WO2019212066A1 - Third-generation aircraft, ship, train and automobile having angle-variable lift force adjusting wings - Google Patents

Third-generation aircraft, ship, train and automobile having angle-variable lift force adjusting wings Download PDF

Info

Publication number
WO2019212066A1
WO2019212066A1 PCT/KR2018/005007 KR2018005007W WO2019212066A1 WO 2019212066 A1 WO2019212066 A1 WO 2019212066A1 KR 2018005007 W KR2018005007 W KR 2018005007W WO 2019212066 A1 WO2019212066 A1 WO 2019212066A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
fuselage
fusion
variable lift
type
Prior art date
Application number
PCT/KR2018/005007
Other languages
French (fr)
Korean (ko)
Inventor
최동규
Original Assignee
Choi Dong Kuoo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Choi Dong Kuoo filed Critical Choi Dong Kuoo
Priority to PCT/KR2018/005007 priority Critical patent/WO2019212066A1/en
Priority to JP2021512342A priority patent/JP7112141B2/en
Publication of WO2019212066A1 publication Critical patent/WO2019212066A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D17/00Construction details of vehicle bodies
    • B61D17/02Construction details of vehicle bodies reducing air resistance by modifying contour ; Constructional features for fast vehicles sustaining sudden variations of atmospheric pressure, e.g. when crossing in tunnels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D37/00Stabilising vehicle bodies without controlling suspension arrangements
    • B62D37/02Stabilising vehicle bodies without controlling suspension arrangements by aerodynamic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • B64C3/14Aerofoil profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a technique for mounting a wing of a variable lift type on a vehicle, such as an aircraft, a ship, a train, a car, and more specifically, lift, anti-lift on any one of the aircraft, ship, train, car And, by attaching a variable lift control wing that is selectively applied by the antigenic force, it can compensate for the weakness that cannot cope with variables such as the limitations of the aircraft, ships, trains, and automobiles and the functional limitations and bad weather.
  • the main wing 200 is fixed to the fuselage 100 as shown in FIG. 3A, and taken off by a horizontal rudder 201 at the rear of the main wing 200. And to control landing or altitude.
  • the conventional aircraft has a main wing 200 fixed to the fuselage 100, and take off at a takeoff and landing angle (1 to 1) defined on a runway of a predetermined length as shown in FIGS. 2 and 5 (a). It is also possible to carry out frequent landings and landings, and if there is a problem with the direction of the wind, the fog, clouds, or other indication devices such as airport control stations at night, or if the aircraft breaks down on its own, Caused. In addition, the conventional aircraft 100 occupies a large area of the airport due to the long main wing 200 unnecessary, there was a lot of inconvenience when wearing in the hangar for reasons such as repair or storage.
  • the conventional aircraft bears more than 90% of the lift on the main wing 200, so that lift is concentrated on a limited portion of the main wing 200 and the fuselage 100, causing lift imbalance, and the fuselage stability to the main wing.
  • a serious situation such as a fall can occur.
  • the conventional aircraft since the aircraft body tilts at an oblique angle (Mo 1) at take-off, it may have a great impact on the cargo stability in the case of an uncomfortable posture and a cargo plane that the passenger feels.
  • the conventional aircraft had to bear almost all the lift to the main wing 200, so there was a limit to the length of the fuselage, which is directly connected to the capacity of passengers or cargo, because the altitude control 201 is in charge Because of the impossibility of soaring or descending and decelerating, the runway had to be made long for takeoff and landing.
  • ballast tank (Bal last Tank) to enable a stable operation, but this also does not have a variable lift type wing, the number of ballast filled in the ballast tank As the overall load increases due to (Bal last Water), fuel consumption increases, and in particular, environmental pollution caused by the discharge of ballast water is emerging.
  • the present invention is to improve the conventional problems as described above, by mounting the wing of the variable lift type on each aircraft, ship, train, car as a means of transportation, lift or half by adjusting the angle of the wing It is to provide lift and provide stable mobility for passengers using vehicles such as aircraft, ships, trains and automobiles, and to ensure that the loaded cargo is also stable and manual. Its purpose is to provide third-generation aircraft, ships, trains and automobiles equipped with variable lift lifts that can significantly reduce fuel consumption.
  • antigens in aircraft, ships, trains and automobiles 3rd generation aircraft, ships, trains and vehicles equipped with angular lift-controlled wings to prevent thrust during aircraft, ships and trains, and the vehicle's curve movement by constructing the wing providing the force. Is to provide.
  • Another object of the present invention is to provide a uniform lifting distribution along the longitudinal direction of the entire body and thereby to eliminate the lifting bias concentration concentrated on the wing, to prevent serious safety accidents even if some of the wings are damaged. will be.
  • Another object of the present invention by changing the position and size of the main wing that was responsible for almost all lift, by distributing it so that the length of the fuselage directly connected to the capacity of passengers or cargo can be easily extended as needed. I will.
  • Another object of the present invention when applied to a vehicle such as a car or train, through the fused wing of the variable lift control system, even if the load increases according to the passengers and cargo, due to the increased load, to solve the problem that the wheels of the train is easily damaged, and to provide a vehicle with improved stability that effectively prevents the jungle even in bad driving conditions such as rain roads, ice roads or curves.
  • Another object of the present invention is to replace a ballast tank when applied to a ship, and to carry a passenger or cargo by a load that is generally increased by the ballast water filled in a conventional ballast tank. It is intended to provide additional transport, and in particular to solve the environmental pollution problem caused by the discharge of ballast water.
  • the left and right pairs are arranged on both sides or the upper portion of the fuselage at least two or more consecutively, and the angle is adjusted based on the wing drive shaft located at the center of the wing to provide the lift or anti-lift force opposite to the lift force.
  • the variance lift type fusion wing it is possible to install, the variance lift type fusion wing to perform the function of the wing and the horizontal stroke at the same time;
  • the variable lift type fusion wing includes a wing body that generates lift by having a general aircraft wing shape with a streamlined cross section, and a windscreen in front and rear of the wing body ( A wind dividor and a wind pressor are installed to extend, respectively, wherein the wind dividor and the wind pressor are positioned on a line passing through the wing driving shaft and at the same time. It is installed in the form of a flat plate placed on a straight line connecting the front and rear end, characterized in that the streamlined wing body is configured to provide increased lift during high angle takeoff and landing while maintaining a minimum cross section.
  • the angular lift type fusion wing which is arranged in a pair of left and right, at least two or more consecutively, the rear from the front to both sides of the fuselage 2019/212066 1 »(: 1 ⁇ 1 ⁇ 2018/005007
  • It can be installed evenly up to 6 to distribute the lift evenly among the fuselage, so that the fuselage can take off and land horizontally.
  • the drive unit may be configured to be connected to the wing drive shaft portion and the connecting member of the variable lift type fusion fusion blade to adjust the angle of the variable lift type fusion fusion blade disposed at the same time at the same angle.
  • each of the drive unit 1: 1 to each of the wing drive shaft portion of the variable lift type fusion fusion blade to individually adjust the front, rear, left and right angles of the variable lift type fusion wing is arranged in plurality. It can be configured as
  • the drive unit may be driven to adjust the angle of the variable lift type fusion wing according to the wind direction and wind speed information detected by the wind direction detection unit.
  • variable lift control type fusion blades disposed on both sides of the fuselage may be arranged on the same horizontal line.
  • variable lift control type fusion vanes disposed in plural on both sides of the fuselage may be disposed in a stepped manner.
  • the angular lift type control fusion wings disposed in a plurality on both sides of the fuselage can be arranged in a zigzag form that crosses each other up and down.
  • variable lift control type fusion wing disposed in a plurality of both sides of the fuselage is configured to gradually expand the width and length of the wing in the order arranged from the front side to the rear side, From the front wing Minimize interference caused by vortices or waves.
  • variable lift control method is to ensure the flight stability by performing the rudder role through the angle control of the fusion wing and to maintain the basic lift in the event of the abnormal lift type fusion wing.
  • variable lift type fusion wing disposed in a plurality of sides of the fuselage, outside the fixed wing is attached to the fixed form on the fuselage outer wall
  • the angle wing is adjustable angle of rotation It can be configured to form a single unit compound wing
  • the unit compound wing is a vertical structure compared to the fuselage installed at right angles to the fuselage, or a rear push-type structure compared to the fuselage installed at an inclined angle to the fuselage Is optionally applied.
  • the angular lift type control type fusion wing disposed in a plurality on both sides of the fuselage, a unit composite wing repeatedly installed fixed blade portion and angular wing portion along the longitudinal direction on one independent wing Can be applied.
  • the unit compound wing is an outer type composite wing installed in the fixed wing portion fixed to the outer wall fixed to the fuselage and the outer wing portion is adjustable in the rotation angle (outer type), or the angle wing portion Intermediate type compound blades arranged to be located between two fixed blade parts spaced apart from each other, or inner type compound blades installed so that the angled wing parts are located inside the fixed wing parts.
  • Any one of eight may be selectively applied.
  • variable lift type fusion wing disposed in both sides of the fuselage, can be applied to the structure of the expansion return type variable slide composite wing in which one independent wing is extended in the longitudinal direction.
  • the variable slide type composite wing is a length in which the inner blade of the wide width is fixed and the narrow outer wing accommodated therein is driven in a piston manner with a pneumatic or hydraulic cylinder to expand or contract from the tip of the inner blade.
  • It is a variable fusion wing, or a narrow inner blade that is fixed to act as an axis, and a wide outer wing that is installed so as to be wrapped around the outside is driven and expanded by a piston method with a pneumatic or hydraulic cylinder. Either of the reduced length variable fusion wings is selectively Can be used.
  • the angle for the lifting of the variable lift control type fusion wing is adjustable in the range of 43 ° to 87 ° in the upward direction with respect to the horizontal line, minimizing the running distance In order to achieve this, it is more preferable to adjust the temperature in the range of 85 ° to 87 ° .
  • the angle for providing a semi-lift force of the variable lift type fusion wing can be adjusted within the range of 13 ° to 15 ° in the downward direction based on the horizontal line.
  • the rear side of the aircraft can be configured with one or more engine parts and injection holes, at least one of the plurality of engines is installed to be located in the center of the fuselage rear. 2019/212066 1 »(: 1 ⁇ 1 ⁇ 2018/005007
  • the engine unit has a cone-shaped engine injection hole having a rotation angle of 360 ° up, down, left and right.
  • a third generation train equipped with a wing of the variable lift type, the fuselage; At least two of the left and right pairs are arranged continuously on both sides of the fuselage or on the outer side of the fuselage, providing lift to the fuselage or anti-lift force opposite to the lift force, and the angle is adjusted around the wing drive shaft.
  • Variable lift control fusion blades that provide fuselage stability through lift and always maintain constant gap between fuselage and rail through anti-lift; Centrifugal force control blades for providing the antigenic core force on the outer side or the outer side of the body; And a driving part configured to drive the variable lift control type fusion blade and the centrifugal force control blade to be adjusted at an angle for providing lift or an angle for providing a semi-lift force about the wing drive shaft.
  • a driving part configured to drive the variable lift control type fusion blade and the centrifugal force control blade to be adjusted at an angle for providing lift or an angle for providing a semi-lift force about the wing drive shaft.
  • the angular lift control type fusion wing which is arranged in a pair of left and right and at least two are consecutively installed, evenly installed from the front to the rear of the fuselage to distribute the lift evenly between all the fuselage. do.
  • the drive unit may be configured to be connected to the wing drive shaft portion and the connecting portion of the variable lift type fusion fusion blade to adjust the angle of the variable lift type fusion fusion blade disposed in a plurality.
  • the drive unit may be configured to be 1: 1 each of the wing drive shaft portion of the variable lift type fusion fusion blade to individually adjust the angle of the variable lift type fusion fusion blade disposed in a plurality.
  • the driving unit is to drive to adjust the angle of the variable lift type fusion wing according to the wind direction and wind speed and wind speed information detected by the wind direction detection unit.
  • variable lift type fusion wing disposed in a plurality on both sides or the outer side of the fuselage may be arranged in the same horizontal line.
  • variable lift type fusion wing disposed in plurality on both sides or the outer side of the fuselage may be arranged in a stepped manner.
  • the variegated lift control type fusion wing disposed in a plurality on both sides or the outer side of the fuselage may be arranged in a zigzag shape to cross up and down.
  • the centrifugal force control blade can be configured perpendicular to the variable lift type fusion wing.
  • a fuselage When the present invention is applied to a motor vehicle for achieving the above objects, a fuselage; It is disposed on the front and rear sides of the fuselage, and provides the lifting force or the anti-lift force opposite to the lifting force, and the angle is adjusted around the wing drive shaft, providing the fuselage stability through lifting force, Variance lift control fusion wing that keeps the distance between the fuselage and the road surface at all times; Centrifugal force control blades for providing the antigenic core force on the outer upper side or the outer side of the body; And a drive unit for driving the variable lift control type fusion wing and the centrifugal force control vane to be adjusted at an angle for providing lift or an angle for providing a semi-lifting force to the wing drive shaft. It characterized by including the. 2019/212066 1 »(: 1 ⁇ 1 ⁇ 2018/005007
  • the driving unit is to drive to adjust the angle of the variable lift type fusion wing according to the wind direction and wind speed information detected by the wind direction detection unit.
  • the centrifugal force control vane may be configured perpendicular to the variable lift type fusion wing.
  • a fuselage When the present invention is applied to a ship for achieving the above objects, a fuselage; The left and right pairs of left and right pairs are arranged consecutively on the outer bottom of the fuselage of the fuselage, and provide the buoyancy or anti-buoyancy opposite to the buoyancy and provide the ballast tank ⁇ 12 ⁇ ). It is to replace the variable lift type fusion wing that is angle-controlled around the wing drive shaft; And a driving unit configured to adjust the variable lift control type fusion wing to an angle providing buoyancy or an angle providing anti-buoyancy based on the wing drive shaft. It will be configured to include.
  • the angular lift control type fusion wing that is arranged at the left and right pairs at the bottom of the outer side of the fuselage at least two consecutively, is installed evenly from the front to the rear of the fuselage to lift the lift body It is characterized in that it is evenly distributed among the bulbs.
  • the drive unit may be configured to be connected to the wing drive shaft portion and the connecting member of the variable lift type fusion fusion blade to adjust the angle of the variable lift type fusion fusion blade disposed in a plurality.
  • the drive unit is a variable lift type control fusion so as to individually adjust the angle of the variable lift type fusion wing is arranged in plurality 2019/212066 1 »(: 1 ⁇ 1 ⁇ 2018/005007
  • the driving unit is characterized in that for driving to adjust the angle of the variable lift type fusion wing according to the water flow information detected by the water flow detection unit.
  • variable lift type fusion fusion wing disposed in plurality on the outer bottom or the upper side or roof of the fuselage may be arranged in the same horizontal line.
  • variable lift type fusion wing disposed in plurality on the outer bottom or the upper side or the roof of the fuselage can be arranged stepwise.
  • the angular lift type fusion fusion wings arranged in plurality on the outer bottom of the fuselage or on the upper side or the roof of the fuselage may be arranged in a zigzag shape crossing each other up and down.
  • variable lift type fusion wing can be arranged in plurality on the outer bottom of the vessel.
  • variable lift type fusion wing can be disposed in plurality on both sides of the outer side of the vessel or the roof of the vessel.
  • the present invention is equipped with a wing of the variable lift type to each of the transport means such as aircraft, ships, trains, and cars, as described above 2019/212066 1 »(1 ⁇ 1 ⁇ 2018/005007
  • the present invention when applying a variable lift type wing to a vehicle such as an aircraft, while forming a short fuselage body to reduce the runway while reducing the cost of the runway, while at the airport waiting area, it can be expected to increase the number of passengers and cargo by increasing the width of the fuselage and designing the fuselage.
  • the present invention is to enable the rapid rise and fall and rapid deceleration of the aircraft when applying the variable lift type wing to a vehicle, such as an aircraft.
  • the present invention can provide an effect of significantly shortening the take-off and landing distance of the aircraft, while generating a uniform lift in all sections of the fuselage, when the wing of the variable lift type is applied to a vehicle such as an aircraft. will be.
  • the present invention is applied to the multi-stage variable lift type wing in a vehicle, such as an aircraft, even if any of the wings are broken, so that only the broken wing can be replaced, to prevent a sudden fall accident You can expect the effect.
  • the present invention can be expected to have an effect of minimizing the atmospheric area at the airport when applying the variable lift type wing to a vehicle, such as an aircraft, to improve the inconvenience caused when the hangar.
  • the present invention when the wing of the variable lift type is applied to a vehicle such as a train or a vehicle, even if the load increases due to the increase in passengers and cargo, as well as stable running is possible, as well as the wheel from the gravity action due to the increased load This can be expected to prevent the problem of (especially trains) from being damaged.
  • variable lift (buoyancy) and anti-lift (half buoyancy) control method when applying the variable lift (buoyancy) and anti-lift (half buoyancy) control method to a vehicle, such as a ship, can be expected to increase the load of cargo and guide the stable operation of the ship will be.
  • the wing angle control of the variable lift control fusion blade increases to increase the anti-buoyancy (receiving force), thereby rapidly acting as a substitute for the ballast tank.
  • the function of the ballast tank is replaced by the variable lift type fusion vane, the overall load is reduced compared to the conventional vessel filled with the ball last water, and the fuel consumption is significantly reduced. In particular, it is possible to solve the environmental pollution problem caused by the discharge of ballast water.
  • ballast tank type vessels may cause the body to shake or temporarily tilt in the front and rear, especially left and right in the wind, waves or storms, and in the worst case, even if you feel the risk of sinking, the variant type of the present invention 2019/212066 1 »(: 1 ⁇ 1 ⁇ 2018/005007
  • variable lift type fusion vanes applied to large vessels are subject to great pressure and resistance due to the specificity of air and other water materials, while minimizing the cross section of the variable lift type fusion vanes.
  • Durable materials must be used and structurally stronger bonds are required.
  • the present invention by applying the wing of the variable lift type to exert the antigenic force on a vehicle such as a train or a car, while preventing the occurrence of jungle on the rain or ice or curve road of the train or car
  • the driving can be expected to be stable in a constant speed driving state without deceleration.
  • FIG. 1 is a view showing the overall wing characteristics and concept of the aircraft to which the wing of the variable lift type of the present invention is applied.
  • FIG. 2 is a cross-sectional view of a conventional fixed main wing (A) and a cross section of a variable lift type wing (B) which is the core of the present invention.
  • A fixed main wing
  • B variable lift type wing
  • ratio (101 ⁇ ) It is a drawing showing the configuration that the wing drive shaft portion is installed in the center of the wing of the variable lift type.
  • Figure 3 shows the overall shape of the aircraft to which the main wing is applied to the conventional fixed type and the aircraft to which the variable lift type wing of the present invention is applied and the function and role of the wing 2019/212066 1 » (: 1 ⁇ 1 ⁇ 2018/005007
  • FIG. 4 is a view showing the core principle of the present invention aircraft and the variable lift type variable wing applied to the principle of soft and water ski.
  • FIG. 5 is a view showing a state in which the conventional aircraft equipped with a fixed main wing and the aircraft of the present invention equipped with a wing of the variable lift type take off, (A) is a fixed main wing is mounted so that the takeoff angle is The conventional aircraft is small and the fuselage rises at an oblique angle, (b) is a plane drawing of the present invention that the takeoff angle is large and the horizontal rise by mounting a variable lift type wing.
  • FIG. 6 shows the limit angle for the wing of the variable lift type, the limit angle is defined for the safety of the fuselage, and may cause serious danger when exceeded, the upper limit based on the horizontal line Below each is a view showing the minimum limit angle, (B) is a view showing the landing form for the aircraft of the present invention equipped with a variable lift type wing, (C) is a fixed main wing A diagram showing a landing form of a conventional aircraft.
  • FIG. 7 is a view showing a method of arranging a variable lift type wing on the aircraft of the present invention, (a) is a horizontal arrangement, (b) is a staircase arrangement, (C) is a diagram showing a state where a zigzag array method is applied. 2019/212066 1 »(: 1 ⁇ 1 ⁇ 2018/005007
  • FIG. 8 illustrates a side and a plane of an aircraft to which a wing of a variable lift type control method shown in FIG. 7 is applied, and shows an enlarged area before and after the wing of a variable lift control method.
  • FIG. 9 is a plane view of an aircraft to which a wing of a variable lift type control method showing a horizontal arrangement in FIG. 7 is applied, and the wing of the variable lift control method is configured to have a wider area from left to right. Drawing.
  • FIG. 10 is a diagram showing a wing arrangement in which a fixed wing and a wing of a variable lift type are fused.
  • FIG. 11 are plan views showing a structure in which a fixed blade portion and a variable wing portion are installed in a single independent wing, and on the outside of the fixed wing portion fixedly attached to the outer wall of the fuselage.
  • the additional rotation angle is adjustable so that it can be configured to form a single compound wing.
  • A) of FIG. 11 illustrates a vertical structure compared to the body body in which the compound wing is installed at right angles to the body.
  • (B) shows the rear-limb type structure compared to the fuselage in which the compound blade is installed at a certain inclination angle on the fuselage.
  • FIG. 12 are plan views showing the functional positions of the fixed blade opening and the flap wing, which are complexly installed on one independent wing, and (A) of FIG. 12 is fixed to the outer wall of the fuselage. It shows a state in which the angular blade portion is installed to adjust the rotation angle outside the fixed blade portion attached to the, and (b) of Figure 12 is arranged so as to be positioned between the fixed blade portion spaced apart from each other, and 12 (C) shows a state in which they are installed so as to be positioned inside the angled wing part temporarily fixed blade part.
  • 18 is a view for explaining a structure in which one independent wing is extended in the longitudinal direction.
  • FIG. 14 is a conceptual view of a fused wing of variable lift type.
  • 15 is a view showing the basic mechanism of the wing and the anti-centrifugal wing of the lift and anti-lift (or traction) control system.
  • 16 is a view showing the basic application state of the lift and anti-lift (or traction) control method wing and centrifugal force wing.
  • Fig. 17 is a side view and a bottom view showing a state in which a wing of the lift (buoyancy) and anti-lift (half buoyancy) adjustment method is applied to a large ship.
  • FIG. 18 is a side view and a plan view showing a state in which a wing of the lift (buoyancy) and anti-lift (anti-buoyancy) adjustment method is applied to a small ship.
  • 19 is a front view and a side view showing a state in which the lift and anti-lift control method of the wing and the antigen center force wing is applied to the train.
  • the variable lift control method applied to the fuselage 10 of an aircraft, a ship, a train, and a vehicle includes a variable lift control type fusion wing 20 and / or a fixed wing, and a drive unit 30 And wind direction detection unit 40, and further include a centrifugal force control blade 50 and a horizontal rudder (not shown).
  • the principle of 19 is to use the principle of flying kite as in (A) of Fig. 4, which is more specifically, the oblique downward direction (gravity direction) of the kite body and the resistance force (air flow) that makes the wind resistance It was conceived from the strings tied up to flow into.
  • variable lift control type fusion wing 20 is designed to induce the water and wind resistance in a desired direction from the material of air and water described above.
  • the angle of the half wing (20) it is possible to adjust the lift (or buoyancy) in response to the situation or variables caused by the movement of aircraft, ships, trains and ships.
  • Wing + horizontal stroke-> variable lift type wing kite (each wing)
  • variable lift wing type aircraft of the present invention does not have a fixed landing angle. Can be reduced.
  • variable lift type fusion blade Dog 20 is disposed on both sides of the fuselage 10 of the aircraft, ships and trains, and the vehicle, the wing drive shaft portion (20a) to provide a lift or anti-lift force opposite to the fuselage (10) The angle is adjusted to form a configuration.
  • variable lift type fusion wing 20 is adjusted to have a limit angle for providing lift and a limit angle for providing a half lift, as shown in Figure 6 (a) attached to the
  • the maximum limit angle for lifting force of the angular lift control type fusion wing 20 is to be adjusted in the range of 43 ° to 87 ° in the upward direction with respect to the horizontal line (H), the variable lift type fusion control method
  • the minimum limit angle for providing the anti-lift force of the wing 20 is configured to be adjusted within the range of 13 ° to 15 ° in the downward direction with respect to the horizontal line.
  • the maximum limit angle of the lift and the half lift is not limited to the numerical range as described above, it is possible to reset the limit angle through research and experiment.
  • the windscreen 21 and the wind pressor plate 22 should be made of a rigid material so as to be as thin as possible but not broken or separated from the variable lift type fusion wing 20, and the rigidity described herein.
  • the material of is to describe the carbon fiber as a known material, but is not necessarily limited to these.
  • the angular lift type fusion wing 20 is composed of at least two or more pairs arranged on both sides of the aircraft fuselage 10 on both sides, preferably arranged in multiple stages as a plurality, which is attached to Figure 7 Arrange horizontally on the same horizontal line as in (A) of, or staircase as shown in (b) of FIG. 7, or cross each other up and down as shown in (c) of FIG. It can be arranged in a zigzag arrangement.
  • variable lift type fusion wing 20 arranged in a horizontal type is disposed on the rear end side, while the interference of air (for example, vortex or wave) affects the rear wing side due to the arrangement interval. It is not desirable because there is a problem of reducing the lift provided by the angular lift control method fusion wing. Accordingly, it is possible to arrange the variable lift type fusion vanes 20 in a stair step type relatively free from interference flow or to arrange the variable lift type fusion vanes 20 in a zigzag form.
  • variable lift type fusion blades 20 in a stepped manner, which is a lift of the variable lift type fusion blades 20 arranged at the front and rear ends at least 5, respectively.
  • maximum lifting force of the variegated lift control fusion wings (20) can be provided the largest, with a difference of up to 10% 2019/212066 1 »(: 1 ⁇ 1 ⁇ 2018/005007
  • variable lift type fusion wing 20 is arranged in such a step can be easily applied to a large vehicle (large passenger plane, large cargo plane).
  • variable lift type fusion method is arranged horizontally as shown in FIG. 10.
  • Figure 10 is a diagram showing the arrangement of the fusion of the fixed wing and the wing of the variable lift control method, which can be applied to both a horizontal arrangement and a stepped arrangement, as well as a zigzag arrangement structure, Its advantages are that from the standpoint of the angular type, due to the fixed wing of the variable lift type fusion wing (20) to prevent the serious situation such as falling, and more flexible from the standpoint of the fixed wing It is to enable effective flight, and most importantly, to reduce the effects of air interference (wind), a disadvantage of multi-wing aircraft.
  • non-small interference effective distance must be maintained, and the effective distance varies depending on the type of multi-wing aircraft (horizontal type, stair type, zigzag type, fusion type), but if the distance between wings is short, If the area is narrow and the distance between the wings is long, the area of the wing should be made large, which means that the larger the wings, the smaller the size, and the smaller the wings, the larger the wings. This is probably because it is a law of physics and reason before it is a formula.
  • the number of installation of the variable lift type fusion wing 20 is more effective to be composed of a plurality of smaller wings than a few large wings. This is because many small wings have less load per wing, less noise generated by the wing, softer control, operation (variation), and less interference. Therefore, even if some wings are broken in an accident, it is fatal to fuselage safety. It does not cause any effect.
  • It can also be configured to extend the width of the wings 1 ⁇ square 2 ⁇ 3 ⁇ 4 (or area). In other words, by applying the variable lift type fusion wing 20 that increased the width (or area) toward the rear side from the front side, it is possible to compensate for the lift lost in the rear side.
  • the horizontal array structure does not complement the stepped array structure, that is, it is not possible to apply the variable lift type fusion wing 20 of the same size or the same area, for the reason This is because, in the case of multi-wing aircraft, unlike the single-wing type, the interference of air (vortex or wave) caused by the front wing affects the rear wing. This causes the lift to decrease toward the rear. In the case of the step type, which is relatively free in the interference flow, the lift difference between the front wing and the end wing is expected to be at least 5-7% and up to 10%. This phenomenon is most severe in a horizontal array.
  • a method of increasing the area of the wing at a predetermined ratio toward the rear side should be used, one of which is to enlarge the area before and after the wing as shown in FIG. 8, and the other is as shown in FIG. Likewise, it is to widen the area from side to side, it is also possible to apply a mixed way to balance the front and rear and left and right areas of the wing.
  • variable lift type fusion wing 20 disposed on both sides of the body 10 is configured to adjust the angle by the drive unit 30, the drive unit 30 is Deceleration motor for driving forward and reverse rotation to adjust the variable lift type fusion wing 20 to the angle providing the lift force or the angle providing the anti-lift force about the wing drive shaft portion (2)
  • the drive unit 30 is Deceleration motor for driving forward and reverse rotation to adjust the variable lift type fusion wing 20 to the angle providing the lift force or the angle providing the anti-lift force about the wing drive shaft portion (2)
  • control mechanism of 25 can be used selectively.
  • the drive unit 30 and the blade opening coaxial part (2) of the variable lift type fusion fusion blade 20 to simultaneously adjust the angle of the variable lift type fusion wing (20) arranged in plurality It is configured to be connected to a connecting body (not shown), but the wing drive shaft portion of the variable lift type fusion fusion wing 20 to individually adjust the angle of the variable lift type fusion wing (20) arranged in plurality ( It can be composed of 1: 1 in 2 each.
  • the wing drive shaft portion (2) is the angle of the variable lift type fusion wing 20, while connecting the variable lift type fusion wing (20) disposed on both sides of the body (10).
  • the variable lift type fusion fusion blades are coaxial to adjust at the same time, or are respectively connected to the variable lift type fusion wing 20 which is disposed on both sides of the body 10 to face each other.
  • the angle adjustment of 20 is configured to be made separately.
  • variable lift type fused wing in the case of connecting the variable lift type fusion wing 20 to a coaxial wing drive shaft part (2), the variable lift type fused wing according to an aircraft, a ship, a train, and a vehicle (20) ) May be provided with a horizontal rudder (not shown), which is to provide an additional lift in addition to the lift generated from the variable lift type fusion wing (20) coaxially connected.
  • the fuselage 10 of the vehicle (aircraft) is angular 2019/212066 1 »(: 1 ⁇ 1 ⁇ 2018/005007
  • variable lift type fusion wing 20 the variable lift type fusion wing to the fuselage of the transportation means such as aircraft
  • the aircraft is capable of taking off and landing at a sharp takeoff angle ⁇ 11) by adjusting the angle of the variable lift type fusion wing 20 as shown in (b) of FIG. 5.
  • the fuselage (10) is the aircraft fuselage and the two-sided variable lift type fusion wing (20) as described above on both sides of the aircraft fuselage (10) in the multi-stage arrangement, at least on the rear side of the aircraft fuselage (10)
  • the engine section 11 has a conical engine injection port 12 having a rotational angle of 360 ° in up, down, left and right.
  • the engine unit 11 is arranged in a space where there is no interference, i.e., the lower left and right side walls of the wing or the rear side of the upper body 10.
  • the engine unit 11 has a conical engine injection hole 12 having a rotation angle of 360 in the up, down, left, and right directions, and thus the aircraft body 10 can take off and land. Given that the direction of the wind, which has a great influence on the air, is different from time to time, turning the nose of the aircraft fuselage 10 toward the wind blowing 2019/212066 1 »(: 1 ⁇ 1 ⁇ 2018/005007
  • variable lift type fusion wing 20 is arranged in multiple stages on both sides of the aircraft fuselage 10 as described above, an auxiliary engine may be further applied to the aircraft fuselage 10, which is an aircraft.
  • the aircraft fuselage 10 which is an aircraft.
  • FIG. 11 (a) (b) is a composite wing in which the fixed wing portion 20-1 and the angled wing portion 20-2 are installed in one independent variable lift type fusion wing 20 in combination
  • the top view of the aircraft to which the structure is applied is shown.
  • Aircraft employing the structure of a compound wing the outer wing (20-1) is attached to the outer wall of the fuselage (10) in a fixed form, the angle wing 20-2 is installed to adjust the rotation angle one 11 (a) illustrates a vertical structure compared to the fuselage in which the composite wings are installed at right angles to the fuselage (10), and in Fig. 11 (b) shows the composite wings. It shows the rear of the structure compared to the fuselage installed inclined at a constant inclination angle on the fuselage (10).
  • FIG. 12 (a) (b) (c) is a plan view of the structure of a composite wing in which the fixed blade portion 20-1 and the angled wing portion 20-2 are repeatedly installed in one independent wing along the longitudinal direction. It is shown as.
  • FIG. 12 (a) is an outer side showing a state in which the variable wing portion 20-2 is installed on the outer side of the fixed wing portion 20-1 fixedly attached to the outer wall of the fuselage 10 to adjust the rotation angle.
  • 12 shows an outer type composite wing
  • FIG. 12 (b) shows a state in which the angled wing parts 20_2 are arranged to be positioned between two fixed wing parts 20-1 to be spaced apart from each other.
  • Intermediate type compound wings are shown
  • FIG. 12 (c) shows an inner type in which the angled wing part 20-2 is installed to be positioned inside the fixed wing part 20-1. Each compound wing is shown.
  • FIG. 13A represents a general variable lift type fusion wing 20 having a structure of an integrated wing, whereas in FIG. 13A, FIG. 13A, FIG. It illustrates an angular lift type fused wing 20 having a structure of an extended return variable slide-type compound wing that is extended to.
  • Fig. 13 (c) (d) is fixed to act as a narrow inner blade axis is fixed, the wide outer wings that are installed so as to be wrapped around the outside is also equipped with a pneumatic or hydraulic cylinder Piston drive is to show the variable lift type variable fusion wing 20 of variable length to be expanded or reduced.
  • a function of the present invention and the variable lift type fusion wing 20 and its effect is shown in FIG. 2019/212066 1 »(: 1 ⁇ 1 ⁇ 2018/005007
  • FIG. 14 is a general conceptual view of the variable lift type fusion wing, which can be applied to various types of transportation to be described below.
  • variable lift type fusion blade (20) is arranged in a row on the outer wall surface of the individual wings of the fan having a plurality of wings radially arranged around the rotating body
  • Each of these blades is then subject to each transformation so that it can selectively provide as much lift (or buoyancy) and anti-lift (anti-buoyancy) as needed.
  • the curve of the object having a lifting force (or buoyancy), anti-lift force (half buoyancy), and mobility to the body such as ships, trains, and automobiles It can also be applied to the wing of the antigen core force, the antigen core force is to control the force of the fuselage side.
  • the long angular lift lifting fusion wing 20 lying horizontally on the basis of the drawing is to adjust the angle in the vertical direction by adjusting the angle
  • the small wings standing vertically ( 50) is to minimize the centrifugal force in the curve section by adjusting the angle
  • the angular lift control type fusion wing (20) and the small wing (50) in front of and behind the car is a very effective device.
  • the lift when a load is exceeded due to a large load on a vehicle, the lift can be increased to lighten the vehicle, and on a rain or ice road, the vehicle can be stably operated by increasing the anti-lift force (grounding force).
  • the wing of the antigen will catch the jungle of curves on the icy road, which will be a great help in winter or rain. 2019/212066 1 »(: 1 ⁇ 1 ⁇ 2018/005007
  • variable lift type fusion wing 20 is the train The outer side of the upper side, or may be arranged in plurality on both sides of the outer side. Then, when the fuselage (10 ') of the vehicle or vehicle (10') moves along the ground or rail, the lift or anti-lift (ground force) can be provided through the angle adjustment of the variable lift type fusion wing (20). It is.
  • the fuselage 10' when the lifting force is provided to the fuselage 10 'of the vehicle through the variable lift type fusion wing 20, the fuselage 10' has a slight flotation effect when moving along the ground or the rail. As expected, even if a lot of cargo is loaded or there are many tower approval sources, the movement can be made smoothly while reducing fuel consumption.
  • the buoyancy effect of the fuselage (10 ') by the angular lift control type fusion wing (20) does not mean completely falling from the ground or rail, the wheel provided at the bottom of the fuselage (10') To minimize contact pressure.
  • the fuselage 10 'of the vehicle when the anti-lift (grounding force) is provided to the fuselage 10 'of the vehicle through the variable lift type fusion wing 20, the fuselage 10' is moved along the ground or rail. As the contact force with the ground or the rail increases, the fuselage 1 can stably move along the ground or the rail.
  • grounding force grounding force
  • the vehicle is a fuselage (10 1 ), such as a train or a car as described above, as shown in ( 3 ), 4 of Fig. 19 attached to the outer upper side or both sides of the outer body of the fuselage (1) antigen core force It can be configured to arrange the centrifugal force control blades 50 for providing, the centrifugal force control blades 50 are configured alone or perpendicular to the variable lift type fusion wing 20 as shown in Figure 16 You can do it.
  • the centrifugal force control wing 50 is to minimize the centrifugal force by adjusting the angle when the body 10 'of a vehicle or a vehicle such as a train or a vehicle moves along a curved road, a rain road or an ice road, and thus a train or a car.
  • the fuselage of the vehicle (10 ') is to be able to move stable on curves, rain or ice roads.
  • variable lift type fusion wing 20 when the vehicle is a fuselage (10'_) of the vessel (for example, large or small vessel), as shown in Figures 17 and 18 attached, the variable lift type fusion wing 20 may be arranged in plural on both sides of the outer bottom of the vessel, the wing drive shaft portion 20 of the variable lift type fusion wing 20 is the angle to provide a semi-buoyancy Is connected to the drive unit 30 to drive to adjust, the drive unit 30 is also configured to adjust the angle of the variable lift type fusion wing according to the water flow information detected by the water flow detection unit.
  • ballast water Bal last Water
  • the fuselage (10 '') selects the flotation or half-lift effect when moving along the water surface
  • the fuel consumption can be reduced while moving smoothly 2019/212066 1 »(: 1 ⁇ 1 ⁇ 2018/005007
  • variable lift type fusion wing 20 serves to lift the fuselage 10 "so that the ski slides on the surface of the water to minimize water resistance. It is.
  • the buoyancy force that is, the reception force with the water surface to the fuselage (10 '') through the variable lift type fusion wing (20)
  • the cargo or passengers to the fuselage (10 '') When the load is reduced while being small, the reduced load prevents the fuselage (10 ") from falling too much from the water surface and overturning.
  • the anti-buoyancy (receiving force) is provided to the fuselage (10 ") through the variable lift type fusion wing (20), when the fuselage (10") moves along the water surface, As the contact force increases, the fuselage 10 'can move stably along the surface of the water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Ocean & Marine Engineering (AREA)
  • Wind Motors (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

The present invention provides third-generation aircraft, ship, train and automobile having angle-variable lift force adjusting wings. The present invention comprises: a fuselage; angle-variable lift force adjusting compound wings which are disposed on both lateral parts of the upper part of the fuselage and of which the angle is adjusted about a wing drive shaft portion so as to provide the fuselage with a lift force or a reversed lift force opposite from the lift force; and a driving unit which is for driving the angle-variable lift force adjusting compound wings so as to adjust same about the wing drive shaft portion in an angle for providing a lift force or an angle for providing a reversed lift force. The present invention enables the adjustment and control of the anti-centrifugal force by means of erecting the wings vertically, and thus enables safe operation even in case of sudden weather changes or unexpected situations and enables stable takeoff and landing in a short taxiing distance.

Description

2019/212066 1»(:1^1{2018/005007  2019/212066 1 »(: 1 ^ 1 {2018/005007
1  One
【명세서】 【Specification】
【발명의 명칭】  [Name of invention]
변각형 양력 조절방식의 날개를 장착한 제 3세대 항공기와 선박 및 열차 그리 고 자동차  Third-generation aircraft, ships, trains, and cars with variable lift vanes
【기술분야】  Technical Field
본 발명은 항공기, 선박, 열차, 자동차와 같은 운송수단에 변각형 양력 조절 방식의 날개를 장착하는 기술에 관한 것으로, 보다 상세하게는 항공기, 선박, 열 차, 자동차 중 어느 하나에 양력, 반양력, 그리고 항원심력이 선택적으로 적용되는 변각형 양력 조절방식의 날개를 장착하여 줌으로서, 항공기, 선박, 열차, 그리고 자동차의 기능 한계와 악천후 등의 변수에 대응하지 못하는 취약점을 보완할 수 있 도록 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 항공기와 선박 및 열차 그리고 자동차에 관한 것이다.  The present invention relates to a technique for mounting a wing of a variable lift type on a vehicle, such as an aircraft, a ship, a train, a car, and more specifically, lift, anti-lift on any one of the aircraft, ship, train, car And, by attaching a variable lift control wing that is selectively applied by the antigenic force, it can compensate for the weakness that cannot cope with variables such as the limitations of the aircraft, ships, trains, and automobiles and the functional limitations and bad weather. A third generation aircraft, ships, trains and automobiles equipped with angular lift control wings.
【배경기술】  Background Art
일반적인 활주로 방식의 항공기는 첨부된 도 3의 (가)에서와 같이 동체 ( 100) 에 주 날개 (200)가 고정되어 있고, 상기 주 날개 (200)의 뒷부분에 있는 수평 타 (201)에 의해 이륙과 착륙 또는 고도를 조절하는 것이다.  In a conventional runway type aircraft, the main wing 200 is fixed to the fuselage 100 as shown in FIG. 3A, and taken off by a horizontal rudder 201 at the rear of the main wing 200. And to control landing or altitude.
하지만 본 발명의 기술을 적용한 항공기는 날개와 수평타의 기능을 하나로 결합한 융합형 날개를 통해 수평타의 기능을 동시에 수행할 수 있도록 한 것이며, 따라서 본 발명을 특정 지어 본다면 변각형 양력 조절식 날개 = 날개 + 수평타 라 는 공식이 성립되는 것이다. 이같이 항공기 날개에 최초로 연의 원리를 적용하여 각각의 날개에 연의 상승 이론이 적용될 수 있도록 한 것이다. 2019/212066 1»(:1^1{2018/005007 However, the aircraft to which the technology of the present invention is applied is capable of simultaneously performing the function of the horizontal rudder through a fused wing that combines the functions of the wing and the horizontal rudder into one. Therefore, if the present invention is specified, the variable lift type wing = wing + The horizontal tar is a formula. Thus, the first application of the principle of the kite to the wing of the aircraft, so that the rise theory of the kite can be applied to each wing. 2019/212066 1 »(: 1 ^ 1 {2018/005007
2 즉, 종래의 항공기는 동체 ( 100)에 주 날개 (200)가 고정되어 있어 첨부된 도 2 및 도 5의 (가)에서와 같이 일정길이의 활주로에 정해진 이착륙 각 (1?1)으로 이륙 과 착륙을 수행하게 되는 것이며, 그러므로 수시로 바뀌는 바람의 방향과 안개나 구름 또는 야간에 공항 관제소 등의 지시용 기기에 문제가 생겼을 경우 또는 항공 기 자체의 사사로운 고장에 의해서도 이착륙에 빈번한 위험과지장을초래하였다. 또한, 종래의 항공기 ( 100)는 불필요한 긴 주 날개 (200)로 인하여 공항 대기 면적을 넓게 차지하였고, 수리나 보관 등의 이유로 격납고에 입고시에 많은 불편함 이 있었다.  In other words, the conventional aircraft has a main wing 200 fixed to the fuselage 100, and take off at a takeoff and landing angle (1 to 1) defined on a runway of a predetermined length as shown in FIGS. 2 and 5 (a). It is also possible to carry out frequent landings and landings, and if there is a problem with the direction of the wind, the fog, clouds, or other indication devices such as airport control stations at night, or if the aircraft breaks down on its own, Caused. In addition, the conventional aircraft 100 occupies a large area of the airport due to the long main wing 200 unnecessary, there was a lot of inconvenience when wearing in the hangar for reasons such as repair or storage.
또한, 종래의 항공기는 90% 이상의 양력을 주 날개 (200)에서 부담하기 때문 에 주 날개 (200)와 동체 ( 100)의 한정된 부분에 양력이 편중되므로 양력 불균형을 일으켜, 동체 안정성을 주 날개에 의존함으로써 30% 이상의 날개 파손시 추락과 같 은 심각한상황을 불러올수 있다.  In addition, the conventional aircraft bears more than 90% of the lift on the main wing 200, so that lift is concentrated on a limited portion of the main wing 200 and the fuselage 100, causing lift imbalance, and the fuselage stability to the main wing. By relying on more than 30% of the vandals, a serious situation such as a fall can occur.
또한, 종래의 항공기는 또 다른 문제점으로서, 이륙시에 항공기 동체를 비스 듬한 각도 (모1)로 기울이며 상승하게 되므로 승객이 느끼는 불편한 자세와 화물기의 경우에는 화물 안정성에 큰 영향을 미칠 수 있다.  In addition, the conventional aircraft as another problem, since the aircraft body tilts at an oblique angle (Mo 1) at take-off, it may have a great impact on the cargo stability in the case of an uncomfortable posture and a cargo plane that the passenger feels.
뿐만 아니라, 종래의 항공기는 거의 모든 양력을 주 날개 (200)가 부담하여야 하므로 승객이나 화물의 수용 능력과 직결되는 동체의 길이 확장에 한계가 있었고, 고도 조절은 수평타 (201)가 담당하기 때문에 급상승 또는 급하강과 급감속이 불가 능하였던 까닭에 항공기 이착륙을위한활주로를 길게 조성할수 밖에 없었다.  In addition, the conventional aircraft had to bear almost all the lift to the main wing 200, so there was a limit to the length of the fuselage, which is directly connected to the capacity of passengers or cargo, because the altitude control 201 is in charge Because of the impossibility of soaring or descending and decelerating, the runway had to be made long for takeoff and landing.
한편, 자동차나 열차와 같은 운송수단은 변각형 양력 조절방식의 날개가 마 련되어 있지 않으므로, 승객과 화물에 따라 하중이 증가할 경우 그 하중으로 인해 연료가 과다하게 소모됨은 물론, 증가된 하중이 자동차나 열차의 바퀴에 전달되면 서 파손되는 단점을 가지고 있으며, 빗길이나 빙판길 또는 커브길에서는 밀림현상 이 초래되면서 안정적인 주행이 어려워지는 문제점을 가지고 있었다. On the other hand, vehicles such as cars and trains are not equipped with variable lift type wings, so if the load increases according to passengers and cargo, In addition to the excessive consumption of fuel, the increased load is transmitted to the wheels of cars or trains, and has the disadvantage of being damaged. .
또한, 선박과 같은 운송수단은 밸러스트 탱크 (Bal last Tank)를 적용하여 안 정적인 운항이 가능하도록 하였지만, 이 또한 변각형 양력 조절방식의 날개가 마련 되어 있지 않으므로, 상기 밸러스트 탱크에 채워지는 밸러스트 수 (Bal last Water) 에 의해 전체적인 하중이 증가하면서 연료 소비량이 많아지고, 특히 밸러스트 수의 배출로 인한환경오염 문제가 대두되고 있는 실정이다.  In addition, a vehicle such as a vessel is applied to the ballast tank (Bal last Tank) to enable a stable operation, but this also does not have a variable lift type wing, the number of ballast filled in the ballast tank As the overall load increases due to (Bal last Water), fuel consumption increases, and in particular, environmental pollution caused by the discharge of ballast water is emerging.
【발명의 상세한설명】  Detailed Description of the Invention
【기술적 과제】  [Technical problem]
따라서, 본 발명은 상기와 같은 종래의 문제점을 개선하기 위한 것으로, 운 송수단으로서 항공기, 선박, 열차, 자동차에 각각 변각형 양력 조절방식의 날개를 장착함으로써, 날개의 각도 조절을 통해 양력이나 반양력을 제공할 수 있도록 하 며, 이를 통해 항공기, 선박, 열차, 자동차와 같은 운송수단을 이용하는 승객에게 는 안정된 이동성을 제공하고, 적재되는 화물 역시 안정적으로 수동할 수 있도록 하려는 것이며, 더 나아가 이동에 따른 연료를 현저하게 절감시킬 수 있는 변각형 양력 조절방식의 날개를 장착한 제 3세대 항공기와 선박 및 열차 그리고 자동차를 제공함에 그 목적이 있는 것이다.  Therefore, the present invention is to improve the conventional problems as described above, by mounting the wing of the variable lift type on each aircraft, ship, train, car as a means of transportation, lift or half by adjusting the angle of the wing It is to provide lift and provide stable mobility for passengers using vehicles such as aircraft, ships, trains and automobiles, and to ensure that the loaded cargo is also stable and manual. Its purpose is to provide third-generation aircraft, ships, trains and automobiles equipped with variable lift lifts that can significantly reduce fuel consumption.
다시말해, 본 발명이 항공기 동체에 적용되는 경우, 수평 이착륙을 가능케 함으로써 승객과화물을 더욱 안전하게 보호할수 있도록 하려는 것이다.  In other words, when the present invention is applied to the aircraft fuselage, it is possible to make the horizontal landing and landing more safe for passengers and cargo.
본 발명의 다른 목적으로는, 항공기와 선박 및 열차그리고 자동차에 항원심 력을 제공하는 날개를 구성함으로써, 항공기와 선박 및 열차 그리고 자동차의 커 브 (curve) 이동시 밀림을 방지할 수 있도록 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 항공기와선박 및 열차그리고 자동차를 제공하려는 것이다. In another object of the present invention, antigens in aircraft, ships, trains and automobiles 3rd generation aircraft, ships, trains and vehicles equipped with angular lift-controlled wings to prevent thrust during aircraft, ships and trains, and the vehicle's curve movement by constructing the wing providing the force. Is to provide.
본 발명의 또 다른 목적은, 동체 전체에 길이방향을 따라 균등한 양력분포를 제공하고 이를 통해 날개부에 집중되는 양력 편중현상을 해소하여, 날개의 일부가 손상되더라도 심각한 안전사고를 방지할수 있도록 하려는 것이다.  Another object of the present invention is to provide a uniform lifting distribution along the longitudinal direction of the entire body and thereby to eliminate the lifting bias concentration concentrated on the wing, to prevent serious safety accidents even if some of the wings are damaged. will be.
본 발명의 또 다른 목적은, 거의 모든 양력을 부담하고 있던 주 날개의 위치 와 크기를 변경하여 분산 배치함으로써, 승객이나 화물의 수용 능력과 직결되는 동 체의 길이를 필요에 따라용이하게 확장할수 있도록 하려는 것이다.  Another object of the present invention, by changing the position and size of the main wing that was responsible for almost all lift, by distributing it so that the length of the fuselage directly connected to the capacity of passengers or cargo can be easily extended as needed. I will.
본 발명의 또 다른 목적은, 자동차나 열차와 같은 운송수단에 적용되는 경 우, 변각형 양력 조절방식의 융합날개를 통해, 승객과 화물에 따라 하중이 증가하 더라도 증가된 하중으로 인하여서 자동차나 열차의 바퀴가 쉽게 파손되는 문제점을 해소하며, 빗길이나 빙판길 또는 커브길 등 열악한 주행 환경에서도 밀림현상이 효 과적으로 방지되는 안정성이 확대된 운송수단을 제공하려는 것이다.  Another object of the present invention, when applied to a vehicle such as a car or train, through the fused wing of the variable lift control system, even if the load increases according to the passengers and cargo, due to the increased load To solve the problem that the wheels of the train is easily damaged, and to provide a vehicle with improved stability that effectively prevents the jungle even in bad driving conditions such as rain roads, ice roads or curves.
본 발명의 또 다른 목적은, 선박에 적용시 밸러스트 탱크 (Bal last Tank)를 대체하여 통상의 밸러스트 탱크에 채워지는 밸러스트 수 (Bal last Water )에 의해 전 체적으로 증가되는 하중 만큼의 승객 또는 화물을 추가로 수송할 수 있도록 하며, 특히 밸러스트 수의 배출로 인한환경오염 문제를 해소하려는 것이다.  Another object of the present invention is to replace a ballast tank when applied to a ship, and to carry a passenger or cargo by a load that is generally increased by the ballast water filled in a conventional ballast tank. It is intended to provide additional transport, and in particular to solve the environmental pollution problem caused by the discharge of ballast water.
다시말해, 물고기가 물속을 헤엄치듯 새와 나비도 대기속을 헤엄치는 것이 다. 그러므로 인간이 만든 육상 운송기관이나 항공기 또는 심지어 미사일이나 로켓 마저도 운동성을 가지고 있다면 공기의 흐름과 저항에서 자유롭지 않다. 그래서 본 발명자는 자유로울 수 없다면 이용을 하는 방안을 찾아 공기와 물의 저항을 내가 원하는 유리한 방향으로 최대한 유도를 해서 최상의 효과를 내자고 노력하였으며, 그 결과본 발명에 이른 것이다. In other words, as fish swim in the water, birds and butterflies swim in the atmosphere. Therefore, even man-made land vehicles, aircraft, or even missiles and rockets are not free from air flow and resistance if they are motility. So seen The inventors have tried to make the best effect by finding the way to use if not free and inducing the resistance of air and water as much as possible in the desired direction. As a result, the present invention has been reached.
【기술적 해결방법】  Technical Solution
상기한 목적들을 달성하기 위한 본 발명의 변각형 양력 조절방식의 날개를 장착한 제 3세대 항공기는, 동체; 상기 동체의 양측부 또는 상부에 좌우 쌍을 이루 며 적어도 2개 이상 연속되게 배치되며, 상기 동체에 양력 또는 상기 양력과 반대 되는 반양력을 제공하도록 날개 중심에 위치하는 날개구동축부를 기준으로 각도 조 절가능하게 설치되어, 날개의 기능과 수평타의 기능을 동시에 수행하는 변각형 양 력조절방식 융합날개; 및, 상기 날개구동축부를 중심으로 양력 또는 반양력을 제공 하는 각도로 상기 변각형 양력조절방식 융합날개를 기울임 구동하는 구동부; 를 포 함하며, 상기 변각형 양력조절방식 융합날개는, 유선형 단면의 일반적인 항공기 날 개 형상을 가짐으로써 양력을 생성하게 되는 날개몸체를 가지고 있고, 상기 날개몸 체의 전방과 후방에는 바람가름판 (wind dividor)과 바람누름판 (wind pressor)을 각 각 연장되게 설치하되, 상기 바람가름판 (wind dividor )과 바람누름판 (wind pressor)은 상기 날개구동축부를 통과하는 선 상에 위치하는 동시에 상기 날개몸체 의 선,후단을 연결하는 직선 상에 놓여진 평판형으로 설치하여, 유선형 날개몸체가 최소 단면을 유지하면서도 고각도 이착륙시 증대된 양력을 제공할 수 있도록 구성 함을 특징으로 한다.  A third generation aircraft equipped with a wing of the variable lift type of the present invention for achieving the above object, the fuselage; The left and right pairs are arranged on both sides or the upper portion of the fuselage at least two or more consecutively, and the angle is adjusted based on the wing drive shaft located at the center of the wing to provide the lift or anti-lift force opposite to the lift force. It is possible to install, the variance lift type fusion wing to perform the function of the wing and the horizontal stroke at the same time; And a driving unit for tilting the variable lift type control fusion blade at an angle providing lifting or anti-lifting force around the wing driving shaft. The variable lift type fusion wing includes a wing body that generates lift by having a general aircraft wing shape with a streamlined cross section, and a windscreen in front and rear of the wing body ( A wind dividor and a wind pressor are installed to extend, respectively, wherein the wind dividor and the wind pressor are positioned on a line passing through the wing driving shaft and at the same time. It is installed in the form of a flat plate placed on a straight line connecting the front and rear end, characterized in that the streamlined wing body is configured to provide increased lift during high angle takeoff and landing while maintaining a minimum cross section.
본 발명의 항공기에 있어서, 좌우 쌍을 이루며 적어도 2개 이상이 연속되게 배치되는 상기 변각형 양력조절방식 융합날개는, 동체의 양측에 전방으로부터 후미 2019/212066 1»(:1^1{2018/005007 In the aircraft of the present invention, the angular lift type fusion wing which is arranged in a pair of left and right, at least two or more consecutively, the rear from the front to both sides of the fuselage 2019/212066 1 »(: 1 ^ 1 {2018/005007
6 에 이르기까지 균등하게 설치되어 양력을 동체 전구간에 고르게 분배함으로써, 동 체가수평으로 이착륙 할수 있도록 구성할수 있다.  It can be installed evenly up to 6 to distribute the lift evenly among the fuselage, so that the fuselage can take off and land horizontally.
본 발명의 항공기에 있어서, 상기 구동부는 복수로 배치되는 상기 변각형 양 력조절방식 융합날개의 각도를 동일한 각으로 동시에 조절하도록 상기 변각형 양력 조절방식 융합날개의 날개구동축부와 연결체로 연결 구성할수 있다.  In the aircraft of the present invention, the drive unit may be configured to be connected to the wing drive shaft portion and the connecting member of the variable lift type fusion fusion blade to adjust the angle of the variable lift type fusion fusion blade disposed at the same time at the same angle. have.
본 발명의 항공기에 있어서, 상기 구동부는 복수로 배치되는 상기 변각형 양 력조절방식 융합날개의 전후 또는 좌우 각도를 개별적으로 조절하도록 상기 변각형 양력조절방식 융합날개의 날개구동축부에 각각 1 : 1로구성할 수 있다.  In the aircraft of the present invention, each of the drive unit 1: 1 to each of the wing drive shaft portion of the variable lift type fusion fusion blade to individually adjust the front, rear, left and right angles of the variable lift type fusion wing is arranged in plurality. It can be configured as
본 발명의 항공기에 있어서, 상기 구동부는 풍향감지부에 의해 감지되는 풍 향 및 풍속 정보에 따라 상기 변각형 양력조절방식 융합날개의 각도를 조절하도록 구동할수 있다.  In the aircraft of the present invention, the drive unit may be driven to adjust the angle of the variable lift type fusion wing according to the wind direction and wind speed information detected by the wind direction detection unit.
본 발명의 항공기에 있어서, 상기 동체의 양측부에 복수로 배치되는 상기 변 각형 양력조절방식 융합날개는동일 수평라인에 배치할수 있다.  In the aircraft of the present invention, the variable lift control type fusion blades disposed on both sides of the fuselage may be arranged on the same horizontal line.
본 발명의 항공기에 있어서, 상기 동체의 양측부에 복수로 배치되는 상기 변 각형 양력조절방식 융합날개는 계단형으로 배치할수 있다.  In the aircraft of the present invention, the variable lift control type fusion vanes disposed in plural on both sides of the fuselage may be disposed in a stepped manner.
본 발명의 항공기에 있어서, 상기 동체의 양측부에 복수로 배치되는 상기 변 각형 양력조절방식 융합날개는 상하측으로 서로 교차되는 지그재그형으로 배치할 수 있다.  In the aircraft of the present invention, the angular lift type control fusion wings disposed in a plurality on both sides of the fuselage can be arranged in a zigzag form that crosses each other up and down.
본 발명의 항공기에 있어서, 상기 동체의 양측부에 복수로 배치되는 상기 변 각형 양력조절방식 융합날개는 전방측으로부터 후방측으로 배치되는 순서에 따라 그 날개의 폭과 길이가 점진적으로 확장되도록 구성하여, 전방 날개에서 발생되는 와류 또는 파류에 의한 간섭류를 최소화 한다. In the aircraft of the present invention, the variable lift control type fusion wing disposed in a plurality of both sides of the fuselage is configured to gradually expand the width and length of the wing in the order arranged from the front side to the rear side, From the front wing Minimize interference caused by vortices or waves.
본 발명의 항공기에 있어서, 상기 동체의 양측부에 복수로 배치되는 상기 변 각형 양력조절방식 융합날개의 사이 사이에는 간섭류를 방지하도록 각도 조절이 이 루어지지 않는 고정형 날개를 더 배치 구성하여, 인접한 변각형 양력조절방식 융합 날개의 각도 제어를 통한 방향타 역활을 수행하는 동시에, 변각형 양력조절방식 융 합날개 이상 발생시 기본 양력을 유지하도록 함으로써 비행 안정성을 확보할 수 있 도록 하는 것이다.  In the aircraft of the present invention, between the angular lift type fusion fusion blades disposed on both sides of the fuselage is further arranged to form a fixed wing that is not angle adjustment to prevent interference flow, The variable lift control method is to ensure the flight stability by performing the rudder role through the angle control of the fusion wing and to maintain the basic lift in the event of the abnormal lift type fusion wing.
본 발명의 항공기에 있어서, 상기 동체의 양측부에 복수로 배치되는 상기 변 각형 양력조절방식 융합날개는, 동체 외벽에 고정된 형태로 부착되는 고정날개부 외측에, 변각날개부가 회전각 조절 가능하게 설치되어 하나의 단위 복합날개를 이 루도록 구성할 수 있는데, 상기 단위 복합날개는 동체에 직각방향으로 설치되는 동 체 대비 수직형 구조이거나, 동체에 일정한 경사각으로 기울여 설치되는 동체 대비 뒤쪽 밀림형 구조가선택적으로 적용된다.  In the aircraft of the present invention, the variable lift type fusion wing disposed in a plurality of sides of the fuselage, outside the fixed wing is attached to the fixed form on the fuselage outer wall, the angle wing is adjustable angle of rotation It can be configured to form a single unit compound wing, the unit compound wing is a vertical structure compared to the fuselage installed at right angles to the fuselage, or a rear push-type structure compared to the fuselage installed at an inclined angle to the fuselage Is optionally applied.
본 발명의 항공기에 있어서, 상기 동체의 양측부에 복수로 배치되는 상기 변 각형 양력조절방식 융합날개는, 하나의 독립된 날개에 길이방향을 따라 고정날개부 와 변각날개부를 반복되게 설치한단위 복합날개가 적용될 수 있다.  In the aircraft of the present invention, the angular lift type control type fusion wing disposed in a plurality on both sides of the fuselage, a unit composite wing repeatedly installed fixed blade portion and angular wing portion along the longitudinal direction on one independent wing Can be applied.
본 발명의 항공기에 있어서, 상기 단위 복합날개는 동체 외벽에 고정된 형태 로 부착되는 고정날개부와 그 외측에 변각날개부가 회전각 조절 가능하게 설치된 바깥형 (outer type) 복합날개이거나, 변각날개부가 서로 이격되게 설치되는 두 개 의 고정날개부 사이에 위치하도록 배열된 중간형 ( Intermediate type) 복합날개, 또 는 변각날개부가 고정날개부 내측에 위치하도록 설치된 안쪽형 ( inner type) 복합날 2019/212066 1»(:1^1{2018/005007 In the aircraft of the present invention, the unit compound wing is an outer type composite wing installed in the fixed wing portion fixed to the outer wall fixed to the fuselage and the outer wing portion is adjustable in the rotation angle (outer type), or the angle wing portion Intermediate type compound blades arranged to be located between two fixed blade parts spaced apart from each other, or inner type compound blades installed so that the angled wing parts are located inside the fixed wing parts. 2019/212066 1 »(: 1 ^ 1 {2018/005007
8 개 중 어느 하나가 선택적으로 적용될 수 있다.  Any one of eight may be selectively applied.
본 발명의 항공기에 있어서, 상기 동체의 양측부에 복수로 배치되는 상기 변 각형 양력조절방식 융합날개는 , 하나의 독립된 날개가 길이방향으로 확장되는 확장 복귀식 가변 슬라이드형 복합날개의 구조가 적용될 수 있는데, 이때 상기 가변 슬 라이드형 복합날개는 광폭의 내측날개가 고정되어 있고 이에 수용되는 좁은 폭의 외측날개가 공압 또는 유압실린더를 갖춘 피스톤 방식으로 구동되어 내측날개의 선 단으로부터 펼쳐지거나 축소되는 길이 가변형의 융합날개이거나, 고정되어 있는 좁 은 폭의 내측날개가 축으로 작용하도록 고정되어 있고 그 외측을 감싸며 펼쳐짐 가 능하게 설치되는 광폭의 외측날개가 공압 또는 유압실린더를 갖춘 피스톤 방식으로 구동되어 펼쳐지거나 축소되는 길이 가변형의 융합날개중 어느 하나가 선택적으로 적용될 수 있다.  In the aircraft of the present invention, the variable lift type fusion wing disposed in both sides of the fuselage, can be applied to the structure of the expansion return type variable slide composite wing in which one independent wing is extended in the longitudinal direction. In this case, the variable slide type composite wing is a length in which the inner blade of the wide width is fixed and the narrow outer wing accommodated therein is driven in a piston manner with a pneumatic or hydraulic cylinder to expand or contract from the tip of the inner blade. It is a variable fusion wing, or a narrow inner blade that is fixed to act as an axis, and a wide outer wing that is installed so as to be wrapped around the outside is driven and expanded by a piston method with a pneumatic or hydraulic cylinder. Either of the reduced length variable fusion wings is selectively Can be used.
본 발명의 항공기에 있어서, 상기 변각형 양력조절방식 융합날개의 양력 제 공을 위한 각도는 수평라인을 기준으로 상방향으로 43° 내지 87° 의 범위내에서 조 절할 수 있는 것으로서, 활주거리를 최소화하기 위하여는 85° 내지 87° 의 범위내 에서 조절함이 더욱 바람직하다. In the aircraft of the present invention, the angle for the lifting of the variable lift control type fusion wing is adjustable in the range of 43 ° to 87 ° in the upward direction with respect to the horizontal line, minimizing the running distance In order to achieve this, it is more preferable to adjust the temperature in the range of 85 ° to 87 ° .
본 발명의 항공기에 있어서, 상기 변각형 양력조절방식 융합날개의 반양력 제공을 위한 각도는 수평라인을 기준으로 하방향으로 13° 내지 15° 의 범위내에서 조절할 수 있다. In the aircraft of the present invention, the angle for providing a semi-lift force of the variable lift type fusion wing can be adjusted within the range of 13 ° to 15 ° in the downward direction based on the horizontal line.
본 발명의 항공기에 있어서, 상기 항공기의 후방측에는 하나 이상의 엔진부 와 분사구를 구성할 수 있으며, 여러개의 엔진 중 적어도 하나는 동체 후미의 중앙 에 위치하도록 설치된다. 2019/212066 1»(:1^1{2018/005007 In the aircraft of the present invention, the rear side of the aircraft can be configured with one or more engine parts and injection holes, at least one of the plurality of engines is installed to be located in the center of the fuselage rear. 2019/212066 1 »(: 1 ^ 1 {2018/005007
9 본 발명의 항공기에 있어서, 상기 엔진부는 상하좌우로 360° 의 회전각을 가 지는 원뿔 형상의 엔진분사구를 가지게 된다. 9 In the aircraft of the present invention, the engine unit has a cone-shaped engine injection hole having a rotation angle of 360 ° up, down, left and right.
상기한목적들을 달성하기 위한 본 발명이 열차에 적용되는 경우, 변각형 양 력 조절방식의 날개를 장착한 제 3세대 열차는, 동체; 상기 동체의 양측부 또는외 부측상부에 좌우 쌍을 이루며 적어도 2개 이상이 연속되게 배치되며, 상기 동체에 양력 또는 상기 양력과 반대되는 반양력을 제공하고, 날개구동축부를 중심으로 각 도가조절되어, 양력을 통해 동체 안정성을 제공하는 동시에, 반양력을 통해 동체 와 레일간 간극을 항상 일정하게 유지시켜 주게 되는 변각형 양력조절방식 융합날 개 ; 상기 동체의 외부측상부또는 외부측 양측부에는 항원심력을 제공하기 위한 원심력 제어 날개; 및 상기 변각형 양력조절방식 융합날개 및 상기 원심력 제어 날 개가상기 날개구동축부를 중심으로 양력을 제공하는 각도 또는 반양력을 제공하는 각도로 조절되도록 구동하는구동부; 를 포함하는 것을 특징으로 한다.  When the present invention for achieving the above objects is applied to a train, a third generation train equipped with a wing of the variable lift type, the fuselage; At least two of the left and right pairs are arranged continuously on both sides of the fuselage or on the outer side of the fuselage, providing lift to the fuselage or anti-lift force opposite to the lift force, and the angle is adjusted around the wing drive shaft. Variable lift control fusion blades that provide fuselage stability through lift and always maintain constant gap between fuselage and rail through anti-lift; Centrifugal force control blades for providing the antigenic core force on the outer side or the outer side of the body; And a driving part configured to drive the variable lift control type fusion blade and the centrifugal force control blade to be adjusted at an angle for providing lift or an angle for providing a semi-lift force about the wing drive shaft. Characterized in that it comprises a.
이같은 본 발명의 열차에 있어서, 좌우 쌍을 이루며 적어도 2개 이상이 연속 되게 배치되는 상기 변각형 양력조절방식 융합날개는, 동체의 전방으로부터 후미에 이르기까지 균등하게 설치되어 양력을 동체 전구간에 고르게 분배하게 된다.  In the train of the present invention, the angular lift control type fusion wing which is arranged in a pair of left and right and at least two are consecutively installed, evenly installed from the front to the rear of the fuselage to distribute the lift evenly between all the fuselage. do.
본 발명의 열차에 있어서, 상기 구동부는 복수로 배치되는 상기 변각형 양력 조절방식 융합날개의 각도를 동시에 조절하도록상기 변각형 양력조절방식 융합날 개의 날개구동축부와 연결체로 연결 구성할수 있다.  In the train of the present invention, the drive unit may be configured to be connected to the wing drive shaft portion and the connecting portion of the variable lift type fusion fusion blade to adjust the angle of the variable lift type fusion fusion blade disposed in a plurality.
본 발명의 열차에 있어서, 상기 구동부는 복수로 배치되는 상기 변각형 양력 조절방식 융합날개의 각도를 개별적으로 조절하도록 상기 변각형 양력조절방식 융 합날개의 날개구동축부에 각각 1 : 1로 구성할수 있다. 2019/212066 1»(:1^1{2018/005007 In the train of the present invention, the drive unit may be configured to be 1: 1 each of the wing drive shaft portion of the variable lift type fusion fusion blade to individually adjust the angle of the variable lift type fusion fusion blade disposed in a plurality. have. 2019/212066 1 »(: 1 ^ 1 {2018/005007
10 본 발명의 열차에 있어서 , 상기 구동부는 풍향감지부에 의해 감지되는 풍향 및 풍속 및 풍속 정보에 따라상기 변각형 양력조절방식 융합날개의 각도를 조절하 도록 구동하는 것이다.  In the train of the present invention, the driving unit is to drive to adjust the angle of the variable lift type fusion wing according to the wind direction and wind speed and wind speed information detected by the wind direction detection unit.
본 발명의 열차에 있어서, 상기 동체의 양측부 또는 외부측상부에 복수로 배치되는 상기 변각형 양력조절방식 융합날개는 동일 수평라인에 배치될 수 있다. 본 발명의 열차에 있어서, 상기 동체의 양측부또는 외부측 상부에 복수로 배치되는 상기 변각형 양력조절방식 융합날개는 계단형으로 배치될 수 있다.  In the train of the present invention, the variable lift type fusion wing disposed in a plurality on both sides or the outer side of the fuselage may be arranged in the same horizontal line. In the train of the present invention, the variable lift type fusion wing disposed in plurality on both sides or the outer side of the fuselage may be arranged in a stepped manner.
본 발명의 열차에 있어서, 상기 동체의 양측부 또는 외부측 상부에 복수로 배치되는 상기 변각형 양력조절방식 융합날개는 상하측으로서로 교차되는 지그재 그형으로 배치될 수 있다.  In the train of the present invention, the variegated lift control type fusion wing disposed in a plurality on both sides or the outer side of the fuselage may be arranged in a zigzag shape to cross up and down.
본 발명의 열차에 있어서, 상기 원심력 제어 날개는상기 변각형 양력조절방 식 융합날개에 수직하게 구성할수 있다.  In the train of the present invention, the centrifugal force control blade can be configured perpendicular to the variable lift type fusion wing.
상기한목적들을 달성하기 위한본 발명이 자동차에 적용되는 경우, 동체; 상기 동체의 전.후방측에 배치되며, 상기 동체에 양력 또는 상기 양력과 반대되는 반양력을 제공하고, 날개구동축부를 중심으로 각도가조절되어, 양력을 통해 동체 안정성을 제공하는 동시에, 반양력을통해 동체와 도로면과의 거리를 항상 일정하 게 유지시켜 주게 되는 변각형 양력조절방식 융합날개; 상기 동체의 외부측 상부 또는 외부측 양측부에는 항원심력을 제공하기 위한 원심력 제어 날개; 및 상기 변 각형 양력조절방식 융합날개 및 상기 원심력 제어 날개가상기 날개구동축부를 중 심으로 양력을 제공하는 각도또는 반양력을 제공하는 각도로 조절되도록 구동하는 구동부; 를 포함하는 것을특징으로 한다. 2019/212066 1»(:1^1{2018/005007 When the present invention is applied to a motor vehicle for achieving the above objects, a fuselage; It is disposed on the front and rear sides of the fuselage, and provides the lifting force or the anti-lift force opposite to the lifting force, and the angle is adjusted around the wing drive shaft, providing the fuselage stability through lifting force, Variance lift control fusion wing that keeps the distance between the fuselage and the road surface at all times; Centrifugal force control blades for providing the antigenic core force on the outer upper side or the outer side of the body; And a drive unit for driving the variable lift control type fusion wing and the centrifugal force control vane to be adjusted at an angle for providing lift or an angle for providing a semi-lifting force to the wing drive shaft. It characterized by including the. 2019/212066 1 »(: 1 ^ 1 {2018/005007
11 본 발명의 자동차에 있어서 , 상기 구동부는 풍향감지부에 의해 감지되는 풍 향 및 풍속정보에 따라상기 변각형 양력조절방식 융합날개의 각도를조절하도록 구동하는 것이다.  11 In the vehicle of the present invention, the driving unit is to drive to adjust the angle of the variable lift type fusion wing according to the wind direction and wind speed information detected by the wind direction detection unit.
본 발명의 자동차에 있어서, 상기 원심력 제어 날개는상기 변각형 양력조절 방식 융합날개에 수직하게 구성할수 있다.  In the automobile of the present invention, the centrifugal force control vane may be configured perpendicular to the variable lift type fusion wing.
상기한목적들을 달성하기 위한본 발명이 선박에 적용되는 경우, 동체; 상 기 동체의 동체의 외부측 저부에 좌우 쌍을 이루며 적어도 2개 이상이 연속되게 배 치되며, 상기 동체에 부력 또는상기 부력과 반대되는 반부력을 제공하여, 밸러스 트 탱크犯 12此)의 기능을 대체하게 되는, 날개구동축부를 중심으로 각도가 조절되는 변각형 양력조절방식 융합날개; 및, 상기 변각형 양력조절방식 융합날개 를상기 날개구동축부를 중심으로부력을 제공하는 각도 또는 반부력을 제공하는 각도로 조절하도록 구동하는 구동부; 를 포함하여 구성하는 것이다.  When the present invention is applied to a ship for achieving the above objects, a fuselage; The left and right pairs of left and right pairs are arranged consecutively on the outer bottom of the fuselage of the fuselage, and provide the buoyancy or anti-buoyancy opposite to the buoyancy and provide the ballast tank 犯 12 此). It is to replace the variable lift type fusion wing that is angle-controlled around the wing drive shaft; And a driving unit configured to adjust the variable lift control type fusion wing to an angle providing buoyancy or an angle providing anti-buoyancy based on the wing drive shaft. It will be configured to include.
본 발명의 선박에 있어서, 동체의 외부측 저부에 좌우 쌍을 이루며 적어도 2 개 이상이 연속되게 배치되는 상기 변각형 양력조절방식 융합날개는, 동체의 전방 으로부터 후미에 이르기까지 균등하게 설치되어 양력을 동체 전구간에 고르게 분배 하게 되는 것을 특징으로 한다.  In the ship of the present invention, the angular lift control type fusion wing that is arranged at the left and right pairs at the bottom of the outer side of the fuselage at least two consecutively, is installed evenly from the front to the rear of the fuselage to lift the lift body It is characterized in that it is evenly distributed among the bulbs.
본 발명의 선박에 있어서, 상기 구동부는 복수로 배치되는 상기 변각형 양력 조절방식 융합날개의 각도를 동시에 조절하도록 상기 변각형 양력조절방식 융합날 개의 날개구동축부와 연결체로 연결 구성할수 있다.  In the ship of the present invention, the drive unit may be configured to be connected to the wing drive shaft portion and the connecting member of the variable lift type fusion fusion blade to adjust the angle of the variable lift type fusion fusion blade disposed in a plurality.
본 발명의 선박에 있어서, 상기 구동부는 복수로 배치되는 상기 변각형 양력 조절방식 융합날개의 각도를 개별적으로 조절하도록상기 변각형 양력조절방식 융 2019/212066 1»(:1^1{2018/005007 In the ship of the present invention, the drive unit is a variable lift type control fusion so as to individually adjust the angle of the variable lift type fusion wing is arranged in plurality 2019/212066 1 »(: 1 ^ 1 {2018/005007
12 합날개의 날개구동축부에 각각 1 : 1로 구성할수 있다.  12 can be composed of 1: 1 in the blade drive shaft part of the blade.
본 발명의 선박에 있어서, 상기 구동부는수류감지부에 의해 감지되는수류 정보에 따라상기 변각형 양력조절방식 융합날개의 각도를 조절하도록 구동하는 것 을 특징으로 한다.  In the ship of the present invention, the driving unit is characterized in that for driving to adjust the angle of the variable lift type fusion wing according to the water flow information detected by the water flow detection unit.
본 발명의 선박에 있어서, 상기 동체의 외부측 저부 또는 동체의 상부 측면 이나지붕에 복수로 배치되는상기 변각형 양력조절방식 융합날개는 동일 수평라인 에 배치할수 있다.  In the ship of the present invention, the variable lift type fusion fusion wing disposed in plurality on the outer bottom or the upper side or roof of the fuselage may be arranged in the same horizontal line.
본 발명의 선박에 있어서, 상기 동체의 외부측 저부 또는 동체의 상부 측면 이나지붕에 복수로 배치되는상기 변각형 양력조절방식 융합날개는 계단형으로 배 치할수 있다.  In the ship of the present invention, the variable lift type fusion wing disposed in plurality on the outer bottom or the upper side or the roof of the fuselage can be arranged stepwise.
본 발명의 선박에 있어서, 상기 동체의 외부측 저부 또는 동체의 상부 측면 이나 지붕에 복수로 배치되는 상기 변각형 양력조절방식 융합날개는 상하측으로 서 로 교차되는 지그재그형으로 배치할수 있다.  In the ship of the present invention, the angular lift type fusion fusion wings arranged in plurality on the outer bottom of the fuselage or on the upper side or the roof of the fuselage may be arranged in a zigzag shape crossing each other up and down.
본 발명의 선박에 있어서, 상기 동체가 대형 저속 선박이면, 상기 변각형 양 력조절방식 융합날개는 선박의 외부측 저부에 복수로 배치할수 있다.  In the ship of the present invention, if the fuselage is a large low speed vessel, the variable lift type fusion wing can be arranged in plurality on the outer bottom of the vessel.
본 발명의 선박에 있어서, 상기 동체가소형 고속 선박이면, 상기 변각형 양 력조절방식 융합날개는 선박의 외부측 양측부 또는 선박의 지붕에 복수로 배치할 수 있다.  In the ship of the present invention, if the fuselage is a small high-speed vessel, the variable lift type fusion wing can be disposed in plurality on both sides of the outer side of the vessel or the roof of the vessel.
【발명의 효과】  【Effects of the Invention】
이와 같이, 본 발명은 항공기와 선박 및 열차, 그리고 자동차와 같은 운송수 단에 각각 변각형 양력 조절방식의 날개를 장착한 것으로, 이와같이 날개의 각도 2019/212066 1»(그1^1{2018/005007 As such, the present invention is equipped with a wing of the variable lift type to each of the transport means such as aircraft, ships, trains, and cars, as described above 2019/212066 1 »(1 ^ 1 {2018/005007
13 조절을 통해 항공기와 선박 및 열차, 그리고 자동차와 같은 운송수단에 양력 또는 반양력과 항원심력을 제공하여 항공기와 선박 및 열차, 그리고 자동차와 같은 운송 수단의 이동이 안정적으로 이루어질 수 있도록 하고, 승객이나 화물로 인한 하중 증가되더라도 안정적인 이동이 가능하도록 함은 물론, 이동에 따른 연료를 절감하 는 효과를 기대할수 있는 것이다.  13 Adjusting to provide lift or anti-lift and antigenic force to vehicles, ships, trains and vehicles, to ensure the stable movement of vehicles, ships, trains and vehicles, and passengers. However, even if the load increases due to cargo, it is possible to achieve a stable movement as well as to save fuel due to the movement.
또한, 본 발명은 항공기와 같은 운송수단에 변각형 양력 조절방식의 날개를 적용시, 날개가 짧은 동체를 구성하여 활주거리를 줄이면서 활주로 조성에 따른 비 용을 절감하는 동시에, 공항에서의 대기면적을 좁게 차지하게 되고, 동체를 폭이 넓으면서도 길게 설계할 수 있도록 함으로서 승객과 화물 적재량을 증대시키는효 과를 기대할수 있는 것이다.  In addition, the present invention, when applying a variable lift type wing to a vehicle such as an aircraft, while forming a short fuselage body to reduce the runway while reducing the cost of the runway, while at the airport waiting area In addition, it can be expected to increase the number of passengers and cargo by increasing the width of the fuselage and designing the fuselage.
또한, 본 발명은 항공기와 같은 운송수단에 변각형 양력 조절방식의 날개를 적용시, 항공기의 급상승과 급하강 그리고 급감속이 가능하도록 하는 것이다.  In addition, the present invention is to enable the rapid rise and fall and rapid deceleration of the aircraft when applying the variable lift type wing to a vehicle, such as an aircraft.
또한, 본 발명은 항공기와 같은 운송수단에 변각형 양력 조절방식의 날개를 적용시, 동체 전 구간에서 균등한 양력이 발생되도록 하면서, 항공기의 이착륙 거 리를 확기적으로 단축시키는 효과를 제공할수 있는 것이다.  In addition, the present invention can provide an effect of significantly shortening the take-off and landing distance of the aircraft, while generating a uniform lift in all sections of the fuselage, when the wing of the variable lift type is applied to a vehicle such as an aircraft. will be.
또한, 본 발명은 항공기와 같은 운송수단에 다단으로 변각형 양력 조절방식 의 날개를 적용시, 어느 하나의 날개가 파손되더라도 그 파손된 날개만 교체가 가 능하도록 하면서 , 급작스러운 추락사고를 방지하는 효과를 기대할수 있는 것이다. 또한, 본 발명은 항공기와 같은 운송수단에 변각형 양력 조절방식의 날개를 적용시, 공항에서의 대기면적을 최소화시키고, 격납고로의 격납시 발생하는 불편함 을 개선하는 효과를 기대할수 있는 것이다. 또한, 본 발명은 열차또는 자동차와 같은 운송수단에 변각형 양력 조절방식 의 날개를 적용시, 승객과 화물 증가로 하중이 증가하더라도 안정적인 주행이 가능 하도록 함은 물론, 하중 증가로 인한 중력작용으로부터 바퀴(특히 열차)가 파손되 는문제를 방지하는 효과를 기대할 수 있는 것이다. In addition, the present invention is applied to the multi-stage variable lift type wing in a vehicle, such as an aircraft, even if any of the wings are broken, so that only the broken wing can be replaced, to prevent a sudden fall accident You can expect the effect. In addition, the present invention can be expected to have an effect of minimizing the atmospheric area at the airport when applying the variable lift type wing to a vehicle, such as an aircraft, to improve the inconvenience caused when the hangar. In addition, the present invention when the wing of the variable lift type is applied to a vehicle such as a train or a vehicle, even if the load increases due to the increase in passengers and cargo, as well as stable running is possible, as well as the wheel from the gravity action due to the increased load This can be expected to prevent the problem of (especially trains) from being damaged.
또한, 본 발명은 선박과 같은 운송수단에 변각형 양력(부력) 및 반양력(반부 력) 조절방식의 날개를 적용시 , 화물 적재량을 증대시키면서도 선박의 안정적인 운 항을 가이드하는 효과를 기대할수 있는 것이다.  In addition, the present invention, when applying the variable lift (buoyancy) and anti-lift (half buoyancy) control method to a vehicle, such as a ship, can be expected to increase the load of cargo and guide the stable operation of the ship will be.
다시말해, 변각형 양력조절방식 융합날개를 통해 선박의 몸체에 반부력을 제 공하는 경우, 선박의 몸체를 아래로 잡아 당겨 동체에 안정성을 제공하게 되는 것 이며, 따라서 적재된 화물 또는 탑승인원을 고려하여 최선의 속도로 순항할 수 있 도록 하는 것이다.  In other words, in the case of providing anti-buoyancy to the ship's body through the variable lift type fusion wing, the ship's body is pulled down to provide stability to the fuselage. Consideration is given to cruising at the best speed.
그리고, 순항도중 급변하는 일기나조류로 인하여 필요한상황에 이를 경우 상기 변각형 양력조절방식 융합날개의 날개각 제어를 통해 반부력(접수력)을 증가 시킴으로서 밸러스트 탱크의 대체 역할을 신속하게 수행할 수 있도록 하는 것인데, 이같이 밸러스트 탱크의 기능이 상기 변각형 양력조절방식 융합날개를 통해 대체되 면, 상기 밸러스트 수(Bal last Water)로 채워지던 종래 선박에 비해 전체적인 하중 이 감소되면서 연료 소비량이 현저하게 줄어들게 되고, 특히 밸러스트 수의 배출로 인한환경오염 문제를 해소할수 있게 되는 것이다.  In addition, if the necessary conditions are caused by the rapidly changing weather or algae during cruising, the wing angle control of the variable lift control fusion blade increases to increase the anti-buoyancy (receiving force), thereby rapidly acting as a substitute for the ballast tank. When the function of the ballast tank is replaced by the variable lift type fusion vane, the overall load is reduced compared to the conventional vessel filled with the ball last water, and the fuel consumption is significantly reduced. In particular, it is possible to solve the environmental pollution problem caused by the discharge of ballast water.
기존 밸러스트 탱크 방식의 선박은 바람이나 파도 또는 풍랑에 동체가 전후 특히 좌우 쪽으로 흔들림이나 일시적으로 기울어지는 현상이 생길 수 있으며, 따라 서 최악의 경우에는 침몰의 위험까지도 느끼게 되는 것이지만, 본 발명의 변각형 2019/212066 1»(:1^1{2018/005007 Existing ballast tank type vessels may cause the body to shake or temporarily tilt in the front and rear, especially left and right in the wind, waves or storms, and in the worst case, even if you feel the risk of sinking, the variant type of the present invention 2019/212066 1 »(: 1 ^ 1 {2018/005007
15 양력조절방식 융합날개를 가진 선박의 경우에는 동체의 흔들림을 감지한 후, 각각 의 날개 각도를 달리하며 제어함으로서 심한 풍라이나 파도에’도 동체가 물에 박힌 것처럼 흔들림 없이 안정된 운항이 가능하게 되는 것이다.  15 In the case of a ship with a lift control fusion wing, after detecting the shaking of the fuselage, it controls the angle of each wing to control the flight without severe fluctuations or waves as if the fuselage is stuck in the water. will be.
기술적인 것을 더 서술한다면, 대형 선박에 적용되는 변각형 양력조절방식 융합날개는 공기와 다른 물이라는 물질의 특수성으로 인하여 큰 압력과 저항을 받 기 때문에 변각형 양력조절방식 융합날개의 단면을 최소화 하면서 내구성이 우수한 강한 소재를 사용하여야 하고 구조적으로도 더욱 견고한 결합이 요구된다.  More technically, the variable lift type fusion vanes applied to large vessels are subject to great pressure and resistance due to the specificity of air and other water materials, while minimizing the cross section of the variable lift type fusion vanes. Durable materials must be used and structurally stronger bonds are required.
또한, 본 발명은 열차 또는 자동차와 같은 운송수단에 항원심력을 발휘하는 변각형 양력 조절방식의 날개를 적용하여, 열차 또는 자동차가 빗길이나 빙판길 또 는 커브길에서 밀림현상이 발생하는 것을 방지시키면서 그 주행이 감속없이 정속 주행상태에서도 안정적으로 이루어지도록 하는 효과를 기대할 수 있는 것이다.  In addition, the present invention by applying the wing of the variable lift type to exert the antigenic force on a vehicle such as a train or a car, while preventing the occurrence of jungle on the rain or ice or curve road of the train or car The driving can be expected to be stable in a constant speed driving state without deceleration.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 본 발명의 변각형 양력 조절방식의 날개를 적용한 항공기의 전체적인 날개 특성과 개념을 보여주고 있는 도면이다.  1 is a view showing the overall wing characteristics and concept of the aircraft to which the wing of the variable lift type of the present invention is applied.
도 2는 종래 고정형인 주 날개 (가)와 본 발명의 핵심인 변각형 양력 조절방 식 날개 (나)의 단면을 비교하여 나타낸 것으로서 변각형 양력 조절방식 날개의 앞 쪽과 뒤쪽으로 바람가름판( 비 (101·)과
Figure imgf000017_0001
형성하고 있고 변각형 양력 조절방식 날개의 중심에는 날개구동축부가 설치되어 있는 구성을 보인 도면이다.
2 is a cross-sectional view of a conventional fixed main wing (A) and a cross section of a variable lift type wing (B) which is the core of the present invention. With ratio (101 ·)
Figure imgf000017_0001
It is a drawing showing the configuration that the wing drive shaft portion is installed in the center of the wing of the variable lift type.
도 3은 종래 고정형인 주 날개가 적용되는 항공기와 본 발명의 변각형 양력 조절방식 날개가 적용되는 항공기의 전체적인 형태와 날개의 기능 그리고 역할을 2019/212066 1»(:1^1{2018/005007 Figure 3 shows the overall shape of the aircraft to which the main wing is applied to the conventional fixed type and the aircraft to which the variable lift type wing of the present invention is applied and the function and role of the wing 2019/212066 1 » (: 1 ^ 1 {2018/005007
16 비교한 것으로, (가)와 (시는 두 항공기를 위에서 내려다 본 형태를 도시한 것이 고, (나)와 ( 는 날개의 단면을 도시한 것이며, (다)(라)(마)와 (00))(£)는 날개 의 기능과 역할을 한쪽 날개만 표현한 것인데, 고정형 주 날개가 장착된 항공기는 측단면을 보인 도면이고, 변각형 양력 조절방식 날개가 장착된 항공기는 정단면을 보인 도면이다.  In comparison, (a) and (city) show the top view of the two aircraft, (b) and (b) show cross sections of the wing, (c) (d) and (e). 00)) (£) is the wing function and role of only one wing. The aircraft with fixed main wing shows the side cross section, and the aircraft with variable lift type wing shows the front cross section. to be.
도 4는 연과수상스키의 원리를 나타내 본 발명 항공기의 핵심 원리와 이를 응용한 변각형 양력 조절방식 날개를 도시한도면이다.  4 is a view showing the core principle of the present invention aircraft and the variable lift type variable wing applied to the principle of soft and water ski.
도 5는 고정형 주 날개를 장착한 종래 항공기와 변각형 양력 조절방식의 날 개를 장착한 본 발명의 항공기가 이륙하는 상태를 보인 도면으로서, (가)는 고정형 주 날개가 장착되어 있어서 이륙각이 작고 동체가 비스듬한 각도로 상승하는 종래 항공기이고, (나)는 변각형 양력 조절방식 날개를 장착하여 이륙각이 크고 수평 상 승하는 본 발명의 항공기 도면이다.  5 is a view showing a state in which the conventional aircraft equipped with a fixed main wing and the aircraft of the present invention equipped with a wing of the variable lift type take off, (A) is a fixed main wing is mounted so that the takeoff angle is The conventional aircraft is small and the fuselage rises at an oblique angle, (b) is a plane drawing of the present invention that the takeoff angle is large and the horizontal rise by mounting a variable lift type wing.
도 6의 (가)는 변각형 양력 조절방식의 날개에 대한 한계각을 나타낸 것으 로, 한계각은 동체 안전을 위해 정한 것이며, 이를 초과시 심각한 위험을 초래할 수 있으므로 수평선을 기준으로 하여 위로는 최고 한계각 아래로는 최저 한계각을 도시한 도면이며, (나)는 변각형 양력 조절방식 날개를 장착한 본 발명의 항공기에 대한 착륙 형태를 도시한 도면이고, (다)는 고정형 주 날개를 장착한 종래 항공기 의 착륙 형태를 도시한도면이다.  (A) of Fig. 6 shows the limit angle for the wing of the variable lift type, the limit angle is defined for the safety of the fuselage, and may cause serious danger when exceeded, the upper limit based on the horizontal line Below each is a view showing the minimum limit angle, (B) is a view showing the landing form for the aircraft of the present invention equipped with a variable lift type wing, (C) is a fixed main wing A diagram showing a landing form of a conventional aircraft.
도 7의 (가)(나)(다)는 본 발명의 항공기에 변각형 양력 조절방식 날개를 배 열하는 방식을 나타낸 도면으로서, (가)는 수평형 배열, (나)는 계단형 배열, (다) 는 지그재그형 배열 방식을 적용한 상태를 보인 도면이다. 2019/212066 1»(:1^1{2018/005007 (A) (b) (c) of FIG. 7 is a view showing a method of arranging a variable lift type wing on the aircraft of the present invention, (a) is a horizontal arrangement, (b) is a staircase arrangement, (C) is a diagram showing a state where a zigzag array method is applied. 2019/212066 1 »(: 1 ^ 1 {2018/005007
17 도 8은 도 7에서 수평형 배열 구조를 보인 변각형 양력 조절방식의 날개가 적용되는 항공기의 측면 및 평면을 도시한 것으로, 변각형 양력 조절방식의 날개의 앞뒤로 면적을 넓혀준 도면이다.  FIG. 8 illustrates a side and a plane of an aircraft to which a wing of a variable lift type control method shown in FIG. 7 is applied, and shows an enlarged area before and after the wing of a variable lift control method.
도 9는 도 7에서 수평형 배열 구조를 보인 변각형 양력 조절방식의 날개가 적용되는 항공기의 평면을 도시한 것으로, 뒷쪽으로 갈수록 변각형 양력 조절방식 의 날개가좌우로 면적을 넓게 구성한 형태를보인 도면이다.  FIG. 9 is a plane view of an aircraft to which a wing of a variable lift type control method showing a horizontal arrangement in FIG. 7 is applied, and the wing of the variable lift control method is configured to have a wider area from left to right. Drawing.
도 10은 고정형 날개와 변각형 양력 조절방식의 날개를 융합한 날개 배열방 식을 나타낸 도표이다.  FIG. 10 is a diagram showing a wing arrangement in which a fixed wing and a wing of a variable lift type are fused.
도 11의 (가)(나)는 하나의 독립된 날개에 고정날개부와 변각날개부를 복합 적으로 설치한 구조를 보인 평면도로서, 동체 외벽에 고정된 형태로 부착되는 고정 날개부의 외측에, 변각날개부가 회전각 조절 가능하게 설치되어 하나의 복합날개를 이루도록 구성하는 것이며, 도 11의 (가)는 이같은 복합날개가 동체에 직각방향으 로 설치되는 동체 대비 수직형 구조를 설명하고 있고, 또한 도 11의 (나)는 복합날 개가 동체에 일정한 경사각으로 기울여 설치되는 동체 대비 뒤쪽 밀림형 구조를 보 여 주고 있다.  (A) and (b) of FIG. 11 are plan views showing a structure in which a fixed blade portion and a variable wing portion are installed in a single independent wing, and on the outside of the fixed wing portion fixedly attached to the outer wall of the fuselage. The additional rotation angle is adjustable so that it can be configured to form a single compound wing. (A) of FIG. 11 illustrates a vertical structure compared to the body body in which the compound wing is installed at right angles to the body. (B) shows the rear-limb type structure compared to the fuselage in which the compound blade is installed at a certain inclination angle on the fuselage.
도 12의 (가)(나)(다)는 하나의 독립된 날개에 복합적으로 설치되는 고정날 개부와 변각날개부의 기능적인 위치를 보인 평면도로서, 도 12의 (가)는 동체 외벽 에 고정된 형태로 부착되는 고정날개부 외측에 변각날개부가 회전각 조절 가능하게 설치된 상태를 보이고 있고, 도 12의 (나)는 변각날개부가 서로 이격되게 설치되는 고정날개부 사이에 위치하도록 배열된 상태를, 그리고 도 12의 (다)는 변각날개부 가고정날개부 내측에 위치하도록 설치된 상태를 각각보여주고 있다. 2019/212066 1»(:1^1{2018/005007 (A) and (B) of FIG. 12 are plan views showing the functional positions of the fixed blade opening and the flap wing, which are complexly installed on one independent wing, and (A) of FIG. 12 is fixed to the outer wall of the fuselage. It shows a state in which the angular blade portion is installed to adjust the rotation angle outside the fixed blade portion attached to the, and (b) of Figure 12 is arranged so as to be positioned between the fixed blade portion spaced apart from each other, and 12 (C) shows a state in which they are installed so as to be positioned inside the angled wing part temporarily fixed blade part. 2019/212066 1 »(: 1 ^ 1 {2018/005007
18 도 13은 하나의 독립된 날개가 길이방향으로 확장되는 구조를 설명하기 위한 도면이다.  18 is a view for explaining a structure in which one independent wing is extended in the longitudinal direction.
도 14는 변각형 양력 조절방식 융합날개의 개념도 이다.  14 is a conceptual view of a fused wing of variable lift type.
도 15는 양력과 반양력(또는 접지력) 조절방식의 날개와항원심력 날개의 기 본 메커니즘을보인 도면이다.  15 is a view showing the basic mechanism of the wing and the anti-centrifugal wing of the lift and anti-lift (or traction) control system.
도 16은 양력과 반양력(또는 접지력) 조절방식의 날개와항원심력 날개의 기 본 응용상태를 보인 도면이다.  16 is a view showing the basic application state of the lift and anti-lift (or traction) control method wing and centrifugal force wing.
도 17은 양력(부력)과 반양력(반부력) 조절방식의 날개를 대형 선박에 적용 한상태를 보인 측면과 저면도이다.  Fig. 17 is a side view and a bottom view showing a state in which a wing of the lift (buoyancy) and anti-lift (half buoyancy) adjustment method is applied to a large ship.
도 18은 양력(부력)과 반양력(반부력) 조절방식의 날개를 소형 선박에 적용 한상태를 보인 측면과 평면도이다.  18 is a side view and a plan view showing a state in which a wing of the lift (buoyancy) and anti-lift (anti-buoyancy) adjustment method is applied to a small ship.
도 19는 양력과 반양력 조절방식의 날개와 항원심력 날개를 열차에 적용한 상태를 보인 정면도와측면도이다. - 19 is a front view and a side view showing a state in which the lift and anti-lift control method of the wing and the antigen center force wing is applied to the train. -
【발명의 실시를 위한 최선의 형태】 [Best form for implementation of the invention]
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하기로 한다.  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
본 발명의 실시예에 따라항공기와 선박 및 열차, 그리고 자동차의 동체(10) 에 적용되는 변각형 양력 조절방식은, 변각형 양력조절방식 융합날개(20) 및/또는 고정형 날개, 그리고 구동부(30)와 풍향감지부(40)를 포함하여 구성하고, 이에 더 하여 원심력 제어 날개(50)와 수평 타(도면에 표시 없음)를 더 포함하여 구성할 수 있는 것이다.  According to an embodiment of the present invention, the variable lift control method applied to the fuselage 10 of an aircraft, a ship, a train, and a vehicle includes a variable lift control type fusion wing 20 and / or a fixed wing, and a drive unit 30 And wind direction detection unit 40, and further include a centrifugal force control blade 50 and a horizontal rudder (not shown).
이때 , 본 발명의 실시예로서 변각형 양력 조절방식의 날개(20)를 적용할 수 2019/212066 1»(:1^1{2018/005007 At this time, as an embodiment of the present invention can be applied to the wing 20 of the variable lift type. 2019/212066 1 »(: 1 ^ 1 {2018/005007
19 있는 원리는 첨부된 도 4의 (가)에서와 같이 연이 날리는 원리를 이용하는 것으로, 이를 보다 구체적으로 살펴보면, 바람의 저항을 만드는 연 몸체와 저항력(공기의 흐름)을 비스듬하게 하부방향(중력방향)으로 흘려보내게 묶은 연줄로부터 착안한 것이다.  The principle of 19 is to use the principle of flying kite as in (A) of Fig. 4, which is more specifically, the oblique downward direction (gravity direction) of the kite body and the resistance force (air flow) that makes the wind resistance It was conceived from the strings tied up to flow into.
그리고, 첨부된 도 4의 (나)에서와 같이 수상스키의 부력 원리로부터도 착안 된 것으로, 스키가 전진하면서 물의 저항을 하부방향으로 흘려보내서 부력을 얻게 되는 것으로서 착안한 것이다.  Also, as shown in (b) of FIG. 4, it was conceived from the buoyancy principle of water skiing, and it was conceived as the buoyancy by flowing the resistance of water downward as the ski moves forward.
한편, 상기와 같은 원리 이외에 배의 스크류나 풍차 및 선풍기의 날개 등에 적용되는 원리를 응용할 수도 있으며, 이들의 공통점은 물과 바람의 저항을 원하는 방향으로 유도하는 것이다.  On the other hand, in addition to the principle described above may be applied to the principle applied to the screw of the ship, the windmill and the fan blade, etc., the common point of these is to induce water and wind resistance in the desired direction.
즉, 본 발명의 실시예에 따른 변각형 양력조절방식 융합날개(20)는 상기에서 설명하는 공기와 물이라는 물질로부터 물과 바람의 저항을 원하는 방향으로 유도하 는 것에 착안된 것이며, 이에 따라 상기 반각형 날개(20)의 각도 조절을 통해 항공 기와 선박 및 열차, 그리고 선박의 이동에 따른 상황이나 변수에 대응하여 양력(또 는부력)을조절할수 있도록 한 것이다.  That is, the variable lift control type fusion wing 20 according to the embodiment of the present invention is designed to induce the water and wind resistance in a desired direction from the material of air and water described above. By adjusting the angle of the half wing (20), it is possible to adjust the lift (or buoyancy) in response to the situation or variables caused by the movement of aircraft, ships, trains and ships.
(항공기에 적용되는 변각형 양력조절방식 융합날개의 공식)은,  (Formula of variable lift type fusion blade applied to aircraft)
* 날개 +수평타 - >변각형 양력조절방식 날개 = 연 (각각의 날개)  * Wing + horizontal stroke-> variable lift type wing = kite (each wing)
항공기를 조종하는 조종사는 이륙때보다 착륙때에 더 긴장감을 느끼게 되는 데, 본 발명의 변각형 양력 조절날개 방식 항공기는 정해진 착륙각이 없으므로 일 반 착륙시 또는 악천후 착륙시에 조종사의 긴장감을 현저하게 줄일 수 있다.  The pilot who controls the aircraft feels more tension at landing than at takeoff. The variable lift wing type aircraft of the present invention does not have a fixed landing angle. Can be reduced.
이를 보다 구체적인 실시예로서 살펴보면, 상기 변각형 양력조절방식 융합날 개 (20)는 항공기와 선박 및 열차, 그리고 자동차의 동체 (10) 양측부에 배치되는 것 으로, 상기 동체 ( 10)에 양력 또는 상기 양력과 반대되는 반양력을 제공하도록 날개 구동축부 (20a)를 중심으로 각도가조절되는 구성을 이룬다. , 이때, 상기 변각형 양력조절방식 융합날개 (20)는 첨부된 도 6의 (가)에서와 같이, 양력 제공을 위한 한계 각도와 반양력 제공을 위한 한계 각도를 가지도록 조 절되며, 상기 변각형 양력조절방식 융합날개 (20)의 양력 제공을 위한 최고 한계 각 도는 수평라인 (H)을 기준으로 상방향으로 43° 내지 87° 의 범위내에서 조절되는 것 이고, 상기 변각형 양력조절방식 융합날개 (20)의 반양력 제공을 위한 최저 한계 각 도는 수평라인 ( 을 기준으로 하방향으로 13° 내지 15° 의 범위내에서 조절되도록 구성하는 것이다. Looking at this as a more specific embodiment, the variable lift type fusion blade Dog 20 is disposed on both sides of the fuselage 10 of the aircraft, ships and trains, and the vehicle, the wing drive shaft portion (20a) to provide a lift or anti-lift force opposite to the fuselage (10) The angle is adjusted to form a configuration. In this case, the variable lift type fusion wing 20 is adjusted to have a limit angle for providing lift and a limit angle for providing a half lift, as shown in Figure 6 (a) attached to the The maximum limit angle for lifting force of the angular lift control type fusion wing 20 is to be adjusted in the range of 43 ° to 87 ° in the upward direction with respect to the horizontal line (H), the variable lift type fusion control method The minimum limit angle for providing the anti-lift force of the wing 20 is configured to be adjusted within the range of 13 ° to 15 ° in the downward direction with respect to the horizontal line.
여기서, 상기와 같은 양력과 반양력의 최고 한계 각도는 상기와 같은 수치적 인 범위에 한정되는 것은 아니며, 연구 및 실험을 통해 그 한계 각도를 재설정할 수도 있는 것이다.  Here, the maximum limit angle of the lift and the half lift is not limited to the numerical range as described above, it is possible to reset the limit angle through research and experiment.
한편, 상기 변각형 양력조절방식 융합날개 (20)의 전방과후방에는 도면 1 및 도면 2의 (나)에서 구체적으로 예시하고 있는 바와 같이, 상부로 돌출되는 유선형 구조를 가짐으로써 양력을 생성하게 되는 날개몸체의 전방과 후방에 각각 연장되게 설치되는 바람가름판 (wind dividor)과 바람누름판 (wind pressor )을 판상의 구조로 연장되게 설치하게 된다.  On the other hand, the front and rear of the angular lift control type fusion wing 20, as illustrated in Figures 1 and 2 (b) in detail, by having a streamlined structure protruding upward to generate the lift The wind dividor and wind pressor, which are installed at the front and rear of the wing body, respectively, are extended to have a plate-like structure.
즉, 상기 바람가름판 (21)과 상기 바람누름판 (22)은 상기 변각형 양력조절방 식 융합날개 (20)를 항공기 동체 (10)에 적용시, 항공기의 이륙과 착륙이 이루어질 때 엄청난 공기의 압력을 받는 것을 감안하여 공기 흐름을 유도하기 위한 것이고, 2019/212066 1»(:1^1{2018/005007 That is, when the wind separating plate 21 and the wind pressing plate 22 applies the variable lift type fusion wing 20 to the aircraft fuselage 10, when the aircraft takes off and lands, To induce air flow in consideration of the pressure, 2019/212066 1 »(: 1 ^ 1 {2018/005007
21 이에 따라 상기 바람가름판 (21)과 상기 바람누름판 (22)은 가능한 얇게 만들되 부러 지거나 상기 변각형 양력조절방식 융합날개 (20)로부터 떨어져 나가지 않도록 강성 의 재질로 만들어야 하는 것이고, 여기서 설명하는 강성의 재질이라 함은 공지의 재질로서 탄소섬유를 설명하는 것이지만 반드시 이러한 것에 한정하는 것은 아니 다.  21 Accordingly, the windscreen 21 and the wind pressor plate 22 should be made of a rigid material so as to be as thin as possible but not broken or separated from the variable lift type fusion wing 20, and the rigidity described herein. The material of is to describe the carbon fiber as a known material, but is not necessarily limited to these.
한편, 상기 변각형 양력조절방식 융합날개 (20)는 항공기 동체 ( 10) 양측부에 좌우 쌍을 이루며 적어도 2개 이상이 배치 구성되며, 바람직하게는 복수로서 다단 배치하는 것으로서, 이는 첨부된 도 7의 (가)에서와 같이 동일 수평라인에 수평형 으로 배치 구성하거나, 첨부된 도 7의 (나)에서와 같이 계단형으로 배치 구성하거 나, 도 7의 (다)에서와 같이 상하측으로 서로 교차되는 지그재그형으로 배치 구성 할수 있는 것이다.  On the other hand, the angular lift type fusion wing 20 is composed of at least two or more pairs arranged on both sides of the aircraft fuselage 10 on both sides, preferably arranged in multiple stages as a plurality, which is attached to Figure 7 Arrange horizontally on the same horizontal line as in (A) of, or staircase as shown in (b) of FIG. 7, or cross each other up and down as shown in (c) of FIG. It can be arranged in a zigzag arrangement.
이때, 수평형으로 배치되는 상기 변각형 양력조절방식 융합날개 (20)는 그 배 치 간격으로 인해 공기의 간섭류 (예; 와류 또는 파류)가 후단측 날개에 영향을 미 치면서, 후단측에 배치되는 변각형 양력조절방식 융합날개에서의 양력 제공을 감소 시키는 문제가 있으므로 바람직한 것은 아니다. 이에 따라 간섭류에서 비교적 자유 로운 계단형으로 변각형 양력조절방식 융합날개 (20)들을 배치하거나 또는 지그재그 형으로 변각형 양력조절방식 융합날개 (20)들을 배치 구성할수 있다.  At this time, the variable lift type fusion wing 20 arranged in a horizontal type is disposed on the rear end side, while the interference of air (for example, vortex or wave) affects the rear wing side due to the arrangement interval. It is not desirable because there is a problem of reducing the lift provided by the angular lift control method fusion wing. Accordingly, it is possible to arrange the variable lift type fusion vanes 20 in a stair step type relatively free from interference flow or to arrange the variable lift type fusion vanes 20 in a zigzag form.
그리고, 상기 변각형 양력조절방식 융합날개 (20)를 계단형으로 배치하는 것 이 가장 이상적인데, 이는 선단측과 후단측에 각각 배치되는 변각형 양력조절방식 융합날개 (20)들의 양력이 최소 5 ' 7% , 최대 10%까지 차이가 발생하면서 전체적으로 배치되는 변각형 양력조절방식 융합날개 (20)들의 양력이 가장 크게 제공될 수 있기 2019/212066 1»(:1^1{2018/005007 And, it is most ideal to arrange the variable lift type fusion blades 20 in a stepped manner, which is a lift of the variable lift type fusion blades 20 arranged at the front and rear ends at least 5, respectively. ' 7%, the maximum lifting force of the variegated lift control fusion wings (20) can be provided the largest, with a difference of up to 10% 2019/212066 1 »(: 1 ^ 1 {2018/005007
22 때문이며, 이에 따라 상기와 같은 계단형으로 배치되는 변각형 양력조절방식 융합 날개 (20)는 대형 운송수단 (대형 여객기, 대형 화물기)에도 손쉽게 적용할 수 있는 것이다.  22 because, according to the variable lift type fusion wing 20 is arranged in such a step can be easily applied to a large vehicle (large passenger plane, large cargo plane).
한편, 상기 변각형 양력조절방식 융합날개 (20)를 수평형으로 배치시 간섭류 로부터 영향을 받는 것을 보완하기 위해, 첨부된 도 10에서와 같이 수평형으로 배 치되는 상기 변각형 양력조절방식 융합날개 (20)들의 사이에 회전되지 않는 고정형 날개 (미도시)를 배치하는 혼합형을 구성함으로써, 상기 간섭류의 영향을 해소할 수 있도록 하였다.  On the other hand, in order to compensate for being affected from interference flow when the variable lift type fusion wing 20 is disposed in a horizontal type, the variable lift type fusion method is arranged horizontally as shown in FIG. 10. By constructing a mixed type in which fixed blades (not shown) which are not rotated between the blades 20 are configured, the influence of the interference flow can be eliminated.
즉, 첨부된 도 10은 고정형 날개와 변각형 양력 조절방식의 날개를 융합한 배열 방식을 나타낸 도표로서, 이는 수평형 배열구조와 계단형 배열구조는 물론, 지그재그형 배열 구조에 모두 적용될 수 있으며, 그 장점으로는 변각형의 입장에서 살펴볼 때, 변각형 양력조절방식 융합날개 (20)의 고장시 고정형 날개가 있음으로 인해 추락과 같은 심각한 상황을 막을 수 있고, 고정형 날개의 입장에서는 보다 더 유동적이고 효과적인 비행을 가능하게 하는 것이며, 무엇보다도 중요한 것은 다익 형 항공기의 단점이며 취약점인 공기 간섭류 (풍)의 영향을 줄일 수 있다는 것이다. 그 이유로는, 변각형 양력조절방식 융합날개 (20)의 사이에 고정형 날개가 있 음으로 인해 두 날개 사이의 간격이 넓어지게 되므로, 간섭류 (풍)의 영향을 덜 받 게되고, 같은 종류의 날개가 연이어 있으며 양력의 효과면에서 방해요소가 될 수 있다. 특히 다익형 날개를 장착한 항공기 전체에 해당되는 요건이지만 가능한 날개 가 많을수록 좋긴 하지만, 그렇다고 해서 첨부된 도 3과 같이 너무 가깝게 설계해 선 안되고, 실제에선 상당한거리를 두어야 한다. 2019/212066 1»(:1^1{2018/005007 That is, Figure 10 is a diagram showing the arrangement of the fusion of the fixed wing and the wing of the variable lift control method, which can be applied to both a horizontal arrangement and a stepped arrangement, as well as a zigzag arrangement structure, Its advantages are that from the standpoint of the angular type, due to the fixed wing of the variable lift type fusion wing (20) to prevent the serious situation such as falling, and more flexible from the standpoint of the fixed wing It is to enable effective flight, and most importantly, to reduce the effects of air interference (wind), a disadvantage of multi-wing aircraft. The reason is that the gap between the two wings is widened due to the fixed wing between the angular lift type fusion wing 20, so that it is less affected by the interference (wind), The wings are continuous and can be an obstacle in terms of the effect of lift. This is especially true for all aircraft with multi-winged wings, but the more wings available, the better. However, they should not be designed too closely, as in the accompanying Figure 3, and in fact there should be considerable distance. 2019/212066 1 »(: 1 ^ 1 {2018/005007
23 즉, 비(소)간섭 유효거리를 유지하여야 하며, 상기 유효거리는 다익형 항공 기의 종류(수평형, 계단형 , 지그재그형, 융합형)에 따라 다르긴 하지만 , 날개 사이 의 거리가 짧으면 날개의 면적이 좁고, 날개 사이의 거리가 길면 날개의 면적을 크 게 만들어야 하는데, 이는 날개가 많으면 크기가 작고 날개의 수가 적으면 날개를 크게 만들어야 한다는 것이다. 이것은 어쩌면 공식이기 이전에 물리법칙이며 이치 이기 때문이다.  23 In other words, non-small interference effective distance must be maintained, and the effective distance varies depending on the type of multi-wing aircraft (horizontal type, stair type, zigzag type, fusion type), but if the distance between wings is short, If the area is narrow and the distance between the wings is long, the area of the wing should be made large, which means that the larger the wings, the smaller the size, and the smaller the wings, the larger the wings. This is probably because it is a law of physics and reason before it is a formula.
본 발명을 실시함에 있어서, 상기 변각형 양력조절방식 융합날개(20)의 설치 갯수는, 소수의 큰날개 보다 다수의 작은 날개로 구성하는 것이 더욱 효과적이다. 이는 다수의 작은 날개가 날개 하나당 걸리는 부하도 적고 날개가 일으키는 소음도 적을 뿐만 아니라 조종 감각과 작동(변각)도 부드러우며 간섭류 역시 적게 발생하 게 되는 것이므로 혹 사고로 날개가 몇개 부러지더라도 동체 안전에 치명적인 영향 을 초래하지 아니하기 때문이다.  In carrying out the present invention, the number of installation of the variable lift type fusion wing 20 is more effective to be composed of a plurality of smaller wings than a few large wings. This is because many small wings have less load per wing, less noise generated by the wing, softer control, operation (variation), and less interference. Therefore, even if some wings are broken in an accident, it is fatal to fuselage safety. It does not cause any effect.
이같은 다수의 작은 날개는 무엇보다도 비행이 매끄럽고 동작이 민첩하게 이 루어지는 것이며, 더 나아가 예고없는 돌풍이나 기상 이변에도 날개의 면적이 작아 서 비행시나 공항에 대기시 사고나 위험을 피할 수 있게 된다. 그러므로 소수의 큰 날개 (4개 6개) 보다는 다수의 작은날개 (10개 16개)를 설치하는 것이 모든 면에서 유익하다.  Many of these small wings are, above all, smooth in flight and agile in operation, and furthermore, the wing area is small in the event of unexpected gusts or extreme weather, thus avoiding accidents or dangers when flying or waiting at the airport. Therefore, it is advantageous in every way to install many small wings (10 16) rather than a few large wings (4 6).
여기서, 상기와 같이 변각형 양력조절방식 융합날개(20) 및/또는 고정형 날 개를 수평형과 계단형 그리고 지그재그형으로 다단 배치시, 선단측보다는 후단측에 서 양력이 감소하는 것은 피할 수 없으며, 이에 따라 본 발명의 실시예에서는 첨부 된 도 8 및 도 9에서와 같이, 전방측으로부터 후방측으로 배치되는 순서에 따라 그 2019/212066 1»(:1^1{2018/005007 Here, when the multi-stage variable lift type fusion wing 20 and / or fixed blades are horizontally, stepped and zigzag arranged in multiple stages, it is inevitable that the lift is reduced at the rear side rather than the front side. Accordingly, in the embodiment of the present invention, as shown in Figs. 2019/212066 1 »(: 1 ^ 1 {2018/005007
24 날개의 폭 1<짜2< 3< 4) (또는 면적)이 확장되도록구성할수도 있는 것이다. 즉, 전방측보다후방측으로 갈수록 폭 (또는 면적)을 넓혀준 변각형 양력조절 방식 융합날개 (20)를 적용함에 따라, 후방측에서 손실되는 양력을 보완할 수 있도 록 하는 것이다.  It can also be configured to extend the width of the wings 1 <square 2 <3 <4 (or area). In other words, by applying the variable lift type fusion wing 20 that increased the width (or area) toward the rear side from the front side, it is possible to compensate for the lift lost in the rear side.
이를 더욱 구체적으로 설명하면, 수평형 배열 구조는 계단형 배열 구조와 달 리 보완하지 않고 그대로 즉, 같은 크기 또는 같은 면적의 변각형 양력조절방식 융 합날개 (20)를 적용할 수 없는데, 그 이유는 다익형 항공기는 단익형과 달리 앞날개 가 일으키는 공기의 간섭류 (와류 또는 파류)가 뒷날개에 영향을 주기 때문이다. 이 로 인하여 뒷쪽으로 갈수록 양력이 감소하는 현상이 생긴다. 간섭류에서 비교적 자 유로운 계단형의 경우도 앞날개와 끝날개와의 양력 차이가 최소 5 ~ 7% 최대 10%까 지 날 것으로 예상된다. 이같은 현상은수평형 배열구조에서 가장심하다.  In more detail, the horizontal array structure does not complement the stepped array structure, that is, it is not possible to apply the variable lift type fusion wing 20 of the same size or the same area, for the reason This is because, in the case of multi-wing aircraft, unlike the single-wing type, the interference of air (vortex or wave) caused by the front wing affects the rear wing. This causes the lift to decrease toward the rear. In the case of the step type, which is relatively free in the interference flow, the lift difference between the front wing and the end wing is expected to be at least 5-7% and up to 10%. This phenomenon is most severe in a horizontal array.
이를 보완하기 위해서는 뒷쪽으로 갈수록 일정비율로 날개의 면적을 넓혀주 는 방법을 써야 하는데, 그 중 하나는 첨부된 도 8과 같이 날개의 앞뒤로 면적을 넓혀주는 것이고, 다른 하나는 첨부된 도 9에서와 같이 좌우로 면적을 넓혀주는 것 이며, 상기 날개의 앞뒤 면적과 좌우 면적을 절충하여 혼용하는 방식을 적용할 수 도 있는 것이다.  In order to compensate for this, a method of increasing the area of the wing at a predetermined ratio toward the rear side should be used, one of which is to enlarge the area before and after the wing as shown in FIG. 8, and the other is as shown in FIG. Likewise, it is to widen the area from side to side, it is also possible to apply a mixed way to balance the front and rear and left and right areas of the wing.
한편 , 본 발명의 실시예로서 동체 ( 10)의 양측부에 배치되는 변각형 양력조절 방식 융합날개 (20)는 구동부 (30)에 의해 그 각도가 조절되도록 구성되는데, 상기 구동부 (30)는 상기 변각형 양력조절방식 융합날개 (20)를 상기 날개구동축부 (2的)를 중심으로 양력을 제공하는 각도 또는 반양력을 제공하는 각도로 조절하도록 정역회 전 구동하는 감속모터가 일반적으로 사용될 수 있으며 , 그 밖에도 유압 또는 공압 2019/212066 1»(:1^1{2018/005007 On the other hand, as an embodiment of the present invention, the variable lift type fusion wing 20 disposed on both sides of the body 10 is configured to adjust the angle by the drive unit 30, the drive unit 30 is Deceleration motor for driving forward and reverse rotation to adjust the variable lift type fusion wing 20 to the angle providing the lift force or the angle providing the anti-lift force about the wing drive shaft portion (2) can be used generally Hydraulic or pneumatic 2019/212066 1 »(: 1 ^ 1 {2018/005007
25 의 제어기구가선택적으로사용될 수 있음은 물론이다.  It goes without saying that the control mechanism of 25 can be used selectively.
이때, 상기 구동부 (30)는 복수로 배치되는 상기 변각형 양력조절방식 융합날 개 (20)의 각도를 동시에 조절하도록 상기 변각형 양력조절방식 융합날개 (20)의 날 개구동축부 (2 )와 연결체 (미도시)로 연결 구성하게 되지만, 복수로 배치되는 상기 변각형 양력조절방식 융합날개 (20)의 각도를 개별적으로 조절하도록 상기 변각형 양력조절방식 융합날개 (20)의 날개구동축부 (2的)에 각각 1 : 1로 구성할 수 있는 것 이다.  At this time, the drive unit 30 and the blade opening coaxial part (2) of the variable lift type fusion fusion blade 20 to simultaneously adjust the angle of the variable lift type fusion wing (20) arranged in plurality It is configured to be connected to a connecting body (not shown), but the wing drive shaft portion of the variable lift type fusion fusion wing 20 to individually adjust the angle of the variable lift type fusion wing (20) arranged in plurality ( It can be composed of 1: 1 in 2 each.
이때, 상기 날개구동축부 (2的)는 상기 동체 ( 10)의 양측부에 배치되는 상기 변각형 양력조절방식 융합날개 (20)를 연결하면서 상기 변각형 양력조절방식 융합날 개 (20)의 각도 조절이 동시에 이루어지도록 하는 동축이거나, 또는 상기 동체 ( 10) 의 양측부에 배치되어 서로 대향되는 상기 변각형 양력조절방식 융합날개 (20)에 각 각 개별적으로 연결되면서 상기 변각형 양력조절방식 융합날개 (20)의 각도 조절이 개별적으로 이루어지도록구성되는 것이다.  At this time, the wing drive shaft portion (2) is the angle of the variable lift type fusion wing 20, while connecting the variable lift type fusion wing (20) disposed on both sides of the body (10). The variable lift type fusion fusion blades are coaxial to adjust at the same time, or are respectively connected to the variable lift type fusion wing 20 which is disposed on both sides of the body 10 to face each other. The angle adjustment of 20 is configured to be made separately.
여기서, 상기 변각형 양력조절방식 융합날개 (20)를 동축의 날개구동축 부 (2的)로 연결하고자 하는 경우에는 항공기와 선박 및 열차, 그리고 자동차에 따 라 상기 변각형 양력조절방식 융합날개 (20)에는 수평타 (도시없음)를 설치할 수도 있으며, 이는 동축으로 연결되는 변각형 양력조절방식 융합날개 (20)로부터 발생하 는 양력에 더하여 추가적인 양력을 제공하기 위함인 것이다.  Here, in the case of connecting the variable lift type fusion wing 20 to a coaxial wing drive shaft part (2), the variable lift type fused wing according to an aircraft, a ship, a train, and a vehicle (20) ) May be provided with a horizontal rudder (not shown), which is to provide an additional lift in addition to the lift generated from the variable lift type fusion wing (20) coaxially connected.
그리고, 상기 구동부 (30)는 풍향감지부 (40)에 의해 감지되는 풍향 및 풍속정 보에 따라 상기 변각형 양력조절방식 융합날개 (20)의 각도를 조절하도록 구동되며, 이에 따라 본 발명의 실시예에 따른 운송수단 (항공기)의 동체 ( 10)는 상기 변각형 2019/212066 1»(:1^1{2018/005007 And, the drive unit 30 is driven to adjust the angle of the variable lift type fusion wing 20 according to the wind direction and wind speed information detected by the wind direction detection unit 40, according to the implementation of the present invention The fuselage 10 of the vehicle (aircraft) according to the example is angular 2019/212066 1 »(: 1 ^ 1 {2018/005007
26 양력조절방식 융합날개 (20)의 각도조절로부터 맞바람을 받으며 안전한 이륙 또는 착륙이 가능하게 되는 것이다.  26 Lifting control method The wind from the angle adjustment of the fusion wing (20) will allow safe takeoff or landing.
한편, 상기와 같이 설명되는 변각형 양력조절방식 융합날개 (20)를 운송수단 에 따라 그 적용 실시예를 보다 구체적으로 살펴보면, 우선 항공기와 같은 운송수 단의 동체에 상기 변각형 양력조절방식 융합날개 (20)를 적용시, 항공기는 첨부된 도 5의 (나)에서와 같이 변각형 양력조절방식 융합날개 (20)의 각도 조절을 통해 급 격한 경사의 이륙 각도犯11)로 그 이착륙이 가능하게 되며, 이에 따라 항공기의 활 주로를 종래에 비하여 대폭 줄일 수 있는 효과를 기대할수 있는 것이다.  On the other hand, look at the application of the variable lift type fusion wing 20 described above according to the vehicle in more detail, first, the variable lift type fusion wing to the fuselage of the transportation means such as aircraft When applying (20), the aircraft is capable of taking off and landing at a sharp takeoff angle 犯 11) by adjusting the angle of the variable lift type fusion wing 20 as shown in (b) of FIG. 5. As a result, it is possible to expect an effect that can significantly reduce the aircraft's runway compared to the conventional.
이때, 상기 동체 ( 10)가 항공기 동체이고 이 항공기 동체 ( 10)의 양측부에 상 기와 같은 변각형 양력조절방식 융합날개 (20)를 다단 배치시, 상기 항공기 동 체 ( 10)의 후방측에는 적어도 하나 이상의 엔진부 ( 11)와 엔진분사구 ( 12)를 구성하는 것으로써, 상기 엔진부 ( 11)는 상하좌우로 360° 의 회전각을 가지는 원뿔 형상의 엔 진분사구 ( 12)를 가지도록 하였다.  At this time, the fuselage (10) is the aircraft fuselage and the two-sided variable lift type fusion wing (20) as described above on both sides of the aircraft fuselage (10) in the multi-stage arrangement, at least on the rear side of the aircraft fuselage (10) By constructing at least one engine section 11 and engine injection port 12, the engine section 11 has a conical engine injection port 12 having a rotational angle of 360 ° in up, down, left and right.
즉, 상기 항공기 동체 ( 10)의 양측부에 상기 변각형 양력조절방식 융합날 개 (20)가 다단 배치되므로 날개 인접부에는 엔진부 ( 11)를 구성할 수 없으며, 그러 므로 반각형 날개 (20)에 간섭이 없는 공간 즉, 날개의 아래쪽 좌우 측벽부 또는 상 기 동체 ( 10)의 후방측에 상기 엔진부 ( 11)를 배치 구성하도록 한 것이다.  That is, since the angular lift type fusion wing 20 is arranged in multiple stages on both sides of the aircraft fuselage 10, the engine portion 11 cannot be configured in the adjacent portion of the wing, and thus the half-angle wing 20 ), The engine unit 11 is arranged in a space where there is no interference, i.e., the lower left and right side walls of the wing or the rear side of the upper body 10.
상기 엔진부 ( 11)를 구성함에 있어서, 상기 엔진부 ( 11)가상하좌우로 360 의 회전각을 가지는 원뿔 형상의 엔진분사구 ( 12)를 가지도록 함으로써, 항공기 동 체 ( 10)의 이착륙이 이루어질 때 큰 영향을 미치는 바람의 방향이 시시각각 다른 것 을 감안하여, 바람이 부는 쪽으로 항공기 동체 ( 10)의 기수를 돌려 맞바람을 받으며 2019/212066 1»(:1^1{2018/005007 In constructing the engine unit 11, the engine unit 11 has a conical engine injection hole 12 having a rotation angle of 360 in the up, down, left, and right directions, and thus the aircraft body 10 can take off and land. Given that the direction of the wind, which has a great influence on the air, is different from time to time, turning the nose of the aircraft fuselage 10 toward the wind blowing 2019/212066 1 »(: 1 ^ 1 {2018/005007
27 착륙을 유도하기 위함인 것이다.  It is to induce landing.
또한, 상기와 같이 항공기 동체 ( 10)의 양측부에 다단으로 변각형 양력조절방 식 융합날개 (20)를 배치 구성시, 상기 항공기 동체 ( 10)에는 보조엔진을 더 적용할 수 있으며, 이는 항공기 동체 ( 10)에 과도한 화물적재나 유사시 승객의 인원 초과로 인하여 큰 양력이 필요로 할 때, 또는 기상 이변 등으로 인해 항공기 동체 ( 10)가 큰 이륙각으로 순간상승할 필요가 있을 때, 또는 맞바람이 없거나 기압이 약할 때 를 대비하여 보조적인 추력을 제공하기 위함인 것이다.  In addition, when the variable lift type fusion wing 20 is arranged in multiple stages on both sides of the aircraft fuselage 10 as described above, an auxiliary engine may be further applied to the aircraft fuselage 10, which is an aircraft. When there is a need for a large lift due to excessive load on the fuselage (10) or the excess number of passengers in need, or when the aircraft fuselage (10) needs to ascend to a large takeoff angle due to extreme weather, etc. This is to provide auxiliary thrust in case of no or low air pressure.
도 11의 (가) (나)는 하나의 독립된 변각형 양력조절방식 융합날개 (20)에 고 정날개부 (20-1)와 변각날개부 (20-2)를 복합적으로 설치한 복합날개의 구조를 적용 한 항공기의 평면도를 도시하고 있다.  11 (a) (b) is a composite wing in which the fixed wing portion 20-1 and the angled wing portion 20-2 are installed in one independent variable lift type fusion wing 20 in combination The top view of the aircraft to which the structure is applied is shown.
복합날개의 구조를 적용한항공기는, 동체 ( 10) 외벽에 고정된 형태로 부착되 는 고정날개부 (20-1) 외측에, 변각날개부 (20-2)가 회전각 조절 가능하게 설치되어 하나의 단위날개를 이루도록 구성하는 것인데, 도 11의 (가)는 이같은 복합날개가 동체 ( 10)에 직각방향으로 설치되는 동체 대비 수직형 구조를 설명하고 있고, 또한 도 11의 (나)는 복합날개가 동체 ( 10)에 일정한 경사각으로 기울여 설치되는 동체 대비 뒤쪽 밀림형 구조를 보여 주고 있다.  Aircraft employing the structure of a compound wing, the outer wing (20-1) is attached to the outer wall of the fuselage (10) in a fixed form, the angle wing 20-2 is installed to adjust the rotation angle one 11 (a) illustrates a vertical structure compared to the fuselage in which the composite wings are installed at right angles to the fuselage (10), and in Fig. 11 (b) shows the composite wings. It shows the rear of the structure compared to the fuselage installed inclined at a constant inclination angle on the fuselage (10).
도 12의 (가) (나) (다)는 하나의 독립된 날개에 길이방향을 따라 고정날개 부 (20-1)와 변각날개부 (20-2)를 반복되게 설치한 복합날개의 구조를 평면도로 도시 하고 있다.  12 (a) (b) (c) is a plan view of the structure of a composite wing in which the fixed blade portion 20-1 and the angled wing portion 20-2 are repeatedly installed in one independent wing along the longitudinal direction. It is shown as.
도 12의 (가)는 동체 ( 10) 외벽에 고정된 형태로 부착되는 고정날개부 (20-1) 외측에 변각날개부 (20-2)가 회전각 조절 가능하게 설치된 상태를 보인 바깥 형 (outer type) 복합날개를보이고 있고, 도 12의 (나)는 변각날개부 (20_2)가 서로 이격되게 설치되는 두 개의 고정날개부 (20-1) 사이에 위치하도록 배열된 상태를 보 인 중간형 ( Intermediate type) 복합날개를 보이고 있고, 도 12의 (다)는 변각날개 부 (20-2)가 고정날개부 (20-1) 내측에 위치하도록 설치된 상태를 보인 안쪽형 ( inner type) 복합날개를 각각보여주고 있다. 12 (a) is an outer side showing a state in which the variable wing portion 20-2 is installed on the outer side of the fixed wing portion 20-1 fixedly attached to the outer wall of the fuselage 10 to adjust the rotation angle. 12 shows an outer type composite wing, and FIG. 12 (b) shows a state in which the angled wing parts 20_2 are arranged to be positioned between two fixed wing parts 20-1 to be spaced apart from each other. Intermediate type compound wings are shown, and FIG. 12 (c) shows an inner type in which the angled wing part 20-2 is installed to be positioned inside the fixed wing part 20-1. Each compound wing is shown.
도 13의 (a) (b) (c) (d)는 또한, 하나의 독립된 날개가 길이방향으로 확장되는 확장 복귀식 가변 슬라이드형 복합날개의 구조를 설명하기 위한 도면을 보여주고 있다.  13 (a), (b), (c) and (d) also show a view for explaining the structure of an extended return variable slide type composite wing in which one independent wing extends in the longitudinal direction.
도 13의 A는 일체형 날개의 구조를 갖는 일반적인 변각형 양력조절방식 융합 날개 (20)를 표현하고 있는 것인데 비해서, 도 13의 (a) (b) (c) (d)는 날개가 길이방 향으로 확장되는 확장 복귀식 가변 슬라이드형 복합날개의 구조를 갖는 변각형 양 력조절방식 융합날개 (20)를 예시하고 있다.  FIG. 13A represents a general variable lift type fusion wing 20 having a structure of an integrated wing, whereas in FIG. 13A, FIG. 13A, FIG. It illustrates an angular lift type fused wing 20 having a structure of an extended return variable slide-type compound wing that is extended to.
도 13의 (a)와 (비는 광폭의 내측날개가 고정되어 있고, 이에 수용되는 좁은 폭의 외측날개가 공압 또는 유압실린더를 갖춘 피스톤 방식으로 구동되어 내측날개 의 선단으로부터 펼쳐지거나 축소되는 길이 가변형의 변각형 양력조절방식 융합날 개 (20)를 보이고 있는 것이다.  (A) and (a ratio of the wide inner blade is fixed, and the narrow outer blade accommodated therein is driven in a piston type with a pneumatic or hydraulic cylinder driven to expand or contract from the tip of the inner wing The angular lift control method is showing a fusion blade (20).
반면, 도 13의 (c) (d)는 고정되어 있는 좁은 폭의 내측날개가축으로 작용하 도록 고정되어 있고, 그 외측을 감싸며 펼쳐짐 가능하게 설치되는 광폭의 외측날개 가 또한 공압 또는 유압실린더를 갖춘 피스톤 방식으로 구동되어 펼쳐지거나 축소 되는 길이 가변형의 변각형 양력조절방식 융합날개 (20)를 보이고 있는 것이다. 이같은 본 발명와 변각형 양력조절방식 융합날개 (20)의 기능과 그 작용은 도 2019/212066 1»(:1^1{2018/005007 On the other hand, Fig. 13 (c) (d) is fixed to act as a narrow inner blade axis is fixed, the wide outer wings that are installed so as to be wrapped around the outside is also equipped with a pneumatic or hydraulic cylinder Piston drive is to show the variable lift type variable fusion wing 20 of variable length to be expanded or reduced. Such a function of the present invention and the variable lift type fusion wing 20 and its effect is shown in FIG. 2019/212066 1 »(: 1 ^ 1 {2018/005007
29  29
14에 표현되는 개념도를 통해 더욱 잘 이해할수 있을 것이다. The conceptual diagram presented in Figure 14 will give a better understanding.
도 14의 (가)(나)(다)는 변각형 양력 조절방식 융합날개의 일반 개념도로서, 이하에서 설명될 다양한유형의 운송수단에 적용될 수 있는 것이다.  (A) (B) (C) of Figure 14 is a general conceptual view of the variable lift type fusion wing, which can be applied to various types of transportation to be described below.
다시말해, 본 발명의 주요 개념을 살펴보면, 변각형 양력조절방식 융합날 개(20)는 회전몸체를 중심으로 방사상 배열되는 복수의 날개를 가지는 팬의 개별 날개를 동체의 외벽면에 일렬로 나열한 다음, 이들 각각의 날개에 각 변환을 주어 서 필요한 만큼의 양력(또는 부력)과 반양력(반부력)을 선택적으로 제공할 수 있도 록 한 것이다.  In other words, looking at the main concept of the present invention, the variable lift type fusion blade (20) is arranged in a row on the outer wall surface of the individual wings of the fan having a plurality of wings radially arranged around the rotating body Each of these blades is then subject to each transformation so that it can selectively provide as much lift (or buoyancy) and anti-lift (anti-buoyancy) as needed.
한편, 본 발명의 실시예로서, 첨부된 도 15에서와 같이, 선박과 열차, 그리 고 자동차와 같은 동체에 양력(또는 부력)과 반양력(반부력), 그리고 운동성을 가 진 물체의 커브 밀림을 방지하기 위한 항원심력의 날개를 적용할 수도 있으며, 상 기 항원심력은 동체 측방향의 힘을조절하기 위한 것이다.  On the other hand, as an embodiment of the present invention, as shown in the accompanying Figure 15, the curve of the object having a lifting force (or buoyancy), anti-lift force (half buoyancy), and mobility to the body such as ships, trains, and automobiles It can also be applied to the wing of the antigen core force, the antigen core force is to control the force of the fuselage side.
즉, 첨부된 도 16에서와 같이, 도면 기준 가로로 누워있는 긴 변각형 양력조 절방식 융합날개(20)는 각도를 조절하여 동체 상하 방향의 힘을 조절하는 것이고, 세로로 서 있는 작은 날개(50)는 각도를 조절하여 커브 구간에서 원심력을 최소화 하기 위한 것으로서, 상기 변각형 양력조절방식 융합날개(20)와 작은 날개(50)를 자동차의 앞뒤에 설치하면 아주 효과적인 장치가 된다.  That is, as shown in Figure 16, the long angular lift lifting fusion wing 20 lying horizontally on the basis of the drawing is to adjust the angle in the vertical direction by adjusting the angle, the small wings standing vertically ( 50) is to minimize the centrifugal force in the curve section by adjusting the angle, the angular lift control type fusion wing (20) and the small wing (50) in front of and behind the car is a very effective device.
특히 자동차에 있어서 짐을 많이 실어 하중을 초과하였을 경우 양력을 크게 하여 자동차를 가볍게 할 수 있고, 빗길이나 빙판길에서는 반양력(접지력)을 크게 하여 자동차를 안정적으로 운행할 수 있는 것이다. 또한 항원심력 날개는 빙판길에 서의 커브의 밀림을 잡아주어 겨울이나 빗길에서의 운행에 큰 도움이 될 것이라 예 2019/212066 1»(:1^1{2018/005007 In particular, when a load is exceeded due to a large load on a vehicle, the lift can be increased to lighten the vehicle, and on a rain or ice road, the vehicle can be stably operated by increasing the anti-lift force (grounding force). In addition, the wing of the antigen will catch the jungle of curves on the icy road, which will be a great help in winter or rain. 2019/212066 1 »(: 1 ^ 1 {2018/005007
30 상된다.  30 prizes.
한편, 본 발명의 실시예로서, 운송수단이 열차 또는 자동차의 동체 ( 10 ' )인 경우, 첨부된 도 19의 ①,②에서와 같이, 상기 변각형 양력조절방식 융합날개 (20) 는상기 열차의 외부측상부.또는외부측 양측부에 복수로 배치될 수 있는 것이다. 그러면, 상기 열차 또는 자동차와 같은 운송수단의 동체 ( 10’)가 지면 또는 레일을 따라 이동시, 상기 변각형 양력조절방식 융합날개 (20)의 각도 조절을 통해 양력 또는 반양력 (접지력)을 제공할수 있는 것이다.  On the other hand, as an embodiment of the present invention, when the vehicle is a train or a car body (10 '), as shown in ①, ② of Figure 19, the variable lift type fusion wing 20 is the train The outer side of the upper side, or may be arranged in plurality on both sides of the outer side. Then, when the fuselage (10 ') of the vehicle or vehicle (10') moves along the ground or rail, the lift or anti-lift (ground force) can be provided through the angle adjustment of the variable lift type fusion wing (20). It is.
이때, 상기 변각형 양력조절방식 융합날개 (20)를 통해 운송수단의 동체 ( 10’) 에 양력을 제공하는 경우는, 상기 동체 ( 10’)에 화물 또는 탑승인원이 많아 하중이 증가되었을 때 그 증가된 하중으로 인해 동체 ( 10’)의 이동이 제대로 이루어지지 않 으면서 더 많은 추진력을 제공받기 위해 연료를 많이 소비할 때 그 연료 소비량을 줄이기 위함인 것이다.  At this time, in the case of providing lift to the fuselage (10 ') of the vehicle through the variable lift type fusion wing (20), when the load is increased due to a lot of cargo or occupants in the fuselage (10') This is to reduce the fuel consumption when the fuel is consumed a lot to provide more propulsion while the fuselage (10 ') is not moved properly due to the increased load.
즉, 상기와 같은 운송수단의 동체 ( 10 ' )에 변각형 양력조절방식 융합날개 (20) 를 통해 양력을 제공하게 되면, 상기 동체 ( 10’)는 지면 또는 레일을 따라 이동시 약간의 부양 효과를 기대할 수 있게 되면서, 많은량의 화물이 적재되어 있거나 탑 승인원이 많더라도 연료 소비량을 줄이면서 그 이동이 원활하게 이루어질 수 있게 되는 것이다.  That is, when the lifting force is provided to the fuselage 10 'of the vehicle through the variable lift type fusion wing 20, the fuselage 10' has a slight flotation effect when moving along the ground or the rail. As expected, even if a lot of cargo is loaded or there are many tower approval sources, the movement can be made smoothly while reducing fuel consumption.
여기서, 상기 변각형 양력조절방식 융합날개 (20)에 의한 상기 동체 ( 10 ' )의 부양효과는 지면 또는 레일로부터 완전하게 떨어지는 것을 의미하는 것이 아니고, 동체 ( 10’)의 하단에 마련되는 바퀴가 접촉 압력을 최소화시키는 것을 설명하는 것 이다. 2019/212066 1»(:1^1{2018/005007 Here, the buoyancy effect of the fuselage (10 ') by the angular lift control type fusion wing (20) does not mean completely falling from the ground or rail, the wheel provided at the bottom of the fuselage (10') To minimize contact pressure. 2019/212066 1 »(: 1 ^ 1 {2018/005007
31 또한, 상기 변각형 양력조절방식 융합날개 (20)를 통해 운송수단의 동체 ( 101 ) 에 반양력 즉, 지면 또는 레일과의 접지력을 제공하는 경우는, 상기 동체 ( 10’)에 화물 또는 탑승인원이 적으면서 하중이 감소되었을 때 그 감소된 하중으로 인해 지 면 또는 레일로부터 동체 ( 10)가흔들리는 것을 방지하기 위함인 것이다. 31 In the case of providing a semi-lift force to the fuselage 10 1 of the vehicle through the angular lift control type fusion vane 20, that is, the ground or the rail to the ground, cargo or cargo to the fuselage 10 'is provided. When the load is reduced while the number of passengers is small, the reduced load prevents the body (10) from shaking from the ground or the rail.
즉, 상기와 같은 운송수단의 동체 ( 10’)에 변각형 양력조절방식 융합날개 (20) 를 통해 반양력 (접지력)을 제공하게 되면, 상기 동체 ( 10’)는 지면 또는 레일을 따 라 이동시, 상기 지면 또는 레일과의 접촉력이 증대되면서, 상기 동체 ( 1이)가 지면 또는 레일을 따라 안정적으로 이동할수 있게 되는 것이다.  That is, when the anti-lift (grounding force) is provided to the fuselage 10 'of the vehicle through the variable lift type fusion wing 20, the fuselage 10' is moved along the ground or rail. As the contact force with the ground or the rail increases, the fuselage 1 can stably move along the ground or the rail.
한편, 상기와 같이 운송수단이 열차 또는 자동차와 같은 동체 ( 101 )인 경우, 첨부된 도 19의 ③,④에서와 같이 상기 동체 ( 1이 )의 외부측 상부 또는 외부측 양측 부에는 항원심력을 제공하기 위한 원심력 제어 날개 (50)를 배치 구성할 수 있으며, 상기 원심력 제어 날개 (50)는 단독 또는 첨부된 도 16에서와 같이 상기 변각형 양 력조절방식 융합날개 (20)에 수직하게 구성할수도 있는 것이다. On the other hand, if the vehicle is a fuselage (10 1 ), such as a train or a car as described above, as shown in ( 3 ), ④ of Fig. 19 attached to the outer upper side or both sides of the outer body of the fuselage (1) antigen core force It can be configured to arrange the centrifugal force control blades 50 for providing, the centrifugal force control blades 50 are configured alone or perpendicular to the variable lift type fusion wing 20 as shown in Figure 16 You can do it.
즉, 상기 원심력 제어 날개 (50)는 열차 또는 자동차와 같은 운송수단의 동 체 ( 10’)가 커브길이나 빗길 또는 빙판길을 따라 이동시 각도 조절을 통해 원심력을 최소화하기 위한 것이며, 따라서 열차 또는 자동차와 같은 운송수단의 동체 ( 10’)는 커브길이나 빗길 또는 빙판길에서 안정적인 이동이 가능하게 되는 것이다.  That is, the centrifugal force control wing 50 is to minimize the centrifugal force by adjusting the angle when the body 10 'of a vehicle or a vehicle such as a train or a vehicle moves along a curved road, a rain road or an ice road, and thus a train or a car. The fuselage of the vehicle (10 ') is to be able to move stable on curves, rain or ice roads.
한편, 본 발명의 실시예로서, 운송수단이 선박 (예 ; 대형 또는 소형 선박)의 동체 ( 10’_ )인 경우, 첨부된 도 17 및 도 18에서와 같이, 상기 변각형 양력조절방식 융합날개 (20)는 상기 선박의 외부측 저부 양측에 복수로 배치될 수 있는데, 상기 변각형 양력조절방식 융합날개 (20)의 날개구동축부 (20 는 반부력을 제공하는각도 로 조절하도록 구동하는 구동부 (30)와 연결되고, 상기 구동부 (30)는 또한 수류감지 부에 의해 감지되는 수류정보에 따라 상기 변각형 양력조절방식 융합날개의 각도를 조절할수 있도록 구성된다. On the other hand, as an embodiment of the present invention, when the vehicle is a fuselage (10'_) of the vessel (for example, large or small vessel), as shown in Figures 17 and 18 attached, the variable lift type fusion wing 20 may be arranged in plural on both sides of the outer bottom of the vessel, the wing drive shaft portion 20 of the variable lift type fusion wing 20 is the angle to provide a semi-buoyancy Is connected to the drive unit 30 to drive to adjust, the drive unit 30 is also configured to adjust the angle of the variable lift type fusion wing according to the water flow information detected by the water flow detection unit.
그러면, 상기 선박과 같은 운송수단의 동체 (10”)가 수면을 따라 이동시, 상 기 변각형 양력조절방식 융합날개 (20)의 각도 조절을 통해 반부력 (접수력)을 제공 할수 있는 것이다.  Then, when the fuselage (10 ″) of the vehicle, such as a ship moves along the water surface, it is possible to provide a semi-buoyancy (receiving force) through the angle adjustment of the variable lift type fusion wing (20).
이때, 상기 변각형 양력조절방식 융합날개 (20)를 통해 동체 (10" )에 반부력을 제공하는 경우, 선박의 동체 ( 10”)를 아래로 잡아 당겨 동체에 안정성을 제공하게 되는 것이며, 따라서 적재된 화물 또는 탑승인원을 고려하여 최선의 속도로 순항할 수 있도록 하는 것이고, 순항 도중 급변하는 일기나 조류로 인하여 필요한 상황에 이를 경우 상기 변각형 양력조절방식 융합날개 (20)의 날개각 제어를 통해 반부력 (접수력)을 증가시킴으로서 밸러스트 탱크의 대체 역할을 신속하게 수행할 수 있도 록 하는 것이다.  At this time, when providing the buoyancy force to the fuselage (10 ") through the angular lift control method fusion wing (20), by pulling down the ship's fuselage (10") to provide stability to the fuselage, and therefore Considering the loaded cargo or the number of passengers to cruise at the best speed, if necessary due to the rapidly changing weather or tide during the cruise control the wing angle control of the variable lift type fusion wing 20 By increasing the anti-buoyancy (receiving force), it is possible to quickly play the role of a ballast tank.
이같이 밸러스트 탱크의 기능이 상기 변각형 양력조절방식 융합날개 (20)를 통해 대체되면, 상기 밸러스트 수 (Bal last Water)로 체워지던 종래 선박에 비해 전 체적인 하중이 감소되면서 연료 소비량이 현저하게 줄어들게 되고, 특히 밸러스트 수의 배출로 인한환경오염 문제를 해소할수 있게 되는 것이다.  In this way, if the function of the ballast tank is replaced by the variable lift type fusion vane 20, the fuel consumption is significantly reduced while reducing the overall load as compared to the conventional vessel that was filled with the ballast water (Bal last Water) In particular, it is possible to solve the environmental pollution problem caused by the discharge of ballast water.
즉, 상기와 같은 동체 ( 10" )에 변각형 양력조절방식 융합날개 (20)를 통해 반 부력을 제공하게 되면, 상기 동체 ( 10’’)는 수면을 따라 이동시 부양 또는 반부양 효 과를 선택적으로 기대할 수 있게 되면서, 많은량의 화물이 적재되어 있거나 탑승인 원이 많더라도 연료 소비량을 줄이면서 그 이동이 원활하게 이루어질 수 있게 되는 2019/212066 1»(:1^1{2018/005007 That is, when the anti-buoyancy is provided to the fuselage (10 ") through the angular lift control method fusion wing (20), the fuselage (10 '') selects the flotation or half-lift effect when moving along the water surface As it can be expected, even if a large amount of cargo or a large number of passengers, the fuel consumption can be reduced while moving smoothly 2019/212066 1 »(: 1 ^ 1 {2018/005007
33 것이다.  33 would.
반면, 도 18에서와 같이 소형 고속 선박의 경우에 있어서 변각형 양력조절방 식 융합날개 (20)는, 물의 저항을 최소화하기 위해 스키가 수면 위를 미끄러지도록 동체 ( 10" )를 들어주는 역할을 하는 것이다.  On the other hand, in the case of a small high speed vessel as shown in FIG. 18, the variable lift type fusion wing 20 serves to lift the fuselage 10 "so that the ski slides on the surface of the water to minimize water resistance. It is.
또한, 상기 변각형 양력조절방식 융합날개 (20)를 통해 동체 ( 10’’)에 반부력 즉, 수면과의 접수력을 제공하는 경우는, 상기 동체 ( 10’’)에 화물 또는 탑승인원이 적으면서 하중이 감소되었을 때 그 감소된 하중으로 인해 수면으로부터 동체 ( 10" ) 가 너무 크게 떨어지면서 뒤집히는 현상을 방지하기 위함인 것이다.  In addition, when providing the buoyancy force, that is, the reception force with the water surface to the fuselage (10 '') through the variable lift type fusion wing (20), the cargo or passengers to the fuselage (10 '') When the load is reduced while being small, the reduced load prevents the fuselage (10 ") from falling too much from the water surface and overturning.
즉, 상기와 같은 동체 ( 10" )에 변각형 양력조절방식 융합날개 (20)를 통해 반 부력 (접수력)을 제공하게 되면, 상기 동체 ( 10”)는 수면을 따라 이동시, 상기 수면 과의 접촉력이 증대되면서, 상기 동체 ( 10”)가 수면을 따라 안정적으로 이동할 수 있는 것이다.  That is, when the anti-buoyancy (receiving force) is provided to the fuselage (10 ") through the variable lift type fusion wing (20), when the fuselage (10") moves along the water surface, As the contact force increases, the fuselage 10 'can move stably along the surface of the water.
【산업상 이용가능성】  Industrial Applicability
이상에서 본 발명의 변각형 양력 조절방식의 날개를 장착한 제 3세대 항공기 와 선박 및 열차 그리고 자동차에 대한 기술사상을 첨부도면과 함께 서술하였지만, 이는 본 발명의 가장 바람직한 실시예를 예시적으로 설명한 것이지 본 발명을 한정 하는 것은 아니다.  In the above description, the technical concept of the third generation aircraft, the ship, the train, and the vehicle equipped with the wing of the variable lift type of the present invention has been described with the accompanying drawings, which describes the most preferred embodiment of the present invention by way of example. It does not limit the invention.
따라서, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며 , 청구범위에 서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통 상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그 와같은 변경은 청구범위 기재의 범위내에 있게 된다.  Accordingly, the present invention is not limited to the above-described specific embodiments, and various modifications can be made by those skilled in the art without departing from the spirit of the invention as claimed in the claims. Of course, such changes are within the scope of the claims.

Claims

【청구의 범위】 [Range of request]
【청구항 1]  [Claim 1]
동체 ;  Fuselage;
상기 동체의 양측부 또는 상부에 좌우 쌍을 이루며 적어도 2개 이상 연속되 게 배치되며, 상기 동체에 양력 또는 상기 양력과 반대되는 반양력을 제공하도록 날개 중심에 위치하는 날개구동축부를 기준으로 각도 조절가능하게 설치되어, 날개 의 기능과수평타의 기능을 동시에 수행하는 변각형 양력조절방식 융합날개; 및, 상기 날개구동축부를 중심으로 양력 또는 반양력을 제공하는 각도로 상기 변 각형 양력조절방식 융합날개를 기울임 구동하는 구동부; 를 포함하며,  The left and right pairs are arranged on both sides or the upper portion of the fuselage at least two or more consecutively, and the angle can be adjusted based on a wing drive shaft positioned at the center of the wing so as to provide lift or anti-lift force opposite to the lift. It is installed so as to perform the function of the wing and the horizontal stroke at the same time the angular lift type fusion control method; And, a drive unit for tilting the variable lift control type fusion wing at an angle to provide a lift or a semi-lift lift around the wing drive shaft; Including;
상기 변각형 양력조절방식 융합날개는, 유선형 단면의 일반적인 항공기 날개 형상을 가짐으로써 양력을 생성하게 되는 날개몸체를 가지고 있고, 상기 날개몸체 의 전방과 후방에는 바람가름판 (wind dividor)과 바람누름판 (wind pressor)을 각각 연장되게 설치하되, 상기 바람가름판 (wind dividor)과 바람누름판 (wind pressor)은 상기 날개구동축부를 통과하는 선 상에 위치하는 동시에 상기 날개몸체의 선,후단 을 연결하는 직선 상에 놓여진 평판형으로 설치하여, 유선형 날개몸체가 최소 단면 을 유지하면서도 고각도 이착륙시 증대된 양력을 제공할 수 있도록 구성함을 특징 으로 하는 변각형 양력 조절방식의 날개를 장착한 저 13세대 항공기 .  The variable lift control type fusion wing has a wing body that generates lift by having a general aircraft wing shape of a streamlined cross section, and in the front and rear of the wing body (wind dividor) and wind pressure plate ( The wind pressor is installed to extend, respectively, wherein the wind dividor and the wind pressor are positioned on a line passing through the wing driving shaft, and at the same time, connecting a line and a rear end of the wing body. A low-13th generation aircraft equipped with a variable lift type wing, which is installed in a flat shape placed on the plane, so that the streamlined wing body maintains a minimum cross section and provides increased lift during high angle takeoff and landing.
【청구항 2】  [Claim 2]
제 1항에 있어서, 좌우 쌍을 이루며 적어도 2개 이상이 연속되게 배치되는 상기 변각형 양력조절방식 융합날개는, 동체의 전방으로부터 후미에 이르기까지 균 등하게 설치되어 양력을동체 전구간에 고르게 분배함으로써, 동체가수평으로 이 2019/212066 1»(:1^1{2018/005007 According to claim 1, wherein the angular lift-type fusion wing is formed evenly from the front to the rear of the fuselage to form a pair of left and right, at least two or more consecutively, by evenly distributing the lift between all the fuselage, Fuselage horizontally 2019/212066 1 »(: 1 ^ 1 {2018/005007
35 착륙 할수 있도록 구성하는 것을특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 항공기. 35 Third- generation aircraft with variable lift control wings, characterized by being configured for landing.
【청구항 3】  [Claim 3]
제 1 항에 있어서, 상기 구동부는 복수로 배치되는 상기 변각형 양력조절방 식 융합날개의 각도를 동일한각으로 동시에 조절하도록 상기 변각형 양력조절방식 융합날개의 날개구동축부와 연결체로 연결 구성하는 것을 특징으로 하는 변각형 양 력 조절방식의 날개를 장착한 제 3세대 항공기.  The method of claim 1, wherein the drive unit is configured to connect to the wing drive shaft portion and the connecting member of the variable lift type fusion fusion blades to adjust the angle of the variable lift type fusion fusion blades arranged in a plurality at the same time. A third generation aircraft equipped with a wing of the variable lift type characterized in that.
【청구항 4]  [Claim 4]
제 1항에 있어서, 상기 구동부는 복수로 배치되는상기 변각형 양력조절방 식 융합날개의 전후 또는좌우 각도를 개별적으로 조절하도록 상기 변각형 양력조 절방식 융합날개의 날개구동축부에 각각 1 : 1로 구성하는 것을 특징으로 하는 변각 형 양력 조절방식의 날개를 장착한 제 3세대 항공기 .  The method according to claim 1, wherein the drive unit is a plurality of 1: 1 each of the wing drive shaft of the variable lift control method fusion blades arranged to individually adjust the front, rear, left and right angles of the variable lift control method fusion blades are arranged in plurality. Third generation aircraft equipped with a wing of the variable lift type, characterized in that consisting of.
【청구항 5】  [Claim 5]
제 3 항또는 제 4항에 있어서, 상기 구동부는 풍향감지부에 의해 감지되는 풍향 및 풍속정보에 따라상기 변각형 양력조절방식 융합날개의 각도를 조절하도록 구동하는 것을특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 항공 기·  The variable lift type control method according to claim 3 or 4, wherein the driving unit drives the variable lift type adjustment method to adjust the angle of the fusion wing according to the wind direction and wind speed information detected by the wind direction detection unit. 3rd generation aircraft with wings
【청구항 6】  [Claim 6]
제 1항에 있어서, 상기 동체의 양측부에 복수로 배치되는상기 변각형 양력 조절방식 융합날개는동일 수평라인에 배치되는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 항공기 . 2019/212066 1»(:1^1{2018/005007 The third-generation aircraft equipped with the wing of the variable lift type, characterized in that the variable lift type fusion wing disposed in both sides of the fuselage is arranged in the same horizontal line. 2019/212066 1 »(: 1 ^ 1 {2018/005007
36  36
【청구항 7】 [Claim 7]
제 1 항에 있어서, 상기 동체의 양측부에 복수로 배치되는 상기 변각형 양력 조절방식 융합날개는 계단형으로 배치되는 것을 특징으로 하는 변각형 양력 조절방 식의 날개를 장착한 제 3세대 항공기 .  The third-generation aircraft equipped with the wing of the variable lift type, characterized in that the variable lift type fusion wing arranged in a plurality of portions on both sides of the fuselage.
【청구항 8】  [Claim 8]
제 1 항에 있어서 , 상기 동체의 양측부에 복수로 배치되는 상기 변각형 양력 조절방식 융합날개는 상하측으로 서로 교차되는 지그재그형으로 배치되는 것을 특 징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 항공기 .  According to claim 1, wherein the variable lift type fusion wing disposed in a plurality on both sides of the fuselage is equipped with a wing of the variable lift type, characterized in that arranged in a zigzag shape cross each other up and down. Third generation aircraft.
【청구항 9]  [Claim 9]
제 1 항에 있어서, 상기 동체의 양측부에 복수로 배치되는 상기 변각형 양력 조절방식 융합날개는 전방측으로부터 후방측으로 배치되는 순서에 따라 그 날개의 폭과 길이가 점진적으로 확장되도록 구성하여, 전방 날개에서 발생되는 와류 또는 파류에 의한 간섭류를 최소화 하는 것을 특징으로 하는 변각형 양력 조절방식의 날 개를 장착한 제 3세대 항공기 .  According to claim 1, The variable lift type fusion wing disposed in a plurality on both sides of the fuselage is configured to gradually expand the width and length of the wing in the order arranged from the front side to the rear side, A third generation aircraft equipped with a wing of a variable lift type, characterized by minimizing interference caused by vortices or waves from the wing.
【청구항 10】  [Claim 10]
제 1 항에 있어서, 상기 동체의 양측부에 복수로 배치되는 상기 변각형 양력 조절방식 융합날개의 사이사이에는 간섭류를 방지하도록 각도 조절이 이루어지지 않는 고정형 날개를 더 배치 구성하여, 인접한 변각형 양력조절방식 융합날개의 각 도 제어를 통한 방향타 역활을 수행하는 동시에, 변각형 양력조절방식 융합날개 이 상 발생시 기본 양력을 유지하도록 함으로써 비행 안정성을 확보할 수 있도록 하는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 항공기. According to claim 1, Between the variable lift lifting type fusion blades disposed in a plurality on both sides of the fuselage is further configured to configure a fixed wing that does not adjust the angle to prevent interference flow, adjacent angular Variable lift control, characterized in that it performs the role of rudder through the angle control of the lift control method fusion wing, and ensures flight stability by maintaining the basic lift in the event of the angular lift control method fusion wing failure. Third generation aircraft equipped with wing of type.
【청구항 11】 [Claim 11]
제 1 항에 있어서, 상기 동체의 양측부에 복수로 배치되는 상기 변각형 양력 조절방식 융합날개는, 동체 외벽에 고정된 형태로 부착되는 고정날개부 외측에, 변 각날개부가 회전각 조절 가능하게 설치되어 하나의 단위 복합날개를 이루도록 구성 하며,  According to claim 1, wherein the variable lift type fusion wing disposed in a plurality on both sides of the fuselage, outside the fixed blade is attached to the fixed form on the fuselage outer wall, the angle of the wing is adjustable angle of rotation Installed to form one unit compound wing,
상기 단위 복합날개는 동체에 직각방향으로 설치되는 동체 대비 수직형 구 조; 또는 동체에 일정한 경사각으로 기울여 설치되는 동체 대비 뒤쪽 밀림형 구조; 중 어느 하나가 선택적으로 적용되는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 항공기.  The unit composite wing has a vertical structure compared to the fuselage installed at right angles to the fuselage; Or a rear jungle type structure compared to the fuselage installed at an inclined angle to the fuselage; A third generation aircraft equipped with a wing of the variable lift type, characterized in that any one of which is selectively applied.
【청구항 12】  [Claim 12]
제 1 항에 있어서 , 상기 동체의 양측부에 복수로 배치되는 상기 변각형 양력 조절방식 융합날개는, 하나의 독립된 날개에 길이방향을 따라 고정날개부와 변각날 개부를 반복되게 설치한 단위 복합날개가 적용되며,  According to claim 1, wherein the variable lift type fusion wing disposed in a plurality on both sides of the fuselage, unit composite wings repeatedly installed fixed blade portion and the angled blade opening along the longitudinal direction on one independent wing Is applied,
상기 단위 복합날개는, 동체 외벽에 고정된 형태로 부착되는 고정날개부와 그 외측에 변각날개부가 회전각 조절 가능하게 설치된 바깥형 (outer type) 복합날 개; 또는 변각날개부가 서로 이격되게 설치되는 두 개의 고정날개부 사이에 위치하 도록 배열된 중간형 ( Intermedi ate type) 복합날개; 또는 변각날개부가 고정날개부 내측에 위치하도록 설치된 안쪽형 ( inner type) 복합날개; 중 어느 하나가 선택적으 로 설치되는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 항공기 .  The unit compound wing, the outer wing (combined outer type) composite wing is installed to be fixed to the outer wall fixed to the fuselage form and the variable wing portion on the outer side to adjust the rotation angle; Or intermediate blade (Intermediate type) composite blade arranged to be positioned between the two fixed blades are installed spaced apart from each other wings; Or an inner type compound wing installed to have an angled wing portion located inside the fixed wing portion; Third generation aircraft equipped with a wing of the variable lift type, characterized in that any one of the optional installation.
【청구항 13】 2019/212066 1»(:1^1{2018/005007 [Claim 13] 2019/212066 1 »(: 1 ^ 1 {2018/005007
38 제 1 항에 있어서, 상기 동체의 양측부에 복수로 배치되는 상기 변각형 양력 조절방식 융합날개는, 하나의 독립된 날개가 길이방향으로 확장되는 확장 복귀식 가변 슬라이드형 복합날개의 구조가 적용되며 ,  38. The variable lift type fused wing of claim 1, wherein the variable lift control type fusion wing disposed in a plurality of sides of the fuselage is applied with a structure of an extended return variable slide type compound wing in which one independent wing extends in the longitudinal direction. ,
상기 가변 슬라이드형 복합날개는, 광폭의 내측날개가 고정되어 있고 이에 수용되 는 좁은 폭의 외측날개가 공압 또는 유압실린더를 갖춘 피스톤 방식으로 구동되어 내측날개의 선단으로부터 펼쳐지거나 축소되는 길이 가변형의 융합날개; 또는 고정 되어 있는 좁은 폭의 내측날개가 축으로 작용하도록 고정되어 있고 그 외측을 감싸 며 펼쳐짐 가능하게 설치되는 광폭의 외측날개가 공압 또는 유압실린더를 갖춘 피 스톤 방식으로 구동되어 펼쳐지거나 축소되는 길이 가변형의 융합날개; 중 어느 하 나가 설치되는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 항공기 . The variable slide type composite wing has a wide inner blade fixed thereto, and a narrow outer blade accommodated therein is driven in a piston manner with a pneumatic or hydraulic cylinder to expand or contract from the tip of the inner blade. wing; Alternatively, the variable width of the inner blade that is fixed so that the inner blade is fixed to act as an axis, and the wide outer blade that is installed so as to be unfolded and expandable is driven by a piston method with a pneumatic or hydraulic cylinder to expand or contract. Fusion wing; A third generation aircraft equipped with a wing of the variable lift type, characterized in that any one of the installation.
【청구항 14】  [Claim 14]
제 1 항에 있어서, 상기 변각형 양력조절방식 융합날개의 양력 제공을 위한 각도는 수평라인을 기준으로 상방향으로 43° 내지 87° 의 범위내에서 조절되는 것 을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 저ᅵ3세대 항공기. According to claim 1, The lifting angle of the variable lift control type fusion wing is provided for the variable lift type adjustment method characterized in that it is adjusted within the range of 43 ° to 87 ° in the upward direction relative to the horizontal line. 3rd generation aircraft with its wings.
【청구항 15】  [Claim 15]
제 1 항에 있어서, 상기 변각형 양력조절방식 융합날개의 반양력 제공을 위 한 각도는 수평라인을 기준으로 하방향으로 13° 내지 15° 의 범위내에서 조절되는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 항공기. According to claim 1, wherein the angle for providing the anti-lift of the variable lift control type fusion wing is adjusted in the range of 13 ° to 15 ° in the downward direction based on the horizontal line variable lift control Third generation aircraft equipped with wing of type.
【청구항 16】  [Claim 16]
제 1 항에 있어서, 상기 항공기의 후방측에는 적어도 하나 이상의 엔진부와 2019/212066 1»(:1^1{2018/005007 According to claim 1, The rear side of the aircraft at least one engine unit and 2019/212066 1 »(: 1 ^ 1 {2018/005007
39 분사구를 구성하는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3 세대 항공기.  A third-generation aircraft equipped with a wing of a variable lift type, comprising a nozzle.
【청구항 17】  [Claim 17]
제 16 항에 있어서, 상기 엔진부는 상하좌우로 360° 의 회전각을 가지는 원 뿔 형상의 엔진분사구를 갖는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 항공기. 17. The third generation aircraft of claim 16, wherein the engine unit has a cone-shaped engine injection port having a rotation angle of 360 ° in up, down, left, and right directions.
【청구항 18】  [Claim 18]
동체 ;  Fuselage;
상기 동체의 양측부 또는 외부측 상부에 좌우 쌍을 이루며 적어도 2개 이상 이 연속되게 배치되며, 상기 동체에 양력 또는 상기 양력과 반대되는 반양력을 제 공하고, 날개구동축부를 중심으로 각도가 조절되어, 양력을 통해 동체 안정성을 제 공하는 동시에, 반양력을 통해 동체와 레일간 간극을 항상 일정하게 유지시켜 주게 되는 변각형 양력조절방식 융합날개;  At least two of the left and right pairs are arranged continuously on both sides of the fuselage or the upper portion of the fuselage, providing the fuselage or the anti-lift force opposite to the lift force, and the angle is adjusted around the wing drive shaft part. Fused wing with variable lift control method, which provides the fuselage stability through lift and maintains constant clearance between the fuselage and rail through anti-lift;
상가 동체의 외부측 상부 또는 외부측 양측부에는 항원심력을 제공하기 위한 원심력 제어 날개; 및  Centrifugal force control blades for providing the antigenic core force on the outer upper portion or the outer both sides of the fuselage body; And
상기 변각형 양력조절방식 융합날개 및 상기 원심력 제어 날개가 상기 날개 구동축부를 중심으로 양력을 제공하는 각도 또는 반양력을 제공하는 각도로 조절되 도록 구동하는 구동부; 를 포함하는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 열차.  A drive unit configured to drive the variable lift control type fusion blade and the centrifugal force control vane at an angle providing lift or an angle providing anti-lift force about the blade drive shaft; Third generation train equipped with a wing of the variable lift type, characterized in that it comprises a.
【청구항 19】  [Claim 19]
제 18 항에 있어서, 2019/212066 1»(:1^1{2018/005007 The method of claim 18, 2019/212066 1 »(: 1 ^ 1 {2018/005007
40 좌우 쌍을 이루며 적어도 2개 이상이 연속되게 배치되는 상기 변각형 양력조 절방식 융합날개는, 동체의 전방으로부터 후미에 이르기까지 균등하게 설치되어 양 력을 동체 전구간에 고르게 분배하게 되는 것을 특징으로 하는 변각형 양력 조절방 식의 날개를 장착한 제 3세대 열차.  At least two of the variegated lift control fusion vanes which are arranged in pairs at right and left and at least two are arranged evenly from the front to the rear of the fuselage to distribute the lift evenly between the fuselage bulbs. Third generation train with variable lift control wings.
【청구항 20】  [Claim 20]
제 18항에 있어서, 상기 구동부는 복수로 배치되는상기 변각형 양력조절방 식 융합날개의 각도를 동시에 조절하도록상기 변각형 양력조절방식 융합날개의 날 개구동축부와 연결체로 연결 구성하는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 열차.  19. The method of claim 18, wherein the drive unit is configured to be connected to the connecting shaft and the blade opening coaxial part of the variable lift type control type fusion blades to simultaneously adjust the angle of the variable lift type control fusion blades are arranged in plurality. The third generation train equipped with variable lift type wing.
【청구항 21]  [Claim 21]
제 18항에 있어서, 상기 구동부는 복수로 배치되는 상기 변각형 양력조절방 식 융합날개의 각도를 개별적으로 조절하도록상기 변각형 양력조절방식 융합날개 의 날개구동축부에 각각 1 : 1로 구성하는 것을 특징으로 하는 변각형 양력 조절방식 의 날개를 장착한 제 3세대 열차.  19. The method according to claim 18, wherein the drive unit is configured to be 1: 1 to each of the wing drive shaft portion of the variable lift type fusion fusion wing to individually adjust the angle of the variable lift type fusion fusion wing disposed in plurality. A third generation train equipped with a variable lift type wing.
【청구항 22】  [Claim 22]
제 20 항또는 제 21항에 있어서, 상기 구동부는 풍향감지부에 의해 감지되 는 풍향 및 풍속 및 풍속 정보에 따라상기 변각형 양력조절방식 융합날개의 각도 를조절하도록 구동하는 것을특징으로 하는 변각형 양력 조절방식의 날개를 장착 한 제 3세대 열차.  22. The variable type as claimed in claim 20 or 21, wherein the driving unit is configured to adjust the angle of the variable lift type control fusion blade according to the wind direction, wind speed, and wind speed information detected by the wind direction detecting unit. Third generation train with lift control wing.
【청구항 23】  [Claim 23]
제 19 항에 있어서, 상기 동체의 양측부 또는 외부측 상부에 복수로 배치되 2019/212066 1»(:1^1{2018/005007 20. The apparatus of claim 19, wherein the plurality of the body parts are arranged on both sides of the fuselage or on the outside of the body. 2019/212066 1 »(: 1 ^ 1 {2018/005007
41 는상기 변각형 양력조절방식 융합날개는 동일 수평라인에 배치되는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 열차.  41 is the third-generation train equipped with a wing of the variable lift type, characterized in that the variable lift type fusion wing is disposed on the same horizontal line.
【청구항 24】  [Claim 24]
제 19항에 있어서, 상기 동체의 양측부 또는외부측 상부에 복수로 배치되 는 상기 변각형 양력조절방식 융합날개는 계단형으로 배치되는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 열차.  [Claim 20] The angular lift control system of claim 19, wherein the angular lift control type fusion blades disposed on both sides of the fuselage or a plurality of outer sides of the fuselage are arranged in a step shape. Third generation train.
【청구항 25】  [Claim 25]
제 19항에 있어서, 상기 동체의 양측부 또는 외부측 상부에 복수로 배치되 는 상기 변각형 양력조절방식 융합날개는상하측으로서로 교차되는지그재그형으 로 배치되는 것을특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 열차.  20. The angular lift control system according to claim 19, wherein the angular lift control system fusion blades disposed on both sides of the fuselage or on an outer side of the fuselage are arranged in a zigzag manner as being crossed up and down. Third generation train with wings.
【청구항 26】  [Claim 26]
제 18항에 있어서, 상기 원심력 제어 날개는상기 변각형 양력조절방식 융 합날개에 수직하게 구성함을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 열차.  19. The third generation train of claim 18, wherein the centrifugal force control vane is configured to be perpendicular to the variable lift type fusion vane.
【청구항 27]  [Claim 27]
동체 ;  Fuselage;
상기 동체의 전.후방측에 배치되며, 상기 동체에 양력 또는 상기 양력과 반 대되는 반양력을 제공하고, 날개구동축부를 중심으로 각도가 조절되어, 양력을 통 해 동체 안정성을 제공하는 동시에, 반양력을 통해 동체와 도로면과의 거리를 항상 일정하게 유지시켜 주게 되는 변각형 양력조절방식 융합날개; 2019/212066 1»(:1^1{2018/005007 It is disposed on the front and rear sides of the fuselage, and provides the lifting force or anti-lifting force opposite to the lifting force, and the angle is adjusted around the wing drive shaft, providing the fuselage stability through lifting, Variable lift control fusion wing that maintains a constant distance between the fuselage and the road surface through the lift; 2019/212066 1 »(: 1 ^ 1 {2018/005007
42 상기 동체의 외부측 상부 또는 외부측 양측부에는 항원심력을 제공하기 위한 원심력 제어 날개; 및  42 a centrifugal force control wing for providing an antigenic core force on the outer upper side or outer outer side of the fuselage; And
상기 변각형 양력조절방식 융합날개 및 상기 원심력 제어 날개가 상기 날개 구동축부를 중심으로 양력을 제공하는 각도 또는 반양력을 제공하는 각도로 조절되 도록 구동하는 구동부; 를 포함하는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 자동차.  A drive unit for driving the variable lift control type fusion blade and the centrifugal force control blade to be adjusted at an angle for providing lift or an angle for providing a semi-lift force about the blade drive shaft; Third generation cars equipped with a wing of the variable lift type control method comprising a.
【청구항 28】  [Claim 28]
제 27항에 있어서, 상기 구동부는풍향감지부에 의해 감지되는 풍향 및 풍 속정보에 따라상기 변각형 양력조절방식 융합날개의 각도를조절하도록 구동하는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 자동차.  The wing of the variable lift type control method according to claim 27, wherein the driving unit drives to adjust the angle of the variable lift type fusion fusion blade according to the wind direction and wind speed information detected by the wind direction detector. Equipped with third generation car.
【청구항 29】  [Claim 29]
제 27항에 있어서 , 상기 원심력 제어 날개는상기 변각형 양력조절방식 융 합날개에 수직하게 구성함을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 자동차.  28. The third generation of automobiles according to claim 27, wherein the centrifugal force control vane is configured to be perpendicular to the variable lift type fusion vane.
【청구항 30】  [Claim 30]
동체 ;  Fuselage;
동체의 외부측 저부 또는 동체의 상부 측면이나 지붕에 좌우 쌍을 이루며 적 어도 2개 이상이 연속되게 배치되며, 상기 동체에 부력 또는 상기 부력과 반대되는 반부력을 제공하여, 밸러스트
Figure imgf000044_0001
13此)의 기능을 대체하게 되는, 날개구 동축부를 중심으로 각도가조절되는 변각형 양력조절방식 융합날개; 및,
At least two or more pairs are arranged in a row on the outer bottom of the fuselage or on the upper side or the roof of the fuselage, and at least two or more are arranged consecutively and provide buoyancy or anti-buoyancy opposite to the buoyancy, and ballast.
Figure imgf000044_0001
1 3此) variable angle lift control fusion wing with angle adjustment centered on the coaxial part of the wing; And ,
상기 변각형 양력조절방식 융합날개를 상기 날개구동축부를 중심으로 부력을 2019/212066 1»(:1^1{2018/005007 The variable lift type fusion wing is buoyancy centering on the wing drive shaft 2019/212066 1 »(: 1 ^ 1 {2018/005007
43 제공하는 각도 또는 반부력을 제공하는 각도로 조절하도록 구동하는 구동부; 를 포 함하여 구성하는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세 대 선박.  43 a drive unit for driving to adjust the angle provided or the angle providing the anti-buoyancy; Third generation ship equipped with a wing of the variable lift type, characterized in that comprising a.
【청구항 31]  [Claim 31]
제 30 항에 있어서, 동체의 외부측 저부에 좌우 쌍을 이루며 적어도 2개 이 상이 연속되게 배치되는 상기 변각형 양력조절방식 융합날개는, 동체의 전방으로부 터 후미에 이르기까지 균등하게 설치되어 양력을 동체 전구간에 고르게 분배하게 되는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 선박. 31. The angular lift control type fusion vane according to claim 30, wherein left and right pairs of left and right pairs are arranged consecutively on the outer bottom of the fuselage are evenly installed from the front of the fuselage to the rear of the fuselage. Third generation ship equipped with a wing of the variable lift type, characterized in that evenly distributed throughout the fuselage.
【청구항 32】 [Claim 32]
제 30항에 있어서, 상기 구동부는 복수로 배치되는 상기 변각형 양력조절방 식 융합날개의 각도를 동시에 조절하도록상기 변각형 양력조절방식 융합날개의 날 개구동축부와 연결체로 연결 구성하는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 선박.  31. The method of claim 30, wherein the drive unit is configured to be connected to the connecting shaft and the blade opening coaxial part of the variable lift type adjustable fusion fusion blade to adjust the angle of the variable lift type fusion fusion blade is arranged in a plurality. The third generation of ships equipped with a wing of the variable lift type.
【청구항 33]  [Claim 33]
제 30항에 있어서, 상기 구동부는 복수로 배치되는 상기 변각형 양력조절방 식 융합날개의 각도를 개별적으로 조절하도록 상기 변각형 양력조절방식 융합날개 의 날개구동축부에 각각 1 : 1로 구성하는 것을특징으로 하는 변각형 양력 조절방식 의 날개를 장착한 제 3세대 선박.  31. The method of claim 30, wherein the drive unit is configured to be configured to each 1: 1 in the wing drive shaft of the variable lift type fusion fusion wing to individually adjust the angle of the variable lift type fusion fusion wing disposed in plurality. A third generation ship equipped with a wing of the variable lift type.
【청구항 34]  [Claim 34]
제 32항또는 제 33항에 있어서, 상기 구동부는수류감지부에 의해 감지되 는수류정보에 따라상기 변각형 양력조절방식 융합날개의 각도를조절하도록 구동 2019/212066 1»(:1^1{2018/005007 34. The method of claim 32 or 33, wherein the drive unit is driven to adjust the angle of the variable lift type fusion wing according to the water flow information detected by the water flow detection unit 2019/212066 1 »(: 1 ^ 1 {2018/005007
44 하는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 선박. A third-generation ship equipped with a wing of a variable lift type, characterized in that.
【청구항 35】 [Claim 35]
제 30항에 있어서, 상기 동체의 외부측 저부 또는 동체의 상부 측면이나지 붕에 복수로 배치되는상기 변각형 양력조절방식 융합날개는 동일 수평라인에 배치 되는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 선박. 31. The variable lift control method according to claim 30, wherein the variable lift type fusion vanes disposed in plural on the outer bottom of the fuselage or on the upper side or roof of the fuselage are arranged on the same horizontal line. Third generation ship with wings.
【청구항 36】 [Claim 36]
제 30항에 있어서, 상기 동체의 외부측 저부 또는 동체의 상부 측면이나 지 붕에 복수로 배치되는 상기 변각형 양력조절방식 융합날개는 계단형으로 배치되는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 선박.  31. The variable lift type wing according to claim 30, wherein the variable lift type fusion wing disposed in plurality on the outer side of the fuselage or on the upper side or roof of the fuselage is disposed in a step shape. 3rd generation ship equipped with a.
【청구항 37】  [Claim 37]
제 30 항에 있어서, 상기 동체의 외부측 저부 또는 동체의 상부 측면이나 지 붕에 복수로 배치되는 상기 변각형 양력조절방식 융합날개는 상하측으로 서로 교차 되는 지그재그형으로 배치되는 것을 특징으로 하는 변각형 양력 조절방식의 날개를 장착한 제 3세대 선박.  31. The angular type according to claim 30, wherein the variable lift type fusion fusion blades disposed on the outer bottom of the fuselage or on the upper side or roof of the fuselage are arranged in a zigzag shape that crosses each other up and down. Third generation ship equipped with lift control wing.
PCT/KR2018/005007 2018-04-30 2018-04-30 Third-generation aircraft, ship, train and automobile having angle-variable lift force adjusting wings WO2019212066A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2018/005007 WO2019212066A1 (en) 2018-04-30 2018-04-30 Third-generation aircraft, ship, train and automobile having angle-variable lift force adjusting wings
JP2021512342A JP7112141B2 (en) 2018-04-30 2018-04-30 3rd generation aircraft with adjustable lift wings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2018/005007 WO2019212066A1 (en) 2018-04-30 2018-04-30 Third-generation aircraft, ship, train and automobile having angle-variable lift force adjusting wings

Publications (1)

Publication Number Publication Date
WO2019212066A1 true WO2019212066A1 (en) 2019-11-07

Family

ID=68386370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005007 WO2019212066A1 (en) 2018-04-30 2018-04-30 Third-generation aircraft, ship, train and automobile having angle-variable lift force adjusting wings

Country Status (2)

Country Link
JP (1) JP7112141B2 (en)
WO (1) WO2019212066A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114872744A (en) * 2022-05-27 2022-08-09 西北工业大学 Aerodynamic lift force is train lift wing system in coordination based on high-speed railway clearance constraint
CN115421426A (en) * 2022-09-27 2022-12-02 兰州交通大学 Installation arrangement and cooperative control method for high-speed train flank lift force regulation and control device
WO2023059032A1 (en) * 2021-10-05 2023-04-13 최임철 Barge for reducing effect of water currents

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07315295A (en) * 1994-05-25 1995-12-05 Hiroshi Nakayama Variable series type multilayer wing
KR960037241U (en) * 1995-05-27 1996-12-16 정종대 Automotive Air Spoiler System
KR20030084876A (en) * 2003-10-15 2003-11-01 한국철도기술연구원 Lift device for railway vehicle
KR20110057638A (en) * 2009-11-24 2011-06-01 삼성중공업 주식회사 Vessel capable of controlling dynamic position
KR20120131565A (en) * 2011-05-26 2012-12-05 김성열 double wing device for fuel economy of automobile
KR20180052280A (en) * 2016-11-10 2018-05-18 최동규 a transfer angle type lift power control system of the wings to the third generation aircraft

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007253761A (en) * 2006-03-22 2007-10-04 Nissan Diesel Motor Co Ltd Posture stabilizing device of vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07315295A (en) * 1994-05-25 1995-12-05 Hiroshi Nakayama Variable series type multilayer wing
KR960037241U (en) * 1995-05-27 1996-12-16 정종대 Automotive Air Spoiler System
KR20030084876A (en) * 2003-10-15 2003-11-01 한국철도기술연구원 Lift device for railway vehicle
KR20110057638A (en) * 2009-11-24 2011-06-01 삼성중공업 주식회사 Vessel capable of controlling dynamic position
KR20120131565A (en) * 2011-05-26 2012-12-05 김성열 double wing device for fuel economy of automobile
KR20180052280A (en) * 2016-11-10 2018-05-18 최동규 a transfer angle type lift power control system of the wings to the third generation aircraft

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023059032A1 (en) * 2021-10-05 2023-04-13 최임철 Barge for reducing effect of water currents
CN114872744A (en) * 2022-05-27 2022-08-09 西北工业大学 Aerodynamic lift force is train lift wing system in coordination based on high-speed railway clearance constraint
CN115421426A (en) * 2022-09-27 2022-12-02 兰州交通大学 Installation arrangement and cooperative control method for high-speed train flank lift force regulation and control device

Also Published As

Publication number Publication date
JP2021530404A (en) 2021-11-11
JP7112141B2 (en) 2022-08-03

Similar Documents

Publication Publication Date Title
US9487286B2 (en) Lift and propulsion device, and heavier-than-air aircraft provided with such a device
US20120074264A1 (en) Airplane wing
US7988088B2 (en) Tubular air transport vehicle
KR20110112402A (en) Method for comprehensively increasing aerodynamic and transport characteristics, a wing-in-ground-effect craft for carrying out said method (variants) and a method for realizing flight
WO2018059244A1 (en) Aircraft
CN108045575B (en) Short-distance take-off vertical landing aircraft
KR20100043660A (en) A flying body with traveling ground
US11858304B2 (en) Multi-modal vehicle
WO2019212066A1 (en) Third-generation aircraft, ship, train and automobile having angle-variable lift force adjusting wings
KR20180052280A (en) a transfer angle type lift power control system of the wings to the third generation aircraft
RU2422309C1 (en) Combined flight vehicle
US6164591A (en) Ground-effect flying boats also applicable to aircraft, drones, and spacecraft
RU2391254C2 (en) Supersonic aircraft (versions)
CN100475649C (en) Ground effect flyer
JP4085716B2 (en) Vertical take-off and landing aircraft
RU2317220C1 (en) Method of forming the system of forces of flying vehicle and flying vehicle-ground-air-amphibian for realization of this method
CN207072435U (en) Aircraft and aircraft system
RU2629463C1 (en) Ekranoplan of integrated aerogydrodynamic compound
RU2286268C2 (en) Wing-in-ground-effect craft
KR20180052568A (en) a transfer angle type lift power control system of the wings to the third generation transportation
RU2328413C1 (en) Lightweight amphibian aircraft
JP2022028578A (en) Flight vehicle
CN1740056A (en) Airplane with airflow jetted over wings to generate lift force
JP2021049960A (en) Flight body
JP7418175B2 (en) flying object

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917513

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021512342

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.04.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18917513

Country of ref document: EP

Kind code of ref document: A1