WO2019212055A1 - 電極シートの製造方法 - Google Patents

電極シートの製造方法 Download PDF

Info

Publication number
WO2019212055A1
WO2019212055A1 PCT/JP2019/018063 JP2019018063W WO2019212055A1 WO 2019212055 A1 WO2019212055 A1 WO 2019212055A1 JP 2019018063 W JP2019018063 W JP 2019018063W WO 2019212055 A1 WO2019212055 A1 WO 2019212055A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotubes
carbon
electrode
carbon nanotube
oxygen
Prior art date
Application number
PCT/JP2019/018063
Other languages
English (en)
French (fr)
Inventor
鈴木 雅博
みゆき 冨田
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Publication of WO2019212055A1 publication Critical patent/WO2019212055A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for manufacturing an electrode sheet.
  • the present invention relates to a method for producing an electrode sheet containing carbon nanotubes.
  • a redox flow battery is known as a large capacity storage battery.
  • a redox flow battery generally has an ion exchange membrane that separates an electrolytic solution and electrodes provided on both sides of the ion exchange membrane. Then, using an electrolytic solution containing a metal ion (active material) whose valence is changed by oxidation and reduction, charging and discharging are performed by simultaneously proceeding an oxidation reaction on one electrode and a reduction reaction on the other electrode. be able to.
  • the stationary storage battery is required to be small and have high output. Therefore, a redox flow battery is required to have a high current density.
  • One factor that affects current density is cell resistivity.
  • the cell resistivity is a numerical value determined as a result of combining resistance values generated in all elements through which current flows. Factors that contribute to the cell resistivity include, for example, the electrical resistance of the current collector, the electrical resistance of the electrode, the contact resistance between the electrode and the current collector, the reaction resistance at the electrode surface, the ion transfer resistance in the electrolyte, and the ions Proton transfer resistance in the exchange membrane is the main one.
  • the reaction resistance on the electrode surface is particularly difficult to control.
  • the redox flow battery On the electrode surface of the redox flow battery, electrons are transferred (or received) to the electrode when the valence of the metal ion as the active material changes, and then the metal ion (including the electrolyte solution) whose valence has changed is the electrode. It needs to be quickly removed from the surface. Therefore, it is preferable that the redox flow battery is configured so that the electrolyte flows uniformly and at a constant speed in one direction.
  • Patent Document 1 discloses that a porous plate is subjected to a heat treatment for improving hydrophilicity in order to improve wettability with an electrolytic solution and favorably perform an electrochemical reaction.
  • Patent Document 2 as a surface modification treatment other than heat treatment, the surface of a fiber cloth made of carbon fiber, graphite fiber, or carbon fiber / graphite fiber (composite fiber) is subjected to plasma treatment, photochemical treatment, or ion implantation treatment. Is disclosed.
  • Patent Document 3 discloses that a conventional heat treatment and / or chemical treatment method is applied to an electrode in order to clean an electrode formed from a carbon material and form a carbon surface that functions as an improved active catalyst site. Applying and activating is disclosed.
  • Patent Document 4 discloses hydrophilizing the surface of carbon nanotubes contained in an electrode material.
  • a functional group such as an OH group containing oxygen or a COOH group is attached to the surface of the electrode.
  • the amount of the functional group attached to the surface of the electrode increases too much, the hydrophilicity of the electrode becomes too large, and the movement of the metal ion, which is the active material that has finished charge transfer, from the electrode surface becomes slow, It was found that the cell resistivity was not lowered sufficiently.
  • This invention is made
  • the configuration of the present invention for achieving the above object is as follows.
  • the manufacturing method of the electrode sheet which is 0.7 times or less of the oxygen content of the said carbon nanotube before a process.
  • the said oxygen reduction process is a manufacturing method of the electrode sheet as described in (1) which heats the said carbon nanotube at 2500 degreeC or more in the atmosphere of an inert gas or a reducing gas.
  • the said carbon nanotube is a manufacturing method of the electrode sheet as described in (1) or (2) containing the carbon nanotube whose average fiber diameter is 1 micrometer or less.
  • the addition amount of the second carbon nanotube is 0.05 to 30% by mass with respect to the total addition amount of the first carbon nanotube and the second carbon nanotube.
  • the first oxygen used in the mixing step includes at least one of a second oxygen reduction step for reducing the oxygen content, and then a mixing step for mixing the first carbon nanotube and the second carbon nanotube.
  • the total amount of oxygen contained in the carbon nanotube and the second carbon nanotube is the content of the first carbon nanotube and the second carbon nanotube before the first oxygen reduction step and the second oxygen reduction step.
  • the manufacturing method of the electrode sheet which is 0.7 times or less of the total amount of oxygen.
  • the oxygen content of the first carbon nanotube is 0.3 mass% or less
  • the oxygen content of the second carbon nanotube is 1.2%.
  • the carbon electrode using carbon nanotubes with less oxygen content is more than the carbon electrode using carbon fibers introduced with a large amount of functional groups such as OH groups and COOH groups. Were also found to exhibit excellent properties.
  • carbon electrodes using carbon nanotubes carbon electrodes using carbon nanotubes with few functional groups containing oxygen generated at the defects on the edges and basal surface achieve high current density by reducing cell resistivity. It became clear that we could do it. It is considered that high current density could be achieved by reducing the cell resistivity because the movement of metal ions from the electrode surface was facilitated by the decrease in the functional group exhibiting hydrophilicity.
  • oxygen refers to oxygen atoms, not oxygen as a molecule
  • amount of oxygen contained refers to the mass-based content of oxygen atoms contained in the target. It means an amount (for example, mass%).
  • the “average fiber diameter” of the carbon nanotube is a value obtained by measuring the diameter of 100 randomly extracted fibers with a transmission electron microscope and calculating the arithmetic average value thereof.
  • the “average fiber length” is a value obtained by measuring the length of 100 randomly extracted fibers with a transmission electron microscope and calculating the arithmetic average value thereof.
  • the carbon nanotubes used in the following embodiments may be single-walled (nanotube, SWNT) or multi-walled (single-walled ⁇ ⁇ ⁇ ⁇ nanotube, SWNT) if they are at least partially formed into a tubular shape with a carbon six-membered ring network (graphene sheet). nanotube, MWNT), or a mixture thereof.
  • the carbon nanotubes in the embodiment of the present invention have a carbon nanohorn structure closed by a five-membered ring at the tip, and some five-membered or seven-membered rings also exist in the conical / cylindrical portion. It may include a structure that is bent or uneven in a rule.
  • SWNT and MWNT formed in a tubular shape with a six-membered carbon network (graphene sheet) are preferable.
  • FIG. 1 is a flowchart showing an example of a method for producing an electrode sheet for a redox flow battery according to the first embodiment of the present invention.
  • the manufacturing method according to this example includes an oxygen reduction step S10 for reducing the oxygen content of carbon nanotubes, a dispersion step S20 for obtaining a dispersion by dispersing carbon nanotubes in a medium, and a filtration step S30 for filtering the dispersion. And a molding step S40 for molding the solid content obtained by the filtration step into a sheet, and a drying step S50 for drying the carbon nanotube mixture.
  • the manufacturing process shown in FIG. 1 is an example of the present embodiment, and a process not shown in FIG. 1 may be added as necessary.
  • the average fiber diameter of the carbon nanotube is preferably 1 ⁇ m or less, more preferably 1 to 300 nm, still more preferably 10 to 200 nm, and particularly preferably 15 to 150 nm.
  • the oxygen reduction step S10 it is preferable to heat-treat the carbon nanotubes in an atmosphere of inert gas such as argon gas, helium gas, nitrogen gas, or reducing gas.
  • the heat treatment temperature is preferably 2500 ° C. or higher, more preferably 2600 ° C. or higher, further preferably 2700 ° C. or higher, and particularly preferably 2800 ° C. or higher. This is for sufficiently removing oxygen contained in the carbon nanotube.
  • the heat processing temperature is 3300 degrees C or less. This is to suppress the sublimation of the carbon nanotubes and to secure a high yield and yield.
  • the heat treatment time from the viewpoint of reducing the amount of oxygen contained in the carbon nanotubes, it is preferably held for 0.5 hours or more, more preferably 2.5 hours or more, within the heat treatment temperature range, more preferably 3 hours or more. It is more preferable to hold.
  • the upper limit of the heat treatment time is not particularly limited, but the holding time within the heat treatment temperature range is preferably 3 hours or less. This is to suppress sublimation of the carbon nanotubes, to secure a high yield and yield, and to reduce manufacturing costs such as electricity bills.
  • the oxygen content of the carbon nanotubes after the oxygen reduction step S10 needs to be 0.7 times or less on a mass basis with respect to the oxygen content of the carbon nanotubes before the oxygen reduction step S10. It is preferably 0.5 times or less, and more preferably 0.4 times or less.
  • the amount of oxygen contained in the carbon nanotubes before and after the oxygen reduction step S10 can be measured using a temperature-programmed desorption gas analyzer, an inert gas melting-infrared absorption measuring device, or the like (an example of a specific measuring device) Will be described later in Examples).
  • the oxygen content of the carbon nanotube after the oxygen reduction step S10 is preferably 0.5% by mass or less, more preferably 0.4% by mass. Hereinafter, it is further preferably 0.3% by mass or less, particularly preferably 0.2% by mass or less.
  • carbon nanotubes with a reduced oxygen content are dispersed in a medium to produce a carbon nanotube dispersion.
  • the medium is a liquid and is not particularly limited as long as it can be vaporized in the drying step S50 described later, but is preferably water and more preferably pure water.
  • the dispersion is preferably produced by a shearing force or impact force device such as a wet jet mill, an ultrasonic irradiation device, or a combination thereof.
  • the dispersion obtained in the dispersion step S20 is filtered to recover the solid content including the carbon nanotubes.
  • the recovered solid content may be dehydrated (removed medium) as necessary.
  • the solid content obtained in the filtration step S30 is molded into a sheet shape to produce a molded body.
  • the molding method include, but are not limited to, press molding and roll molding.
  • the molded body obtained in the molding step S40 is dried to obtain an electrode sheet.
  • the drying method include heat drying, vacuum drying, and blast room temperature drying, which can be appropriately selected in consideration of the properties and state of the electrode sheet.
  • FIG. 2 is a flow diagram showing an example of a method for producing a redox flow battery electrode sheet according to a second embodiment of the present invention.
  • the manufacturing method according to this example includes a mixing step S60 for mixing two types of carbon nanotubes having different sizes, an oxygen reduction step S10 for reducing the amount of oxygen contained in the mixed carbon nanotubes, and dispersing the carbon nanotubes in a medium.
  • a mixing step S60 for mixing two types of carbon nanotubes having different sizes
  • an oxygen reduction step S10 for reducing the amount of oxygen contained in the mixed carbon nanotubes
  • dispersing the carbon nanotubes in a medium A dispersion step S20 for obtaining a dispersion, a filtration step
  • the oxygen reduction process S10, the dispersion process S20, the filtration process S30, the molding process S40, and the drying process S50 are the same as those in the first embodiment, and thus the description thereof is omitted.
  • the manufacturing process shown in FIG. 2 is an example of the present embodiment, and a process not shown in FIG. 2 may be added as necessary.
  • the first carbon nanotubes which are two types of carbon nanotubes having different average fiber diameters, and the second carbon nanotubes having an average fiber diameter smaller than the first carbon nanotubes are mixed.
  • dry mixing or wet mixing may be used.
  • oxygen reduction process S10 it is preferable to dry the mixed carbon nanotube by oxygen reduction process S10.
  • a carbon nanotube with a wide fiber diameter distribution is a network in which each carbon nanotube is entangled and adhered by the dispersion step S20, and a plurality of thick carbon nanotubes are physically connected via thin carbon nanotubes (hereinafter referred to as a physical network). ).
  • a physical network By having this physical network, it is considered that the bonds between the respective carbon nanotubes can be maintained even after a subsequent process. Thereby, it is considered that the thick carbon nanotubes function as a main conductive material, and the thinner carbon nanotubes electrically connect the thick carbon nanotubes and efficiently support the conductive path.
  • the gap between the thick carbon nanotubes which is the main conductive material, can be filled with the thin carbon nanotubes, and the conductivity of the electrode can be further improved.
  • the conductivity of the electrode is increased, the cell resistivity of the redox flow battery is lowered, and the input / output characteristics at a large current can be improved.
  • Adhesion in the above description refers to a state in which, for example, when the electrode is observed with a scanning electron microscope (SEM), the second carbon nanotubes appear to be in contact with the surface of the first carbon nanotubes.
  • SEM scanning electron microscope
  • the entangled structure can be confirmed, for example, by observation with a transmission electron microscope.
  • a structure in which at least a part of the second carbon nanotubes intersects with two or more first carbon nanotubes can be confirmed, it is determined that the electrode has a “tangled structure”.
  • the average fiber diameter of the first carbon nanotubes is preferably 100 to 1000 nm, more preferably 100 to 300 nm, still more preferably 100 to 200 nm, and particularly preferably 100 to 150 nm.
  • the average fiber length of the first carbon nanotubes is preferably 0.1 to 30 ⁇ m, more preferably 0.5 to 25 ⁇ m, and still more preferably 0.5 to 20 ⁇ m.
  • the average fiber diameter of the second carbon nanotubes is preferably 1 to 30 nm, more preferably 5 to 25 nm, and still more preferably 5 to 20 nm.
  • the average fiber length of the second carbon nanotube is preferably 0.1 to 10 ⁇ m, more preferably 0.2 to 8 ⁇ m, and still more preferably 0.2 to 5 ⁇ m.
  • the electrode sheet has a structure capable of maintaining higher strength and higher conductivity.
  • the first carbon nanotube serves as a trunk and the second carbon nanotube is suspended in a branch shape between the plurality of first carbon nanotubes.
  • the trunk becomes stable and cracks are less likely to occur in the electrode structure, and it becomes easy to maintain sufficient strength.
  • the second carbon nanotubes can be sufficiently entangled with the first carbon nanotubes, and the conductivity is improved.
  • the amount of the second carbon nanotubes added relative to the total amount of the first carbon nanotubes and the second carbon nanotubes in the mixing step S60 is preferably 0.05% by mass or more, and is 0.10% by mass. More preferably, it is more preferably 1.0% by mass or more.
  • the amount of the second carbon nanotubes added relative to the total amount of the first carbon nanotubes and the second carbon nanotubes in the mixing step S60 is preferably 30% by mass or less, and 20% by mass or less. Is more preferable, and it is further more preferable that it is 15 mass% or less.
  • first carbon nanotubes and the second carbon nanotubes having different average fiber diameters are mixed, but the third carbon nanotubes having different average fiber diameters and / or average fiber lengths from the first and second carbon nanotubes are further added. May be.
  • the electrode sheet is composed of a plurality of types of carbon nanotubes having an average fiber diameter of 1 ⁇ m or less with different average fiber diameters is determined by observing the electrode sheet with a transmission electron microscope and measuring the fiber diameter in the same field of view. The distribution can be measured, and it can be judged whether there are two or more fiber diameter peaks in the distribution at 1000 nm or less.
  • the molded electrode is observed with a transmission electron microscope, and in the same field of view, for example, those having a fiber diameter exceeding 50 nm are the first carbon nanotubes, fibers
  • the diameter of less than 50 nm is regarded as the second carbon nanotube, and the average fiber diameter of the regarded first carbon nanotube and the average fiber diameter of the regarded second carbon nanotube are calculated, and these are calculated as the first carbon nanotube and the second carbon nanotube. This is the average fiber diameter of the carbon nanotubes.
  • the oxygen reduction step S10 is the same as in the first embodiment.
  • the carbon nanotube used is a mixture of the first carbon nanotube and the second carbon nanotube.
  • the oxygen content of the carbon nanotubes before and after the oxygen reduction step S10 is the first carbon nanotube and the second carbon nanotube before and after the oxygen reduction step S10. Means the oxygen content of the mixture.
  • FIG. 3 is a flowchart showing an example of a method for producing an electrode sheet for a redox flow battery according to a third embodiment of the present invention.
  • the manufacturing method according to this example includes a first oxygen reduction step S11 for reducing the oxygen content of the first carbon nanotubes, and a first oxygen reduction step for reducing the oxygen content of the second carbon nanotubes having an average fiber diameter smaller than that of the first carbon nanotubes.
  • At least one of the first carbon nanotubes and the second carbon nanotubes undergoes the oxygen reduction process, that is, after performing at least one of the first oxygen reduction process S11 and the second oxygen reduction process S12, In the dispersion step S21, these carbon nanotubes are mixed.
  • the first oxygen reduction step S11 and the second oxygen reduction step S12 are the same as the oxygen reduction step S10 in the first embodiment.
  • the addition amount of the second carbon nanotubes with respect to the total addition amount of the first carbon nanotubes and the second carbon nanotubes is preferably 0.05% by mass or more, and is 0.10% by mass or more. More preferably, it is more preferably 1.0% by mass or more. The reason is as described in the mixing step S60 of the second embodiment.
  • the addition amount of the second carbon nanotubes with respect to the total addition amount of the first carbon nanotubes and the second carbon nanotubes is preferably 30% by mass or less, and 20% by mass or less. Is more preferable, and it is further more preferable that it is 15 mass% or less. The reason is as described in the mixing step S60 of the second embodiment.
  • the total amount of oxygen contained in the first and second carbon nanotubes added in the mixing / dispersing step S21 after the oxygen reduction step is based on the total amount of oxygen contained in the carbon nanotubes before the oxygen reduction step.
  • the mass is 0.7 times or less, preferably 0.5 times or less, more preferably 0.4 times or less. That is, the oxygen content of the first carbon nanotube before the first oxygen reduction step S11 is X1% by mass, the oxygen content of the first carbon nanotube after the first oxygen reduction step S11 is Y1% by mass, and the second oxygen reduction step S12.
  • the amount of oxygen contained in the previous second carbon nanotube is X2 mass%
  • the amount of oxygen contained in the second carbon nanotube after the second oxygen reduction step S12 is Y2 mass%
  • the first carbon nanotube added in the mixing / dispersing step S20 When the amount is M1g (also possible as M1 part by mass) and the amount of the second carbon nanotube added in the mixing / dispersing step S20 is M2g (also possible as M2 part by mass), the following relationship is established. (M1 ⁇ Y1 / 100 + M2 ⁇ Y2 / 100) / (M1 ⁇ X1 / 100 + M2 ⁇ X2 / 100) ⁇ 0.7
  • the amount of oxygen contained in the first carbon nanotubes having an average fiber diameter of 100 to 1000 nm before the first oxygen reduction step S11 is generally about 0.5 to 2.5% by mass, but the first oxygen reduction step It is preferable to reduce the oxygen content of the first carbon nanotube after S11 to 0.3% by mass or less, and more preferably to 0.2% by mass or less.
  • the amount of oxygen contained in the second carbon nanotubes having an average fiber diameter of 30 nm or less before the second oxygen reduction step S12 is generally about 0.8 to 3.0% by mass, but the second oxygen reduction step S12. It is preferable to reduce the oxygen content of the second carbon nanotube later to 1.2% by mass or less, more preferably to 1.0% by mass or less, and to 0.5% by mass or less. Further preferred.
  • the oxygen content tends to increase as the average fiber diameter of the carbon nanotubes decreases. Therefore, reducing the amount of oxygen contained in the carbon nanotubes having a small average fiber diameter has a greater effect of reducing the cell resistivity.
  • the amount of oxygen contained can be reduced. preferable.
  • a dispersion in which the first carbon nanotubes and the second carbon nanotubes are dispersed in a medium is prepared.
  • the medium is as described in the first embodiment.
  • the dispersion is preferably produced by a shearing force or impact force device such as a wet jet mill, an ultrasonic irradiation device, or a combination thereof.
  • the order of mixing is not particularly limited.
  • the medium may be mixed and the carbon nanotube may be dispersed.
  • the other may be dispersed in the medium, and these components may be mixed and dispersed simultaneously.
  • the electrode sheet is constituted by mixing a plurality of types of carbon nanotubes having an average fiber diameter of 1 ⁇ m or less with different average fiber diameters, and the fiber diameter distribution of the carbon nanotubes used for the determination, the first and the first The method for obtaining the average fiber diameter of the two carbon nanotubes is as described in the second embodiment.
  • the amount of the other carbon material added is preferably 250 parts by mass or less, more preferably 150 parts by mass or less, with respect to 100 parts by mass of the carbon nanotubes used in the manufacturing process of the electrode sheet.
  • the addition of other carbon materials is not particularly limited, but it is preferable to perform a dispersion treatment after the addition. This is because other carbon materials and carbon nanotubes are evenly dispersed. As will be described later, in the case of an electrode in which a plurality of layers are stacked, any one layer may contain a certain amount of carbon nanotubes after treatment.
  • the other conductive carbon material added in the manufacturing process of the electrode sheet preferably includes conductive carbon fiber in view of acid resistance, oxidation resistance, and easy mixing with carbon nanotubes.
  • the volume resistivity of the carbon fiber is preferably 10 7 ⁇ ⁇ cm or less, and more preferably 10 3 ⁇ ⁇ cm or less.
  • the volume resistivity of the carbon fiber can be measured by the method described in Japanese Industrial Standards JIS R7609: 2007.
  • the space ratio (void ratio) excluding the region occupied by the carbon nanotube and the other conductive material is preferably 70% by volume or more and 90% by volume or less.
  • the average fiber diameter of the carbon fibers added in the electrode sheet manufacturing process is preferably larger than 1 ⁇ m.
  • the average fiber diameter of the carbon fiber is preferably 2 to 100 ⁇ m, more preferably 5 to 30 ⁇ m.
  • the average fiber length of the carbon fiber is preferably 0.01 to 20 mm, more preferably 0.05 to 8 mm, and still more preferably 0.1 to 1 mm.
  • the amount of carbon fiber added to 100 parts by mass of carbon nanotubes used in the electrode sheet manufacturing process is preferably 10 parts by mass or more, more preferably 40 parts by mass or more, and even more preferably 70 parts by mass or more. This is to obtain the above-described effect by adding carbon fiber.
  • the amount of carbon fiber added to the total amount of carbon nanotubes and carbon fibers in the electrode sheet is preferably 250 parts by mass or less, and more preferably 150 parts by mass or less. This is because the effect of adding the carbon nanotubes can be sufficiently obtained.
  • a water-soluble conductive polymer may be added in the electrode sheet manufacturing process.
  • the water-soluble conductive polymer hydrophilizes the surface of the carbon nanotubes in the dispersion step S20, and in the third embodiment, in the preparation step of the dispersion in the mixing / dispersion step S21, and helps the dispersion in the medium. Therefore, the addition of the water-soluble conductive polymer is preferably performed before the dispersion step S20 in the first and second embodiments and before the preparation of the dispersion liquid in the mixing / dispersion step S21 in the third embodiment.
  • the degree of hydrophilicity of the surface of the carbon nanotube is small compared to the case where the OH group or COOH group is directly bonded to the surface of the carbon nanotube.
  • a conductive polymer having a sulfone group is preferable, and specific examples include polyisothianaphthenesulfonic acid.
  • the amount of the water-soluble conductive polymer added is preferably 3.0 parts by mass or less, more preferably 2.0 parts by mass or less, and still more preferably 100 parts by mass of the carbon nanotubes used in the electrode sheet manufacturing process. 1.5 parts by mass or less.
  • carbon nanotubes and water-soluble conductive polymer are mixed in an aqueous solution, a monomolecular layer of the water-soluble conductive polymer is formed on the surface of the carbon nanotube, so a large amount of water-soluble conductive polymer is required. It is because it does not.
  • the addition amount of a water-soluble conductive polymer is 0.5 mass part or more with respect to 100 mass parts of carbon nanotubes used in the manufacturing process of an electrode sheet. This is because the above-described effect due to the addition of the water-soluble conductive polymer can be sufficiently obtained.
  • FIG. 4 is a schematic diagram illustrating an example of the configuration of the redox flow battery 1.
  • the electrode sheet produced by the process of each embodiment described above is used as an electrode layer of a positive electrode 120 and a negative electrode 130 described later, and details will be described later with reference to FIG.
  • a solution containing V 5+ / V 4+ (for example, a vanadium sulfate (V) / (IV) aqueous solution) is used as a positive electrode electrolyte, and V 3+ / V 2+ is used as a negative electrode electrolyte.
  • the redox flow battery 1 includes a battery cell 100, a positive electrode tank 200, a positive electrode supply pipe 210, a positive electrode discharge pipe 220, a positive electrode pump 230, a negative electrode tank 300, a negative electrode supply pipe 310, a negative electrode discharge pipe 320, A negative electrode pump 330 and a control unit (not shown) are provided.
  • the structure of the redox flow battery shown here is only an example, and you may add structures, such as an inverter, a converter, various sensors, and a cooling device, as needed.
  • the battery cell 100 includes a case 110, a positive electrode 120, a negative electrode 130, and an ion exchange membrane 140.
  • the positive electrode 120 is connected to the electric wiring 520
  • the negative electrode 130 is connected to the electric wiring 530
  • the electric wirings 520 and 530 are connected to a load such as a generator or an external device.
  • reaction and charge transfer in the battery cell 100 during charging and discharging will be described. Details of the configuration of the members included in the battery cell 100 will be described later with reference to FIG.
  • arrows indicating the valence change of ions, the movement direction of protons H + and electrons e ⁇ indicate the case where the solid line is charged and the dotted line is discharged.
  • the positive electrode tank 200 stores a positive electrode electrolyte. By increasing the capacity of the positive electrode tank 200 together with the capacity of the negative electrode tank 300 described later, the charge / discharge capacity of the redox flow battery 1 can be increased.
  • a plurality of positive electrode tanks 200 may be provided.
  • the positive electrode supply pipe 210 is connected to the positive electrode tank 200 and the positive electrode 120 of the battery cell 100.
  • the positive electrode supply pipe 210 forms a path for transporting the positive electrode electrolyte from the positive electrode tank 200 to the positive electrode 120.
  • the positive electrode discharge pipe 220 is connected to the positive electrode tank 200 and the positive electrode 120 of the battery cell 100.
  • the positive electrode discharge pipe 220 forms a path for transporting the positive electrode electrolyte from the positive electrode 120 to the positive electrode tank 200.
  • the positive electrode pump 230 circulates the positive electrode electrolyte through a path including the positive electrode tank 200 and the positive electrode 120.
  • the positive electrode pump 230 is provided in the positive electrode supply pipe 210, but is not limited to the illustrated location as long as the positive electrode electrolyte can be circulated.
  • the negative electrode tank 300 stores a negative electrode electrolyte.
  • a plurality of the negative electrode tanks 300 may be provided.
  • the negative electrode supply pipe 310 is connected to the negative electrode tank 300 and the negative electrode 130 of the battery cell 100.
  • the negative electrode supply pipe 310 forms a path for transporting the negative electrode electrolyte from the negative electrode tank 300 to the negative electrode 130.
  • the negative electrode discharge pipe 320 is connected to the negative electrode tank 300 and the negative electrode 130 of the battery cell 100.
  • the negative electrode discharge pipe 320 forms a path for transporting the negative electrode electrolyte from the negative electrode 130 to the negative electrode tank 300.
  • the negative electrode pump 330 circulates the negative electrode electrolyte through a path including the negative electrode tank 300 and the negative electrode 130.
  • the negative electrode pump 330 is provided in the negative electrode supply pipe 310, but is not limited to the illustrated location as long as the positive electrode electrolyte can be circulated.
  • a control unit processes various input signals and transmits output signals for operating each unit of the redox flow battery 1.
  • the input signal include a signal from a sensor provided in each device, a signal based on an input from a user via an operation unit, and the like.
  • the signal processing is performed by an arithmetic unit such as a CPU executing a program stored in a storage unit such as a memory.
  • the output signal is transmitted to each device operable by an electrical signal. Examples of such devices include, but are not limited to, the positive electrode pump 230 and the negative electrode pump 330.
  • FIG. 5 is a schematic diagram illustrating an example of the configuration of the battery cell 100 included in the redox flow battery 1.
  • the battery cell 100 includes a case 110, a positive electrode 120, a negative electrode 130, and an ion exchange membrane 140.
  • the case 110 is a container that accommodates the positive electrode 120, the negative electrode 130, the ion exchange membrane 140, the positive electrode electrolyte, and the negative electrode electrolyte.
  • the shape, size, etc. of the case 110 can be appropriately designed according to the specifications, installation conditions, product design, etc. of the redox flow battery 1.
  • the material of the case 110 can be appropriately selected according to the types of the positive electrode electrolyte and the negative electrode electrolyte, the usage environment, and the like, and a two-layer structure or the like can also be applied.
  • the positive electrode 120 includes a positive electrode current collector plate 121, a positive electrode electrolyte inflow portion 122, a positive electrode layer 123, and a positive electrode electrolyte discharge portion 124.
  • the negative electrode 130 includes a negative electrode current collector 131, a negative electrode electrolyte inflow portion 132, a negative electrode layer 133, and a negative electrode electrolyte discharge portion 134.
  • the positive electrode 120 and the negative electrode 130 have the same member configuration, and only the electrolyte supplied is different. Therefore, here, the configurations of the positive electrode 120 and the negative electrode 130 will be described simultaneously, and the respective configurations may be collectively referred to as follows.
  • the positive electrode 120 and the negative electrode 130 are the electrode 120 (130), the positive electrode current collector plate 121 and the negative electrode current collector plate 131 are the current collector plate 121 (131), and the positive electrode electrolyte inflow portion 122 and the negative electrode electrolyte inflow portion 132 are the electrolyte inflow portion.
  • the positive electrode layer 123 and the negative electrode layer 133 may be referred to as the electrode layer 123 (133), and the positive electrolyte discharge part 124 and the negative electrolyte discharge part 134 may be referred to as the electrolyte discharge part 124 (134).
  • the same configurations on the positive electrode side and the negative electrode side may be collectively referred to as shown here.
  • the current collecting plate 121 (131) emits electrons e ⁇ received from an electrode layer 122 (132) described later to the outside through the electric wiring 520 (530) and from the outside through the electric wiring 520 (530). This is a current collector that transfers the inflowing electrons e ⁇ to the electrode layer 122 (132).
  • the current collector plate 121 (131) is not limited to a flat plate shape, and a plate or the like that is appropriately processed according to specifications or the like can be used. In the example shown in FIG. 5, the surface of the current collector 121 (131) facing the other electrode (the surface of the positive current collector 121 facing the negative current collector 131, the negative current collector).
  • a concave portion for accommodating an electrolyte inflow portion 122 (132) to be described later is provided on the surface facing the positive electrode current collector plate 121).
  • a material of the current collector 121 (131) for example, a conductive material containing carbon can be used.
  • a conductive plastic made of graphite and a thermoplastic resin such as polyolefin, or a thermosetting resin such as graphite and an epoxy resin can be used.
  • a molding material obtained by kneading and molding graphite and a thermoplastic resin it is preferable to use a molding material obtained by kneading and molding graphite and a thermoplastic resin, and carbon black having high conductivity such as acetylene black may be mixed.
  • the electrolyte inflow portion 122 (132) is provided in the concave portion provided in the current collector plate 121 (131), and allows the electrolyte inflow from the supply pipe 210 (310) to pass through the electrode layer 123 (133) described later. Liquid.
  • the electrolyte inflow portion 122 (132) includes an outer frame 122a (132a), a support member 122b (132b), and a bottom portion 122c (132c).
  • the outer frame 122a (132a) and the support member 122b (132b) maintain the distance between these members in order to allow the electrolyte to flow between the current collector 121 (131) and the electrode layer 123 (133).
  • the outer frame 122a (132a) and the support member 122b (132b) form a flow path for the electrolyte when viewed from the current collector 121 (131) side.
  • the outer frame 122a (132a), the support member 122b (132b), and the flow path formed by these members will be described later with reference to FIG.
  • the material of the outer frame 122a (132a) and the support member 122b (132b) preferably has conductivity in order to facilitate transfer of electrons between the electrode layer 123 (133) and the current collector 121 (131). .
  • the outer frame 122a (132a) and the support member 122b (132b) may be made of the same material as the current collector plate 121 (131). Further, the outer frame 122a (132a) and the support member 122b (132b) may be integrated with the current collector 121 (131) in order to reduce the number of parts.
  • FIG. 6 is a view of the electrolyte inflow portion 122 (132) included in the battery cell 100 as viewed from the current collector 121 (131) side.
  • the up-down direction and the left-right direction are the same as the directions in the figure, and the front direction on the paper is the front direction and the back direction on the paper is the back direction.
  • the outer frame 122a (132a) has a rectangular frame shape. At the lower end of the outer frame 122a (132a), there is provided an introduction hole C1 for connecting the supply pipe 210 (310) and introducing the electrolyte into the electrolyte inflow portion 122 (132).
  • a plurality of support members 122b (132b) are provided, and extend inward from the left and right sides of the outer frame 122a (132a) at intervals.
  • the support member 122b (132b) is not formed on a straight line extending in the upward direction in the drawing from the introduction hole C1.
  • a trunk channel C2 extending upward from the introduction hole C1 and a plurality of branch channels C3 extending left and right at intervals in the trunk channel C2 are formed in the electrolyte inflow portion 122 (132).
  • a bottom portion 122c (132c), which will be described later, is formed on the back side of the trunk channel C2 and the branch channel C3.
  • a plurality of sets of the outer frame 122a (132a) and the support member 122b (132b) are provided at intervals in the left-right direction. This interval forms the electrolyte discharge channel C4.
  • the discharge channel C4 is provided through a bottom 122c (132c), an electrode layer 123 (133), and an electrolyte discharge unit 124 (134), which will be described later.
  • the discharge channel C4 is connected to the discharge pipe 220 (320).
  • the shape of the flow path of the electrolytic solution in the electrolytic solution inflow portion 122 (132) described here is an example, and is not limited thereto.
  • the flow path may be formed radially from the introduction holes C1.
  • the positive electrode electrolyte inflow portion 122 and the negative electrode electrolyte inflow portion 132 may have different shapes of flow paths.
  • the bottom 122c (132c) is provided between the support member 122b (132b) and an electrode layer 123 (133) described later.
  • the bottom 122c (132c) is a flat plate provided in parallel to the current collector 121 (131), but is not limited thereto.
  • the bottom 122c (132c) allows the electrolytic solution to pass through the electrode layer 123 (133).
  • the material of the bottom portion 122c (132c) is the transmittance of the electrolyte solution in the horizontal direction in the drawing (right direction in the positive electrode 120 and left direction in the negative electrode 130) in the electrode layer 123 (133) of the electrolyte inflow portion 122 (132). (Hereinafter, the transmittance has the same meaning and may be simply referred to as “transmittance”) and is preferably selected in consideration of the ratio between the transmittance of the electrode layer 123 (133).
  • the transmittance k (m 2 ) is the sectional area S (m 2 ) of the member through which the electrolytic solution having a viscosity ⁇ (Pa ⁇ sec) is passed, the length L (m) of the member, and the flow rate Q (m 3 ).
  • the relationship of the liquid permeation flux (m / sec) represented by the following formula (1) ( Calculated from Darcy's law).
  • the cross-sectional area S is a cross-sectional area of the flow path in a plane perpendicular to the liquid flow direction.
  • the electrolytic solution viewed from the current collector 121 (131) or the electrode layer 123 (133) side. This is the area of the inflow portion 122 (132).
  • the transmittance of the bottom portion 122c (132c) has a larger influence on the transmittance of the electrolyte inflow portion 122 (132) than the flow paths C1 to C4. Therefore, in order to adjust the transmittance of the electrolyte inflow portion 122 (132), it is preferable to adjust the transmittance of the bottom portion 122c (132c).
  • the transmittance of the electrolyte inflow portion 122 (132) is preferably 100 times or more that of the electrode layer 123 (133), more preferably 300 times or more, and further preferably 1000 times or more.
  • the transmittance of the electrolyte inflow portion 122 (132) is sufficiently higher than the transmittance of the electrode layer 123 (133), the electrolyte that has flowed into the electrolyte inflow portion 122 (132) has a low transmittance. Since it is blocked by the layer 123 (133), it spreads over the entire surface of the electrolyte inflow portion 122 (132), and the pressure of the electrolyte is equalized in the plane of the bottom portion 122c (132c). Therefore, the flow of the electrolyte passing through the electrode layer 123 (133) described later is a uniform flow in the sheet surface.
  • the thickness of the bottom portion 122c (132c) is preferably 0.08 mm or more, more preferably 0.1 mm or more, and further preferably 0.15 mm or more.
  • the thickness of the bottom 122c (132c) after being assembled into the battery cell 100 is smaller, the electrode cell 100 and thus the redox flow battery 1 can be reduced in size. For this reason, the thickness of the bottom 122c (132c) is preferably 0.7 mm or less, and more preferably 0.5 mm or less.
  • the bottom 122c (132c) is preferably a porous sheet.
  • the porous sheet may be a sponge-like member having voids or a member in which fibers are intertwined. Examples of the form in which fibers are intertwined include, for example, woven fabric, non-woven fabric, and paper in which a relatively short fiber is wound. Is mentioned.
  • the average fiber diameter is preferably made of fibers larger than 1 ⁇ m. If the average fiber diameter of a porous sheet is larger than 1 micrometer, the liquid permeability of the electrolyte solution in a porous sheet can fully be ensured.
  • the material of the porous sheet is preferably one having corrosion resistance to the electrolyte.
  • an acidic solution is often used as the electrolyte solution of the redox flow battery 1. Therefore, the porous sheet preferably has acid resistance.
  • the porous sheet may be oxidized by the reaction in the electrode layer 123 (133), it is preferable to have oxidation resistance.
  • the porous sheet having acid resistance or oxidation resistance means that not only the shape of the porous sheet after use is maintained but also the chemical state of the surface does not change.
  • the volume resistivity of the porous sheet is preferably 10 7 ⁇ ⁇ cm or less, more preferably about 10 3 ⁇ ⁇ cm or less. If the porous sheet has conductivity, the conductivity of the bottom 122c (132c) can be increased.
  • the fibers forming the porous sheet used as the bottom portion 122c (132c) have acid resistance, oxidation resistance, and conductivity.
  • examples of such fibers include carbon fibers, but metals may be used as long as such conditions are satisfied.
  • the electrode layer 123 (133) is a portion where oxidation and reduction of ions contained in the electrolytic solution are performed.
  • the oxidation-reduction reaction of the electrolytic solution is as described above with reference to FIG.
  • Electrolyte discharge part 124 (134) discharges the electrolyte which passed electrode layer 123 (133) outside.
  • the electrolytic solution that has passed through the electrolytic solution discharge unit 124 (134) is returned to the tank 200 (300) via the discharge channel C4 and the discharge pipe 220 (320).
  • the electrolyte discharge part 124 (134) preferably has a higher transmittance than the electrode layer 123 (133). If the transmittance of the electrolyte solution discharge portion 124 (134) is sufficiently high compared to the transmittance of the electrode layer 123 (133), the electrolyte solution that has passed through the electrode layer 123 (133) is transferred to the electrolyte solution discharge portion 124 (134). ) And quickly discharged to the discharge channel C4. In addition, by making the transmittance of the electrolyte solution discharge portion 124 (134) higher than the transmittance of the electrode layer 123 (133), the flow of the electrolyte solution passing through the electrode layer 123 (133) is changed to the electrode layer 123 (133).
  • the electrolyte can be discharged to the discharge channel C4 through the electrolyte discharge part 124 (134) without disturbing the flow of the electrolyte.
  • the transmittance of the electrolyte solution discharge portion 124 (134) is preferably 50 times or more, and more preferably 100 times or more that of the electrode layer 123 (133).
  • the thickness of the electrolytic solution discharge part 124 (134) is preferably 0.08 mm or more, more preferably 0.1 mm or more, and further preferably 0.15 mm or more.
  • the thickness of the electrolyte discharge part 124 (134) is preferably 0.7 mm or less, and more preferably 0.5 mm or less.
  • the electrolytic solution after passing through the electrode layer 123 (133) has a high ratio of the electrolytic solution after the oxidation reaction or reduction reaction occurs. Therefore, the electrolyte discharge unit 124 (134) quickly discharges the electrolyte, whereby ions after the valence changes from the vicinity of the electrode layer 123 (133) can be efficiently removed, and the electrode layer 123 (133) ), The efficiency of redox of ions contained in the electrolytic solution can be increased.
  • the electrolyte discharge part 124 (134) is preferably made of a porous member. Moreover, since the electrolyte discharge part 124 (134) is also required to have acid resistance, oxidation resistance, and conductivity, like the bottom part 122c (132c), the fibers forming the porous sheet have acid resistance, oxidation resistance, And what has electroconductivity is good. Examples of such fibers include carbon fibers, but metals may be used as long as such conditions are satisfied.
  • a cation exchange membrane can be used as the ion exchange membrane 140. Specific examples include those disclosed in International Publication No. 2016/159348.
  • Oxygen reduction process of carbon nanotube and measurement of oxygen content > First carbon nanotube (VGCF-H (registered trademark) manufactured by Showa Denko KK) (CNT1) having an oxygen content of 0.5 mass%, an average fiber diameter of 150 nm, and an average fiber length of 15 ⁇ m, and an oxygen content of 1.8 mass %, An average fiber diameter of 15 nm, and an average fiber length of 3 ⁇ m, a second carbon nanotube (manufactured by Showa Denko KK, VGCF-X (registered trademark)) (CNT2), respectively, using a graphitization furnace under an argon gas atmosphere, Heat treatment was performed under the heat treatment conditions shown in Table 1 to reduce the amount of oxygen contained in the first carbon nanotube and the second carbon nanotube.
  • the heat-treated first carbon nanotubes were designated as CNTs 11 to 13
  • the heat-treated second carbon nanotubes were designated as CNTs 21 to 23
  • the first and second carbon nanotubes that had not been heat-treated were designated as CNT 10 and CNT20.
  • the oxygen content of each sample was measured with an oxygen / nitrogen analyzer (LE-CO, TC-600).
  • Specific conditions for measuring the oxygen content of carbon nanotubes are as follows. Carbon monoxide generated by placing a nickel capsule into which a weighed 20 mg sample (carbon nanotube) was placed in a graphite crucible and heating the sample in a graphite crucible heated at an output of 5000 W using an oxygen / nitrogen analyzer. And carbon dioxide was quantified by infrared absorption method. Table 1 shows the measurement results of the oxygen content of the samples heat-treated under the respective heat treatment conditions shown in Table 1.
  • Example 1 CNT11 and CNT21 are added to pure water such that CNT11 is 90% by mass and CNT21 is 10% by mass with respect to the total amount of the first carbon nanotubes CNT11 and the second carbon nanotubes CNT21.
  • the obtained liquid mixture was processed with the wet jet mill, and CNT11 and CNT21 were disperse
  • Carbon fiber (MLD-300, manufactured by Toray Industries, Inc.) having an average fiber diameter of 7 ⁇ m and an average fiber length of 0.13 mm was added to a dispersion liquid in which CNT11 and CNT21 were dispersed to prepare a mixed liquid.
  • the amount of carbon fiber added was 100 parts by mass with respect to a total of 100 parts by mass of CNT11 and CNT21.
  • This mixture was stirred with a magnetic stirrer to disperse the carbon fibers.
  • the dispersion was filtered with a filter paper, and the resulting cake was dehydrated together with the filter paper, then compressed with a press and further dried, and the filter paper was peeled off to produce an electrode sheet containing carbon nanotubes.
  • the thickness of the electrode sheet was 0.4 mm.
  • the oxygen content [O 0 ] before heat treatment and the oxygen content [O 1 ] after heat treatment (Table 1) of the entire carbon nanotube (CNT) used here were calculated based on the values in Table 1, respectively.
  • Table 2 shows the ratio [O 1 ] / [O 0 ] of the oxygen content [O 1 ] after heat treatment to the oxygen content [O 0 ] before heat treatment.
  • Examples 2 to 4 and Comparative Examples 1 and 2 Using the first and second carbon nanotubes of the type shown in Table 2, an electrode sheet was produced in the same process as in Example 1 with the addition amount shown in Table 2 for each component.
  • Grooves are formed as flow paths C1 to C4 as shown in FIG. 6 in the recesses of the current collector 121 (131) made of a carbon plastic molded body, and carbon fiber paper as a porous sheet is used as the bottom 122c (132c). (SGL Carbon Co., Ltd .: 39AA) was used. The thickness of this carbon fiber paper was 0.37 mm.
  • the overall size of the electrolyte inflow portion 122 (132) in FIG. 6 is 50 mm ⁇ 50 mm, and a 24.5 mm ⁇ 50 mm outer frame 122a (132a) is opened in the left and right direction with a width of 1 mm. They were placed side by side.
  • the thickness of the wall of the outer frame 122a (132a) was 1.5 mm, the width of the support member 122b (132b) was 1 mm, the width of the trunk channel C2 was 1 mm, and the width of the branch channel C2 was 3 mm.
  • the height of the outer frame 122a (132a) is 1 mm
  • the height of the support member 122b (132b) is 0.63 mm
  • the thickness of the bottom 122c (132c) is 0.37 mm
  • the outer frame 122a (132a) and the bottom 122c ( 132c) and the electrode layer 123 (133) side As the introduction hole C1, a 0.8 mm ⁇ hole was provided in the outer frame 122a (132a).
  • a supply pipe 210 (310) was connected to the introduction hole C1.
  • the electrolyte discharge channel C4 is provided between both sides of the two outer frames 122a (132a) and the two outer frames 122a (132a) so that the electrolyte is discharged in the direction of the arrow in FIG. .
  • the width of the discharge channel provided between the two outer frames 122a is 1 mm.
  • the electrode sheets produced in the examples and comparative examples were used. Two electrode sheets having a size of 24.5 mm ⁇ 50 mm are prepared, and the outer frame 122a (132a) and the bottom 122c (132c) are formed in accordance with the area surrounded by the two outer frames 122a (132a). Placed on the same surface.
  • a carbon fiber paper (SGL, GDL10AA, average fiber diameter 12 ⁇ m), which is a porous sheet, was used as the electrolytic solution discharge part 124 (134).
  • the thickness of this carbon fiber paper before being incorporated into the battery cell 100 was 0.25 mm.
  • Nafion N212 registered trademark, manufactured by DuPont was used as the ion exchange membrane 140, and the battery cell 100 was assembled using the two electrode units having the above-described configuration as the positive electrode 120 and the negative electrode 130, respectively.
  • Electrode sheet> Two 100 mL of an electrolyte solution having a vanadium ion concentration of 1.8 M containing equimolar amounts of V 3+ and V 5+ (V +3.5 ) was prepared as a positive electrode electrolyte and a negative electrode electrolyte. These electrolyte solutions were sent to the positive electrode and the negative electrode, respectively, with a tube pump.
  • the cell resistivity was measured at a current density of 100 mA / cm 2 at room temperature (25 ° C.), and the cell resistivity was calculated using the charge / discharge curve at the third cycle.
  • the cut-off voltage is 1.75V for charging and 1.0V for discharging.
  • the cell resistivity is calculated by reading the voltage at the midpoint of the time when the cut-off voltage is reached, dividing the difference between the midpoint voltages of the charge and discharge curves by the current density, and then halving the value. is there.
  • Table 2 shows the cell resistivity when the electrode sheets of Examples 1 to 4 and Comparative Examples 1 and 2 were used for the positive electrode layer and the negative electrode layer.
  • the method for producing an electrode sheet including carbon nanotubes includes an oxygen reduction step of reducing the oxygen content of carbon nanotubes, and the oxygen content [O 1 ] of the carbon nanotubes after the oxygen reduction step is the same as that before the oxygen reduction step. with more than 0.7 times the oxygen content of the carbon nanotube [O 0], it was found that it is possible to obtain an electrode sheet capable of reducing the cell resistance.
  • redox flow battery 100 battery cell 120: positive electrode 121: positive electrode current collector plate 122: positive electrode electrolyte inflow portion 123: positive electrode layer 124: positive electrode electrolyte discharge portion 130: negative electrode 131: negative electrode current collector plate 132: negative electrode electrolyte Inflow part 133: negative electrode layer 134: negative electrode electrolyte discharge part 140: ion exchange membrane 200: positive electrode tank 230: positive electrode pump 300: negative electrode tank 330: negative electrode pump C1: introduction hole C2: trunk channel C3: branch channel C4: discharge Flow path

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

カーボンナノチューブを含む電極シートの製造方法であって、前記カーボンナノチューブの含有酸素量を低減させる酸素低減工程を含み、前記酸素低減工程後の前記カーボンナノチューブの含有酸素量は、前記酸素低減工程前の前記カーボンナノチューブの含有酸素量の0.7倍以下である電極シートの製造方法である。レドックスフロー電池に用いられるセル抵抗率を低減することができる電極シートを製造することができる。

Description

電極シートの製造方法
 本発明は、電極シートの製造方法に関する。特にカーボンナノチューブを含む電極シートの製造方法に関する。
 大容量蓄電池としてレドックスフロー電池が知られている。レドックスフロー電池は、一般に電解液を隔てるイオン交換膜と、そのイオン交換膜の両側に設けられた電極とを有する。そして、酸化還元により価数が変化する金属イオン(活物質)を含有する電解液を使用して、一方の電極上で酸化反応、他方の電極上で還元反応を同時に進めることにより充放電を行うことができる。
 定置型蓄電池は、小型かつ高出力であることが求められている。そのため、レドックスフロー電池は、高い電流密度が求められる。電流密度に影響する要因の一つとしてセル抵抗率がある。セル抵抗率は、電流が流れるすべての要素において発生する抵抗値等を総合した結果として定まる数値である。セル抵抗率に寄与する要素としては、例えば、集電板の電気抵抗、電極の電気抵抗、電極と集電板の接触抵抗、電極表面での反応抵抗、電解液中でのイオン移動抵抗、イオン交換膜中のプロトン移動抵抗等が主なものである。電極表面での反応抵抗は、特に制御し難い。レドックスフロー電池の電極表面では、活物質である金属イオンの価数が変化するときに電子を電極に渡す(又は受け取る)が、その後、価数が変化した金属イオン(を含む電解液)が電極表面から速やかに取り除かれる必要がある。そのため、レドックスフロー電池は、均一かつ一方向に一定の速度で電解液が流れるように構成することが好ましい。
 従来、レドックスフロー電池のカーボン電極では、OH基やCOOH基等の官能基を介して反応が行われていると考えられている。例えば、特許文献1には、電解液との濡れ性を高めて、電気化学反応を良好に行うために、親水性を高めるための熱処理を多孔質板に施すことが開示されている。また、特許文献2には、熱処理以外の表面改質処理として、炭素繊維、黒鉛繊維または炭素繊維/黒鉛繊維(複合繊維)からなる繊維布の表面を、プラズマ処理、光化学処理、またはイオン注入処理することが開示されている。また、特許文献3には、炭素材料から形成される電極を清浄化し、改良された活性触媒部位としての機能を果たす炭素表面を形成させるために、従来の熱処理及び/または化学処理法を電極に施して活性化することが開示されている。また、特許文献4には、電極材料に含まれるカーボンナノチューブの表面を親水化することが開示されている。
JP2017-10809A JP3167295B WO2013/096276 WO2015/072452
 上述したように、レドックスフロー電池においては、電極での反応性を改善するために、電極の表面に酸素を含むOH基、COOH基等の官能基を付けている。しかしながら、電極の表面に付着している当該官能基の量が増え過ぎると、電極の親水性が大きくなりすぎ、電荷授受を終えた活物質である金属イオンの電極表面からの移動が遅くなり、セル抵抗率が十分に低下しないことがわかった。
 本発明は上記問題に鑑みてなされたものであり、セル抵抗率を低減することができる電極シートの製造方法を提供することを目的とする。
 上記目的を達成するための本発明の構成は以下の通りである。
(1)カーボンナノチューブを含む電極シートの製造方法であって、前記カーボンナノチューブの含有酸素量を低減させる酸素低減工程を含み、前記酸素低減工程後の前記カーボンナノチューブの含有酸素量は、前記酸素低減工程前の前記カーボンナノチューブの含有酸素量の0.7倍以下である電極シートの製造方法。
(2)前記酸素低減工程は、前記カーボンナノチューブを、不活性ガスまたは還元性ガスの雰囲気下で、2500℃以上で加熱する、(1)に記載の電極シートの製造方法。
(3)前記カーボンナノチューブは、平均繊維径が1μm以下のカーボンナノチューブを含む、(1)または(2)に記載の電極シートの製造方法。
(4)前記酸素低減工程後の前記カーボンナノチューブの含有酸素量は0.5質量%以下である(1)~(3)のいずれかに記載の電極シートの製造方法。
(5)前記酸素低減工程の前に第1カーボンナノチューブと、該第1カーボンナノチューブよりも平均繊維径の小さい第2カーボンナノチューブとを混合する混合工程を含み、前記酸素低減工程において、用いられるカーボンナノチューブは、前記第1カーボンナノチューブと前記第2カーボンナノチューブとの混合物である(1)~(5)のいずれかに記載の電極シートの製造方法。
(6)前記第1カーボンナノチューブの平均繊維径は100~1000nmであり、前記第2カーボンナノチューブの平均繊維径は1~30nmである、(5)に記載の電極シートの製造方法。
(7)前記混合工程において、前記第1カーボンナノチューブと前記第2カーボンナノチューブとの合計添加量に対する、前記第2カーボンナノチューブの添加量は0.05~30質量%である、(5)または(6)に記載の電極シートの製造方法。
(8)カーボンナノチューブを含む電極シートの製造方法であって、第1カーボンナノチューブの含有酸素量を低減させる第1酸素低減工程及び該第1カーボンナノチューブよりも平均繊維径の小さい第2カーボンナノチューブの含有酸素量を低減させる第2酸素低減工程のうち少なくともいずれかと、その後、前記第1カーボンナノチューブと、前記第2カーボンナノチューブとを混合する混合工程とを含み、前記混合工程で用いられる前記第1カーボンナノチューブと前記第2カーボンナノチューブとに含まれる含有酸素量の合計量は、前記第1酸素低減工程及び前記第2酸素低減工程前の、前記第1カーボンナノチューブと前記第2カーボンナノチューブとの含有酸素量の合計量の0.7倍以下である電極シートの製造方法。
(9)前記第1酸素低減工程は、前記第1カーボンナノチューブの含有酸素量を0.3質量%以下に、および前記第2酸素低減工程は前記第2カーボンナノチューブの含有酸素量を1.2質量%以下に低減する、(8)に記載の電極シートの製造方法。
(10)前記第1カーボンナノチューブの平均繊維径は100~1000nmであり、前記第2カーボンナノチューブの平均繊維径は30nm以下である、(8)または(9)に記載の電極シートの製造方法。
(11)前記混合工程において、前記第1カーボンナノチューブと前記第2カーボンナノチューブとの合計添加量に対する、前記第2カーボンナノチューブの添加量は0.05~30質量%である、(8)~(10)のいずれかに記載の電極シートの製造方法。
(12)前記(1)~(11)のいずれかに記載の方法により電極シートを製造し、該電極シートを集電板と、イオン交換膜で挟んだ電極ユニットを正極及び負極として組み立てる、レドックスフロー電池の製造方法。
 本発明によれば、セル抵抗率を低減することができる電極シートの製造方法を提供することができる。
本発明の第1実施形態にかかる電極シートの製造方法の一例を示すフロー図である。 本発明の第2実施形態にかかる電極シートの製造方法の一例を示すフロー図である。 本発明の第3実施形態にかかる電極シートの製造方法の一例を示すフロー図である。 レドックスフロー電池の構成の一例を示した概略図である。 レドックスフロー電池の電池セルの構成の一例を示した概略図である。 電池セルに含まれる電解液流入部を、集電板側から見た図である。
 以下、本発明を適用した電極シートの製造方法について説明する。なお、図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は実際とは異なっていることがある。また、以下の説明において例示される材質、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
 本発明者らが鋭意検討を重ねた結果、含有酸素量が少ないカーボンナノチューブを用いたカーボン電極の方が、OH基やCOOH基等の官能基を大量に導入した炭素繊維を用いたカーボン電極よりも優れた特性を示すことが明らかになった。また、カーボンナノチューブを用いたカーボン電極のうち、エッジやベーサル面の欠陥部分に生成される酸素を含む官能基が少ないカーボンナノチューブを用いたカーボン電極が、セル抵抗率を下げて高電流密度を達成できることが明らかになった。親水性を示す官能基が減少したことによって金属イオンの電極表面からの移動が容易になったために、セル抵抗率を低減して高電流密度を達成できたと考えられる。
 ここで「酸素」とは、特に断りがなければ、分子としての酸素ではなく、酸素原子を指すものとし、「含有酸素量」とは、対象とするものに含まれる酸素原子の質量基準の含有量(例えば、質量%)を意味する。
 カーボンナノチューブの「平均繊維径」は、透過型電子顕微鏡にて、ランダムに抽出した100本の繊維の直径を測定し、それらの算術平均値として求めた値である。また、「平均繊維長」は、透過型電子顕微鏡にて、ランダムに抽出した100本の繊維の長さを測定し、それらの算術平均値として求めた値である。
 以下の実施形態において用いられるカーボンナノチューブは、少なくとも一部が炭素の六員環ネットワーク(グラフェンシート)で管状に形成されたものであれば、単層(single walled nanotube、SWNT)及び多層(multi walled nanotube、MWNT)のいずれであってもよく、これらの混合物であってもよい。また本発明の実施形態におけるカーボンナノチューブとしては、先端に五員環が存在して閉塞したカーボンナノホーン構造のものや、円錐・円筒部分にも多少の五員環や七員環が存在し、不規則に曲がったり凸凹したりしている構造のものも含まれ得る。ただし、好ましくは、炭素の六員環ネットワーク(グラフェンシート)で管状に形成されたSWNTおよびMWNTのいずれかである。
<1.第1実施形態>
 図1は、本発明の第1実施形態にかかるレドックスフロー電池用電極シートの製造方法の一例を示したフロー図である。この一例にかかる製造方法は、カーボンナノチューブの含有酸素量を低減する酸素低減工程S10と、カーボンナノチューブを媒体中に分散させて分散液を得る分散工程S20と、この分散液を濾過する濾過工程S30と、濾過工程によって得られた固形分をシート状に成形する成形工程S40と、カーボンナノチューブ混合物を乾燥する乾燥工程S50と、を含む。図1に示される製造工程は、本実施形態の一例であり、必要に応じて、図1に示されていない工程を追加してもよい。
 酸素低減工程S10では、カーボンナノチューブの含有酸素量を、低減させる処理を行う。カーボンナノチューブの平均繊維径は1μm以下が好ましく、より好ましくは1~300nm、さらに好ましくは10~200nm、特に好ましくは15~150nmである。
 酸素低減工程S10として、具体的には、カーボンナノチューブをアルゴンガス、ヘリウムガス、窒素ガス等の不活性ガス、または還元性ガスの雰囲気下で熱処理することが好ましい。熱処理温度は、2500℃以上であることが好ましく、2600℃以上であることがより好ましく、2700℃以上であることがさらに好ましく、2800℃以上であることが特に好ましい。カーボンナノチューブに含まれる酸素を十分に除去するためである。また、熱処理温度は、3300℃以下であることが好ましい。カーボンナノチューブの昇華を抑制し、高い収率・歩留まりを確保するためである。熱処理時間については、カーボンナノチューブの含有酸素量を低減する点から、上記熱処理温度範囲内で、0.5時間以上保持することが好ましく、2.5時間以上保持することがより好ましく、3時間以上保持することがさらに好ましい。熱処理時間の上限は、特に限定されないが、上記熱処理温度範囲内での保持時間は、3時間以下が好ましい。カーボンナノチューブの昇華を抑制し、高い収率・歩留まりを確保すること、及び電気代等の製造コスト削減のためである。
 本実施形態においては、酸素低減工程S10後のカーボンナノチューブの含有酸素量は、酸素低減工程S10前のカーボンナノチューブの含有酸素量に対して、質量基準で0.7倍以下とする必要があり、0.5倍以下とすることが好ましく、0.4倍以下とすることがより好ましい。酸素低減工程S10の前後におけるカーボンナノチューブの含有酸素量は、昇温脱離ガス分析装置、不活性ガス融解-赤外線吸収測定装置等を用いて、測定することができる(具体的な測定装置の例については実施例にて後述する)。
 それぞれのカーボンナノチューブの繊維径や長さによってそれぞれ含有酸素量が異なるが、酸素低減工程S10後のカーボンナノチューブの含有酸素量は、好ましくは0.5質量%以下、より好ましくは0.4質量%以下、さらに好ましくは0.3質量%以下、特に好ましくは0.2質量%以下である。
 分散工程S20では、含有酸素量が低減されたカーボンナノチューブを媒体中に分散させ、カーボンナノチューブの分散液を作製する。媒体は、液体であり、後述する乾燥工程S50において気化させることができれば特に限定されないが、水であることが好ましく、純水であることがより好ましい。分散液の作製は、湿式ジェットミル等のせん断力、衝撃力を与える装置、超音波照射装置、あるいはこれらを併用して行うことが好ましい。
 濾過工程S30では、分散工程S20によって得られた分散液を濾過し、カーボンナノチューブを含む固形分を回収する。回収された固形分は必要に応じて脱水(脱媒体)してもよい。
 成形工程S40では、濾過工程S30によって得られた固形分をシート状に成形し、成形体を作製する。成形方法としては、例えば、プレス成形、ロール成形等が挙げられるがこれに限られない。
 乾燥工程S50では、成形工程S40によって得られた成形体を乾燥し、電極シートを得る。乾燥方法としては、例えば、加熱乾燥、真空乾燥、送風室温乾燥等があり、電極シートの性質及び状態を考慮して適宜選択可能である。
<2.第2実施形態>
 図2は、本発明の第2実施形態にかかるレドックスフロー電池用電極シートの製造方法の一例を示したフロー図である。この一例にかかる製造方法は、サイズの異なる2種類のカーボンナノチューブを混合する混合工程S60と、混合されたカーボンナノチューブの含有酸素量を低減する酸素低減工程S10と、カーボンナノチューブを媒体中に分散させて分散液を得る分散工程S20と、この分散液を濾過する濾過工程S30と、濾過工程によって得られた固形分をシート状に成形する成形工程S40と、カーボンナノチューブ混合物を乾燥する乾燥工程S50と、を含む。図2に示される製造工程において、酸素低減工程S10、分散工程S20、濾過工程S30、成形工程S40、及び乾燥工程S50は、第1実施形態と同様であるため、説明を省略する。図2に示される製造工程は、本実施形態の一例であり、必要に応じて、図2に示されていない工程を追加してもよい。
 混合工程S60では、平均繊維径の異なる2種類のカーボンナノチューブである、第1カーボンナノチューブと、第1カーボンナノチューブよりも平均繊維径が小さい第2カーボンナノチューブとを混合する。混合する方法としては、乾式混合でもよく湿式混合でもよい。なお、湿式混合を行う場合、酸素低減工程S10までに、混合されたカーボンナノチューブを乾燥することが好ましい。
 平均繊維径が大きい第1カーボンナノチューブと平均繊維径が小さい第2カーボンナノチューブとを混合することで、繊維径分布の広いカーボンナノチューブが得られる。繊維径分布の広いカーボンナノチューブは、分散工程S20によってそれぞれのカーボンナノチューブが絡まって付着し、複数の太いカーボンナノチューブが、細いカーボンナノチューブを介して物理的に結び付いたネットワーク(以下、物理的ネットワークとする)を得られやすくなると考えられる。この物理的ネットワークを有することで、後工程を経てもそれぞれのカーボンナノチューブの間の結合を維持することができると考えられる。それにより、太いカーボンナノチューブが導電の主材料として機能し、さらに細いカーボンナノチューブが、それぞれの太いカーボンナノチューブ間を電気的に繋ぎ、導電経路を効率的にサポートすると考えられる。さらに、導電性の主となる太いカーボンナノチューブ間の空隙を細いカーボンナノチューブが埋めることができ、より電極の導電性を高めることができると考えられる。電極の導電性を高めると、レドックスフロー電池のセル抵抗率が低下し、大電流での入出力特性を向上させることができる。
 上記記載にある「付着」とは、例えば走査型電子顕微鏡(SEM)で電極を観察すると、第1カーボンナノチューブの表面に第2カーボンナノチューブが接触しているように見える状態のことを言う。絡まった構造は、例えば透過型電子顕微鏡観察により確認することができる。第2カーボンナノチューブの少なくとも一部が、2本以上の第1カーボンナノチューブと交差するような構造が確認できるとき、電極が「絡まった構造を有する」と判断する。
 第1カーボンナノチューブの平均繊維径は、好ましくは100~1000nm、より好ましくは100~300nm、さらに好ましくは100~200nm、特に好ましくは100~150nmである。第1カーボンナノチューブの平均繊維長は、好ましくは0.1~30μm、より好ましくは0.5~25μm、さらに好ましくは0.5~20μmである。
 第2カーボンナノチューブの平均繊維径は、好ましくは1~30nm、より好ましくは5~25nm、さらに好ましくは5~20nmである。第2カーボンナノチューブの平均繊維長は、好ましくは0.1~10μm、より好ましくは0.2~8μm、さらに好ましくは0.2~5μmである。
 第1カーボンナノチューブ及び第2カーボンナノチューブの平均繊維径がそれぞれ上記範囲であると、電極シートとしてより高い強度及び高い導電性を維持できる構造となる。これは、第1カーボンナノチューブが幹となり、第2カーボンナノチューブが、複数の第1カーボンナノチューブ間に枝状に懸架されるためである。例えば、第1カーボンナノチューブの平均繊維径が100nm以上であると、幹が安定となり電極の構造に割れが生じにくくなり、十分な強度を保つことが容易になる。また、第2カーボンナノチューブの平均繊維径が30nm以下であると、第2カーボンナノチューブが十分に第1カーボンナノチューブに絡まることができ、導電性が向上する。
 第2カーボンナノチューブの添加量が多ければ、細いカーボンナノチューブの含有量が増加するため、太いカーボンナノチューブを効果的に結びつけることができると考えられる。この観点から、混合工程S60における、第1カーボンナノチューブと第2カーボンナノチューブとの合計添加量に対する第2カーボンナノチューブの添加量は、0.05質量%以上であることが好ましく、0.10質量%以上であることがより好ましく、1.0質量%以上であることがさらに好ましい。
 また、第2カーボンナノチューブの添加量を抑えることで、太いカーボンナノチューブの含有量の低下を防ぎ、電極層は強度及び導電性の低下を抑制することができる。これは、太いカーボンナノチューブによる、電極層の強度及び導電性維持への寄与が大きいためである。この観点から、混合工程S60における、第1カーボンナノチューブと第2カーボンナノチューブとの合計添加量に対する第2カーボンナノチューブの添加量は、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることがさらに好ましい。
 ここでは、平均繊維径が異なる第1カーボンナノチューブと第2カーボンナノチューブとを混合したが、さらに、第1及び第2カーボンナノチューブと平均繊維径及び/または平均繊維長が異なる第3カーボンナノチューブを加えてもよい。
 電極シートが、平均繊維径が異なる複数の種類の、平均繊維径1μm以下のカーボンナノチューブを混合して構成されるかどうかは、電極シートを透過型電子顕微鏡で観察し、同一視野においてその繊維径分布を測定し、その分布において繊維径のピークが1000nm以下に2つ以上あるかどうかで判断することができる。そして、このような分布において繊維径のピークが2つ以上ある場合、成形された電極を透過型電子顕微鏡で観察し、同一視野において、例えば繊維径が50nmを超えるものを第1カーボンナノチューブ、繊維径が50nm未満のものを第2カーボンナノチューブとみなして、みなされた第1カーボンナノチューブの平均繊維径およびみなされた第2カーボンナノチューブの平均繊維径を算出し、これが第1カーボンナノチューブ及び第2カーボンナノチューブの平均繊維径となる。
 酸素低減工程S10は、第1実施形態と同様である。酸素低減工程S10において、用いられるカーボンナノチューブは、第1カーボンナノチューブと第2カーボンナノチューブとの混合物である。なお、酸素低減工程S10前及び酸素低減工程S10後のカーボンナノチューブの含有酸素量は、本実施形態では、酸素低減工程S10前及び酸素低減工程S10後の、第1カーボンナノチューブと第2カーボンナノチューブとの混合物の含有酸素量を意味する。
<3.第3実施形態>
 図3は、本発明の第3実施形態にかかるレドックスフロー電池用電極シートの製造方法の一例を示したフロー図である。この一例にかかる製造方法は、第1カーボンナノチューブの含有酸素量を低減する第1酸素低減工程S11、及び第1カーボンナノチューブよりも平均繊維径が小さい第2カーボンナノチューブの含有酸素量を低減する第2酸素低減工程S12のうち少なくとも一方(図3では、いずれも含む場合を示している)と、第1カーボンナノチューブと第2カーボンナノチューブとを混合し、媒体中に分散させて分散液を得る混合・分散工程S21と、この分散液を濾過する濾過工程S30と、濾過工程によって得られた固形分をシート状に成形する成形工程S40と、カーボンナノチューブ混合物を乾燥する乾燥工程S50と、を含む。図3に示される製造工程において、濾過工程S30、成形工程S40、及び乾燥工程S50は、第1実施形態と同様であるため、説明を省略する。図3に示される製造工程は、本実施形態の一例であり、必要に応じて、図3に示されていない工程を追加してもよい。
 本実施形態では、第1カーボンナノチューブ及び第2カーボンナノチューブのうち少なくとも一方が酸素低減工程を経て、すなわち第1酸素低減工程S11及び第2酸素低減工程S12のうち少なくとも一方を行った後に、混合・分散工程S21において、これらのカーボンナノチューブが混合される。第1酸素低減工程S11及び第2酸素低減工程S12は、第1実施形態における酸素低減工程S10と同様である。
 混合・分散工程S21における、第1カーボンナノチューブと第2カーボンナノチューブとの合計添加量に対する第2カーボンナノチューブの添加量は、0.05質量%以上であることが好ましく、0.10質量%以上であることがより好ましく、1.0質量%以上であることがさらに好ましい。理由は第2実施形態の混合工程S60において説明した通りである。
 また、混合・分散工程S21における、第1カーボンナノチューブと第2カーボンナノチューブとの合計添加量に対する第2カーボンナノチューブの添加量は、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、15質量%以下であることがさらに好ましい。理由は第2実施形態の混合工程S60において説明した通りである。
 混合・分散工程S21で添加される、酸素低減工程後の第1及び第2カーボンナノチューブに含まれる含有酸素量の合計は、これらのカーボンナノチューブの酸素低減工程前の含有酸素量の合計に対して、質量基準で0.7倍以下であり、0.5倍以下であることが好ましく、0.4倍以下であることがより好ましい。すなわち、第1酸素低減工程S11前の第1カーボンナノチューブの含有酸素量をX1質量%、第1酸素低減工程S11後の第1カーボンナノチューブの含有酸素量をY1質量%、第2酸素低減工程S12前の第2カーボンナノチューブの含有酸素量をX2質量%、第2酸素低減工程S12後の第2カーボンナノチューブの含有酸素量をY2質量%、混合・分散工程S20で添加される第1カーボンナノチューブの量をM1g(M1質量部としても可)、混合・分散工程S20で添加される第2カーボンナノチューブの量をM2g(M2質量部としても可)とすると、以下の関係となる。
 (M1×Y1/100+M2×Y2/100)/(M1×X1/100+M2×X2/100)≦0.7
 この関係を満たしていれば、第1酸素低減工程または第2酸素低減工程を行わなくてもよい。すなわち、上記関係を満たしていれば、X1=Y1またはX2=Y2としてもよい。ただし、第1及び第2カーボンナノチューブそれぞれ含有酸素量を十分に低減させておくこと、すなわち、本実施形態の製造方法は第1酸素低減工程S11及び第2酸素低減工程S12を含むことが好ましい。
 例えば、平均繊維径が100~1000nmの第1カーボンナノチューブの第1酸素低減工程S11前の含有酸素量は、一般的に0.5~2.5質量%程度であるが、第1酸素低減工程S11後の第1カーボンナノチューブの含有酸素量を、0.3質量%以下に低減させることが好ましく、0.2質量%以下に低減させることがより好ましい。また、平均繊維径が30nm以下の第2カーボンナノチューブの第2酸素低減工程S12前の含有酸素量は、一般的に0.8~3.0質量%程度であるが、第2酸素低減工程S12後の第2カーボンナノチューブの含有酸素量を、1.2質量%以下に低減させることが好ましく、1.0質量%以下に低減させることがより好ましく、0.5質量%以下に低減させることがさらに好ましい。一般に、カーボンナノチューブの平均繊維径が小さくなる程、含有酸素量が多くなる傾向がある。したがって、平均繊維径が小さいカーボンナノチューブの含有酸素量を低減させる方が、セル抵抗率を低減する効果がより大きい。ただし、第1カーボンナノチューブと第2カーボンナノチューブとの含有酸素量の合計は、それぞれのカーボンナノチューブの添加量にも大きく影響されることも考慮して、含有酸素量の低減量を調整することが好ましい。
 混合・分散工程S21で添加される、酸素低減工程後の第1及び第2カーボンナノチューブの合計量に対して、これらのカーボンナノチューブに含まれる酸素量、すなわち、(M1×Y1/100+M2×Y2/100)/(M1+M2)は、0.5質量%以下であることが好ましく、0.4質量%以下であることがより好ましく、0.3質量%以下であることがさらに好ましく、0.2質量%以下であることが特に好ましい。
 混合・分散工程S21では、第1カーボンナノチューブ及び第2カーボンナノチューブを媒体中に分散させた分散液を作製する。媒体については、第1実施形態において説明した通りである。分散液の作製は、湿式ジェットミル等のせん断力、衝撃力を与える装置、超音波照射装置、あるいはこれらを併用して行うことが好ましい。
 混合・分散工程S21では、混合する順番は特に限定されず、例えば、第1カーボンナノチューブと第2カーボンナノチューブとを乾式混合した後に、媒体を混合し、カーボンナノチューブの分散処理をしてもよく、第1及び第2カーボンナノチューブのいずれか一方を媒体中に分散させた後に、他方を媒体中に分散させてもよく、これらの成分を同時に混合及び分散させてもよい。
 電極シートが、平均繊維径が異なる複数の種類の、平均繊維径1μm以下のカーボンナノチューブを混合して構成されるかどうかの判断、及び判断に用いたカーボンナノチューブの繊維径分布から第1及び第2カーボンナノチューブの平均繊維径を求める方法は第2実施形態において説明した通りである。
<4.その他の実施形態及び変形例>
 酸素低減工程を経たカーボンナノチューブが十分な量含まれていれば、カーボンナノチューブ以外のカーボン材料(以下、「他のカーボン材料」とする)、例えば、カーボンナノチューブ以外のカーボンファイバー、グラファイト等の表面に含まれる酸素、例えばOH基やCOOH基が反応点にならず、主にグラフェン層からなる酸素低減処理後のカーボンナノチューブの表面で、電極反応が選択的にもしくは優先的になされることがわかった。したがって、導電性の向上、あるいはより大きな空隙の付与等のために、導電性を有する他のカーボン材料を添加してもよい。電極シートの製造工程において用いられるカーボンナノチューブ100質量部に対する、他のカーボン材料の添加量は、好ましくは250質量部以下、より好ましくは150質量部以下である。また、他のカーボン材料の添加は、特に限定されないが、添加後に分散処理を行うことが好ましい。他のカーボン材料とカーボンナノチューブとを均等に分散させるためである。なお、後述するように、複数の層が積層されてなる電極の場合、いずれか一つの層が、処理後のカーボンナノチューブを一定量含んでいればよい。
 また、電極シートの製造工程において添加される、導電性の他のカーボン材料としては、耐酸性、耐酸化性、及びカーボンナノチューブとの混合しやすさから、導電性のカーボンファイバーを含むことが好ましい。カーボンファイバーの体積抵抗率は、好ましくは10Ω・cm以下であり、より好ましくは10Ω・cm以下である。カーボンファイバーの体積抵抗率は、日本工業規格 JIS R7609:2007に記載の方法により測定することができる。電極シートにおける、カーボンナノチューブとそれ以外の導電性材料とが占める領域を除いた空間の割合(空隙率)を70体積%以上90体積%以下とすることが好ましい。当該割合(空隙率)を上記範囲にすることによって、電極シートの導電性と電解液の通液性を両立することができる。
 電極シートの製造工程において添加されるカーボンファイバーの平均繊維径は、1μmより大きいことが好ましい。カーボンナノチューブよりも平均繊維径が大きなカーボンファイバーを用いると、電極シート内により大きな空隙を形成することができ、電解液を電極シートに通液させた場合の圧力損失を小さくすること、及び導電性を向上させることができるため、好ましい。カーボンファイバーの平均繊維径は、好ましくは2~100μm、より好ましくは5~30μmである。カーボンファイバーの平均繊維長は、好ましくは0.01~20mm、より好ましくは0.05~8mm、さらに好ましくは0.1~1mmである。
 電極シートの製造工程において用いられるカーボンナノチューブ100質量部に対するカーボンファイバーの添加量は、好ましくは10質量部以上であり、より好ましくは40質量部以上であり、さらに好ましくは70質量部以上である。カーボンファイバーの添加による上記効果を得るためである。また、電極シート中のカーボンナノチューブとカーボンファイバーとの合計量に対するカーボンファイバーの添加量は、好ましくは250質量部以下であり、より好ましくは150質量部以下である。カーボンナノチューブの添加による効果を十分に得るためである。
 さらに、電極シートの製造工程において、水溶性導電性高分子を添加してもよい。水溶性導電性高分子は、分散工程S20、第3実施形態においては混合・分散工程S21における分散液の作製工程において、カーボンナノチューブの表面を親水化し媒体への分散を助ける。そのため、水溶性導電性高分子の添加は、第1及び第2実施形態では分散工程S20の前、第3実施形態では混合・分散工程S21における分散液の作製の前に行うことが好ましい。ただし、カーボンナノチューブの表面を親水化する程度は、OH基やCOOH基がカーボンナノチューブの表面に直接結合するのに比べると小さいため、電荷授受が終わった活物質である金属イオンの移動を妨げない。水溶性導電性高分子としては、スルホン基を有する導電性高分子が好ましく、具体的にはポリイソチアナフテンスルホン酸を挙げることができる。
 水溶性導電性高分子の添加量は、電極シートの製造工程において用いられるカーボンナノチューブ100質量部に対して、好ましくは3.0質量部以下、より好ましくは2.0質量部以下、さらに好ましくは1.5質量部以下である。水溶液中でカーボンナノチューブ及び水溶性導電性高分子を混合する場合、水溶性導電性高分子の単分子層がカーボンナノチューブの表面に形成されるので、水溶性導電性高分子は多くの量を必要としないためである。また、水溶性導電性高分子の添加量は、電極シートの製造工程において用いられるカーボンナノチューブ100質量部に対して、0.5質量部以上であることが好ましい。水溶性導電性高分子の添加による上記効果が十分に得られるためである。
<5.レドックスフロー電池の構成>
 図4は、レドックスフロー電池1の構成の一例を示した概略図である。上記各実施形態の工程により作製された電極シートは、後述する正極120及び負極130の電極層として用いられており、詳細については図5を参照しながら後述する。この例で示されるレドックスフロー電池1は、正極電解液としてV5+/V4+を含む溶液(例えば、硫酸バナジウム(V)/(IV)水溶液)を、負極電解液として、V3+/V2+を含む溶液(例えば、硫酸バナジウム(III)/(II)水溶液)を用いているがこれに限られない。レドックスフロー電池1は、電池セル100と、正極タンク200と、正極供給配管210と、正極排出配管220と、正極ポンプ230と、負極タンク300と、負極供給配管310と、負極排出配管320と、負極ポンプ330と、制御部(図示せず)とを備える。なお、ここで示すレドックスフロー電池の構成は一例にすぎず、必要に応じて、インバータ、コンバータ、各種センサ、冷却装置等の構成を加えてもよい。
 電池セル100は、ケース110と、正極120と、負極130と、イオン交換膜140とを備える。正極120は、電気配線520に接続され、負極130は電気配線530と接続され、電気配線520及び530は発電機、あるいは外部装置等の負荷に接続されている。以下、充放電時における電池セル100内での反応及び電荷の移動について説明する。電池セル100に含まれる部材の構成の詳細については図5を参照しながら後述する。図4において、イオンの価数変化、プロトンH及び電子eの移動方向を示す矢印は、実線が充電時、点線が放電時の場合を示している。
 充電時、正極120においては正極電解液に含まれるイオンがV4+からV5+へと酸化され、負極130においては、負極電解液に含まれるイオンがV3+からV2+へと還元される。したがって、充電時は正極120からは電気配線520を介して電子eが外部に放出され、負極130には、電気配線530を介して電子eが外部から流入する。また、対カチオンとして、プロトンHが電池セル100内で正極120から負極130へとイオン交換膜140を介して移動する。
 放電時、負極130においては負極電解液に含まれるイオンがV2+からV3+へと酸化され、正極120においては、正極電解液に含まれるイオンがV5+からV4+へと還元される。したがって、放電時は負極130からは電気配線530を介して電子eが外部に放出され、正極120には、電気配線520を介して電子eが外部から流入する。また、対カチオンとして、プロトンHが電池セル100内で負極130から正極120へとイオン交換膜140を介して移動する。
 正極タンク200は、正極電解液を貯蔵する。正極タンク200の容量を後述する負極タンク300の容量とともに大きくすることで、レドックスフロー電池1の充放電容量を大きくすることができる。また、正極タンク200は、複数設けられていてもよい。
 正極供給配管210は、正極タンク200、及び電池セル100の正極120に接続される。正極供給配管210は、正極タンク200から正極120へ、正極電解液を輸送するための経路を形成する。
 正極排出配管220は、正極タンク200、及び電池セル100の正極120に接続される。正極排出配管220は、正極120から正極タンク200へ、正極電解液を輸送するための経路を形成する。
 正極ポンプ230は、正極電解液を、正極タンク200及び正極120を含む経路で循環させる。図4において、正極ポンプ230は、正極供給配管210内に設けられているが、正極電解液を循環させることができる範囲で、図示された場所に限定されない。
 負極タンク300は、負極電解液を貯蔵する。負極タンク300は、複数設けられていてもよい。
 負極供給配管310は、負極タンク300、及び電池セル100の負極130に接続される。負極供給配管310は、負極タンク300から負極130へ、負極電解液を輸送するための経路を形成する。
 負極排出配管320は、負極タンク300、及び電池セル100の負極130に接続される。負極排出配管320は、負極130から負極タンク300へ、負極電解液を輸送するための経路を形成する。
 負極ポンプ330は、負極電解液を、負極タンク300及び負極130を含む経路で循環させる。図4において、負極ポンプ330は、負極供給配管310内に設けられているが、正極電解液を循環させることができる範囲で、図示された場所に限定されない。
 制御部(図示せず)は、各種入力信号を処理して、レドックスフロー電池1の各部を動作させるための出力信号を送信する。入力信号としては、例えば、各装置に設けられたセンサからの信号、操作部等を介したユーザーからの入力に基づく信号等が挙げられる。信号処理は、CPU等の演算部が、メモリ等の記憶部に格納されたプログラムを実行すること等によって行われる。出力信号は、電気信号により動作可能な各デバイスに送信される。このようなデバイスとしては、例えば、正極ポンプ230、負極ポンプ330が挙げられるが、これらに限られない。
<6.電池セルの構成>
 図5は、レドックスフロー電池1に含まれる電池セル100の構成の一例を示した概略図である。電池セル100は、ケース110と、正極120と、負極130と、イオン交換膜140とを備える。
 ケース110は、正極120と、負極130と、イオン交換膜140と、正極電解液と、負極電解液とをその内部に収める容器である。ケース110の形状、サイズ等は、レドックスフロー電池1の仕様、設置条件、製品デザイン等に応じて適宜設計可能である。また、ケース110の材質は、正極電解液及び負極電解液の種類、使用環境等に応じて適宜選択可能であり、2層構造等の適用も可能である。
 正極120は、正極集電板121と、正極電解液流入部122と、正極電極層123と、正極電解液排出部124と、を備える。負極130は、負極集電板131と、負極電解液流入部132と、負極電極層133と、負極電解液排出部134と、を備える。
 ここで示されているレドックスフロー電池1においては、正極120及び負極130は同じ部材構成を有し、供給される電解液のみが異なる。そのため、ここでは、正極120、負極130の構成について同時に説明し、各構成について以下のように総称することがある。正極120及び負極130を電極120(130)、正極集電板121及び負極集電板131を集電板121(131)、正極電解液流入部122及び負極電解液流入部132を電解液流入部122(132)、正極電極層123及び負極電極層133を電極層123(133)、正極電解液排出部124及び負極電解液排出部134を電解液排出部124(134)とすることがある。また、ここで挙げた構成以外でも正極側と負極側とで同様の構成についてはここで示したように総称することがある。
 集電板121(131)は、後述する電極層122(132)から受け取った電子eを、電気配線520(530)を介して外部へ放出し、電気配線520(530)を介して外部から流入した電子eを電極層122(132)に受け渡す集電体である。集電板121(131)は、平板状のものに限られず、仕様等に応じて適宜加工されたもの等を用いることができる。図5に示されている例においては、集電板121(131)の他の電極に対向する側の面(正極集電板121においては負極集電板131に対向する面、負極集電板131においては正極集電板121に対向する側の面)に、後述する電解液流入部122(132)を収納するための凹部が設けられている。集電板121(131)の材質としては、例えば炭素を含有する導電性材料を用いることができる。具体的には、黒鉛とポリオレフィン等の熱可塑性樹脂とからなる導電性プラスチック、又は黒鉛とエポキシ樹脂等の熱硬化性樹脂が挙げられる。これらのうち、板状にプレス成形できることを考えると、黒鉛と熱可塑性樹脂とを混練成形した成形材を用いることが好ましく、アセチレンブラックのように導電性の高いカーボンブラックを混ぜてもよい。
 電解液流入部122(132)は、集電板121(131)に設けられた上記凹部に設けられ、供給配管210(310)から流入した電解液を、後述する電極層123(133)に通液する。電解液流入部122(132)は、外枠122a(132a)と、支持部材122b(132b)と、底部122c(132c)とを備える。
 外枠122a(132a)及び支持部材122b(132b)は、集電板121(131)と電極層123(133)との間に電解液を流すために、これらの部材の間隔を保持する。外枠122a(132a)及び支持部材122b(132b)は、集電板121(131)側から見た場合に電解液の流路を形成する。外枠122a(132a)、支持部材122b(132b)及びこれらの部材によって形成される流路については図6を参照しながら後述する。外枠122a(132a)及び支持部材122b(132b)の材質は、電極層123(133)と集電板121(131)との間で電子の授受を容易にするため導電性を有することが好ましい。外枠122a(132a)及び支持部材122b(132b)は、集電板121(131)と同じ材質としてもよい。また、部品点数削減のために外枠122a(132a)及び支持部材122b(132b)を集電板121(131)と一体化しても良い。
 図6は、電池セル100に含まれる電解液流入部122(132)を、集電板121(131)側から見た図である。ここでは上下方向、左右方向は図中の方向と同じであり、紙面手前方向を手前方向、紙面奥方向を奥方向とする。外枠122a(132a)は、長方形の額縁状の形状を有する。外枠122a(132a)の下側の一端に、供給配管210(310)と接続し、電解液を電解液流入部122(132)に導入するための導入孔C1が設けられている。支持部材122b(132b)は、複数設けられており、それぞれ間隔をあけて外枠122a(132a)の左右両側の辺から内側に向かって延びる。図6に示される例においては、導入孔C1から図中上方向に延びる直線上には支持部材122b(132b)は形成されていない。
 この構成により、電解液流入部122(132)内において、導入孔C1から上方向に延びる幹流路C2、及び幹流路C2において間隔をなして左右に延びる複数の枝流路C3が形成される。幹流路C2及び枝流路C3の奥側には後述する底部122c(132c)が形成されている。これらの流路C1~C3により電解液は電解液流入部122(132)内に広範囲に行き渡り、後述する底部122c(132c)を介して、電極層123(133)の広範囲に十分に電解液を供給することができる。
 図6に示される例では、外枠122a(132a)及び支持部材122b(132b)の組は、左右方向に間隔をあけて複数設けられている。この間隔が電解液の排出流路C4を形成する。排出流路C4は、後述する底部122c(132c)、電極層123(133)、及び電解液排出部124(134)を貫通して設けられている。排出流路C4は、排出配管220(320)に接続される。
 ここで説明した電解液流入部122(132)の電解液の流路形状は、一例であり、これに限られず、例えば、導入孔C1から流路を放射状に形成させてもよい。また、正極電解液流入部122と負極電解液流入部132で異なる形状の流路を有していてもよい。
 再び図5に戻る。底部122c(132c)は、支持部材122b(132b)と後述する電極層123(133)との間に設けられている。この例においては、底部122c(132c)は、集電板121(131)に平行に設けられた平板であるが、これに限られない。底部122c(132c)は電解液を電極層123(133)へと透過させる。底部122c(132c)の材料は、電解液流入部122(132)の電極層123(133)に図中左右方向(正極120においては右方向、負極130においては左方向)の電解液の透過率(以下、透過率については同様の意味で、単に「透過率」とすることもある)と電極層123(133)の同透過率との比を考慮して選択することが好ましい。
 ここで、透過率k(m)は、粘度μ(Pa・sec)の電解液を通液させる部材の断面積S(m)、部材の長さL(m)、流量Q(m/sec)で通液した際の部材の液流入側と液流出側との差圧ΔP(Pa)から、次式(1)で表される液体の透過流束(m/sec)の関係(ダルシー則)より算出される。ここで、断面積Sは、通液方向に対して垂直な面における流路の断面積であり、この例では、集電板121(131)または電極層123(133)側から見た電解液流入部122(132)の面積である。
Figure JPOXMLDOC01-appb-M000001
 底部122c(132c)の透過率は、電解液流入部122(132)の透過率に与える影響が、上記流路C1~C4に比べて大きい。そのため、電解液流入部122(132)の透過率を調整するためには、底部122c(132c)の透過率を調整することが好ましい。電解液流入部122(132)の透過率は、電極層123(133)の100倍以上であることが好ましく、300倍以上であることがより好ましく、1000倍以上であることがさらに好ましい。
 電解液流入部122(132)の透過率が、電極層123(133)の透過率に対して十分高いと、電解液流入部122(132)内に流入した電解液は、透過率が低い電極層123(133)で堰き止められるため電解液流入部122(132)全面に広がり、電解液の圧力が底部122c(132c)の面内で均等化される。したがって、後述する電極層123(133)を通過する電解液の流れは、シート面内で均一な流れになる。そのため、充放電過程での反応種を電極層123(133)において一斉に且つ効率的に置換することができ、セル抵抗率が低下し、充放電容量が向上する。また、上記のように、電解質流入部122(132)と電極層123(133)の透過率の比を調整することで、電極層123(133)を通過する電解液の流れを電極層123(133)の面に対してより垂直な方向にすることができる。そのため、最も電解液の流れにくい電極層123(133)を電解液が通過する距離を最短(電極層123(133)の厚さ)にすることができ、圧力損失を低減することができる。
 底部122c(132c)を構成する部材の電池セル100への組み込み後の厚さは、厚いほど電解液を底部122c(132c)全面に広げるために必要な圧力を低減することができる。そのため、底部122c(132c)の厚さは、0.08mm以上であることが好ましく、0.1mm以上であることがより好ましく、0.15mm以上であることがさらに好ましい。底部122c(132c)を構成する部材の電池セル100への組み込み後の厚さは、薄いほど電極セル100ひいてはレドックスフロー電池1を小型化することができる。そのため、底部122c(132c)の厚さは、0.7mm以下であることが好ましく、0.5mm以下であることがより好ましい。
 底部122c(132c)は、多孔質シートであることが好ましい。多孔質シートは、空隙を有するスポンジ状の部材でも、繊維が絡み合ってなる部材でもよく、繊維が絡み合っている形態として、例えば、織物、不織布、比較的短い繊維を漉いてシート状にしたペーパー等が挙げられる。多孔質シートが、繊維からなる場合、その平均繊維径は1μmより大きい繊維からなることが好ましい。多孔質シートの平均繊維径が1μmより大きければ、多孔質シート内の電解液の通液性を十分確保することができる。
 多孔質シートの材質は電解液に対して耐腐食性を有するものであることが好ましい。具体的には、レドックスフロー電池1の電解液は、酸性の溶液を用いることが多い。そのため、多孔質シートは、耐酸性を有することが好ましい。また、多孔質シートは、電極層123(133)での反応により酸化することも考えられるため、耐酸化性を有することが好ましい。多孔質シートが耐酸性又は耐酸化性を有するとは、使用後の多孔質シートが形状を維持しているだけでなく、表面の化学的状態が変化しないことを指す。
 また、この多孔質シートの体積抵抗率は、好ましくは10Ω・cm以下であり、より好ましくは10Ω・cm以下程度である。多孔質シートが導電性を有すれば、底部122c(132c)の導電性を高めることができる。
 これらのことから、底部122c(132c)として用いられる多孔質シートを形成する繊維は、耐酸性、耐酸化性、及び導電性を有するものがよい。このような繊維として、例えば、カーボンファイバーがあるが、このような条件を満たしていれば金属であってもよい。
 電極層123(133)は、電解液に含まれるイオンの酸化及び還元が行われる部分である。電解液の酸化還元反応については図4を参照しながら上で説明した通りである。電極層123(133)として、上記実施形態にかかる製造方法によって製造された電極シートが用いられる。電極層123(133)の設計にあたっては、上記した電極層123(133)の透過率と、電解液流入部122(132)の透過率との比、及び後述する電極層123(133)の透過率と、電解液排出部124(134)の透過率との比を考慮することが好ましい。
 電解液排出部124(134)は、電極層123(133)を通過した電解液を、外部に排出する。電解液排出部124(134)を通過した電解液は、排出流路C4及び排出配管220(320)を経由してタンク200(300)に戻される。
 電解液排出部124(134)は、電極層123(133)と比較して、透過率を高くすることが好ましい。電極層123(133)の透過率と比較して、電解液排出部124(134)の透過率が十分高ければ、電極層123(133)を通過した電解液は、電解液排出部124(134)に滞留することなく、速やかに、排出流路C4へ排出される。また、電極層123(133)の透過率よりも電解液排出部124(134)の透過率を高くすることにより、電極層123(133)を通過する電解液の流れが電極層123(133)の面に対して垂直な方向に向いている場合、電解液の流れを乱すことなく、電解液排出部124(134)を通過して排出流路C4に排出することができる。これらのことを考慮すると、電解液排出部124(134)の透過率は、電極層123(133)の透過率の50倍以上であることが好ましく、100倍以上であることがより好ましい。
 電解液排出部124(134)が厚くなると、電解液排出部124(134)を電解液が通過するために必要な圧力を低減することができる。そのため、電解液排出部124(134)の厚さは、0.08mm以上であることが好ましく、0.1mm以上であることがより好ましく、0.15mm以上であることがさらに好ましい。電解液排出部124(134)が薄くなると、電極層123(133)とイオン交換膜140との距離が短くなり、イオンの移動距離が短くなるため、レドックスフロー電池1のセル抵抗を低減できる。そのため、電解液排出部124(134)の厚さは、0.7mm以下であることが好ましく、0.5mm以下であることがより好ましい。
 電極層123(133)を通過した後の電解液は、酸化反応又は還元反応が生じた後の電解液が占める割合が高い。そのため、電解液排出部124(134)が電解液を速やかに排出することで、電極層123(133)の近傍から価数が変化した後のイオンを効率的に除去でき、電極層123(133)における、電解液に含まれるイオンの酸化還元の効率を高めることができる。
 電解液排出部124(134)は、多孔質部材からなることが好ましい。また、電解液排出部124(134)も底部122c(132c)と同様、耐酸性、耐酸化性、及び導電性が求められるため、多孔質シートを形成する繊維は、耐酸性、耐酸化性、及び導電性を有するものがよい。このような繊維として、例えば、カーボンファイバーがあるが、このような条件を満たしていれば金属であってもよい。
 イオン交換膜140は、陽イオン交換膜を用いることができる。具体的には、国際公開第2016/159348号に開示されているものなどがある。
 以上、本発明の好ましい実施形態について詳述したが、本発明は特定の実施形態に限定されるものではなく、本発明が奏する効果が得られる範囲内において、種々の変形・変更が可能である。
 以下、本発明の実施例について説明する。なお、本発明は以下の実施例のみに限定されるものではない。
<1.カーボンナノチューブの酸素低減工程及び含有酸素量の測定>
 含有酸素量0.5質量%、平均繊維径150nm、平均繊維長15μmの第1カーボンナノチューブ(昭和電工株式会社製、VGCF-H(登録商標))(CNT1)と、含有酸素量1.8質量%、平均繊維径15nm、平均繊維長3μmの第2カーボンナノチューブ(昭和電工株式会社製、VGCF-X(登録商標))(CNT2)とを、それぞれ黒鉛化炉を用いて、アルゴンガス雰囲気下、表1に示す熱処理条件で熱処理を行って、第1カーボンナノチューブ及び第2カーボンナノチューブの含有酸素量を低減させた。表1にある通り、第1カーボンナノチューブを熱処理したものをCNT11~13とし、第2カーボンナノチューブを熱処理したものをCNT21~23として、熱処理をしていない第1及び第2カーボンナノチューブをそれぞれCNT10及びCNT20とする。それぞれのサンプルの含有酸素量は、酸素・窒素分析装置(LECO社製、TC-600)により測定した。
 カーボンナノチューブの含有酸素量の具体的な測定条件は次の通りである。秤量した20mgのサンプル(カーボンナノチューブ)を投入したニッケルカプセルを黒鉛坩堝内に設置し、酸素・窒素分析装置を用いて、出力5000Wで加熱した黒鉛坩堝内でサンプルを加熱して発生した一酸化炭素及び二酸化炭素を赤外線吸収法で定量した。表1に示すそれぞれの熱処理条件で熱処理をしたサンプルのそれぞれの含有酸素量の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 
<2.実施例・比較例>
 [実施例1]
 第1カーボンナノチューブCNT11と、第2カーボンナノチューブCNT21との合計量に対し、CNT11が90質量%、CNT21が10質量%となるように、CNT11と、CNT21とを純水に添加し、さらに、CNT11とCNT21との合計100質量部に対し、水溶性導電性高分子であるポリイソチアナフテンスルホン酸を1.0質量部加えて混合液を作製した。得られた混合液を湿式ジェットミルで処理し、CNT11及びCNT21を水に分散させた。CNT11及びCNT21が分散した分散液に、平均繊維径7μm、平均繊維長0.13mmのカーボンファイバー(東レ株式会社製、MLD-300)を添加し、混合液とした。CNT11と、CNT21との合計100質量部に対する、カーボンファイバーの添加量は100質量部であった。この混合液をマグネティックスターラーにより撹拌し、カーボンファイバーを分散させた。この分散液を濾紙で濾過し、得られたケーキを濾紙とともに脱水した後、プレス機により圧縮してさらに乾燥し、濾紙を剥がして、カーボンナノチューブを含む電極シートを作製した。電極シートの厚さは0.4mmであった。ここで用いられたカーボンナノチューブ(CNT)全体の熱処理前の含有酸素量[O]及び熱処理(表1)後の含有酸素量[O]を、それぞれ表1の値に基づいて算出し、熱処理前の含有酸素量[O]に対する熱処理後の含有酸素量[O]の比[O]/[O]とともに表2に示す。
 [実施例2~4及び比較例1,2]
 表2に示した種類の第1及び第2カーボンナノチューブを用いて、各成分について表2に示した添加量で、実施例1と同様の工程で電極シートを作製した。
Figure JPOXMLDOC01-appb-T000003
<3.評価用電池セルの作製>
 電極シートの評価のために、図5に示される構成を持つ電池セル100を作製した。以下、評価用電池セルの作製方法について説明する。
 カーボンプラスチック成形体からなる集電板121(131)の凹部に、図6に示されるような流路C1~C4として溝を形成し、底部122c(132c)として、多孔質シートであるカーボンファイバーペーパー(SGLカーボン社製:39AA)を用いた。このカーボンファイバーペーパーの厚さは0.37mmであった。
 図6における、電解液流入部122(132)の全体の大きさは、50mm×50mmで、その中に24.5mm×50mmの外枠122a(132a)を1mmの幅をあけて左右方向に2つ並べて設けた。外枠122a(132a)の壁の厚さは1.5mm、支持部材122b(132b)の幅は1mm、幹流路C2の幅は1mm、枝流路C2の幅は3mmであった。外枠122a(132a)の高さを1mm、支持部材122b(132b)の高さを0.63mm、底部122c(132c)の厚さを0.37mmとし、外枠122a(132a)と底部122c(132c)とで電極層123(133)側で同一面をなすようにした。導入孔C1として、外枠122a(132a)に0.8mmφの孔を設けた。導入孔C1に供給配管210(310)を接続した。電解液の排出流路C4は、図6中矢印方向に電解液が排出されるよう、2つ並んだ外枠122a(132a)の両側と、2つの外枠122a(132a)の間に設けた。2つの外枠122aの間に設けた排出流路の幅は、1mmとなる。
 電極層123(133)として、実施例及び比較例において作製された電極シートを用いた。電極シートは24.5mm×50mmのものを2枚用意し、2個の外枠122a(132a)に囲まれた領域に合わせて、それぞれ、外枠122a(132a)及び底部122c(132c)がなす上記同一面上に置いた。
 電解液排出部124(134)として、多孔質シートであるカーボンファイバーペーパー(SGL社製:GDL10AA、平均繊維径12μm)を用いた。このカーボンファイバーペーパーの電池セル100に組み込み前の厚さは0.25mmであった。
 さらに、イオン交換膜140としてナフィオンN212(登録商標、デュポン社製)を用い、上述した構成からなる2つの電極ユニットをそれぞれ正極120、負極130として、電池セル100を組み立てた。
<4.電極シートの評価>
 正極電解液及び負極電解液としてV3+及びV5+が等モル含まれた(V+3.5とする)バナジウムイオン濃度1.8Mの電解液100mLを2つ用意した。チューブポンプでこれらの電解液をそれぞれ正極と負極に送り込んだ。
 セル抵抗率の測定は100mA/cmの電流密度、室温下(25℃)で充放電を行い、3サイクル目の充放電曲線を用いてセル抵抗率を計算した。カットオフ電圧は、充電が1.75V、放電が1.0Vである。セル抵抗率の算出方法は、カットオフ電圧に達した時間の中点の電圧を読み取り、充電曲線と放電曲線の中点電圧の差を電流密度で割って、さらに2分の1にした値である。実施例1~4及び比較例1,2のそれぞれの電極シートを正極層及び負極層に用いた場合のセル抵抗率を表2に示す。
<5.評価結果>
 熱処理前の含有酸素量[O]に対する熱処理後の含有酸素量[O]の比[O]/[O]が大きい、すなわち、カーボンナノチューブの含有酸素量が十分に低減されていない比較例1及び2では、セル抵抗率は高い値を示した。対して、熱処理前の含有酸素量[O]に対する熱処理後の含有酸素量[O]の比[O]/[O]が0.7以下、すなわち、熱処理によりカーボンナノチューブの含有酸素量が十分に低減された実施例1~4ではいずれも低いセル抵抗率の電池セルが得られている。
 したがって、カーボンナノチューブを含む電極シートの製造方法において、カーボンナノチューブの含有酸素量を低減させる酸素低減工程を含み、酸素低減工程後のカーボンナノチューブの含有酸素量[O]は、酸素低減工程前のカーボンナノチューブの含有酸素量[O]の0.7倍以下とすることにより、セル抵抗率を低減することができる電極シートを得ることができることが分かった。
1:レドックスフロー電池
100:電池セル
120:正極
121:正極集電板
122:正極電解液流入部
123:正極層
124:正極電解液排出部
130:負極
131:負極集電板
132:負極電解液流入部
133:負極層
134:負極電解液排出部
140:イオン交換膜
200:正極タンク
230:正極ポンプ
300:負極タンク
330:負極ポンプ
C1:導入孔
C2:幹流路
C3:枝流路
C4:排出流路

Claims (12)

  1.  カーボンナノチューブを含む電極シートの製造方法であって、
     前記カーボンナノチューブの含有酸素量を低減させる酸素低減工程を含み、前記酸素低減工程後の前記カーボンナノチューブの含有酸素量は、前記酸素低減工程前の前記カーボンナノチューブの含有酸素量の0.7倍以下である電極シートの製造方法。
  2.  前記酸素低減工程は、前記カーボンナノチューブを、不活性ガスまたは還元性ガスの雰囲気下で、2500℃以上で加熱する、請求項1に記載の電極シートの製造方法。
  3.  前記カーボンナノチューブは、平均繊維径が1μm以下のカーボンナノチューブを含む、請求項1または2に記載の電極シートの製造方法。
  4.  前記酸素低減工程後の前記カーボンナノチューブの含有酸素量は0.5質量%以下である請求項1~3のいずれか1項に記載の電極シートの製造方法。
  5.  前記酸素低減工程の前に第1カーボンナノチューブと、該第1カーボンナノチューブよりも平均繊維径の小さい第2カーボンナノチューブとを混合する混合工程を含み、前記酸素低減工程において、用いられるカーボンナノチューブは、前記第1カーボンナノチューブと前記第2カーボンナノチューブとの混合物である請求項1~4のいずれか1項に記載の電極シートの製造方法。
  6.  前記第1カーボンナノチューブの平均繊維径は100~1000nmであり、前記第2カーボンナノチューブの平均繊維径は1~30nmである、請求項5に記載の電極シートの製造方法。
  7.  前記混合工程において、前記第1カーボンナノチューブと前記第2カーボンナノチューブとの合計添加量に対する、前記第2カーボンナノチューブの添加量は0.05~30質量%である、請求項5または6に記載の電極シートの製造方法。
  8.  カーボンナノチューブを含む電極シートの製造方法であって、
     第1カーボンナノチューブの含有酸素量を低減させる第1酸素低減工程及び該第1カーボンナノチューブよりも平均繊維径の小さい第2カーボンナノチューブの含有酸素量を低減させる第2酸素低減工程のうち少なくともいずれかと、
     その後、前記第1カーボンナノチューブと、前記第2カーボンナノチューブとを混合する混合工程とを含み、
     前記混合工程で用いられる前記第1カーボンナノチューブと前記第2カーボンナノチューブとに含まれる含有酸素量の合計量は、前記第1酸素低減工程及び前記第2酸素低減工程前の、前記第1カーボンナノチューブと前記第2カーボンナノチューブとの含有酸素量の合計量の0.7倍以下である電極シートの製造方法。
  9.  前記第1酸素低減工程は、前記第1カーボンナノチューブの含有酸素量を0.3質量%以下に、および前記第2酸素低減工程は前記第2カーボンナノチューブの含有酸素量を1.2質量%以下に低減する、請求項8に記載の電極シートの製造方法。
  10.  前記第1カーボンナノチューブの平均繊維径は100~1000nmであり、前記第2カーボンナノチューブの平均繊維径は30nm以下である、請求項8または9に記載の電極シートの製造方法。
  11.  前記混合工程において、前記第1カーボンナノチューブと前記第2カーボンナノチューブとの合計添加量に対する、前記第2カーボンナノチューブの添加量は0.05~30質量%である、請求項8~10のいずれか1項に記載の電極シートの製造方法。
  12.  請求項1~11に記載の方法により電極シートを製造し、該電極シートを集電板と、イオン交換膜で挟んだ電極ユニットを正極及び負極として組み立てる、レドックスフロー電池の製造方法。
PCT/JP2019/018063 2018-05-02 2019-04-26 電極シートの製造方法 WO2019212055A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-088933 2018-05-02
JP2018088933A JP2021121985A (ja) 2018-05-02 2018-05-02 レドックスフロー電池用電極シートの製造方法

Publications (1)

Publication Number Publication Date
WO2019212055A1 true WO2019212055A1 (ja) 2019-11-07

Family

ID=68386328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018063 WO2019212055A1 (ja) 2018-05-02 2019-04-26 電極シートの製造方法

Country Status (2)

Country Link
JP (1) JP2021121985A (ja)
WO (1) WO2019212055A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283878A (ja) * 2000-03-30 2001-10-12 Toray Ind Inc 導電シートおよび該シートを用いた燃料電池用電極
JP2016083618A (ja) * 2014-10-27 2016-05-19 昭和電工株式会社 金属がカーボンナノチューブに担持されてなるカーボン材料およびその製造方法
WO2016104613A1 (ja) * 2014-12-26 2016-06-30 昭和電工株式会社 レドックスフロー電池用電極およびレドックスフロー電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001283878A (ja) * 2000-03-30 2001-10-12 Toray Ind Inc 導電シートおよび該シートを用いた燃料電池用電極
JP2016083618A (ja) * 2014-10-27 2016-05-19 昭和電工株式会社 金属がカーボンナノチューブに担持されてなるカーボン材料およびその製造方法
WO2016104613A1 (ja) * 2014-12-26 2016-06-30 昭和電工株式会社 レドックスフロー電池用電極およびレドックスフロー電池

Also Published As

Publication number Publication date
JP2021121985A (ja) 2021-08-26

Similar Documents

Publication Publication Date Title
KR101862757B1 (ko) 탄소 나노튜브로 제조된 마이크로튜브
Liu et al. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations
Wen et al. Electrospinning as a route to advanced carbon fibre materials for selected low-temperature electrochemical devices: A review
US20100323272A1 (en) Carbon catalyst, slurry containing the carbon catalyst, process for producing carbon catalyst, and fuel cell, storage device, and environmental catalyst each employing carbon catalyst
JP5320579B2 (ja) ガス拡散電極及びその製造方法、膜電極接合体及びその製造方法、燃料電池部材及びその製造方法、燃料電池、蓄電装置及び電極材
EP3240071B1 (en) Electrode for redox flow batteries, and redox flow battery
Opar et al. Three-dimensional mesoporous graphene-modified carbon felt for high-performance vanadium redox flow batteries
Wang et al. Freestanding non‐precious metal electrocatalysts for oxygen evolution and reduction reactions
KR20140000664A (ko) 연료전지용 전극
Zhang et al. Fabricating Fe3O4/Fe/biocarbon fibers using cellulose nanocrystals for high-rate Li-ion battery anode
EP3279985B1 (en) Electrode material, electrode of redox flow battery, and redox flow battery
Zhao et al. Membranes of MnO beading in carbon nanofibers as flexible anodes for high-performance lithium-ion batteries
Gautam et al. Uniquely designed surface nanocracks for highly efficient and ultra-stable graphite felt electrode for vanadium redox flow battery
Mustafa et al. Nanoscopic and Macro-porous carbon nano-foam electrodes with improved Mass transport for Vanadium Redox flow Batteries
Maleki et al. Fabrication of an efficient vanadium redox flow battery electrode using a free-standing carbon-loaded electrospun nanofibrous composite
Opar et al. In-situ functionalization of binder-free three-dimensional boron-doped mesoporous graphene electrocatalyst as a high-performance electrode material for all-vanadium redox flow batteries
Haque et al. Synthesis of polymer/MWCNT nanocomposite catalyst supporting materials for high-temperature PEM fuel cells
EP3223358B1 (en) Metal-air battery and method of manufacturing the same
Chen et al. In-situ generation of metal nanoparticle decorated N-doped carbon secondary reticular structure on coaxial electrospinning fibers for oxygen electrocatalysis
EP3940828A1 (en) Carbon electrode material for manganese/titanium-based redox flow battery
EP3940830A1 (en) Carbon electrode material and redox battery
WO2019212055A1 (ja) 電極シートの製造方法
Aziz et al. Nanostructured carbons containing FeNi/NiFe 2 O 4 supported over N-doped carbon nanofibers for oxygen reduction and evolution reactions
EP3734729A1 (en) Electrode for redox flow battery, and redox flow battery
WO2019212054A1 (ja) 電極シート及びその製造方法、並びにレドックスフロー電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19796070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19796070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP