JP7418175B2 - flying object - Google Patents

flying object Download PDF

Info

Publication number
JP7418175B2
JP7418175B2 JP2019185518A JP2019185518A JP7418175B2 JP 7418175 B2 JP7418175 B2 JP 7418175B2 JP 2019185518 A JP2019185518 A JP 2019185518A JP 2019185518 A JP2019185518 A JP 2019185518A JP 7418175 B2 JP7418175 B2 JP 7418175B2
Authority
JP
Japan
Prior art keywords
aircraft
wing
propulsion
vertical
stabilizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019185518A
Other languages
Japanese (ja)
Other versions
JP2021049961A (en
Inventor
優章 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019185518A priority Critical patent/JP7418175B2/en
Publication of JP2021049961A publication Critical patent/JP2021049961A/en
Application granted granted Critical
Publication of JP7418175B2 publication Critical patent/JP7418175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、飛行体に関し、特に、低速飛行、低速離着陸、空中での急制動や空中停止などのいかなる飛行状態でも安全な姿勢制御を獲得出来る飛行体に関する。 The present invention relates to a flying vehicle, and particularly to a flying vehicle that can obtain safe attitude control in any flight condition, such as low-speed flight, low-speed takeoff and landing, sudden braking in midair, or stopping in midair.

例えば、機体左右の側面に、推進装置とフラップを取り付けた平面固定式主翼と、同じく機体後部側面に水平に取り付け固定された水平尾翼と、機体後部中心部に方向舵を備えた固定式の大きな垂直尾翼とを備え、離着陸時にはエンジン出力とフラップの調整を行うボーイング787や、ボンバルディアや、ホンダジェット等が知られている。 For example, there are flat fixed main wings with propulsion devices and flaps attached to the left and right sides of the fuselage, horizontal stabilizers that are also horizontally attached and fixed to the rear sides of the fuselage, and large fixed vertical wings with a rudder in the center of the rear fuselage. Known examples include the Boeing 787, Bombardier, and HondaJet, which are equipped with tail wings and adjust engine output and flaps during takeoff and landing.

このボーイング787やボンバルディアやホンダジェットなどの多くのジェット機の離着陸速度は200~400km/hの範囲が多く、その結果、離着陸を安全に実現するには滑走路の長さも1000~3000mの範囲で多くの場合は離着陸が可能である。 The takeoff and landing speeds of many jet aircraft, such as the Boeing 787, Bombardier, and Honda Jet, are often in the range of 200 to 400 km/h, and as a result, the length of the runway is often in the range of 1,000 to 3,000 m to realize safe takeoff and landing. In this case, takeoff and landing are possible.

ところで、このボーイング787やボンバルディアやホンダジェットなどの多くのジェット機又はプロペラ機の何れも平面部が固定された主翼及び水平尾翼とフラップと方向舵が配設され、巡航飛行では600~800km/hの速度で、プロペラ機の場合は高度6000m付近を、ジェット機では8000~10000m付近を安定した飛行が可能である。 By the way, many jet and propeller planes such as the Boeing 787, Bombardier, and HondaJet have fixed flat surfaces, fixed main wings, horizontal stabilizers, flaps, and rudders, and can reach speeds of 600 to 800 km/h in cruise flight. Propeller planes can fly stably at an altitude of around 6,000m, while jet planes can fly stably at around 8,000 to 10,000m.

これらの飛行体は、上昇下降には、多くの場合、推進機の出力調整と、フラップの角度や翼とフラップの隙間を広げたり狭めたり、翼からフラップの部分を引き出して翼面積を拡大し、フラップと角度調整で空気抵抗の調整をし、高度と飛行速度を調整しながら長い滑走をして離着陸をしている。 In order to ascend and descend, these aircraft often have to adjust the power of the propulsion machine, widen or narrow the flap angle or the gap between the wings, or expand the wing area by pulling out the flap part from the wing. The aircraft adjusts air resistance by adjusting the flaps and angle, and takes off and lands on long glides while adjusting altitude and flight speed.

即ち、このボーイング787やボンバルディアやホンダジェットなどの飛行体は、左右の主翼にそれぞれ推進機が配設され、エンジン出力を上げて十二分の揚力及び浮力を得られるまで高速滑走してフラップの平面の角度を稼働させることにより離陸が可能となる。着陸時には巡行飛行から速度を落とし、主翼に配設されているフラップ角度調整とエンジン出力調整で、機体が失速しない安全な揚力及び浮力維持速度とすることで着陸が可能になる。 In other words, aircraft such as the Boeing 787, Bombardier, and HondaJet have propulsion machines installed on the left and right wings, and the engine output is increased to achieve sufficient lift and buoyancy. Taking off is possible by adjusting the angle of the plane. When landing, the aircraft slows down from cruising flight and adjusts the flap angle on the main wing and engine output to create a safe lift and maintain buoyancy speed that will prevent the aircraft from stalling, making it possible to land.

しかしながら、これらのボンバルディアやボーイング等の全ての翼平面部が固定されている飛行体では、飛行体によると以下のような問題があった。 However, these aircraft, such as Bombardier and Boeing, in which all wing plane parts are fixed, have the following problems.

主翼は、平面部が機体に対して水平に固定されており、そこに配設された推進機は機体後方の水平にだけ推進気流を噴射するだけなので、揚力浮力調整は、翼が得る空気抵抗力の加減と、フラップの操作による飛行速度の加減に頼らざるを得ないが、フラップの面積が不十分であり、それだけでは揚力浮力が小さいため、揚力浮力の調整が十分ではないという問題がある。そのため、飛行体は低速飛行が出来ず、また浮力を失わない範囲の300~400kmhで着陸する必要が有り、離陸では揚力および浮力が十分に得られる230~330kmhの高速が出るまで速度を上げ、推進機の推力を増しながら長い滑走距離をして離陸しなければならないという問題もある。また、事故現場や救助現場に直接離着陸できない問題や、また飛行中や高速滑走中などのそのために、急制動をかけて危険回避ができないという課題もある。更に、主翼だけに配設された推進機やフラップや固定された大きな垂直尾翼の一部が作動する方向舵だけ等の作動では高速性能や姿勢制御能力が不十分であるという問題もある。 The plane part of the main wing is fixed horizontally to the fuselage, and the propulsion machine installed there only injects propulsive airflow horizontally at the rear of the fuselage, so lift buoyancy adjustment depends on the air resistance that the wing obtains. They have to rely on adjusting the force and adjusting the flight speed by operating the flaps, but there is a problem that the area of the flaps is insufficient and the lift and buoyancy alone is small, so the adjustment of the lift and buoyancy is not sufficient. . For this reason, the aircraft cannot fly at low speeds and must land at a speed of 300 to 400 kmh without losing buoyancy, and at takeoff, increase the speed until it reaches a high speed of 230 to 330 kmh, where sufficient lift and buoyancy can be obtained. There is also the problem of having to increase the thrust of the propulsion aircraft and take off over a long glide distance. There is also the problem of not being able to take off and land directly at an accident site or rescue site, and the inability to apply sudden braking to avoid danger during flight or high-speed taxiing. Furthermore, there is also the problem that high-speed performance and attitude control ability are insufficient if only the propulsion unit, flaps, and rudder operated by part of a large, fixed vertical tail are mounted only on the main wings.

即ち、エンジンによる噴射力だけで推進速度を上げ、フラップの作用により推進力の一部を浮力又は揚力に変換させ、離陸できる速度に達してからフラップで推進力と揚力とを調整している従来の翼平面部固定式飛行体では翼の空気抵抗が小さく、推進力で高速性は得られてもフラップだけでは翼上部に発生する真空密度や真空密度空間が狭く、飛行中に翼裏面が受ける空気抵抗が小さく、結果として揚力および浮力が小さく、失速速度は高く、低速滑空飛行や低速離着陸が出来ない問題が有る。 In other words, in the past, the propulsion speed was increased only by the injection force from the engine, part of the propulsion force was converted into buoyancy or lift by the action of the flap, and the flaps were used to adjust the propulsion force and lift after reaching the speed for takeoff. In a flying vehicle with a fixed wing plane, the air resistance of the wing is small, and although high speed can be achieved by propulsive force, the vacuum density and vacuum density space generated in the upper part of the wing are narrow with flaps alone, and the underside of the wing is exposed to damage during flight. Air resistance is low, resulting in low lift and buoyancy, and a high stall speed, making it impossible to perform low-speed gliding flight or low-speed takeoff and landing.

また、離着陸時に空気抵抗の少ない平面部固定式翼では飛行体速度が速く、バードストライクの回避や車輪のパンクや、滑走路の凍結など様々な回避に間に合わずに危険な高速着陸をしなければならず、エンジン出力とフラップ操作だけに頼る離着陸時の揚力浮力不足により、十分な低速飛行が得られずオーバーランの問題がある。 In addition, with flat fixed wings that have low air resistance during takeoff and landing, the aircraft speed is high, and it is necessary to avoid dangerous high-speed landings in time to avoid bird strikes, tire punctures, frozen runways, etc. However, due to the lack of lift and buoyancy during takeoff and landing, which relies only on engine output and flap operation, it is not possible to fly at a sufficiently low speed, resulting in overrun problems.

また、島嶼地域や山間地や湖沼地帯や入り江が多い地方や空き地の取れない都市は、空港まで自動車などで湾曲した長い道路を長時間かけて移動しなければ空港を利用できない時間的・経済的・肉体的・精神的苦痛をしながら空港利用することが多く、不便さを享受しなければならないという問題がある。即ち、従来の飛行場は、長い滑走路の作れる場所が必要なため、島嶼地域や山間地や湖沼地帯や入り江が多い多くの人々は国際空港を利用するのに前日から電車や自動車やバスや列車を利用し、空港付近のホテルに前夜は宿泊する不便な人々も多い。また、長い滑走路を作れない島嶼部や山間地域では、飛行機が直接離着陸出来ない不便さが有り、人の移動や物資の移動などが妨げられ、産業発展の妨げにもなる課題が有る。 In addition, in island regions, mountainous areas, lake areas, regions with many inlets, and cities where vacant land is difficult to obtain, it is difficult to access the airport without taking a long curving road by car.・There is a problem in that people often use airports while experiencing physical and mental pain, and have to enjoy the inconvenience. In other words, because conventional airports require a place where a long runway can be built, many people who live in island areas, mountain areas, lake areas, or inlets often travel by train, car, bus, or train the day before to use an international airport. Many people take advantage of the inconvenience of staying at a hotel near the airport the night before. In addition, in islands and mountainous areas where long runways cannot be built, there is the inconvenience of not being able to take off and land directly for airplanes, which impedes the movement of people and goods, and poses the problem of hindering industrial development.

また、従来の固定式一枚翼で高速性は確保できるが、救難などの場合は飛行速度が速過ぎて、地上や海上の確認すべき被災者等を見逃してしまう問題が有る。 In addition, although conventional fixed single-winged aircraft can ensure high speed, in the case of rescue operations, the flight speed is too high, and there is a problem that victims on the ground or sea that need to be checked may be missed.

飛行機による被災地地上への緊急救助物資の投下などでは、輸送する飛行体の速度が速過ぎて、その投下物資が破損するなどの問題が有る。 When dropping emergency relief supplies onto the ground in a disaster area by airplane, there are problems such as the speed of the aircraft transporting them being too high and the dropped supplies being damaged.

被災地などへの救助物資を高速での物資投下では、指定の落下場所に正確に落下させ、落下物資に破損させずに届けることは難しい問題が有る。 When dropping relief supplies to disaster-stricken areas at high speed, it is difficult to accurately drop them at designated drop locations and deliver them without damaging the fallen supplies.

また、飛行体が離着陸滑走および滑空するときの翼の面と、推進機が高速噴射する気流の向きが機体姿勢と平行の後方に噴射するために、噴射気流のそれ自体は前に進む推進力だけに作用し、直接揚力や浮力を発生させていないため、小さな面積のフラップに頼ると機体の浮力および揚力維持の限界速度が高く、結果として離着陸時の飛行速度が高く長い滑走路を必要とする問題が有る。離着陸速度が高いと、車輪が滑走路との摩擦が大きく、滑走路に散乱している小石や小さな部品等が原因でパンクをするなどの危険が有る。 In addition, when the aircraft takes off, lands, and glides, the plane of the wing and the direction of the airflow jetted by the propulsion machine at high speed are parallel to the attitude of the aircraft, so the jetting airflow itself is a forward propulsion force. Because it does not directly generate lift or buoyancy, relying on flaps with a small area will result in a high limit speed for maintaining the buoyancy and lift of the aircraft, resulting in high flight speeds during takeoff and landing, requiring a long runway. There is a problem. When takeoff and landing speeds are high, the friction between the wheels and the runway is large, and there is a risk of punctures caused by pebbles and small parts scattered on the runway.

また、一枚の主翼に配設されている推進機だけでは、どんなに高性能でもその推進機が固定されている飛行体の速度以上の高速空気を取り入れることが出来ないので、現状の形態では更なる高速飛行体の高性能を得られない問題が有る。 In addition, no matter how high-performance the propulsion machine is installed on a single main wing, it is not possible to take in high-speed air that is faster than the speed of the aircraft to which the propulsion machine is fixed. There is a problem in that it is not possible to obtain the high performance of a high-speed flying vehicle.

また、現在の翼平面部の非可動式飛行体では、推進機は飛行体と水平に主翼に固定され、推進機から噴射される噴射風は機体下方に噴射することが出来ず、更に主翼全体の面積に対して面積の小さいフラップ平面部の角度調整だけでは揚力および浮力が小さく、結果、高速で揚力や浮力を確保する現状の飛行体は20~50km/hの極低速では揚力及び浮力が少なく失速してしまう。従って、200m~400m範囲の中での短距離滑走では推進力不足と噴射風向きが推進力だけの後方噴射になるので、推進機から直接揚力を発生出来ず離着陸出来ない問題が有る。 In addition, in current flight vehicles with non-movable wing planes, the propulsion plane is fixed to the main wing horizontally with the plane of the plane, and the jet wind injected from the propulsion plane cannot be injected downward into the aircraft body. Lift and buoyancy are small just by adjusting the angle of the flap plane, which has a small area compared to the area of It stalls a little. Therefore, in short-distance runs within the range of 200 m to 400 m, there is a problem in that the propulsion machine is unable to generate lift directly and cannot take off or land because the propulsion force is insufficient and the direction of the jet wind is backward jetting with only the propulsion force.

また、災害現場の被災状況の詳しい把握など緊急時の低速滑空が出来ない。固定主翼では推進機からの噴射気流は機体と水平の後方に噴射するので、それでは低速飛行に必要な揚力や浮力は得られず飛行限界値を割っているので200km/h以下等の低速飛行は不可能と言う問題が有る。換言すれば、空港や滑走路を作れない地域の人々の日常の通勤・通学や救急患者の救済や旅行客の移動などの他、観光誘致や食品の搬出搬入等の物流で大きな不便さ等で経済格差を解決する極短距離離着陸機の技術開発が行われていない。 Additionally, it is not possible to perform low-speed gliding during emergencies, such as obtaining detailed information about the damage situation at a disaster site. With a fixed main wing, the jet airflow from the propeller is injected horizontally to the rear of the aircraft, which does not provide the lift and buoyancy necessary for low-speed flight, which is below the flight limit value, so low-speed flight such as 200 km/h or less is not possible. There is a problem that is impossible. In other words, in addition to the daily commuting to work and school of people in areas where airports and runways cannot be built, the relief of emergency patients, and the movement of tourists, there is also a great inconvenience in attracting tourism and logistics such as transporting food. No technology has been developed for ultra-short takeoff and landing aircraft to resolve economic disparities.

