diagrams confirming the characteristics of differentiated LMX1A-expressing mDA neuroprogenitor cells according to one embodiment of the present invention.
  • 8A and 8B confirm the characteristics after terminal differentiation of differentiated LMX1A-expressing cells according to one embodiment of the present invention.
  • FIGS. 9A to 9C are diagrams illustrating the characteristics of differentiated PITX3-expressing mDA neurons (neurons) according to one embodiment of the present invention.
  • FIG. 10 is a diagram confirming the characteristics of differentiated PITX3-expressing mDA neurons (neurons) according to an embodiment of the present invention.
  • FIG. 11 is a diagram comparing in vitro apoptosis with respect to differentiated LMX1A-expressing mDA neuroprogenitor cells and PITX3-expressing mDA neurons (neurons) according to an embodiment of the present invention.
  • FIG. 12 is a diagram showing the results of transcriptome analysis on differentiated LMX1A-expressing mDA neuroprogenitor cells and PITX3-expressing mDA neurons (neurons) according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram illustrating a process of identifying a candidate group of mDA markers.
  • 16 and 17 are diagrams showing MACS results targeting a candidate group of mDA markers (CORIN, TPBG, CD47, and ALCAM).
  • FIG. 18 is a diagram illustrating behavioral recovery after TPBG-positive cell transplantation for a PD-animal model transplanted with TPBG-positive cells isolated from hESCs according to an embodiment of the present invention.
  • FIG. 18 is a diagram illustrating behavioral recovery after TPBG-positive cell transplantation for a PD-animal model transplanted with TPBG-positive cells isolated from hESCs according to an embodiment of the present invention.
  • FIG. 19 is a diagram showing the characteristics of the graft after TPBG-positive cell transplantation for the PD-animal model transplanted with TPBG-positive cells isolated from hESC according to one embodiment of the present invention.
  • FIG. 20 is not sorted in comparison to TPBG-positive cell grafts after TPBG-positive cell transplants for PD-animal models implanted with TPBG-positive cells isolated from hESCs according to one embodiment of the invention (FIG. Unsorted diagram showing the possibility of cell proliferation in cell grafts.
  • Figure 21 is a diagram confirming the characteristics of TPBG-positive cells isolated from human fVM cells in accordance with an embodiment of the present invention.
  • Figure 22 is a diagram confirming the characteristics of TPBG-positive cells isolated from human iPSC in accordance with an embodiment of the present invention.
  • Undifferentiated hESCs H9, WiCell Inc., USA were treated with mitomycin-C (Sigma-Aldrich, USA) treated mouse STO fibroblasts (ATCC, USA) 20% Knockout-Serum Replacement; Invitrogen , USA), 1x non-essential amino acids (Gibco-Thermo Fisher Scientific, USA), 0.1 mM ⁇ -mercapto ethanol (Sigma-Aldrich) and 4 ng / mL bFGF (basic fibroblast growth factor; R & D System, USA) Cultured in DMEM (Dulbecco's modified Eagle's medium) / F12 medium (Gibco-Thermo Fisher Scientific).
  • mitomycin-C Sigma-Aldrich, USA
  • mouse STO fibroblasts ATCC, USA 20% Knockout-Serum Replacement; Invitrogen , USA
  • 1x non-essential amino acids Gibco-Thermo Fisher Scientific, USA
  • Genomic DNA was extracted using the DNeasy Blood & Tissue Kit (QIAGEN, Germany) according to the manufacturer's instructions. Genomic DNA PCR was performed using the EmeraldAmp® GT PCR Master Mix (TAKARA Bio Inc., Japan) on GeneAmp PCR System 2720 (Applied Biosystems-Thermo Fisher Scientific).
  • eGFP-positive fractions were determined according to fluorescence intensity using a 488 nm laser, and mCherry-positive fractions were determined according to fluorescence intensity using a 561 nm laser.
  • cells were incubated in 1% FBS-PBS solution (4 ° C., 30 minutes) and then bound with primary antibody (see Table 1 below) at 4 ° C. for 30 minutes.
  • Olympus IX71 microscope (Olympus Corp., Japan) mounted on a mounting medium (Vector Laboratories) containing 4 ', 6-diamino-2-phenylindole and equipped with a DP71 digital camera Images were acquired using an Olympus FSX100 system or LSM710 confocal microscope (Carl Zeiss, Germany).
  • Cells were dissociated into single cells using Accutase (Merck Millipore, Germany) and then fixed using 4% paraformaldehyde-PBS solution. To detect intracellular markers, the cell membranes were permeated with IX Perm / Wash buffer (BD Biosciences) and incubated in 2% BSA-PBS solution with appropriate antibody for 1 hour. Fluorescently-labeled secondary antibodies appropriate for the antibody were used. Flow cells were counted by LSRII (BD Biosciences) and analyzed using FlowJo software.
  • RNA present in cells was isolated using Easy-Spin ® Total RNA Extraction Kit (iNtRON Biotechnology, Korea).
  • cDNA was synthesized from 1 ⁇ g total RNA using PrimeScript TM RT Master Mix (TAKARA Bio Inc.).
  • mRNA levels SYBR ® Premix Ex Taq TM (TAKARA Bio Inc.) and using CFX96 Real-Time System (Bio- Rad, USA) was quantified by real-time RT-PCR analysis.
  • Ct values for each target gene were normalized according to the value of GAPDH, and standardized expression levels of the target genes were compared to control samples compared to sorted / unsorted groups according to the comparative Ct method. Data are expressed as mean relative deviation ⁇ standard deviation of the mean (SEM) obtained from three independent experiments.
  • SEM standard deviation of the mean
  • HESCs incubated in the colony form were treated with 2 mg / mL of type IV collagenase (Worthington Biochemical Corp., USA) for 30 minutes to induce embryonic formation, and bFGF-free hES culture medium (EB medium) Incubated at. At this time, 1.5% dimethyl sulfoxide (DMSO; Calbiochem-Merck Millipore) was treated for the first 24 hours, followed by 5 ⁇ m of dosomorphin (DM) (Calbiochem-Merck Millipore) and 5 ⁇ m for 4 days. SB431542 (SB) (Sigma-Aldrich) was treated.
  • DMSO dimethyl sulfoxide
  • SB dosomorphin
  • the mesenchymal dopamine neuroprogenitor cell cluster was separated into single cells using accutase, and Matrigel-coated plates at a density of 3.12x10 5 cells / cm 2 in N2B27 medium (N2B27 medium) without bFGF. Reattached to the top. The cells were amplified and cultured for 7 days so that the cells occupy nearly 90% of the plate total area.
  • Cerebral dopaminergic precursor cells with midbrain / dorsal characteristics from day 20 were cultured in a medium (NBG medium) containing 1X N2, 0.5X B27 and 0.5X G21 supplements (Gemini Bio-Products, USA). It was.
  • DAPT brain-derived neurotrophic factor
  • BDNF brain-derived neurotrophic factor
  • GDNF brain-derived neurotrophic factor
  • Final differentiation was achieved by addition of a glial cell line-derived neurotrophic factor (ProSpec-Tany TechnoGene), 200 ⁇ M of ascorbic acid (AA) and 1 ⁇ M of dibutylyl cyclic-AMP (db-cAMP) (Sigma-Aldrich).
  • TALEN-encoded plasmids were purchased from Toolen Inc., Korea.
  • the TALEN site is near TGA
  • the stop codon of exon 9 of the LMX1A gene (5'-TCC ATG CAG AAT TCT TAC TT-3 '(left), 5'-TCA CAG AAC TCT AGG GGA AG-3') Right) was designed to cause double-strand brsaks (DSB), and potential off-target sites were searched using Cas-Offinder (www.rgenome.net/).
  • the donor DNA plasmid was constructed in DH5 ⁇ using pUC19 as the plasmid backbone: 5 'homology arm-endogenous LMX1A genomic fragment (left arm) -T2A-eGFP-bGH poly (A) -PGK promoter driven puromycin resistance cassette- bGH poly (A) -3 ′ homology arm (right arm).
  • HESC colonies on inactivated STO were transferred onto plates coated with hESC-compatible matrigel (BD Biosciences, USA) in StemMACS TM iPS-Brew XF complete medium (Miltenyi Biotec, Germany). The cells were then subcultured to account for nearly 80-90% of the plate total area (Split ratio, 1: 5). After dissociation into single cells using accutase, transfer to a Matrigel-coated plate in medium supplemented with ROCK inhibitor (10 ⁇ M, Y-27632) (Calbiochem-Merck Millipore) for the first 24 hours and daily The medium was freshly replaced. Only hESCs with less than 10 enzymatic passages were used in the experiment.
  • the hESC medium was treated with 0.5 ⁇ g / mL puromycin (Sigma-Aldrich). After 10-14 days, colonies showing puromycin resistance were classified as reporter cell line candidates and passaged to expand cell numbers.
  • Cas9- and sgRNA (CRISPR / Cas9) -coding plasmids were purchased from Tulgen.
  • the sequence for preparing sgRNAs that mediate PITX3 targeting was characterized by a stop codon TGA (5'-TAC GGG CGG GGC CGC TCA TA C GG -3 ') to cause double-strand cleavage (DSB) near the stop codon TGA. : Designed to be positioned across the PAM)). Potential off-target sites were searched using Cas-Offinder (www.rgenome.net/).
  • the donor DNA plasmid was constructed at DH5 ⁇ using pUC19 as the plasmid backbone: 5 'homology arm-endogenous PITX3 genomic fragment (left arm) -T2A-mCherry-bGH poly (A) -PGK promoter driven neomycin resistance cassette- bGH poly (A) -3 ′ homology arm (right arm).
  • cells expressing eGFP are cells expressing LMX1A (LMX1A reporter cell line established), and that hESCs have been directly differentiated into mDA neuroprogenitor cells exhibiting bottom plate (FOXA2) and midbrain (EN1) properties.
  • the PITX3-mCherry reporter cell line prepared in Preparation Example 2 was differentiated using the differentiation protocol of the above example, and the differentiation process was confirmed (Immunocytochemistry and Cytometry).
  • mCherry expressing cells are PITX3 expressing cells (establishment of PITX3 reporter cell line), mES neurons whose hESCs show bottom plate (FOXA2) and midbrain (EN1), and midbrain dopamine (LMX1A) characteristics. Means differentiation directly into (neurons).
  • the cells of d20 of Experimental Example 1 were exposed to 10 ⁇ m of Y27632 for 1 hour and then dissociated using accutase, and then cells of 40 ⁇ m or less were collected using a cell sieve (Cell strainer, BD Science).
  • Dissociated progenitor cells were LMX1A supplemented with 1 ⁇ penicillin-streptomycin (P / S) (Gibco-Thermo Fisher Scientific) in 3% fetal bovine serum (FBS) (Gemini Bio-Products) and HBSS (WELGENE Inc., Korea).
  • LMX1A-eGFP + LMX1A +
  • LMX1A + and LMX1A-eGFP - progenitor cells was shown to maintain the shape (morphology) is similar to the non-sorted cells.
  • ⁇ 99.4% of isolated LMX1A + were positive for both EN1 and FOXA2.
  • the Unsorted group was incubated for an additional day in vitro .
  • the LMX1A + group was 38.5 ⁇ 3.9% and 49.5 ⁇ 6.2% of the surviving cells in the G0 / G1 and S phase, 6 ⁇ 2.7% to G2 / M at the mDA neuroprogenitor cell stage there was.
  • the unsorted group, the LMX1A ⁇ group and the LMX1A + group were further finally differentiated (4 weeks, d52) and then the expression of mDA neuron-related markers was compared. .
  • LMX1A + cells are mDA neuronal progenitor cells capable of differentiating into mDA neurons.
  • cells were washed with low KCl solution (2.5 mM CaCl 2 , 11 mM glucose, 20 mM HEPES-NaOH, 4.7 mM KCl, 1.2 mM KH 2 PO 4 , 1.2 mM MgSO 4 and 140 mM NaCl) and low KCl solution. Incubated for 2 minutes at. Then replace with high KCl solution (2.5 mM CaCl 2 , 11 mM glucose, 20 mM HEPES-NaOH, 60 mM KCl, 1.2 mM KH 2 PO 4 , 1.2 mM MgSO 4 and 85 mM NaCl) and incubate for 15 minutes. It was.
  • low KCl solution 2.5 mM CaCl 2 , 11 mM glucose, 20 mM HEPES-NaOH, 4.7 mM KCl, 1.2 mM KH 2 PO 4 , 1.2 mM MgSO 4 and 140 mM NaC
  • the solution was collected in a 15 mL tube and centrifuged at 2,000 rpm for 1 minute to remove debris, and the supernatant was collected in a 1.5 mL tube and stored at -80 ° C.
  • the concentration of dopamine was detected by the dopamine ELISA kit (Cat. No. KA3838; Abnova, Taiwan) according to the manufacturer's instructions.
  • the cells of d40 of Experimental Example 2 were dissociated into single cells using papain (Papain; Worthington Biochemical Corp.) to which 5% trehalose was added, and then 40 ⁇ m using 70 ⁇ m and 40 ⁇ m cell sieves sequentially. The following cells were collected. Dissociated cells were treated with 1 ⁇ 10 7 cells / mL in PITX3-Sorting buffer (PITX3-SB) with 1x P / S in 5% FBS, 1x Glutamax (Gibco-Thermo Fisher Scientific), 5% trehalose and HBSS. Resuspend in concentration and perform cell separation (FACS). In addition, after culturing for an additional 36 hours in vitro ( in vitro ) was observed the morphology of the cells survived.
  • PITX3 + cells were confirmed to express the mature mDA neuronal markers NURR1, AADC, VMAT2 and DAT.
  • the A9 region marker KCNJ6 was expressed, cells expressing the A10 region marker CALB were not observed.
  • the LMX1A-eGFP reporter cell line of Preparation Example 1 and the PITX3-mCherry reporter cell line of Preparation Example 2 were differentiated using the differentiation protocol of the above example, and then 20 days of differentiation (d20) of mDA neuroprogenitor cells and 50 days of differentiation (d50). ) Mature mDA neurons were isolated into single cells using the same method as Experimental Example 3 and 4, respectively. The degree of in vitro apoptosis of the isolated single cells was compared. At this time, apoptosis was confirmed according to the manufacturer's instructions using a LIVE / DEAD® Fixable Violet Dead Cell Stain Kit (Thermo Fisher).
  • the cells showing apoptosis was separated single cells LMX1A + cells in the from of about 8%, PITX3 + cells was about 30%. That is, when isolated into single cells, LMX1A + mDA neuroprogenitors maintained higher viability than PITX + mDA neurons, and through this, LMX1A + and PITX3 + cells showed a difference in susceptibility to single cell separation for transplantation. It appeared that it appeared. These results indicate that the transplantation of LMX1A + cells, which are mDA neuroprogenitor cells, is advantageous in terms of apoptosis than the transplantation of PITX3 + cells, which are mature neurons.
  • the LMX1A-eGFP reporter cell line of Preparation Example 1 and the PITX3-mCherry reporter cell line of Preparation Example 2 were differentiated using the differentiation protocol of the above example, and then LMX1A + and LMX1A of 20 days of differentiation (d20, mDA neuroprogenitor cell stage) - to separate the cells, performing transcript analysis (Microarray) for this (see Fig. 12) cells, and differentiation 40 days PITX3 + and PITX3 of (d40, mDA neuron stage).
  • eGFP and cell cycle markers were observed in the mDA neuronal progenitor cell stage, and cells expressing mCherry and mDA neuronal marker (TH) in the mDA neuronal cell stage, mature.
  • TH mCherry and mDA neuronal marker
  • Neuronal markers were observed, but no cells expressing immature neuronal markers (NeuroD) and proliferating cell markers (KI67).
  • LMX1A-upregulated in LMX1A + cells compared to the cells is genetically and PITX3 in-upregulated in PITX3 + cells compared to the cells (> 2 -FC) genes were identified and 53 genes encoding surface markers were identified through gene mining.
  • FIG. 14 surface marker genes (FIG. 14) among the genes that are upregulated in LMX1A + cells as compared to LMX1A ⁇ cells and surface marker genes that are up or down regulated in both LMX1A + cells and PITX3 + cells (FIG. 15). It was. Screening was performed for 18 genes with commercially available antibodies among the 21 genes of FIG. 14.
  • CORIN- and trophoblast glycoprotein (TPBG) -target MACS showed a statistically significant enrichment of LMX1A + FOXA2 + mDA neuronal progenitor cells.
  • TPBG was widely expressed in mDA neuroprogenitor cells.
  • TPBG was selected as the final mDA neuroprogenitor cell-specific marker.
  • HESCs in culture in the colony form were differentiated using the differentiation protocol of the above example, and then MACS targeting TPBG was performed on day 20 (d20) of differentiation.
  • Cell suspensions were prepared by suspending the isolated TPBG-positive cells in 1 ⁇ HBSS to a final concentration of 8.75 ⁇ 10 4 cells / ⁇ L. At this time, a control group was used as a group transplanted with only HBSS.
  • the prepared cell suspension (total 350,000 cells) was prepared per rat according to the coordinates (TB -0.24, AP +0.08, ML -0.30, DV -0.40 and -0.50). 4 ⁇ L was implanted by stereotactic method.
  • Immunosuppressive treatment was performed by intraperitoneal injection of 10 mg / kg of cyclosporine A (Ceun Kun Dang, Korea) daily during the experimental period from 2 days before transplantation to the sacrifice of mice.
  • Amphetamine (2.5 mg / kg, Sigmal-Aldrich) was injected intraperitoneally before 4, 8, 12 or 16 weeks after transplantation and rat rotation was recorded for 30 minutes.
  • TPBG-positive cells showed a significant improvement in motor function compared to the control for 16 weeks after transplantation. These results indicate that TPBG-positive mDA neuroprogenitor cells derived from hESC are viable in vivo and improve motor function.
  • TPBG-positive cells and unclassified cells were transplanted in the same manner as in Example 7-2, except that the group transplanted with Unsorted cells was used as a control.
  • rats were anesthetized with 25% urethane solution and 0.9% saline and 4% paraformaldehyde were perfused with perfusion.
  • the removed brains were fixed overnight and cryoprotected with 30% sucrose-PBS solution.
  • Cryoprotected brains were fixed in FSC 22 ® compounds (Leica, Nußloch, Germamy) and coronal sections were made to 18 ⁇ m thickness using Thermo Fisher Scientific.
  • immunohistochemical staining was performed to target human-specific neural cell adhesion molecules (hNCAMs).
  • the TPBG-positive cell group consisted of a greater number of TH + hNCAM + and PITX3 + hNCAM + mDA neurons compared to the unclassified group. These results indicate that TPBG-positive cells are more suitable for differentiation into mDA neurons in vivo compared to unclassified groups.
  • TPBG can be used to enrich cells exhibiting midbrain characteristics among fVM cells.
  • Human iPSC (HDF-epi3) being cultured in the same manner as the human embryonic stem cells were differentiated using the differentiation protocol of the above example, and then MACS targeting TPBG was performed on day 20 (d20) of differentiation. Expression of EN1, FOXA2, LMX1A in isolated TPBG-positive cells was confirmed (Immunocytochemistry).
  • the present invention relates to a method for isolating dopamine neurons and a pharmaceutical composition for treating Parkinson's disease comprising dopamine neurons isolated using the same, wherein the method for separating dopamine neurons is TPBG (Trophoblast glycoprotein) -positive dopamine neurons.
  • TPBG Trophoblast glycoprotein

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Neurology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurosurgery (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Developmental Biology & Embryology (AREA)
  • Medicinal Chemistry (AREA)
  • Psychology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Ophthalmology & Optometry (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Epidemiology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

The present invention relates to a method for isolating dopamine neurons and a pharmaceutical composition for treating Parkinson's disease, containing dopamine neurons isolated using same. The method for isolating dopamine neurons comprises a step for isolating trophoblast glycoprotein (TPBG)-positive dopamine neurons, such that the dopamine neurons isolated by the method have increased cell efficacy when transplanted and enhanced transplantation safety so as to be effectively used for cell transplantation for the treatment of Parkinson's disease.

Description

도파민 신경세포의 분리방법 및 이를 이용하여 분리된 도파민 신경세포를 포함하는 파킨슨병 치료용 약제학적 조성물Method for isolating dopamine neurons and pharmaceutical composition for treating Parkinson's disease comprising dopamine neurons isolated using the same
본 발명은 도파민 신경세포의 분리방법 및 이를 이용하여 분리된 도파민 신경세포를 포함하는 파킨슨병 치료용 약제학적 조성물에 관한 것이다.The present invention relates to a method for isolating dopamine neurons and a pharmaceutical composition for treating Parkinson's disease comprising dopamine neurons isolated using the same.
본 발명은 대한민국 보건복지부의 지원 하에서 과제번호 HI18C0829에 의해 이루어진 것으로서, 상기 과제의 연구관리전문기관은 한국보건산업진흥원, 연구사업명은 "첨단의료기술개발", 연구과제명은 "전분화능 줄기세포의 신경계질환 적용을 위한 생체 내 분화 모니터링과 최소 이식 세포 수 예측 기술 확립", 주관기관은 연세대학교 산학협력단, 연구기간은 2018.04.30. ~ 2021.12.31.이다.The present invention was made by the task number HI18C0829 under the support of the Ministry of Health and Welfare of the Republic of Korea, the research and management institution of the task is the Korea Health Industry Development Institute, the research project name is "advanced medical technology development", the research title is "neural system of pluripotent stem cells In vivo differentiation monitoring and minimum transplant cell number prediction technology for disease application ", The lead organization is Yonsei University Industry-Academic Cooperation Group, Research period 2018.04.30. ~ 2021.12.31.
본 특허출원은 2018년 5월 2일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2018-0050918호 및 2019년 4월 25일에 대한민국 특허청에 제출된 대한민국 특허출원 제10-2019-0048784호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다.This patent application is filed with the Korean Patent Application No. 10-2018-0050918 filed with the Korean Patent Office on May 2, 2018 and the Korean Patent Application No. 10-2019-0048784 filed with the Korean Patent Office on April 25, 2019. Priority is claimed, the disclosures of which are incorporated herein by reference.
파킨슨병(Parkinson's disease, PD)은 세포-기반 치료법(cell-based therapies)에 가장 적절한, 중뇌성 도파민(midbrain dopaminergic, mDA) 신경세포의 국소적 사멸(focal degeneration)으로 인한 신경퇴행성 장애 중 하나이다.Parkinson's disease (PD) is one of the neurodegenerative disorders due to focal degeneration of midbrain dopaminergic (mDA) neurons, most suitable for cell-based therapies.
1980 년대 초반부터, 태아 배측 중뇌(fetal ventral mesencephalon, VM) 조직을 환자의 선조체(striatal)에 이식함으로써 파킨슨병 관련 운동기능을 회복시키려는 시도가 이루어졌다. Since the early 1980s, attempts have been made to restore Parkinson's disease-related motor function by implanting fetal ventral mesencephalon (VM) tissue into the patient's striatal.
이러한 연구에 따라, 이식편에 의해 운동기능의 회복이 유도될 수 있음을 확인하였지만, 연구 기관마다 세포 이식의 결과가 일관되지 않고 일부의 경우 부작용도 나타나, 이후 세포-기반 치료법이 더 개선되어야 한다는 공감대가 형성되었다.Although these studies have shown that grafts can lead to recovery of motor function, there is consensus that cell transplantation results are inconsistent and in some cases also have side effects, with cell-based therapies further improved. Was formed.
특히, 기존 연구에서 문제로 지적되었던, 이식 재료인 세포를 생체에 존재하는 세포와 근접한 수준으로 발달시키고, 태아 조직의 제한된 가용성 및 비일관성(batch-to-batch inconsistency) 등의 단점을 보완하기 위한 대안 연구가 지속되었다. In particular, the development of transplanted cells, which have been pointed out as a problem in previous studies, to develop in close proximity to cells present in vivo, and to compensate for the disadvantages such as limited solubility and batch-to-batch inconsistency of fetal tissue. Alternative studies continued.
그 결과, 시험관 내(in vitro)에서 무한 증식능을 나타내고 다양한 신경세포로의 폭넓은 분화능을 지닌, 배아 줄기세포(Embryonic stem cells, ESCs) 및 유도 만능 줄기세포(induced pluripotent stem cells, iPSCs)를 포함하는 인간 전분화능 줄기세포(human pluripotent stem cell, hPSCs)가 주목을 받게 되었다.The results include embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), which show endogenous proliferation in vitro and have a wide range of differentiation into various neurons. Human pluripotent stem cells (hPSCs) have attracted attention.
이에 따라, 최근까지 다양한 mDA 신경세포의 분화 기술이 개발되어 높은 수율의 세포를 생산해낼 수 있는 수준으로 진화하였으나, 최근 개발된 분화 기술을 통해 hPSC로부터 분화 유도된 결과물에서도 mDA 신경세포 이외의 다른 종류 세포들이 상당히 섞여 있는 이질성(heterogeneity)이 관찰되어, 현재의 분화 기술을 바탕으로 임상 적용을 고려하기엔 어려운 상황이다.Accordingly, until recently, differentiation techniques of mDA neurons have been developed and evolved to produce high yields of cells. However, other products other than mDA neurons have been developed in the differentiation-induced products from hPSCs through recent development of differentiation techniques. Heterogeneity, in which cells are quite mixed, has been observed, making it difficult to consider clinical applications based on current differentiation techniques.
따라서, 다양한 세포 집단으로부터의 hPSC-유래 mDA 신경세포의 동정 및 분리는 이식세포의 표준화뿐만 아니라 성공적인 이식치료 연구에 매우 중요하다.Thus, identification and isolation of hPSC-derived mDA neurons from various cell populations is critical for successful transplantation research as well as standardization of transplanted cells.
한편, 초기의 hPSC로부터 유도 분화된 mDA 신경세포를 순수 분리(농축)시키기 위한 전략은 다 표면 항원(multiple surface antigens)을 표적으로 하는 형광-활성유세포분리법(fluorescence-activated cell sorting, FACS)을 기반으로 하였다. 이러한 접근법은 티로신 하이드록시아제(tyrosine hydroxylase, TH)를 발현하는 신경세포 집단(neuronal population)을 증가시켰으나, 이러한 세포 집단이 mDA 신경세포 특성을 보유하였는지는 불분명하였다.Meanwhile, a strategy for purely separating (concentrating) differentiated mDA neurons derived from early hPSCs is based on fluorescence-activated cell sorting (FACS) targeting multiple surface antigens. It was made. This approach increased the neuronal population expressing tyrosine hydroxylase (TH), but it was unclear whether this cell population retained mDA neuronal properties.
최근, 마우스 fVM 조직 및 마우스 배아 줄기세포(mESC)-유래 mDA 신경전구세포의 전사체(transcriptome)를 분석하여, mDA 신경세포를 구별하여 농축시킬 수 있는 특이적 표면 마커를 발굴하는 연구가 수행되었다.Recently, transcriptomes of mouse fVM tissue and mouse embryonic stem cell (mESC) -derived mDA neuronal progenitor cells have been analyzed to find specific surface markers that can differentiate and enrich mDA neurons. .
이러한 연구들은, 몇몇 가능성 있는 세포 표면 마커를 제시하였고, 이를 이용하여 도파민 신경세포의 분리 및 농축이 가능하다는 것을 보였지만, 동시에, 신경세포 발생 과정 중 정확히 어느 단계의 신경세포가 발현하는 세포 표면 마커를 발굴해야 하는 지에 대해서는 아직 명확히 밝히고 있지 않았다. 발생 단계에 따라 분리된 신경세포의 이식 후 생존율이나 분화 정도가 다르고, 이는 이식 후 기능 회복에 영향을 줄 수 있다는 것이 본 업계의 공통된 의견이기 때문에, 분화단계-특이적 마커의 발굴 역시 중요한 과제임에 틀림없다.These studies have suggested some possible cell surface markers, which have shown that dopamine neurons can be isolated and enriched, but at the same time, cell surface markers expressing exactly what stage of neurons are expressed during neuronal development. It is not yet clear whether it should be excavated. The development of differentiation-specific markers is also an important task, since it is a common opinion in the industry that the survival rate or differentiation of isolated neurons differs according to the developmental stage, and this may affect the recovery of function after transplantation. Must be.
이에, 중뇌성 도파민 신경세포 및 그 분화 단계의 표면 마커에 대한 연구가 시급한 실정이다.Therefore, the study of surface cerebral dopamine neurons and surface markers of differentiation stages is urgent.
본 발명자들은 중뇌성 도파민 신경세포의 분화 과정을 구별하고, 각 단계의 세포 표면 마커를 개발하고자 노력하였다. 그 결과, LMX1A-eGFP 및 PITX3-mCherry 리포터 hESC 세포주를 확립하고, 이를 분화시켜 LMX1A+ mDA 신경전구세포 및 PITX3+ mDA 신경세포를 분리하고, 이로부터 중뇌성 도파민 신경세포와 관련된 세포 표면 마커(TPBG)를 발굴함으로써, 본 발명을 완성하게 되었다.The present inventors have tried to differentiate the process of differentiating cerebral dopamine neurons and develop cell surface markers at each stage. As a result, LMX1A-eGFP and PITX3-mCherry reporter establish hESC cell lines, and to differentiate them LMX1A + mDA neural progenitor cells and PITX3 + mDA separate the nerve cells, cell surface markers associated therefrom and midbrain St. dopamine neurons (TPBG ), The present invention was completed.
따라서, 본 발명의 목적은 도파민 신경세포(dopaminergic neural cells)의 제조방법을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a method for producing dopaminergic neural cells.
본 발명의 다른 목적은 TPBG(Trophoblast glycoprotein)-양성 도파민 신경세포를 포함하는 파킨슨병(Parkinson's disease) 치료용 약학적 조성물을 제공하는 것이다.Another object of the present invention is to provide a pharmaceutical composition for treating Parkinson's disease, including Trophoblast glycoprotein (TPBG) -positive dopamine neurons.
본 발명의 또 다른 목적은 파킨슨병(Parkinson's disease)의 세포 이식 치료법을 위한 도파민 신경세포의 효능을 증진시키고 이식 안전성을 향상시키는 방법을 제공하는 것이다.It is still another object of the present invention to provide a method of enhancing the efficacy of dopamine neurons and improving transplant safety for cell transplantation therapy of Parkinson's disease.
본 발명의 또 다른 목적은 TPBG(Trophoblast glycoprotein)-양성 도파민 신경세포를 포함하는 도파민 신경세포 이식용 조성물을 제공하는 것이다.Another object of the present invention is to provide a composition for transplanting dopamine neurons comprising TPBG (Trophoblast glycoprotein) -positive dopamine neurons.
본 발명자들은 중뇌성 도파민(mDA) 신경세포의 분화 과정을 구별하고, 각 단계의 세포 표면 마커를 개발하고자 노력하였다. 그 결과, LMX1A-eGFP 및 PITX3-mCherry 리포터 hESC 세포주를 확립하고, 이를 분화시켜 LMX1A+ mDA 신경전구세포 및 PITX3+ mDA 신경세포를 분리하고, 이로부터 중뇌성 도파민 신경세포와 관련된 세포 표면 마커(TPBG)를 발굴하였다.The present inventors have tried to differentiate the process of differentiating cerebral dopamine (mDA) neurons and develop cell surface markers at each stage. As a result, LMX1A-eGFP and PITX3-mCherry reporter establish hESC cell lines, and to differentiate them LMX1A + mDA neural progenitor cells and PITX3 + mDA separate the nerve cells, cell surface markers associated therefrom and midbrain St. dopamine neurons (TPBG ).
보다 구체적으로, 본 발명자들은 mDA 신경전구세포(progenitor) 단계-특이적 유전자인 LMX1A가 발현할 때 동시에 초록색 형광단백질(eGFP)이 발현되도록 조작된 LMX1A-eGFP 리포터 hESC 세포주, 및 성숙한 mDA 신경세포(neuronal) 단계-특이적 유전자인 PITX3가 발현할 때 동시에 빨간색 형광단백질(mCherry)이 발현되도록 조작된 PITX3-mCherry 리포터 hESC 세포주를 각각 수립하고, LMX1A+ mDA 신경전구세포 및 PITX+ mDA 신경세포의 전사체 비교 분석을 통하여, mDA 신경세포의 전구체(신경전구세포)에 특이적으로 발현되는 세포 표면 마커 후보를 선별하였다. 그 중, TPBG을 새로운 세포 표면 마커로서 발견하였으며, TPBG를 표적으로 하는 세포분리 결과, mDA 신경전구세포가 농축되는 것을 확인하였다. 또한, mDA 신경전구세포 단계에서 자성-활성세포분리법(magnetic-activated cell sorting, MACS)으로 분리된 TPBG-양성 세포를 6-OHDA-손상 파킨슨병(PD) 래트 모델에 이식한 결과, PD 래트에서 종양 형성 없이 운동기능 이상 증상이 회복됨을 확인하였다.More specifically, the inventors have shown that the LMX1A-eGFP reporter hESC cell line engineered to express green fluorescent protein (eGFP) at the same time when the mDA progenitor step-specific gene LMX1A is expressed, and mature mDA neurons ( neuronal step-specific gene PITX3 expression, at the same time the red fluorescent protein (mCherry) engineered to express the PITX3-mCherry reporter hESC cell line, respectively, and established the LMX1A + mDA neuro precursor cells and PITX + mDA neurons Through a comparative analysis of carcasses, cell surface marker candidates specifically expressed in the precursors (neuronal precursor cells) of mDA neurons were selected. Among them, TPBG was found as a new cell surface marker, and as a result of cell separation targeting TPBG, it was confirmed that mDA neuroprogenitor cells were concentrated. In addition, TPBG-positive cells isolated by magnetic-activated cell sorting (MACS) at the mDA neuroprogenitor cell stage were transplanted into 6-OHDA-damaged Parkinson's disease (PD) rat model. It was confirmed that motor dysfunction was recovered without tumor formation.
따라서, TPBG는 이식 가능한 mDA 신경전구세포를 분리하기 위한 새로운 표면 마커 단백질로서, TPBG를 이용하여 분리된 mDA 세포는 파킨슨병 치료를 위한 안전하고 효과적인 세포 대체 치료법을 제공할 수 있을 것으로 기대된다.Thus, TPBG is a novel surface marker protein for isolating implantable mDA neuronal progenitor cells, and mDA cells isolated using TPBG are expected to provide safe and effective cell replacement therapy for Parkinson's disease.
본 발명은 도파민 신경세포의 분리방법, 이를 이용하여 분리된 도파민 신경세포를 포함하는 파킨슨병 치료용 약제학적 조성물, 파킨슨병의 세포 이식 치료법을 위한 도파민 신경세포의 효능을 증진시키고 이식 안전성을 향상시키는 방법, 및 이를 이용하여 제조된 도파민 신경세포 이식용 조성물에 관한 것이다.The present invention provides a method for isolating dopamine neurons, a pharmaceutical composition for treating Parkinson's disease comprising isolated dopamine neurons, enhancing the efficacy of dopamine neurons for improving the cell transplantation therapy of Parkinson's disease and improving graft safety. It relates to a method, and a composition for transplanting dopamine neurons prepared using the same.
이하, 본 발명을 더욱 자세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail.
본 발명의 일 양태는 다음의 단계를 포함하는 도파민 신경세포(dopaminergic neural cells)의 제조방법에 관한 것이다.One aspect of the invention relates to a method for producing dopaminergic neural cells comprising the following steps.
(a) 세포 집단(population)을 TPBG(Trophoblast glycoprotein) 항체와 접촉시키는 단계; 및(a) contacting a cell population with a Trophoblast glycoprotein (TPBG) antibody; And
(b) TPBG 항체에 결합하는 TPBG-양성 도파민 신경세포를 분리하는 단계.(b) isolating TPBG-positive dopamine neurons that bind to TPBG antibodies.
본 발명에서 "신경세포(neural cells)"는 신경계를 구성하는 세포로 뉴런(neuron)과 동일한 의미로 사용될 수 있고, "도파민 신경세포(dopaminergic neural cells)"는 신경전달물질인 도파민(dopamine)을 분비하는 신경세포를 의미한다.In the present invention, "neural cells" are cells constituting the nervous system and may be used in the same sense as neurons, and "dopaminergic neural cells" refers to a neurotransmitter dopamine (dopamine). Means a secreted neuron.
상기 도파민 신경세포는 도파민 신경전구세포(dopaminergic neural progenitors 또는 dopaminergic neural precursor cells) 또는 성숙 도파민 뉴런(dopaminergic neurons)일 수 있으나, 이에 제한되는 것은 아니다.The dopamine neurons may be dopaminergic neural progenitors or dopaminergic neural precursor cells or mature dopaminergic neurons, but are not limited thereto.
본 발명에서 "신경전구세포"는 아직 분화 형질을 발현하지 않은 미분화 전구세포를 의미하며, "progenitors", "precursors" 및 "precursor cell" 모두 동일한 의미로 사용될 수 있다.In the present invention, "neural progenitor cells" refers to undifferentiated progenitor cells that have not yet expressed differentiation traits, and "progenitors", "precursors" and "precursor cells" may be used in the same sense.
상기 도파민 신경세포는 중뇌성(midbrain) 도파민 신경세포일 수 있다.The dopamine neuron may be a midbrain dopamine neuron.
본 발명에서 "중뇌성 도파민 신경세포"란 중뇌(midbrain) 영역에서 관찰되는 도파민 신경세포를 의미하고, 예를 들어, 중뇌 배측(ventral) 영역에서 관찰되는 도파민 신경세포를 의미하는 것일 수 있으나, 이에 제한되는 것은 아니다.In the present invention, "middle cerebral dopamine neurons" refers to dopamine neurons observed in the midbrain region, and for example, may refer to dopamine neurons observed in the midbrain ventral region. It is not limited.
또한, 상기 중뇌성 도파민 신경세포는 A9 지역-특이적(A9 region-specific)으로 발현할 수 있다.In addition, the mesenchymal dopamine neurons can be expressed A9 region-specific (A9 region-specific).
상기 "A9 지역"은 중뇌 복외측(ventrolateral)지역으로, 중뇌 흑색질(substantia nigra)의 치밀부(pars compacta)에 해당하는 부분을 의미하는 바, 본 발명의 제조방법에 의해 제조된 세포는 중뇌성 세포임을 알 수 있다.The "A9 region" is a ventrolateral region of the midbrain, and means a part corresponding to the pars compacta of the substantia nigra (substantia nigra), and the cells produced by the manufacturing method of the present invention are mesothelial. It can be seen that the cell.
또한, 상기 A9 지역은 도파민 신경세포가 밀집된 부위로 운동기능의 조절과 관련이 있고, 특히, 파킨슨병 환자의 경우 이 부위의 도파민 신경세포가 특이적으로 사멸되어 있는 것을 특징으로 하는바, 본 발명의 제조방법에 의해 제조된 세포는 파킨슨병의 예방 및/또는 치료 목적으로 사용될 수 있다.In addition, the A9 region is a region where dopamine neurons are concentrated, and is related to the regulation of motor function, and particularly, in the case of Parkinson's disease patients, the dopamine neurons at this region are specifically killed. The cells produced by the method for preparing may be used for the purpose of preventing and / or treating Parkinson's disease.
이하, 본 발명의 도파민 신경세포 제조방법에 대하여 상세히 설명한다.Hereinafter, the dopamine neuron manufacturing method of the present invention will be described in detail.
(a) 단계(a) step
상기 "세포 집단"은 인간 줄기세포(human stem cells); 전구세포(progenitors 또는 precursors); 및/또는 인간 줄기세포 또는 전구세포로부터 분화된 도파민 신경전구세포(dopaminergic neural progenitors), 성숙 도파민 뉴런(dopaminergic neurons) 및 이로부터 유래한 신경유도체(neural derivatives)를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.The "cell population" includes human stem cells; Progenitors or precursors; And / or dopaminergic neural progenitors differentiated from human stem cells or progenitor cells, dopaminergic neurons and neural derivatives derived therefrom, but are not limited thereto. It is not.
구체적으로, 상기 인간 줄기세포 또는 전구세포는 배아 줄기세포(Embryonic stem cells), 배아 생식세포(Embryonic germ cells), 배아 암종세포(Embryonic carcinoma cells), 유도 만능 줄기세포(Induced pluripotent stem cells, iPSCs), 성체 줄기세포(Adult stem cells) 또는 태아 세포(Fetal cells)일 수 있으나, 이에 제한되는 것은 아니다.Specifically, the human stem cells or progenitor cells are embryonic stem cells, embryonic germ cells, embryonic carcinoma cells, induced pluripotent stem cells (iPSCs). In addition, the stem cells may be adult stem cells or fetal cells, but are not limited thereto.
상기 태아 세포는 태아 신경 조직(Fetal neural tissue) 또는 이의 유도체(derivatives)로부터 유래된 것일 수 있고, 예를 들어 태아 배측 중뇌 세포(fetal ventral mesencephalic cells; fVM cells)일 수 있으나, 이에 제한되는 것은 아니다.The fetal cells may be derived from fetal neural tissue or derivatives thereof, and may be, for example, fetal ventral mesencephalic cells (fVM cells), but are not limited thereto. .
(b) 단계(b) step
상기 "TPBG"는 Wnt-Activated Inhibitory Factor 1 또는 WAIF1와 동일한 의미로 사용될 수 있고, Wnt/β-catenin 신호 전달 경로의 길항제로 알려져 있으나, TPBG의 발현을 통한 도파민 신경세포 분리에 대해서는 아직 보고된 바가 없다.The "TPBG" can be used in the same sense as Wnt-Activated Inhibitory Factor 1 or WAIF1, and is known as an antagonist of the Wnt / β-catenin signaling pathway, but has not been reported for the isolation of dopamine neurons through the expression of TPBG. none.
상기 유전자의 뉴클레오티드 서열을 서열번호 53에 나타내었다. 또한, 상기 유전자는 뉴클레오티드 서열이 유전자 은행에 등록되어 있으므로 당업자라면 쉽게 입수가 가능할 것이다.The nucleotide sequence of the gene is shown in SEQ ID NO: 53. In addition, the gene is readily available to those skilled in the art because the nucleotide sequence is registered in the gene bank.
본 발명에서 "TPBG-양성 도파민 신경세포"란 TPBG 항체에 결합하는 도파민 신경세포를 의미한다.In the present invention, "TPBG-positive dopamine neurons" means dopamine neurons that bind to TPBG antibodies.
상기 "TPBG 항체"는 TPBG에 특이적으로 결합하는 항체를 의미한다.The "TPBG antibody" refers to an antibody that specifically binds to TPBG.
본 단계에서, TPBG-양성 도파민 신경세포를 분리하는 방법은 타겟을 특정하여 세포를 분리하는 방법이라면 어떠한 방법이라도 사용될 수 있고, 예를 들어 형광-활성유세포분리법(FACS) 및/또는 자성-활성세포분리법(MACS)을 이용하는 것일 수 있으나, 이에 제한되는 것은 아니다.In this step, the method for separating TPBG-positive dopamine neurons may be used as long as it is a method for separating cells by specifying a target, for example, fluorescence-activated flow cytometry (FACS) and / or magnetic-activated cells. The separation method (MACS) may be used, but is not limited thereto.
