WO2019212042A1 - ねじ形状の測定装置および測定方法 - Google Patents
ねじ形状の測定装置および測定方法 Download PDFInfo
- Publication number
- WO2019212042A1 WO2019212042A1 PCT/JP2019/017883 JP2019017883W WO2019212042A1 WO 2019212042 A1 WO2019212042 A1 WO 2019212042A1 JP 2019017883 W JP2019017883 W JP 2019017883W WO 2019212042 A1 WO2019212042 A1 WO 2019212042A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- screw
- outer shape
- unit
- captured image
- calculated
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/2425—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures of screw-threads
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/2433—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring outlines by shadow casting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/952—Inspecting the exterior surface of cylindrical bodies or wires
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8887—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30136—Metal
Definitions
- the present invention relates to a measuring device and a measuring method for measuring the thread shape of a threaded portion. Especially this invention is suitable when measuring the screw shape of the threaded pipe
- the present invention also provides a screw shape that is difficult to measure with a light projection method, a method that uses a contact probe, and a triangulation laser displacement meter (an angle of the flank surface). In particular, it is suitable for measuring the angle of the hook-shaped flank of the flank, the radius of curvature of the end of the screw bottom, and the like.
- a threaded part (female thread) is provided on an inner peripheral surface between two threaded pipes in which a threaded part (male threaded part) is formed on the outer peripheral surface of the end part of the pipe.
- the method of fastening the joint in which each part was formed is used. If the dimensional accuracy of the threaded part formed at the end of the pipe is low, the fastening state with the joint may be loosened, the pipes may be disconnected and fall off, or the fluid flowing inside the pipe may leak to the outside There is.
- the demands on the dimensional accuracy and quality assurance level of the threaded portion are becoming stricter year by year as the oil well environment becomes severer in recent years.
- FIG. 1A and 1B are end views schematically showing an example of an end shape of an oil well pipe.
- FIG. 1A is an end view on one side in the radial direction of an end portion of an oil well pipe (an end view cut along a plane including a screw shaft A).
- FIG. 1B is an enlarged end view of a region surrounded by a broken line C shown in FIG. 1A.
- the end portion of the oil well pipe P includes a screw portion provided with a thread P1 and a screw groove P2, and a bevel portion provided adjacent to the screw portion and closer to the pipe end surface than the screw portion.
- a lip portion including a seal or the like provided adjacent to the bevel portion and closer to the pipe end surface than the bevel portion.
- the oil well pipe P is, for example, a pipe among a pair of flank surfaces P3 (surfaces between the top surface P11 of the screw thread P1 and the bottom surface P21 of the screw groove P2) that define each thread P1 of the thread portion.
- a flank surface P3 located on the side opposite to the end surface side is inclined so as to approach the tube end surface side from the top surface P11 of the thread P1 toward the bottom surface P21 of the thread groove P2.
- an oil well pipe that is inclined so that the flank surface P3 located on the pipe end face side approaches the opposite side to the pipe end face as it goes from the top face P11 of the screw thread P1 to the bottom face P21 of the thread groove P2 is used.
- flank surface P3h that approaches the side opposite to the side on which the flank surface P3 is located as it goes from the top surface P11 of the screw thread P1 to the bottom surface P21 of the screw groove P2 is appropriately referred to as a “hook-like flank surface P3h”.
- flank surface P3 located on the side opposite to the pipe end face side is a hook-like flank face P3h.
- the angle of the flank surface P3 (the angle formed by the flank surface P3 and the perpendicular N of the screw shaft A) ⁇ and the end of the screw bottom (the portion where the flank surface P3 and the bottom surface P21 of the screw groove P2 intersect) P4
- the curvature radius is evaluated off-line using a known method, and a pass / fail judgment is made by comparison with an allowable range.
- Such an evaluation requires a lot of time and labor. Therefore, it is difficult to inspect the oil well pipes P in total, and a sampling inspection such as inspecting the first and last oil well pipes P of the same production lot is performed.
- the pass / fail determination is merely made by comparison with the allowable range, it is difficult to quantitatively evaluate the screw shape.
- Patent Documents 1 to 3 disclose that parallel light is emitted from a direction orthogonal to the cross section including the screw axis A or along the bottom surface P21 of the screw groove P2 to the screw portion.
- a method for measuring the outer shape of the threaded portion (uneven shape on the surface, screw profile) by detecting the light that has passed without being blocked. If the screw profile of the screw part can be measured with high accuracy by this light projection method, the angle of the flank surface P3 and the radius of curvature of the end part P4 of the screw bottom can be calculated with high precision from the screw profile.
- the flank surface P3 may not be accurately detected because the flank surface P3 is hidden by the shadow of the ridge line of the thread P1.
- the flank surface P3 is a hook-like flank surface P3h, it cannot be detected by the light projection method.
- the end portion P4 of the screw bottom located at the portion where the flank surface P3 and the bottom surface P21 of the screw groove P2 intersect.
- the present inventors have proposed a method of performing measurement related to the flank surface P3 of the threaded portion using a contact probe in addition to the measurement by the light projection method.
- the contact probe is sequentially moved and the spherical contact attached at the tip is brought into contact with the flank surface P3, the measurement time is inevitably increased.
- Patent Documents 5 and 6 propose a method of measuring a screw shape using a triangulation laser displacement meter.
- the surface of the end of a threaded tube such as an oil well tube is a metal surface after cutting. For this reason, if the specularly reflected light component of the reflected light at the surface of the end of the threaded tube is excessively strong, the reflected light (scattered light component) cannot be sufficiently detected by the laser displacement meter, and the measurement accuracy is high. In some cases, it may decrease or measurement may not be possible.
- the laser displacement meter may detect the reflected light (multiple reflected light) from a location other than the original measurement location, which may reduce the measurement accuracy. Therefore, it is difficult to perform stable measurement with the screw shape measurement method using a laser displacement meter.
- Japanese Patent No. 3552440 Japanese Unexamined Patent Publication No. 63-212808 JP 2010-38554
- the present invention has been made to solve the above-mentioned problems of the prior art, and in addition to the screw shape that can be measured by the conventional light projection method, the conventional light projection method, the method using the contact probe, the triangulation method It is an object of the present invention to provide a screw-shaped measuring device or the like that can measure a screw shape that is difficult to measure with this laser displacement meter.
- the present inventors diligently studied whether or not the flank surface and the end of the screw bottom can be detected by using an optical system for performing the light projection method.
- the present inventors have studied to use an illuminating unit that has an optical axis in a direction perpendicular to the cross section to be measured including the screw axis of the screw part and emits parallel light to illuminate the screw part.
- the present inventors have a visual axis parallel to the optical axis of the illuminating unit, a telecentric lens, and the cross-section matches the in-focus position, and the parallel light emitted from the illuminating unit
- the use of an optical system including an imaging unit that detects and captures light that has passed without being blocked by the screw portion was studied.
- the in-focus position refers to the position where the contrast value of the outer edge corresponding to the top surface of the screw thread or the bottom surface of the thread groove peaks in the cross section to be measured, that is, on both sides of the outer edge. This is the position where the difference or ratio of light and shade (light / dark) is the largest.
- the inventors left the imaging unit as it is, while tilting the optical axis of the illuminating unit with respect to the lead angle of the screw part, so that the pixel area corresponding to the end of the flank surface or the screw bottom was obtained. It has been found that a picked-up image having a shading pattern such as an interference fringe can be obtained. The present inventors have found that the shape of the flank surface and the end of the screw bottom can be calculated by extracting a pixel region in which a shading pattern is generated in the captured image.
- the present inventors use a captured image obtained by using a normal optical system (an optical system in which the optical axis of the illumination unit and the visual axis of the imaging unit are parallel) for performing the light projection method, Calculating the shape of the top surface of the thread and the bottom surface of the thread groove, and using the captured image obtained by using an optical system with the optical axis of the illumination section tilted, the shape of the flank surface and the end of the screw bottom can be calculated.
- a normal optical system an optical system in which the optical axis of the illumination unit and the visual axis of the imaging unit are parallel
- the present invention has been completed based on the above-mentioned findings of the present inventors. That is, in order to solve the above-mentioned problem, the present invention is a screw-shaped measuring device having an optical axis in a direction orthogonal to a cross section including a screw shaft of the screw portion, and emitting parallel light to emit the screw portion.
- the first outer shape which is a partial outer shape of the screw portion, is calculated, and the parallel light emitted from the second illuminating portion is detected and picked up by detecting the light that passes without being blocked by the screw portion.
- a second outer shape that is a partial outer shape of the screw portion along the axial direction of the screw shaft in the cross section is calculated, and the calculated first outer shape and first Provided is a screw-shaped measuring device that calculates the screw shape of the screw portion based on two outer shapes.
- the pixel area blocked by the screw portion becomes dark, and the pixel area not blocked is brightened.
- the arithmetic unit performs image processing such as binarization on the first captured image, so that the first external shape of the screw portion along the axial direction of the screw shaft in the cross section including the screw shaft is obtained. It is possible to calculate the outer shape.
- the first outer shape includes the top surface of the thread and the bottom surface of the thread groove, but does not include the flank surface or the end of the screw bottom.
- the second imaging unit is obtained by illuminating the screw unit with the second illumination unit provided in the screw shape measuring apparatus according to the present invention, and detecting and imaging the light that has passed through the imaging unit without being blocked by the screw unit.
- the image is an image in which a shading pattern such as an interference fringe is generated in a pixel area corresponding to a flank surface or an end of a screw bottom.
- the calculation unit performs image processing for extracting a pixel region in which a shading pattern such as an interference fringe is generated in the second captured image, so that a partial screw portion along the axial direction of the screw shaft in the cross section is obtained.
- the second outer shape includes the flank surface and the end of the screw bottom. That is, the calculation unit can calculate the second outer shape including the outer shape of the flank surface of the screw portion and the end portion of the screw bottom.
- a calculating part calculates the shape of a thread part based on the computed 1st outline and 2nd outline.
- the arithmetic unit is based on the first outer shape, the screw thread phase corresponding to the screw thread axial position of the screw shaft, and the outer diameter of the screw thread at a predetermined position in the axial direction of the screw shaft from the pipe end surface. It is possible to calculate a diameter, a taper that is a change in diameter of the bottom surface of the screw groove along the axial direction of the screw shaft, and the like.
- the calculation unit can calculate the angle of the flank surface and the radius of curvature of the end portion of the screw bottom based on the second outer shape.
- the calculation unit can calculate a combined outer shape in which the first outer shape and the second outer shape are combined, and can calculate the thread width and the thread valley width based on the calculated combined outer shape.
- the screw shape that can be measured by the conventional light projection method using the first captured image is changed to the conventional light projection method using the second captured image, It is possible to measure a screw shape that is difficult to measure with a method using a contact probe or a triangulation laser displacement meter.
- the imaging part with which the screw-shaped measuring apparatus which concerns on this invention is provided is in agreement with the cross section (cross section which should measure a screw shape) that the focus position. That is, the focus position of the imaging unit is located on the top surface of the thread and the bottom surface of the thread groove in the cross section to be measured. If the in-focus position of the imaging unit does not match the cross section including the screw shaft, the imaging unit is moved in the visual axis direction for adjustment.
- the 1st illumination part and 2nd illumination part with which the thread-shaped measuring apparatus which concerns on this invention is provided can also be made into a completely separate illumination part, it does not restrict to this.
- the 1st illumination part and the 2nd illumination part change the function as a 1st illumination part, and the function as a 2nd illumination part by changing the position and inclination of the member which comprises the same illumination part, etc. May be adopted.
- the calculation unit calculates an in-focus measure of pixels constituting the second captured image by performing image processing on the second captured image, and based on the calculated in-focus measure, the second Calculate the outer shape.
- the second captured image is an image in which a shading pattern such as an interference fringe is generated in a pixel region corresponding to a flank surface or an end of a screw bottom.
- a focus measure is an amount representing the degree of focus.
- contrast or density deviation between surrounding pixels can be used as the focus measure.
- the calculation unit can calculate a pixel having a high focus measure among the pixels constituting the second captured image as the second outer shape.
- the direction substantially perpendicular to the second outer shape (such as a flank surface) to be calculated depends on the first outer shape and the design drawing calculated in advance. Can be estimated geometrically.
- the calculation unit calculates a focus measure distribution with the horizontal axis as the pixel direction axis and the vertical axis as the focus measure, obtains an approximate curve (convex curve upward) of the focus measure distribution, It is also possible to adopt the vertex as a point constituting the second outer shape. As a result, the second outer shape composed of the points with the highest focus measure with a resolution higher than the pixel resolution is calculated.
- this invention provides the measuring method of the screw shape containing each following processes.
- 1st illumination process The said thread part is illuminated by the 1st illumination part which has an optical axis of the direction orthogonal to the cross section containing the screw axis of a thread part, and radiate
- First imaging step The first imaging step is performed by the imaging unit having a visual axis parallel to the optical axis of the first illumination unit, including a telecentric lens, and having the cross-section matching the in-focus position. Of the parallel light emitted from the illumination unit, the light that has passed without being blocked by the screw part is detected and imaged.
- Second illumination step The screw portion is formed by a second illumination portion that has an optical axis in a direction that forms an angle larger than the lead angle of the screw portion with respect to a direction orthogonal to the cross section and emits parallel light. Illuminate.
- Second imaging step The imaging unit detects and images light that has passed through the parallel light emitted from the second illumination unit without being blocked by the screw part.
- First external shape calculation step by performing image processing on the first captured image captured in the first imaging step, a partial portion of the screw portion along the axial direction of the screw shaft in the cross section A first outer shape that is an outer shape is calculated.
- Second external shape calculation step by performing image processing on the second captured image captured in the second imaging step, a partial portion of the screw portion along the axial direction of the screw shaft in the cross section A second outer shape that is an outer shape is calculated.
- Screw shape calculation step The screw shape of the screw portion is calculated based on the first outer shape calculated by the first outer shape calculation step and the second outer shape calculated by the second outer shape calculation step.
- the steps included in the screw shape measuring method according to the present invention are not necessarily executed in the order described.
- the process using the execution result of another process needs to be executed after the process using the execution result.
- the first illumination process and the first imaging process can be executed in this order.
- the first illumination step, the first imaging step, and the first outer shape calculation step can be executed in this order.
- a screw shape that can be measured by a conventional light projection method in addition to a screw shape that can be measured by a conventional light projection method, a screw shape that is difficult to measure with a conventional light projection method, a method using a contact probe, and a triangulation laser displacement meter can be measured. It is.
- FIG. 1A is an end view showing an example of an end shape of an oil well pipe.
- FIG. 1B is an enlarged view of a part of FIG. 1A.
- FIG. 2A is a front view showing an example of a screw-shaped measuring apparatus according to the present embodiment.
- FIG. 2B is a side view showing an example of the screw-shaped measuring device of the present embodiment.
- FIG. 3A is a side view showing a configuration example of the illumination unit 200A.
- FIG. 3B is a side view showing a configuration example of the illumination unit 200B.
- FIG. 3C is a side view illustrating a configuration example of the illumination unit 200C.
- FIG. 3D is a side view illustrating a configuration example of the illumination unit 200D.
- FIG. 4 is a diagram illustrating an example of the configuration of the calculation unit 4.
- FIG. 5 is a flowchart illustrating an example of a thread shape measurement method according to the present embodiment.
- FIG. 6A is a diagram illustrating an example of the first captured image.
- FIG. 6B is an enlarged view of a part of FIG. 6A.
- FIG. 7A is a diagram illustrating an example of the second captured image.
- FIG. 7B is an enlarged view of a part of FIG. 7A.
- FIG. 7C is an enlarged view of a part of FIG. 7A.
- FIG. 7D is an enlarged view of a part of FIG. 7A.
- FIG. 8A is a diagram for explaining the cause of the occurrence of a shading pattern in the second captured image.
- FIG. 8A is a diagram for explaining the cause of the occurrence of a shading pattern in the second captured image.
- FIG. 8B is a diagram for explaining a cause of occurrence of a shading pattern in the second captured image.
- FIG. 9 is a diagram for explaining a method of calculating the inter-pixel density deviation.
- FIG. 10 is a diagram in which the gravity center position of the focus measure is overwritten on the second captured image.
- FIG. 11 is a diagram illustrating an example of a combined outer shape of the first outer shape and the second outer shape.
- FIG. 12 is a diagram showing the result of measuring the screw shape by the measurement method of this example and the contact-type measurement method.
- 13A is an enlarged view of the vicinity of the hook-shaped flank surface P3h in the measurement result shown in FIG.
- FIG. 13B is an enlarged view of the vicinity of the hook-shaped flank surface P3h in the measurement result shown in FIG.
- FIG. 14 is a diagram illustrating measurement results of portions corresponding to the screw bottom end portion P4 and the screw thread end portion of the measurement results illustrated in FIG.
- FIG. 2A and 2B are diagrams schematically illustrating a schematic configuration of a screw-shaped measuring apparatus according to the present embodiment.
- FIG. 2A is a front view seen from the axial direction (X direction) of the screw shaft A.
- FIG. 2B is a side view as seen from a direction (Y direction) perpendicular to the screw axis A and including a cross section (horizontal plane in the present embodiment) M including the screw axis A.
- 2B shows the optical system located on the right side of FIG. 2A.
- the thread-shaped measuring device 100 is a device that measures the thread shape of the threaded portion formed at the end of the threaded tube P.
- the screw-shaped measuring apparatus 100 includes a first illumination unit 1, a second illumination unit 2, an imaging unit 3, and a calculation unit 4.
- the 1st illumination part 1, the 2nd illumination part 2, and the image pick-up part 3 are attached to the beam 5 extended in an up-down direction (Z direction) so that movement is possible integrally in the up-down direction.
- the first lighting unit 1 and the second lighting unit 2 are configured by the lighting unit 200.
- the illumination unit 200 can be switched between the function as the first illumination unit 1 and the function as the second illumination unit 2 by changing the position and inclination of the members constituting the illumination unit 200.
- the measuring apparatus 100 of the present embodiment has the same optical system (the first illumination unit 1 and the second illumination). Two sets of unit 2 and imaging unit 3) are provided.
- FIGS. 2A and 2B only a part of the screw shape (part of the thread P1 and part of the thread groove P2) is illustrated. Moreover, in FIG. 2B, the part which is not giving the hatching of the threaded pipe P is the edge part of the threaded pipe P.
- FIG. A threaded portion, a beveled portion, and a lip portion are formed at the end of the threaded tube P (see FIG. 1A).
- the threaded tube P is fixed by a chuck (not shown) or the like when the thread shape is measured by the thread-shaped measuring device 100.
- the first illumination unit 1 has an optical axis in a direction (Z direction) orthogonal to the cross section M including the screw axis A of the threaded tube P, and emits parallel light L1 (solid arrow shown in FIG. 2B). Illuminate the end of the threaded tube P.
- the second illumination unit 2 has an optical axis in a direction that forms an angle ⁇ larger than the lead angle ⁇ of the screw portion with respect to a direction orthogonal to the cross section M (Z direction), and the parallel light L2 (the broken line shown in FIG. 2B).
- the arrow is emitted to illuminate the end of the threaded tube P. Since the parallel light L2 is reflected by the flank surface P3 and the regular reflection component of the reflected light needs to be detected and imaged by the imaging unit 3, the angle ⁇ is preferably set to about 2 ⁇ .
- the lead angle ⁇ varies depending on the type of screw (hereinafter, the maximum lead angle is ⁇ max and the minimum lead angle is ⁇ min ).
- 2 ( ⁇ max ⁇ min ) is not so large, and therefore, the parallel light L2 having the same extent as 2 ( ⁇ max ⁇ min ) from the second illumination unit 2 is converted into the angle ⁇ of the optical axis ⁇
- the light may be emitted by setting ( ⁇ max + ⁇ min ).
- the angle ⁇ of the optical axis of the second illuminating unit 2 can be set to ⁇ ⁇ 4 ° by taking into account equipment limitations, bending of the threaded tube P, etc. preferable.
- angle ⁇ is on the same side as the lead angle ⁇ with respect to the Z direction (counterclockwise in the example shown in FIG. 2B) when viewed from the direction (Y direction) perpendicular to the screw axis A and parallel to the cross section M. Is an angle.
- FIGS. 3A, 3B, 3C, and 3D illustration of the threaded pipe
- FIG. 3A is a side view schematically showing the illumination unit 200A according to the first configuration example.
- the illumination unit 200 ⁇ / b> A includes a light source 11 and a gonio stage 12.
- the light source 11 for example, LED illumination with a lens, a halogen lamp with a lens, a laser, or the like is used.
- the light source 11 is not limited as long as it emits parallel light.
- the gonio stage 12 is driven so as to rotate the optical axis of the light source 11 around the axis in the Y direction.
- the light source 11 in the state shown by the solid line in FIG.
- the illumination unit 200A in the state indicated by the solid line functions as the first illumination unit 1A.
- the light source 11 in the state indicated by the broken line in FIG. 3A has an optical axis in a direction that forms an angle ⁇ with respect to the direction orthogonal to the cross section M (Z direction), and is parallel light L2 (in FIG. 3A, the optical axis of the parallel light L2). Only the end of the threaded tube P is illuminated. That is, the illumination unit 200A in the state indicated by the broken line functions as the second illumination unit 2A.
- FIG. 3B is a side view schematically showing the illumination unit 200B according to the second configuration example.
- the illumination unit 200B includes two LEDs 13a and 13b and a lens 14.
- One LED 13 a is disposed on the optical axis of the lens 14, and the other LED 13 b is disposed at a position deviating from the optical axis of the lens 14 in the X direction.
- the distance in the Z direction between the LEDs 13 a and 13 b and the lens 14 is substantially equal to the focal length of the lens 14.
- the light emitted from the LED 13a is converted into parallel light L1 (only the optical axis of the parallel light L1 is shown in FIG.
- the lens 14 controls the direction orthogonal to the cross section M including the screw axis A of the threaded tube P (Z direction).
- the end of the threaded tube P is illuminated. That is, the combination of the LED 13a and the lens 14 functions as the first illumination unit 1B.
- the light emitted from the LED 13b becomes parallel light L2 (only the optical axis of the parallel light L2 is shown in FIG. 3B) by the lens 14, and is screwed from a direction that forms an angle ⁇ with respect to a direction orthogonal to the cross section M (Z direction).
- the end of the attached tube P is illuminated. That is, the combination of the LED 13b and the lens 14 functions as the second illumination unit 2B.
- FIG. 3C is a side view schematically showing an illumination unit 200C according to the third configuration example.
- the illumination unit 200 ⁇ / b> C includes a light source 11 and a diffusion plate 15.
- the light source 11 is arranged such that its optical axis is in a direction that forms an angle ⁇ with respect to a direction (Z direction) perpendicular to the cross section M including the screw axis A of the threaded tube P.
- the light source 11 can use the light source similar to the light source 11 demonstrated in FIG. 3A.
- the diffusing plate 15 has one end attached to a rotating shaft 16 provided on the beam 5 and is rotatable around the rotating shaft 16 (around the Y-direction axis).
- the diffuser plate 15 is irradiated with parallel light emitted from the light source 11 (a position indicated by a solid line in FIG. 3C) and is not irradiated with parallel light emitted from the light source 11 (a position indicated by a broken line in FIG. 3C). And can be rotated between.
- FIG. 3C when the diffusion plate 15 is in a state indicated by a solid line, the parallel light L2 emitted from the light source 11 (only the optical axis of the parallel light L2 is shown in FIG. 3C) is applied to the diffusion plate 15.
- a component of the parallel light L1 (only the optical axis of the parallel light L1 is shown in FIG. 3C) having an optical axis in the direction orthogonal to the cross section M (Z direction) is generated in the diffused light, and this component causes the screwing.
- FIG. 3C when the diffusion plate 15 is in a state indicated by a solid line, the parallel light L2 emitted from the light source 11 (only the optical axis of the parallel light L2 is shown in FIG. 3C) is applied to the diffusion plate 15.
- a component of the parallel light L1 (only the optical
- the diffusion plate 15 when the diffusion plate 15 is in a state indicated by a broken line, the parallel light L2 emitted from the light source 11 goes straight without being irradiated to the diffusion plate 15. Therefore, the light source 11 illuminates the end portion of the threaded tube P with the parallel light L2 from the direction that forms an angle ⁇ with respect to the direction orthogonal to the cross section M (Z direction). That is, the combination of the diffusion plate 15 and the light source 11 in the state indicated by the broken line functions as the second illumination unit 2C.
- a glass plate having a wedge may be used instead of the diffusion plate 15 included in the illumination unit 200C.
- the wedge angle (angle formed by the front surface and the back surface) of the glass plate is set to an angle ⁇ , the parallel light L2 is refracted when the parallel light L2 emitted from the light source 11 is irradiated on the front surface or the back surface of the glass plate. Thus, the parallel light L1 is obtained.
- FIG. 3D is a side view schematically showing an illumination unit 200D according to the fourth configuration example.
- the illumination unit 200 ⁇ / b> D includes the light source 11 and the rotation member 17.
- the light source 11 is attached to the rotating member 17.
- the light source 11 can use the light source similar to the light source 11 demonstrated in FIG. 3A.
- One end of the rotation member 17 is attached to a rotation shaft 18 provided on the beam 5, and the rotation member 17 can rotate about the rotation shaft 18 (around the Y direction axis). By rotating the rotation member 17, the optical axis of the light source 11 rotates about the axis in the Y direction.
- the light source 11 in the state shown by the solid line in FIG.
- the illumination unit 200D in the state indicated by the solid line functions as the first illumination unit 1D.
- the light source 11 in a state indicated by a broken line in FIG. 3D has an optical axis in a direction that forms an angle ⁇ with respect to a direction orthogonal to the cross section M (Z direction), and the parallel light L2 (the optical axis of the parallel light L2 in FIG. 3D). Only the end of the threaded tube P is illuminated. That is, the illumination unit 200D in the state indicated by the broken line functions as the second illumination unit 2D.
- the first illumination unit 1 (1A to 1D) and the second illumination unit 2 (2A to 2D) of the illumination unit 200 are perpendicular to the optical axes of the parallel light L1 and the parallel light L2 emitted from the second illumination unit 2 (2A to 2D), respectively.
- the cross section is an area sufficiently wider than the range (that is, the imaging field of view) that the imaging unit 3 detects and images.
- the imaging unit 3 detects and images light that has passed through the parallel light L1 emitted from the first illumination unit 1 or the parallel light L2 emitted from the second illumination unit 2 without being blocked by the screw portion.
- the imaging unit 3 includes an imaging main body 31 and a telecentric lens 32 attached to the imaging main body 31.
- the imaging main body 31 includes an imaging element such as a CCD or CMOS that is two-dimensionally arranged. Further, the imaging unit 3 includes the telecentric lens 32 so that the parallel light component can be easily received by the imaging element of the imaging main body unit 31.
- the imaging unit 3 has a visual axis (that is, a visual axis in the Z direction) parallel to the optical axis of the first illumination unit 1. That is, in the imaging unit 3, the light receiving surface (the imaging surface of the imaging device) that receives light from the first illumination unit 1 is orthogonal to the optical axis of the first illumination unit 1. Since the imaging unit 3 includes the telecentric lens 32, the angle of view near the object surface is 0 ° and the magnification is constant, which is suitable for dimension measurement. In addition, the fact that the visual axis is in the Z direction has an advantage that the resolution when the so-called subpixel processing is applied to the captured image used for calculating the first outline by the light projection method can be suppressed and the resolution can be increased. .
- the cross section M including the screw axis A of the threaded tube P coincides with the in-focus position.
- the imaging unit 3 is movable in the vertical direction (Z direction) with respect to the beam 5 (movable integrally with the illumination unit 200), and the in-focus position of the imaging unit 3 Is adjusted so that its vertical direction matches the cross section M.
- the computing unit 4 computes the screw shape of the threaded portion formed at the end of the threaded tube P based on the captured image captured by the imaging unit 3.
- the calculation unit 4 is configured by a part of the calculation processing device 40 such as a personal computer.
- FIG. 4 is a diagram illustrating an example of the configuration of the arithmetic processing device 40.
- the arithmetic processing device 40 includes a calculation unit 4, an operation unit 41, a display unit 42, a storage unit 43, a communication unit 44, and the like.
- the calculation unit 4 is at least one processor (including a circuit). In the calculation unit 4, the function of the calculation unit 4 is realized by the processor executing the program stored in the storage unit 43.
- the calculation unit 4 includes a first captured image acquisition unit 45, a second captured image acquisition unit 46, a first outer shape calculation unit 47, a second outer shape calculation unit 48, a screw shape calculation unit 49, and an estimation unit 50.
- the calculation unit 4 controls the operation unit 41, the display unit 42, the storage unit 43, and the communication unit 44.
- the first captured image acquisition unit 45 acquires a first captured image to be described later from the imaging unit 3 via the communication unit 44.
- the second captured image acquisition unit 46 acquires a second captured image described later from the imaging unit 3 via the communication unit 44.
- the first outer shape calculation unit 47 calculates a screw-shaped first outer shape based on the first captured image acquired by the first captured image acquisition unit 45.
- the second outer shape calculation unit 48 calculates a screw-shaped second outer shape based on the second captured image acquired by the second captured image acquisition unit 46.
- the screw shape calculation unit 49 calculates a screw shape based on the first outer shape calculated by the first outer shape calculation unit 47 and the second outer shape calculated by the second outer shape calculation unit 48.
- the estimation unit 50 estimates a range where the second outer shape is located in the second captured image.
- the operation unit 41 is used by the measurer to input an instruction to the calculation unit 4 and the like, and is, for example, a keyboard, a mouse, a touch panel, or the like.
- the display unit 42 displays various types of information, such as a liquid crystal display or an organic EL display.
- the storage unit 43 stores various types of information, such as a RAM, a ROM, and a hard disk drive.
- the storage unit 43 stores at least a program for executing a calculation process (first outer shape calculation step S5, second outer shape calculation step S6, and screw shape calculation step S7) described later.
- the communication unit 44 is for communicating with the imaging unit 3 and an external device.
- FIG. 5 is a flowchart showing a schematic process of the thread shape measuring method according to the present embodiment.
- the screw shape measuring method according to this embodiment includes a first illumination step S1, a first imaging step S2, a second illumination step S3, a second imaging step S4, a first outer shape calculation step S5, and a second.
- An outer shape calculation step S6 and a screw shape calculation step S7 are included. Each process will be described in turn.
- the first illumination unit 1 of the illumination unit 200 illuminates the end of the threaded tube P.
- the measurer turns on the LED 13a (LED 13b is turned off) in order to cause the illumination unit 200B to function as the first illumination unit 1B. Accordingly, the parallel light L1 of the LED 13a illuminates the end of the threaded tube P via the lens 14.
- First imaging step S2 In the first imaging step S2, the imaging unit 3 detects and images light that has passed through the parallel light L1 emitted from the first illumination unit 1 without being blocked by the screw portion.
- the captured image captured in the first imaging step S2 is referred to as a first captured image.
- the first captured image corresponds to a captured image obtained by a conventional light projection method.
- the imaging unit 3 may capture an image according to an imaging instruction from a measurer, or may automatically capture an image according to a detected light amount.
- the imaging unit 3 transmits the captured first captured image to the calculation unit 4.
- FIGS. 6A and 6B are diagrams illustrating an example of the first captured image captured in the first imaging step S2.
- FIG. 6A is a diagram illustrating the entire first captured image.
- FIG. 6B is an enlarged view of the vicinity of the flank surface P3 (hook-like flank surface P3h).
- the pixel area blocked by the screw portion is dark, and the pixel area not blocked is bright.
- the pixel region corresponding to the top surface P11 of the screw thread P1 and the bottom surface P21 of the thread groove P2 in the first captured image has high contrast.
- the calculation unit 4 performs image processing such as binarization on the first captured image, thereby calculating the outer shape of the top surface P11 of the screw thread P1 and the bottom surface P21 of the screw groove P2. Is possible.
- the pixel region corresponding to the flank surface P3 in the first captured image has a low contrast because the flank surface P3 is hidden by the shadow of the ridgeline of the thread P1.
- the outer shape of the flank surface P3 cannot be calculated even if image processing such as binarization is performed on the first captured image.
- the outer shape cannot be calculated for the end P4 of the screw bottom.
- the second illumination unit 2 of the illumination unit 200 illuminates the end of the threaded tube P.
- the measurer turns on the LED 13b (the LED 13a is turned off) so that the illumination unit 200B functions as the second illumination unit 2B. Therefore, the parallel light L2 of the LED 13b illuminates the end of the threaded tube P via the lens 14.
- the imaging unit 3 detects and images the light that has passed through the parallel light L2 emitted from the second illumination unit 2 without being blocked by the screw portion. At this time, the imaging unit 3 captures an image while maintaining the imaging conditions in the first imaging step S2, that is, with the position of the imaging unit 3 maintained.
- the captured image captured in the second imaging step S4 is referred to as a second captured image.
- the imaging unit 3 may capture an image according to an imaging instruction from a measurer, or may automatically capture an image according to a detected light amount.
- the imaging unit 3 transmits the captured second captured image to the calculation unit 4.
- FIG. 7A to 7D are diagrams illustrating an example of the second captured image captured in the second imaging step S4.
- FIG. 7A is an enlarged view of the vicinity of the flank surface P3 (hook-like flank surface P3h) in the second captured image.
- FIG. 7B is an enlarged view in which the flank surface (hook-like flank surface P3h) is further enlarged in the enlarged view shown in FIG. 7A.
- FIG. 7C is an enlarged view in which the screw bottom end portion P4 is further enlarged in the enlarged view shown in FIG. 7A.
- FIG. 7D is an enlarged view in which the end portion of the screw thread (a portion where the flank surface P3 and the top surface P11 of the screw thread P1 intersect) is further enlarged in the enlarged view shown in FIG. 7A.
- the second captured image has a shading pattern such as an interference fringe in the pixel region corresponding to the flank surface P3 and the end portion P4 of the screw bottom (further, the end portion of the screw thread). 7A) (see an area surrounded by a broken line D shown in FIG. 7A).
- the calculation unit 4 performs image processing to calculate the focus measure of the pixels constituting the second captured image, as will be described later, and the calculated focus measure. Based on the above, it is possible to calculate the outer shape of the flank surface P3 and the end portion P4 of the screw bottom.
- FIGS. 8A and 8B are diagrams (views seen from the Y direction) that schematically explain the cause of the occurrence of a shading pattern such as an interference fringe in the second captured image.
- the parallel light L2 emitted from the second illumination unit 2 the parallel light L21 and the parallel light L22 (and the parallel light existing therebetween) are flank surfaces P3 (hook-like flank surfaces).
- the second illumination unit 2 has an optical axis in a direction that forms an angle ⁇ larger than the lead angle ⁇ of the screw portion with respect to the Z direction, the parallel light L21 and the parallel light L22 are flank P3. Will be reflected by the flank surface P3. 8A and 8B, the lead angle ⁇ and the angle ⁇ are shown larger than the actual angles for convenience of explanation.
- the flank surface P3 is a straight line when viewed from the Y direction
- the length of the line segment AB in the optical path of the parallel light L21 and the length of the line segment CD in the optical path of the parallel light L22 there is no optical path difference between the parallel light L21 and the parallel light L22.
- the optical path difference does not occur for the parallel light L2 (parallel light applied to the line segment BC of the flank surface P3) existing between the parallel light L21 and the parallel light L22.
- the optical path difference does not occur for the parallel light L2 (parallel light imaged on an image sensor other than the image sensor 3a) irradiated to a portion other than the line segment BC of the flank surface P3. Therefore, in the case shown in FIG. 8A, in the second captured image, a shading pattern such as an interference fringe does not occur in the pixel region corresponding to the flank surface P3.
- the actual flank surface P3 becomes a gentle curve when viewed from the Y direction as shown in FIG. 8B due to the influence of the angle ⁇ and the lead angle ⁇ .
- the length of the line segment AB in the optical path of the parallel light L21 is different from the sum of the length of the line segment CC ′ and the length of the line segment C′D ′ in the optical path of the parallel light L22.
- An optical path difference occurs between L21 and parallel light L22. This optical path difference is similarly generated for the parallel light L2 existing between the parallel light L21 and the parallel light L22 (parallel light irradiated on the curve BC 'of the flank surface P3).
- an optical path difference also occurs for the parallel light L2 (parallel light imaged on an image pickup device other than the image pickup device 3a) irradiated to a portion other than the curve BC 'of the flank surface P3. Since the generated optical path difference is not constant, in the case of the actual flank plane P3 shown in FIG. 8B, in the second captured image, when a shading pattern such as an interference fringe occurs in the pixel area corresponding to the flank plane P3. Conceivable.
- the first outer shape calculation step S5 to the screw shape calculation step S7 will be described. These steps are realized by the calculation unit 4 executing a program stored in the storage unit 43.
- the computing unit 4 starts executing the program in response to an instruction to start measurement by the measurer.
- the first captured image acquisition unit 45 of the calculation unit 4 acquires the first captured image captured by the imaging unit 3 in the first imaging step S2 from the imaging unit 3 via the communication unit 44.
- the first captured image acquisition unit 45 processes a captured image that is first acquired from the start of measurement (start of execution of the program) as the first captured image.
- the first outer shape calculation unit 47 of the calculation unit 4 performs image processing on the first captured image, whereby a first outer shape that is a partial outer shape of the screw portion along the axial direction of the screw shaft A in the cross section M. Is calculated.
- the first outer shape calculation unit 47 binarizes the first captured image with a predetermined threshold value so as to extract a bright pixel region (a pixel region that is not blocked by the screw portion) or dark.
- Image processing for extracting a pixel region (a pixel region blocked by the screw portion) is performed, and the first outer shape is calculated by detecting an edge of the extracted pixel region.
- the extraction of the pixel area is not limited to the case of actually extracting the pixel area, but includes the process of dividing the pixel area from the first captured image.
- the first outer shape includes the top surface P11 of the screw thread P1 and the bottom surface P21 of the screw groove P2, but does not include the flank surface P3 and the end portion P4 of the screw bottom.
- the first outer shape calculation unit 47 stores the calculated first outer shape in the storage unit 43 in association with the identification information indicating the first outer shape.
- the first outer shape calculation unit 47 may display the first captured image and the calculated first outer shape on the display unit 42 so that the measurer can confirm.
- the second captured image acquisition unit 46 of the calculation unit 4 acquires the second captured image captured by the imaging unit 3 in the second imaging step S4 from the imaging unit 3 via the communication unit 44. .
- the second captured image acquisition unit 46 processes the captured image acquired second from the start of measurement (start of execution of the program) as the second captured image.
- the second outer shape calculation unit 48 of the calculation unit 4 performs image processing on the second captured image, whereby a second outer shape that is a partial outer shape of the screw portion along the axial direction of the screw shaft A in the cross section M. Is calculated.
- the second outer shape calculation unit 48 calculates the focus measure of the pixels constituting the second captured image, and calculates the second outer shape based on the calculated focus measure. More specifically, the second outer shape calculation unit 48 calculates the second outer shape based on the calculated gravity center positions in the X direction and the Y direction of the focus measure.
- the second outer shape includes the flank surface P3 and the end portion P4 of the screw bottom.
- the second outer shape calculation unit 48 stores the calculated second outer shape in the storage unit 43 in association with the identification information indicating the second outer shape.
- the second outer shape calculation unit 48 may display the second captured image and the calculated second outer shape on the display unit 42 so that the measurer can confirm.
- the focus measure for example, contrast or density deviation between surrounding pixels can be used.
- a density deviation between surrounding pixels hereinafter referred to as “inter-pixel density deviation”
- the density means a pixel value.
- the second outer shape calculation unit 48 calculates a pixel having a high inter-pixel density deviation among the pixels constituting the second captured image as the second outer shape.
- the density of each pixel constituting the second captured image is I (x, y), and the inter-pixel density deviation of each pixel is ML (x, y).
- the inter-pixel density deviation ML (x, y) is expressed by the following formula (1) using, for example, the density of each pixel and the density of the four neighboring pixels.
- x means the X coordinate of each pixel in the 2nd captured image (refer FIG. 7A) represented on XY plane.
- y means the Y coordinate of each pixel in the second captured image represented on the XY plane. Note that (x, y) may be considered as a vector representing the position on the two-dimensional plane in a two-dimensional imaging element such as a CCD or CMOS used as the imaging element of the imaging unit 3.
- the inter-pixel density deviation ML (x, y) is expressed by the following equation (2) using the density of each pixel and the density of the eight neighboring pixels.
- FIG. 9 is a diagram for explaining a method of calculating the inter-pixel density deviation ML (x, y).
- the inter-pixel density deviation ML (x, y) of the center pixel of 5 ⁇ 5 pixels is calculated.
- the density I (x, y) of the center pixel and the four pixels 60a to 60p are calculated. Based on the density of 60d and the densities of the four pixels 70a to 70d, the inter-pixel density deviation ML (x, y) is calculated.
- the inter-pixel density deviation ML (x, y) may be calculated for all the pixels constituting the second captured image, but corresponds to the flank surface P3 and the screw bottom end portion P4 in the second captured image. You may calculate only about the pixel in the position and range of a pixel area.
- the estimation unit 50 of the calculation unit 4 is a range in which the second outer shape is located from the first captured image acquired by the first captured image acquisition unit 45 or the first outer shape calculated by the first outer shape calculation unit 47. Specifically, the range of the pixel region including the flank surface P3 and the screw bottom end portion P4 is estimated.
- the estimation unit 50 includes the first outer shape, the imaginary line connecting the end of the top surface P11 of the thread P1 and the end of the bottom surface P21 of the screw groove P2, and the opposite side of the tube end surface in the x direction.
- a range separated by a predetermined distance on each side is estimated as the range of the pixel region including the flank surface P3 and the end portion P4 of the screw bottom.
- the predetermined distance for example, a distance of 1/8 to 1/16 of the interval in the X direction at which the end of the thread of the first outer shape on the tube end face side can be used.
- the estimation unit 50 reads the design drawing data of the screw portion stored in the storage unit 43 and estimates the range of the pixel region including the flank surface P3 and the end portion P4 of the screw bottom based on the setting drawing data. Good. For example, the estimation unit 50 translates the drawing data relative to the first captured image so that the drawing data and the first outer shape substantially coincide with each other. Next, the estimation unit 50 selects a region of the first captured image corresponding to a peripheral region including a flank surface and a screw bottom end on the screen data as a pixel including the flank surface P3 and a screw bottom end P4. Estimate as the range of the region.
- the second outer shape calculation unit 48 can increase the processing speed by calculating the inter-pixel density deviation ML (x, y) only for the pixels within the range of the pixel region estimated by the estimation unit 50.
- the second outer shape calculation unit 48 After calculating the inter-pixel density deviation ML (x, y) of all the pixels (or within the estimated pixel area), the second outer shape calculation unit 48, for example, around each pixel (2N + 1) ⁇ (2M + 1) An average value FM (x, y) of the inter-pixel density deviation ML (x, y) of each pixel is calculated.
- the average value FM (x, y) of the inter-pixel density deviation can be used as a focus measure for each pixel.
- the second outer shape calculation unit 48 may change the values of N and M in accordance with the image. The N and M values obtained by searching for the values of N and M for which a focus measure equal to or greater than a predetermined value is calculated.
- the second outer shape calculation unit 48 (I max A value represented by ⁇ I min ) / (I max + I min ) or I max / I min may be used to calculate the focus measure. Further, the second outer shape calculation unit 48 focuses the value obtained by dividing the inter-pixel density deviation ML (x, y) represented by the expression (1) by the average value of the density of each pixel and the density of the four neighboring pixels. You may use for calculation of a measure.
- the second outer shape calculation unit 48 focuses the value obtained by dividing the inter-pixel density deviation ML (x, y) represented by the equation (2) by the average value of the density of each pixel and the density of the eight neighboring pixels. You may use for calculation of a measure.
- the second outer shape calculation unit 48 calculates the centroid position as the second outer shape by calculating the centroid position in the X direction and the centroid position in the Y direction of the focus measure FM (x, y), for example. be able to.
- the center-of-gravity position Xg in the X direction is represented by the following expression (3)
- the center-of-gravity position Yg in the Y direction is represented by the following expression (4).
- equation (3) or equation (4) can be used.
- the second outer shape calculation unit 48 determines the pixel reference and calculation range in the X direction at a specific Y coordinate.
- a pixel having a maximum focus measure among pixels in the X direction is defined as a reference, and a predetermined range (for example, ⁇ 20 pixels) along the X direction from the reference pixel is set as a calculation range.
- the second outer shape calculation unit 48 calculates the center-of-gravity position Xg in the X direction within the calculation range using Expression (3).
- the second outer shape calculation unit 48 similarly repeats the process of calculating the center-of-gravity position Xg in the X direction, and calculates the calculated center-of-gravity position Xg. By connecting, the second outer shape is calculated.
- the second outer shape calculation unit 48 determines the reference and calculation range of the pixel in the Y direction at a specific X coordinate. For example, a pixel having a maximum focus measure among pixels in the Y direction is determined as a reference, and a predetermined range (for example, ⁇ 30 pixels) from the reference pixel along the Y direction is set as a calculation range. Next, the second outer shape calculation unit 48 calculates the center-of-gravity position Yg in the Y direction within the calculation range using Expression (4).
- the second outer shape calculation unit 48 similarly repeats the process of calculating the Y-direction center of gravity position Yg, and calculates the calculated center of gravity position Yg. By connecting, the second outer shape is calculated.
- FIG. 10 is a diagram in which the position of the center of gravity of the calculated focus measure FM (x, y) is overwritten on the second captured image shown in FIG. 7A described above.
- the outer shape of the flank surface P3 and the end portion P4 of the screw bottom can be calculated with high accuracy.
- the method of calculating the second outer shape is not limited to the method described above.
- the second outer shape calculation unit 48 calculates a focus measure distribution having the horizontal axis as the pixel direction axis and the vertical axis as the focus measure.
- the second outer shape calculation unit 48 may obtain an approximate curve (upward convex curve) of the focus measure distribution, and may employ the apex of the approximate curve as a point constituting the second outer shape ( So-called sub-pixel processing).
- the screw shape calculation unit 49 of the calculation unit 4 is based on the first outer shape calculated in the first outer shape calculation step S5 and the second outer shape calculated in the second outer shape calculation step S6. Calculate the screw shape of. Specifically, the screw shape calculation unit 49 is based on the first outer shape, and the phase of the screw thread P1 corresponding to the position of the screw thread P1 in the axial direction of the screw shaft A, and the predetermined axial direction of the screw shaft A from the pipe end surface.
- the screw diameter that is the outer diameter of the screw thread P1 at the position, the diameter of the bottom surface P21 of the screw groove P2 along the axial direction of the screw shaft A, the taper that is a change in the diameter, and the like can be calculated.
- the screw shape calculation unit 49 can calculate the angle of the flank surface P3 and the radius of curvature of the end portion P4 of the screw bottom based on the second outer shape. In this way, the screw shape calculation unit 49 calculates the screw shape of the screw portion, whereby the screw shape is measured.
- the screw shape calculation unit 49 may display each measurement value of the screw part on the display unit 42 or may store it in the storage unit 43.
- the screw shape calculation unit 49 can calculate a combined outer shape obtained by combining the first outer shape and the second outer shape as shown in FIG.
- An outer shape indicated by a solid line in FIG. 11 is a first outer shape
- an outer shape indicated by a broken line in FIG. 11 is a second outer shape. Since the first captured image used to calculate the first outline and the second captured image used to calculate the second outline are captured using the common imaging unit 3, the first outline is used.
- the second outer shape can be easily synthesized.
- the screw shape calculation unit 49 can calculate the thread width and the thread valley width based on the calculated composite outer shape.
- the screw shape calculation unit 49 may display the calculated composite outer shape on the display unit 42 or store it in the storage unit 43. At this time, as shown in FIG. 11, the screw shape calculation unit 49 displays the first outer shape and the second outer shape in a distinguishable manner by changing the line type, the thickness of the line, the color of the line, or the like, for example. It is preferable.
- the screw shape measuring apparatus 100 and the measuring method according to the present embodiment the screw shape that can be measured by the conventional light projection method using the first captured image is changed to the conventional one using the second captured image. It is possible to measure a screw shape, which is difficult to measure with an optical projection method, a method using a contact probe, and a laser displacement meter of a triangulation system.
- FIG. 12 shows a screw shape measurement method and a contact-type screw shape measurement method according to the present embodiment. In the thread portion of the same threaded tube, about two cycles from the screw thread P1 to the screw groove P2. It is a figure which shows the result of having measured.
- FIG. 12 shows a screw shape measurement method and a contact-type screw shape measurement method according to the present embodiment. In the thread portion of the same threaded tube, about two cycles from the screw thread P1 to the screw groove P2. It is a figure which shows the result of having measured.
- the result measured by the screw shape measuring method according to the present embodiment is a thick line, and measured by the contact-type screw shape measuring method (hereinafter referred to as “contact type” as appropriate).
- the results are shown by thin lines. The same applies to FIGS. 13A, 13B, and 14 described later.
- FIG. 12 the measurement results according to the example and the contact-type measurement results almost overlap.
- FIG. 13A and 13B are enlarged views of the vicinity of the hook-shaped flank P3h in the measurement results shown in FIG.
- FIG. 13A is an enlarged view of the vicinity of the hook-shaped flank surface P3h.
- FIG. 13B is a diagram illustrating a result of extracting a measurement result of a portion corresponding to the hook-shaped flank surface P3h for the measurement result according to the example among the measurement results illustrated in FIG. 13A.
- the measurement result by the example shown in FIG. 13A is a straight line in the substantially X direction from the measurement result of the top surface P11 of the screw thread P1 and the bottom surface P21 of the screw groove P2 among the measurement result by the example shown in FIG.
- the parts corresponding to these approximate straight lines are excluded from the measurement results of the embodiment shown in FIG.
- the measurement result by the embodiment shown in FIG. 13B is a circle approximation of the end portion P4 of the screw bottom and the end portion of the screw thread among the measurement results by the embodiment shown in FIG. 13A, and is shown in FIG. 13A.
- the portions corresponding to these approximate circles are excluded from the measurement results of the examples.
- the hook-shaped flank surface P3h according to the embodiment extracted as shown in FIG. 13B is linearly approximated, the hook-shaped flank surface P3h according to the contact formula extracted in the same manner is linearly approximated, and an approximate straight line of these hook-shaped flank surfaces P3h is obtained.
- the inclination (angle formed with the approximate straight line of the bottom surface P21 of the thread groove P2) was compared between the measurement result by the example and the measurement result by the contact type.
- the inclination of the approximate straight line of the hook-like flank surface P3h according to the embodiment shown on the left side of FIG. 12 is 84.71 ° (standard deviation is 0.024 °) as an average value measured continuously four times, and is determined by the contact type.
- the inclination of the approximate straight line of the hook-shaped flank surface P3h was 84.44 °. The deviation between the two was ⁇ 0.27 °.
- the inclination of the approximate straight line of the hook-shaped flank surface P3h according to the embodiment shown on the right side of FIG. 12 (average value measured continuously four times) and the inclination of the approximate straight line of the hook-shaped flank surface P3h according to the contact formula The deviation was 0.15 °.
- the standard deviation of the four measurements was 0.018 °. That is, the measurement result of the hook-shaped flank surface P3h according to the example and the measurement result of the hook-shaped flank surface P3h by the contact type were in good agreement.
- FIG. 14 is a diagram illustrating a result of extracting measurement results of portions corresponding to the end portion P4 of the screw bottom and the end portion of the screw thread from the measurement results illustrated in FIG.
- the radius of curvature of the approximate circle of the end portion P4 of the screw bottom according to the example shown on the left side of FIG. 14 is 0.327 mm (standard deviation is 0.00096 mm) as an average value measured four times continuously, and according to the contact formula.
- the radius of curvature of the approximate circle at the end P4 of the screw bottom was 0.362 mm. The deviation between them was 0.035 mm.
- the present invention can be used when measuring the thread shape of the thread portion.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
管の端部に形成されたねじ部の寸法精度が低いと、継手との締結状態が緩み、管同士の連結が解除されて脱落したり、管内部に流れる流体が外部に漏洩したりするおそれがある。特に、油井管の場合には、近年の油井環境の過酷化に伴い、ねじ部の寸法精度や品質保証レベルに対する要求が年々厳格化している。
図1Aに示すように、油井管Pの端部は、ねじ山P1及びねじ溝P2が設けられたねじ部と、ねじ部に隣接してねじ部よりも管端面側に設けられたベベル部と、ベベル部に隣接してベベル部よりも管端面側に設けられたシール等を含むリップ部とから構成されている。
近年、油井管Pは、ねじ部の各ねじ山P1を区画する一対のフランク面P3(ねじ山P1の頂面P11とねじ溝P2の底面P21との間にある面)のうち、例えば、管端面側と反対側に位置するフランク面P3が、ねじ山P1の頂面P11からねじ溝P2の底面P21に向かうに従って管端面側に近づくように傾斜しているものが用いられている。また、逆に、管端面側に位置するフランク面P3が、ねじ山P1の頂面P11からねじ溝P2の底面P21に向かうに従って管端面と反対側に近づくように傾斜している油井管が用いられる場合もある。
このように、ねじ山P1の頂面P11からねじ溝P2の底面P21に向かうに従ってフランク面P3が位置する側とは反対側に近づくフランク面を適宜「フック状フランク面P3h」という。図1A、図1Bに示す油井管Pは、管端面側と反対側に位置するフランク面P3がフック状フランク面P3hである。
上記のような評価は多大な時間と手間を要する。したがって、油井管Pの検査は、全数を行うのは困難であり、同一製造ロットの最初と最後の油井管Pを検査するなどの抜き取り検査になってしまう。
また、許容範囲との比較によって合否判定しているに過ぎないため、ねじ形状の定量的な評価が困難である。
しかしながら、透過光を検出する光投影法では、フランク面P3がねじ山P1の稜線の影に隠れることで、フランク面P3を正確に検出できない場合がある。特に、フランク面P3がフック状フランク面P3hである場合には、光投影法では検出できない。また、フランク面P3とねじ溝P2の底面P21とが交差する部分に位置するねじ底の端部P4についても同様である。
しかしながら、接触プローブを順次移動させ、先端に取り付けられた球状の接触子をフランク面P3に接触させて測定を行うため、必然的に測定時間が長くなる。油井管Pの製造ラインで測定するためには測定時間を一定以下に短くする必要があるため、必然的に十分な測定点数が得られない。このため、測定装置を設置した雰囲気中に浮遊する粉塵等の微細なパーティクルが何れかの測定点に付着すると、少ない測定点数で直線近似したのでは誤差が大きくなり、フランク面P3の角度を精度良く測定できない場合がある。接触子にパーティクルが付着する場合も同様である。油井管Pのねじ部や接触プローブの接触子へのパーティクルの付着を抑制するには、測定装置を設置した雰囲気の浄化、ねじ部の洗浄、接触子の洗浄等が必要であり、場合によっては接触子の交換や校正も必要となるため、手間が掛かるという問題がある。また、接触子は繰り返し使用することで摩耗するため、摩耗に起因して測定精度が劣化する問題もある。
また、接触子の直径が0.1mm以上(特許文献4の段落0067)であるため、数百μm程度のねじ底の端部P4の曲率半径を測定することは困難である。
しかしながら、油井管等のねじ付き管の端部の表面は、切削加工後の金属面である。このため、ねじ付き管の端部の表面での反射光の正反射光成分が過度に強いと、レーザ変位計で反射光(散乱光成分)を十分に検出することができず、測定精度が低下したり、測定できなくなる場合もある。また、レーザ変位計が本来の測定箇所以外の箇所からの反射光(多重反射光)を検出することで、測定精度が低下する場合もある。したがって、レーザ変位計を用いたねじ形状測定方法では、安定した測定をすることが困難である。
その結果、本発明者らは、撮像部をそのままの状態にする一方、照明部の光軸をねじ部のリード角よりも傾けることで、フランク面やねじ底の端部に相当する画素領域に干渉縞のような濃淡模様が生じた撮像画像が得られることを見出した。本発明者らは、この撮像画像における濃淡模様が生じた画素領域を抽出することで、フランク面やねじ底の端部の形状を算出可能であることを見出した。
すなわち、前記課題を解決するため、本発明は、ねじ形状の測定装置であって、ねじ部のねじ軸を含む断面に直交する方向の光軸を有し、平行光を出射して前記ねじ部を照明する第1照明部と、前記断面に直交する方向に対して前記ねじ部のリード角より大きな角度を成す方向に光軸を有し、平行光を出射して前記ねじ部を照明する第2照明部と、前記第1照明部の光軸と平行な視軸を有し、テレセントリックレンズを具備し、且つ、前記断面がその合焦位置に合致し、前記第1照明部又は前記第2照明部から出射された平行光のうち、前記ねじ部に遮られずに通過した光を検出して撮像する撮像部と、前記撮像部によって撮像された撮像画像に基づき、前記ねじ部のねじ形状を演算する演算部と、を備え、前記演算部は、前記第1照明部から出射された平行光のうち、前記ねじ部に遮られずに通過した光を検出して撮像された第1撮像画像に画像処理を施すことで、前記断面における前記ねじ軸の軸方向に沿った、前記ねじ部の部分的な外形である第1外形を算出し、前記第2照明部から出射された平行光のうち、前記ねじ部に遮られずに通過した光を検出して撮像された第2撮像画像に画像処理を施すことで、前記断面における前記ねじ軸の軸方向に沿った、前記ねじ部の部分的な外形である第2外形を算出し、前記算出した第1外形及び第2外形に基づき、前記ねじ部のねじ形状を演算するねじ形状の測定装置を提供する。
また、本発明に係るねじ形状の測定装置が備える第1照明部及び第2照明部は、完全に別個の照明部とすることも可能であるが、これに限るものではない。例えば、第1照明部および第2照明部は、同じ照明部を構成する部材の位置や傾きを変更すること等により、第1照明部としての機能と、第2照明部としての機能を切り替える構成を採用してもよい。
例えば、第2撮像画像において、算出すべき第2外形(フランク面など)に略垂直な方向(この方向の軸を「画素方向軸」という)は、事前に算出した第1外形や設計図面によって、幾何学的に推定可能である。演算部は、横軸を画素方向軸とし、縦軸を合焦測度とする合焦測度分布を算出し、この合焦測度分布の近似曲線(上に凸の曲線)を求め、その近似曲線の頂点を第2外形を構成する点として採用することも可能である。これにより、画素分解能よりも高い分解能で、最も合焦測度の高い点から構成される第2外形が算出される。
(1)第1照明工程:ねじ部のねじ軸を含む断面に直交する方向の光軸を有し、平行光を出射する第1照明部によって、前記ねじ部を照明する。
(2)第1撮像工程:前記第1照明部の光軸と平行な視軸を有し、テレセントリックレンズを具備し、且つ、前記断面がその合焦位置に合致する撮像部によって、前記第1照明部から出射された平行光のうち、前記ねじ部に遮られずに通過した光を検出して撮像する。
(3)第2照明工程:前記断面に直交する方向に対して前記ねじ部のリード角より大きな角度を成す方向に光軸を有し、平行光を出射する第2照明部によって、前記ねじ部を照明する。
(4)第2撮像工程:前記撮像部によって、前記第2照明部から出射された平行光のうち、前記ねじ部に遮られずに通過した光を検出して撮像する。
(5)第1外形算出工程:前記第1撮像工程によって撮像された第1撮像画像に画像処理を施すことで、前記断面における前記ねじ軸の軸方向に沿った、前記ねじ部の部分的な外形である第1外形を算出する。
(6)第2外形算出工程:前記第2撮像工程によって撮像された第2撮像画像に画像処理を施すことで、前記断面における前記ねじ軸の軸方向に沿った、前記ねじ部の部分的な外形である第2外形を算出する。
(7)ねじ形状演算工程:前記第1外形算出工程によって算出された第1外形及び前記第2外形算出工程によって算出された第2外形に基づき、前記ねじ部のねじ形状を演算する。
例えば、第2照明工程及び第2撮像工程をこの順に実行した後に、第1照明工程及び第1撮像工程をこの順に実行することも可能である。また、第1照明工程、第1撮像工程及び第1外形算出工程をこの順に実行した後、第2照明工程、第2撮像工程及び第2外形算出工程をこの順に実行することも可能である。更に、第2照明工程、第2撮像工程及び第2外形算出工程をこの順に実行した後、第1照明工程、第1撮像工程及び第1外形算出工程をこの順に実行することも可能である。
図2Aおよび図2Bは、本実施形態に係るねじ形状の測定装置の概略構成を模式的に示す図である。図2Aは、ねじ軸Aの軸方向(X方向)から見た正面図である。図2Bは、ねじ軸Aに直交し、ねじ軸Aを含む断面(本実施形態では水平面)Mに平行な方向(Y方向)から見た側面図である。なお、図2Bは、図2Aの右側に位置する光学系が図示されている。
図2Aに示すように、本実施形態に係るねじ形状の測定装置100は、ねじ付き管Pの端部に形成されたねじ部のねじ形状を測定する装置である。ねじ形状の測定装置100は、第1照明部1と、第2照明部2と、撮像部3と、演算部4と、を備えている。
第1照明部1、第2照明部2及び撮像部3は、上下方向(Z方向)に延びるビーム5に対して上下方向に一体的に移動可能に取り付けられている。また、第1照明部1及び第2照明部2は、照明部200から構成される。照明部200は、照明部200を構成する部材の位置や傾きを変更すること等により、第1照明部1としての機能と、第2照明部2としての機能とが切り替えられる。更に、本実施形態の測定装置100は、ねじ付き管Pのねじ軸Aを挟んでY方向に対向する部位を照明・撮像するために、同一の光学系(第1照明部1、第2照明部2及び撮像部3)を2組、備えている。
[第1照明部1及び第2照明部2]
第1照明部1は、ねじ付き管Pのねじ軸Aを含む断面Mに直交する方向(Z方向)の光軸を有し、平行光L1(図2Bに示す実線の矢印)を出射してねじ付き管Pの端部を照明する。
実際には、ねじの種類によってリード角γはバラツキ(以下、最大リード角をγmax、最小リード角をγminとする)等を有するため、測定対象であるねじ部のリード角γに応じて、第2照明部2の光軸の角度θがθ=2γとなるように、光軸を調整することが好ましい。実用上、2(γmax-γmin)はあまり大きくないので、第2照明部2から、2(γmax-γmin)と同程度の広がりのある平行光L2を、光軸の角度θ≒(γmax+γmin)に設定して出射しても良い。
具体的には、設備的な制約や、ねじ付き管Pの曲がり等を考慮し、余裕を持たせることで、第2照明部2の光軸の角度θはθ≦4°に設定することが好ましい。
なお、ねじ軸Aに直交し、断面Mに平行な方向(Y方向)から見て、角度θはZ方向に対して、リード角γと同じ側(図2Bに示す例では反時計回り)の角度である。
照明部200Aは、光源11と、ゴニオステージ12とを具備する。
光源11は、例えば、レンズ付きLED照明、レンズ付きハロゲンランプ、レーザ等が用いられる。ただし、光源11は、平行光を出射するものであればよく、限定されない。
ゴニオステージ12は、光源11の光軸をY方向の軸周りに回動させるように駆動する。図3Aの実線で示す状態の光源11は、ねじ付き管Pのねじ軸Aを含む断面Mに直交する方向(Z方向)の光軸を有し、平行光L1(図3Aでは平行光L1の光軸のみを図示)を出射してねじ付き管Pの端部を照明する。すなわち、実線で示す状態の照明部200Aは、第1照明部1Aとして機能する。
図3Aの破線で示す状態の光源11は、断面Mに直交する方向(Z方向)に対して角度θを成す方向に光軸を有し、平行光L2(図3Aでは平行光L2の光軸のみを図示)を出射してねじ付き管Pの端部を照明する。すなわち、破線で示す状態の照明部200Aは、第2照明部2Aとして機能する。
照明部200Bは、2つのLED13a、13bと、レンズ14とを具備する。
一方のLED13aはレンズ14の光軸上に配置され、他方のLED13bはレンズ14の光軸からX方向に外れた位置に配置されている。LED13a、13bとレンズ14との間のZ方向の距離は、レンズ14の焦点距離とほぼ等しい。
LED13aから出射された光は、レンズ14によって平行光L1(図3Bでは平行光L1の光軸のみを図示)となり、ねじ付き管Pのねじ軸Aを含む断面Mに直交する方向(Z方向)からねじ付き管Pの端部を照明する。すなわち、LED13a及びレンズ14の組み合わせは、第1照明部1Bとして機能する。
LED13bから出射された光は、レンズ14によって平行光L2(図3Bでは平行光L2の光軸のみを図示)となり、断面Mに直交する方向(Z方向)に対して角度θを成す方向からねじ付き管Pの端部を照明する。すなわち、LED13b及びレンズ14の組み合わせは、第2照明部2Bとして機能する。
照明部200Cは、光源11と、拡散板15とを具備する。
光源11は、その光軸がねじ付き管Pのねじ軸Aを含む断面Mに直交する方向(Z方向)に対して角度θを成す方向となるように配置されている。なお、光源11は、図3Aで説明した光源11と同様の光源を用いることができる。
拡散板15は、ビーム5に設けられた回動軸16に一端が取り付けられ、回動軸16の周り(Y方向の軸周り)に回動可能である。拡散板15は、光源11から出射された平行光が照射される位置(図3Cの実線で示す位置)と、光源11から出射された平行光が照射されない位置(図3Cの破線で示す位置)との間で回動可能である。
また、図3Cにおいて、拡散板15が破線で示す状態である場合、光源11から出射された平行光L2は、拡散板15に照射されずにそのまま直進する。したがって、光源11は、断面Mに直交する方向(Z方向)に対して角度θを成す方向から平行光L2によってねじ付き管Pの端部を照明する。すなわち、破線で示す状態の拡散板15及び光源11との組み合わせは、第2照明部2Cとして機能する。
なお、照明部200Cが具備する拡散板15に代えて、ウエッジを有するガラス板(表裏面が平行でないガラス板)を用いてもよい。このガラス板のウエッジ角(表面と裏面との成す角度)を角度θにすれば、光源11から出射された平行光L2がガラス板の表面又は裏面に照射された場合、平行光L2は屈折することで平行光L1となる。
照明部200Dは、光源11と、回動部材17とを具備する。
光源11は、回動部材17に取り付けられる。なお、光源11は、図3Aで説明した光源11と同様の光源を用いることができる。
回動部材17は、ビーム5に設けられた回動軸18に一端が取り付けられ、回動軸18の周り(Y方向の軸周り)に回動可能である。
回動部材17を回動させることにより、光源11の光軸がY方向の軸周りに回動する。図3Dの実線で示す状態の光源11は、ねじ付き管Pのねじ軸Aを含む断面Mに直交する方向(Z方向)の光軸を有し、平行光L1(図3Dでは平行光L1の光軸のみを図示)を出射してねじ付き管Pの端部を照明する。すなわち、実線で示す状態の照明部200Dは、第1照明部1Dとして機能する。
図3Dの破線で示す状態の光源11は、断面Mに直交する方向(Z方向)に対して角度θを成す方向に光軸を有し、平行光L2(図3Dでは平行光L2の光軸のみを図示)を出射してねじ付き管Pの端部を照明する。すなわち、破線で示す状態の照明部200Dは、第2照明部2Dとして機能する。
撮像部3は、第1照明部1から出射された平行光L1又は第2照明部2から出射された平行光L2のうち、ねじ部に遮られずに通過した光を検出して撮像する。
図2A、図2Bに示すように、撮像部3は、撮像本体部31と、撮像本体部31に取り付けられたテレセントリックレンズ32とを具備する。撮像本体部31は、2次元配置されたCCDやCMOS等の撮像素子を具備する。また、撮像部3は、テレセントリックレンズ32を具備することで、撮像本体部31の撮像素子において平行光成分を容易に受光可能である。
撮像部3は、第1照明部1の光軸と平行な視軸(すなわち、Z方向の視軸)を有する。すなわち、撮像部3は、第1照明部1からの光を受光する受光面(撮像素子の撮像面)が第1照明部1の光軸に対して直交している。そして、撮像部3はテレセントリックレンズ32を具備するため、物面近傍の画角が0°であり、倍率が一定となるため、寸法測定に好適である。また、視軸がZ方向であることは、光投影法によって第1外形を算出するのに用いる撮像画像に対し、いわゆるサブピクセル処理を施す場合の誤差を抑制し、高分解能化できる利点がある。また、撮像部3は、ねじ付き管Pのねじ軸Aを含む断面Mがその合焦位置に合致している。具体的には、前述のように、撮像部3は、ビーム5に対して上下方向(Z方向)に移動可能(照明部200と一体的に移動可能)であり、撮像部3の合焦位置が断面Mに合致するように、その上下方向位置が調整されている。
演算部4は、撮像部3によって撮像された撮像画像に基づき、ねじ付き管Pの端部に形成されたねじ部のねじ形状を演算する。
演算部4は、パーソナルコンピュータなどの演算処理装置40の一部により構成される。図4は、演算処理装置40の構成の一例を示す図である。演算処理装置40は、演算部4、操作部41、表示部42、記憶部43、通信部44等を備える。
演算部4は、少なくとも1つのプロセッサー(回路も含む)である。演算部4は、プロセッサーが記憶部43に記憶されたプログラムを実行することで、演算部4の機能が実現される。演算部4は、第1撮像画像取得部45、第2撮像画像取得部46、第1外形算出部47、第2外形算出部48、ねじ形状演算部49、推定部50を有する。また、演算部4は、操作部41、表示部42、記憶部43、通信部44を制御する。
第1外形算出部47は、第1撮像画像取得部45が取得した第1撮像画像に基づき、ねじ形状の第1外形を算出する。第2外形算出部48は、第2撮像画像取得部46が取得した第2撮像画像に基づき、ねじ形状の第2外形を算出する。
ねじ形状演算部49は、第1外形算出部47が算出した第1外形および第2外形算出部48が算出した第2外形に基づき、ねじ形状を演算する。
推定部50は、第2撮像画像のうち第2外形が位置する範囲を推定する。
次に、上述したねじ形状の測定装置100を用いたねじ形状測定方法について説明する。図5は、本実施形態に係るねじ形状の測定方法の概略工程を示すフローチャートである。
本実施形態に係るねじ形状の測定方法は、第1照明工程S1と、第1撮像工程S2と、第2照明工程S3と、第2撮像工程S4と、第1外形算出工程S5と、第2外形算出工程S6と、ねじ形状演算工程S7と、を含んでいる。
各工程について順に説明する。
第1照明工程S1では、照明部200の第1照明部1が、ねじ付き管Pの端部を照明する。例えば、図3Bに示す照明部200Bの場合には、照明部200Bを第1照明部1Bとして機能させるために、測定者がLED13aを点灯(LED13bは消灯)させる。したがって、LED13aの平行光L1が、レンズ14を介して、ねじ付き管Pの端部を照明する。
第1撮像工程S2では、撮像部3は、第1照明部1から出射された平行光L1のうち、ねじ部に遮られずに通過した光を検出して撮像する。第1撮像工程S2で撮像された撮像画像を第1撮像画像という。第1撮像画像は、従来の光投影法によって得られる撮像画像に相当する。撮像部3は、測定者の撮像指示に応じて撮像してもよく、検出された光量に応じて自動的に撮像してもよい。撮像部3は、撮像した第1撮像画像を演算部4に送信する。
図6A、図6Bに示すように、第1撮像画像はねじ部で遮られた画素領域が暗くなり、遮られなかった画素領域が明るくなっている。また、第1撮像画像におけるねじ山P1の頂面P11やねじ溝P2の底面P21に相当する画素領域は、コントラストが高くなっている。このため、後述のように、演算部4が第1撮像画像に例えば2値化等の画像処理を施すことで、ねじ山P1の頂面P11やねじ溝P2の底面P21の外形を算出することが可能である。
一方、図6A、図6Bに示すように、第1撮像画像におけるフランク面P3に相当する画素領域は、フランク面P3がねじ山P1の稜線の影に隠れることで、コントラストが低くなっている。このため、第1撮像画像に2値化等の画像処理を施してもフランク面P3の外形を算出することができない。また、ねじ底の端部P4についても外形を算出することができない。
第2照明工程S3では、照明部200の第2照明部2が、ねじ付き管Pの端部を照明する。例えば、図3Bに示す照明部200Bの場合には、照明部200Bを第2照明部2Bとして機能させるために、測定者がLED13bを点灯(LED13aは消灯)させる。したがって、LED13bの平行光L2が、レンズ14を介して、ねじ付き管Pの端部を照明する。
第2撮像工程S4では、撮像部3は、第2照明部2から出射された平行光L2のうち、ねじ部に遮られずに通過した光を検出して撮像する。このとき、撮像部3は、第1撮像工程S2での撮像条件を維持した上で、すなわち撮像部3の位置を維持した状態で撮像する。第2撮像工程S4で撮像された撮像画像を第2撮像画像という。撮像部3は、測定者の撮像指示に応じて撮像してもよく、検出された光量に応じて自動的に撮像してもよい。撮像部3は、撮像した第2撮像画像を演算部4に送信する。
図7A~図7Dに示すように、第2撮像画像には、フランク面P3やねじ底の端部P4(更には、ねじ山の端部)に相当する画素領域に干渉縞のような濃淡模様(図7Aに示す破線Dで囲んだ領域を参照)が生じる。一方、従来公知の観察方法で観察しても、実際のねじ表面には、このような濃淡模様を反映する形状、色調、テクスチャは見当たらない。このように第2撮像画像に濃淡模様が生じるため、後述のように、演算部4が画像処理を施すことで第2撮像画像を構成する画素の合焦測度を算出し、算出した合焦測度に基づき、フランク面P3やねじ底の端部P4の外形を算出することが可能である。
図8A、図8Bは、第2撮像画像において干渉縞のような濃淡模様が生じる原因を模式的に説明する図(Y方向から見た図)である。図8A、図8Bに示すように、第2照明部2から出射された平行光L2のうち、平行光L21及び平行光L22(及びその間に存在する平行光)がフランク面P3(フック状フランク面P3h)で反射し、撮像部3の撮像素子3aに結像される場合を考える。前述のように、第2照明部2は、Z方向に対してねじ部のリード角γよりも大きな角度θを成す方向に光軸を有するため、平行光L21及び平行光L22は、フランク面P3に到達し、フランク面P3で反射することになる。なお、図8A、図8Bでは、説明の便宜上、リード角γ及び角度θは実際の角度よりも大きく図示している。
[第1外形算出工程S5]
第1外形算出工程S5では、演算部4の第1撮像画像取得部45は、第1撮像工程S2において撮像部3が撮像した第1撮像画像を撮像部3から通信部44を介して取得する。例えば、第1撮像画像取得部45は、測定の開始(プログラムの実行の開始)から最初に取得する撮像画像を第1撮像画像として処理する。次に、演算部4の第1外形算出部47は第1撮像画像に画像処理を施すことで、断面Mにおけるねじ軸Aの軸方向に沿ったねじ部の部分的な外形である第1外形を算出する。例えば、第1外形算出部47は、第1撮像画像を所定のしきい値で2値化することで、明るい画素領域(ねじ部で遮られなかった画素領域)を抽出するか、又は、暗い画素領域(ねじ部で遮られた画素領域)を抽出する画像処理を行い、抽出した画素領域のエッジを検出することで第1外形を算出する。なお、画素領域を抽出するとは、実際に画素領域を抽出する場合に限られず、第1撮像画像から画素領域を分割する処理も含む意味である。
ここで、第1外形には、ねじ山P1の頂面P11やねじ溝P2の底面P21が含まれるが、フランク面P3やねじ底の端部P4は含まれない。第1外形算出部47は、算出した第1外形を、第1外形であることを示す識別情報と関連付けて記憶部43に記憶する。なお、第1外形算出部47は、第1撮像画像と、算出した第1外形とを測定者が確認できるように表示部42に表示してもよい。
第2外形算出工程S6では、演算部4の第2撮像画像取得部46は、第2撮像工程S4において撮像部3が撮像した第2撮像画像を撮像部3から通信部44を介して取得する。例えば、第2撮像画像取得部46は、測定の開始(プログラムの実行の開始)から2番目に取得した撮像画像を第2撮像画像として処理する。次に、演算部4の第2外形算出部48は第2撮像画像に画像処理を施すことで、断面Mにおけるねじ軸Aの軸方向に沿ったねじ部の部分的な外形である第2外形を算出する。例えば、第2外形算出部48は、第2撮像画像を構成する画素の合焦測度を算出し、該算出した合焦測度に基づき、第2外形を算出する。より具体的には、第2外形算出部48は、該算出した合焦測度のX方向及びY方向の重心位置に基づき、第2外形を算出する。ここで、第2外形には、フランク面P3やねじ底の端部P4が含まれる。第2外形算出部48は、算出した第2外形を、第2外形であることを示す識別情報と関連付けて記憶部43に記憶する。なお、第2外形算出部48は、第2撮像画像と、算出した第2外形とを測定者が確認できるように表示部42に表示してもよい。
図9は、画素間濃度偏差ML(x,y)を算出する方法を説明するための図である。ここでは、5×5画素の中心の画素の画素間濃度偏差ML(x,y)を算出する場合を想定する。
P=2として、式(1)により中心の画素の画素間濃度偏差ML(x,y)を算出する場合、中心の画素の濃度I(x,y)と、4つの画素60a~画素60dの濃度とに基づき、画素間濃度偏差ML(x,y)が算出される。
また、P=2とし、式(2)により中心の画素の画素間濃度偏差ML(x,y)を算出する場合、中心の画素の濃度I(x,y)と、4つの画素60a~画素60dの濃度と、4つの画素70a~70dの濃度とに基づき、画素間濃度偏差ML(x,y)が算出される。
ここで、具体的に、N=M=2とし、図9に示す5×5画素の中心の画素の平均値FM(x,y)を算出する場合には、25個の画素の画素間濃度偏差MLを加算して、25で除算することで、中心の画素の平均値FM(x,y)が算出される。同様に、全ての画素(あるいは推定した画素領域の範囲内)の画素の平均値FM(x,y)が算出される。
なお、画素間濃度偏差の代わりにコントラストを用いる場合には、局所的な画素領域における最大濃度をImaxとし、最小濃度をIminとしたときに、第2外形算出部48は、(Imax-Imin)/(Imax+Imin)や、Imax/Iminで表わされる値を合焦測度の算出に用いれば良い。
また、第2外形算出部48は、式(1)で表わされる画素間濃度偏差ML(x,y)を各画素の濃度及びその4近傍の画素の濃度の平均値で除した値を合焦測度の算出に用いてもよい。また、第2外形算出部48は、式(2)で表わされる画素間濃度偏差ML(x,y)を各画素の濃度及びその8近傍の画素の濃度の平均値で除した値を合焦測度の算出に用いてもよい。
第2外形算出部48は、特定のY座標において、X方向の画素の基準と算出範囲とを定める。例えば、X方向の画素のうち合焦測度が最大値である画素を基準として定め、基準の画素からX方向に沿って予め定めた範囲(例えば、±20画素)を算出範囲とする。次に、第2外形算出部48は、式(3)を用いて、算出範囲内のX方向の重心位置Xgを算出する。第2外形算出部48は、合焦測度が算出されている範囲内で特定のY座標を変更するごとに、同様にX方向の重心位置Xgを算出する処理を繰り返し、算出した重心位置Xgを繋げることで、第2外形を算出する。
また、第2外形算出部48は、特定のX座標において、Y方向の画素の基準と算出範囲とを定める。例えば、Y方向の画素のうち合焦測度が最大値である画素を基準として定め、基準の画素からY方向に沿って予め定めた範囲(例えば、±30画素)を算出範囲とする。次に、第2外形算出部48は、式(4)を用いて、算出範囲内のY方向の重心位置Ygを算出する。第2外形算出部48は、合焦測度が算出されている範囲内で特定のX座標を変更するごとに、同様にY方向の重心位置Ygを算出する処理を繰り返し、算出した重心位置Ygを繋げることで、第2外形を算出する。
なお、第2外形の算出方法は、上述した方法に限られない。例えば、第2外形算出部48は、横軸を画素方向軸とし、縦軸を合焦測度とする合焦測度分布を算出する。次に、第2外形算出部48は、この合焦測度分布の近似曲線(上に凸の曲線)を求め、その近似曲線の頂点を、第2外形を構成する点として採用してもよい(いわゆるサブピクセル処理)。
ねじ形状演算工程S7では、演算部4のねじ形状演算部49は、第1外形算出工程S5によって算出された第1外形及び第2外形算出工程S6によって算出された第2外形に基づき、ねじ部のねじ形状を演算する。
具体的には、ねじ形状演算部49は、第1外形に基づき、ねじ軸Aの軸方向のねじ山P1の位置に相当するねじ山P1の位相、管端面からねじ軸Aの軸方向の所定位置におけるねじ山P1の外径であるねじ径、ねじ軸Aの軸方向に沿ったねじ溝P2の底面P21の径や、その径の変化であるテーパ等を演算できる。
また、例えば、ねじ形状演算部49は、第2外形に基づき、フランク面P3の角度やねじ底の端部P4の曲率半径を演算できる。
このように、ねじ形状演算部49がねじ部のねじ形状を演算することで、ねじ形状が測定される。ねじ形状演算部49は、ねじ部の各測定値を表示部42に表示したり、記憶部43に記憶したりしてもよい。
ねじ形状演算部49は、算出した合成外形に基づき、ねじ山幅及びねじ谷幅を演算できる。
ねじ形状演算部49は、算出した合成外形を表示部42に表示したり、記憶部43に記憶したりしてもよい。このとき、図11に示すように、ねじ形状演算部49は、例えば、線種、線の太さ、または線の色等を変えることで第1外形と第2外形とを識別可能に表示することが好ましい。
接触式のねじ形状測定方法としては、ミツトヨ社製のコントレーサ(触針(スタイラス)の先端角度20°、先端半径25μm)を使用した触針式の測定方法を用いた。
図12は、本実施形態に係るねじ形状の測定方法と接触式のねじ形状の測定方法とで、同じねじ付き管のねじ部において、ねじ山P1からねじ溝P2に至るまでの約2周期分を測定した結果を示す図である。図12において、本実施形態に係るねじ形状測定方法(以下、適宜「実施例」という)で測定した結果は太線で、接触式のねじ形状測定方法(以下、適宜「接触式」という)で測定した結果は細線で示している。後述の図13A、図13B及び図14についても同様である。図12から分かるように、実施例による測定結果と、接触式による測定結果とは、ほぼ重なっている。
図13Aに示す実施例による測定結果は、図12に示す実施例による測定結果のうち、ねじ山P1の頂面P11及びねじ溝P2の底面P21を、それぞれの測定結果から略X方向の直線で近似し、図12に示す実施例による測定結果から、これらの近似直線に相当する部分を除外している。また、図13Bに示す実施例による測定結果は、図13Aに示す実施例による測定結果のうち、ねじ底の端部P4及びねじ山の端部を、それぞれの測定結果から円近似し、図13Aに示す実施例による測定結果から、これらの近似円に相当する部分を除外している。
図14の左側に示す実施例によるねじ底の端部P4の近似円の曲率半径は、連続的に4回測定した平均値では0.327mm(標準偏差は0.00096mm)であり、接触式によるねじ底の端部P4の近似円の曲率半径は0.362mmであった。両者の偏差は0.035mmであった。また、図14の右側に示す実施例によるねじ底の端部P4の近似円の曲率半径は、連続的に4回測定した平均値では0.339mm(標準偏差は0.00052mm)であり、接触式によるねじ底の端部P4の近似円の曲率半径は0.368mmであった。両者の偏差は0.029mmであった。すなわち、実施例によるねじ底の端部P4の測定結果と、接触式によるねじ底の端部P4の測定結果とは、良く一致する測定結果となった。ねじ山の端部についても同様であった。
Claims (7)
- ねじ形状の測定装置であって、
ねじ部のねじ軸を含む断面に直交する方向の光軸を有し、平行光を出射して前記ねじ部を照明する第1照明部と、
前記断面に直交する方向に対して前記ねじ部のリード角より大きな角度を成す方向に光軸を有し、平行光を出射して前記ねじ部を照明する第2照明部と、
前記第1照明部の光軸と平行な視軸を有し、テレセントリックレンズを具備し、且つ、前記断面がその合焦位置に合致し、前記第1照明部又は前記第2照明部から出射された平行光のうち、前記ねじ部に遮られずに通過した光を検出して撮像する撮像部と、
前記撮像部によって撮像された撮像画像に基づき、前記ねじ部のねじ形状を演算する演算部と、を備え、
前記演算部は、
前記第1照明部から出射された平行光のうち、前記ねじ部に遮られずに通過した光を検出して撮像された第1撮像画像に画像処理を施すことで、前記断面における前記ねじ軸の軸方向に沿った、前記ねじ部の部分的な外形である第1外形を算出し、
前記第2照明部から出射された平行光のうち、前記ねじ部に遮られずに通過した光を検出して撮像された第2撮像画像に画像処理を施すことで、前記断面における前記ねじ軸の軸方向に沿った、前記ねじ部の部分的な外形である第2外形を算出し、
前記算出した第1外形及び第2外形に基づき、前記ねじ部のねじ形状を演算することを特徴とするねじ形状の測定装置。 - 前記演算部は、
前記第2撮像画像に画像処理を施すことで、前記第2撮像画像を構成する画素の合焦測度を算出し、該算出した合焦測度に基づき、前記第2外形を算出することを特徴とする請求項1に記載のねじ形状の測定装置。 - 前記演算部は、
合焦測度のX方向及びY方向の重心位置に基づき、前記第2外形を算出することを特徴とする請求項2に記載のねじ形状の測定装置。 - 前記演算部は、
前記第2撮像画像のうち、前記第2外形が位置する範囲を推定し、前記推定した範囲の画素の合焦測度を算出することを特徴とする請求項2または3に記載のねじ形状の測定装置。 - 前記演算部は、
前記ねじ部のフランク面及び前記ねじ部のねじ底の端部の外形を含む前記第2外形を算出することを特徴とする請求項1ないし4の何れか1項に記載のねじ部の測定装置。 - 前記ねじ部は、
ねじ付き管の端部に形成されているねじ部であることを特徴とする請求項1ないし5の何れか1項に記載のねじ部の測定装置。 - ねじ形状の測定方法であって、
ねじ部のねじ軸を含む断面に直交する方向の光軸を有し、平行光を出射する第1照明部によって、前記ねじ部を照明する第1照明工程と、
前記第1照明部の光軸と平行な視軸を有し、テレセントリックレンズを具備し、且つ、前記断面がその合焦位置に合致する撮像部によって、前記第1照明部から出射された平行光のうち、前記ねじ部に遮られずに通過した光を検出して撮像する第1撮像工程と、
前記断面に直交する方向に対して前記ねじ部のリード角より大きな角度を成す方向に光軸を有し、平行光を出射する第2照明部によって、前記ねじ部を照明する第2照明工程と、
前記撮像部によって、前記第2照明部から出射された平行光のうち、前記ねじ部に遮られずに通過した光を検出して撮像する第2撮像工程と、
前記第1撮像工程によって撮像された第1撮像画像に画像処理を施すことで、前記断面における前記ねじ軸の軸方向に沿った、前記ねじ部の部分的な外形である第1外形を算出する第1外形算出工程と、
前記第2撮像工程によって撮像された第2撮像画像に画像処理を施すことで、前記断面における前記ねじ軸の軸方向に沿った、前記ねじ部の部分的な外形である第2外形を算出する第2外形算出工程と、
前記第1外形算出工程によって算出された第1外形及び前記第2外形算出工程によって算出された第2外形に基づき、前記ねじ部のねじ形状を演算するねじ形状演算工程と、を含むことを特徴とするねじ形状の測定方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/981,667 US11313675B2 (en) | 2018-05-02 | 2019-04-26 | Thread shape measuring apparatus and measuring method |
EP19796332.5A EP3789728B1 (en) | 2018-05-02 | 2019-04-26 | Thread shape measuring apparatus and measuring method |
JP2020517066A JP6849149B2 (ja) | 2018-05-02 | 2019-04-26 | ねじ形状の測定装置および測定方法 |
CN201980021753.1A CN111919085B (zh) | 2018-05-02 | 2019-04-26 | 螺纹形状的测定装置以及测定方法 |
BR112020019350-0A BR112020019350B1 (pt) | 2018-05-02 | 2019-04-26 | Aparelho de medição de forma de rosca e método de medição |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018088880 | 2018-05-02 | ||
JP2018-088880 | 2018-05-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019212042A1 true WO2019212042A1 (ja) | 2019-11-07 |
Family
ID=68385954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/017883 WO2019212042A1 (ja) | 2018-05-02 | 2019-04-26 | ねじ形状の測定装置および測定方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11313675B2 (ja) |
EP (1) | EP3789728B1 (ja) |
JP (1) | JP6849149B2 (ja) |
CN (1) | CN111919085B (ja) |
WO (1) | WO2019212042A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021202213A1 (de) | 2021-03-08 | 2022-09-08 | Sms Group Gmbh | Verfahren und Vorrichtung zur optischen Vermessung eines Gewindes |
JP7332645B2 (ja) * | 2021-03-17 | 2023-08-23 | 芝浦機械株式会社 | 工具の形状異常検出装置、工具の形状異常検出方法 |
WO2023018676A2 (en) * | 2021-08-09 | 2023-02-16 | Quadratic 3D, Inc. | Methods and systems for forming an object in a volume of a photohardenable composition |
WO2023228543A1 (ja) | 2022-05-24 | 2023-11-30 | 日本製鉄株式会社 | ねじ形状寸法測定装置及びねじ形状寸法測定方法 |
JP7328609B1 (ja) * | 2022-05-24 | 2023-08-17 | 日本製鉄株式会社 | ねじ形状寸法測定装置及びねじ形状寸法測定方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS552440B2 (ja) | 1975-05-01 | 1980-01-19 | ||
JPS5952269B2 (ja) | 1977-05-06 | 1984-12-19 | 川崎重工業株式会社 | 平低円筒タンクの屋根組立工法 |
JPS63212808A (ja) | 1987-02-27 | 1988-09-05 | Sumitomo Metal Ind Ltd | ネジ形状測定装置 |
JP2010038554A (ja) | 2008-07-31 | 2010-02-18 | Jfe Steel Corp | 油井管ねじ形状全周測定装置 |
JP4486700B2 (ja) | 2008-03-27 | 2010-06-23 | 住友金属工業株式会社 | 管端部のねじ要素測定装置、ねじ要素測定システムおよびねじ要素測定方法 |
JP2013250126A (ja) * | 2012-05-31 | 2013-12-12 | Jfe Steel Corp | 光学式ねじ要素測定装置における光軸調整方法 |
JP2016075502A (ja) | 2014-10-03 | 2016-05-12 | Jfeスチール株式会社 | フック状フランク部を有するねじ付き部材のねじ形状測定装置及び方法 |
JP2017190980A (ja) * | 2016-04-12 | 2017-10-19 | 新日鐵住金株式会社 | ねじ付き管のねじ形状測定装置 |
WO2017207765A1 (de) * | 2016-06-03 | 2017-12-07 | Sms Group Gmbh | Vorrichtung zur messung eines gewindes |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4644394A (en) * | 1985-12-31 | 1987-02-17 | Dale Reeves | Apparatus for inspecting an externally threaded surface of an object |
JPS63191007A (ja) * | 1987-02-02 | 1988-08-08 | Nippon Steel Corp | ネジの検査測定方法 |
JPH0521380Y2 (ja) * | 1987-05-23 | 1993-06-01 | ||
JP3552440B2 (ja) | 1996-01-25 | 2004-08-11 | Jfeスチール株式会社 | ねじ要素の測定方法および装置 |
DE10359837A1 (de) * | 2003-12-19 | 2005-07-21 | Kamax-Werke Rudolf Kellermann Gmbh & Co. Kg | Verfahren und Vorrichtung zum Überprüfen eines Gewindes eines Verbindungselements auf Beschädigungen |
DE102007017747B4 (de) * | 2007-04-12 | 2009-05-07 | V & M Deutschland Gmbh | Verfahren und Vorrichtung zur optischen Vermessung von Außengewinden |
EP2392895B1 (en) | 2010-06-01 | 2013-03-06 | Tenaris Connections Ltd. | Method for measurement of geometrical parameters of coated threaded joints |
US8390826B2 (en) * | 2011-04-20 | 2013-03-05 | Gii Acquisition, Llc | Method and system for optically inspecting parts |
JP5698608B2 (ja) * | 2011-06-06 | 2015-04-08 | 倉敷紡績株式会社 | ボトル缶のねじ部検査装置 |
TW201341756A (zh) * | 2011-11-30 | 2013-10-16 | 尼康股份有限公司 | 形狀測定裝置、形狀測定方法、及記錄有其程式之記錄媒體 |
JP5288297B2 (ja) * | 2011-12-27 | 2013-09-11 | 新日鐵住金株式会社 | ねじ付き管の端部形状測定方法 |
US9823062B2 (en) * | 2013-03-07 | 2017-11-21 | Mectron Engineering Company, Inc. | Inspection system for threaded parts |
CN105277121A (zh) * | 2014-06-23 | 2016-01-27 | 日产螺丝股份有限公司 | 螺纹尺寸自动测定系统 |
-
2019
- 2019-04-26 EP EP19796332.5A patent/EP3789728B1/en active Active
- 2019-04-26 US US16/981,667 patent/US11313675B2/en active Active
- 2019-04-26 WO PCT/JP2019/017883 patent/WO2019212042A1/ja unknown
- 2019-04-26 CN CN201980021753.1A patent/CN111919085B/zh active Active
- 2019-04-26 JP JP2020517066A patent/JP6849149B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS552440B2 (ja) | 1975-05-01 | 1980-01-19 | ||
JPS5952269B2 (ja) | 1977-05-06 | 1984-12-19 | 川崎重工業株式会社 | 平低円筒タンクの屋根組立工法 |
JPS63212808A (ja) | 1987-02-27 | 1988-09-05 | Sumitomo Metal Ind Ltd | ネジ形状測定装置 |
JP4486700B2 (ja) | 2008-03-27 | 2010-06-23 | 住友金属工業株式会社 | 管端部のねじ要素測定装置、ねじ要素測定システムおよびねじ要素測定方法 |
JP2010038554A (ja) | 2008-07-31 | 2010-02-18 | Jfe Steel Corp | 油井管ねじ形状全周測定装置 |
JP2013250126A (ja) * | 2012-05-31 | 2013-12-12 | Jfe Steel Corp | 光学式ねじ要素測定装置における光軸調整方法 |
JP2016075502A (ja) | 2014-10-03 | 2016-05-12 | Jfeスチール株式会社 | フック状フランク部を有するねじ付き部材のねじ形状測定装置及び方法 |
JP2017190980A (ja) * | 2016-04-12 | 2017-10-19 | 新日鐵住金株式会社 | ねじ付き管のねじ形状測定装置 |
WO2017207765A1 (de) * | 2016-06-03 | 2017-12-07 | Sms Group Gmbh | Vorrichtung zur messung eines gewindes |
Also Published As
Publication number | Publication date |
---|---|
US20210041228A1 (en) | 2021-02-11 |
CN111919085A (zh) | 2020-11-10 |
EP3789728A1 (en) | 2021-03-10 |
JP6849149B2 (ja) | 2021-03-24 |
JPWO2019212042A1 (ja) | 2021-01-14 |
BR112020019350A2 (pt) | 2020-12-29 |
CN111919085B (zh) | 2022-07-26 |
EP3789728A4 (en) | 2022-01-12 |
EP3789728B1 (en) | 2023-10-18 |
US11313675B2 (en) | 2022-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019212042A1 (ja) | ねじ形状の測定装置および測定方法 | |
US5129010A (en) | System for measuring shapes and dimensions of gaps and flushnesses on three dimensional surfaces of objects | |
WO2013061976A1 (ja) | 形状検査方法およびその装置 | |
JP5014003B2 (ja) | 検査装置および方法 | |
US20130057650A1 (en) | Optical gage and three-dimensional surface profile measurement method | |
US20120249778A1 (en) | Inspection apparatus for tubular product and inspection method therefor | |
WO2013015013A1 (ja) | 外観検査方法及びその装置 | |
JP2005514606A (ja) | 立体3次元計測システムおよび方法 | |
JP2009139248A (ja) | 欠陥検出光学系および欠陥検出画像処理を搭載した表面欠陥検査装置 | |
JP5913903B2 (ja) | 形状検査方法およびその装置 | |
US9824452B2 (en) | Topographical measurement system of specular object and topographical measurement method thereof | |
US20180367722A1 (en) | Image acquisition device and image acquisition method | |
JP6040215B2 (ja) | 検査方法 | |
TW201534424A (zh) | 工具檢查方法及工具檢查裝置 | |
JP6604258B2 (ja) | ねじ付き管のねじ形状測定装置 | |
JP2008175604A (ja) | 光変位センサー及びそれを用いた変位測定装置 | |
Sills et al. | Defect identification on specular machined surfaces | |
JP2017190974A (ja) | ねじ付き管のねじ形状測定装置及び測定方法 | |
JP5367292B2 (ja) | 表面検査装置および表面検査方法 | |
JP4035558B2 (ja) | 表面検査装置 | |
BR112020019350B1 (pt) | Aparelho de medição de forma de rosca e método de medição | |
JP2023172774A (ja) | ねじ形状測定装置及びねじ形状測定方法 | |
JP7328609B1 (ja) | ねじ形状寸法測定装置及びねじ形状寸法測定方法 | |
WO2023228543A1 (ja) | ねじ形状寸法測定装置及びねじ形状寸法測定方法 | |
JP7444171B2 (ja) | 表面欠陥判別装置、外観検査装置及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19796332 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020517066 Country of ref document: JP Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020019350 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019796332 Country of ref document: EP Effective date: 20201202 |
|
ENP | Entry into the national phase |
Ref document number: 112020019350 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200924 |