また、従来の平面部固定式の主翼だけに配設した推進機では、低速飛行の場合、推進機から噴射される風は機体後方に直線的に噴射され、噴射風が直接揚力及び浮力に働かず、機種ごとに違うが飛行限界値速度が高く、推進機自ら揚力及び浮力機能を持たない飛行体で200kmh以下の速度では常に失速限度速度による飛行の姿勢のバランスが不安定姿勢の誘発になり墜落可能性の課題が有る。また、例えば従来の飛行機が着陸態勢に入った場合、速度調整はエンジン主力とフラップを主翼から引き出したり、主翼とフラップの間に大きな隙間を作って空気抜きして高度を下げるなどの方法でしているが、これらは200kmh以下の速度では失速してしまう。 In addition, with conventional propulsion machines installed only on the fixed plane main wing, during low-speed flight, the wind injected from the propulsion machine is injected straight to the rear of the aircraft, and the jet wind directly acts on lift and buoyancy. Although it varies by model, the flight limit speed is high, and at speeds below 200 kmh, the propulsion aircraft itself does not have lift or buoyancy functions, and the balance of the flight attitude due to the stall limit speed will cause an unstable attitude. There is the issue of the possibility of a fall. Also, for example, when a conventional airplane prepares for landing, its speed can be adjusted by pulling out the main engine power and flaps from the main wing, or by creating a large gap between the main wing and the flap to bleed air and lower the altitude. However, these vehicles stall at speeds below 200 kmh.

また、噴射風が直接揚力及び浮力に働かず、低速で揚力および浮力を発生出来ないため、離陸できる揚力浮力を得られる速度に達するまでの滑走距離が長く、長い滑走路さえ有れば飛行巡航速度が速く、長距離滑走路を必要として離着陸するという構造のため、低速飛行が出来ない致命的な課題が有る。 In addition, since the jet wind does not directly act on lift and buoyancy and cannot generate lift and buoyancy at low speeds, it takes a long runway to reach the speed at which lift and buoyancy can be obtained for takeoff. Due to its high speed and structure, which requires a long runway for takeoff and landing, there is a fatal problem in that it cannot fly at low speeds.

また、従来の飛行体では、飛行中の機体に急ブレーキをかけたり、低速で揚力および浮力を発生出来ないため、空中停止や20~100km/h等のヘリコプター並みの極低速飛行ができなかったり、失速し易いという問題がある。極端に言えば、50kmh以下の極低速度飛行維持機能がないという致命的な課題が有る。 In addition, conventional aircraft cannot apply sudden brakes during flight or generate lift and buoyancy at low speeds, so they are unable to stop in the air or fly at extremely low speeds comparable to helicopters, such as 20 to 100 km/h. , there is a problem that it is easy to stall. To put it in an extreme, there is a fatal problem in that there is no ability to maintain extremely low speed flight below 50kmh.

また、従来の飛行体に配設された推進機の直後方には方向舵がなく、推進機から噴射される噴射風中心からは外れており、機体が高速にならないと制御できず、低速飛行時の横風などの対応に敏感に機体の方向や姿勢制御が出来ない課題が有る。 In addition, there is no rudder immediately behind the propulsion machine installed on conventional aircraft, and the rudder is away from the center of the jet wind ejected from the propulsion machine, so it cannot be controlled unless the aircraft is at high speed, and when flying at low speed The problem is that the direction and attitude of the aircraft cannot be controlled because it is sensitive to crosswinds.

また、従来の飛行体では、200kmh以下の極低速での飛行が出来ないので、水上に離着陸するための手段がなく、広大な湿原地域や、広大な海岸線の地域や大河地域の人々がピンポイントで水面上に離着陸出来ないという課題が有る。また、従来の飛行体では、時速200kmh以下の低速飛行が出来ないため、滑走距離10~50m等の極短いピンポイント短距離離着陸出来ないという課題が有る。 In addition, because conventional aircraft cannot fly at extremely low speeds of less than 200 kmh, there is no means to take off and land on water, making it difficult for people in vast wetland areas, vast coastlines, and large river areas to fly. There is a problem in that it cannot take off and land on the water surface. Furthermore, conventional aircraft cannot fly at low speeds of less than 200 km/h, and therefore cannot perform pinpoint short-distance takeoffs and landings with very short runway distances, such as 10 to 50 m.

また、従来の飛行体では、通常左右の主翼だけに配設されている推進機は常に作動させていなくては墜落などの危険性を伴うので、どちらかの推進機の停止をすることは熟練パイロットでも難しいという課題が有る。 In addition, in conventional aircraft, the propulsion machines, which are normally installed only on the left and right main wings, must be operated at all times or there is a risk of a crash, so stopping either of the propulsion machines requires skill. There are challenges even for pilots.

また、従来の飛行体の垂直尾翼は機体に固定され、垂直尾翼に配設されている小さな面積の方向舵が可動して飛行体の進行方向の一部の働きを担うが、特に従来の飛行体では様々な危険事象に急速旋回による危険回避が出来ないという課題がある。 In addition, the vertical tail of conventional aircraft is fixed to the fuselage, and the small-area rudder installed on the vertical stabilizer is movable and plays a part in the direction of flight of the aircraft. However, there is a problem in that it is not possible to avoid danger by making rapid turns in various dangerous situations.

また、その方向舵は機体後方にだけ一基の大型垂直尾翼の方向舵のため、例えば、横風を受けた低速飛行の場合は、機体後部は風下に流され、進行方向に対して機体が斜めになってしまう、即ち、機体を直線的に調整することができないという課題もある。
3.このように従来の飛行体の垂直尾翼は、方向舵性能が低いため急旋回性能が低いという問題もある。
In addition, the rudder is a single large vertical tail rudder located at the rear of the aircraft, so for example, when flying at low speed due to a crosswind, the rear of the aircraft will be swept downwind and the aircraft will be tilted to the direction of travel. There is also the problem that the aircraft cannot be adjusted linearly.
3. As described above, the vertical tail of conventional aircraft has a problem of poor rudder performance and poor sharp turning performance.

垂直尾翼に配設されているジェット推進機の噴射風向きが後方直線だけであり、左右に吹き出せない課題が有る。 The jet propulsion unit installed on the vertical tail fin only directs the jet air straight backwards, which poses the problem of not being able to blow to the left or right.

また、垂直尾翼に小さな面積の方向舵が配設されているが、効果は高速のときには高いが、低速では低いという課題が有る。 Furthermore, although a small-area rudder is disposed on the vertical tail, there is a problem in that its effectiveness is high at high speeds, but low at low speeds.

また、方向舵だけでは危険回避などの時の急速旋回などの性能が低い課題が有る。 In addition, there is a problem that the rudder alone has poor performance such as rapid turning when avoiding danger.

水平尾翼も、主翼と同じく、平面部が機体に対して水平に固定されており、揚力浮力調整は、翼が得る空気抵抗力の加減と、フラップの操作による飛行速度の加減に頼らざるを得ないが、水平尾翼は翼のフラップの面積が小さく揚力浮力が小さくなるため、大きな空気抵抗を受けて、十分な揚力および浮力を得るには課題が残るという問題がある。 Like the main wings, the horizontal stabilizer's flat part is fixed horizontally to the aircraft body, and lift and buoyancy adjustment must rely on adjusting the air resistance force obtained by the wings and adjusting the flight speed by operating the flaps. However, the horizontal stabilizer has a small wing flap area, which reduces lift and buoyancy, so it is subject to large air resistance, and there remains a problem in obtaining sufficient lift and buoyancy.

また、従来の飛行機では基本的には50kmh以下の低速離着陸機は戦闘機以外にないので、水面に着陸出来ないという問題もある。 In addition, there is also the problem that conventional airplanes cannot land on water because there are basically no slow takeoff and landing aircraft other than fighter jets that can take off and land at speeds of 50 kmh or less.

そもそも、50年前にイギリスの航空機で主翼と垂直尾翼の二か所にジェット推進機を配設した当時の大型旅客機が開発されたが、当時はエンジンの推進力が低いのでエンジンの数を増やし、推進力を高めて40~50人乗りを製造したが、その後エンジン出力は急速に高められ、ジェット推進機は主翼だけ又は機体後方の垂直尾翼付近の何れかだけに配設した現在の飛行体が存在する。 In the first place, 50 years ago, British aircraft developed a large passenger plane with jet propulsion in two places, the main wing and the vertical tail. , a 40- to 50-seater aircraft was manufactured by increasing the propulsion force, but engine output was rapidly increased after that, and the jet propulsion aircraft is now installed only on the main wing or near the vertical stabilizer at the rear of the aircraft. exists.

発明の目的purpose of invention

従って、本発明の目的は、低速飛行及び低速離着陸が可能であり、極短距離滑走による離着陸や、空中での急制動や空中停止などのいかなる飛行状態でも安全な姿勢制御を獲得することができる飛行体を提供することにある。 Therefore, an object of the present invention is to enable low-speed flight, low-speed takeoff and landing, and to obtain safe attitude control in any flight condition, such as takeoff and landing by extremely short distance glide, sudden braking in midair, and stopping in midair. The goal is to provide flying vehicles.

発明を解決するための手段means to solve the invention

本発明は、上記目的を達成するために、機体本体と、該機体前部に設けられる主翼と、該機体後部に設けられ水平尾翼と、該機体後部であって該水平尾翼近傍に設けられる垂直尾翼と、からなる飛行体であって、前記主翼は、翼平面部が互いに独立して又は同時に枢動して所定角度で傾斜する左主翼および右主翼と、該左主翼および右主翼に配設される推進機と、該推進機の後方にそれぞれ配設され前記機体の上昇・下降を制御するフラップと、を有し、前記水平尾翼は、翼平面部が互いに独立して又は同時に枢動して所定角度で傾斜する水平尾翼左翼および水平尾翼右翼と、前記機体の上昇・下降を制御するフラップと、を有し、前記垂直尾翼は、その方向を左右に枢動する枢動装置と、上下方向に所定角度で傾斜枢動する推進機と、方向舵と、を有する、ことを特徴とする飛行体を提供するものである。 In order to achieve the above object, the present invention includes a main body, a main wing provided at the front of the aircraft, a horizontal stabilizer provided at the rear of the aircraft, and a vertical stabilizer provided near the horizontal stabilizer at the rear of the aircraft. A flying object comprising: a tail wing; the main wing includes a left main wing and a right main wing whose wing plane parts pivot independently or simultaneously to tilt at a predetermined angle; a propulsion device, and flaps each disposed behind the propulsion device to control the ascent and descent of the aircraft; The vertical stabilizer has a left wing horizontal stabilizer and a right wing horizontal stabilizer that tilt at a predetermined angle, and a flap that controls the ascent and descent of the aircraft. An object of the present invention is to provide an aircraft characterized by having a propulsion device that tilts and pivots at a predetermined angle in a direction, and a rudder.

前記左主翼および右主翼の推進機は、前記左主翼の長さ方向先端と前記機体の接合部および前記右主翼の長さ方向先端と前記機体の接合部との概略中心位置に配置されていることを特徴とする。 The propulsion units for the left main wing and the right main wing are arranged at approximately central positions between the longitudinal tip of the left main wing and the fuselage, and the longitudinal tip of the right main wing and the fuselage. It is characterized by

前記左主翼および右主翼は、前記推進機および前記フラップとともに一体的に水平から垂直方向に91度の角度までの範囲内で枢動傾斜することを特徴とする。 The left main wing and the right main wing are characterized in that they pivot and tilt together with the propulsion device and the flap within an angle of 91 degrees from horizontal to vertical.

前記左主翼および右主翼の推進機の後方近傍には方向舵が配設されていることを特徴とする。 The vehicle is characterized in that a rudder is disposed near the rear of the propulsion unit on the left main wing and the right main wing.

前記左主翼および取得右翼の先端部には、揚力および浮力を発生させる複数の枢動式揚力浮力コントローラーが配設されていることを特徴とする。 A plurality of pivoting type lift and buoyancy controllers that generate lift and buoyancy are disposed at the tips of the left main wing and the acquisition right wing.

前記枢動式揚力浮力コントローラーは、平面部が水平から垂直方向に45度の角度の範囲内で枢動傾斜することを特徴とする。 The pivoting lift buoyancy controller is characterized in that the plane part pivots and tilts within an angle of 45 degrees from horizontal to vertical.

前記左主翼および右主翼に設けられた推進機は、ジェット噴射式推進機又はプロペラ式推進機の何れかであることを特徴とする。 The propulsion devices provided on the left main wing and the right main wing are either jet injection type propulsion devices or propeller type propulsion devices.

前記左主翼および右主翼に設けられた推進機がプロペラ式推進機の場合は、永久磁石を用いた発電モーター及びターボプロップ式又はシリーズパラレル式の組み合わせ推進機であることを特徴とする。 When the propulsion devices provided on the left main wing and the right main wing are propeller type propulsion devices, the propulsion device is characterized in that it is a combination propulsion device of a generator motor using a permanent magnet and a turboprop type or a series-parallel type.

前記左翼および右翼と前記垂直尾翼の推進機は、出力を個別に調整制御可能であることを特徴とする請求項1~8のいずれか1項に記載の飛行体。 The aircraft according to any one of claims 1 to 8, wherein outputs of the propulsion units of the left wing, the right wing, and the vertical tail can be adjusted and controlled individually.

前記水平尾翼左翼および水平尾翼右翼は、機体の最後部付近の機体左右の位置に配設され、翼平面部は前記フラップとともに一体的に水平から垂直方向に75度の範囲内で枢動傾斜することを特徴とする。 The horizontal stabilizer left wing and the horizontal stabilizer right wing are arranged at positions on the left and right sides of the fuselage near the rearmost part of the fuselage, and the wing plane part pivots and tilts integrally with the flap within a range of 75 degrees from the horizontal to the vertical direction. It is characterized by

前記垂直尾翼は、前記枢動装置により前記垂直尾翼自体と前記方向舵の向きを個別に枢動制御することを特徴とする。 The vertical stabilizer is characterized in that the pivoting device independently pivotally controls the directions of the vertical stabilizer itself and the rudder.

前記枢動装置は、前記垂直尾翼を前記機体の軸方向に対して左右に20度ずつの範囲内で向きを付けることを特徴とする。 The pivot device is characterized in that it orients the vertical tail within a range of 20 degrees to the left and right with respect to the axial direction of the aircraft body.

前記垂直尾翼に設けられた推進機は、前記垂直尾翼の上下高さの概略中心位置に配置されることを特徴とする。 The propulsion device provided on the vertical stabilizer is disposed approximately at the vertical center of the vertical stabilizer.

前記垂直尾翼に設けられた推進機は、ジェット噴射式推進機であることを特徴とする。 The propulsion device provided on the vertical tail is a jet injection propulsion device.

前記垂直尾翼に設けられたジェット推進機は、上下左右方向に各20度の範囲内で枢動傾斜することを特徴とする。 The jet propulsion device provided on the vertical tail is characterized in that it pivots and tilts within a range of 20 degrees in each of the vertical and horizontal directions.

前記機体の側面には、収縮時には機体の所定の場所に収納可能な空気注入式のフロートが配設されていることを特徴とする。 The fuselage is characterized in that an inflatable float is disposed on the side of the fuselage, which can be stored in a predetermined position of the fuselage when deflated.

前記フロートは、水面に接する部分が硬質の樹脂板やアルミ板やカーボン樹脂板等の何れかで出来ることを特徴とする。 The float is characterized in that the portion in contact with the water surface is made of a hard resin plate, an aluminum plate, a carbon resin plate, or the like.

変形例として、ジェット推進機の噴射口の吹き出し口を下方に向けて風を下方に噴出させることが出来ることを変形例とした特徴とする。 As a modified example, the modified example is characterized in that the air outlet of the injection port of the jet propulsion device can be directed downward to blow out the wind downward.

発明の効果Effect of the invention

本発明によれば、以上のように構成されるので、機体左右の主翼及び水平尾翼と機体との接続部分に翼の平面部を水平から垂直方向に枢動させる装置を配設し、垂直尾翼には上下傾斜枢動するジェット推進機を配設し、垂直尾翼は左右に向きを枢動式としたことで、機体の翼全体が空気抵抗を調整出来、飛行中の速度を低速から高速までを自在に得られることと、主翼と垂直尾翼に配設された推進機の噴射風の向きを水平ばかりでなく機体下方に向けることを可能にし、推進機の噴射風をフラップなど介さず直接揚力浮力とし、垂直尾翼に配設したジェット推進機は垂直尾翼と共に左右に向きを枢動させ、ジェット推進機からの噴射風は機体下方と機体の左右の後方に噴射することで推進力と共に揚力及び浮力を得、高速飛行中に急制動や低速飛行や低速離着陸又は急旋回等が得られ、安定した飛行で安全飛行や短い滑走で離着陸を図ることができる。 According to the present invention, as configured as described above, a device for pivoting the flat part of the wing from the horizontal to the vertical direction is disposed at the connection portion between the left and right main wings and the horizontal stabilizer and the fuselage, and the vertical stabilizer The aircraft is equipped with a jet propulsion machine that pivots up and down, and the vertical stabilizer pivots left and right, allowing the entire wing of the aircraft to adjust air resistance, allowing the aircraft to change its speed from low to high during flight. This makes it possible to direct the jet wind from the propulsion planes installed on the main wings and vertical tail not only horizontally, but also downwards over the fuselage. The jet propulsion unit installed on the vertical tail pivots to the left and right together with the vertical tail, and the jet wind from the jet propulsion unit is injected downward and to the left and right rear of the aircraft, creating propulsive force as well as lift and By gaining buoyancy, it is possible to perform sudden braking during high-speed flight, low-speed flight, low-speed takeoff and landing, sharp turns, etc., and it is possible to achieve safe flight with stable flight and takeoff and landing with short runway.

本発明によれば、以上のように構成されるので、左右独立した主翼にはプロペラ推進機又はジェット気流噴射式推進機を備え、機体後部には水平尾翼が配設され、全ての翼平面部の角度を水平から垂直方向に枢動することで翼は大きな空気抵抗を発生することが出来て低速飛行が可能になり、主翼及び垂直尾翼に配設した推進機からの噴射風向きは機体後方への水平噴射ばかりでは無く、機体下方にも噴射し、特に垂直尾翼に配設された推進機からの噴射風の向きは機体後方及び機体下方に直進ばかりでなく、機体後方から下方にかけて左右に20度の範囲で、下方に61度の班内に噴射することが可能で、従来はフラップの機能作用で発生する揚力や浮力を活用していたが、推進機からの噴射風は直接強い揚力及び浮力及び機体の姿勢制御を生み出し、低速でも推進機からの直接揚力及び浮力を生かした低速飛行またはホバリング飛行を可能にし、飛行体は極短距離の滑空又は滑走距離及び横風に対する制御を合わせた離着陸を可能にすることが出来る。 According to the present invention, as configured as described above, the left and right independent main wings are equipped with a propeller propulsion device or a jet stream injection type propulsion device, a horizontal stabilizer is provided at the rear of the fuselage, and all wing plane parts are provided with a propeller propulsion device or a jet stream injection type propulsion device. By pivoting the angle from horizontal to vertical, the wings can generate a large amount of air resistance, making low-speed flight possible, and the direction of the jet of air from the propulsion units installed on the main wings and vertical tail is directed toward the rear of the aircraft. The jet is not only horizontally jetted, but also jetted downward into the fuselage. In particular, the direction of the jet wind from the propulsion unit installed on the vertical tail is not only straight to the rear of the fuselage and downward, but also 20 degrees to the left and right from the rear to the downward direction of the fuselage. It is possible to inject downward into a 61-degree angle within the range of 61 degrees. Conventionally, lift and buoyancy generated by the flap function were used, but the jet wind from the propulsion machine directly uses strong lift and buoyancy. It creates buoyancy and attitude control of the aircraft, and enables low-speed flight or hovering flight by taking advantage of the direct lift and buoyancy from the propulsion aircraft even at low speeds. can be made possible.

更に主翼及び水平尾翼平面部全体が垂直方向に枢動することと、垂直尾翼に配設したジェット推進機が噴射風を機体下方に噴射出来ることで主翼推進機と併せて強い揚力及び浮力を発生し、翼全体が受ける空気抵抗は極大になり、同時に翼と推進機の併せた揚力浮力も極大が得られることを可能にすることが出来る。 Furthermore, the entire main wing and horizontal stabilizer plane pivot in the vertical direction, and the jet propulsion unit installed on the vertical stabilizer can inject jet wind downwards into the fuselage, creating strong lift and buoyancy in conjunction with the main wing propulsion unit. However, the air resistance experienced by the entire wing becomes maximum, and at the same time, the combined lift and buoyancy of the wing and propulsion aircraft can be maximized.

更に主翼及び水平尾翼平面部全体が垂直方向に枢動することで、翼が受ける空気抵抗は極大になり、同時に揚力浮力も極大が得られ、更に推進機は操縦が必要とする最適速度確保に対して、揚力及び浮力を確保する最適角度を得ることで最適速度の確保を可能にする。 Furthermore, by vertically pivoting the entire main wing and horizontal stabilizer plane, the air resistance experienced by the wings is maximized, and at the same time, lift and buoyancy are maximized, and the propulsion aircraft can maintain the optimal speed required for maneuvering. On the other hand, by finding the optimal angle that ensures lift and buoyancy, it is possible to secure the optimal speed.

ホバリングから巡航速度までの広範囲な飛行速度を可能にする翼平面部角度調整と垂直尾翼に配設した機体の前後二か所の推進機からの噴射気流方向を制御活用でき、機体前後の二か所の揚力及び浮力の調整で、低速化及び揚力浮力の確保と機体の速度及び姿勢制御性能を高め、安全性の高い性能を獲得し、それぞれの各推進機出力や翼や方向舵やフラップ等をコンピューター制御により可変して最適且つ安全で高性能な飛行を獲得でき、その結果、低速でも高速でも高空でも強風下での飛行形態などあらゆる飛行状態にも安定制御できることを可能にし、特に飛行中の急制動を可能にしたことで緊急時の高速飛行を中止や、極低速飛行により極短距離離着陸を図る効果が有る。 The angle of the wing plane can be adjusted to enable a wide range of flight speeds from hovering to cruising speed, and the direction of the jet air from the two propulsion units located on the vertical tail can be controlled and utilized. By adjusting the lift and buoyancy at each location, we are able to reduce the speed, ensure lift buoyancy, increase the speed and attitude control performance of the aircraft, and obtain high safety performance, and adjust the output of each propulsion machine, wings, rudder, flaps, etc. Optimal, safe, and high-performance flight can be obtained through variable computer control, and as a result, it is possible to achieve stable control in all flight conditions, including low speed, high speed, high altitude, and strong wind conditions, and especially during flight. Enabling sudden braking has the effect of canceling high-speed flight in an emergency, and allowing extremely low-speed flight to take off and land over extremely short distances.

該機体の主翼には推進機を配設した左右独立作動する一対の翼を用い、機体の前部の主翼と機体後部の水平尾翼の平面部は垂直方向に枢動し、機体が必要とする揚力及び浮力及び機体の速度を翼の角度で調整し、更に機体前後に配設した推進機を水平から垂直方向に枢動傾斜させ、噴射気流角度を機体下方に噴射させることで、推進機は直接揚力及び浮力を発生し、極低速での飛行を獲得し、短距離離着陸を可能にすることが出来る。 The main wings of the aircraft are equipped with a pair of wings that operate independently on the left and right sides with propulsion units installed, and the flat parts of the main wings at the front of the aircraft and the horizontal stabilizer at the rear of the aircraft pivot in the vertical direction, and By adjusting the lift, buoyancy, and speed of the aircraft with the angle of the wings, and pivoting and tilting the propulsion machines installed at the front and rear of the aircraft from horizontal to vertical, the propulsion aircraft can be It can directly generate lift and buoyancy, achieve extremely low speed flight, and enable short takeoff and landing.

本発明によれば、本発明の左右独立した主翼平面部と、機体最後部の垂直尾翼が左右に向きを枢動することと、垂直尾翼に上下傾斜枢動式のジェット推進機を配設したことで、垂直尾翼に配設した推進機の噴射風向きを機体下方及び左右に向け噴射することで推進機から直接的に効率良い揚力及び浮力及び機体の方向制御を確保できる効果が有る。 According to the present invention, the left and right independent main wing plane parts of the present invention, the vertical tail at the rearmost part of the fuselage pivot left and right, and the vertical stabilizer is provided with a vertically tilting pivot type jet propulsion unit. This has the effect of ensuring efficient lift and buoyancy as well as directional control of the aircraft directly from the propulsion aircraft by directing the jet wind direction of the propulsion aircraft disposed on the vertical stabilizer downward and to the left and right of the aircraft.

本発明によれば、本発明の左右独立した主翼の平面部と、機体最後部の水平尾翼が水平から垂直方向に枢動することと、機体最後部の垂直尾翼に枢動傾斜式のジェット推進機を配設したことで空気抵抗の調整と、各推進機の噴射風向きを機体下方に向けることで推進機から効率良い揚力及び浮力を確保でき、低速飛行や高速飛行得る効果が有る。 According to the present invention, the planar parts of the left and right independent main wings of the present invention and the horizontal stabilizer at the rearmost part of the fuselage pivot from the horizontal to the vertical direction, and the vertical tailplane at the rearmost part of the fuselage has a pivoting tilt type jet propulsion. By arranging the aircraft, it is possible to secure efficient lift and buoyancy from the propulsion machines by adjusting air resistance and directing the blast direction of each propulsion machine downwards, which has the effect of achieving low-speed or high-speed flight.

本発明によれば、本発明の左右独立した主翼平面部と、機体最後部の垂直尾翼が左右水平に向きを枢動することと、垂直尾翼に上下傾斜枢動式のジェット推進機を配設したことで、垂直尾翼に配設した推進機の噴射風向きを機体下方及び左右に向け噴射することで機体の水平姿勢の確保や、機体が飛行中に横風を受けた機体が進行方向に斜め姿勢で離着陸する危険防止できる機体の方向制御を確保できる効果が有る。 According to the present invention, the left and right independent main wing flat parts of the present invention and the vertical tail at the rearmost part of the fuselage pivot horizontally to the left and right, and a vertically tilting pivot type jet propulsion unit is disposed on the vertical tail. By directing the jet wind direction of the propulsion unit installed on the vertical tail to the bottom and left and right of the aircraft, it is possible to maintain a horizontal attitude of the aircraft, and to prevent the aircraft from being in a diagonal position in the direction of travel if it receives a crosswind during flight. This has the effect of ensuring directional control of the aircraft, which can prevent the danger of takeoff and landing.

本発明によれば、本発明の左右独立した主翼平面部と、機体最後部の水平尾翼平面部が向きを上下に枢動することで、水平尾翼に当った風は揚力浮力の調整が出来ることで機体の前後の水平姿勢制御性能が向上する効果が有る。 According to the present invention, by vertically pivoting the direction of the left and right independent main wing flat parts of the present invention and the horizontal stabilizer flat part at the rearmost part of the fuselage, the lift and buoyancy of the wind hitting the horizontal stabilizer can be adjusted. This has the effect of improving the front and rear horizontal attitude control performance of the aircraft.

本発明によれば、本発明の左右独立した主翼平面部と、機体最後部の水平尾翼平面部が向きを上下に枢動することで、主翼と水平尾翼に当った風は揚力浮力を極大に制御出来ることで機体の揚力及び浮力性能が向上する効果が有る。 According to the present invention, the left and right independent main wing plane parts of the present invention and the horizontal tail plane part at the rearmost part of the fuselage pivot vertically, so that the wind hitting the main wings and horizontal stabilizer maximizes the lift and buoyancy. Being able to control it has the effect of improving the lift and buoyancy performance of the aircraft.

本発明の機体の主翼と垂直尾翼の両方に推進機を配設し、推進機を機体の前後の二か所採用機によれば、機体前部の主翼だけに推進機を配設した飛行体の低速時には機体前後のバランスが不安定になるが、機体の後部に推進機を配設し、二か所で揚力浮力を調整確保することで、主翼及び水平尾翼にかかる揚力及び浮力負担が軽減し、更に垂直尾翼が左右に枢動することで、垂直尾翼に配設したジェット推進機からの噴射風は機体斜め後方に噴射し、飛行速度が一定速度以上無いと方向制御出来なかった従来から、本発明により推進機からの推進風が低速飛行中でも方向制御を可能にし、機体の前後水平や進行方向に機体姿勢の直進性など様々な姿勢に対するバランス性能向上効果がある。 According to the aircraft of the present invention, in which the propulsion machine is disposed on both the main wing and the vertical tail, and the propulsion machine is installed in two places, the front and rear of the fuselage, the propulsion machine is disposed only on the main wing at the front of the fuselage. At low speeds, the balance between the front and rear of the aircraft becomes unstable, but by placing the propulsion unit at the rear of the aircraft and adjusting the lift and buoyancy at two locations, the lift and buoyancy burden on the main wings and horizontal stabilizer is reduced. Furthermore, as the vertical stabilizer pivots from side to side, the jet wind from the jet propulsion unit installed on the vertical stabilizer is directed diagonally backwards, unlike in the past, where direction control was not possible unless the flight speed exceeded a certain speed. According to the present invention, the propulsion wind from the propulsion machine enables directional control even during low-speed flight, and has the effect of improving balance performance for various postures, such as the longitudinal horizontal direction of the aircraft and the straightness of the aircraft attitude in the direction of travel.

本発明の機体の主翼と垂直尾翼の両方に推進機を配設し、推進機を機体の前後の二か所採用機によれば、推進力が増加し、機体の巡航速度が向上する効果が得られる。 According to the aircraft of the present invention, in which the propulsion machines are disposed on both the main wing and the vertical tail, and the propulsion machines are installed in two places, the front and rear of the fuselage, the propulsive force is increased and the cruising speed of the aircraft is improved. can get.

本発明の機体の主翼と水平尾翼の何れもが翼平面部が垂直方向に枢動傾斜し、主翼も水平尾翼も全面積が大型フラップになり、緊急時の急制動飛行や低速飛行時などには全ての翼がフラップとしての機能を持ち、高速飛行時の微小操舵には小型のフラップが役割を分担する効果が有る。 The plane of both the main wing and horizontal stabilizer of the aircraft of the present invention pivots in the vertical direction, and the entire area of both the main wing and the horizontal stabilizer becomes a large flap, which is useful for sudden braking flight in emergencies or low-speed flight. All wings function as flaps, and the small flaps have the effect of sharing the role in micro-steering during high-speed flight.

本発明によれば、機体側面下方に空気注入式のフロートが配設され、様々な環境の水面上や氷上又は雪上への離着陸が可能になり、今まで多くの観光客が来られなかった地域でも観光資源の開発や受け入れが可能になる産業的効果が有る。 According to the present invention, an inflatable float is installed below the side of the aircraft, making it possible to take off and land on the surface of water, ice, or snow in various environments, making it possible to take off and land in areas where many tourists could not visit until now. However, it has an industrial effect that makes it possible to develop and accept tourism resources.

本発明の実施の形態に係る飛行体の簡単な平面模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a simple plan schematic diagram of the flying object based on embodiment of this invention. 本発明の実施の形態に係る飛行体の簡単な正面模式図である。1 is a simple front schematic diagram of a flying object according to an embodiment of the present invention. 本発明の実施の形態に係る飛行体の簡単な側面模式図である。1 is a simple side schematic diagram of a flying object according to an embodiment of the present invention. 本発明の実施の形態に係る飛行体において、主翼と水平尾翼と全てのジェット推進機が垂直方向に45度枢動傾斜した状態を示す簡単な正面模式図である。FIG. 2 is a simple front schematic diagram showing a state in which the main wing, the horizontal stabilizer, and all the jet propulsion units are pivoted and tilted vertically by 45 degrees in the aircraft according to the embodiment of the present invention. ジェット推進機を主翼下部に配設し、翼を傾斜させた場合の空気の流れを示した簡単な側面模式図である。FIG. 2 is a simple side view schematically showing air flow when a jet propulsion machine is disposed below the main wing and the wing is tilted. 本発明の実施の形態に係る飛行体において、主翼と垂直尾翼の全てにジェット推進機を配設し、垂直尾翼とジェット推進機を右に向け、右主翼のフラップを作動させて左旋回する場合の簡単な正面模式図である。In the flight object according to the embodiment of the present invention, when the jet propulsion device is disposed on both the main wing and the vertical stabilizer, the vertical stabilizer and the jet propulsion device are turned to the right, and the right main wing flap is activated to make a left turn. FIG. 2 is a simple front schematic diagram. 本発明の実施の形態に係る飛行体において、主翼と垂直尾 翼の全てにジェット推進機を配設し、垂直尾翼とジェット推進機を右に向け、更に右主翼のフラップを作動させて左旋回する場合の簡単な平面模式図である。In the flight vehicle according to the embodiment of the present invention, jet propulsion units are disposed on both the main wing and the vertical tail, the vertical tail unit and the jet propulsion unit are turned to the right, and the right main wing flap is actuated to make a left turn. FIG. 本発明の実施の形態に係る飛行体において、主翼にはジェット式推進機を翼の下側に配設し垂直尾翼とジェット推進機を左に向け、左主翼フラップを作動させ、右旋回飛行する場合の簡単な正面模式図である。In the flight object according to the embodiment of the present invention, the main wing has a jet propulsion device disposed below the wing, the vertical tail and the jet propulsion device are directed to the left, and the left main wing flap is actuated to make a right turn flight. FIG. 2 is a simple front schematic diagram when 本発明の実施の形態に係る飛行体において、主翼にはジェット式推進機を翼の下側に配設し垂直尾翼とジェット推進機を左に向け、左主翼フラップ111を作動させ、右旋回飛行する場合の簡単な平面模式図である。In the flight object according to the embodiment of the present invention, the main wing has a jet propulsion device disposed below the wing, the vertical tail and the jet propulsion device are directed to the left, the left main wing flap 111 is actuated, and the jet propulsion device is turned to the right. It is a simple plan view when flying. 本発明の実施の形態に係る飛行体の垂直尾翼の平面模式図である。FIG. 1 is a schematic plan view of a vertical tail of a flying object according to an embodiment of the present invention. 本発明の実施の形態に係る飛行体において、垂直尾翼内に配設したジェット推進機が水平に固定された場合を示した正面(図11(a))と側面模式図(図11(b))である。In the aircraft according to the embodiment of the present invention, a front view (FIG. 11(a)) and a schematic side view (FIG. 11(b) ). 本発明の実施の形態に係る飛行体において、垂直尾翼内に配設したジェット推進機が垂直方向に枢動傾斜した場合を示した正面(図12(a))と側面模式図(図12(b))である。In the aircraft according to the embodiment of the present invention, a front view (Fig. 12(a)) and a schematic side view (Fig. b)). 本発明の実施の形態に係る飛行体において、垂直尾翼と機体との接合部の組み合わせ部品を分解した簡単な模式図である。FIG. 2 is a simplified schematic diagram showing an exploded assembly of a joint between a vertical tail and a fuselage in an aircraft according to an embodiment of the present invention. 本発明の実施の形態に係る飛行体において、方向舵とジェット推進機を配設した垂直尾翼に機体との接合と枢動の接合部品を取り付けた場合の簡単な断面模式図である。FIG. 2 is a simple cross-sectional schematic diagram of a vertical stabilizer in which a rudder and a jet propulsion device are disposed in an aircraft body according to an embodiment of the present invention, in which joint parts for joining and pivoting with the fuselage are attached. 本発明の実施の形態に係る飛行体において、垂直尾翼に枢動式台座を取り付けた状態を示す簡単な平面模式図である。FIG. 2 is a simple plan view showing a state in which a pivotable pedestal is attached to a vertical stabilizer in a flying object according to an embodiment of the present invention. 本発明の実施の形態に係る飛行体において、機体後部に垂直尾翼枢動式台座を取り付ける接合部品を配設した場合の簡単な平面模式図である。FIG. 2 is a simple plan view of a flying vehicle according to an embodiment of the present invention, in which a joint component for attaching a pivotable vertical tail pedestal is provided at the rear of the aircraft body. 本発明の実施の形態に係る飛行体において、機体後部に垂直尾翼枢動式台座を取り付ける接合部品を配設した場合の簡単な側面模式図である。FIG. 3 is a simple side view schematically showing a case where a joint part for attaching a vertical tail pivot type pedestal is provided at the rear of the aircraft body according to an embodiment of the present invention. 本発明の実施の形態に係る飛行体において、ジェット推進機を配設した垂直尾翼枢動式台座を取り付け、機体との接合部に取り付け組み立てた場合の簡単な側面模式図である。FIG. 2 is a simple side view schematically showing a flying object according to an embodiment of the present invention, in which a pivotable vertical tail pedestal on which a jet propulsion device is disposed is attached and assembled at a joint with the fuselage. 本発明の実施の形態に係る飛行体において、ジェット推進機を配設した垂直尾翼枢動式台座を取り付け、機体との接合部に取り付け組み立てた場合の簡単な平面模式図である。FIG. 2 is a simple plan view of an aircraft according to an embodiment of the present invention, in which a pivotable vertical tail pedestal on which a jet propulsion device is disposed is attached and assembled at a joint with the fuselage. 本発明の実施の形態に係る飛行体において、垂直尾翼に配設した方向舵を作動させ、左旋回する場合の簡単な平面模式図である。FIG. 2 is a simple plan view of a flight object according to an embodiment of the present invention in which a rudder disposed on a vertical tail is operated to make a left turn. 本発明の実施の形態に係る飛行体において、垂直尾翼に配設した方向舵を作動させ、右旋回する場合の簡単な平面模式図である。FIG. 2 is a simple plan view of a flying object according to an embodiment of the present invention turning to the right by operating a rudder disposed on a vertical tail. 本発明の実施の形態に係る飛行体において、ジェット推進機と方向舵を配設した垂直尾翼を枢動させ、左旋回する場合の簡単な平面模式図である。FIG. 2 is a simple plan view of a flying object according to an embodiment of the present invention in which a jet propulsion device and a vertical tail provided with a rudder are pivoted to make a left turn. 本発明の実施の形態に係る飛行体において、ジェット推進機と方向舵を配設した垂直尾翼を枢動させ、右旋回する場合の簡単な平面模式図である。FIG. 2 is a simple plan view of an aircraft according to an embodiment of the present invention, in which a jet propulsion device and a vertical tail unit provided with a rudder are pivoted to make a right turn. 本発明の実施の形態に係る飛行体において、水平飛行する場合の簡単な側面模式図である。1 is a simple side view schematically showing a flying object according to an embodiment of the present invention when flying horizontally; FIG. 本発明の実施の形態に係る飛行体において、翼の平面部枢動式の機体と翼の簡単な挿管接合構造を示した側面図である。FIG. 2 is a side view showing a simple intubation joint structure between a plane body and a wing in which the plane part of the wing is pivotable in a flying object according to an embodiment of the present invention. 本発明の実施の形態に係る飛行体において、翼の平面部枢動式の簡単な接合構造をしました斜め側面図である。FIG. 2 is a diagonal side view of a flying object according to an embodiment of the present invention, which has a simple joint structure in which the planar part of the wing pivots. 本発明の実施の形態に係る飛行体において、翼に枢動部品を挿管組み込んだ場合の簡単な側面模式図である。FIG. 2 is a schematic side view of a flying object according to an embodiment of the present invention in which a pivoting component is intubated and installed in a wing. ジェット推進機が左右の水平尾翼と連動して作動する状態を示す簡単な側面模式図である。FIG. 2 is a simple side schematic diagram showing a state in which the jet propulsion machine operates in conjunction with left and right horizontal stabilizers. 水平尾翼とジェット推進機が連動して枢動傾斜した場合の簡単な側面模式図である。FIG. 3 is a simple side view schematically showing a case where the horizontal stabilizer and the jet propulsion unit are pivoted and tilted in conjunction with each other. 図29の機体後部の概略側面模式図である。FIG. 30 is a schematic side view of the rear part of the fuselage shown in FIG. 29; ジェット推進機を主翼上部に配設した場合の簡単な側面模式図である。FIG. 2 is a simple side view schematically showing a case where a jet propulsion machine is disposed above the main wing. ジェット推進機を主翼上部に配設し、翼を傾斜させた場合の空気の流れを示した簡単な側面模式図である。FIG. 2 is a simple side view schematically showing air flow when a jet propulsion machine is disposed above the main wing and the wing is tilted. 主翼にプロペラ式推進機を配設し、主翼と水平尾翼と垂直尾翼に配設したジェット推進機の角度を垂直方向に45度傾け、翼全体が空気抵抗を受けられるようにした場合と各推進機からの噴射風向きが機体下方に噴射させて低速飛行した場合の簡単な側面模式図である。A case where a propeller-type propulsion machine is installed on the main wing, and a jet propulsion machine installed on the main wing, horizontal stabilizer, and vertical stabilizer is tilted 45 degrees vertically so that the entire wing can receive air resistance. It is a simple side view schematically showing a case where the aircraft is flying at low speed with the jet wind directed downwards. プロペラ式推進機を主翼上部に配設し、水平飛行した場合の空気の流れを示した簡単な側面模式図である。FIG. 2 is a simple side view schematically showing the air flow when a propeller-type propulsion machine is disposed above the main wing and the aircraft flies horizontally. プロペラ式推進機を主翼上部に配設し、翼角度45度の傾斜した場合の空気の流れを示した簡単な側面模式図である。FIG. 2 is a simple side view schematically showing the air flow when a propeller-type propulsion device is disposed above the main wing and the wing is tilted at an angle of 45 degrees. シリーズパラレルハイブリッド式推進機の簡単な断面模式図である。1 is a simple cross-sectional schematic diagram of a series parallel hybrid propulsion machine. パラレルハイブリッド式推進機の簡単な断面模式図である。FIG. 2 is a simple cross-sectional schematic diagram of a parallel hybrid propulsion device. 永久磁石発電モーターハイブリッド式推進機の簡単な断面模式図である。1 is a simple cross-sectional schematic diagram of a permanent magnet generator motor hybrid propulsion device. 機体の側面下方にフロートを配設した推進機の簡単な正面模式図である。FIG. 2 is a simple front schematic diagram of a propulsion device in which a float is arranged below the side surface of the fuselage. 機体の側面下方にフロートを配設した推進機の簡単な側面模式図である。FIG. 2 is a simple side schematic diagram of a propulsion device in which a float is disposed below the side surface of the fuselage. 機体の側面下方にフロートを配設した推進機の簡単な平面模式図である。It is a simple plan view of a propulsion device in which a float is arranged below the side of the fuselage. 機体の側面下方にフロートを配設し空気充填した推進機を機体下方から見上A view of the air-filled propulsion unit with floats placed below the side of the aircraft from below. 推進機として採用可能な二重反転プロペラの簡単な側面図である。FIG. 2 is a simple side view of a counter-rotating propeller that can be used as a propulsion device. 本発明の実施の形態の飛行体に配設した場合の二重反転プロペラの簡単な平面模式図である。FIG. 2 is a simple plan view of a contra-rotating propeller installed on an aircraft according to an embodiment of the present invention. 翼先端部枢動式揚力浮力コントローラージェット推進機型の平面模式図である。FIG. 2 is a schematic plan view of a jet propulsion aircraft type pivoting wing tip lift and buoyancy controller. 翼先端部枢動式揚力浮力コントローラージェット推進機型の正面模式図である。FIG. 2 is a schematic front view of a jet propulsion aircraft type pivoting wing tip lift and buoyancy controller. 揚力浮力コントローラーの傾斜を示す左翼側面拡大模式図である。FIG. 3 is an enlarged schematic diagram of the left wing side showing the inclination of the lift buoyancy controller. 揚力浮力コントローラーの傾斜を示す傾斜作動側面拡大模式図である。FIG. 6 is a schematic enlarged side view of the tilting operation showing the tilting of the lift buoyancy controller. 揚力浮力コントローラー枢動モーター装置の平面模式図である。FIG. 2 is a schematic plan view of the lift and buoyancy controller pivot motor device. 揚力浮力コントローラー配設を示す側面図模式図である。FIG. 2 is a schematic side view showing the arrangement of a lift and buoyancy controller. 機体と翼の接続部を配設した平面模式図である。FIG. 2 is a schematic plan view illustrating the connection between the fuselage and the wings. 機体と翼の接続部を配設した側面模式図である。FIG. 3 is a schematic side view showing the connection between the fuselage and the wings. ジェット推進機の噴射口を下向きに変形させた場合の簡単な側面模式図である。FIG. 3 is a simple side view schematically showing a jet propulsion device in which the injection port is deformed downward.

以下、本発明の好適な実施の形態について図面を参照しながら説明する。
図1は、本発明の実施の形態に係る飛行体の構成を示した簡単な平面模式図である。
図1に示すように、この飛行体は、概略、機体1前部に配設される右主翼100および左主翼101と、機体1後部に配設される右水平尾翼200および左水平尾翼201と、垂直尾翼260と、から構成される。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a simple plan view showing the configuration of an aircraft according to an embodiment of the present invention.
As shown in FIG. 1, this flight vehicle generally includes a right main wing 100 and a left main wing 101 disposed at the front of the fuselage 1, and a right horizontal stabilizer 200 and a left horizontal stabilizer 201 disposed at the rear of the fuselage 1. , and a vertical stabilizer 260.

以上の構成において、右主翼100および左主翼101には、機体1との接合部140,141から翼の先端部にかけての翼の略中心部付近の下面に、推進機120,121が固定されており、該推進機120,121直後にはその作用により機体1の進行方向を制御する方向舵130,131が配設されている。また、翼の略中心部付近には、その作用により機体1の上昇・下降を制御するフラップ110,111が配設されている。なお、右主翼100および左主翼101は、それぞれ独立して水平方向から垂直方向に91度の範囲内の角度で枢動するように構成されている。なお、右主翼100および左主翼101を同時に水平方向から垂直方向に91度の範囲内の角度で枢動するように構成しても良い。 In the above configuration, the propulsion units 120 and 121 are fixed to the lower surfaces of the right main wing 100 and the left main wing 101 near the approximate center of the wings from the joints 140 and 141 with the fuselage 1 to the tips of the wings. Immediately after the propulsion devices 120, 121, rudders 130, 131 are arranged to control the direction of movement of the aircraft 1 by their action. Furthermore, flaps 110 and 111 are provided near the center of the wing, which control the rise and fall of the aircraft body 1 by their actions. Note that the right main wing 100 and the left main wing 101 are configured to pivot independently from the horizontal direction to the vertical direction at an angle within a range of 91 degrees. Note that the right main wing 100 and the left main wing 101 may be configured to simultaneously pivot from the horizontal direction to the vertical direction at an angle within a range of 91 degrees.

推進機120,121を、翼の先端部の略中心部付近に設けたのは、翼の中心部が端部に比べて、機体の左右の重心バランスが機体の中央部に狭まり、左右に傾いた場合に修正制御がとり易いからである。 The reason why the propulsion units 120 and 121 are provided near the center of the tip of the wing is that the balance of the center of gravity between the left and right of the aircraft is narrower at the center of the wing compared to the end, and the center of the wing is tilted to the left and right. This is because it is easy to take corrective control when

なお、推進機120,121は、ジェットエンジンが望ましいが、これに限るものではなく、例えば、プロペラ式推進機であっても良い。 Note that the propulsion devices 120 and 121 are preferably jet engines, but are not limited to this, and may be propeller type propulsion devices, for example.

また、機体1後部に設けられる右水平尾翼200および左水平尾翼201にはフラップ210,211が配設されている。なお、右水平尾翼200および左水平尾翼201は、それぞれ独立して水平方向から垂直方向に75度の範囲内の角度で枢動するように構成されている。 Further, flaps 210 and 211 are provided on the right horizontal stabilizer 200 and the left horizontal stabilizer 201 provided at the rear of the fuselage 1. Note that the right horizontal stabilizer 200 and the left horizontal stabilizer 201 are configured to pivot independently from the horizontal direction to the vertical direction at an angle within a range of 75 degrees.

また、機体1後部に設けられる垂直尾翼260には、その作用により機体1の進行方向を制御する方向舵261と、左右に各30度、上下に60度の範囲で枢動傾斜可能な推進機270とが一体的に設けられている。 Further, the vertical tail 260 provided at the rear of the fuselage 1 includes a rudder 261 that controls the traveling direction of the fuselage 1 by its action, and a propulsion unit 270 that can pivot and tilt within a range of 30 degrees left and right and 60 degrees up and down. are integrally provided.

また、垂直尾翼260の下部には、垂直尾翼260自体の向きを左右に各20度の範囲内で枢動させる枢動装置700が設けられている。この枢動装置700により、垂直尾翼260は機首側又は後部側の何れかが左右に可動し、垂直尾翼全体が方向舵の働きを持つことになる。 Furthermore, a pivot device 700 is provided at the bottom of the vertical tail 260 to pivot the direction of the vertical tail 260 itself within a range of 20 degrees left and right. With this pivot device 700, either the nose side or the rear side of the vertical stabilizer 260 can be moved to the left or right, and the entire vertical stabilizer functions as a rudder.

また、垂直尾翼260に方向舵261と推進機270を一体的に設けることにより、揚力と浮力を増強させ、更に姿勢制御を向上させる。即ち、推進機270は垂直尾翼260が左右に可動した同じ方向に噴射風を出すので、推進機270自体で方向制御できる。また、左右に各30度、上下に60度の範囲で稼働するため、方向舵261の機能と相まって機体1の飛行速度と急速旋回等の調整を高性能で発揮することが出来る。 Further, by integrally providing the rudder 261 and the propulsion unit 270 on the vertical stabilizer 260, lift and buoyancy are enhanced, and attitude control is further improved. That is, since the propulsion device 270 emits jet air in the same direction as the vertical stabilizer 260 moves left and right, the direction can be controlled by the propulsion device 270 itself. In addition, since it operates in a range of 30 degrees left and right and 60 degrees up and down, in combination with the function of the rudder 261, it is possible to adjust the flight speed and rapid turning of the aircraft 1 with high performance.

なお、図において、符号50は操縦席を示し、符号600は前輪を、符号601,602は左右の後輪を示す。 In the figure, reference numeral 50 indicates a pilot's seat, reference numeral 600 indicates a front wheel, and reference numerals 601 and 602 indicate left and right rear wheels.

図2は、この飛行体を正面(機体前方)から見た模式図である。
図に示すように、推進機120,121の直後方に方向舵130,131とフラップ110,111とが配設されている。このように、推進機120,121の直後方にこれらを配設することにより、推進機120,121の噴射風が方向舵130,131とフラップ110,111に直接当たり噴射風がロスなくこれらに吹き付けるため、低速飛行中でも噴射風を強く受けることが出来、進行方向の制御や上昇・下降の制御が容易となる。
FIG. 2 is a schematic diagram of this aircraft viewed from the front (front of the aircraft).
As shown in the figure, rudders 130, 131 and flaps 110, 111 are disposed immediately behind the propulsion devices 120, 121. By arranging these directly behind the propulsion machines 120 and 121 in this way, the jet wind from the propulsion machines 120 and 121 directly hits the rudders 130 and 131 and the flaps 110 and 111, and the jet wind blows them without loss. Therefore, even when flying at low speed, it can receive strong blast wind, making it easier to control the direction of travel and control of ascent and descent.

図3は、右水平尾翼200および左水平尾翼201と、右水平尾翼200および左水平尾翼201と、全ての推進機120,121,270とが、水平方向から垂直方向に向けて45度枢動傾斜した簡単な側面模式図であり、図4はその簡単な正面模式図である。 FIG. 3 shows that the right horizontal stabilizer 200 and the left horizontal stabilizer 201, the right horizontal stabilizer 200 and the left horizontal stabilizer 201, and all the propulsion units 120, 121, and 270 are pivoted by 45 degrees from the horizontal direction to the vertical direction. This is a simple inclined side schematic diagram, and FIG. 4 is a simple front schematic diagram thereof.

これらを45度枢動傾斜させることにより、翼平面全体がフラップの働きをすることとなり、各翼は全体として向かい風を受けて強い空気抵抗として揚力及び浮力に変換させる。また、推進機120,121は機体下方に強い風を噴射させることにより、揚力と浮力をさらに増大させる。 By pivoting and tilting these by 45 degrees, the entire wing plane acts as a flap, and each wing as a whole receives headwind and converts it into lift and buoyancy as strong air resistance. Furthermore, the propulsion devices 120 and 121 further increase lift and buoyancy by injecting strong wind downwards into the fuselage.

図5は、左主翼101における空気の流れを例にとって左主翼101に発生する揚力・浮力を説明する図である。なお、説明のため、便宜的に左主翼を用いているだけであり、右主翼100における動作原理も基本的には同じである。 FIG. 5 is a diagram illustrating the lift and buoyancy forces generated on the left main wing 101, taking the air flow on the left main wing 101 as an example. Note that for the sake of explanation, the left main wing is only used for convenience, and the operating principle of the right main wing 100 is basically the same.

左主翼101が、水平方向から垂直方向に45度枢動傾斜すると、左主翼101の推進機121は左主翼101とともに45度傾斜する。その傾斜角度に連動して、噴射風が機体の水平後方ではなく、機体の下方に直接噴射する。 When the left main wing 101 pivots and tilts by 45 degrees from the horizontal direction to the vertical direction, the propulsion unit 121 of the left main wing 101 tilts by 45 degrees together with the left main wing 101 . Depending on the angle of inclination, the jet of air is directed directly below the aircraft, rather than horizontally behind it.

これにより、例えば、巡航飛行から着陸態勢に入り、速度を落とした場合に、翼下側に大きな空気抵抗を受けさせ、翼の上側には強い真空状態が発生して強い揚力浮力が発生し、翼が傾いた同じ角度に推進機120,121,270も傾斜が付き、推進機120,121,270からの噴射風は機体下方に噴射し、推進機120,121,270からの風はフラップ110,111,210,211の助けを借りずに直接揚力及び浮力を得る。 As a result, for example, when entering landing mode from cruise flight and slowing down, the lower side of the wing is subjected to large air resistance, a strong vacuum is created on the upper side of the wing, and strong lifting buoyancy is generated. The propulsion machines 120, 121, 270 are also inclined at the same angle as the propulsion machines 120, 121, 270 are tilted, and the wind from the propulsion machines 120, 121, 270 is injected downward into the fuselage, and the wind from the propulsion machines 120, 121, 270 is directed to the flaps 110, Obtain lift and buoyancy directly without the help of 111, 210, 211.

更に、水平から垂直方向に91度の範囲で枢動傾斜する左右の主翼100,101と、水平から垂直方向に60度範囲で枢動傾斜する左右の水平尾翼200,201と、垂直尾翼260の推進機270とで、機体1の揚力および浮力が大幅に増強され、機体の前後のバランス姿勢が取り易くなり、飛行体は揚力および浮力の失速及び失墜限界が低速になり、低速飛行が可能になる。また、低速で着陸又は離陸をさせ、滑走距離0~100m以内を実現することができる。そのため、例えば、低速で飛行しながら山岳地帯などの空域の狭い離着陸場所でも急角度で離着陸をさせることができる。 Further, left and right main wings 100, 101 pivot and tilt in a range of 91 degrees from horizontal to vertical, left and right horizontal tails 200, 201 pivot and tilt in a range of 60 degrees from horizontal to vertical, and a vertical tail 260. With the propulsion device 270, the lift and buoyancy of the aircraft 1 are greatly enhanced, making it easier to maintain a balanced attitude between the front and rear of the aircraft, and the stall and fall limits of the lift and buoyancy of the aircraft become low, making low-speed flight possible. Become. In addition, it is possible to land or take off at low speed and achieve a glide distance of 0 to 100 meters. Therefore, for example, the aircraft can take off and land at steep angles even in narrow airspace, such as mountainous areas, while flying at low speeds.

なお、左右の水平尾翼200,201は翼の幅や左右の長さ可変してその平面部面積を調整するようにし、飛行速度に対応した揚力及び浮力を可変とし、飛行速度に対応した揚力浮力を得ながら機体の前後のバランスもとり、飛行速度を調整するようにしても良い。 In addition, the left and right horizontal stabilizers 200, 201 are designed so that the width of the wings and the left and right lengths are changed to adjust the plane area, and the lift and buoyancy corresponding to the flight speed are variable, and the lift and buoyancy corresponding to the flight speed are adjusted. It may also be possible to balance the front and rear of the aircraft while adjusting the flight speed.

図6は、垂直尾翼260と推進機270を右に向け、右主翼100のフラップ110を作動させて左旋回する場合の簡単な正面模式図である。図7は、その簡単な平面模式図である。 FIG. 6 is a simple front schematic diagram when the vertical stabilizer 260 and the propulsion unit 270 are turned to the right and the flap 110 of the right main wing 100 is operated to make a left turn. FIG. 7 is a simple plan view thereof.

このように、垂直尾翼260と推進機270を右に向けると、垂直尾翼260自体が方向舵の機能を果たして機体1を左方向に旋回させようとする。これに合わせて、推進機270からの噴射風は右後方に噴射されるので、機体1は左旋回する。このとき、フラップ110を作動させることにより、右主翼100の揚力・浮力をコントロールさせる。 In this way, when the vertical stabilizer 260 and the propulsion unit 270 are turned to the right, the vertical stabilizer 260 itself functions as a rudder and attempts to turn the aircraft 1 to the left. In accordance with this, the jet wind from the propulsion device 270 is jetted to the right rear, so that the aircraft 1 turns to the left. At this time, the lift and buoyancy of the right main wing 100 are controlled by operating the flap 110.

これらの動作を併用することにより、空中で機体1を左急旋回させる場合や、機体1が離着陸する際に進行方向右側からの強風によって機体1後部が進行方向左側に流される場合に機体1を直進飛行させるのに有効である。 By using these operations together, the aircraft 1 can be turned sharply to the left in the air, or when the rear part of the aircraft 1 is swept to the left in the direction of travel by strong winds from the right side of the direction of travel when the aircraft 1 takes off or lands. Effective for straight flight.

図8は、垂直尾翼260と推進機270を左に向け、左主翼101のフラップ111を作動させ、右旋回飛行する場合の簡単な正面模式図である。図9は、その簡単な平面模式図である。 FIG. 8 is a simple front schematic diagram when the vertical tail 260 and the propulsion unit 270 are turned to the left, the flap 111 of the left main wing 101 is activated, and the aircraft flies in a right turn. FIG. 9 is a simple plan view thereof.

このように、垂直尾翼260と推進機270を左に向けると、垂直尾翼260自体が方向舵の機能を果たして機体1を右方向に旋回させようとする。これに合わせて、推進機270からの噴射風は左後方に噴射されるので、機体1は右旋回する。このとき、フラップ111を作動させることにより、左主翼101の揚力・浮力をコントロールさせる。 In this way, when the vertical stabilizer 260 and the propulsion unit 270 are turned to the left, the vertical stabilizer 260 itself functions as a rudder and attempts to turn the aircraft 1 to the right. In accordance with this, the jet wind from the propulsion device 270 is jetted to the left rear, so the aircraft 1 turns to the right. At this time, the lift and buoyancy of the left main wing 101 are controlled by operating the flap 111.

これらの動作を併用することにより、空中で機体1を右急旋回させる場合や、機体1が離着陸する際に進行方向左側からの強風によって機体1後部が進行方向右側に流される場合に機体1を直進飛行させるのに有効である。 By using these operations together, the aircraft 1 can be turned sharply to the right in the air, or when the rear of the aircraft 1 is swept to the right in the direction of travel by strong winds from the left side of the direction of travel when the aircraft 1 takes off or lands. Effective for straight flight.

図10は、垂直尾翼の平面模式図である。図11は、垂直尾翼内に配設した推進機が水平に固定された場合を示した図であり、(a)はその正面図、(b)はその側面模式図である。
図に示すように、推進機270は垂直尾翼260内に設けられた空洞265に挿入され配設されている。
FIG. 10 is a schematic plan view of the vertical tail. FIG. 11 is a diagram showing a case in which the propulsion device disposed within the vertical tail is fixed horizontally, in which (a) is a front view thereof, and (b) is a schematic side view thereof.
As shown in the figure, the propulsion device 270 is inserted and disposed in a cavity 265 provided within the vertical tail 260.

図12は、垂直尾翼260内に配設した推進機270が垂直方向に枢動傾斜した場合を示した図であり、(a)はその正面模式図、(b)はその側面模式図である。 FIG. 12 is a diagram showing a case where the propulsion unit 270 disposed in the vertical tail 260 is pivoted and tilted in the vertical direction, and (a) is a schematic front view thereof, and (b) is a schematic side view thereof. .

図13は、垂直尾翼260と機体1とを枢動させつつ接合させる枢動式台座700の組み合わせ部品を分解した簡単な模式図である。(a)は、垂直尾翼260下部に設けられる接合部品701の平面模式図、(b)は機体1に設けられる接合部品702の平面模式図、(c)は接合部品701の側面模式図、(d)は接合部品702の側面模式図、(e)はこれらを組み合わせた状態を示す側面模式図である。図に示すように、これら接合部品701と接合部品702はギヤ構造となっており、その回転により垂直尾翼260を任意の方向に変更することができる。 FIG. 13 is a simple exploded schematic diagram of the combined parts of a pivotable pedestal 700 that connects the vertical stabilizer 260 and the fuselage 1 while pivoting. (a) is a schematic plan view of a joint component 701 provided at the bottom of the vertical tail 260, (b) is a schematic plan view of a joint component 702 provided on the fuselage 1, (c) is a schematic side view of the joint component 701, ( d) is a schematic side view of the joining component 702, and (e) is a schematic side view showing a state in which these are combined. As shown in the figure, these joint parts 701 and 702 have a gear structure, and the vertical tail 260 can be changed in any direction by rotation thereof.

図14は、方向舵261と推進機270を配設した垂直尾翼260に、枢動式台座700の接合部品701を取り付けた状態を示す簡単な側面模式図であり、図15は、その簡単な平面模式図である。図16は、この接合部品701を取り付けられた垂直尾翼260を接合するために機体1に配設された接合部品702を示す簡単な平面模式図である。接合部品702は、左右の水平尾翼240,241の間に配設されている。図17は、その簡単な側面模式図である。 FIG. 14 is a simple side view schematically showing a state in which the joint part 701 of the pivotable pedestal 700 is attached to the vertical stabilizer 260 on which the rudder 261 and the propulsion unit 270 are arranged, and FIG. It is a schematic diagram. FIG. 16 is a simple plan view showing a joining component 702 disposed on the fuselage 1 to join the vertical stabilizer 260 to which the joining component 701 is attached. The joining component 702 is arranged between the left and right horizontal stabilizers 240 and 241. FIG. 17 is a simple side schematic diagram thereof.

図18は、接合部品701が取り付けられた垂直尾翼260を、機体1に配設された接合部品702に取り付けて組み立て、垂直尾翼260を機体1に組み立てた状態を示す簡単な側面模式図である。図19は、その簡単な平面模式図である。 FIG. 18 is a simple side view schematically showing a state in which the vertical stabilizer 260 to which the joint part 701 is attached is attached and assembled to the joint part 702 disposed on the fuselage 1, and the vertical stabilizer 260 is assembled to the fuselage 1. . FIG. 19 is a simple plan view thereof.

図20は、垂直尾翼260に配設した方向舵261だけを左方向に作動させ、緩やかに左旋回する場合の簡単な平面模式図である。図21は、垂直尾翼260に配設した方向舵261だけを右方向に作動させ、緩やかに右旋回をする場合の簡単な平面模式図である。 FIG. 20 is a simple plan view showing a case where only the rudder 261 disposed on the vertical tail fin 260 is operated to the left to make a gentle left turn. FIG. 21 is a simple plan view in which only the rudder 261 provided on the vertical tail fin 260 is operated to the right to make a gentle right turn.

図22は、垂直尾翼260を右方向に枢動させ、方向舵261を左方向に作動させ、左旋回する場合の簡単な平面模式図である。推進機260からの噴射風は左後方に噴射させ、左急旋回をする。機体1が離着陸する場合に進行方向右側からの強風に機体1後部が進行方向左側に流され機体1が直進飛行できない場合に方向舵261と推進機270の噴射流を併用して直進飛行する。 FIG. 22 is a simple plan view when the vertical stabilizer 260 is pivoted to the right and the rudder 261 is operated to the left to make a left turn. The jet wind from the propulsion device 260 is ejected to the left rear, making a sharp left turn. When the aircraft 1 takes off and lands, the rear part of the aircraft 1 is swept to the left in the traveling direction by a strong wind from the right side in the traveling direction, and when the aircraft 1 cannot fly straight, the jet flow of the rudder 261 and the propulsion machine 270 are used together to fly straight.

図23は、垂直尾翼260を左方向に枢動させ方向舵261を右方向に作動させ、右旋回する場合の簡単な平面模式図である。推進機260からの噴射風は右後方に噴射させ、右急旋回をする。機体1が離着陸する場合に進行方向左側からの強風に機体1後部が進行方向右側に流され機体1が直進飛行できない場合に方向舵261と推進機270の噴射流を併用して直進飛行する。 FIG. 23 is a simple plan view showing a case where the vertical stabilizer 260 is pivoted to the left and the rudder 261 is operated to the right to make a right turn. The jet wind from the propulsion device 260 is ejected to the right rear, making a sharp turn to the right. When the aircraft 1 takes off and lands, the rear part of the aircraft 1 is swept to the right in the traveling direction by a strong wind from the left side of the traveling direction, and when the aircraft 1 cannot fly straight, the jet flow of the rudder 261 and the propulsion machine 270 are used together to fly straight.

図24は、左右の主翼100,101と、左右の水平尾翼200.201と、推進機と方向舵261を取り付けて一体化した垂直尾翼260を枢動装置700に取り付け、水平飛行する場合の簡単な側面模式図である。 FIG. 24 shows a simple example of horizontal flight in which the left and right main wings 100, 101, the left and right horizontal stabilizers 200, 201, and the vertical stabilizer 260, which is integrated with the propulsion unit and the rudder 261, are attached to the pivot device 700. FIG.

図25は、左右の主翼100,101および左右の水平尾翼200,201の機体と翼の簡単な挿管接合構造を示した側面図である。図において、符号10は翼取り付け躯体であり、20は両翼連結管であり、30は翼側平面回転歯車であり、32は翼回転用歯車一体型モーターであり、40は翼固定接続部であり、41は油圧ジャッキ翼固定部であり、50は油圧ジャッキであり、51は油圧ポンプであり、52は油圧用オイル収納タンクである。一機の歯車と二基の油圧で翼の平面部を傾斜させるものである。 FIG. 25 is a side view showing a simple intubation joint structure between the airframe and the wings of the left and right main wings 100, 101 and the left and right horizontal stabilizers 200, 201. In the figure, the reference numeral 10 is a wing attachment frame, 20 is a connecting pipe for both wings, 30 is a wing side plane rotating gear, 32 is a gear integrated motor for rotating the wing, 40 is a wing fixed connection part, 41 is a hydraulic jack blade fixing part, 50 is a hydraulic jack, 51 is a hydraulic pump, and 52 is a hydraulic oil storage tank. The plane part of the wing is tilted using one gear and two hydraulic pressure units.

図26は、翼の枢動装置と翼の機体との接合装置に配設されている枢動モーターの組み合わせの簡単な模式図である。また、図27は、翼に枢動部品を挿管組み込んだ場合の簡単な側面模式図である。 FIG. 26 is a simple schematic diagram of a combination of pivot motors arranged in a wing pivot device and a wing fuselage joining device. Moreover, FIG. 27 is a simple side view schematically showing a case where the pivoting component is inserted into the wing.

図28は、左右の水平尾翼200,201と垂直尾翼260の組み立て部に推進機270を上下に枢動させる油圧伸縮装置55を配設した側面模式図である。 FIG. 28 is a schematic side view showing a hydraulic expansion/contraction device 55 for vertically pivoting the propulsion device 270 disposed in the assembled portion of the left and right horizontal stabilizers 200, 201 and the vertical stabilizer 260.

図29は、左右の水平尾翼200,201と推進機270が枢動傾斜した場合の空気抵抗と揚力と推進機流の流れを拡大して示す簡単な側面模式図であり、図30は図29の機体1後部における取り付け状態を示す簡単な側面模式図である。 FIG. 29 is a simple side view schematically showing an enlarged view of air resistance, lift, and propulsion flow when the left and right horizontal stabilizers 200, 201 and the propulsion device 270 are pivoted and tilted, and FIG. FIG. 2 is a simple side view schematically showing the state of attachment at the rear of the fuselage 1.

図31は、推進機120,121を左右の主翼100,101の上部に配設した場合の簡単な側面模式図である。推進機(エンジン)は各翼の裏側(地上側)に配設されていることがメンテナンス上最適であるが、水陸両用離着陸などの必要な場合は翼の上側に配設したほうが望ましいからである。 FIG. 31 is a simple side view schematically showing the propulsion devices 120, 121 disposed above the left and right main wings 100, 101. It is optimal for maintenance to locate the propulsion machine (engine) on the back side of each wing (on the ground side), but when necessary, such as for amphibious takeoff and landing, it is preferable to locate it above the wing. .

図32は、推進機120,121を主翼上部に配設し、左右の主翼100,101を傾斜させた場合の空気抵抗や揚力及び浮力を生む風の流れを示した簡単な側面模式図である。符号102,301はいずれも空気流を示す。 FIG. 32 is a simple side view showing the flow of wind that produces air resistance, lift, and buoyancy when the propulsion units 120, 121 are disposed above the main wings and the left and right main wings 100, 101 are tilted. . Reference numerals 102 and 301 both indicate airflow.

図33は、ジェットエンジン式推進機に変えてプロペラ式推進機を翼上部に取り付けた状態で、左右の主翼100,101と、水平尾翼200,201と、垂直尾翼260の推進機270が枢動傾斜した状態を示す簡単な側面模式図である。翼上部の表側には強い揚力または浮力を発生させられる。 Figure 33 shows a state in which a propeller-type propulsion device is attached to the upper part of the wing instead of a jet engine-type propulsion device, and the propulsion device 270 of the left and right main wings 100, 101, the horizontal stabilizer 200, 201, and the vertical stabilizer 260 pivots. FIG. 3 is a simple side view schematically showing a tilted state. Strong lift or buoyancy can be generated on the upper surface of the wing.

図34は、プロペラ式推進機を主翼上部に配設し、水平飛行した場合の空気の流れを示した簡単な側面模式図である。図35は、プロペラ式推進機を主翼上部に配設し、翼角度を45度傾斜させた場合の空気の流れを示した簡単な側面模式図である。 FIG. 34 is a simple side view schematically showing the air flow when the propeller-type propulsion machine is disposed above the main wing and flies horizontally. FIG. 35 is a simple side view schematically showing the air flow when the propeller-type propulsion machine is disposed above the main wing and the wing angle is inclined by 45 degrees.

図36は、シリーズパラレルハイブリッド式推進機の簡単な断面模式図である。図において、11はエンジンを示し、12はモーターを示し、13は分割機構を示し、14は発電機を示し、15はインバーターを示し、16は駆動用バッテリーを示し、17はプロペラを示す。 FIG. 36 is a simple cross-sectional schematic diagram of a series-parallel hybrid propulsion device. In the figure, 11 shows an engine, 12 shows a motor, 13 shows a dividing mechanism, 14 shows a generator, 15 shows an inverter, 16 shows a driving battery, and 17 shows a propeller.

図37は、パラレルハイブリッド式推進機の簡単な断面模式図である。図において、11はエンジンを示し、15はインバーターを示し、17はプロペラを示し、18は二次電池を示し、19は発電機モーターを示す。 FIG. 37 is a simple cross-sectional schematic diagram of a parallel hybrid propulsion device. In the figure, 11 shows an engine, 15 shows an inverter, 17 shows a propeller, 18 shows a secondary battery, and 19 shows a generator motor.

図38は、永久磁石発電モーターハイブリッド式推進機の簡単な断面模式図である。図において、15はインバーターを示し、17はプロペラを示し、18は二次電池を示し、21および24は発電モーターを示す。 FIG. 38 is a simple cross-sectional schematic diagram of a permanent magnet generator motor hybrid propulsion device. In the figure, 15 represents an inverter, 17 represents a propeller, 18 represents a secondary battery, and 21 and 24 represent a generator motor.

図39は、左右の主翼100,101の上面に推進機120,121と方向舵130,131を配設し、機体の側面下方にフロート(浮き袋)500,501を配設した簡単な正面模式図であり、図40はその側面模式図であり、図41は機体の側方下方にフロート500,501を配設した場合を見下ろした時の平面模式図であり、図42は機体の側面下方にフロート500,501を配設し空気充填した推進機を機体下方から見上げた状態を示す底面模式図である。フロート500,501は、水面に接する部分が硬質の樹脂板やアルミ板やカーボン樹脂板等の何れかを用いることができる。 FIG. 39 is a simple front schematic diagram showing propulsion units 120, 121 and rudders 130, 131 disposed on the upper surfaces of left and right main wings 100, 101, and floats 500, 501 disposed below the sides of the fuselage. 40 is a schematic side view of the same, FIG. 41 is a schematic plan view looking down when floats 500, 501 are arranged below the sides of the fuselage, and FIG. FIG. 2 is a schematic bottom view showing a propulsion device in which the propulsion devices 500 and 501 are arranged and filled with air, looking up from below the fuselage. The floats 500 and 501 can be made of a hard resin plate, an aluminum plate, a carbon resin plate, or the like in the portion that contacts the water surface.

図43は、本発明の実施の携帯にかかる推進機に採用可能な二重反転プロペラ120,121の簡単な側面図である。図44は、この二重反転プロペラを120,121推進機として採用した飛行体を示す簡単な平面模式図である。 FIG. 43 is a simple side view of counter-rotating propellers 120 and 121 that can be employed in a propulsion device in which the present invention is carried out. FIG. 44 is a simple plan view showing an aircraft employing this contra-rotating propeller as a 120, 121 propulsion aircraft.

図45は、翼先端部において上下に枢動しながら揚力浮力をコントロールする枢動式揚力浮力コントローラー150,151を設けた状態を示す平面模式図であり、図46はその正面模式図である。図47は揚力浮力コントローラー150(および151)の部分拡大図である。図に示すように、揚力浮力コントローラー150は、3つのコントローラー150a、150b、150cからなる。3つのコントローラー150a、150b、150c段差を有して設けられている。この3つのコントローラー150a、150b、150cは、左右の主翼100,101による揚力・浮力だけでは不足する揚力・浮力を補完する。 FIG. 45 is a schematic plan view showing a state in which pivot type lift and buoyancy controllers 150 and 151 that control lift and buoyancy while pivoting up and down at the wing tip are provided, and FIG. 46 is a schematic front view thereof. FIG. 47 is a partially enlarged view of the lift buoyancy controller 150 (and 151). As shown, the lift buoyancy controller 150 consists of three controllers 150a, 150b, 150c. Three controllers 150a, 150b, and 150c are provided with steps. These three controllers 150a, 150b, and 150c supplement the lift and buoyancy that are insufficient only by the lift and buoyancy provided by the left and right main wings 100 and 101.

図47は水平時での枢動式揚力浮力コントローラー150(151)の状態を示しているが、図48は枢動式揚力浮力コントローラー150(151)が傾斜した状態を示す部分拡大図である。 Although FIG. 47 shows the state of the pivoting type lift buoyancy controller 150 (151) when it is horizontal, FIG. 48 is a partially enlarged view showing the state where the pivoting type lift buoyancy controller 150 (151) is tilted.

図49は、枢動式揚力浮力コントローラー150,151の制御を説明するための図である。枢動式揚力浮力コントローラー150,151の3つのコントローラー150a、150b、150cは、枢動モーター装置161を回転させ駆動機構162に回転力を伝達しその駆動力により、3つのコントローラー150a、150b、150cが所定角度傾斜する。 FIG. 49 is a diagram for explaining control of the pivot type lift buoyancy controllers 150, 151. The three controllers 150a, 150b, 150c of the pivoting lift buoyancy controllers 150, 151 rotate the pivoting motor device 161 and transmit rotational force to the drive mechanism 162, and by the driving force, the three controllers 150a, 150b, 150c is tilted at a predetermined angle.

図50は、図45~図49に示した枢動式揚力浮力コントローラー150,151を設けた状態を示す側面模式図である。
このように、翼先端部において上下に枢動しながら揚力浮力をコントロールする枢動式揚力浮力コントローラー150,151を設けることにより、左右の主翼100,101による揚力・浮力だけでは不足する揚力・浮力を補完することができる。
FIG. 50 is a schematic side view showing a state in which the pivot type lift buoyancy controllers 150, 151 shown in FIGS. 45 to 49 are installed.
In this way, by providing the pivoting type lift and buoyancy controllers 150 and 151 that control the lift and buoyancy while pivoting up and down at the wing tips, the lift and buoyancy that are insufficient by the lift and buoyancy of the left and right main wings 100 and 101 can be increased. can be supplemented.

図51は、変形例として機体1と翼100・101とを接続する場合に機体と翼の接続部150・151を大きめに設け、翼の平面が枢動するようにさせることが出来る。 In FIG. 51, as a modification, when connecting the fuselage 1 and the wings 100 and 101, the connecting parts 150 and 151 between the fuselage and the wings can be provided to be larger so that the plane of the wings can pivot.

図52は、変形例として、機体1と翼100・101とを接続する場合に機体と翼の接続部150・151を大きめに設け、内部には翼の平面が枢動するようにさせることが出来る枢動装置や機体と翼の接続部品を収納させることが出来る。 FIG. 52 shows, as a modification, that when connecting the fuselage 1 and the wings 100, 101, the connecting parts 150, 151 between the fuselage and the wings are made larger so that the plane of the wing can pivot inside. It is possible to store the pivoting device and the connecting parts between the fuselage and the wings.

図53は、変形例として、全てのジェット推進機の噴射口を下方に作動させ、噴射風は下方に噴出され、フラップを使う事無く揚力浮力を発生させることができる。
<実施形態のまとめ>
1.本発明の目的の低速離着陸と操縦性能を実現する最良の手段として、推進機を取付けた主翼と、推進機を持たない水平尾翼の平面部が飛行中に大きな空気抵抗を受けやすくするために翼の機首側先端部が上下動でき、翼平面部の傾斜を変えられ、更に推進機から噴射される空気の流れが機体と平行の後方だけではでは無く、推進機を配設した主翼平面部及び垂直尾翼に配設した推進機が傾いたのと同じ傾斜角度の機体後方斜め下方に噴射し、推進機の推力は従来の進行方向前方だけでなく、翼の傾斜する角度の機体の斜め上方前方に向けられ、翼の上側(表側)は空気密度が下がり、翼の下側(裏側)には空気の衝突圧力が高まり、翼は浮き上がる浮力作用が発生し、更に噴射風力が揚力及び浮力としてより多く強く働き、機体の飛行速度を落としても揚力浮力が得られる。
In FIG. 53, as a modification, the injection ports of all the jet propulsion machines are operated downward, the jet wind is ejected downward, and lifting buoyancy can be generated without using flaps.
<Summary of embodiments>
1. As the best means to achieve the low-speed takeoff and landing and maneuverability that are the objectives of the present invention, the main wing to which the propulsion unit is attached and the flat part of the horizontal stabilizer, which does not have the propulsion unit, are designed to be easily subjected to large air resistance during flight. The tip of the nose side of the aircraft can move up and down, the inclination of the wing plane can be changed, and the air flow injected from the propulsion machine is not limited to the rear parallel to the fuselage, but also the main wing plane where the propulsion machine is installed. The propulsion unit installed on the vertical stabilizer injects the jet diagonally downward to the rear of the aircraft at the same angle of inclination as the wing is tilted, and the thrust of the propulsion unit is not only forward in the conventional direction of travel, but also diagonally upward of the aircraft at the angle at which the wing is tilted. Directed forward, the air density decreases on the upper side (front side) of the wing, the collision pressure of the air increases on the lower side (back side) of the wing, a buoyancy effect occurs that causes the wing to float, and the jet wind force acts as lift and buoyancy. It works more and more strongly, allowing lift and buoyancy to be obtained even if the aircraft's flight speed is reduced.

2.従って、機体の左右の主翼と機体の最後部の垂直尾翼の3か所に複数の推進機の配置により、従来の飛行機とは違い、大幅な推進力及び揚力・浮力を活用した飛行速度10~1000kmhを獲得し、更に離着陸時の飛行速度は10~70kmhなど極低速飛行で、しかも短い滑走路(100m以内)でも中型機(50~80人乗り)が離着陸出来、離着陸の場合だけでなく、災害救援の被災地まで高速で飛行でき、更に被災地上空で極低速で被災状況の確認などを可能にする、主翼および尾翼平面の可動により、翼平面部全体を前上がりで後ろ下がりの傾斜をさせ、強い空気抵抗を発生させ、推進機からの噴射風を機体後方下方に噴射させ、噴射力を強い揚力浮力転換に重点を置いた翼角度と推進機の可動式の構造を用いたので極低速飛行体を提供できる。2. Therefore, unlike conventional airplanes, by arranging multiple propulsion units in three locations: the left and right main wings of the aircraft and the vertical tail at the rear of the aircraft, the aircraft can fly at speeds of 10 to 100 meters, utilizing significant propulsion, lift, and buoyancy. 1,000 kmh, and the flight speed during takeoff and landing is extremely low, 10 to 70 kmh.Moreover, medium-sized aircraft (50 to 80 passengers) can take off and land even on short runways (within 100 m); The main wing and tail planes are movable, making it possible to fly at high speed to the affected area for disaster relief, and also to check the disaster situation at extremely low speed over the affected area.The main wing and tail planes are movable, allowing the entire wing plane to slope upward at the front and downward at the rear. By using the blade angle and movable structure of the propulsion machine, which creates strong air resistance and injects the jet wind from the propulsion machine downward to the rear of the aircraft, the jet force is converted into strong lift and buoyancy. It can provide low-speed flying vehicles.

3.本提供の飛行体は、推進機(エンジン)が主翼と垂直尾翼と一体として水平から垂直方向に0~91度の範囲内で枢動し、従来のフラップの小さな面積の調整に頼った少ない浮力又は揚力から、翼全体の大きな面積を使って傾斜した翼から大きな空気抵抗を発生させ、大きな空気抵抗と、翼の傾斜角度と同様の角度の噴射装置から吹き出す推進風向を、推進機の角度と同じの機体後方下方に噴射させ、揚力および浮力増強に重点に配分させ、低速でも浮力又は揚力を得ることができる。3. The proposed aircraft has a propulsion machine (engine) that pivots from horizontal to vertical within a range of 0 to 91 degrees as a unit with the main wing and vertical tail, and has low buoyancy that relies on adjusting the small area of conventional flaps. Alternatively, from the lift force, a large air resistance is generated from the tilted wing using the large area of the entire wing, and the direction of the propulsion wind blowing from the injector at an angle similar to the wing tilt angle is the same as the angle of the propulsion machine. The same fuel is injected toward the rear and downwards of the aircraft, and the emphasis is placed on increasing lift and buoyancy, making it possible to obtain buoyancy or lift even at low speeds.

4.主翼にはレシプロエンジン又はターボプロップジェットエンジン又はジェットエンジンが配設され、垂直尾翼にはジェットエンジンと一体型とし、可動式の翼と推進機と併せたその作用と、前記機体の上昇、下降時の速度・風向・風速・高度・機体の向き・機体の水平角度等を計測できる各センサーを機首と機体下部と上部と、翼先端部と垂直尾翼と来た最後部等に最適測定できる部位にセンサーを配設し、得られたセンサー情報により翼の角度・推進機出力・推進機出力バランス・飛行姿勢の他、速度・高度・機体の向き・機体の移動方向・陸地との距離・山岳との距離・水面との距離・風向きや速度等を測定し、それにより飛行体を制御するAi電子制御部を備えた手段を特徴とする低速度離着陸飛行体を提供するものである。4. The main wing is equipped with a reciprocating engine, a turboprop jet engine, or a jet engine, and the vertical tail is integrated with the jet engine, and its action in conjunction with the movable wing and propulsion machine, as well as when the aircraft rises and descends. Sensors that can measure the speed, wind direction, wind speed, altitude, orientation of the aircraft, horizontal angle of the aircraft, etc. are installed in the nose, lower and upper parts of the fuselage, wing tips, vertical tail, and the rearmost part where they can be optimally measured. Sensors are installed at the base, and the obtained sensor information determines the wing angle, propulsion unit output, propulsion unit output balance, flight attitude, as well as speed, altitude, aircraft orientation, aircraft movement direction, distance from land, and mountain range. This invention provides a low-speed takeoff and landing aircraft characterized by means equipped with an Ai electronic control unit that measures the distance to the water surface, the wind direction, speed, etc., and controls the aircraft accordingly.

5.また、該飛行体のジェットエンジンと一体型とした垂直尾翼は、垂直尾翼全体が左右に20度ずつ可動し、従来の垂直尾翼に配設されていた方向舵面積の何倍かの作用面積を確保するばかりではなく、拡大されたフラップ面積の作用と、垂直尾翼に一体化されたジェットエンジンも垂直尾翼の可動した方向と平行に噴射風を吹き出すことで旋回半径は格段に小さく急旋回を可能にし、横風に機体後方が流され斜め姿勢のままで離着陸する危険回避を図ることができる。5. In addition, the vertical stabilizer integrated with the jet engine of the aircraft allows the entire vertical stabilizer to move 20 degrees left and right, ensuring an active area several times the area of the rudder installed in conventional vertical stabilizers. Not only that, but also the expanded flap area and the jet engine integrated into the vertical stabilizer blow out jets of air parallel to the direction in which the vertical stabilizer moves, making the turning radius much smaller and allowing for sharp turns. This helps avoid the risk of the aircraft being swept away by crosswinds, resulting in it taking off and landing in an oblique position.

6.また、機体の主翼および水平尾翼を取り付ける部分は、主翼及び水平尾翼平面部の角度を水平から垂直方向に91度の範囲内で調整出来るモーターや歯車や油圧装置などで構成され、左右の翼の角度調整は操縦桿で得ようとする情報を電子制御部が確認し、電子制御部はAIにより、更に様々なセンサー情報を操縦者の求めに応じる指示を翼角度調整装置や推進機出力調整装置などに送り、機体の極低速離着陸を得ることが出来る。6. In addition, the parts that attach the main wings and horizontal stabilizer of the aircraft consist of motors, gears, and hydraulic equipment that can adjust the angle of the main wing and horizontal stabilizer plane within a range of 91 degrees from horizontal to vertical. For angle adjustment, the electronic control unit confirms the information to be obtained with the control stick, and the electronic control unit uses AI to send instructions to the wing angle adjustment device and propulsion power output adjustment device based on various sensor information as requested by the pilot. It is possible to send the aircraft to a location such as the following, and obtain extremely low-speed takeoff and landing of the aircraft.

7.また、各機種の主翼にはレシプロエンジンに配設したプロペラ機・レシプロエンジン又は、ロータリーエンジンに二次電池と組み合わせたハイブリッドプロペラ機・永久磁石で発電モーターを作動させるプロペラ機や、コントラペラを使用した推進機や、ジェットエンジンのターボプロップ機やジェット噴射推進力等の何れも使うことが出来る。7. In addition, the main wings of each model are propeller planes equipped with reciprocating engines, reciprocating engines, hybrid propeller planes that combine a rotary engine with secondary batteries, propeller planes that operate generator motors with permanent magnets, and contra propellers. Any propulsion machine, jet engine turboprop, jet injection propulsion, etc. can be used.

8.GPSセンサー・ジャイロセンサー・近接センサー・高度センサー・速度センサー・緯度センサー・各種レーダー・カメラ等の各情報収集に機体の胴体部及び翼部などの最適測定部位に各センサーを機体の最適個所に安全飛行上必要数配設し、自動飛行操縦装置等を複数配設する手段を用いた。8. To collect information such as GPS sensor, gyro sensor, proximity sensor, altitude sensor, speed sensor, latitude sensor, various radars, cameras, etc., each sensor is safely placed in the optimal measurement location such as the fuselage and wings of the aircraft. We installed as many units as required for flight, and used a method of installing multiple automatic flight control devices.

9.GPS・ジャイロセンサー・近接センサー・高度センサー・速度センサー・風速センサー・風向センサー・各種レーザー・通信機器・カメラ等の各情報をコンピューターで制御し、操縦機器を簡素化し、機体の位置・機体姿勢・飛行速度・空気抵抗・高度・障害物との距離・機体全方向・機体前後の翼の角度・の各種情報と映像等を瞬間的に把握対応で、人間の能力では不可能な大量の処理能力を瞬時に正確に行う特徴のAi装置を搭載した自動操縦手段も可能にすることができる。9. Information such as GPS, gyro sensor, proximity sensor, altitude sensor, speed sensor, wind speed sensor, wind direction sensor, various lasers, communication equipment, camera, etc. is controlled by computer, simplifying the control equipment and controlling the aircraft position, aircraft attitude, etc. Capable of instantly grasping various information and images such as flight speed, air resistance, altitude, distance to obstacles, all directions of the aircraft, angle of the front and rear wings of the aircraft, etc., and has a large amount of processing capacity that is impossible with human ability. It is also possible to create an automatic pilot system equipped with an AI device that is capable of instantaneously and accurately carrying out operations.

10.バッテリー充電方式は、エンジンに取り付けた発電機の飛行中の充電の他、永久磁石と発電モーターを組み合わせたハイブリッド式及びまたは着陸時にプラグイン充電方式併用の手段を用いた。10. Battery charging methods included in-flight charging using a generator attached to the engine, a hybrid system that combined a permanent magnet and a generator motor, and/or a plug-in charging method during landing.

11.左右の主翼にはジェットの場合は双発又は二基一体型のダブル双発を選択でき、大きな揚力および浮力及び推力を主翼に持たせ、左右可動式の垂直尾翼に一体型として配設したジェットエンジンは上下に傾斜でき、垂直尾翼の左右可動と併せて役割を分担しながら、主翼平面部を機体水平から垂直方向に60度範囲で傾斜する機能が設けられている。11. For the left and right main wings, you can choose between twin engines or a two-engine double-twin engine, and the jet engines have large lift, buoyancy, and thrust in the main wings, and are integrated into the left and right movable vertical tails. It can tilt up and down, and while sharing the role with the left and right movement of the vertical tail, it also has the function of tilting the main wing plane within a range of 60 degrees vertically from the horizontal plane of the aircraft.

12.機体の左右に配設された主翼および水平尾翼は、機体の左右の翼は左右個別に作動することが出来る。12. The main wings and horizontal stabilizers located on the left and right sides of the aircraft can be operated independently.

13.各推進機は、翼の下側に固定される場合も、翼の上側に固定される場合もその飛行体の用途(水陸離着陸機)により選択することが出来る。13. Whether each propulsion aircraft is fixed to the lower side of the wing or to the upper side of the wing can be selected depending on the purpose of the aircraft (amphibious take-off and landing aircraft).

14.水直尾翼には小型のジェットエンジン式推進機を配設する手段を用いることも出来る。14. It is also possible to install a small jet engine propulsion device in the vertical stabilizer.

15.垂直尾翼の中間付近にジェット推進機を配設し、ジェット推進機が水平尾翼の平面部が水平から垂直方向に可動するのと連動し、ジェット推進機からの噴射風の向きを機体水平後方だけでなく、機体後方下方又は左右に噴射せ、機体後方部も噴射風によって揚力及び浮力又は方向姿勢制御機能を発生させ、低速飛行でも姿勢制御を可能にして離着陸させることができる。15. A jet propulsion unit is installed near the middle of the vertical stabilizer, and the jet propulsion unit works in conjunction with the flat part of the horizontal stabilizer that moves from horizontal to vertical, directing the jet wind from the jet propulsion unit only horizontally to the rear of the aircraft. Instead, the jet is ejected downward or to the left and right behind the aircraft, and the rear part of the aircraft also generates lift and buoyancy or direction and attitude control functions using the jet wind, making it possible to control the attitude even in low-speed flight and take off and land.

16.従来、左右の独立した主翼だけに配設されている推進機による飛行では、その推進機は常に飛行体の推力と揚力と浮力との複数のエネルギー消費が必要であるが、本発明では、それらとは別に推進速度向上だけに特化できるサブ推進機を機体後部に備える。16. Conventionally, in flight using propulsion machines installed only on the left and right main wings, the propulsion machine always needs to consume multiple energies such as thrust, lift, and buoyancy of the aircraft, but with the present invention, these Separately, there is a sub-propulsion unit at the rear of the fuselage that can be specialized to increase propulsion speed.

17.垂直尾翼全体を左右に枢動して方向舵機能を持たせた。17. The entire vertical tail was pivoted left and right to provide a rudder function.

18.左右に枢動式垂直尾翼にジェットエンジン噴射装置を配設し、垂直尾翼が左右に枢動する角度と同様にジェットエンジンの噴射風は進行方向逆方向に排出され、推進機自ら方向舵機能を持たせ、飛行体の速度に関係無く良好な方向姿勢制御した。18. A jet engine injection device is installed on the vertical tail that pivots left and right, and the jet engine's jet air is discharged in the opposite direction to the direction of travel, similar to the angle at which the vertical tail pivots left and right, and the propulsion machine itself has a rudder function. This enabled good direction and attitude control regardless of the speed of the aircraft.

19.平面枢動式主翼に配設される推進機が機体下方に噴射し、主翼だけの推進機で機体の前後のバランスを取るのは難しいが、機体最後部の垂直尾翼にも推進機が配設され、機体前後の推進機で機体の前後の水平バランスを取るのは大変簡便になり、低速飛行中の機体の姿勢制御性能を向上させる思想は無かった。19. The propulsion unit installed on the planar pivoting main wing injects the jet downwards, and it is difficult to balance the front and rear of the aircraft with the propulsion unit only on the main wing, but a propulsion unit is also installed on the vertical tail at the rear of the aircraft. As a result, it became very easy to maintain horizontal balance between the front and rear propulsion planes, and there was no concept of improving the aircraft's attitude control performance during low-speed flight.

20.本発明によれば、機体の主翼及び水平尾翼及び垂直尾翼に配設してジェット推進機の全てが水平から垂直方向に枢動傾斜し、翼は揚力と浮力を獲得し、主翼と垂直尾翼に配設した推進機は噴射気流を機体下方に噴射し、直接強い揚力及び浮力を獲得し、低速での水平飛行や離着陸を可能にし、更には滑走距離が不要又は極短距離でも離着陸出来る効果が有る。20. According to the present invention, all of the jet propulsion planes are arranged on the main wings, horizontal stabilizer and vertical stabilizer of the aircraft so that all of the jet propulsion planes pivot from horizontal to vertical direction, the wings acquire lift and buoyancy, and the wings obtain lift and buoyancy. The installed propulsion machine injects a jet of air downward into the aircraft body, directly obtaining strong lift and buoyancy, enabling low-speed horizontal flight, take-off and landing, and the effect of allowing take-off and landing even with no runway distance or an extremely short distance. Yes.

21.本発明の翼と推進機が水平から垂直方向に枢動傾斜の左右一対の主翼飛行体によれば、主翼及び水平尾翼の平面部が水平から垂直方向に91度範囲内の角度に枢動傾斜し、翼に配設されている推進機からの噴射風は機体下方に噴射することで、直接効果的な強い揚力及び浮力を獲得し、低速での水平飛行や離着陸を可能にし、更には滑走距離が不要又は極短距離でも安定して離着陸出来る効果が有る。21. According to the pair of left and right main wing aircraft in which the wings and the propulsion unit of the present invention pivot and tilt from the horizontal to the vertical direction, the flat parts of the main wings and the horizontal stabilizer pivot and tilt from the horizontal to the vertical at an angle within a range of 91 degrees. However, the jet wind from the propulsion planes installed on the wings is injected downward into the aircraft body, which directly obtains effective strong lift and buoyancy, enabling low-speed horizontal flight, takeoff and landing, and even glide. It has the effect of being able to take off and land stably even if distance is not required or is extremely short.

22.本発明によれば、機体の主翼及び水平尾翼及び垂直尾翼に配設してジェット推進機の全てが水平から垂直方向に枢動傾斜する飛行体に於いて、垂直尾翼に配設した推進機は噴射気流を機体左右と下方に噴射し、直接強い揚力及び浮力及び方向舵の働きを低速でも獲得し、強風下の離着陸時の機体後方が風下に流されること無く滑走路に直進姿勢のままで離着陸出来る安全な姿勢制御の確保が可能である。22. According to the present invention, in a flight vehicle in which all of the jet propulsion machines installed on the main wing, horizontal tail, and vertical tail of the aircraft pivot and tilt from the horizontal to the vertical direction, the propulsion aircraft installed on the vertical tail Jet airflow is injected to the left, right, and downward sides of the aircraft to directly obtain strong lift, buoyancy, and rudder action even at low speeds, allowing the aircraft to take off and land in strong winds while remaining straight on the runway without being swept downwind by the rear of the aircraft. It is possible to ensure safe posture control.

23.本発明によれば、機体前後の主翼及び垂直尾翼に推進機を配設し、主翼推進機又は機体後部の推進機の何れかが故障してエンジン停止しても3基エンジンの一機が正常であれば近隣の空港まで飛行して着陸することが出来る安全性確保の効果が有る。23. According to the present invention, propulsion machines are installed on the front and rear main wings and vertical tail of the aircraft, and even if either the main wing propulsion machine or the rear propulsion machine fails and the engine stops, one of the three engines will continue to operate normally. If so, it would be possible to fly to a nearby airport and land, which would have the effect of ensuring safety.

24.本発明によれば、機体の主翼及び水平尾翼の平面部が水平から垂直方向に枢動傾斜出来、飛行中に野鳥の大きな群れ等に遭遇緊急事態で急制動又は低速での急旋回が可能となり、主翼推進機又は機体後部の推進機の両方の推進力で急制動で飛行速度が極端に低下しても強い揚力及び浮力が低速飛行を可能にし、緊急時の危険回避が出来る安全性確保の効果が有る。24. According to the present invention, the flat parts of the main wings and horizontal stabilizer of the aircraft can pivot from horizontal to vertical, making it possible to brake suddenly or make sudden turns at low speed in an emergency situation such as encountering a large flock of wild birds during flight. , strong lift and buoyancy enable low-speed flight even if the flight speed is extremely reduced due to sudden braking with the propulsion power of both the main wing propulsion machine or the propulsion machine at the rear of the aircraft, ensuring safety and avoiding danger in emergencies. It is effective.

25.本発明によれば、機体の主翼及び垂直尾翼に方向舵を配設し、主翼又は機体後部の方向舵の何れかが故障しても3基の方向舵の一基が正常であれば近隣の空港まで飛行して着陸することが出来る安全性確保の効果が有る。25. According to the present invention, rudders are disposed on the main wing and vertical tail of the aircraft, and even if either the main wing or the rudder at the rear of the aircraft fails, if one of the three rudders is normal, the aircraft will fly to a nearby airport. This has the effect of ensuring safety, as it allows the aircraft to land on a plane.

26.本発明によれば、機体の主翼及び水平尾翼が水平から垂直方向に個別に枢動傾斜出来ることで、主翼高校舵又は機体後部の方向舵の何れかが故障しても主翼に配設された方向舵の何れかが正常であれば近隣の空港まで飛行して着陸することが出来る安全性確保の効果が有る。26. According to the present invention, the main wings and horizontal stabilizer of the aircraft can be pivoted and tilted individually from horizontal to vertical, so that even if either the main wing high rudder or the rudder at the rear of the aircraft fails, the rudder disposed on the main wing If either of these conditions is normal, the aircraft can fly to a nearby airport and land, which has the effect of ensuring safety.

Claims (8)

機体と、該機体前部に設けられる主翼と、該機体後部に設けられ水平尾翼と、該機体後部であって該水平尾翼近傍に設けられる垂直尾翼と、からなる飛行体であって、
前記主翼は、翼平面部が互いに独立して枢動して所定角度で傾斜する左主翼および右主翼と、該左主翼および右主翼に配設される推進機と、該推進機の後方にそれぞれ配設され前記機体の上昇・下降を制御するフラップと、を有し、
前記水平尾翼は、翼平面部が互いに独立して枢動して所定角度で傾斜する水平尾翼左翼および水平尾翼右翼と、該水平尾翼左翼および水平尾翼右翼にそれぞれ配設され前記機体の上昇・下降を制御するフラップと、を有し、
前記垂直尾翼は、該垂直尾翼の方向を左右に枢動制御する枢動装置と、該垂直尾翼に配設され上下方向に所定角度で傾斜枢動する推進機と、該垂直尾翼に配設されその方向を該垂直尾翼とは個別に枢動制御される方向舵と、を有する、
ことを特徴とする飛行体。
A flying object comprising a fuselage, a main wing provided at the front of the fuselage, a horizontal stabilizer provided at the rear of the fuselage, and a vertical stabilizer provided near the horizontal stabilizer at the rear of the fuselage,
The main wings include a left main wing and a right main wing whose wing plane parts pivot independently of each other and tilt at a predetermined angle, a propulsion machine disposed on the left main wing and the right main wing, and a propulsion machine behind the propulsion machine, respectively. a flap that is arranged and controls the rise and fall of the aircraft,
The horizontal stabilizer has a horizontal stabilizer left wing and a horizontal stabilizer right wing whose wing plane parts pivot independently of each other and tilt at a predetermined angle, and are respectively disposed on the horizontal stabilizer left wing and the horizontal stabilizer right wing, and are arranged to raise and lower the aircraft. has a flap that controls the
The vertical stabilizer includes a pivot device that pivots the direction of the vertical stabilizer from side to side, a propulsion device disposed on the vertical stabilizer that tilts and pivots vertically at a predetermined angle, and a propulsion device disposed on the vertical stabilizer. a rudder whose direction is pivotally controlled separately from the vertical stabilizer;
A flying object characterized by:
前記左主翼および右主翼は、前記推進機および前記フラップとともに一体的に水平から垂直方向に91度の角度までの範囲内で枢動傾斜することを特徴とする請求項1に記載の飛行体。 2. The aircraft according to claim 1, wherein the left main wing and the right main wing, together with the propulsion device and the flap, pivot and tilt within a range of up to 91 degrees from horizontal to vertical. 前記左主翼および右主翼と前記垂直尾翼の推進機は、出力を個別に調整制御可能であることを特徴とする請求項1または2に記載の飛行体。 3. The aircraft according to claim 1, wherein the propulsion units of the left main wing, the right main wing, and the vertical stabilizer can individually adjust and control outputs. 前記水平尾翼左翼および水平尾翼右翼は、機体の最後部付近の機体左右の位置に配設され、翼平面部は前記フラップとともに一体的に水平から垂直方向に75度の範囲内で枢動傾斜することを特徴とする請求項1に記載の飛行体。 The horizontal stabilizer left wing and the horizontal stabilizer right wing are arranged at positions on the left and right sides of the fuselage near the rearmost part of the fuselage, and the wing plane part pivots and tilts integrally with the flap within a range of 75 degrees from the horizontal to the vertical direction. The flying object according to claim 1, characterized in that: 前記枢動装置は、前記垂直尾翼を前記機体の軸方向に対して左右に20度ずつの範囲内で向きを付けることを特徴とする請求項1に記載の飛行体。 The aircraft according to claim 1, wherein the pivot device orients the vertical tail within a range of 20 degrees to the left and right with respect to the axial direction of the aircraft body. 前記垂直尾翼に設けられた推進機は、前記垂直尾翼の上下高さの概略中心位置に配置されることを特徴とする請求項1または3に記載の飛行体。 4. The aircraft according to claim 1, wherein the propulsion device provided on the vertical stabilizer is disposed approximately at the vertical center of the vertical stabilizer. 前記垂直尾翼に設けられた推進機は、ジェット噴射式推進機であることを特徴とする請求項1、3または6のいずれか1項に記載の飛行体。 7. The aircraft according to claim 1, wherein the propulsion device provided on the vertical tail is a jet injection propulsion device. 前記垂直尾翼に設けられたジェット噴射式推進機は、前記垂直尾翼の左右方向に20度 づつの範囲内および前記ジェット噴射式推進機の垂直尾翼に対する上下方向に20度づつの範囲内の上下左右方向に各20度の範囲内で枢動傾斜することを特徴とする請求項7に記載の飛行体。The jet-injection propulsion device installed on the vertical stabilizer is arranged within a range of 20 degrees in the horizontal direction of the vertical stabilizer and within a range of 20 degrees in the vertical direction with respect to the vertical stabilizer of the jet-injection propulsion device. 8. An air vehicle according to claim 7, characterized in that it pivots and tilts within a range of 20 degrees in each direction.
JP2019185518A 2019-09-20 2019-09-20 flying object Active JP7418175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019185518A JP7418175B2 (en) 2019-09-20 2019-09-20 flying object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019185518A JP7418175B2 (en) 2019-09-20 2019-09-20 flying object

Publications (2)

Publication Number Publication Date
JP2021049961A JP2021049961A (en) 2021-04-01
JP7418175B2 true JP7418175B2 (en) 2024-01-19

Family

ID=75156843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019185518A Active JP7418175B2 (en) 2019-09-20 2019-09-20 flying object

Country Status (1)

Country Link
JP (1) JP7418175B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100019081A1 (en) 2008-04-02 2010-01-28 Airbus France Airplane with pitch and yaw command by propulsion system
US20120261523A1 (en) 2010-10-06 2012-10-18 Donald Orval Shaw Aircraft with Wings and Movable Propellers
US20150028151A1 (en) 2013-07-25 2015-01-29 Joby Aviation, Inc. Aerodynamically Efficient Lightweight Vertical Take-Off And Landing Aircraft With Multi-Configuration Wing Tip Mounted Rotors
WO2015064767A1 (en) 2013-10-30 2015-05-07 優章 荒井 Vertical take-off and landing flight vehicle
CN107042884A (en) 2017-03-18 2017-08-15 北京天宇新超航空科技有限公司 A kind of tilting rotor wing unmanned aerial vehicle
CN108773475A (en) 2018-04-28 2018-11-09 成都航空职业技术学院 The small-sized power general-purpose aircraft that verts of Three-wing-surface

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100019081A1 (en) 2008-04-02 2010-01-28 Airbus France Airplane with pitch and yaw command by propulsion system
US20120261523A1 (en) 2010-10-06 2012-10-18 Donald Orval Shaw Aircraft with Wings and Movable Propellers
US20150028151A1 (en) 2013-07-25 2015-01-29 Joby Aviation, Inc. Aerodynamically Efficient Lightweight Vertical Take-Off And Landing Aircraft With Multi-Configuration Wing Tip Mounted Rotors
WO2015064767A1 (en) 2013-10-30 2015-05-07 優章 荒井 Vertical take-off and landing flight vehicle
CN107042884A (en) 2017-03-18 2017-08-15 北京天宇新超航空科技有限公司 A kind of tilting rotor wing unmanned aerial vehicle
CN108773475A (en) 2018-04-28 2018-11-09 成都航空职业技术学院 The small-sized power general-purpose aircraft that verts of Three-wing-surface

Also Published As

Publication number Publication date
JP2021049961A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
JP6547117B2 (en) Vertical take-off and landing aircraft
EP3033272B1 (en) Convertiplane with new aerodynamic and technical solutions which make the aircraft safe and usable
US11912404B2 (en) Vertical takeoff and landing aircraft
CA2947974C (en) Vtol aircraft
CN105358428B (en) Hybrid power VTOL delivery vehicle
US20070018041A1 (en) Model aircraft
CN102133926A (en) Tailstock type vertical take-off and landing unmanned aerial vehicle
CN102120489A (en) Tilt ducted unmanned aerial vehicle
CN108045575B (en) Short-distance take-off vertical landing aircraft
CN111098649B (en) Aerocar control system and method and aerocar
CN211808877U (en) Semi-split type flying automobile
CN105905295A (en) Vertical take-off and landing fixed wing aircraft
JP2019529199A (en) Multipurpose aircraft
JP7112141B2 (en) 3rd generation aircraft with adjustable lift wings
GB2423971A (en) Autogyro hovercraft
KR20180052280A (en) a transfer angle type lift power control system of the wings to the third generation aircraft
CN113460300A (en) Carrying equipment suitable for single flight
CN102424110A (en) Variable wing miniature amphibious aircraft
CN114945509A (en) Electrically propelled aircraft comprising a central wing and two rotatable lateral wings
JP4085716B2 (en) Vertical take-off and landing aircraft
JP7418175B2 (en) flying object
JP2021049960A (en) Flight body
CN207072435U (en) Aircraft and aircraft system
CN212501033U (en) Light-duty sport aircraft of firefly
JP2022028578A (en) Flight vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231012

R150 Certificate of patent or registration of utility model

Ref document number: 7418175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350