상기 TPBG-양성 도파민 신경세포는 파킨슨병의 증상을 완화시킬 수 있다.The TPBG-positive dopamine neurons can alleviate the symptoms of Parkinson's disease.
상기 TPBG-양성 도파민 신경세포는 세포 이식 치료법의 안전성을 향상시킬 수 있다.The TPBG-positive dopamine neurons can enhance the safety of cell transplantation therapy.
본 발명의 다른 양태는 TPBG(Trophoblast glycoprotein)-양성 도파민 신경세포를 포함하는 파킨슨병(Parkinson's disease) 치료용 약학적 조성물에 관한 것이다.Another aspect of the present invention relates to a pharmaceutical composition for treating Parkinson's disease, including Trophoblast glycoprotein (TPBG) -positive dopamine neurons.
본 발명에 따른 약학적 조성물은 유효성분 이외에 약제학적으로 허용되는 담체를 포함할 수 있다. 이때, 약제학적으로 허용되는 담체는 제제 시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세 결정성셀룰로스, 폴리비닐피로리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필 히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 또한, 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.The pharmaceutical composition according to the present invention may include a pharmaceutically acceptable carrier in addition to the active ingredient. At this time, the pharmaceutically acceptable carrier is commonly used in the preparation, lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose , Polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propyl hydroxybenzoate, talc, magnesium stearate and mineral oil, and the like. In addition to the above components, lubricants, wetting agents, sweetening agents, flavoring agents, emulsifiers, suspending agents, preservatives and the like may be further included.
본 발명의 약학적 조성물은 목적하는 방법에 따라 경구 투여하거나 비경구투여(예를 들어, 정맥 내, 피하, 복강 내 또는 국소에 적용)할 수 있으며, 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 시간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다.The pharmaceutical compositions of the present invention can be administered orally or parenterally (eg, applied intravenously, subcutaneously, intraperitoneally or topically) according to the desired method, and the dosage is determined by the condition and weight of the patient, Depending on the extent, drug form, route of administration, and time, it may be appropriately selected by those skilled in the art.
본 발명의 약학적 조성물은 약학적으로 유효한 양으로 투여한다. 본 발명에 있어서 "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분한 양을 의미하며, 유효량은 환자의 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 시간, 투여 경로 및 배출비율, 치료기간, 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다.The pharmaceutical composition of the present invention is administered in a pharmaceutically effective amount. As used herein, the term “pharmaceutically effective amount” means an amount sufficient to treat a disease at a reasonable benefit / risk ratio applicable to medical treatment, and the effective amount may be applied to the type, severity, drug activity, or drug of the patient. Sensitivity, time of administration, route of administration and rate of excretion, duration of treatment, factors including concurrent use of drugs, and other factors well known in the medical arts.
본 발명에 따른 약학적 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고, 종래의 치료제와는 순차적 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.The pharmaceutical composition according to the present invention may be administered as a separate therapeutic agent or in combination with other therapeutic agents, may be administered sequentially or simultaneously with conventional therapeutic agents, and may be single or multiple administrations. Taking all of the above factors into consideration, it is important to administer an amount that can achieve the maximum effect with a minimum amount without side effects, which can be readily determined by one skilled in the art.
구체적으로 본 발명의 약학적 조성물의 유효량은 환자의 연령, 성별, 상태, 체중, 체내에 활성 성분의 흡수도, 불활성율 및 배설속도, 질병종류, 병용되는 약물에 따라 달라질 수 있다.Specifically, the effective amount of the pharmaceutical composition of the present invention may vary depending on the age, sex, condition, weight of the patient, the absorption of the active ingredient in the body, the inactivation rate and excretion rate, the type of disease, the drug used in combination.
본 발명의 또 다른 양태는 상기 TPBG-양성 도파민 신경세포를 개체에 투여하는 단계를 포함하는 파킨슨병 치료방법에 관한 것이다.Another aspect of the invention relates to a method for treating Parkinson's disease comprising administering to a subject said TPBG-positive dopamine neurons.
상기 "개체"란 질병의 치료를 필요로 하는 대상을 의미하고, 보다 구체적으로는, 인간 또는 비-인간인 영장류, 마우스(mouse), 개, 고양이, 말 및 소 등의 포유류를 의미한다.The term "individual" means a subject in need of treatment of a disease, and more specifically, a mammal, such as a primate, mouse, dog, cat, horse and cow, which is human or non-human.
본 발명의 또 다른 양태는 상기 TPBG-양성 도파민 신경세포의 파킨슨병 치료 용도에 관한 것이다.Another aspect of the invention relates to the use of said TPBG-positive dopamine neurons for the treatment of Parkinson's disease.
상기 TPBG-양성 도파민 신경세포를 포함하는 파킨슨병 치료용 약학적 조성물에 있어, 상기 도파민 신경세포의 제조방법과 중복되는 내용은 본 명세서의 복잡성을 고려하여 생략한다.In the pharmaceutical composition for treating Parkinson's disease comprising the TPBG-positive dopamine neurons, the overlapping with the method for producing the dopamine neurons is omitted in consideration of the complexity of the present specification.
본 발명의 또 다른 양태는 다음의 단계를 포함하는 포함하는 파킨슨병(Parkinson's disease)의 세포 이식 치료법을 위한 도파민 신경세포의 효능을 증진시키고 이식 안전성을 향상시키는 방법에 관한 것이다.Another aspect of the invention is directed to a method of enhancing the efficacy and improving transplant safety of dopamine neurons for cell transplantation therapy of Parkinson's disease, comprising the following steps.
(a) 세포 집단(cell population)을 TPBG(Trophoblast glycoprotein)-항체와 접촉시키는 단계; 및(a) contacting a cell population with a Trophoblast glycoprotein (TPBG) -antibody; And
(b) TPBG 항체에 결합하는 TPBG-양성 도파민 신경세포를 분리하는 단계.(b) isolating TPBG-positive dopamine neurons that bind to TPBG antibodies.
상기 도파민 신경세포의 효능을 증진시키고 이식 안전성을 향상시키는 방법에 있어, 상기 도파민 신경세포의 제조방법과 중복되는 내용은 본 명세서의 복잡성을 고려하여 생략한다.In the method of improving the efficacy of the dopamine neurons and improving the safety of transplantation, the content overlapping with the production method of the dopamine neurons is omitted in consideration of the complexity of the present specification.
본 발명의 또 다른 양태는 TPBG(Trophoblast glycoprotein)-양성 도파민 신경세포를 포함하는 도파민 신경세포 이식용 조성물에 관한 것이다.Another aspect of the present invention relates to a composition for transplanting dopamine neurons comprising TPBG (Trophoblast glycoprotein) -positive dopamine neurons.
상기 TPBG-양성 도파민 신경세포는 도파민 신경세포의 제조방법에 의해 배양될 수 있으며, 상기 방법으로 배양된 TPBG-양성 도파민 신경세포는 세포 효능이 증진되고 이식 안전성이 향상된 것일 수 있다.The TPBG-positive dopamine neurons may be cultured by a method for producing dopamine neurons, and the TPBG-positive dopamine neurons cultured by the above method may be enhanced cell efficacy and improved transplant safety.
한편, 상기 도파민 신경세포의 이식은 당업계에 공지된 적절한 이식부위(예를 들면, 뇌의 조가비핵[putamen] 또는 미상핵[caudate nucleus], 또는 이를 모두 아우르는 선조체[striatum] 등)를 선정하고, 이식 부위에 공지된 방식(예를 들면 뇌정위시스템[stereotactic system] 등)을 통해 수행될 수 있다.On the other hand, the transplantation of the dopamine neurons is selected in the appropriate graft site known in the art (for example, the putamen or the caudate nucleus of the brain, or a striatum including all of them, etc.), It may be carried out through a method known at the site of implantation (eg, a stereotactic system, etc.).
본 발명의 조성물은 파킨슨병(Parkinson's disease)의 치료 용도로 사용될 수 있다.The composition of the present invention can be used for the treatment of Parkinson's disease.
본 발명의 조성물은 이식 세포로서 도파민 신경세포만을 단독으로 포함하거나, 유효성분(이식 세포) 이외에 생체유래 및/또는 생분해성 안정화제를 포함할 수 있다. 상기 안정화제는 상기 도파민 신경세포를 안정하게 분산시키기 위한 것으로서, 생체유래 물질이어서 체내 이식 시 부작용이 없거나, 그렇지 않다면 생분해성을 가져야 한다. 본 발명에서 생분해성이라 함은 체내에서 서서히 분해되어 흡수되는 특성을 의미하며, 특별히 분해되는 속도에는 의미를 두지 않는다.The composition of the present invention may include only dopamine neurons alone as transplanted cells, or may include bioderived and / or biodegradable stabilizers in addition to the active ingredient (graft cells). The stabilizer is to stably disperse the dopamine neurons, and is a bio-derived material so that there are no side effects when transplanted in the body, or it should be biodegradable. Biodegradability in the present invention means a property that is slowly decomposed and absorbed in the body, and does not have a meaning in particular the rate of degradation.
상기 안정화제로는, 히아루론산, 콜라겐, 트롬빈, 엘라스틴, 황산 콘드로이틴, 알부민 및 이의 혼합물을 포함할 수 있다. 특히, 상기 히아루론산, 콜라겐, 트롬빈, 엘라스틴, 황산 콘드로이틴, 알부민 등은 생체유래 물질로, 생체 내에서 자연적으로 분해될 수 있는 생분해성 성질을 가진다. 다만, 생분해성과 매질에서 점도를 부여하는 특성을 충족시키는 경우라면 합성된 화합물도 생분해성 물질이며, 본 발명의 용도로도 사용할 수 있으므로, 반드시 생체에서 유래되는 물질로 제한하는 것은 아니다.The stabilizer may include hyaluronic acid, collagen, thrombin, elastin, chondroitin sulfate, albumin and mixtures thereof. In particular, the hyaluronic acid, collagen, thrombin, elastin, chondroitin sulfate, albumin, and the like are bio-derived substances, and have biodegradable properties that can be naturally degraded in vivo. However, as long as it satisfies the properties of imparting biodegradability and viscosity in the medium, the synthesized compound is also a biodegradable material and may be used for the purposes of the present invention.
상기 안정화제를 도파민 신경세포와 함께 제제화할 경우, 도파민 신경세포가 매질 중에 부유하거나 침강되지 않고 골고루 분산되어 존재할 수 있다.When formulated with the stabilizer dopamine neurons, dopamine neurons may be present evenly dispersed without floating or sedimentation in the medium.
상기 TPBG-양성 도파민 신경세포를 포함하는 도파민 신경세포 이식용 조성물에 있어, 상기 도파민 신경세포의 제조방법과 중복되는 내용은 본 명세서의 복잡성을 고려하여 생략한다.In the composition for implantation of dopamine neurons comprising the TPBG-positive dopamine neurons, the description overlapping with the preparation method of the dopamine neurons is omitted in consideration of the complexity of the present specification.
본 발명은 도파민 신경세포의 분리방법 및 이를 이용하여 분리된 도파민 신경세포를 포함하는 파킨슨병 치료용 약제학적 조성물에 관한 것으로, 상기 도파민 신경세포의 분리방법은 TPBG-양성 도파민 신경세포를 분리하는 단계를 포함함으로써, 본 방법에 따라 분리된 도파민 신경세포는 이식 시 세포의 효능이 증진되고 이식 안전성이 향상된 것을 특징으로 하므로, 파킨슨병 치료를 위한 세포 이식 용도로 유용하게 사용될 수 있다.The present invention relates to a method for isolating dopamine neurons and a pharmaceutical composition for treating Parkinson's disease comprising dopamine neurons isolated using the same, wherein the method for separating dopamine neurons is a step of separating TPBG-positive dopamine neurons. By including, dopamine neurons isolated according to the present method is characterized in that the efficiency of the cells at the time of transplantation and improved transplant safety, it can be usefully used for cell transplantation for the treatment of Parkinson's disease.
도 1은 본 발명의 도파민 신경세포의 제조방법을 모식화한 도이다.1 is a diagram schematically illustrating a method for producing dopamine neurons of the present invention.
도 2는 본 발명의 일 제조예에 따른 LMX1A-eGFP hES 리포터 세포주의 제조방법을 모식화한 도이다.2 is a diagram schematically illustrating a method for preparing an LMX1A-eGFP hES reporter cell line according to one embodiment of the present invention.
도 3은 본 발명의 일 제조예에 따른 PITX3-mCherry hES 리포터 세포주의 제조방법을 모식화한 도이다.3 is a diagram schematically illustrating a method for preparing a PITX3-mCherry hES reporter cell line according to one embodiment of the present invention.
도 4는 본 발명의 일 제조예에 따라 제조된 LMX1A-eGFP hES 리포터 세포주의 mDA 신경전구세포 분화 과정을 확인한 도이다.Figure 4 is a diagram confirming the mDA neuroprogenitor differentiation process of the LMX1A-eGFP hES reporter cell line prepared according to one embodiment of the present invention.
도 5는 본 발명의 일 제조예에 따라 제조된 PITX3-mCherry hES 리포터 세포주의 mDA 신경세포(뉴런) 분화 과정을 확인한 도이다.5 is a diagram confirming the mDA neuronal (neuron) differentiation process of the PITX3-mCherry hES reporter cell line prepared according to an embodiment of the present invention.
도 6a 및 6b는 본 발명의 일 실시예에 따라 분화된 LMX1A-발현 mDA 신경전구세포의 특성을 확인한 도이다.6A and 6B are diagrams confirming the characteristics of differentiated LMX1A-expressing mDA neuroprogenitor cells according to one embodiment of the present invention.
도 7a 및 7b는 본 발명의 일 실시예에 따라 분화된 LMX1A-발현 mDA 신경전구세포의 특성을 확인한 도이다.7A and 7B are diagrams confirming the characteristics of differentiated LMX1A-expressing mDA neuroprogenitor cells according to one embodiment of the present invention.
도 8a 및 8b는 본 발명의 일 실시예에 따라 분화된 LMX1A-발현 세포의 최종 분화(terminal differentiation) 후의 특성을 확인한 도이다.8A and 8B confirm the characteristics after terminal differentiation of differentiated LMX1A-expressing cells according to one embodiment of the present invention.
도 9a 내지 9c는 본 발명의 일 실시예에 따라 분화된 PITX3-발현 mDA 신경세포(뉴런)의 특성을 확인한 도이다.9A to 9C are diagrams illustrating the characteristics of differentiated PITX3-expressing mDA neurons (neurons) according to one embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따라 분화된 PITX3-발현 mDA 신경세포(뉴런)의 특성을 확인한 도이다.10 is a diagram confirming the characteristics of differentiated PITX3-expressing mDA neurons (neurons) according to an embodiment of the present invention.
도 11은 본 발명의 일 실시예에 따라 분화된 LMX1A-발현 mDA 신경전구세포 및 PITX3-발현 mDA 신경세포(뉴런)에 대하여, 시험관 내(in vitro) 세포사멸 정도를 비교한 도이다.FIG. 11 is a diagram comparing in vitro apoptosis with respect to differentiated LMX1A-expressing mDA neuroprogenitor cells and PITX3-expressing mDA neurons (neurons) according to an embodiment of the present invention.
도 12는 본 발명의 일 실시예에 따라 분화된 LMX1A-발현 mDA 신경전구세포 및 PITX3-발현 mDA 신경세포(뉴런)에 대하여, 전사체 분석을 수행한 결과를 나타낸 도이다.12 is a diagram showing the results of transcriptome analysis on differentiated LMX1A-expressing mDA neuroprogenitor cells and PITX3-expressing mDA neurons (neurons) according to an embodiment of the present invention.
도 13은 mDA 마커의 후보군을 동정하는 과정을 나타낸 모식도이다.13 is a schematic diagram illustrating a process of identifying a candidate group of mDA markers.
도 14 및 15는 mDA 마커의 후보군을 동정하기 위하여, 표적 유효성을 평가한 결과이다.14 and 15 show the results of evaluating the target effectiveness to identify candidate groups of mDA markers.
도 16 및 17은 mDA 마커의 후보군(CORIN, TPBG, CD47, ALCAM)을 타겟으로 하는 MACS 결과를 나타낸 도이다.16 and 17 are diagrams showing MACS results targeting a candidate group of mDA markers (CORIN, TPBG, CD47, and ALCAM).
도 18은 본 발명의 일 실시예에 따라 hESC로부터 분리된 TPBG-양성 세포가 이식된 PD-동물 모델에 대하여, TPBG-양성 세포 이식 후 행동 회복을 확인한 도이다.FIG. 18 is a diagram illustrating behavioral recovery after TPBG-positive cell transplantation for a PD-animal model transplanted with TPBG-positive cells isolated from hESCs according to an embodiment of the present invention. FIG.
도 19는 본 발명의 일 실시예에 따라 hESC로부터 분리된 TPBG-양성 세포가 이식된 PD-동물 모델에 대하여, TPBG-양성 세포 이식 후 이식편의 특성을 확인한 도이다.19 is a diagram showing the characteristics of the graft after TPBG-positive cell transplantation for the PD-animal model transplanted with TPBG-positive cells isolated from hESC according to one embodiment of the present invention.
도 20은 본 발명의 일 실시예에 따라 hESC로부터 분리된 TPBG-양성 세포가 이식된 PD-동물 모델에 대하여, TPBG-양성 세포 이식 후 TPBG-양성 세포 이식편(graft)과 비교하여 분류되지 않은(Unsorted) 세포 이식편에서 세포 증식 가능성을 확인한 도이다.FIG. 20 is not sorted in comparison to TPBG-positive cell grafts after TPBG-positive cell transplants for PD-animal models implanted with TPBG-positive cells isolated from hESCs according to one embodiment of the invention (FIG. Unsorted diagram showing the possibility of cell proliferation in cell grafts.
도 21은 본 발명의 일 실시예에 따라 human fVM 세포로부터 분리된 TPBG-양성 세포의 특성을 확인한 도이다.Figure 21 is a diagram confirming the characteristics of TPBG-positive cells isolated from human fVM cells in accordance with an embodiment of the present invention.
도 22는 본 발명의 일 실시예에 따라 human iPSC로부터 분리된 TPBG-양성 세포의 특성을 확인한 도이다.Figure 22 is a diagram confirming the characteristics of TPBG-positive cells isolated from human iPSC in accordance with an embodiment of the present invention.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .
인간 배아 줄기세포(human Embryonic stem cells, hESC) 배양Human Embryonic Stem Cells (hESC) Culture
미분화된 hESCs(H9, WiCell Inc., 미국)를 미토마이신-C(mitomycin-C; Sigma-Aldrich, 미국) 처리 마우스 STO 섬유아세포(ATCC, 미국) 층에서 20% KSR(Knockout-Serum Replacement; Invitrogen, 미국), 1x 비필수 아미노산(Gibco-Thermo Fisher Scientific, 미국), 0.1 mM β-메르캅토 에탄올(Sigma-Aldrich) 및 4 ng/mL bFGF (basic fibroblast growth factor; R&D System, 미국)가 첨가된 DMEM(Dulbecco's modified Eagle's medium)/F12 배지(Gibco-Thermo Fisher Scientific)로 배양하였다.Undifferentiated hESCs (H9, WiCell Inc., USA) were treated with mitomycin-C (Sigma-Aldrich, USA) treated mouse STO fibroblasts (ATCC, USA) 20% Knockout-Serum Replacement; Invitrogen , USA), 1x non-essential amino acids (Gibco-Thermo Fisher Scientific, USA), 0.1 mM β-mercapto ethanol (Sigma-Aldrich) and 4 ng / mL bFGF (basic fibroblast growth factor; R & D System, USA) Cultured in DMEM (Dulbecco's modified Eagle's medium) / F12 medium (Gibco-Thermo Fisher Scientific).
클로날 세포의 유전형 분석(Genotyping)Genotyping of Clonal Cells
게놈 DNA는 DNeasy Blood&Tissue 키트(QIAGEN, 독일)를 사용하여 제조업체의 지시에 따라 추출하였다. 게놈 DNA PCR은 GeneAmp PCR System 2720(Applied Biosystems-Thermo Fisher Scientific)에서 EmeraldAmp® GT PCR Master Mix(TAKARA Bio Inc., Japan)를 사용하여 수행하였다.Genomic DNA was extracted using the DNeasy Blood & Tissue Kit (QIAGEN, Germany) according to the manufacturer's instructions. Genomic DNA PCR was performed using the EmeraldAmp® GT PCR Master Mix (TAKARA Bio Inc., Japan) on GeneAmp PCR System 2720 (Applied Biosystems-Thermo Fisher Scientific).
FACSFACS
BD FACSAria III 유세포분리기 및 FACSDiva 소프트웨어(BD Bioscience)를 사용하여 세포분리를 수행하였다. eGFP-양성 분획은 488 nm 레이저를 이용하여 형광 강도에 따라 결정하였으며, mCherry-양성 분획은 561 nm 레이저를 이용하여 형광 강도에 따라 결정하였다.Cell separation was performed using a BD FACSAria III flow cytometer and FACSDiva software (BD Bioscience). eGFP-positive fractions were determined according to fluorescence intensity using a 488 nm laser, and mCherry-positive fractions were determined according to fluorescence intensity using a 561 nm laser.
MACSMACS
항체의 비특이적 결합을 억제하기 위하여, 세포를 1% FBS-PBS 용액에서 배양(4℃, 30분) 후, 30분 동안 4℃에서 일차 항체(하기 표 1 참조)와 결합시켰다.To inhibit nonspecific binding of the antibodies, cells were incubated in 1% FBS-PBS solution (4 ° C., 30 minutes) and then bound with primary antibody (see Table 1 below) at 4 ° C. for 30 minutes.
ProteinProtein SpeciesSpecies CompanyCompany Cat. no.Cat. no. DilutionDilution
OCT4OCT4 RabbitRabbit Santa CruzSanta cruz sc-9081sc-9081 1:2001: 200
SOX2SOX2 RabbitRabbit MilliporeMillipore AB5603AB5603 1:2001: 200
NANOG (human)NANOG (human) GoatGoat R&D SystemsR & D Systems AF1997AF1997 1:501:50
SSEA4SSEA4 MouseMouse MilliporeMillipore MAB4304MAB4304 1:2001: 200
TRA-1-81TRA-1-81 MouseMouse MilliporeMillipore MAB4381MAB4381 1:1001: 100
TRA-1-60TRA-1-60 MouseMouse MilliporeMillipore MAB4360MAB4360 1:1001: 100
NESTIN (human)NESTIN (human) RabbitRabbit MilliporeMillipore ABD69ABD69 1:1,0001: 1,000
SOX1SOX1 GoatGoat R&D SystemsR & D Systems AF3369AF3369 1:1001: 100
SMAαSMAα MouseMouse SIGMASIGMA A5228A5228 1:1001: 100
BRACHYURYBRACHYURY GoatGoat R&D SystemsR & D Systems AF2085AF2085 1:1001: 100
EN1EN1 MouseMouse Dev. Stud. Hybridoma BankDev. Stud. Hybridoma bank 4G114G11 1:501:50
FOXA2 (HNF3β)FOXA2 (HNF3β) RabbitRabbit AbcamAbcam AB108422AB108422 1:3001: 300
FOXA2 (HNF3β)FOXA2 (HNF3β) GoatGoat Santa CruzSanta cruz sc-6554sc-6554 1:1001: 100
LMX1ALMX1A GoatGoat Santa CruzSanta cruz sc-54273sc-54273 1:1001: 100
eGFPeGFP GoatGoat RocklandRockland 600-101-215600-101-215 1:1,0001: 1,000
eGFPeGFP MouseMouse RocklandRockland 600-301-215600-301-215 1:1,0001: 1,000
PITX3PITX3 RabbitRabbit NOVUSNOVUS NBP1-92274NBP1-92274 1:5001: 500
mCherrymCherry RabbitRabbit RocklandRockland 600-401-P16S600-401-p16s 1:1,0001: 1,000
mCherrymCherry RatRat ThermoThermo M11217M11217 1:1,0001: 1,000
KI67KI67 RabbitRabbit Vision BiosystemVision Biosystem NCL-K67PNCL-K67P 1:1,0001: 1,000
TUBB3TUBB3 MouseMouse Covance (BioLegend)Covance (BioLegend) MMS-435P (801201)MMS-435P (801201) 1:1,0001: 1,000
THTH RabbitRabbit Pel-freezPel-freez P40101-0P40101-0 1:1,0001: 1,000
THTH MouseMouse SigmaSigma T1299T1299 1:10,0001: 10,000
NURR1NURR1 RabbitRabbit Santa CruzSanta cruz sc-990sc-990 1:1,0001: 1,000
MAP2MAP2 RabbitRabbit MilliporeMillipore AB5622AB5622 1:1,0001: 1,000
AADCAADC RabbitRabbit ChemiconChemicon AB1569AB1569 1:5001: 500
VMAT2VMAT2 RabbitRabbit AbcamAbcam AB81855AB81855 1:1,5001: 1,500
DATDAT RabbitRabbit Pel-freezPel-freez P40501-0P40501-0 1:5001: 500
KCNJ6KCNJ6 RabbitRabbit Almone LabsAlmone Labs APC-006APC-006 1:5001: 500
CALBCALB RabbitRabbit MilliporeMillipore AB1778AB1778 1:1,0001: 1,000
NCAM (human)NCAM (human) MouseMouse Santa CruzSanta cruz sc-106sc-106 1:1001: 100
PCNAPCNA RabbitRabbit AbcamAbcam ab18197ab18197 1:7001: 700
PH3PH3 RabbitRabbit MilliporeMillipore 06-57006-570 1:5001: 500
NeuNNeun MouseMouse ChemiconChemicon MAB377MAB377 1:1001: 100
NeuroDNeurod MouseMouse AbcamAbcam AB60704AB60704 1:5001: 500
ALCAMALCAM MouseMouse R&D SystemsR & D Systems MAB561MAB561 2.5μg/106 cells2.5μg / 10 6 cells
TPBGTPBG MouseMouse R&D SystemsR & D Systems MAB49751MAB49751 2.5 μg /106 cells2.5 μg / 10 6 cells
CORINCORIN MouseMouse R&D SystemsR & D Systems MAB2209MAB2209 2.5 μg /106 cells2.5 μg / 10 6 cells
CD47CD47 MouseMouse Santa CruzSanta cruz sc-12730sc-12730 1.0 μg /106 cells1.0 μg / 10 6 cells
세척 후, 일차 항체-표지된 세포를 1Х107 세포 당 20 μL의 마이크로비즈(Miltenyi Biotec)와 함께 배양하였다. 세척 후, 세포 현탁액을 자기(magnetic) 스탠드에 부착된 분리 컬럼(LS 컬럼)(Miltenyi Biotec)에 로딩하였다. 컬럼 세척 중에 통과된 음성-표지 세포를 별도의 튜브에 수집하고, 자성 스탠드로부터 컬럼을 제거한 후 컬럼 내에 잔존하는 양성-표지 세포를 배양 배지와 함께 다른 튜브로 용출시켰다.After washing, primary antibody-labeled cells were incubated with 20 μL microbeads (Miltenyi Biotec) per 1Х10 7 cells. After washing, the cell suspension was loaded onto a separation column (LS column) (Miltenyi Biotec) attached to a magnetic stand. The negative-labeled cells that passed during the column wash were collected in separate tubes, and the positive-labeled cells remaining in the column were eluted with the culture medium into another tube after removing the column from the magnetic stand.
면역세포화학(Immunocytochemistry) 분석Immunocytochemistry Analysis
먼저, 세포를 4% 파라포름알데하이드-PBS 용액에 고정시켰다.First, cells were fixed in 4% paraformaldehyde-PBS solution.
다음으로, 항체의 세포질 내로의 투과를 원활히 하기 위하여, 0.1% Triton X-100-PBS 용액으로 15분 동안 처리 후, 2% 소혈청알부민(BSA)(Bovogen, 호주)-PBS 용액으로 실온에서 1시간 동안 반응시킨 후, 일차 항체(상기 표 1 참조)와 4℃로 밤새 결합시켰다. 상기 일차 항체가 결합된 단백질을 시각화하기 위하여, 적절한 형광-표지 이차 항체(Molecular Probes-Thermo Fisher Scientific 및 Vector Laboratories, 미국)를 사용하였다.Next, to facilitate permeation of the antibody into the cytoplasm, treatment with 0.1% Triton X-100-PBS solution for 15 minutes, followed by 2% bovine serum albumin (BSA) (Bovogen, Australia) -PBS solution at room temperature. After reacting for a time, the primary antibody (see Table 1 above) was bound at 4 ° C. overnight. To visualize the protein to which the primary antibody is bound, appropriate fluorescently-labeled secondary antibodies (Molecular Probes-Thermo Fisher Scientific and Vector Laboratories, USA) were used.
끝으로, 세포핵을 확인하기 위하여, 4',6-다이아미노-2-페닐인돌이 포함된 마운팅 배지(Vector Laboratories)에 마운트하고, DP71 디지털 카메라가 장착된 Olympus IX71 현미경(Olympus Corp., 일본), 올림푸스 FSX100 시스템 또는 LSM710 공초점 현미경(Carl Zeiss, 독일)을 사용하여 이미지를 획득하였다.Finally, to identify the nucleus, Olympus IX71 microscope (Olympus Corp., Japan) mounted on a mounting medium (Vector Laboratories) containing 4 ', 6-diamino-2-phenylindole and equipped with a DP71 digital camera Images were acquired using an Olympus FSX100 system or LSM710 confocal microscope (Carl Zeiss, Germany).
유세포분석법(Flow cytometry)Flow cytometry
세포를 아큐타제(Accutase; Merck Millipore, 독일)를 사용하여 단일 세포로 해리 후, 4% 파라포름알데하이드-PBS 용액을 사용하여 고정시켰다. 세포 내 마커를 검출하기 위하여, 1X Perm/Wash 버퍼(BD Biosciences)로 세포막을 투과화시키고, 1시간 동안 적절한 항체와 함께 2% BSA-PBS 용액에서 배양하였다. 상기 항체에 적절한 형광-표지 이차 항체를 사용하였다. LSRII(BD Biosciences)로 유동세포를 계수하여 FlowJo 소프트웨어를 사용하여 분석하였다.Cells were dissociated into single cells using Accutase (Merck Millipore, Germany) and then fixed using 4% paraformaldehyde-PBS solution. To detect intracellular markers, the cell membranes were permeated with IX Perm / Wash buffer (BD Biosciences) and incubated in 2% BSA-PBS solution with appropriate antibody for 1 hour. Fluorescently-labeled secondary antibodies appropriate for the antibody were used. Flow cells were counted by LSRII (BD Biosciences) and analyzed using FlowJo software.
유전자 발현(Gene expression) 분석Gene expression analysis
세포 내에 존재하는 총 RNA(total RNA)는 Easy-Spin® Total RNA 추출 키트(iNtRON Biotechnology, 한국)를 사용하여 분리하였다. cDNA는 PrimeScriptTM RT Master Mix(TAKARA Bio Inc.)를 사용하여 총 RNA 1 μg으로부터 합성되었다. mRNA 수준은 SYBR® Premix Ex TaqTM (TAKARA Bio Inc.) 및 CFX96 Real-Time System(Bio-Rad, 미국)을 사용하여 실시간 RT-PCR 분석으로 정량화되었다. 각 표적 유전자에 대한 Ct 값은 GAPDH의 값에 따라 표준화하였고, 표적 유전자의 표준화된 발현 수준은 비교 Ct 방법에 따라 분류(sorted)/분류되지 않은(Unsorted) 그룹을 대조군 샘플과 비교하였다. 데이터는 3 개의 독립적인 실험으로부터 얻은 평균 상대 편차±평균의 표준 편차(SEM)로 표현되었다. 유전자 발현 분석에 사용된 프라이머의 서열은 하기 표 2에 나타내었다.Total RNA present in cells was isolated using Easy-Spin ® Total RNA Extraction Kit (iNtRON Biotechnology, Korea). cDNA was synthesized from 1 μg total RNA using PrimeScript RT Master Mix (TAKARA Bio Inc.). mRNA levels SYBR ® Premix Ex Taq TM (TAKARA Bio Inc.) and using CFX96 Real-Time System (Bio- Rad, USA) was quantified by real-time RT-PCR analysis. Ct values for each target gene were normalized according to the value of GAPDH, and standardized expression levels of the target genes were compared to control samples compared to sorted / unsorted groups according to the comparative Ct method. Data are expressed as mean relative deviation ± standard deviation of the mean (SEM) obtained from three independent experiments. The sequences of the primers used for gene expression analysis are shown in Table 2 below.
SymbolSymbol Gene nameGene name Sequence(5' to 3')Sequence (5 'to 3') SEQ ID No.SEQ ID No.
GAPDHGAPDH Glyceraldehyde-3-Phosphate DehydrogenaseGlyceraldehyde-3-Phosphate Dehydrogenase F: CAA TGA CCC CTT CAT TGA CCF: CAA TGA CCC CTT CAT TGA CC SEQ ID No.1SEQ ID No.1
R: TTG ATT TTG GAG GGA TCT CGR: TTG ATT TTG GAG GGA TCT CG SEQ ID No.2SEQ ID No.2
OCT4OCT4 POU class 5 homeobox 1POU class 5 homeobox 1 F: CCT CAC TTC ACT GCA CTG TAF: CCT CAC TTC ACT GCA CTG TA SEQ ID No.3SEQ ID No.3
R :CAG GTT TTC TTT CCC TAG CTR: CAG GTT TTC TTT CCC TAG CT SEQ ID No.4SEQ ID No.4
SOX2SOX2 SRY-box2SRY-box2 F: TTC ACA TGT CCC AGC ACT ACC AGAF: TTC ACA TGT CCC AGC ACT ACC AGA SEQ ID No.5SEQ ID No.5
R: TCA CAT GTG TGA GAG GGG CAG TGT GCR: TCA CAT GTG TGA GAG GGG CAG TGT GC SEQ ID No.6SEQ ID No.6
NANOGNANOG Nanog homeoboxNanog homeobox F: TGA ACC TCA GCT ACA AAC AGF: TGA ACC TCA GCT ACA AAC AG SEQ ID No.7SEQ ID No.7
R: TGG TGG TAG GAA GAG TAA AGR: TGG TGG TAG GAA GAG TAA AG SEQ ID No.8SEQ ID No.8
TET1TET1 TET methylcytosine dioxygenase 1TET methylcytosine dioxygenase 1 F: CTG CAG CTG TCT TGA TCG AGT TATF: CTG CAG CTG TCT TGA TCG AGT TAT SEQ ID No.9SEQ ID No.9
R: CCT TCT TTA CCG GTG TAC ACT ACTR: CCT TCT TTA CCG GTG TAC ACT ACT SEQ ID No.10SEQ ID No.10
REX1REX1 ZFP42 zinc finger proteinZFP42 zinc finger protein F: TCA CAG TCC AGC AGG TGT TTGF: TCA CAG TCC AGC AGG TGT TTG SEQ ID No.11SEQ ID No.11
R: TCT TGT CTT TGC CCG TTT CTR: TCT TGT CTT TGC CCG TTT CT SEQ ID No.12SEQ ID No.12
EN1EN1 Engrailed 1Engrailed 1 F: CGT GGC TTA CTC CCC ATT TAF: CGT GGC TTA CTC CCC ATT TA SEQ ID No.13SEQ ID No.13
R: TCT CGC TGT CTC TCC CTC TCR: TCT CGC TGT CTC TCC CTC TC SEQ ID No.14SEQ ID No.14
FOXA2FOXA2 Forkhead box A2 (HNF-3β)Forkhead box A2 (HNF-3β) F: CCG TTC TCC ATC AAC AAC CTF: CCG TTC TCC ATC AAC AAC CT SEQ ID No.15SEQ ID No.15
R: GGG GTA GTG CAT CAC CTG TTR: GGG GTA GTG CAT CAC CTG TT SEQ ID No.16SEQ ID No.16
LMX1ALMX1A LIM homeobox transcription factor 1aLIM homeobox transcription factor 1a F: CGC ATC GTT TCT TCT CCT CTF: CGC ATC GTT TCT TCT CCT CT SEQ ID No.17SEQ ID No.17
R: CAG ACA GAC TTG GGG CTC ACR: CAG ACA GAC TTG GGG CTC AC SEQ ID No.18SEQ ID No.18
eGFPeGFP Enhanced green fluorescent proteinEnhanced green fluorescent protein F: CAT CAA GGT GAA CTT CAA GAT CCG CCA CAA CF: CAT CAA GGT GAA CTT CAA GAT CCG CCA CAA C SEQ ID No.19SEQ ID No.19
R: CTT GTA CAG CTC GTC CAT GCC GAG AGT GAT CR: CTT GTA CAG CTC GTC CAT GCC GAG AGT GAT C SEQ ID No.20SEQ ID No.20
PITX3PITX3 Paired like homeodomain 3Paired like homeodomain 3 F: GCC AAC CTT AGT CCG TGF: GCC AAC CTT AGT CCG TG SEQ ID No.21SEQ ID No.21
R: GCA AGC CAG TCA AAA TGR: GCA AGC CAG TCA AAA TG SEQ ID No.22SEQ ID No.22
mCherrymCherry F: ACT ACG ACG CTG AGG TCA AGF: ACT ACG ACG CTG AGG TCA AG SEQ ID No.23SEQ ID No.23
R: GTG TAG TCC TCG TTG TGG GAR: GTG TAG TCC TCG TTG TGG GA SEQ ID No.24SEQ ID No.24
OTX2OTX2 Orthodenticle homeobox 2Orthodenticle homeobox 2 F: GGA AGC ACT GTT TGC CAA GAC CF: GGA AGC ACT GTT TGC CAA GAC C SEQ ID No.25SEQ ID No.25
R: CTG TTG TTG GCG GCA CTT AGC TR: CTG TTG TTG GCG GCA CTT AGC T SEQ ID No.26SEQ ID No.26
FOXA1FOXA1 Forkhead box A1Forkhead box A1 F: GGG CAG GGT GGC TCC AGG ATF: GGG CAG GGT GGC TCC AGG AT SEQ ID No.27SEQ ID No.27
R: TGC TGA CCG GGA CGG AGG AGR: TGC TGA CCG GGA CGG AGG AG SEQ ID No.28SEQ ID No.28
SIM1SIM1 Single-minded homolog 1Single-minded homolog 1 F: AAA GGG GGC CAA ATC CCG GCF: AAA GGG GGC CAA ATC CCG GC SEQ ID No.29SEQ ID No.29
R: TCC GCC CCA CTG GCT GTC ATR: TCC GCC CCA CTG GCT GTC AT SEQ ID No.30SEQ ID No.30
LHX1LHX1 LIM homeobox 1LIM homeobox 1 F: AGG TGA AAC ACT TTG CTC CGF: AGG TGA AAC ACT TTG CTC CG SEQ ID No.31SEQ ID No.31
R: CTC CAG GGA AGG CAA ACT CTR: CTC CAG GGA AGG CAA ACT CT SEQ ID No.32SEQ ID No.32
LMX1BLMX1B LIM homeobox transcription factor 1bLIM homeobox transcription factor 1b F: CTT AAC CAG CCT CAG CGA CTF: CTT AAC CAG CCT CAG CGA CT SEQ ID No.33SEQ ID No.33
R: TCA GGA GGC GAA GTA GGA ACR: TCA GGA GGC GAA GTA GGA AC SEQ ID No.34SEQ ID No.34
NKX2.2NKX2.2 NK2 homeobox 2NK2 homeobox 2 F: CCT TCT ACG ACA GCA GCG ACA AF: CCT TCT ACG ACA GCA GCG ACA A SEQ ID No.35SEQ ID No.35
R: ACT TGG AGC TTG AGT CCT GAG GR: ACT TGG AGC TTG AGT CCT GAG G SEQ ID No.36SEQ ID No.36
NKX6.1NKX6.1 NK6 homeobox 1NK6 homeobox 1 F: CGA GTC CTG CTT CTT CTT GGF: CGA GTC CTG CTT CTT CTT GG SEQ ID No.37SEQ ID No.37
R: GGG GAT GAC AGA GAG TCA GGR: GGG GAT GAC AGA GAG TCA GG SEQ ID No.38SEQ ID No.38
NURR1NURR1 Nuclear receptor subfamily 4 group A member 2Nuclear receptor subfamily 4 group A member 2 F: AAA CTG CCC AGT GGA CAA GCG TF: AAA CTG CCC AGT GGA CAA GCG T SEQ ID No.39SEQ ID No.39
R: GCT CTT CGG TTT CGA GGG CAA AR: GCT CTT CGG TTT CGA GGG CAA A SEQ ID No.40SEQ ID No.40
THTH Tyrosine hydroxylaseTyrosine hydroxylase F: GCT GGA CAA GTG TCA TCA CCT GF: GCT GGA CAA GTG TCA TCA CCT G SEQ ID No.41SEQ ID No.41
R: CCT GTA CTG GAA GGC GAT CTC AR: CCT GTA CTG GAA GGC GAT CTC A SEQ ID No.42SEQ ID No.42
DATDAT Dopamine transporterDopamine transporter F: CCT CAA CGA CAC TTT TGG GAC CF: CCT CAA CGA CAC TTT TGG GAC C SEQ ID No.43SEQ ID No.43
R: AGT AGA GCA GCA CGA TGA CCA GR: AGT AGA GCA GCA CGA TGA CCA G SEQ ID No.44SEQ ID No.44
VMAT2VMAT2 Solute carrier family 18 member A2(vesicular monoamine transporter 2)Solute carrier family 18 member A2 (vesicular monoamine transporter 2) F: GCT ATG CCT TCC TGC TGA TTG CF: GCT ATG CCT TCC TGC TGA TTG C SEQ ID No.45SEQ ID No.45
R: CCA AGG CGA TTC CCA TGA CGT TR: CCA AGG CGA TTC CCA TGA CGT T SEQ ID No.46SEQ ID No.46
HTR2BHTR2B 5-hydroxytryptamine receptor 2B5-hydroxytryptamine receptor 2B F: GCT GGT TGG ATT GTT TGT GAT GCF: GCT GGT TGG ATT GTT TGT GAT GC SEQ ID No.47SEQ ID No.47
R: CCA CTG AAA TGG CAC AGA GAT GCR: CCA CTG AAA TGG CAC AGA GAT GC SEQ ID No.48SEQ ID No.48
NeuNNeun RNA binding fox-1 homolog 3RNA binding fox-1 homolog 3 F: TAC GCA GCC TAC AGA TAC GCT CF: TAC GCA GCC TAC AGA TAC GCT C SEQ ID No.49SEQ ID No.49
R: TGG TTC CAA TGC TGT AGG TCG CR: TGG TTC CAA TGC TGT AGG TCG C SEQ ID No.50SEQ ID No.50
MAP2MAP2 Microtubule associated protein 2Microtubule associated protein 2 F: AGG CTG TAG CAG TCC TGA AAG GF: AGG CTG TAG CAG TCC TGA AAG G SEQ ID No.51SEQ ID No.51
R: CTT CCT CCA CTG TGA CAG TCT GR: CTT CCT CCA CTG TGA CAG TCT G SEQ ID No.52SEQ ID No.52
마이크로어레이(Microarray) 분석: 전사체 프로파일링Microarray Analysis: Transcript Profiling
각 시료의 총 RNA 10 μg을 마크로젠(Macrogen Inc., 한국)에서 처리/분석하였고, 시료를 Affymetrix Human U133 Plus 2.0 어레이에 하이브리드화하였다.10 μg of total RNA of each sample was processed / analyzed in Macrogen (Macrogen Inc., Korea), and the samples were hybridized to an Affymetrix Human U133 Plus 2.0 array.
실시예. 중뇌성 도파민(mDA) 신경세포로의 분화 프로토콜Example. Differentiation Protocol to Mesenchymal Dopamine (mDA) Neurons
구체적인 프로토콜은 도 1에 나타내었다.The specific protocol is shown in FIG.
상기의 콜로니 형태로 배양 중인 hESC에 2 mg/mL의 타입 IV 콜라게나아제(Worthington Biochemical Corp., 미국)를 30분 동안 처리하여 배아체 형성을 유도하고, bFGF-free hES 배양 배지(EB 배지)에서 배양하였다. 이때, 처음 24시간 동안 1.5% 다이메틸술폭사이드(DMSO; Calbiochem-Merck Millipore)를 처리하였고, 그 후 4일 동안은 5 μm의 도소모르핀(dorsomorphin, DM)(Calbiochem-Merck Millipore) 및 5 μm의 SB431542(SB)(Sigma-Aldrich)를 처리하였다.HESCs incubated in the colony form were treated with 2 mg / mL of type IV collagenase (Worthington Biochemical Corp., USA) for 30 minutes to induce embryonic formation, and bFGF-free hES culture medium (EB medium) Incubated at. At this time, 1.5% dimethyl sulfoxide (DMSO; Calbiochem-Merck Millipore) was treated for the first 24 hours, followed by 5 μm of dosomorphin (DM) (Calbiochem-Merck Millipore) and 5 μm for 4 days. SB431542 (SB) (Sigma-Aldrich) was treated.
5 일째(d5)부터 20 ng/mL bFGF 및 20 μg/mL 인간 인슐린 용액(Sigma-Aldrich)이 첨가된 DMEM/F12 1X N2 보충 배지(bmN2 배지) 내 마트리겔-코팅 배양 접시에 EB를 부착하고, 6일 동안 패터닝 인자(1 μM CHIR99021(Miltenyi Biotec) 및 0.5 μM SAG(Calbiochem-Merck Millipore))를 처리하였다.From day 5 (d5), attach EB to matrigel-coated culture dish in DMEM / F12 1X N2 supplement medium (bmN2 medium) with 20 ng / mL bFGF and 20 μg / mL human insulin solution (Sigma-Aldrich) added Patterning factors (1 μM CHIR99021 (Miltenyi Biotec) and 0.5 μM SAG (Calbiochem-Merck Millipore)) were treated for 6 days.
11 일째(d11)에 가늘게 뽑은(pulled) 유리 피펫을 사용하여 EB 콜로니 내에서 형성된 신경 로제트를 기계적으로 단리하고, 단리된 신경 로제트 덩어리는 피펫팅을 통해 잘게 부수어 마트리겔-코팅 배양 접시에 재부착하였다. 재부착된 세포는 20 ng/mL bFGF가 첨가된 DMEM/F12 1X N2 및 1X B27 배지(bN2B27 배지)에서 2일 동안 1 μM CHEM99021 및 0.5 μM SAG를 추가로 보충하여 증폭(expanded) 배양시키고, 중뇌성 도파민 신경세포 특이적(specified) 분화를 유도하였다.On day 11 (d11) mechanically isolated neural rosettes formed in EB colonies using a pulled glass pipette, the isolated neural rosette masses were crushed by pipetting and reattached to the Matrigel-coated petri dish. It was. Reattached cells were expanded and supplemented with 1 μM CHEM99021 and 0.5 μM SAG for 2 days in DMEM / F12 1X N2 and 1X B27 medium (bN2B27 medium) supplemented with 20 ng / mL bFGF, Sex dopamine neuronal specific differentiation was induced.
13 일째(d13)에 아큐타제를 이용하여 중뇌성 도파민 신경전구세포 클러스터를 단일 세포로 분리하고, bFGF가 없는 N2B27 배지(N2B27 배지)에서 3.12x105 세포/cm2의 밀도로 마트리겔-코팅 플레이트 위에 재부착하였다. 세포가 플레이트 총 면적의 90% 가까이 차지할 정도로 7일 동안 증폭 배양시켰다.On day 13 (d13), the mesenchymal dopamine neuroprogenitor cell cluster was separated into single cells using accutase, and Matrigel-coated plates at a density of 3.12x10 5 cells / cm 2 in N2B27 medium (N2B27 medium) without bFGF. Reattached to the top. The cells were amplified and cultured for 7 days so that the cells occupy nearly 90% of the plate total area.
20 일째(d20)부터 중뇌/배측의 특성을 갖게 된 중뇌성 도파민 신경전구세포를 1X N2, 0.5X B27 및 0.5X G21 보충제(Gemini Bio-Products, 미국)가 포함된 배지(NBG 배지)에서 배양하였다. 이때, 처음 7일 동안은 1μM의 DAPT(Sigma-Aldrich)를 첨가하였으며, 그 후로는 10 ng/mL의 BDNF(brain-derived neurotrophic factor; ProSpec-Tany TechnoGene, 이스라엘), 10 ng/mL의 GDNF(glial cell line-derived neurotrophic factor; ProSpec-Tany TechnoGene), 200 μM의 아스코르브산(AA) 및 1 μM의 다이부틸릴 사이클릭-AMP(db-cAMP)(Sigma-Aldrich)를 첨가하여 최종 분화시켰다.Cerebral dopaminergic precursor cells with midbrain / dorsal characteristics from day 20 (d20) were cultured in a medium (NBG medium) containing 1X N2, 0.5X B27 and 0.5X G21 supplements (Gemini Bio-Products, USA). It was. During the first 7 days, 1 μM of DAPT (Sigma-Aldrich) was added, after which 10 ng / mL of BDNF (brain-derived neurotrophic factor; ProSpec-Tany TechnoGene, Israel), 10 ng / mL of GDNF ( Final differentiation was achieved by addition of a glial cell line-derived neurotrophic factor (ProSpec-Tany TechnoGene), 200 μM of ascorbic acid (AA) and 1 μM of dibutylyl cyclic-AMP (db-cAMP) (Sigma-Aldrich).
제조예 1. LMX1A-eGFP 리포터 세포주(reporter line)의 제조Preparation Example 1 Preparation of LMX1A-eGFP Reporter Line
구체적인 프로토콜은 도 2에 나타내었다.The specific protocol is shown in FIG.
1-1. 뉴클레아제 및 공여자(donor) DNA 플라스미드의 설계1-1. Design of Nuclease and Donor DNA Plasmids
TALEN-코딩 플라스미드는 툴젠(Toolen Inc., 한국)으로부터 구입하였다.TALEN-encoded plasmids were purchased from Toolen Inc., Korea.
TALEN 사이트는 LMX1A 유전자의 엑손 9(exon 9)의 정지 코돈인 TGA 근처(5'-TCC ATG CAG AAT TCT TAC TT-3'(왼쪽), 5'-TCA CAG AAC TCT AGG GGA AG-3'(오른쪽))에서 이중-가닥 절단(double-strand brsaks, DSB)을 일으키도록 설계되었으며, 잠재적 오프-타겟(off-target) 사이트는 Cas-Offinder(www.rgenome.net/)를 사용하여 검색하였다.The TALEN site is near TGA, the stop codon of exon 9 of the LMX1A gene (5'-TCC ATG CAG AAT TCT TAC TT-3 '(left), 5'-TCA CAG AAC TCT AGG GGA AG-3') Right)) was designed to cause double-strand brsaks (DSB), and potential off-target sites were searched using Cas-Offinder (www.rgenome.net/).
공여자 DNA 플라스미드는 플라스미드 백본으로 pUC19를 사용하여 DH5α에서 다음과 같이 제작되었다: 5' homology arm-endogenous LMX1A genomic fragment(left arm)-T2A-eGFP-bGH poly(A)-PGK promoter driven puromycin resistance cassette-bGH poly(A)-3' homology arm(right arm).The donor DNA plasmid was constructed in DH5α using pUC19 as the plasmid backbone: 5 'homology arm-endogenous LMX1A genomic fragment (left arm) -T2A-eGFP-bGH poly (A) -PGK promoter driven puromycin resistance cassette- bGH poly (A) -3 ′ homology arm (right arm).
1-2. LMX1A-eGFP 리포터 세포주의 제조1-2. Preparation of LMX1A-eGFP Reporter Cell Line
불활성화된(inactivated) STO 상의 hESC 콜로니를 StemMACSTM iPS-Brew XF 완전 배지(Miltenyi Biotec, 독일) 내 hESC-적합 마트리겔(BD Biosciences, 미국)로 코팅된 플레이트 위로 옮겼다. 그 다음, 세포가 플레이트 총 면적의 80-90% 가까이 차지할 정도로 계대배양하였다(Split ratio, 1:5). 아큐타제를 사용하여 단일 세포(Single cell)로 해리시킨 후, 처음 24시간 동안 ROCK 억제제(10 μM, Y-27632)(Calbiochem-Merck Millipore)가 첨가된 배지 내 마트리겔-코팅 플레이트로 옮기고, 매일 배지를 새로 교체하였다. 효소적 계대배양이 10 회 미만으로 이루어진 hESC만 실험에 사용되었다.HESC colonies on inactivated STO were transferred onto plates coated with hESC-compatible matrigel (BD Biosciences, USA) in StemMACS iPS-Brew XF complete medium (Miltenyi Biotec, Germany). The cells were then subcultured to account for nearly 80-90% of the plate total area (Split ratio, 1: 5). After dissociation into single cells using accutase, transfer to a Matrigel-coated plate in medium supplemented with ROCK inhibitor (10 μM, Y-27632) (Calbiochem-Merck Millipore) for the first 24 hours and daily The medium was freshly replaced. Only hESCs with less than 10 enzymatic passages were used in the experiment.
아큐타제를 사용하여 hESC를 수득하고, 단일 세포 현탁액을 제조하였다. 그 다음, Neon 트랜스펙션 키트(100μL, Invitrogen)의 R 버퍼에 1.0Х107 세포/mL의 최종 밀도로 부드럽게 재현탁시켰다. 재현탁된 세포 120 μL를 상기 제조예 1-1의 TALEN-코딩 플라스미드 1쌍(각 6 μg) 및 LMX1A 공여자 DNA 플라스미드(6 μg)와 혼합하고, 30 ms 동안 850 mV의 전압으로 펄스를 가하여 일렉트로포레이션(electroporation)을 수행하였다(Neon transfection system).Accutase was used to obtain hESCs and single cell suspensions were prepared. Next, the cells were gently resuspended in a final density of 1.0Х10 7 cells / mL in the R buffer of Neon transfection kit (100 μL, Invitrogen). 120 μL of the resuspended cells were mixed with one pair of TALEN-coding plasmids (6 μg each) and LMX1A donor DNA plasmid (6 μg) of Preparation Example 1-1, and electrophoresis was performed by applying pulses at a voltage of 850 mV for 30 ms. Electroporation was performed (Neon transfection system).
그 다음, 세포를 hESC 배지 내 STO feeder를 미리 접종한 2~3 개의 35mm 플레이트로 옮기고 처음 48시간 동안 ROCK 억제제를 첨가하였으며, 2일 후에 배지를 교체한 후, 매일 배지를 새로 교체하였다.Cells were then transferred to two or three 35 mm plates pre-inoculated with STO feeder in hESC medium and added a ROCK inhibitor for the first 48 hours, after two days of medium replacement, followed by fresh medium replacement.
일렉트로포레이션 5일 후, 상기 hESC 배지에 0.5 μg/mL 퓨로마이신(Sigma-Aldrich)을 처리하였다. 10-14일 후, 퓨로마이신 저항성을 보이는 콜로니를 리포터 세포주 후보로 분류하고, 이를 계대배양하여 세포수를 확장하였다.After 5 days of electroporation, the hESC medium was treated with 0.5 μg / mL puromycin (Sigma-Aldrich). After 10-14 days, colonies showing puromycin resistance were classified as reporter cell line candidates and passaged to expand cell numbers.
최종적으로, 클로날 세포의 유전형 분석을 통하여 LMX1A-eGFP 리포터 세포주를 확정하였다.Finally, the genotyping of clonal cells confirmed the LMX1A-eGFP reporter cell line.
제조예 2. PITX3-mCherry 리포터 세포주의 제조Preparation Example 2 Preparation of PITX3-mCherry Reporter Cell Line
구체적인 프로토콜은 도 3에 나타내었다.The specific protocol is shown in FIG. 3.
2-1. 뉴클레아제 및 공여자 DNA 플라스미드의 설계2-1. Design of Nuclease and Donor DNA Plasmids
Cas9- 및 sgRNA(CRISPR/Cas9)-코딩 플라스미드는 툴젠으로부터 구입하였다.Cas9- and sgRNA (CRISPR / Cas9) -coding plasmids were purchased from Tulgen.
PITX3 표적화를 매개하는 sgRNA를 제조하기 위한 서열은 정지 코돈인 TGA 근처에서 이중-가닥 절단(DSB)을 일으키도록, 정지 코돈 TGA(5'-TAC GGG CGG GGC CGC TCA TAC GG-3'(밑줄: PAM))을 가로 질러 위치하도록 설계되었다. 잠재적 오프-타겟(off-target) 사이트는 Cas-Offinder(www.rgenome.net/)를 사용하여 검색하였다. The sequence for preparing sgRNAs that mediate PITX3 targeting was characterized by a stop codon TGA (5'-TAC GGG CGG GGC CGC TCA TA C GG -3 ') to cause double-strand cleavage (DSB) near the stop codon TGA. : Designed to be positioned across the PAM)). Potential off-target sites were searched using Cas-Offinder (www.rgenome.net/).
공여자 DNA 플라스미드는 플라스미드 백본으로 pUC19를 사용하여 DH5α에서 다음과 같이 제작되었다: 5' homology arm-endogenous PITX3 genomic fragment(left arm)-T2A-mCherry-bGH poly(A)-PGK promoter driven neomycin resistance cassette-bGH poly(A)-3' homology arm(right arm).The donor DNA plasmid was constructed at DH5α using pUC19 as the plasmid backbone: 5 'homology arm-endogenous PITX3 genomic fragment (left arm) -T2A-mCherry-bGH poly (A) -PGK promoter driven neomycin resistance cassette- bGH poly (A) -3 ′ homology arm (right arm).
2-2. PITX3-mCherry 리포터 세포주의 제조2-2. Preparation of the PITX3-mCherry Reporter Cell Line
TALEN-코딩 플라스미드 대신 Cas9- 및 sgRNA-코딩 플라스미드를, LMX1A 공여자 DNA 플라스미드 대신 PITX3 공여자 DNA 플라스미드를 사용하고, 0.5 μg/mL 퓨로마이신 대신 100 μg/mL G418(Calbiochem-Merck Millipore)을 처리하는 것을 제외하고, 상기 제조예 1-2와 동일한 방법으로 PITX3 리포터 세포주를 제조하였다.Cas9- and sgRNA-encoding plasmids in place of TALEN-encoding plasmids, PITX3 donor DNA plasmids in place of LMX1A donor DNA plasmids, except 100 μg / mL G418 (Calbiochem-Merck Millipore) instead of 0.5 μg / mL puromycin To prepare a PITX3 reporter cell line in the same manner as in Preparation Example 1-2.
실험예 1. 전구세포(progenitor) 단계의 동정: LMX1A-eGFP 리포터 세포주 확인Experimental Example 1. Identification of progenitor stage: LMX1A-eGFP reporter cell line identification
상기 제조예 1에서 제조된 LMX1A-eGFP 리포터 세포주를 상기 실시예의 분화 프로토콜을 이용하여 분화시킨 후, 분화 과정을 확인하였다(Immunocytochemistry 및 Cytometry).After the LMX1A-eGFP reporter cell line prepared in Preparation Example 1 was differentiated using the differentiation protocol of the above example, the differentiation process was confirmed (Immunocytochemistry and Cytometry).
도 4에서 확인할 수 있듯이, 분화 과정 전체에서 중뇌 위치(regional) 마커인 EN1, 중뇌 바닥판(floor plate) 위치 마커인 FOXA2, 도파민 계통(lineage) 마커인 LMX1A, 및 eGFP의 발현이 관찰되었다. 특히, 분화 20일째(d20)에는 세포 집단의 ~41.1%가 eGFP-양성(eGFP+) 세포로 나타났으며, eGFP+ 세포는 EN1 및 FOXA2를 동시에 발현하였다. 상기 3개의 마커(EN1 및 FOXA2, 및 LMX1A) 모두 양성 반응을 보인 전구세포(~46.6% EN1+eGFP+, ~49.2% FOXA2+eGFP+)도 검출되었다(도 6 참조).As can be seen in Figure 4, expression of the midbrain regional marker EN1, the midbrain floor plate marker FOXA2, the dopamine lineage marker LMX1A, and eGFP throughout the differentiation process was observed. In particular, at day 20 of differentiation (d20), ˜41.1% of the cell population appeared as eGFP-positive (eGFP + ) cells, and eGFP + cells expressed both EN1 and FOXA2 simultaneously. Progenitor cells (˜46.6% EN1 + eGFP + , ˜49.2% FOXA2 + eGFP + ) with all three markers (EN1 and FOXA2, and LMX1A) were also detected (see FIG. 6).
이러한 결과는, eGFP를 발현하는 세포가 LMX1A를 발현하는 세포임을 나타내며(LMX1A 리포터 세포주 확립), hESC가 바닥판(FOXA2) 및 중뇌(EN1) 특성을 나타내는 mDA 신경전구세포로 직접 분화되었음을 의미한다.These results indicate that cells expressing eGFP are cells expressing LMX1A (LMX1A reporter cell line established), and that hESCs have been directly differentiated into mDA neuroprogenitor cells exhibiting bottom plate (FOXA2) and midbrain (EN1) properties.
실험예 2. 신경세포(neuronal) 단계의 동정: PITX3-mCherry 리포터 세포주 확인Experimental Example 2 Identification of Neuronal Stage: Identification of PITX3-mCherry Reporter Cell Line
상기 제조예 2에서 제조된 PITX3-mCherry 리포터 세포주를 상기 실시예의 분화 프로토콜을 이용하여 분화시킨 후, 분화 과정을 확인하였다(Immunocytochemistry 및 Cytometry).The PITX3-mCherry reporter cell line prepared in Preparation Example 2 was differentiated using the differentiation protocol of the above example, and the differentiation process was confirmed (Immunocytochemistry and Cytometry).
도 5에서 확인할 수 있듯이, 분화 30일(d30) 정도 까지는 mCherry의 발현이 관찰되지 않다가, 분화 40일(d40) 정도에 mCherry-양성(mCherry+) 신경세포(뉴런) 클러스터가 관찰되었다. 한편, PITX3 유전자의 발현 패턴은 분화(성숙) 과정 전체에서 리포터 mCherry와 동일하게 나타났으며, 특히, 최종 분화된 mDA 신경세포(뉴런) 집단의 ~16%가 발생 위치 및 계통 마커(EN1 및 FOXA2, 및 LMX1A)를 함께 발현하는 mCherry+ 세포로 나타났다(도 9 참조).As can be seen in Figure 5, the expression of mCherry was not observed until 30 days of differentiation (d30), mCherry-positive (mCherry + ) neuronal (neuron) clusters were observed at about 40 days of differentiation (d40). On the other hand, the expression pattern of the PITX3 gene was the same as that of the reporter mCherry throughout the differentiation (maturation) process. In particular, ~ 16% of the final differentiated mDA neuron (neuron) populations developed the location and lineage markers (EN1 and FOXA2). , And LMX1A), together with mCherry + cells (see FIG. 9).
이러한 결과는, mCherry를 발현하는 세포가 PITX3를 발현하는 세포임을 나타내며(PITX3 리포터 세포주 확립), hESC가 바닥판(FOXA2) 및 중뇌(EN1), 및 중뇌성 도파민(LMX1A) 특성을 나타내는 mDA 신경세포(뉴런)로 직접 분화되었음을 의미한다.These results indicate that mCherry expressing cells are PITX3 expressing cells (establishment of PITX3 reporter cell line), mES neurons whose hESCs show bottom plate (FOXA2) and midbrain (EN1), and midbrain dopamine (LMX1A) characteristics. Means differentiation directly into (neurons).
실험예 3. LMX1A-양성 세포의 특성 확인Experimental Example 3. Characterization of LMX1A-positive cells
상기 실험예 1의 d20의 세포를 1시간 동안 10 μm의 Y27632에 노출시킨 다음 아큐타제를 사용하여 해리시킨 후, 세포 체(Cell strainer, BD Science)를 이용하여 40μm 이하의 세포를 수집하였다. 해리된 전구세포를 3% 소태아혈청(FBS)(Gemini Bio-Products) 및 HBSS(WELGENE Inc., 한국) 중의 1x 페니실린-스트렙토마이신(P/S)(Gibco-Thermo Fisher Scientific)이 첨가된 LMX1A-Sorting 버퍼(LMX1A-SB)에 2Х106 세포/mL의 최종 밀도로 재현탁시키고, 세포분리(FACS)를 수행하였다. 분류되지 않은(Unsorted) 그룹, LMX1A- 그룹 및 LMX1A+ 그룹의 mRNA 발현 수준을 비교하였다.The cells of d20 of Experimental Example 1 were exposed to 10 μm of Y27632 for 1 hour and then dissociated using accutase, and then cells of 40 μm or less were collected using a cell sieve (Cell strainer, BD Science). Dissociated progenitor cells were LMX1A supplemented with 1 × penicillin-streptomycin (P / S) (Gibco-Thermo Fisher Scientific) in 3% fetal bovine serum (FBS) (Gemini Bio-Products) and HBSS (WELGENE Inc., Korea). -Resuspend in Sorting buffer (LMX1A-SB) at a final density of 2Х10 6 cells / mL and perform cell separation (FACS). MRNA expression levels of the Unsorted group, LMX1A group and LMX1A + group were compared.
도 6a에서 확인할 수 있듯이, 세포분리 후 생존 가능한 세포의 ~41.1%가 LMX1A-eGFP+(LMX1A+) 분획으로 나타났다. 또한, LMX1A+ 및 LMX1A-eGFP-(LMX1A-) 전구세포는 분류되지 않은 세포와 유사한 형태(morphology)를 유지하는 것으로 나타났다. 특히, 분리된 LMX1A+의 ~99.4%는 EN1 및 FOXA2 모두 양성으로 나타났다. 이러한 결과는, FACS 세포분리에 의해 mDA 신경전구세포가 분리되었음을 의미한다.As can be seen in Figure 6a, ~ 41.1% of the viable cells after cell separation was shown as LMX1A-eGFP + (LMX1A + ) fraction. Also, LMX1A + and LMX1A-eGFP - (LMX1A -) progenitor cells was shown to maintain the shape (morphology) is similar to the non-sorted cells. In particular, ˜99.4% of isolated LMX1A + were positive for both EN1 and FOXA2. These results indicate that mDA neuroprogenitor cells were separated by FACS cell separation.
또한, 도 6b에서 확인할 수 있듯이, LMX1A+ 그룹에서는 mDA 전구세포-특이적 유전자(EN1, FOXA1, FOXA2, LMX1A, LMX1B)의 발현이 유의미하게 상향 조절되었으나, 세로토닌성 전구세포-특이적 유전자(NKX2.2) 및 적핵(Red nucleus, 중뇌의 해부학적 한 부위) 전구세포-특이적 유전자(SIM1, LHX1, NKX6.1)의 발현은 분류되지 않은 그룹 및 LMX1A- 그룹에서 상향 조절되었다. 이러한 결과는, FACS 세포분리에 의해 분리된 LMX1A+ 세포가 mDA 신경전구세포의 특성을 나타냄을 의미한다.In addition, as can be seen in Figure 6b, the expression of mDA progenitor-specific genes (EN1, FOXA1, FOXA2, LMX1A, LMX1B) in the LMX1A + group was significantly upregulated, but serotonergic progenitor-specific genes (NKX2) .2) and the expression of the red nucleus (anatomical site of the midbrain) progenitor-specific genes (SIM1, LHX1, NKX6.1) were upregulated in the unclassified group and in the LMX1A - group. These results indicate that LMX1A + cells isolated by FACS cell separation show the characteristics of mDA neuroprogenitor cells.
추가적으로, 상기 세포분리(FACS) 후, 분류되지 않은(Unsorted) 그룹, LMX1A- 그룹 및 LMX1A+ 그룹을 추가적으로 1일 동안 체외(in vitro) 배양하였다.Additionally, after the cell separation (FACS), the Unsorted group, the LMX1A group and the LMX1A + group were incubated for an additional day in vitro .
상기 배양된 세포에 대하여, 신경계(neural)-특이적 및 증식(proliferative)세포-특이적 마커를 관찰하고, BrdU 분석을 수행하여 세포 주기를 확인하였다.For the cultured cells, neural-specific and proliferative cell-specific markers were observed and BrdU analysis was performed to confirm the cell cycle.
도 7a에서 확인할 수 있듯이, 세 그룹 모두에서 NESTIN-, SOX1-, SOX2- 및 KI67-양성 세포가 유사하게 나타났다. 이러한 결과는, 분류된 LMX1A+ 세포가 분류되지 않은 그룹 및 LMX1A- 그룹과 마찬가지로, 신경전구세포의 특성 및 세포 증식 능력을 유지함을 의미한다.As can be seen in FIG. 7A, NESTIN-, SOX1-, SOX2- and KI67-positive cells were similar in all three groups. These results indicate that the sorted LMX1A + cells maintain the properties and cell proliferative capacity of neural progenitor cells as well as the unclassified and LMX1A groups.
또한, 도 7b에서 확인할 수 있듯이, LMX1A+ 그룹은 mDA 신경전구세포 단계에서 생존 세포의 38.5±3.9% 및 49.5±6.2%가 G0/G1 및 S 단계에 있었고, 6±2.7%가 G2/M에 있었다. 이러한 결과는, 분류된 LMX1A+ 세포가 실제로 세포주기(cell cycle)를 도는 증식하는 세포임을 의미한다.In addition, as can be seen in Figure 7b, the LMX1A + group was 38.5 ± 3.9% and 49.5 ± 6.2% of the surviving cells in the G0 / G1 and S phase, 6 ± 2.7% to G2 / M at the mDA neuroprogenitor cell stage there was. These results indicate that the sorted LMX1A + cells are actually proliferating cells that cycle the cell cycle.
마지막으로, 상기 세포분리(FACS) 후, 분류되지 않은(Unsorted) 그룹, LMX1A- 그룹 및 LMX1A+ 그룹을 추가적으로 최종 분화(4주, d52)시킨 다음, mDA 신경세포-관련 마커의 발현을 비교하였다.Finally, after the FACS, the unsorted group, the LMX1A group and the LMX1A + group were further finally differentiated (4 weeks, d52) and then the expression of mDA neuron-related markers was compared. .
도 8a에서 확인할 수 있듯이, 최종 분화 후, 분류되지 않은 그룹 및 LMX1A- 그룹에 비하여 LMX1A+ 그룹에서 mDA 신경세포-관련 마커(TH, NURR1, PITX3)를 발현하는 세포의 비율이 증가하였다. 이러한 결과는, LMX1A+ 세포가 mDA 신경세포로 분화 가능한 mDA 신경전구세포임을 의미한다.As can be seen in FIG. 8A, after final differentiation, the proportion of cells expressing mDA neuron-related markers (TH, NURR1, PITX3) in the LMX1A + group increased compared to the unclassified and LMX1A groups. These results indicate that LMX1A + cells are mDA neuronal progenitor cells capable of differentiating into mDA neurons.
나아가, 상기 최종 분화에 의해 완전히 성숙된 세포(8주, d75)에 대하여, 도파민 분비(release) 정도를 확인하였다.Furthermore, the degree of release of dopamine was confirmed for fully mature cells (8 weeks, d75) by the final differentiation.
구체적으로, 세포를 저 KCl 용액(2.5 mM CaCl2, 11 mM 글루코스, 20 mM HEPES-NaOH, 4.7 mM KCl, 1.2 mM KH2PO4, 1.2 mM MgSO4 및 140 mM NaCl)로 세척하고 저 KCl 용액에서 2 분간 배양하였다. 그 다음, 고 KCl 용액(2.5 mM CaCl2, 11 mM 글루코스, 20 mM HEPES-NaOH, 60 mM KCl, 1.2 mM KH2PO4, 1.2 mM MgSO4 및 85 mM NaCl)으로 대체하고 15 분 동안 추가 배양하였다. 용액을 15 mL 튜브에 수집하고 2,000 rpm으로 1 분간 원심분리하여 잔해(debris)를 제거하고, 상등액을 1.5 mL 튜브에 수집하여 -80 ℃에서 보관하였다. 도파민의 농도는 도파민 ELISA 키트(Cat. No. KA3838; Abnova, 대만)에 의해 제조자의 지시에 따라 검출되었다.Specifically, cells were washed with low KCl solution (2.5 mM CaCl 2 , 11 mM glucose, 20 mM HEPES-NaOH, 4.7 mM KCl, 1.2 mM KH 2 PO 4 , 1.2 mM MgSO 4 and 140 mM NaCl) and low KCl solution. Incubated for 2 minutes at. Then replace with high KCl solution (2.5 mM CaCl 2 , 11 mM glucose, 20 mM HEPES-NaOH, 60 mM KCl, 1.2 mM KH 2 PO 4 , 1.2 mM MgSO 4 and 85 mM NaCl) and incubate for 15 minutes. It was. The solution was collected in a 15 mL tube and centrifuged at 2,000 rpm for 1 minute to remove debris, and the supernatant was collected in a 1.5 mL tube and stored at -80 ° C. The concentration of dopamine was detected by the dopamine ELISA kit (Cat. No. KA3838; Abnova, Taiwan) according to the manufacturer's instructions.
도 8b에서 확인할 수 있듯이, 최종 분화 후, 분류되지 않은 그룹 및 LMX1A- 그룹에 비하여 LMX1A+ 그룹에서 도파민의 분비가 증가하였다. 이러한 결과는, LMX1A+ 세포가 최종 분화하여 형성된 mDA 신경세포는 도파민을 분비하는 기능적 mDA 신경세포임을 의미한다.As can be seen in FIG. 8B, after final differentiation, dopamine secretion increased in the LMX1A + group compared to the unclassified and LMX1A groups. These results indicate that mDA neurons formed by the final differentiation of LMX1A + cells are functional mDA neurons that secrete dopamine.
실험예 4. PITX3-양성 세포의 특성 확인Experimental Example 4. Characterization of PITX3-positive cells
상기 실험예 2의 d40의 세포를 5% 트레할로오스가 첨가된 파파인(Papain; Worthington Biochemical Corp.)을 사용하여 단일 세포로 해리시킨 후, 70 μm 및 40 μm 세포 체를 순차적으로 이용하여 40μm 이하의 세포를 수집하였다. 해리된 세포를 5% FBS, 1x Glutamax(Gibco-Thermo Fisher Scientific), 5% 트레할로오스 및 HBSS 중의 1x P/S이 첨가된 PITX3-Sorting 버퍼(PITX3-SB)에 1Х107 세포/mL의 농도로 재현탁시키고, 세포분리(FACS)를 수행하였다. 또한, 세포분리 후 추가적으로 36 시간 동안 체외(in vitro) 배양한 후 살아남은 세포의 형태를 관찰하였다.The cells of d40 of Experimental Example 2 were dissociated into single cells using papain (Papain; Worthington Biochemical Corp.) to which 5% trehalose was added, and then 40 μm using 70 μm and 40 μm cell sieves sequentially. The following cells were collected. Dissociated cells were treated with 1Х10 7 cells / mL in PITX3-Sorting buffer (PITX3-SB) with 1x P / S in 5% FBS, 1x Glutamax (Gibco-Thermo Fisher Scientific), 5% trehalose and HBSS. Resuspend in concentration and perform cell separation (FACS). In addition, after culturing for an additional 36 hours in vitro ( in vitro ) was observed the morphology of the cells survived.
도 9a에서 확인할 수 있듯이, 세포분리 후 생존 가능한 세포의 ~16%가 PITX3-mCherry+(PITX3+) 분획으로 나타났다. 또한, 세포 선별 과정에서 세포의 소실이 있었음에도 불구하고, 추가 체외 배양 후 살아남은 PITX3+ 및 PITX3-mCherry-(PITX3-) 세포는 분류되지 않은 세포와 유사한 신경세포(neuronal) 형태를 유지하는 것으로 나타났다. 이러한 결과는, FACS 세포분리에 의해 PITX3+ 세포가 분리되었으며, 세 그룹(분류되지 않은 그룹, PITX3+ 그룹 및 PITX3- 그룹) 모두 신경세포-특이적 형태를 나타냄을 의미한다.As can be seen in Figure 9a, ~ 16% of the viable cells after cell separation was shown as PITX3-mCherry + (PITX3 + ) fraction. In addition, the cell in spite of the disappearance of the cells there was in the selection process and, further in vitro culture after surviving PITX3 + and PITX3-mCherry - shown to keep form cells are neurons (neuronal) similar to the non-sorted cells - (PITX3) . These results indicate that PITX3 + cells were isolated by FACS cell separation, and all three groups (unclassified group, PITX3 + group and PITX3 group) showed neuronal-specific morphology.
다음으로, 상기 d40 세포의 분류되지 않은(Unsorted) 그룹, PITX3- 그룹 및 PITX3+ 그룹에서 mDA 신경세포-관련 마커의 발현을 비교하였다.Next, expression of mDA neuron-related markers in the Unsorted, PITX3 and PITX3 + groups of the d40 cells was compared.
도 9b에서 확인할 수 있듯이, PITX3+ 그룹에서 신경세포(뉴런)-특이적 유전자(NeuN 및 MAP2) 및 mDA 신경세포(뉴런)-특이적 유전자(PITX3, NURR1, TH, DAT 및 VMAT2)의 발현이 유의미하게 상향 조절되었으나, 세로토닌성 신경세포(뉴런)-특이적 유전자(HTR2B)의 발현은 하향 조절되었다. 또한, 도 9c에서 확인할 수 있듯이, PITX3+ 그룹에서 mDA 신경세포 마커인 TH를 발현하는 세포, 및 신경세포-특이적 마커인 TUBB3(TUJ1) 및 MAP2를 동시에 발현하는 세포의 비율이 증가하였다. 이러한 결과는, PITX3+ 세포가 mDA 신경세포임을 의미한다.As can be seen in Figure 9b, the expression of neuronal (neuron) -specific genes (NeuN and MAP2) and mDA neuronal (neuron) -specific genes (PITX3, NURR1, TH, DAT and VMAT2) in the PITX3 + group Significantly upregulated, but expression of serotonergic neurons (neurons) -specific gene (HTR2B) was downregulated. In addition, as can be seen in Figure 9c, the proportion of cells expressing the mDA neuronal marker TH in the PITX3 + group, and cells expressing the neuronal-specific markers TUBB3 (TUJ1) and MAP2 at the same time increased. These results indicate that PITX3 + cells are mDA neurons.
마지막으로, 상기 세포분리(FACS) 후, 분류되지 않은(Unsorted) 그룹을 추가적으로 배양한 후, 분화 44일째(d44)에 이중-표지 면역 염색을 수행하였다.Finally, after FACS, unsorted groups were further cultured and then double-labeled immunostaining was performed on day 44 (d44) of differentiation.
도 10에서 확인할 수 있듯이, PITX3+ 세포는 성숙한 mDA 신경세포 마커인 NURR1, AADC, VMAT2 및 DAT를 발현함을 확인하였다. 또한, A9 지역 마커인 KCNJ6(GIRK2)는 발현하였으나, A10 지역 마커인 CALB를 발현하는 세포는 관찰되지 않았다. 이러한 결과는, 본 발명의 분화 프로토콜을 통해 분화된 PITX3+ 세포는 성숙한 mDA 신경세포임을 의미한다.As can be seen in Figure 10, PITX3 + cells were confirmed to express the mature mDA neuronal markers NURR1, AADC, VMAT2 and DAT. In addition, although the A9 region marker KCNJ6 (GIRK2) was expressed, cells expressing the A10 region marker CALB were not observed. These results indicate that PITX3 + cells differentiated through the differentiation protocol of the present invention are mature mDA neurons.
실험예 5. 이식 적합성(suitability) 확인Experimental Example 5. Confirmation of graft suitability
상기 제조예 1의 LMX1A-eGFP 리포터 세포주 및 제조예 2의 PITX3-mCherry 리포터 세포주를 상기 실시예의 분화 프로토콜을 이용하여 분화시킨 후, 분화 20일(d20)의 mDA 신경전구세포 및 분화 50일(d50)의 성숙한 mDA 신경세포를 각각 상기 실험예 3 및 4와 동일한 방법을 이용하여 단일 세포로 분리하였다. 분리된 단일 세포의 시험관 내(in vitro) 세포사멸 정도를 비교하였다. 이때, 세포사멸은 LIVE/DEAD쪠 Fixable Violet Dead Cell Stain 키트(Thermo Fisher)를 이용하여 제조자의 지시에 따라 확인하였다.The LMX1A-eGFP reporter cell line of Preparation Example 1 and the PITX3-mCherry reporter cell line of Preparation Example 2 were differentiated using the differentiation protocol of the above example, and then 20 days of differentiation (d20) of mDA neuroprogenitor cells and 50 days of differentiation (d50). ) Mature mDA neurons were isolated into single cells using the same method as Experimental Example 3 and 4, respectively. The degree of in vitro apoptosis of the isolated single cells was compared. At this time, apoptosis was confirmed according to the manufacturer's instructions using a LIVE / DEAD® Fixable Violet Dead Cell Stain Kit (Thermo Fisher).
도 11에서 확인할 수 있듯이, 단일 세포 분리 후 세포사멸을 보이는 세포는 LMX1A+ 세포 중에서는 약 8%, PITX3+ 세포 중에서는 약 30%로 나타났다. 즉, 단일 세포로 분리 시, LMX1A+ mDA 신경전구세포가 PITX+ mDA 신경세포에 비하여 높은 생존력을 유지하였으며, 이를 통하여 LMX1A+ 세포 및 PITX3+ 세포는 이식을 위한 단일세포 분리 과정에 대한 감수성 차이가 나타나는 것을 알 수 있었다. 이러한 결과는, mDA 신경전구세포인 LMX1A+ 세포를 이식하는 것이 성숙한 신경세포인 PITX3+ 세포를 이식하는 것보다 세포사멸 측면에서 유리함을 의미한다.As can be found at 11, the cells showing apoptosis was separated single cells LMX1A + cells in the from of about 8%, PITX3 + cells was about 30%. That is, when isolated into single cells, LMX1A + mDA neuroprogenitors maintained higher viability than PITX + mDA neurons, and through this, LMX1A + and PITX3 + cells showed a difference in susceptibility to single cell separation for transplantation. It appeared that it appeared. These results indicate that the transplantation of LMX1A + cells, which are mDA neuroprogenitor cells, is advantageous in terms of apoptosis than the transplantation of PITX3 + cells, which are mature neurons.
실험예 6. 중뇌성 도파민(mDA) 마커의 동정Experimental Example 6 Identification of Cerebral Dopamine (mDA) Markers
6-1. 전사체 분석6-1. Transcript Analysis
상기 제조예 1의 LMX1A-eGFP 리포터 세포주 및 제조예 2의 PITX3-mCherry 리포터 세포주를 상기 실시예의 분화 프로토콜을 이용하여 분화시킨 후, 분화 20일(d20, mDA 신경전구세포 단계)의 LMX1A+ 및 LMX1A- 세포, 및 분화 40일(d40, mDA 신경세포 단계)의 PITX3+ 및 PITX3- 세포를 분리하고, 이에 대한 전사체 분석(Microarray)을 수행하였다(도 12 참조).The LMX1A-eGFP reporter cell line of Preparation Example 1 and the PITX3-mCherry reporter cell line of Preparation Example 2 were differentiated using the differentiation protocol of the above example, and then LMX1A + and LMX1A of 20 days of differentiation (d20, mDA neuroprogenitor cell stage) - to separate the cells, performing transcript analysis (Microarray) for this (see Fig. 12) cells, and differentiation 40 days PITX3 + and PITX3 of (d40, mDA neuron stage).
한편, 상기 mDA 신경전구세포 단계에서는 eGFP 및 세포주기 마커(Ki67, PCNA 및 PH3)를 발현하는 세포가 관찰되었으며, 상기 mDA 신경세포 단계에서는 mCherry 및 mDA 신경세포 마커(TH)를 발현하는 세포, 성숙한 신경세포 마커(NeuN)를 발현하는 세포가 관찰되었으나, 미성숙 신경세포 마커(NeuroD) 및 증식 세포 마커(KI67)를 발현하는 세포는 관찰되지 않았다.Meanwhile, cells expressing eGFP and cell cycle markers (Ki67, PCNA, and PH3) were observed in the mDA neuronal progenitor cell stage, and cells expressing mCherry and mDA neuronal marker (TH) in the mDA neuronal cell stage, mature. Cells expressing neuronal markers (NeuN) were observed, but no cells expressing immature neuronal markers (NeuroD) and proliferating cell markers (KI67).
6-2. mDA 마커의 후보군(candidates) 확인6-2. Identify candidates for mDA markers
상기 결과에 기초하여, mDA 마커의 후보군을 확보하였다. 구체적인 과정은 도 13에 나타내었다.Based on the above results, a candidate group of mDA markers was secured. A detailed process is shown in FIG. 13.
상기 분리된 4종류의 세포에 대한 비교 마이크로어레이 분석 결과, LMX1A- 세포에 비하여 LMX1A+ 세포에서 상향 조절(> 2-FC)되어 있는 유전자 및 PITX3- 세포에 비하여 PITX3+ 세포에서 상향 조절(> 2-FC)되어 있는 유전자를 확인하고, 유전자 마이닝(gene mining)을 통하여 이들 중 표면 마커를 코딩하고 있는 53개의 유전자를 동정하였다. 동정된 53개의 유전자에는 마우스 mDA 신경전구세포-특이적으로 알려진 다수의 유전자(Corin, Clstn2, Kitlg, Plxdc2, Pcdh7, Ferd3l, Frem1, AlcamNotch2)가 포함되어 있었다.The cost for the four types of cells isolated comparing microarray analysis, LMX1A-upregulated in LMX1A + cells compared to the cells (> 2-FC) is genetically and PITX3 in-upregulated in PITX3 + cells compared to the cells (> 2 -FC) genes were identified and 53 genes encoding surface markers were identified through gene mining. The 53 genes identified included a number of genes known to be mouse mDA neuronal progenitor cells ( Corin, Clstn2, Kitlg, Plxdc2, Pcdh7, Ferd3l, Frem1, Alcam and Notch2 ).
다음으로, 상기 유전자에 대하여, 실제로 분화 중인 mDA 세포에서 발현 여부를 확인하여 표적 유효성(target validation)을 평가하였다. 그 결과, LMX1A- 세포와 비교하여 LMX1A+ 세포에서 상향 조절되는 유전자 중 표면 마커 유전자(도 14), 및 LMX1A+ 세포 및 PITX3+ 세포 모두에서 상향 또는 하향 조절되는 표면 마커 유전자(도 15)를 동정하였다. 상기 도 14의 21개의 유전자 중에서 상업적으로 이용 가능한 항체가 있는 18개의 유전자에 대하여 스크리닝을 수행하였다.Next, for the gene, target validation was evaluated by confirming whether expression in mDA cells that are actually differentiated. As a result, we identified surface marker genes (FIG. 14) among the genes that are upregulated in LMX1A + cells as compared to LMX1A cells and surface marker genes that are up or down regulated in both LMX1A + cells and PITX3 + cells (FIG. 15). It was. Screening was performed for 18 genes with commercially available antibodies among the 21 genes of FIG. 14.
그 결과, 상기 18개 유전자 중 4개의 유전자(CORIN, TPBG, CD47, ALCAM)가 최종 표면 마커 후보군으로 선정되었다.As a result, four of the 18 genes ( CORIN, TPBG, CD47, ALCAM ) were selected as the final surface marker candidate group.
6-3. mDA 신경전구세포-특이적 마커 동정6-3. Identification of mDA Neuroprogenitor Cell-specific Markers
상기 결과에 기초하여, 상기 4개의 유전자(CORIN, TPBG, CD47, ALCAM)를 타겟으로 하는 MACS를 수행하였다.Based on the results, MACS targeting the four genes ( CORIN, TPBG, CD47, ALCAM ) was performed.
도 16 및 도 17에서 확인할 수 있듯이, CORIN- 및 TPBG(trophoblast glycoprotein)-표적 MACS는 통계적으로 유의하게 LMX1A+FOXA2+ mDA 신경전구세포의 농축(enrichment)을 나타내었다. 특히, TPBG는 mDA 신경전구세포에서 광범위하게 발현되었다.As can be seen in Figures 16 and 17, CORIN- and trophoblast glycoprotein (TPBG) -target MACS showed a statistically significant enrichment of LMX1A + FOXA2 + mDA neuronal progenitor cells. In particular, TPBG was widely expressed in mDA neuroprogenitor cells.
한편, 상기 CORIN 유전자는 mDA 신경전구세포 농축을 위한 용도로 이미 알려져 있으나, TPBG는 mDA 발달 과정에서 전혀 보고된 적이 없는 바, TPBG를 최종 mDA 신경전구세포-특이적 마커로 선정하였다.On the other hand, the CORIN gene is already known for mDA neuroprogenitor cell enrichment, but TPBG has never been reported in the mDA development process, TPBG was selected as the final mDA neuroprogenitor cell-specific marker.
실험예 7. 인간 배아 줄기세포(hESC)로부터 분리된 TPBG-양성 세포의 생체 내(Experimental Example 7 In vivo of TPBG-positive cells isolated from human embryonic stem cells (hESCs) in vivoin vivo ) 이식 효과 확인) Check the transplant effect
7-1. 6-OHDA 손상 파킨슨병(PD)-모델 제조7-1. 6-OHDA Impaired Parkinson's Disease (PD) -Model Preparation
200-250g의 암컷 Sprague-Dawley계 래트(Orient Bio Inc., 한국)를 이식 대상으로 사용하였다. 30 mg/kg Zoletil®(Virbac, 프랑스) 및 10 mg/kg Rompun®(Bayer, 독일)을 혼합하여 마취제로 사용하였다.200-250 g of female Sprague-Dawley rats (Orient Bio Inc., Korea) were used for transplantation. 30 mg / kg Zoletil ® (Virbac, France) and 10 mg / kg Rompun ® (Bayer, Germany) were mixed and used as anesthetics.
좌표(TB -0.45, AP -0.40, ML -0.13, DV -0.70)에 따라 3 μL의 30 mM 6-OHDA를 래트의 내측 전뇌(medial forebrain) 번들에 주입하여 반-파킨슨병 모델(hemi-parkinsonian model)을 유도하였다.Injecting 3 μL of 30 mM 6-OHDA into the medial forebrain bundle of rats according to the coordinates (TB -0.45, AP -0.40, ML -0.13, DV -0.70) to the hemi-parkinsonian model model).
7-2. TPBG-양성 세포 이식 후 PD-모델의 행동 회복 확인7-2. Confirmation of Behavioral Recovery of PD-Model After TPBG-positive Cell Transplantation
상기의 콜로니 형태로 배양 중인 hESC를 상기 실시예의 분화 프로토콜을 이용하여 분화시킨 후, 분화 20일(d20)에 TPBG를 타겟으로 하는 MACS를 수행하였다.HESCs in culture in the colony form were differentiated using the differentiation protocol of the above example, and then MACS targeting TPBG was performed on day 20 (d20) of differentiation.
분리한 TPBG-양성 세포를 최종 농도가 8.75Х104 세포/μL가 되도록 1X HBSS에 현탁시켜 세포 현탁액을 제조하였다. 이때, 대조군(Control)으로는 HBSS만을 이식한 그룹을 사용하였다.Cell suspensions were prepared by suspending the isolated TPBG-positive cells in 1 × HBSS to a final concentration of 8.75Х10 4 cells / μL. At this time, a control group was used as a group transplanted with only HBSS.
상기 실험예 7-1의 6-OHDA 손상 4주 후, 제조된 세포 현탁액(총 350,000 세포)을 좌표(TB -0.24, AP +0.08, ML -0.30, DV -0.40 및 -0.50)에 따라 래트 당 4 μL씩 정위 방법으로 이식하였다.After 4 weeks of 6-OHDA injury of Experimental Example 7-1, the prepared cell suspension (total 350,000 cells) was prepared per rat according to the coordinates (TB -0.24, AP +0.08, ML -0.30, DV -0.40 and -0.50). 4 μL was implanted by stereotactic method.
이식 2일 전부터 쥐가 희생될 때까지, 실험 기간 동안 매일 10 mg/kg의 사이클로스포린 A(cyclosporine A; 종근당, 한국)를 복강 내 주사하여 면역 억제(Immunosuppressive) 처리하였다.Immunosuppressive treatment was performed by intraperitoneal injection of 10 mg / kg of cyclosporine A (Ceun Kun Dang, Korea) daily during the experimental period from 2 days before transplantation to the sacrifice of mice.
이식 전, 이식 후 4, 8, 12 또는 16 주에 암페타민(2.5 mg/kg, Sigmal-Aldrich)을 복강 내 주사하고, 30 분 동안 래트의 회전 여부를 기록하였다.Amphetamine (2.5 mg / kg, Sigmal-Aldrich) was injected intraperitoneally before 4, 8, 12 or 16 weeks after transplantation and rat rotation was recorded for 30 minutes.
도 18에서 확인할 수 있듯이, TPBG-양성 세포는 이식 후 16주 동안 대조군에 비하여 유의한 운동기능 향상을 보였다. 이러한 결과는, hESC 유래의 TPBG-양성 mDA 신경전구세포가 생체 내에서 생존 가능하고, 운동기능을 개선시킨다는 것을 나타낸다.As can be seen in Figure 18, TPBG-positive cells showed a significant improvement in motor function compared to the control for 16 weeks after transplantation. These results indicate that TPBG-positive mDA neuroprogenitor cells derived from hESC are viable in vivo and improve motor function.
7-3. TPBG-양성 세포 이식 후 이식편의 특성 확인7-3. Characterization of Grafts After TPBG-positive Cell Transplantation
대조군으로 분류되지 않은(Unsorted) 세포를 이식한 그룹을 사용한 것을 제외하고, 상기 실시예 7-2와 동일한 방법으로 TPBG-양성 세포 및 분류되지 않은 세포를 이식하였다.TPBG-positive cells and unclassified cells were transplanted in the same manner as in Example 7-2, except that the group transplanted with Unsorted cells was used as a control.
이식 16주 후, 래트를 25% 우레탄 용액으로 마취시키고, 0.9% 식염수 및 4% 파라포름알데하이드를 경심관류로 관류시켰다. 제거된 뇌를 밤새 고정시키고 30% 수크로오스-PBS 용액으로 동결보호시켰다. 동결보호된(cryoprotected) 뇌는 FSC 22® 화합물(Leica, Nußloch, Germamy)에 고정되었고, 크라이오스탯(Thermo Fisher Scientific)를 사용하여 18 μm 두께로 관상절편(coronal sections)을 제작하였다. 그 다음, hNCAM(human-specific neural cell adhesion molecule)을 표적으로 하는 면역조직화학 염색을 실시하였다.After 16 weeks of implantation, rats were anesthetized with 25% urethane solution and 0.9% saline and 4% paraformaldehyde were perfused with perfusion. The removed brains were fixed overnight and cryoprotected with 30% sucrose-PBS solution. Cryoprotected brains were fixed in FSC 22 ® compounds (Leica, Nußloch, Germamy) and coronal sections were made to 18 μm thickness using Thermo Fisher Scientific. Next, immunohistochemical staining was performed to target human-specific neural cell adhesion molecules (hNCAMs).
도 19에서 확인할 수 있듯이, TPBG-양성 세포 그룹은 분류되지 않은 그룹에 비하여 보다 많은 수의 TH+hNCAM+ 및 PITX3+hNCAM+ mDA 신경세포로 구성되었다. 이러한 결과는, 생체 내 mDA 신경세포로의 분화에 있어, 분류되지 않은 그룹에 비하여 TPBG-양성 세포가 보다 적합함을 의미한다.As can be seen in FIG. 19, the TPBG-positive cell group consisted of a greater number of TH + hNCAM + and PITX3 + hNCAM + mDA neurons compared to the unclassified group. These results indicate that TPBG-positive cells are more suitable for differentiation into mDA neurons in vivo compared to unclassified groups.
또한, 도 20에서 확인할 수 있듯이, 분류되지 않은 그룹 중 하나의 특정 래트에서 약 20% 이상의 KI67+hNCAM+ 세포를 가진 이식편(graft)이 관찰되었으나, TPBG-양성 그룹에서는 KI67+hNCAM+ 세포가 관찰되지 않았다. 이러한 결과는, 분류되지 않은 경우 이식 16 주 후에도 증식능을 유지할 가능성이 있으나, TPBG로 세포 분류 시 증식 세포를 배제할 수 있음을 의미한다. 이는 세포 치료의 안전성 측면에서 매우 중요한 결과라 할 것이다.In addition, as can be seen in Figure 20, grafts with at least about 20% of KI67 + hNCAM + cells were observed in certain rats of one of the unclassified groups, whereas KI67 + hNCAM + cells were observed in the TPBG-positive group. It wasn't. These results indicate that, if not classified, proliferative capacity may be maintained even after 16 weeks of transplantation, but proliferating cells may be excluded when sorting cells by TPBG. This is a very important result in terms of safety of cell therapy.
실험예 8. 인간 태아 배측 중뇌 세포(human fetal ventral mesencephalic cells; fVM cells)로부터 분리된 TPBG-양성 세포의 특성 확인Experimental Example 8. Characterization of TPBG-positive cells isolated from human fetal ventral mesencephalic cells (fVM cells)
신경줄기세포 유지 배양액(ReNcell NSC maintenance Medium, Merck)에서 라미닌-코팅 플레이트 위에 배양 중인 fVM 세포에 대하여, 세포가 플레이트 총 면적의 80-90% 가까이 차지할 정도로 배양되었을 때, TPBG를 타겟으로 하는 MACS를 수행하였다. 그 다음, hESC(H9)를 대조군(H9의 발현=1)으로 하여 분리된 TPBG-양성 세포 및 TPBG-음성 세포에서 상대적인 EN1의 발현을 qRT-PCR 방법으로 확인하였다.For fVM cells incubated on laminin-coated plates in ReNcell NSC maintenance Medium (Merck), perform TPBG-targeted MACS when cells are cultured to approximately 80-90% of the plate's total area. It was. Next, relative EN1 expression in isolated TPBG-positive and TPBG-negative cells was confirmed by qRT-PCR method with hESC (H9) as a control (expression of H9 = 1).
도 21에서 확인할 수 있듯이, TPBG-음성 세포에 비하여 TPBG-양성 세포에서 mDA 신경세포의 발생 위치 마커인 EN1의 발현이 증가되었다. 이러한 결과는, TPBG를 이용하여 fVM 세포 중 중뇌 특성을 나타내는 세포를 농축할 수 있음을 의미한다.As can be seen in Figure 21, compared with TPBG-negative cells, the expression of EN1, the developmental location marker of mDA neurons increased in TPBG-positive cells. These results indicate that TPBG can be used to enrich cells exhibiting midbrain characteristics among fVM cells.
실험예 9. 인간 유도 만능 줄기세포(human induced pluripotent stem cells; iPSC)로부터 분리된 TPBG-양성 세포의 특성 확인Experimental Example 9. Characterization of TPBG-positive cells isolated from human induced pluripotent stem cells (iPSCs)
상기 인간 배아 줄기세포와 동일한 방법으로 배양 중인 human iPSC(HDF-epi3)를 상기 실시예의 분화 프로토콜을 이용하여 분화시킨 후, 분화 20일(d20)에 TPBG를 타겟으로 하는 MACS를 수행하였다. 분리된 TPBG-양성 세포에서의 EN1, FOXA2, LMX1A의 발현을 확인하였다(Immunocytochemistry).Human iPSC (HDF-epi3) being cultured in the same manner as the human embryonic stem cells were differentiated using the differentiation protocol of the above example, and then MACS targeting TPBG was performed on day 20 (d20) of differentiation. Expression of EN1, FOXA2, LMX1A in isolated TPBG-positive cells was confirmed (Immunocytochemistry).
도 22에서 확인할 수 있듯이, 중뇌 발생 위치 마커인 EN1 및 FOXA2의 발현은 MACS 전과 후에서 차이가 나타나지 않았으나, mDA 발생 계통 마커인 LMX1A를 발현하는 세포는 TPBG-양성 세포에서 농축되는 것을 알 수 있었다. 더불어, 상기 3개의 마커(EN1 및 FOXA2, 및 LMX1A) 모두 양성 반응을 보인 세포의 비율도 TPBG-양성 세포에서 유의하게 농축되었다.As can be seen in Figure 22, expression of the midbrain development markers EN1 and FOXA2 did not show a difference before and after MACS, cells expressing LMX1A, mDA-generating line markers were found to be concentrated in TPBG-positive cells. In addition, the percentage of cells that tested positive for all three markers (EN1 and FOXA2, and LMX1A) was also significantly enriched in TPBG-positive cells.
본 발명은 도파민 신경세포의 분리방법 및 이를 이용하여 분리된 도파민 신경세포를 포함하는 파킨슨병 치료용 약제학적 조성물에 관한 것으로, 상기 도파민 신경세포의 분리방법은 TPBG(Trophoblast glycoprotein)-양성 도파민 신경세포를 분리하는 단계를 포함함으로써, 본 방법에 따라 분리된 도파민 신경세포는 이식 시 세포의 효능이 증진되고 이식 안전성이 향상된 것을 특징으로 하므로, 파킨슨병 치료를 위한 세포 이식 용도로 유용하게 사용될 수 있다.The present invention relates to a method for isolating dopamine neurons and a pharmaceutical composition for treating Parkinson's disease comprising dopamine neurons isolated using the same, wherein the method for separating dopamine neurons is TPBG (Trophoblast glycoprotein) -positive dopamine neurons. By including the step of separating, dopamine neurons isolated according to the present method is characterized in that the efficacy of the cells at the time of transplantation and improved transplant safety, it can be useful for cell transplantation for the treatment of Parkinson's disease.

Claims (24)

  1. 다음의 단계를 포함하는 도파민 신경세포(dopaminergic neural cells)의 제조방법:Method for preparing dopaminergic neural cells, comprising the following steps:
    (a) 세포 집단(cell population)을 TPBG(Trophoblast glycoprotein) 항체와 접촉시키는 단계; 및(a) contacting a cell population with a Trophoblast glycoprotein (TPBG) antibody; And
    (b) TPBG 항체에 결합하는 TPBG-양성 도파민 신경세포를 분리하는 단계.(b) isolating TPBG-positive dopamine neurons that bind to TPBG antibodies.
  2. 제 1 항에 있어서, 상기 세포 집단은The method of claim 1, wherein the cell population is
    인간 줄기세포(human stem cells);Human stem cells;
    전구세포(progenitors 또는 precursors); 및Progenitors or precursors; And
    상기 인간 줄기세포 또는 전구세포로부터 분화된 도파민 신경전구세포(dopaminergic neural progenitors), 성숙 도파민 뉴런(dopaminergic neurons) 및 이로부터 유래한 신경유도체(neural derivatives);Dopaminergic neural progenitors (dopaminergic neural progenitors), mature dopaminergic neurons and neural derivatives derived therefrom from the human stem cells or progenitor cells;
    로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것인, 방법.It comprises one or more selected from the group consisting of.
  3. 제 2 항에 있어서, 상기 인간 줄기세포 또는 전구세포는 배아 줄기세포(Embryonic stem cells), 배아 생식세포(Embryonic germ cells), 배아 암종세포(Embryonic carcinoma cells), 유도 만능 줄기세포(Induced pluripotent stem cells, iPSCs), 성체 줄기세포(Adult stem cells) 또는 태아 세포(Fetal cells)인, 방법.According to claim 2, wherein the human stem cells or progenitor cells are embryonic stem cells (Embryonic stem cells), embryonic germ cells (Embryonic germ cells), embryonic carcinoma cells (Embryonic carcinoma cells), induced pluripotent stem cells (Induced pluripotent stem cells) , iPSCs), adult stem cells or fetal cells.
  4. 제 3 항에 있어서, 상기 태아 세포는 태아 신경 조직(Fetal neural tissue) 또는 이의 유도체(derivatives)로부터 유래된 것인, 방법.The method of claim 3, wherein the fetal cell is derived from fetal neural tissue or derivatives thereof.
  5. 제 1 항에 있어서, 상기 TPBG-양성 도파민 신경세포는 파킨슨병의 증상을 완화시키는 것인, 방법.The method of claim 1, wherein the TPBG-positive dopamine neurons alleviate the symptoms of Parkinson's disease.
  6. 제 1 항에 있어서, 상기 TPBG-양성 도파민 신경세포는 세포 이식 치료법의 안전성을 향상시키는 것인, 방법.The method of claim 1, wherein the TPBG-positive dopamine neurons enhance the safety of cell transplantation therapy.
  7. 제 1 항에 있어서, 상기 도파민 신경세포는 도파민 신경전구세포(dopaminergic neural progenitors 또는 dopaminergic neural precursor cells) 또는 성숙 도파민 뉴런(dopaminergic neurons)인, 방법.The method of claim 1, wherein the dopamine neurons are dopaminergic neural progenitors or dopaminergic neural precursor cells or mature dopaminergic neurons.
  8. 제 1 항에 있어서, 상기 도파민 신경세포는 중뇌성(midbrain) 도파민 신경세포인, 방법.The method of claim 1, wherein the dopamine neurons are midbrain dopamine neurons.
  9. 제 8 항에 있어서, 상기 중뇌성 도파민 신경세포는 A9 지역-특이적(A9 region-specific) 중뇌성 도파민 신경세포인, 방법.The method of claim 8, wherein the mesothelial dopamine neurons are A9 region-specific mesothelial dopamine neurons.
  10. TPBG(Trophoblast glycoprotein)-양성 도파민 신경세포(dopaminergic neural cells)를 포함하는 파킨슨병(Parkinson's disease) 치료용 약학적 조성물.Pharmaceutical composition for treating Parkinson's disease, including Trophoblast glycoprotein (TPBG) -positive dopaminergic neural cells.
  11. 제 10 항에 있어서, 상기 도파민 신경세포는 중뇌성(midbrain) 도파민 신경세포인, 약학적 조성물.The pharmaceutical composition of claim 10, wherein the dopamine neurons are midbrain dopamine neurons.
  12. 제 11 항에 있어서, 상기 중뇌성 도파민 신경세포는 A9 지역-특이적(A9 region-specific) 중뇌성 도파민 신경세포인, 약학적 조성물.The pharmaceutical composition of claim 11, wherein the mesothelial dopamine neurons are A9 region-specific mesothelial dopamine neurons.
  13. 다음의 단계를 포함하는 파킨슨병(Parkinson's disease)의 세포 이식 치료법을 위한 도파민 신경세포(dopaminergic neural cells)의 효능을 증진시키고 이식 안전성을 향상시키는 방법:How to improve the efficacy of dopaminergic neural cells and improve transplant safety for cell transplantation therapy of Parkinson's disease, comprising the following steps:
    (a) 세포 집단(cell population)을 TPBG(Trophoblast glycoprotein)-항체와 접촉시키는 단계; 및(a) contacting a cell population with a Trophoblast glycoprotein (TPBG) -antibody; And
    (b) TPBG 항체에 결합하는 TPBG-양성 도파민 신경세포를 분리하는 단계.(b) isolating TPBG-positive dopamine neurons that bind to TPBG antibodies.
  14. 제 13 항에 있어서, 상기 세포 집단은The method of claim 13, wherein the cell population is
    인간 줄기세포(human stem cells);Human stem cells;
    전구세포(progenitors 또는 precursors); 및Progenitors or precursors; And
    상기 인간 줄기세포 또는 전구세포로부터 분화된 도파민 신경전구세포(dopaminergic neural progenitors), 성숙 도파민 뉴런(dopaminergic neurons) 및 이로부터 유래한 신경유도체(neural derivatives);Dopaminergic neural progenitors (dopaminergic neural progenitors), mature dopaminergic neurons and neural derivatives derived therefrom from the human stem cells or progenitor cells;
    로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것인, 방법.It comprises one or more selected from the group consisting of.
  15. 제 14 항에 있어서, 상기 인간 줄기세포 또는 전구세포는 배아 줄기세포(Embryonic stem cells), 배아 생식세포(Embryonic germ cells), 배아 암종세포(Embryonic carcinoma cells), 유도 만능 줄기세포(Induced pluripotent stem cells, iPSCs), 성체 줄기세포(Adult stem cells) 또는 태아 세포(Fetal cells)인, 방법.The method of claim 14, wherein the human stem cells or progenitor cells are embryonic stem cells (Embryonic stem cells), embryonic germ cells (Embryonic germ cells), embryonic carcinoma cells, induced pluripotent stem cells (Induced pluripotent stem cells) , iPSCs), adult stem cells or fetal cells.
  16. 제 15 항에 있어서, 상기 태아 세포는 태아 신경 조직(Fetal neural tissue) 또는 이의 유도체(derivatives)로부터 유래된 것인, 방법.The method of claim 15, wherein the fetal cell is derived from fetal neural tissue or derivatives thereof.
  17. 제 13 항에 있어서, 상기 도파민 신경세포는 도파민 신경전구체 세포(dopaminergic neural progenitors 또는 dopaminergic neural precursor cells) 또는 성숙 도파민 뉴런(dopaminergic neurons)인, 방법.The method of claim 13, wherein the dopamine neurons are dopaminergic neural progenitors or dopaminergic neural precursor cells or dopaminergic neurons.
  18. 제 13 항에 있어서, 상기 도파민 신경세포는 중뇌성(midbrain) 도파민 신경세포인, 방법.The method of claim 13, wherein the dopamine neurons are midbrain dopamine neurons.
  19. 제 18 항에 있어서, 상기 중뇌성 도파민 신경세포는 A9 지역-특이적(A9 region-specific) 중뇌성 도파민 신경세포인, 방법.The method of claim 18, wherein the mesothelial dopamine neurons are A9 region-specific mesothelial dopamine neurons.
  20. TPBG(Trophoblast glycoprotein)-양성 도파민 신경세포(dopaminergic neural cells)를 포함하는 도파민 신경세포 이식용 조성물.Composition for dopamine neuron transplantation comprising TPBG (Trophoblast glycoprotein) -positive dopaminergic neural cells.
  21. 제 20 항에 있어서, 상기 도파민 신경세포는 중뇌성(midbrain) 도파민 신경세포인, 조성물.The composition of claim 20, wherein the dopamine neurons are midbrain dopamine neurons.
  22. 제 21 항에 있어서, 상기 중뇌성 도파민 신경세포는 A9 지역-특이적(A9 region-specific) 중뇌성 도파민 신경세포인, 조성물.The composition of claim 21, wherein the mesothelial dopamine neurons are A9 region-specific mesothelial dopamine neurons.
  23. 제 20 항에 있어서, 상기 조성물은 파킨슨병(Parkinson's disease)의 치료 용인 것인, 조성물.The composition of claim 20, wherein the composition is for the treatment of Parkinson's disease.
  24. 제 20 항에 있어서, 상기 조성물은 도파민 신경세포의 효능을 증진시키고 이식 안전성을 향상시키는 것인, 조성물.The composition of claim 20, wherein the composition enhances the efficacy of dopamine neurons and enhances transplant safety.
PCT/KR2019/005058 2018-05-02 2019-04-26 Method for isolating dopamine neurons and pharmaceutical composition for treating parkinson's disease, containing dopamine neurons isolated using same WO2019212201A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201980002155.XA CN110914412B (en) 2018-05-02 2019-04-26 Method for isolating dopaminergic nerve cells and pharmaceutical composition for treating parkinson's disease comprising dopaminergic nerve cells isolated by using the same
CA3057166A CA3057166C (en) 2018-05-02 2019-04-26 Method for separation of dopaminergic neural cells and pharmaceutical composition comprising dopaminergic neural cells for treatment of parkinson's disease
AU2019240547A AU2019240547B2 (en) 2018-05-02 2019-04-26 Method for separation of dopaminergic neural cells and pharmaceutical composition comprising dopaminergic neural cells for treatment of Parkinson's disease
US16/607,229 US20210093673A1 (en) 2018-05-02 2019-04-26 Method For Separation Of Dopaminergic Neural Cells And Pharmaceutical Composition Comprising Dopaminergic Neural Cells For Treatment Of Parkinson's Disease
JP2019552919A JP7000452B2 (en) 2018-05-02 2019-04-26 A method for separating dopaminergic neurons and a pharmaceutical composition for treating Parkinson's disease containing dopaminergic neurons isolated using the method.
EP19772638.3A EP3591039A4 (en) 2018-05-02 2019-04-26 Method for isolating dopamine neurons and pharmaceutical composition for treating parkinson's disease, containing dopamine neurons isolated using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180050918 2018-05-02
KR10-2018-0050918 2018-05-02
KR10-2019-0048784 2019-04-25
KR1020190048784A KR102201417B1 (en) 2018-05-02 2019-04-25 A method for separation of dopaminergic neural cells and a pharmaceutical composition comprising dopaminergic neural cells for the treatment of Parkinson's disease

Publications (1)

Publication Number Publication Date
WO2019212201A1 true WO2019212201A1 (en) 2019-11-07

Family

ID=68386372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/005058 WO2019212201A1 (en) 2018-05-02 2019-04-26 Method for isolating dopamine neurons and pharmaceutical composition for treating parkinson's disease, containing dopamine neurons isolated using same

Country Status (1)

Country Link
WO (1) WO2019212201A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040079669A (en) * 2003-03-10 2004-09-16 학교법인 한양학원 Method for dopaminergic neuronal differentiation from rat embryonic neural precursors by Nurr1 overexpression
US20050260591A1 (en) * 2002-07-02 2005-11-24 Cancer Research Technology Limited 5T4 antigen expression
KR100880948B1 (en) * 2006-12-28 2009-02-04 한양대학교 산학협력단 A method of Obtaining matured dopaminergic neuron from neural precursor cells
KR101331034B1 (en) * 2011-06-09 2013-11-19 연세대학교 산학협력단 Methods for Preparation of Midbrain Dopaminergic Neurons from Undifferentiated Stem Cells
KR20160032283A (en) 2014-09-12 2016-03-24 주식회사 에스원 VOC Monitering System by Using Big data and Method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050260591A1 (en) * 2002-07-02 2005-11-24 Cancer Research Technology Limited 5T4 antigen expression
KR20040079669A (en) * 2003-03-10 2004-09-16 학교법인 한양학원 Method for dopaminergic neuronal differentiation from rat embryonic neural precursors by Nurr1 overexpression
KR100880948B1 (en) * 2006-12-28 2009-02-04 한양대학교 산학협력단 A method of Obtaining matured dopaminergic neuron from neural precursor cells
KR101331034B1 (en) * 2011-06-09 2013-11-19 연세대학교 산학협력단 Methods for Preparation of Midbrain Dopaminergic Neurons from Undifferentiated Stem Cells
KR20160032283A (en) 2014-09-12 2016-03-24 주식회사 에스원 VOC Monitering System by Using Big data and Method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GENNET, N. ET AL.: "FolR1: a novel cell surface marker for isolating midbrain dopamine neural progenitors and nascent dopamine neurons", SCIENTIFIC REPORTS, vol. 6, no. 1, 1 September 2016 (2016-09-01), pages 32488, XP055643305 *

Similar Documents

Publication Publication Date Title
WO2010147395A2 (en) Medium composition comprising neuropeptide y for the generation, maintenance, prologned undifferentiated growth of pluripotent stem cells and method of culturing pluripotent stem cell using the same
WO2011043591A2 (en) Method for differentiation into retinal cells from stem cells
KR102449283B1 (en) pharmaceutical composition comprising TPBG positive dopaminergic neural cells for the treatment of Parkinson's disease
WO2011096728A2 (en) Method for proliferating stem cells by activating c-met/hgf signaling and notch signaling
WO2011043592A2 (en) Compositions for inducing differentiation into retinal cells from retinal progenitor cells or inducing proliferation of retinal cells comprising wnt signaling pathway activators
WO2014163425A1 (en) Method for producing reprogrammed derivative neuronal stem cell from non-neuronal cell by using hmga2
WO2017179767A1 (en) Method for inducing differentiation of adipose stem cells into neural stem cells, neurons and gamma-aminobutyric acid neurons, and method for inducing differentiation of human stem cells that secrete large amounts of growth factors from human bone marrow derived mesenchymal stem cells
WO2019050071A1 (en) Composition for preventing or treating liver fibrosis, containing exosome or exosome-derived ribonucleic acid
WO2018048220A1 (en) Pharmaceutical composition comprising inflammation-stimulated mesenchymal stem cell for prevention or treatment of immune disease or inflammatory disease
AU2020203955B2 (en) Composition and method for inhibiting amyloid beta accumulation and/or aggregation
WO2022025559A1 (en) Composition including stem cell-derived exosome, and method for producing same
WO2018135907A1 (en) Schwann cell precursor and method for preparing schwann cell differentiated therefrom
WO2019212201A1 (en) Method for isolating dopamine neurons and pharmaceutical composition for treating parkinson's disease, containing dopamine neurons isolated using same
WO2012096552A2 (en) Cell reprogramming composition comprising rex1 and an induced pluripotent stem cell production method using the same
WO2018026212A2 (en) Method for producing fibrosis disease model, and use of fibrosis disease model
WO2016080608A1 (en) Compositions comprising a mitofusin inhibitor for promoting cell reprogramming and a use thereof
WO2021054806A1 (en) Production method for induced dopaminergic neuronal progenitors, using direct reprogramming
WO2021096220A1 (en) Composition for preventing or treating renal diseases, comprising exosomes derived from precursor cells of induced pluripotent stem cell-derived mesenchymal stem cells
WO2021107234A1 (en) Customized ccr5/cxcr4-gene simultaneous knockout hematopoietic stem cells for treatment or prevention of hiv infection, and preparation method therefor
WO2022255825A1 (en) Novel pluripotent cells
WO2021145467A1 (en) Differentiation method for procuring large amount of cells by chopping 3d organoids prepared from human pluripotent stem cells
WO2021060637A1 (en) Method for inducing differentiation into dopamine neuronal precursor cells from stem cells
CA3057166C (en) Method for separation of dopaminergic neural cells and pharmaceutical composition comprising dopaminergic neural cells for treatment of parkinson's disease
WO2023075043A1 (en) Antisense oligonucleotides
WO2023282423A1 (en) Mesenchymal stem cell, extracellular vesicle isolated therefrom, and use thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019552919

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019772638

Country of ref document: EP

Effective date: 20190930

ENP Entry into the national phase

Ref document number: 2019240547

Country of ref document: AU

Date of ref document: 20190426

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE