WO2019208724A1 - Method for screening membrane proteins for specific compound and method for producing specific compound - Google Patents

Method for screening membrane proteins for specific compound and method for producing specific compound Download PDF

Info

Publication number
WO2019208724A1
WO2019208724A1 PCT/JP2019/017768 JP2019017768W WO2019208724A1 WO 2019208724 A1 WO2019208724 A1 WO 2019208724A1 JP 2019017768 W JP2019017768 W JP 2019017768W WO 2019208724 A1 WO2019208724 A1 WO 2019208724A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
microorganism
gene
gene encoding
membrane protein
Prior art date
Application number
PCT/JP2019/017768
Other languages
French (fr)
Japanese (ja)
Inventor
圭 七谷
敬悦 阿部
尚弘 新谷
裕 米山
真由美 中山
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2020515581A priority Critical patent/JPWO2019208724A1/en
Publication of WO2019208724A1 publication Critical patent/WO2019208724A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes

Definitions

  • the present invention relates to a method for screening a membrane protein for a predetermined compound and a method for producing the predetermined compound.
  • substance production using microorganisms has many advantages in terms of productivity, cost, etc., compared to chemical synthesis and the like, and is used in various fields.
  • a substrate taken in from the environment is metabolized in the cells of the microorganism to become a metabolite, discharged out of the cell, and the discharged metabolite is recovered.
  • a transporter importr
  • a transporter exporter
  • the target compound is a high molecular compound such as a polysaccharide
  • Non-patent Document 1 Specifically, for example, in the case of production of primary metabolites, it is normal that the microorganism already has an exporter of a predetermined compound and an importer of a substrate. When the intracellular concentration of the metabolite increases as a result of strengthening, feedback inhibition is applied, and the excretion and transport of the product can be the limiting step (Non-patent Document 1).
  • the microorganism to be used does not have a transporter in the first place, the substrate is not taken up or the metabolite is continuously produced without being discharged outside the cell. Problems such as being unable to do so may occur.
  • Discharge bottlenecks can be said to be a potential issue in the technological development for the production of new substances that are expected to be industrially produced using the current microorganisms or industrially produced using microorganisms. Therefore, it is very useful to design a substance production system to specify what kind of protein is a transporter for a given compound that can be a substrate or a metabolite.
  • An object of the present invention is to provide a novel method for solving the bottleneck in substance production using microorganisms. Another object of the present invention is to provide a novel method capable of comprehensively screening for various target substances and various membrane transporter candidate proteins by a method that requires relatively little labor and does not require a radioactive compound.
  • the present inventors use, in a substance production method or a screening method, a microorganism in which a gene encoding a fusion partner and a membrane protein involved in transport of the predetermined compound or a gene encoding a candidate protein thereof are expressed. It has been found that the above problems can be solved.
  • the present invention is based on the above new findings.
  • a method for producing a predetermined compound comprising: Culturing a microorganism incorporating a gene in which a gene encoding a fusion partner and a gene encoding a membrane protein involved in transport of the predetermined compound are linked so as to be expressed by translation of polycistronic mRNA,
  • the linked genes are linked such that a part of the nucleotides constituting the stop codon of the gene encoding the fusion partner is part of the start codon of the gene encoding the membrane protein involved in the transport of the predetermined compound
  • a method which is a genetically generated gene.
  • Item 2. The method according to Item 1, further comprising the step of recovering the predetermined compound from the culture solution obtained in the step of culturing the microorganism.
  • Item 3. The method according to Item 1 or 2, wherein the microorganism is a bacterium.
  • Item 4 The method according to any one of claims 1 to 3, wherein a gene encoding a tRNA corresponding to a rare codon of the microorganism is further incorporated into the microorganism.
  • Item 5 The method according to any one of Items 1 to 4, wherein the membrane protein is an exporter protein, an importer protein, a synthase protein, or a protein that is a component of a protein secretion apparatus.
  • a method for screening a membrane protein for a predetermined compound comprising the following steps (1) to (4): (1) A gene that encodes a fusion partner and a gene that encodes a membrane protein candidate so as to be expressed by translation of polycistronic mRNA, wherein a stop codon of the gene encoding the fusion partner is selected A step of creating a library of microorganisms incorporating a gene linked so that a part of the nucleotides constituting it is part of the start codon of the gene encoding the membrane protein, (2) a step of culturing the microorganism (3) a step of identifying a culture solution or a supernatant thereof in which a variation is observed in the amount of the predetermined compound compared to before the culture, (4) A step of specifying that the membrane protein candidate incorporated and expressed in the microorganism from which the specified culture solution or supernatant is obtained is a membrane protein having the ability to transport the predetermined compound inside and outside the membrane.
  • Item 101 The method according to Item 6 to 96, wherein the membrane protein is an exporter protein, an importer protein, a synthetic concept protein, or a protein that is a protein secretion apparatus.
  • Item 8 The method according to Item 6 or 7, wherein the microorganism is a bacterium.
  • Item 9 The method according to any one of Items 6 to 8, wherein a gene encoding a tRNA corresponding to a rare codon of the microorganism is further incorporated into the microorganism.
  • the present invention can provide a new method for solving the above discharge bottleneck. According to the present invention, it is possible to provide a novel method capable of comprehensively screening various target substances and various membrane transporter candidate proteins with a relatively small effort and a method that does not require a radioactive compound. .
  • Example 1 The outline of the plasmid described in Example 1 is shown.
  • the result of Example 1 is shown.
  • the result of Example 2 is shown.
  • the result of Example 3 is shown.
  • the result of Example 3 is shown.
  • the result of Example 4 is shown.
  • the result of Example 5 is shown.
  • the result of Example 6 is shown.
  • the term “gene” refers not only to a structural gene defining a primary structure such as a protein, tRNA, or rRNA, but also to a nucleic acid having a specific regulatory function such as a promoter or an operator. Regions are also included. Therefore, in the present invention, “gene” refers to a regulatory region, a coding region, an exon, and an intron without distinction unless otherwise specified.
  • the “structural gene” also includes silent DNA in which the original DNA sequence has been subjected to silent mutation.
  • nucleic acid molecules such as siRNA that interfere with gene expression are also included in the “gene”.
  • nucleic acid is synonymous with nucleotide, oligonucleotide, and polynucleotide, and may be any of DNA, RNA, and DNA-RNA hybrids. Further, these may be double-stranded or single-stranded, and in the case of a nucleic acid molecule having a certain sequence, a nucleic acid molecule having a complementary sequence (or nucleotide, oligonucleotide) unless otherwise specified. And polynucleotide) are also meant to be inclusive. These nucleic acid molecules may be circular or linear, and may be synthetic or biological.
  • protein and peptide are used to include oligopeptides and polypeptides unless otherwise specified.
  • protein and peptide include both a protein modified with a sugar chain and an unmodified protein unless otherwise specified. The same applies to proteins that are not specified as proteins.
  • membrane protein is used in the meaning of including a protein that is expressed in a form localized in the cell membrane and has the ability to transport a predetermined compound into and out of the cell.
  • Membrane transporter protein involved in the transport of a given compound inside and outside the cell a synthase protein that is localized in the cell membrane and is not only produced by catalysis of the given compound but also involved in the transport inside and outside the cell, or a protein that functions in the cell membrane It is assumed to include a complex composed of a plurality of proteins called secretory devices involved in the transport of proteins inside and outside the cell.
  • the membrane transporter protein further includes an exporter protein and an importer protein.
  • the present invention provides a method for screening a membrane protein for a predetermined compound, comprising the following steps (1) to (4): (1) A gene that encodes a fusion partner and a gene that encodes a membrane protein candidate so as to be expressed by translation of polycistronic mRNA, wherein a stop codon of the gene encoding the fusion partner is selected A step of creating a library of microorganisms incorporating a gene linked so that a part of the constituting nucleotides becomes part of the start codon of the gene encoding the membrane protein candidate, (2) a step of culturing the microorganism (3) a step of identifying a culture solution or a supernatant thereof in which a variation is observed in the amount of the predetermined compound compared to before the culture, (4) A step of specifying that the membrane protein candidate incorporated and expressed in the microorganism from which the specified culture solution or supernatant is obtained is a protein having the ability to transport the predetermined compound inside or outside the
  • the “predetermined compound” that is the subject of the present invention is not particularly limited.
  • a substance https://energy.gov
  • DOE United States Department of Energy
  • eere / bioenergy
  • other substances that have been industrially produced by microorganisms as summarized in Non-Patent Documents 4 to 8, including low molecular weight compounds, high molecular weight compounds, and other useful substances.
  • the predetermined compound is an organic compound.
  • the predetermined compound include low molecular weight compounds such as amino acids, organic acids, nucleic acids, carbohydrates (saccharides such as monosaccharides and disaccharides), vitamins, alcohols, etc .; antibiotics , Polysaccharides, polypeptides, polyphenols, and high molecular compounds such as enzymes and proteins.
  • useful substances include physiologically active substances and various substances of secondary metabolites.
  • the “predetermined compound” that is the subject of the present invention is a substance that is transported into and out of the cells of the microorganism via the membrane protein.
  • the “predetermined compound” that is the subject of the present invention is not only a compound that can grow a microorganism used in the host in the presence of the compound, but also into a microorganism cell used in the host. Compounds that have an action of inhibiting the growth by accumulation can also be mentioned.
  • the host is E. coli
  • it is known to inhibit the growth of E. coli such as monoalanine (L-alanine), non-ribosomal peptide, terpenoid.
  • a substance can also be a “predetermined compound”.
  • the screening method of the present invention is a gene in which a gene encoding a fusion partner and a gene encoding a membrane protein candidate are linked so as to be expressed by translation of polycistronic mRNA, and the gene encoding the fusion partner And a step of preparing a library of microorganisms incorporating a gene linked so that a part of the nucleotides constituting the stop codon is part of the start codon of the gene encoding the membrane protein candidate.
  • an operation for introducing a gene encoding a fusion partner and a gene encoding a membrane protein candidate into a microorganism is performed on the genes encoding various membrane protein candidates, and a plurality of types of recombinant microorganisms are produced. Can do.
  • the fusion partner is a protein that binds to the N-terminal side of the protein to be expressed, and exhibits effects such as stabilizing the mRNA of the membrane protein and improving the expression level of the membrane protein on the cell membrane (non- Patent Document 3) is also used when purifying a protein to be expressed.
  • Typical examples include mstX and ybeL.
  • Non-Patent Document 3 describes that fusion partners mstX and ybeL were linked to membrane proteins such as ProW, MscL, LacY and GltP and expressed in vivo.
  • a sufficient amount of protein having a preserved structure can be obtained in the structural biology of membrane proteins is still set as a major bottleneck.
  • mstX means a polypeptide having the amino acid sequence shown in Genbank accession No. YP_003097778.1 or the amino acid sequence and 70% or more (preferably 80% or more, more preferably 85% or more, more preferably 90%).
  • ybeL is a polypeptide having the amino acid sequence represented by GenbankGenaccession No.NP_415176.1 or the amino acid sequence and 70% or more (preferably 80% or more, more preferably 85% or more, more preferably Is a polypeptide having an amino acid sequence having an identity of 90% or more, more preferably 95% or more, more preferably 97% or more, more preferably 99% or more (typically functional equivalent to the above polypeptide) Thing).
  • a method for obtaining a gene encoding a membrane protein is not particularly limited.
  • a membrane transporter candidate protein is obtained by PCR using a genomic DNA of a predetermined microorganism as a template and using appropriate primers. It can be obtained by amplifying the encoded gene.
  • microorganism is used as the membrane protein, and examples thereof include microorganisms described later as “microorganisms into which genes are introduced”.
  • the microorganism originally having the membrane protein and the microorganism into which the gene for the membrane protein is introduced may be of different types or the same type.
  • prokaryotes are preferred among eukaryotes and prokaryotes in the present invention.
  • prokaryotes include bacteria (eubacteria) such as Escherichia coli, actinomycetes (genus Corynebacterium, Streptomyces, Propionibacterium, etc.), lactic acid bacteria (genus Lactobacillus, Streptococcus, etc.), Bacillus subtilis (genus Bacillus, etc.), E. coli and actinomycetes are preferred.
  • bacteria eubacteria
  • actinomycetes genus Corynebacterium, Streptomyces, Propionibacterium, etc.
  • lactic acid bacteria genus Lactobacillus, Streptococcus, etc.
  • Bacillus subtilis genus Bacillus, etc.
  • E. coli and actinomycetes are preferred.
  • Examples of the genus Corynebacterium include Corynebacterium glutamicum, Cor
  • a gene encoding a fusion partner and a gene encoding the membrane protein candidate are incorporated into the microorganism as a linked gene so as to be expressed by translation of polycistronic mRNA, and It is further preferred that the gene is linked such that a part of the nucleotide constituting the stop codon of the gene encoding the fusion partner becomes a part of the start codon of the gene encoding the membrane protein candidate. Due to such characteristics, according to the present invention, a new function can be brought about qualitatively or quantitatively to a membrane protein candidate.
  • the gene encoding the fusion partner and the gene encoding the membrane protein candidate are combined in the above-described embodiment, the ability to transport a substance not known about the membrane protein candidate can be obtained. Therefore, in the method for screening a membrane protein candidate for a predetermined compound according to the present invention, the above characteristics are very important.
  • the gene encoding the fusion partner and the gene encoding the membrane protein candidate are combined in the above manner as the genes to be introduced. The method can be carried out according to a method known per se, except that the above gene is used.
  • a vector incorporating a hereditary gene encoding a fusion partner and a gene encoding a membrane protein candidate and incubating the microorganism in the presence of the vector. It is also preferable that a gene encoding a fusion partner and a gene encoding a membrane protein candidate involved in the transport of the predetermined compound are incorporated into the microorganism as a linked gene so as to be expressed as a fusion protein.
  • the microorganism typically has the ability to produce a predetermined compound.
  • a gene expressing a predetermined compound may be further introduced into the microorganism.
  • the microorganism (preferably Escherichia coli) further incorporates a gene encoding a tRNA corresponding to the rare codon of the microorganism. When expressed as a compound, it is preferable from the viewpoint of expanding the tRNA repertoire.
  • the present invention includes a step of culturing a microorganism into which a gene encoding a fusion partner and a gene encoding a membrane protein candidate obtained by the step (1) are incorporated.
  • the medium used in the step is not particularly limited, and a medium that can be used for culturing the microorganism can be widely used.
  • LB medium, M9 medium, MRS medium, Marz medium, bouillon medium and the like can be mentioned.
  • Glucose, starch, soluble starch, waste molasses, corn steep liquor and the like may be added to the medium as a carbon source.
  • a predetermined compound may be added to the medium in advance.
  • the culture temperature is not particularly limited, and can be appropriately set within a range of 20 to 45 ° C, more preferably 25 to 37 ° C.
  • the culture time is not particularly limited, but can be appropriately set within a range of, for example, 12 to 72 hours, more preferably 24 to 48 hours.
  • the culture may be stationary culture or shaking culture, but shaking culture is preferred.
  • the present invention includes a step of identifying a culture solution or a supernatant thereof in which a variation is observed in the amount of the predetermined compound as compared with that before culturing.
  • This step can be performed by measuring the amount of a predetermined compound in the culture solution or its supernatant before and after the above (2) culturing step and comparing them.
  • the membrane protein candidate can be identified as the membrane transporter of the predetermined compound. That is, when a gene encoding a desired membrane protein candidate is incorporated into the microorganism, the membrane protein candidate is configured to penetrate the cell membrane of the cell in combination with the action of the fusion partner.
  • the candidate is an importer protein
  • the amount of the predetermined compound in the culture supernatant is decreased.
  • the membrane protein candidate is the exporter protein
  • the amount of the predetermined compound in the culture supernatant is considered to increase. .
  • the present invention relates to a method for producing a predetermined compound, comprising: A microorganism in which a gene encoding a fusion partner and a gene encoding a membrane protein involved in transport of the predetermined compound are linked so that they are expressed by translation of polycistronic mRNA is cultured. Including steps, The linked gene is linked so that a part of the nucleotide constituting the stop codon of the gene encoding the fusion partner becomes a part of the start codon of the gene encoding the transporter protein of the predetermined compound A method is provided that is a gene.
  • the method of the present invention may further include a step of recovering a predetermined compound from the culture solution obtained in the above culturing step.
  • the method for recovering the predetermined compound from the culture medium is not particularly limited, and a method known per se (centrifugation, recrystallization, distillation method, solvent extraction method, chromatography, etc.) can be appropriately used.
  • pTrc99A_C8_His was cleaved with restriction enzymes NcoI and KpnI, and the cloned mstX gene was inserted by ligation.
  • the mstX gene fragment was extracted by extracting genomic DNA from B. subtilis using NucleoSpin Tissue (Takara) according to the attached protocol.
  • Example (1) -2 Preparation of pTrc99A_ybeL_C8_His pTrc99A_C8_His is the example (1) -1. The same procedure was used. The ybeL gene fragment was prepared in Example (1) -1. It was obtained by PCR amplification using E. coli genomic DNA obtained in the same procedure as a template using forward primer (AGGAAACAGACcatgaacaaggttgctcaatattaccg) and reverse primer (CTAGAGGATCCCCGGGTACCACTCATaccacttctccgctgtgataaac) as primers. The obtained amplified fragments were obtained in Example (1) -2. Ligated to pTrc99A_C8_His by the same procedure as above to obtain pTrc99A_ybeL_C8_His.
  • Transporter search 1 (coryne) (2) -1.
  • Corynebacterium glutamicum (Corynebacterium glutamicum) is cultured using a medium for preparing a coryneform membrane transporter library (polypeptone 2 g, yeast extract 0.4 g, MgSO4 7H2O 0.2 g / 200 ml).
  • Genomic DNA was extracted using NucleoSpin Tissue (Takara) according to the attached protocol.
  • NucleoSpin Tissue (Takara) according to the attached protocol.
  • each of the three transporter genes was amplified by PCR using the primers shown in Table 1.
  • pTrc99A_mstX_C8_His was treated with restriction enzymes KpnI and XbaI, and each transporter gene was ligated using In-Fusion HD Cloning Kit (Takara) according to the attached protocol to construct a plasmid vector for expression of each membrane transporter.
  • the stop codon of the mstX gene and the start codon of each transporter gene share a part of each other.
  • E. coli for transporter expression transformation E. coli C43 (DE3) strain (Lucigen) suitable for expression of toxic protein transformed with plasmid pRARE (Merck) supplemented with tRNA corresponding to rare codons of E. coli (C43 ( Example strains were obtained using DE3) Rosetta strain) as the expression host of the plasmid vector for membrane transporter expression obtained in (2) -1. Further, as a control, pTrc99A_mstX_C8_His not ligated with a membrane transporter gene was introduced into the expression host to obtain a control strain.
  • Example strains and control strains were precultured at 30 ° C. for 24 hours using LB medium to obtain a precultured solution.
  • Antibiotic ampicillin (100 ⁇ g / ml) and chloramphenicol (30 ⁇ g / ml) were added to 50 ml M9 minimal medium, and 500 ⁇ l of the preculture was added, followed by shaking culture at 37 ° C.
  • OD660 reached approximately 0.5
  • IPTG was added so that the final concentration was 1 mM, followed by shaking culture at 37 ° C. for 24 hours. After culturing for 24 hours, centrifugation was performed at 9,000 rpm for 15 min to obtain Example strain culture supernatant and control strain culture supernatant.
  • Example strain 1 contained lysine, ornithine and proline much more than the preculture and control culture supernatants (FIGS. 2A to 2C).
  • the gene ligated to the plasmid vector introduced into Example strain 1 was the LysE gene, and LysE was known to function not only as an original lysine transporter but also as an ornithine transporter.
  • FIGS. 2A and 2B the ability of LysE to transport lysine and ornithine was confirmed, indicating that the membrane transporter searching method of the present invention is highly accurate and useful.
  • Example strain 4 Although the function of the transporter gene introduced into Example strain 4 was not clarified, it was shown by the present invention that it is a glycine-specific membrane transporter (FIG. 2D). Furthermore, the valine transporter exists in various ways regardless of its transport ability, and in particular, the transporter whose function was unknown in the past expressed in Example strain 14 was identified as the valine transporter having the highest transport ability. (FIG. 2E). These results also showed the usefulness as a method for searching for a membrane transporter of the present invention.
  • the present invention can be a search method specialized in searching for a membrane transporter of a specific substance by selecting an expression host, and this example is an example.
  • Escherichia coli MLA301 ⁇ ygaW strain (Hori et al (2011) Appl Environ Microbiol 77: 4027-4034) was used as an expression host.
  • the Escherichia coli MLA301 ⁇ ygaW strain is an alanine-requiring strain because it lacks the intracellular alanine metabolism system, and when cultured in the presence of dialanine (L-alanine-L-alanine), monoalanine (L A strain of E.
  • Escherichia coli MLA301 ⁇ ygaW strain as an expression host and introducing a membrane transporter expression plasmid vector and culturing in the presence of dialanine, growth inhibition of the introduced strain was reduced and growth of the cells (increase in the number of cells) was observed.
  • the introduced strain expresses an alanine excretion transporter, and a new alanine transporter can be searched and specified.
  • the Escherichia coli MLA301 ⁇ ygaW strain and control strain transformed with a membrane protein expression plasmid vector were pre-cultured using LB medium at 30 ° C. for 20 hours to obtain a preculture solution. Subsequently, the cultured cells were centrifuged at 7,500 rpm (KUBOTA 3700) for 1 minute at 4 ° C. to collect the whole amount.
  • the supernatant after collection was removed, and a minimal medium (Glucose 220 mM, MgSO 4 17 mM, (NH 4) 2 SO 4 7.5 mM, K 2 SO 4 7 mM, NaCl 22 mM, Sodium phosphate (pH 7.0), D-Ala 50 ⁇ g / ml, Asp-
  • the culture solution was sampled over time, and the absorbance at 660 nm (OD 660) was measured. As needed, 0.5 mM Ala-Ala, 30 ⁇ g / ml Carbenicillin, 30 ⁇ g / ml Spectamycin was added to the LB medium and the minimal medium.
  • Example 3 Productivity increase 1
  • the transporter identified as the valine transporter was subjected to verification for increased productivity using the present invention.
  • C43 (DE3) Rosetta strain (Example strain) introduced with the pTrc99A_mstX_C8_His plasmid vector containing the transporter gene
  • C43 (DE3) Rosetta strain (Comparative Example strain) introduced with the pTrc99A_C8_His plasmid vector containing the transporter gene
  • Example 1 The culture supernatant was filtered using a 0.22 ⁇ m filter.
  • the filtrate was mixed with an equal volume of matrix (5 mg / mL CHCA (solvent is 70% acetonitrile, 0.1% TFA)) for ionization, and TOF / TOF TM
  • matrix 5 mg / mL CHCA (solvent is 70% acetonitrile, 0.1% TFA)
  • TOF / TOF TM The sample was subjected to 5800 (manufactured by SCIEX) and detected according to the attached protocol. Proline was used as an internal standard, and the peak of valine was confirmed using a sample (FIG. 4B, Val (Std.)), And the peak intensity of valine in each filtrate was compared.
  • FIG. 4A is a blank of minimal medium only.
  • proline final concentration of 100 ⁇ M
  • FIGS. 4B to F proline (final concentration of 100 ⁇ M) was added as an internal standard, and the peak of valine in the standard was confirmed (FIG. 4B: Std.).
  • Culture supernatant obtained by culturing in medium (FIG. 4C)
  • culture supernatant obtained by culturing C43 (DE3) Rosetta strain only introduced with pTrc99A_mstX_C8_His plasmid vector in minimal medium
  • FIG. 4E The TOF / MS data of the culture supernatant obtained by culturing in a medium and the culture supernatant (FIG.
  • Example strain 4F obtained by culturing Example strains in a minimal medium are shown.
  • the amount of valine produced in each of the Example strain and Comparative Example strain was compared with the signal ratio derived from the internal standard proline, the Example strain increased remarkably (about 4 times) (FIG. 5). From this, it was demonstrated that the production method of the substance of the present invention is expected to increase the production amount of the predetermined substance.
  • Example 4 Productivity increase 2 About CT005 specified in Example 2, the alanine production increase ability using this invention was verified.
  • E. coli C43 (DE3) strain (Example strain) introduced with the plasmid vector for ligation of CT005 obtained in Example 2 and the plasmid vector for expression of the membrane transporter without ligation of CT005 were introduced.
  • Escherichia coli C43 (DE3) strain (comparative example strain) was obtained and cultured with shaking in an LB liquid medium (30 ⁇ g / ml Carbenicillin) at 30 ° C. for 24 hours.
  • Amino acids contained in the culture supernatant after collection were derivatized using o-phthalaldehyde, and HPLC (LC-10A, Shimadzu, Japan) equipped with a cation exchange column (Shim-pack AMINO NA, Shimadzu, Japan). ). 30 ⁇ g / ml Carbenicillin was added to the LB medium and minimal medium as needed.
  • Example 5 Comparison of Productivity The productivity of a given compound according to the present invention was verified.
  • the Example strain 14 in Example 1 was used as the Example strain.
  • two types of comparative strains were prepared. As shown in FIG. 7, Comparative strain 1 replaces the termination codon part of the fusion partner gene and the start codon part of the NCgl2232 gene with a codon encoding another amino acid, and is linked as a gene encoding a fusion protein of the fusion partner and NCgl2232.
  • Comparative strain 2 was obtained by linking the fusion partner gene and NCgl2232 gene so that they were expressed by different open reading frames (hereinafter referred to as a single cistron gene). Using.
  • Comparative strains 1 and 2 were the same as in the method described in (2) -1, except that the following primer set was used for pTrc99A_mstX_C8_His described in (1) -1 above, and a fusion protein gene and a single cistron gene amplification product And a ligated plasmid vector was obtained by gene transfer using E. coli as described in the same method as in (2) -2.
  • FW fusion protein gene: GAAAAAGAGGGACAACAGGTGCTCATG (Translational fusion) FW (single cistron gene): GAAAAAGAGTGAGTGGATGCAACAGGTGCTCATG (: Individual) RV (common to Example strain and Comparative strain): CACCGCCACCTCTAGAAGATCCAAAGATAATGGAGACCGC (RV of Example strain 14 in Table 1).
  • Example strain 14 two types of comparative strains and the control strain described in (2) -2 were both cultured under the same conditions as in (2) -2, and the same as described in (4) The amino acid was detected by this method. However, proline (final concentration 1 mM) was used as an internal standard, and the peak of valine was confirmed using a standard (FIG. 7, upper left, Val (Std.)), And the peak intensity of valine in each filtrate was compared ( FIG. 7).
  • Example strain 14 contains valine, the amount of which is compared with the amount in the preculture solution, the culture supernatant of the two comparative strains, and the control culture supernatant. It was found that the number was significantly higher (FIG. 7). From the above, it was shown that the productivity of the predetermined compound according to the present invention is remarkably high and beneficial, taking the productivity of valine as an example.
  • Example 6 An amplification product was obtained using each of the following primer sets, using the genomic DNA of Corynebacterium glutamicum extracted as described in (2) -1 as a template.
  • Example strains 55 and 68 were obtained by introducing each amplified product into a plasmid vector ligated to pTrc99A_mstX_C8_His by the method described in (2) -1, using E. coli described in (2) -2 as a host. It was.
  • Example strain 55 The gene introduced into Example strain 55 was annotated (function estimation) as a protein involved in shikimate transport on the genome of Corynebacterium glutamicum, but according to the present invention, this was expressed as 3- ⁇ -mannobiose. It was identified as a transporter, and the utility of the screening method of the present invention was shown. Further, it was confirmed that the productivity of 3- ⁇ -mannobiose was improved by culturing a microorganism in which the same gene was expressed by the method of the present invention, and the usefulness of the method for producing a predetermined substance of the present invention was demonstrated. It was.
  • Example strain 68 contained much lactic acid as compared with the preculture solution and the control culture supernatant.
  • the transporter gene introduced into Example strain 68 was annotated (function estimation) as a protein involved in metabolite transport on the genome of Corynebacterium glutamicum, but according to the present invention, it excretes lactic acid. It was identified as a transporter, and the usefulness of the screening method of the present invention was shown. Further, as shown in FIG.

Abstract

Provided is a novel method that, with relatively little effort and without requiring radioactive compounds, can be used to exhaustively screen various target substances and various membrane proteins. Provided is a method for resolving bottleneck problems relating to substance production by microorganisms in which, due to insufficient capability or inability to discharge a substance outside a cell, productivity of the substance decreases, production is not possible, or the like. This method for producing a specific compound includes a step in which a microorganism is cultured that incorporates a gene coding a fusion partner and a gene coding a membrane protein relating to transport of the prescribed compound so that these genes express.

Description

所定の化合物に対する膜タンパク質のスクリーニング方法及び所定の化合物の生産方法Method for screening membrane protein for predetermined compound and method for producing predetermined compound
 [関連出願の相互参照]
 本出願は、2018年4月27日に出願された、日本国特許出願第2018-087700号明細書(その開示全体が参照により本明細書中に援用される)に基づく優先権を主張する。本発明は、所定の化合物に対する膜タンパク質のスクリーニング方法及び所定の化合物の生産方法に関する。
[Cross-reference of related applications]
This application claims priority based on Japanese Patent Application No. 2018-087700 filed on Apr. 27, 2018, the entire disclosure of which is incorporated herein by reference. The present invention relates to a method for screening a membrane protein for a predetermined compound and a method for producing the predetermined compound.
 微生物を用いた物質生産は、一般的に、化学合成等と比較して、生産性、コスト等の面からメリットがあることが多く、様々な分野において利用されている。典型的には、環境中から取り込まれた基質が微生物の細胞内で代謝されて代謝産物となり、細胞外に排出され、排出された当該代謝産物が回収される。ここで、基質の細胞内への取り込みを行う輸送体(インポーター)及び代謝産物の細胞外への排出を行う輸送体(エクスポーター)、目的化合物が多糖などの高分子化合物の場合、生合成と生産物の排出を同時に担っている生合成酵素が重要である。具体的には、例えば、一次代謝産物の生産等の場合、所定の化合物のエクスポーター及び基質のインポーターは既に当該微生物が有していることが通常であるが、特に代謝改変により菌体内生産を強化し代謝産物の菌体内濃度が上がった場合、フィードバック阻害がかかり、生産物の排出輸送が律側段階となり得る(非特許文献1)。また、二次代謝産物、新規化合物の生産等の場合、そもそも使用する微生物が輸送体を有していない場合、基質が取り込まれないか、代謝産物が細胞外に排出されずに継続的に生産ができない等といった問題が生じ得る。こうした細胞外への物質の排出能が不十分か不能であることに原因する当該物質の生産性が低下する又はその生産ができないという問題を本発明者らは排出ボトルネックと呼んでいる。排出ボトルネックは現行の微生物を利用した物質の工業生産、又は微生物利用による工業生産が期待される新たな物質の生産に向けた技術開発おける潜在課題であるといえる。そのため、基質または代謝産物となり得る所定の化合物に対する輸送体がどのようなタンパク質であるかを特定することは物質生産の系を設計するために非常に有用である。 In general, substance production using microorganisms has many advantages in terms of productivity, cost, etc., compared to chemical synthesis and the like, and is used in various fields. Typically, a substrate taken in from the environment is metabolized in the cells of the microorganism to become a metabolite, discharged out of the cell, and the discharged metabolite is recovered. Here, a transporter (importer) that takes up a substrate into a cell, a transporter (exporter) that discharges a metabolite to the outside of the cell, and when the target compound is a high molecular compound such as a polysaccharide, The biosynthetic enzymes that are simultaneously responsible for the discharge of the product are important. Specifically, for example, in the case of production of primary metabolites, it is normal that the microorganism already has an exporter of a predetermined compound and an importer of a substrate. When the intracellular concentration of the metabolite increases as a result of strengthening, feedback inhibition is applied, and the excretion and transport of the product can be the limiting step (Non-patent Document 1). In addition, in the case of production of secondary metabolites, new compounds, etc., if the microorganism to be used does not have a transporter in the first place, the substrate is not taken up or the metabolite is continuously produced without being discharged outside the cell. Problems such as being unable to do so may occur. The present inventors have called the problem that the productivity of the substance is lowered or cannot be produced due to insufficient or impossible ability of the substance to be discharged out of the cell as the discharge bottleneck. Discharge bottlenecks can be said to be a potential issue in the technological development for the production of new substances that are expected to be industrially produced using the current microorganisms or industrially produced using microorganisms. Therefore, it is very useful to design a substance production system to specify what kind of protein is a transporter for a given compound that can be a substrate or a metabolite.
 従来は、遺伝学的手法(例えば、ジペプチド耐性相補遺伝子を利用したC.glutamicumグルタミン酸排出輸送体の探索)、生化学的手法(例えば、リポソーム再構成法による輸送活性測定を用いたアスパラギン酸輸送体の探索)等が報告されている(非特許文献1)しかし、上述の遺伝学的手法は、種々の遺伝子を欠損した株の作成が必要であること、同時に複数種の輸送体の探索は困難であること等の問題があった。また、上記の生化学的手法は、トランスポーターの精製・再構成が困難であること、放射性同位体が必要で、入手困難な化合物があること、特に排出輸送体(エクスポーター)は、取込み輸送体(インポーター)と比較して基質に対するKm値が非常に大きく探索が困難であること等の問題があった。 Conventionally, genetic methods (e.g., search for C. glutamicum glutamate excretion transporter using dipeptide resistance complementary gene), biochemical methods (e.g., aspartate transporter using transport activity measurement by liposome reconstitution method) However, the genetic method described above requires the creation of strains lacking various genes, and at the same time, it is difficult to search for multiple types of transporters. There were problems such as being. In addition, the biochemical methods described above are difficult to purify and reconstitute the transporter, require radioactive isotopes, and are difficult to obtain. In particular, the exhaust transporter (exporter) is taken up and transported. Compared to the body (importer), the Km value for the substrate is very large, making it difficult to search.
 また、インポーター、エクスポーター、生合成酵素などの膜タンパク質は、機能を保持した状態で細胞膜上で発現させることが重要であるが、膜タンパク質の細胞膜上での安定的な発現が困難であるため、膜タンパク質を安定的に発現し、生産を効率化することは困難であった。 In addition, it is important to express membrane proteins such as importers, exporters, and biosynthetic enzymes on the cell membrane while maintaining their functions, but it is difficult to stably express membrane proteins on the cell membrane. It has been difficult to stably express the membrane protein and improve the production efficiency.
 本発明は、微生物を用いた物質生産における上記ボトルネックを解決する新規方法を提供することを課題とする。また、本発明は、比較的少ない労力で、かつ放射性化合物が不要な方法で、種々の対象物質、種々の膜輸送体候補タンパク質について網羅的にスクリーニングできる新規方法を提供することを課題とする。 An object of the present invention is to provide a novel method for solving the bottleneck in substance production using microorganisms. Another object of the present invention is to provide a novel method capable of comprehensively screening for various target substances and various membrane transporter candidate proteins by a method that requires relatively little labor and does not require a radioactive compound.
 本発明者らは、フュージョンパートナーをコードする遺伝子と、前記所定の化合物の輸送に関わる膜タンパク質又はその候補タンパク質をコードする遺伝子とが発現するように組み込んだ微生物を物質生産方法又はスクリーニング方法に用いることにより上記課題を解決し得ることを見出した。本発明は、上記新たな知見に基づくものである。 The present inventors use, in a substance production method or a screening method, a microorganism in which a gene encoding a fusion partner and a membrane protein involved in transport of the predetermined compound or a gene encoding a candidate protein thereof are expressed. It has been found that the above problems can be solved. The present invention is based on the above new findings.
 従って、本発明は以下の項を提供する:
 項1.所定の化合物の生産方法であって、
フュージョンパートナーをコードする遺伝子と、前記所定の化合物の輸送に関わる膜タンパク質をコードする遺伝子とがポリシストロニックmRNAの翻訳により発現するように連結された遺伝子を組み込んだ微生物を培養する工程を含み、
 前記連結された遺伝子が、前記フュージョンパートナーをコードする遺伝子の終止コドンを構成するヌクレオチドの一部が前記所定の化合物の輸送に関わる膜タンパク質をコードする遺伝子の開始コドンの一部となるように連結された遺伝子である、方法。
Accordingly, the present invention provides the following sections:
Item 1. A method for producing a predetermined compound, comprising:
Culturing a microorganism incorporating a gene in which a gene encoding a fusion partner and a gene encoding a membrane protein involved in transport of the predetermined compound are linked so as to be expressed by translation of polycistronic mRNA,
The linked genes are linked such that a part of the nucleotides constituting the stop codon of the gene encoding the fusion partner is part of the start codon of the gene encoding the membrane protein involved in the transport of the predetermined compound A method, which is a genetically generated gene.
 項2.前記微生物を培養する工程で得られた培養液から前記所定の化合物を回収する工程をさらに含む、項1に記載の方法。 Item 2. Item 2. The method according to Item 1, further comprising the step of recovering the predetermined compound from the culture solution obtained in the step of culturing the microorganism.
 項3.前記微生物がバクテリアである項1又は2に記載の方法。 Item 3. Item 3. The method according to Item 1 or 2, wherein the microorganism is a bacterium.
 項4.前記微生物に、当該微生物のレアコドンに対応するtRNAをコードする遺伝子がさらに組み込まれている、請求項1~3のいずれか1項に記載の方法。 Item 4. The method according to any one of claims 1 to 3, wherein a gene encoding a tRNA corresponding to a rare codon of the microorganism is further incorporated into the microorganism.
 項5.膜タンパク質が、エクスポータータンパク質、インポータータンパク質、合成酵素タンパク質、タンパク質分泌装置の構成要素であるタンパク質である、項1~4のいずれか1項に記載の方法。 Item 5. Item 5. The method according to any one of Items 1 to 4, wherein the membrane protein is an exporter protein, an importer protein, a synthase protein, or a protein that is a component of a protein secretion apparatus.
 項6.下記工程(1)~(4)を含む、所定の化合物に対する膜タンパク質をスクリーニングするための方法:
(1)フュージョンパートナーをコードする遺伝子と、膜タンパク質候補をコードする遺伝子とがポリシストロニックmRNAの翻訳により発現するように連結された遺伝子であって、前記フュージョンパートナーをコードする遺伝子の終止コドンを構成するヌクレオチドの一部が前記膜タンパク質をコードする遺伝子の開始コドンの一部となるように連結された遺伝子を組み込んだ微生物のライブラリーを作成する工程、
(2)前記微生物を培養する工程
(3)培養前に比べて前記所定の化合物の量に変動が認められる培養液またはその上清を特定する工程、
(4)前記特定された培養液またはその上清を得た微生物に組み込まれ発現する膜タンパク質候補が、前記所定の化合物の膜内外の輸送能を有する膜タンパク質であると特定する工程。
Item 6. A method for screening a membrane protein for a predetermined compound, comprising the following steps (1) to (4):
(1) A gene that encodes a fusion partner and a gene that encodes a membrane protein candidate so as to be expressed by translation of polycistronic mRNA, wherein a stop codon of the gene encoding the fusion partner is selected A step of creating a library of microorganisms incorporating a gene linked so that a part of the nucleotides constituting it is part of the start codon of the gene encoding the membrane protein,
(2) a step of culturing the microorganism (3) a step of identifying a culture solution or a supernatant thereof in which a variation is observed in the amount of the predetermined compound compared to before the culture,
(4) A step of specifying that the membrane protein candidate incorporated and expressed in the microorganism from which the specified culture solution or supernatant is obtained is a membrane protein having the ability to transport the predetermined compound inside and outside the membrane.
 項7.膜タンパク質が、エクスポータータンパク質、インポータータンパク質、合成構想タンパク質、タンパク質分泌装置を構成要素であるタンパク質である、項6~96に記載の方法。 Item 7. Item 101. The method according to Item 6 to 96, wherein the membrane protein is an exporter protein, an importer protein, a synthetic concept protein, or a protein that is a protein secretion apparatus.
 項8.前記微生物がバクテリアである項6又は7に記載の方法。 Item 8. Item 8. The method according to Item 6 or 7, wherein the microorganism is a bacterium.
 項9.前記微生物に、当該微生物のレアコドンに対応するtRNAをコードする遺伝子がさらに組み込まれている、項6~8のいずれか1項に記載の方法。 Item 9. Item 9. The method according to any one of Items 6 to 8, wherein a gene encoding a tRNA corresponding to a rare codon of the microorganism is further incorporated into the microorganism.
 本発明は、上記排出ボトルネックを解決する新規方法を提供することができる。本発明によれば、比較的少ない労力で、かつ放射性化合物が不要な方法で、種々の対象物質、種々の膜輸送体候補タンパク質について網羅的にスクリーニングすることができる新規方法を提供することができる。 The present invention can provide a new method for solving the above discharge bottleneck. According to the present invention, it is possible to provide a novel method capable of comprehensively screening various target substances and various membrane transporter candidate proteins with a relatively small effort and a method that does not require a radioactive compound. .
実施例1に記載のプラスミドの概略を示す。The outline of the plasmid described in Example 1 is shown. 実施例1の結果を示す。The result of Example 1 is shown. 実施例2の結果を示す。The result of Example 2 is shown. 実施例3の結果を示す。The result of Example 3 is shown. 実施例3の結果を示す。The result of Example 3 is shown. 実施例4の結果を示す。The result of Example 4 is shown. 実施例5の結果を示す。The result of Example 5 is shown. 実施例6の結果を示す。The result of Example 6 is shown.
 本発明において、用語「遺伝子」には、特に言及しない限り、タンパク質、tRNA、rRNA等の一次構造を規定している構造遺伝子だけでなく、プロモーター、オペレーター等の特定の制御機能を有する核酸上の領域も包含される。従って、本発明において「遺伝子」とは、特に言及しない限り、調節領域、コード領域、エクソン、及びイントロンを区別することなく示すものとする。また、「構造遺伝子」には、元のDNA配列にサイレント変異が施されたサイレントDNAも包含される。また、本発明においては、遺伝子発現に干渉するsiRNA等の核酸分子も「遺伝子」に包含される。 In the present invention, unless otherwise specified, the term “gene” refers not only to a structural gene defining a primary structure such as a protein, tRNA, or rRNA, but also to a nucleic acid having a specific regulatory function such as a promoter or an operator. Regions are also included. Therefore, in the present invention, “gene” refers to a regulatory region, a coding region, an exon, and an intron without distinction unless otherwise specified. The “structural gene” also includes silent DNA in which the original DNA sequence has been subjected to silent mutation. In the present invention, nucleic acid molecules such as siRNA that interfere with gene expression are also included in the “gene”.
 本明細書中において、「核酸」は、ヌクレオチド、オリゴヌクレオチド及びポリヌクレオチドと同義であって、DNA、RNA、DNA-RNAハイブリッドのいずれであってもよい。また、これらは2本鎖であっても1本鎖であってもよく、ある配列を有する核酸分子といった場合、特に言及しない限り、これに相補的な配列を有する核酸分子(またはヌクレオチド、オリゴヌクレオチド及びポリヌクレオチド)も包括的に意味するものとする。また、これらの核酸分子は環状でも直鎖状であってもよく、また合成及び生物由来のいずれであってもよい。 In the present specification, “nucleic acid” is synonymous with nucleotide, oligonucleotide, and polynucleotide, and may be any of DNA, RNA, and DNA-RNA hybrids. Further, these may be double-stranded or single-stranded, and in the case of a nucleic acid molecule having a certain sequence, a nucleic acid molecule having a complementary sequence (or nucleotide, oligonucleotide) unless otherwise specified. And polynucleotide) are also meant to be inclusive. These nucleic acid molecules may be circular or linear, and may be synthetic or biological.
 本発明において、用語「タンパク質(タンパク)」及び「ペプチド」は、特に言及しない限り、オリゴペプチド及びポリペプチドを含む意味で用いられる。また、本明細書において、「タンパク質」及び「ペプチド」は、特に言及しない限り、糖鎖などによって修飾されているタンパク質及び非修飾のタンパク質の両方を包含するものとする。このことは、タンパク質であることが明記されていないタンパク質についても同様である。 In the present invention, the terms “protein” and “peptide” are used to include oligopeptides and polypeptides unless otherwise specified. In the present specification, “protein” and “peptide” include both a protein modified with a sugar chain and an unmodified protein unless otherwise specified. The same applies to proteins that are not specified as proteins.
 本明細書中において、「膜タンパク質」は、特に言及しない限り、細胞膜に局在する形で発現し、所定の化合物の細胞内外の輸送能を有するタンパク質を含む意味で用いられる。所定の化合物の細胞内外の輸送に関わる膜輸送体タンパク質、細胞膜に局在し、所定の化合物への触媒作用で作り出すのみならず細胞内外の輸送にも関わる合成酵素タンパク質、または細胞膜において機能するタンパク質分泌装置と呼ばれる、細胞内外のタンパク質の輸送に関わる複数のタンパク質により構成される複合体を含むものとする。膜輸送体タンパク質はさらにエクスポータータンパク質、インポータータンパク質を含むものとする。 In the present specification, unless otherwise specified, “membrane protein” is used in the meaning of including a protein that is expressed in a form localized in the cell membrane and has the ability to transport a predetermined compound into and out of the cell. Membrane transporter protein involved in the transport of a given compound inside and outside the cell, a synthase protein that is localized in the cell membrane and is not only produced by catalysis of the given compound but also involved in the transport inside and outside the cell, or a protein that functions in the cell membrane It is assumed to include a complex composed of a plurality of proteins called secretory devices involved in the transport of proteins inside and outside the cell. The membrane transporter protein further includes an exporter protein and an importer protein.
 膜タンパク質のスクリーニング方法
 本発明は、下記工程(1)~(4)を含む、所定の化合物に対する膜タンパク質をスクリーニングするための方法を提供する:
(1)フュージョンパートナーをコードする遺伝子と、膜タンパク質候補をコードする遺伝子とがポリシストロニックmRNAの翻訳により発現するように連結された遺伝子であって、前記フュージョンパートナーをコードする遺伝子の終止コドンを構成するヌクレオチドの一部が前記膜タンパク質候補をコードする遺伝子の開始コドンの一部となるように連結された遺伝子を組み込んだ微生物のライブラリーを作成する工程、
(2)前記微生物を培養する工程
(3)培養前に比べて前記所定の化合物の量に変動が認められる培養液またはその上清を特定する工程、
(4)前記特定された培養液またはその上清を得た微生物に組み込まれ発現する膜タンパク質候補が、前記所定の化合物の膜内外の輸送能を有するタンパク質であると特定する工程。
Method for Screening Membrane Protein The present invention provides a method for screening a membrane protein for a predetermined compound, comprising the following steps (1) to (4):
(1) A gene that encodes a fusion partner and a gene that encodes a membrane protein candidate so as to be expressed by translation of polycistronic mRNA, wherein a stop codon of the gene encoding the fusion partner is selected A step of creating a library of microorganisms incorporating a gene linked so that a part of the constituting nucleotides becomes part of the start codon of the gene encoding the membrane protein candidate,
(2) a step of culturing the microorganism (3) a step of identifying a culture solution or a supernatant thereof in which a variation is observed in the amount of the predetermined compound compared to before the culture,
(4) A step of specifying that the membrane protein candidate incorporated and expressed in the microorganism from which the specified culture solution or supernatant is obtained is a protein having the ability to transport the predetermined compound inside or outside the membrane.
 本発明の対象となる「所定の化合物」としては、特に限定されないが、例えば、アメリカ合衆国エネルギー省(DOE)が公表している微生物による工業生産が期待されている物質(https://energy.gov/eere/bioenergy)をはじめとして、非特許文献4~8などにまとめられている微生物による工業生産がおこなわれている物質が挙げられ、それは低分子化合物、高分子化合物、その他の有用物質と非常に多岐にわたる。典型的には、所定の化合物は、有機化合物である。具体例としては、当該所定の化合物には、例えば、アミノ酸類、有機酸類、核酸類、炭水化物類(単糖類、二糖類等の糖類等)、ビタミン類、アルコール類等の低分子化合物;抗生物質類、多糖類、ポリペプチド、ポリフェノール類、酵素・タンパク質等の高分子化合物等も含まれる。また有用物質としては、上記以外にも、生理活性物質、二次代謝産物各種物質も含まれる。 The “predetermined compound” that is the subject of the present invention is not particularly limited. For example, a substance (https://energy.gov) that is expected to be industrially produced by microorganisms published by the United States Department of Energy (DOE). / eere / bioenergy) and other substances that have been industrially produced by microorganisms as summarized in Non-Patent Documents 4 to 8, including low molecular weight compounds, high molecular weight compounds, and other useful substances. A wide variety. Typically, the predetermined compound is an organic compound. Specific examples of the predetermined compound include low molecular weight compounds such as amino acids, organic acids, nucleic acids, carbohydrates (saccharides such as monosaccharides and disaccharides), vitamins, alcohols, etc .; antibiotics , Polysaccharides, polypeptides, polyphenols, and high molecular compounds such as enzymes and proteins. In addition to the above, useful substances include physiologically active substances and various substances of secondary metabolites.
 一方、本発明の対象となる「所定の化合物」に、膜タンパク質は想定しない。本発明の対象となる「所定の化合物」は、前記膜タンパク質を介して微生物の細胞内外へ輸送される物質となる。 On the other hand, no membrane protein is assumed as the “predetermined compound” that is the subject of the present invention. The “predetermined compound” that is the subject of the present invention is a substance that is transported into and out of the cells of the microorganism via the membrane protein.
 膜タンパク質がエクスポータータンパク質の場合、本発明の対象となる「所定の化合物」として、当該化合物の存在下で宿主に用いる微生物を生育できるような化合物だけでなく、宿主に用いる微生物細胞内への蓄積によってその生育を阻害する作用を有する化合物も挙げることができ、例えば宿主が大腸菌の場合、モノアラニン(L-アラニン)、非リボソームペプチド、テルペノイドといった大腸菌の生育を阻害することが知られている物質も本発明では「所定の化合物」とすることができる。 When the membrane protein is an exporter protein, the “predetermined compound” that is the subject of the present invention is not only a compound that can grow a microorganism used in the host in the presence of the compound, but also into a microorganism cell used in the host. Compounds that have an action of inhibiting the growth by accumulation can also be mentioned. For example, when the host is E. coli, it is known to inhibit the growth of E. coli such as monoalanine (L-alanine), non-ribosomal peptide, terpenoid. In the present invention, a substance can also be a “predetermined compound”.
 工程(1)
 本発明のスクリーニング方法は、フュージョンパートナーをコードする遺伝子と、膜タンパク質候補をコードする遺伝子とがポリシストロニックmRNAの翻訳により発現するように連結された遺伝子であって、前記フュージョンパートナーをコードする遺伝子の終止コドンを構成するヌクレオチドの一部が前記膜タンパク質候補をコードする遺伝子の開始コドンの一部となるように連結された遺伝子を組み込んだ微生物のライブラリーを作成する工程を含む。本工程は、フュージョンパートナーをコードする遺伝子及び膜タンパク質候補をコードする遺伝子を微生物に導入する操作を、種々の膜タンパク質候補をコードする遺伝子について行い、複数種類の組み替え微生物を製造することにより行うことができる。
Process (1)
The screening method of the present invention is a gene in which a gene encoding a fusion partner and a gene encoding a membrane protein candidate are linked so as to be expressed by translation of polycistronic mRNA, and the gene encoding the fusion partner And a step of preparing a library of microorganisms incorporating a gene linked so that a part of the nucleotides constituting the stop codon is part of the start codon of the gene encoding the membrane protein candidate. In this step, an operation for introducing a gene encoding a fusion partner and a gene encoding a membrane protein candidate into a microorganism is performed on the genes encoding various membrane protein candidates, and a plurality of types of recombinant microorganisms are produced. Can do.
 本発明において、フュージョンパートナーとは、発現させるタンパク質のN末端側に結合させるタンパク質で、膜蛋白質のmRNAの安定化や膜タンパク質の細胞膜上での発現量の向上といった効果を発揮するもので(非特許文献3)、発現させるタンパク質を精製する際にも利用される。代表的なものにはmstX、ybeLなどがある。尚、非特許文献3には、フュージョンパートナーであるmstX、ybeLをProW、MscL、LacY、GltPといった膜タンパク質に連結してin vivoで発現させたことが記載されている。しかし、非特許文献3では、膜タンパク質の構造生物学において十分な量の、構造が保存されたタンパク質を得られるかどうかが今なお主要なボトルネックであると課題設定している。本文献では、フュージョンパートナーを利用して生産した膜タンパク質の発現の発現量を確認し、無細胞評価系で機能を評価した結果を開示するにとどまる。当該構造生物学における膜タンパク質の質/量的向上をさらに求めるにあたり、議論の中心はどのフュージョンパートナーを選択するのがよいか、および遺伝子の構造に置かれており、mstXよりybeLのほうが好ましいという結論を開示するにとどまる。また、Y4 GPCRを発現させた場合は、フュージョンパートナーの不使用時に比べればあるていどの質/量的向上は確認できるものの、まだまだ不十分である旨が述べられる。フュージョンパートナーを用いて発現させた膜タンパク質がin vivo(細胞)において機能すること、発現させた膜タンパク質の精製を行わずに簡便に基質の探索ができること、発現させた膜タンパク質が有用物質生産代謝系と共同して機能し、物質生産の効率化に寄与するかどうかの検討結果に関する開示はない。本発明において、mstXとは、Genbank accession No.YP_003097778.1に示されるアミノ酸配列を有するポリペプチド又は当該アミノ酸配列と70%以上(好ましくは80%以上、より好ましくは85%以上、より好ましくは90%以上、より好ましくは95%以上、より好ましくは97%以上、より好ましくは99%以上)の同一性を有するアミノ酸配列を有するポリペプチド(典型的には上記ポリペプチドとの機能的等価物)を示す。また、本発明において、ybeLとは、Genbank accession No.NP_415176.1に示されるアミノ酸配列を有するポリペプチド又は当該アミノ酸配列と70%以上(好ましくは80%以上、より好ましくは85%以上、より好ましくは90%以上、より好ましくは95%以上、より好ましくは97%以上、より好ましくは99%以上)の同一性を有するアミノ酸配列を有するポリペプチド(典型的には上記ポリペプチドとの機能的等価物)を示す。 In the present invention, the fusion partner is a protein that binds to the N-terminal side of the protein to be expressed, and exhibits effects such as stabilizing the mRNA of the membrane protein and improving the expression level of the membrane protein on the cell membrane (non- Patent Document 3) is also used when purifying a protein to be expressed. Typical examples include mstX and ybeL. Non-Patent Document 3 describes that fusion partners mstX and ybeL were linked to membrane proteins such as ProW, MscL, LacY and GltP and expressed in vivo. However, in Non-Patent Document 3, whether or not a sufficient amount of protein having a preserved structure can be obtained in the structural biology of membrane proteins is still set as a major bottleneck. This document only discloses the results of confirming the expression level of the expression of the membrane protein produced using the fusion partner and evaluating the function in the cell-free evaluation system. When further seeking the quality / quantitative improvement of membrane proteins in the structural biology, the focus of discussion is on which fusion partner to choose and the structure of the gene, ybeL being preferred over mstX Only disclose the conclusion. In addition, it is stated that when Y4PCRGPCR is expressed, although any quality / quantitative improvement can be confirmed compared to when the fusion partner is not used, it is still insufficient. The membrane protein expressed using a fusion partner functions in vivo (cells), the ability to easily search for a substrate without purifying the expressed membrane protein, and the expressed membrane protein is a useful substance for metabolism There is no disclosure regarding the results of a study on whether or not it will function in cooperation with the system and contribute to the efficiency of substance production. In the present invention, mstX means a polypeptide having the amino acid sequence shown in Genbank accession No. YP_003097778.1 or the amino acid sequence and 70% or more (preferably 80% or more, more preferably 85% or more, more preferably 90%). % Or more, more preferably 95% or more, more preferably 97% or more, more preferably 99% or more) polypeptide having an amino acid sequence (typically a functional equivalent to the above polypeptide) Indicates. In the present invention, ybeL is a polypeptide having the amino acid sequence represented by GenbankGenaccession No.NP_415176.1 or the amino acid sequence and 70% or more (preferably 80% or more, more preferably 85% or more, more preferably Is a polypeptide having an amino acid sequence having an identity of 90% or more, more preferably 95% or more, more preferably 97% or more, more preferably 99% or more (typically functional equivalent to the above polypeptide) Thing).
 膜タンパク質をコードする遺伝子を得る方法は特に限定されないが、例えば、後述の実施例のように、所定の微生物のゲノムDNAを鋳型にし、適当なプライマーを用いたPCRにより、膜輸送体候補タンパク質をコードする遺伝子を増幅することによりえることができる。膜タンパク質としてどの微生物に由来するものを用いるかは特に限定されないが、例えば、「遺伝子を導入する微生物」として後述する微生物等が挙げられる。当該膜タンパク質を元々有する微生物と当該膜タンパク質の遺伝子を導入する微生物とは異なる種類のものでも同一種でもよい。 A method for obtaining a gene encoding a membrane protein is not particularly limited. For example, as in the examples described later, a membrane transporter candidate protein is obtained by PCR using a genomic DNA of a predetermined microorganism as a template and using appropriate primers. It can be obtained by amplifying the encoded gene. There is no particular limitation as to which microorganism is used as the membrane protein, and examples thereof include microorganisms described later as “microorganisms into which genes are introduced”. The microorganism originally having the membrane protein and the microorganism into which the gene for the membrane protein is introduced may be of different types or the same type.
 これらの遺伝子を導入する微生物としては、特に限定されないが、本発明においては、真核生物、原核生物のうち、原核生物が好ましい。原核生物としては、例えば、大腸菌、放線菌(Corynebacterium属、Streptomyces属、Propionibacterium属等)、乳酸菌(Lactobacillus、Streptococcus属等)、枯草菌(Bacillus属等)等のバクテリア(真正細菌)が挙げられ、大腸菌、放線菌等が好ましい。Corynebacterium属としては、Corynebacterium glutamicum、Corymebacterium ammoniagenes、Corynebacterium  lactofermentum、Corynebacterium efficiens等が挙げられる。 The microorganism into which these genes are introduced is not particularly limited, but prokaryotes are preferred among eukaryotes and prokaryotes in the present invention. Examples of prokaryotes include bacteria (eubacteria) such as Escherichia coli, actinomycetes (genus Corynebacterium, Streptomyces, Propionibacterium, etc.), lactic acid bacteria (genus Lactobacillus, Streptococcus, etc.), Bacillus subtilis (genus Bacillus, etc.), E. coli and actinomycetes are preferred. Examples of the genus Corynebacterium include Corynebacterium glutamicum, Corymebacterium ammoniagenes, Corynebacterium lactofermentum, Corynebacterium efficiens, and the like.
 本発明においては、フュージョンパートナーをコードする遺伝子と、前記膜タンパク質候補をコードする遺伝子とがポリシストロニックmRNAの翻訳により発現するように連結された遺伝子として前記微生物に組み込まれていること、及び
前記フュージョンパートナーをコードする遺伝子の終止コドンを構成するヌクレオチドの一部が前記膜タンパク質候補をコードする遺伝子の開始コドンの一部となるように連結された遺伝子であることがさらに好ましい。かかる特徴に起因して、本発明によれば、膜タンパク質候補に質的又は量的に新たな機能をもたらすことができる。例えば、上記態様にてフュージョンパートナーをコードする遺伝子と前記膜タンパク質候補をコードする遺伝子とを組み合わせた場合、膜タンパク質候補について知られていなかった物質の輸送能を獲得し得る。従って、本発明にかかる、所定の化合物に対する膜タンパク質候補をスクリーニングする方法において、上記特徴は非常に重要である。上記微生物に、フュージョンパートナーをコードする遺伝子と、膜タンパク質候補をコードする遺伝子とを導入する方法としては、導入する遺伝子としてフュージョンパートナーをコードする遺伝子及び膜タンパク質候補をコードする遺伝子を上記態様で組み合わせた遺伝子を用いる以外、自体公知の方法に従い行うことができる。例えば、フュージョンパートナーをコードする遺伝性及び膜タンパク質候補をコードする遺伝子を組み込んだベクターを構築し、当該ベクターの存在下で上記微生物をインキュベートすることにより行うことができる。また、フュージョンパートナーをコードする遺伝子と、前記所定の化合物の輸送に関わる膜タンパク質候補をコードする遺伝子とが融合タンパク質として発現するように連結された遺伝子として前記微生物に組み込まれていることも好ましい。上記微生物は、典型的には、所定の化合物の産生能を有する。上記微生物には、所定の化合物を発現する遺伝子をさらに導入してもよい。また、前記微生物(好ましくは大腸菌)には、当該微生物のレアコドンに対応するtRNAをコードする遺伝子がさらに組み込まれていることが、特に当該微生物とは分類学上異なる種類の微生物由来の化合物を所定の化合物として発現する場合、tRNAレパートリーの拡充の観点から好ましい。
In the present invention, a gene encoding a fusion partner and a gene encoding the membrane protein candidate are incorporated into the microorganism as a linked gene so as to be expressed by translation of polycistronic mRNA, and It is further preferred that the gene is linked such that a part of the nucleotide constituting the stop codon of the gene encoding the fusion partner becomes a part of the start codon of the gene encoding the membrane protein candidate. Due to such characteristics, according to the present invention, a new function can be brought about qualitatively or quantitatively to a membrane protein candidate. For example, when the gene encoding the fusion partner and the gene encoding the membrane protein candidate are combined in the above-described embodiment, the ability to transport a substance not known about the membrane protein candidate can be obtained. Therefore, in the method for screening a membrane protein candidate for a predetermined compound according to the present invention, the above characteristics are very important. As a method for introducing a gene encoding a fusion partner and a gene encoding a membrane protein candidate into the microorganism, the gene encoding the fusion partner and the gene encoding the membrane protein candidate are combined in the above manner as the genes to be introduced. The method can be carried out according to a method known per se, except that the above gene is used. For example, it can be performed by constructing a vector incorporating a hereditary gene encoding a fusion partner and a gene encoding a membrane protein candidate and incubating the microorganism in the presence of the vector. It is also preferable that a gene encoding a fusion partner and a gene encoding a membrane protein candidate involved in the transport of the predetermined compound are incorporated into the microorganism as a linked gene so as to be expressed as a fusion protein. The microorganism typically has the ability to produce a predetermined compound. A gene expressing a predetermined compound may be further introduced into the microorganism. The microorganism (preferably Escherichia coli) further incorporates a gene encoding a tRNA corresponding to the rare codon of the microorganism. When expressed as a compound, it is preferable from the viewpoint of expanding the tRNA repertoire.
 工程(2)
 本発明は、前記工程(1)により得られた、フュージョンパートナーをコードする遺伝子と、膜タンパク質候補をコードする遺伝子とを組み込んだ微生物を培養する工程を含む。
Process (2)
The present invention includes a step of culturing a microorganism into which a gene encoding a fusion partner and a gene encoding a membrane protein candidate obtained by the step (1) are incorporated.
 当該工程で用いる培地としては、特に限定されず、上記微生物の培養に用いることができるものを広く使用することができる。例えば、LB培地、M9培地、MRS培地、マルツ培地、ブイヨン培地等が挙げられる。上記培地には、炭素源として、グルコース、でんぷん、可溶性でんぷん、廃糖蜜、コーンスティープリカー等を添加してもよい。膜タンパク質候補が、インポーター候補タンパク質の場合、所定の化合物を予め培地に添加しておいてもよい。培養温度は特に限定されず、20~45℃、より好ましくは25~37℃の範囲で適宜設定できる。培養時間も特に限定されないが、例えば、12~72時間、より好ましくは24~48時間の範囲で適宜設定できる。培養は、静置培養でも振盪培養でもよいが、振盪培養が好ましい。 The medium used in the step is not particularly limited, and a medium that can be used for culturing the microorganism can be widely used. For example, LB medium, M9 medium, MRS medium, Marz medium, bouillon medium and the like can be mentioned. Glucose, starch, soluble starch, waste molasses, corn steep liquor and the like may be added to the medium as a carbon source. When the membrane protein candidate is an importer candidate protein, a predetermined compound may be added to the medium in advance. The culture temperature is not particularly limited, and can be appropriately set within a range of 20 to 45 ° C, more preferably 25 to 37 ° C. The culture time is not particularly limited, but can be appropriately set within a range of, for example, 12 to 72 hours, more preferably 24 to 48 hours. The culture may be stationary culture or shaking culture, but shaking culture is preferred.
 工程(3)(4)
 本発明は、培養前に比べて前記所定の化合物の量に変動が認められる培養液またはその上清を特定する工程を含む。本工程は、上記(2)培養工程の前後における培養液またはその上清中の所定の化合物の量を測定し、これらの対比することにより行うことができる。上記(2)培養工程の前に比べて、当該工程後に所定の化合物の量に変動が認められる場合、膜タンパク質候補が、前記所定の化合物の膜輸送体であるものと特定できる。すなわち、上記微生物に所望の膜タンパク質候補をコードする遺伝子が組み込まれていた場合、フュージョンパートナーの作用と相まって、当該膜タンパク質候補が上記細胞の細胞膜を貫通するように構成され、その結果、膜タンパク質候補がインポータータンパク質の場合、培養上清中の所定の化合物の量は減少し、一方、膜タンパク質候補がエクスポータータンパク質の場合、培養上清中の所定の化合物の量は増加するものと考えられる。
Process (3) (4)
The present invention includes a step of identifying a culture solution or a supernatant thereof in which a variation is observed in the amount of the predetermined compound as compared with that before culturing. This step can be performed by measuring the amount of a predetermined compound in the culture solution or its supernatant before and after the above (2) culturing step and comparing them. When a change is observed in the amount of the predetermined compound after the step (2) before the culturing step, the membrane protein candidate can be identified as the membrane transporter of the predetermined compound. That is, when a gene encoding a desired membrane protein candidate is incorporated into the microorganism, the membrane protein candidate is configured to penetrate the cell membrane of the cell in combination with the action of the fusion partner. When the candidate is an importer protein, the amount of the predetermined compound in the culture supernatant is decreased. On the other hand, when the membrane protein candidate is the exporter protein, the amount of the predetermined compound in the culture supernatant is considered to increase. .
 所定の化合物の生産方法
 本発明は、所定の化合物の生産方法であって、
フュージョンパートナーをコードする遺伝子と、前記所定の化合物の輸送に関わる膜タンパク質をコードする遺伝子とがポリシストロニックmRNAの翻訳により発現するように連結された遺伝子を発現するように組み込んだ微生物を培養する工程を含み、
 前記連結された遺伝子が、前記フュージョンパートナーをコードする遺伝子の終止コドンを構成するヌクレオチドの一部が前記所定の化合物の輸送体タンパク質をコードする遺伝子の開始コドンの一部となるように連結された遺伝子である、方法を提供する。
The present invention relates to a method for producing a predetermined compound, comprising:
A microorganism in which a gene encoding a fusion partner and a gene encoding a membrane protein involved in transport of the predetermined compound are linked so that they are expressed by translation of polycistronic mRNA is cultured. Including steps,
The linked gene is linked so that a part of the nucleotide constituting the stop codon of the gene encoding the fusion partner becomes a part of the start codon of the gene encoding the transporter protein of the predetermined compound A method is provided that is a gene.
 本実施形態で用いる「フュージョンパートナーをコードする遺伝子と、前記所定の化合物の輸送に関わる膜タンパク質をコードする遺伝子とが発現するように組み込んだ微生物」についての詳細、具体的には、フュージョンパートナーの定義、所定の化合物、微生物等の例示等は、「膜タンパク質のスクリーニング方法」で説明した通りである。また、膜タンパク質をコードする遺伝子を得る方法、当該遺伝子を導入する方法等、当該遺伝子に関する事項は、「膜輸送体候補タンパク質をコードする遺伝子」について前述した通りである。また、培養工程における培地、添加物の種類、培養温度、時間等についても前述した通りである。 Details of the “microorganism integrated so as to express the gene encoding the fusion partner and the gene encoding the membrane protein involved in the transport of the predetermined compound” used in the present embodiment, specifically, the fusion partner Definitions, examples of predetermined compounds, microorganisms, and the like are as described in “ Membrane protein screening method ”. In addition, matters relating to the gene, such as a method for obtaining a gene encoding a membrane protein and a method for introducing the gene, are as described above for the “gene encoding a membrane transporter candidate protein”. Further, the culture medium, the kind of additive, the culture temperature, the time, etc. in the culture process are as described above.
 本発明の方法は、上記培養工程で得られた培養液から所定の化合物を回収する工程をさらに含んでいてもよい。培養培地からの所定の化合物の回収方法としては、特に限定されず、自体公知の方法(遠心分離、再結晶、蒸留法、溶媒抽出法、クロマトグラフィー等)を適宜用いることができる。 The method of the present invention may further include a step of recovering a predetermined compound from the culture solution obtained in the above culturing step. The method for recovering the predetermined compound from the culture medium is not particularly limited, and a method known per se (centrifugation, recrystallization, distillation method, solvent extraction method, chromatography, etc.) can be appropriately used.
 <実験方法の詳細>
 (1) 膜蛋白質高発現用ベクタープラスミドの構築(全実施例共通)
 (1)-1.pTrc99A_mstX_C8_Hisの作成
 プラスミドベクターpTrc99A(Pharmacia Biotech)を制限酵素XbaIとHindIIIで切断処理し、リンカーとTEVプロテアーゼ認識配列、His-tagを有するオリゴDNAにXbaI及びHindIIIの認識配列を5´端及び3´端にそれぞれ付加した配列(CTAGAGGTGGCGGTGGCGGTGGCGGTGGCGAAAACCTGTACTTCCAGGGTCACCACCACCACCACCATCATCATtaaTAGCT)をライゲーションにより挿入した(pTrc99A_C8_His)。本配列は、北海道システム・サイエンス株式会社に合成を委託して取得した。
<Details of experimental method>
(1) Construction of vector plasmid for high expression of membrane protein (common to all examples)
(1) -1. Construction of pTrc99A_mstX_C8_His Plasmid vector pTrc99A (Pharmacia Biotech) was cleaved with restriction enzymes XbaI and HindIII, and XbaI and HindIII recognition sequences were 5 ′ and 3 ′ ends in an oligo DNA having a linker and TEV protease recognition sequence and His-tag. A sequence added to each (CTAGAGGTGGCGGTGGCGGTGGCGGTGGCGAAAACCTGTACTTCCAGGGTCACCACCACCACCACCATCATCATtaaTAGCT) was inserted by ligation (pTrc99A_C8_His). This sequence was obtained by consigning synthesis to Hokkaido System Science Co., Ltd.
 次に、pTrc99A_C8_Hisを制限酵素NcoIとKpnIで切断処理し、クローニングしたmstX遺伝子をライゲーションにより挿入した。mstX遺伝子断片は、LB培地を用いて枯草菌(Bacillus subtilis)を培養後、NucleoSpin Tissue (Takara)を付属のプロトコル通りに用いて、枯草菌(B. subtilis)からゲノムDNAを抽出し、抽出したB. subtilisゲノムDNAを鋳型とし、forward primer: AGGAAACAGACcatgttttgtacattttttgaaaaacatcaccgg、およびreverse primer: CTAGAGGATCCCCGGGTACCACTCATtctttttctccttcttcagatactg をプライマーとして用いて、PCRにより増幅することで得た。In-Fusion HD Cloning Kit (Takara)を付属のプロトコル通りに用いて、前記mstX遺伝子断片をNcoI及びKpnIで処理後、pTrc99A_C8_Hisにライゲーションした(pTrc99A_mstX_C8_His)。 Next, pTrc99A_C8_His was cleaved with restriction enzymes NcoI and KpnI, and the cloned mstX gene was inserted by ligation. After culturing Bacillus subtilis using LB medium, the mstX gene fragment was extracted by extracting genomic DNA from B. subtilis using NucleoSpin Tissue (Takara) according to the attached protocol. B. It was obtained by amplifying by PCR using subtilis genomic DNA as a template and using forward primer: AGGAAACAGACcatgttttgtacattttttgaaaaacatcaccgg and reverse primer: CTAGAGGATCCCCGGGTACCACTCATtctttttttctccttcttcagatactg as primers. Using the In-Fusion HD Cloning Kit (Takara) according to the attached protocol, the mstX gene fragment was treated with NcoI and KpnI and then ligated to pTrc99A_C8_His (pTrc99A_mstX_C8_His).
 (1)-2.pTrc99A_ybeL_C8_Hisの作成
 pTrc99A_C8_Hisは実施例(1)-1.と同じ手順にて作成した。ybeL遺伝子断片は、実施例(1)-1.と同じ手順にて取得した大腸菌ゲノムDNAを鋳型に、forward primer(AGGAAACAGACcatgaacaaggttgctcaatattaccg)およびreverse primer (CTAGAGGATCCCCGGGTACCACTCATaccacttctccgctgtgataaac)をプライマーとして用いて、PCRにより増幅することで得た。得られた増幅断片は、実施例(1)-2.と同じ手順にてpTrc99A_C8_Hisにライゲーションし、pTrc99A_ybeL_C8_Hisを得た。
(1) -2. Preparation of pTrc99A_ybeL_C8_His pTrc99A_C8_His is the example (1) -1. The same procedure was used. The ybeL gene fragment was prepared in Example (1) -1. It was obtained by PCR amplification using E. coli genomic DNA obtained in the same procedure as a template using forward primer (AGGAAACAGACcatgaacaaggttgctcaatattaccg) and reverse primer (CTAGAGGATCCCCGGGTACCACTCATaccacttctccgctgtgataaac) as primers. The obtained amplified fragments were obtained in Example (1) -2. Ligated to pTrc99A_C8_His by the same procedure as above to obtain pTrc99A_ybeL_C8_His.
 (2) 実施例1.輸送体の探索その1(コリネ)
 (2)-1.コリネ膜輸送体ライブラリーの作成
  培地(ポリペプトン2 g, Yeast extract 0.4 g, MgSO4 7H2O 0.2 g/ 200 ml)を用いてコリネバクテリウム・グルタミカム(Corynebacterium glutamicum)を培養し、菌体よりNucleoSpin Tissue (Takara)を付属のプロトコル通りに用いてゲノムDNAを抽出した。抽出したゲノムDNAを鋳型にして、表1のプライマーを用いてPCRにより3種の輸送体遺伝子をそれぞれ増幅した。pTrc99A_mstX_C8_Hisを制限酵素KpnIとXbaIで処理し、In-Fusion HD Cloning Kit (Takara)を付属のプロトコル通りに用いて各輸送体遺伝子をライゲーションし、各膜輸送体発現用プラスミドベクターを構築した。このとき、図1に示すようにmstX遺伝子の終止コドンと各輸送体遺伝子の開始コドンが互いにその一部を共有する状態となっている。
(2) Example 1. Transporter search 1 (coryne)
(2) -1. Corynebacterium glutamicum (Corynebacterium glutamicum) is cultured using a medium for preparing a coryneform membrane transporter library (polypeptone 2 g, yeast extract 0.4 g, MgSO4 7H2O 0.2 g / 200 ml). Genomic DNA was extracted using NucleoSpin Tissue (Takara) according to the attached protocol. Using the extracted genomic DNA as a template, each of the three transporter genes was amplified by PCR using the primers shown in Table 1. pTrc99A_mstX_C8_His was treated with restriction enzymes KpnI and XbaI, and each transporter gene was ligated using In-Fusion HD Cloning Kit (Takara) according to the attached protocol to construct a plasmid vector for expression of each membrane transporter. At this time, as shown in FIG. 1, the stop codon of the mstX gene and the start codon of each transporter gene share a part of each other.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (2)-2.輸送体発現用大腸菌の形質転換
  毒性タンパク質の発現に適した大腸菌C43 (DE3)株(Lucigen社)に大腸菌のレアコドンに対応するtRNAを補充するプラスミドpRARE(メルク社)を形質転換した株(C43 (DE3) Rosetta株)を(2)-1で得た膜輸送体発現用プラスミドベクターの発現宿主とし、実施例株を得た。またコントロールとして、膜輸送体遺伝子をライゲーションしていないpTrc99A_mstX_C8_Hisを前記発現宿主に導入しコントロール株を取得した。
(2) -2. E. coli for transporter expression transformation E. coli C43 (DE3) strain (Lucigen) suitable for expression of toxic protein transformed with plasmid pRARE (Merck) supplemented with tRNA corresponding to rare codons of E. coli (C43 ( Example strains were obtained using DE3) Rosetta strain) as the expression host of the plasmid vector for membrane transporter expression obtained in (2) -1. Further, as a control, pTrc99A_mstX_C8_His not ligated with a membrane transporter gene was introduced into the expression host to obtain a control strain.
 実施例株およびコントロール株を、LB培地を用いて30℃、24 h前培養し、前培養液を得た。50 ml M9最小培地に抗生物質アンピシリン(100 μg/ml)とクロラムフェニコール(30 μg/ml)を添加し、前培養液500 μlを添加し、37℃で振盪培養した。OD660が、おおよそ0.5になった時に、終濃度が1 mM となるようにIPTGを添加し、ひきつづき37℃で、24時間振盪培養した。24時間培養後、9,000 rpm, 15 min 遠心し、実施例株培養上清およびコントロール株培養上清を得た。 Example strains and control strains were precultured at 30 ° C. for 24 hours using LB medium to obtain a precultured solution. Antibiotic ampicillin (100 μg / ml) and chloramphenicol (30 μg / ml) were added to 50 ml M9 minimal medium, and 500 μl of the preculture was added, followed by shaking culture at 37 ° C. When OD660 reached approximately 0.5, IPTG was added so that the final concentration was 1 mM, followed by shaking culture at 37 ° C. for 24 hours. After culturing for 24 hours, centrifugation was performed at 9,000 rpm for 15 min to obtain Example strain culture supernatant and control strain culture supernatant.
 (2)-3.培養液のMS分析
  (2)-2における前培養液、実施例株培養上清およびコントロール株培養上清を0.22 μmのフィルターを用いてろ過した。各ろ液に含まれる成分のMS分析は株式会社島津製作所に外注して行った。
(2) -3. The pre-culture solution, the culture supernatant of Example strain and the culture supernatant of the control strain in MS analysis (2) -2 of the culture solution were filtered using a 0.22 μm filter. MS analysis of components contained in each filtrate was outsourced to Shimadzu Corporation.
 (2)-4.結果
  図2に示す。実施例株1の培養上清ではリシン、オルニチンおよびプロリンが前培養液およびコントロール培養上清に比べ格段に含まれていることが分かった(図2A~C)。実施例株1に導入されたプラスミドベクターにライゲーションしていた遺伝子はLysE遺伝子であり、LysEは本来のリシンの輸送体としての機能のほか、オルニチンの輸送体としても機能することが知られていたが、図2A及びBではそれが示す通りLysEのリシンおよびオルニチン輸送能を確認できたことから、本発明の膜輸送体の探索方法の精度と有用性が高いものであることを示している。一方で驚くべきことに、これまでLysEでは知られていなかったプロリンの輸送能を確認したことから(図2C)、本発明の新規膜輸送体およびその機能の探索方法としての有用性が示された。
(2) -4. Results are shown in FIG. It was found that the culture supernatant of Example strain 1 contained lysine, ornithine and proline much more than the preculture and control culture supernatants (FIGS. 2A to 2C). The gene ligated to the plasmid vector introduced into Example strain 1 was the LysE gene, and LysE was known to function not only as an original lysine transporter but also as an ornithine transporter. However, in FIGS. 2A and 2B, the ability of LysE to transport lysine and ornithine was confirmed, indicating that the membrane transporter searching method of the present invention is highly accurate and useful. On the other hand, surprisingly, since the transport ability of proline, which was not known so far in LysE, was confirmed (FIG. 2C), the novel membrane transporter of the present invention and its usefulness as a method for searching for its function were shown. It was.
 また、実施例株4に導入された輸送体遺伝子は機能が明らかにされていなかったが、本発明によりグリシン特異的膜輸送体であることが示された(図2D)。さらにバリン輸送体はその輸送能の高低はあれ様々存在すること、特に実施例株14に発現した従来機能不明であった輸送体が、もっとも高い輸送能を有するバリン輸送体であることを特定した(図2E)。これらの結果も、本発明の膜輸送体の探索方法としての有用性を示すものとなった。 Further, although the function of the transporter gene introduced into Example strain 4 was not clarified, it was shown by the present invention that it is a glycine-specific membrane transporter (FIG. 2D). Furthermore, the valine transporter exists in various ways regardless of its transport ability, and in particular, the transporter whose function was unknown in the past expressed in Example strain 14 was identified as the valine transporter having the highest transport ability. (FIG. 2E). These results also showed the usefulness as a method for searching for a membrane transporter of the present invention.
 (3) 実施例2.輸送体の探索その2(アラニン輸送体)
 本発明は、発現宿主の選択によって特定の物質の膜輸送体探索に特化した探索方法とすることができ、本実施例はその一例である。本実施例では、発現宿主に大腸菌MLA301ΔygaW株(Hori et al (2011) Appl Environ Microbiol 77: 4027-4034)を用いた。大腸菌MLA301ΔygaW株は細胞内アラニン代謝系が欠損しているためアラニン要求株となっているうえ、ジアラニン(L-アラニン―L-アラニン)存在下で培養するとジアラニンを基質に菌体内でモノアラニン(L-アラニン)を過剰蓄積し生育阻害をも起こす大腸菌株である。つまり、大腸菌MLA301ΔygaW株を発現宿主とし、膜輸送体発現用プラスミドベクターを導入後にジアラニン存在下で培養後、導入株の生育阻害が減退し菌体の増殖(菌体数の増加)が観察された場合、導入株にはアラニン排出輸送体が発現したことととなり、新規アラニン輸送体を探索・特定できることになる。
(3) Example 2. Transporter Search 2 (Alanine Transporter)
The present invention can be a search method specialized in searching for a membrane transporter of a specific substance by selecting an expression host, and this example is an example. In this example, Escherichia coli MLA301ΔygaW strain (Hori et al (2011) Appl Environ Microbiol 77: 4027-4034) was used as an expression host. The Escherichia coli MLA301ΔygaW strain is an alanine-requiring strain because it lacks the intracellular alanine metabolism system, and when cultured in the presence of dialanine (L-alanine-L-alanine), monoalanine (L A strain of E. coli that overaccumulates alanine and also inhibits growth. In other words, using Escherichia coli MLA301ΔygaW strain as an expression host and introducing a membrane transporter expression plasmid vector and culturing in the presence of dialanine, growth inhibition of the introduced strain was reduced and growth of the cells (increase in the number of cells) was observed. In this case, the introduced strain expresses an alanine excretion transporter, and a new alanine transporter can be searched and specified.
 (3)-1.膜輸送体発現用プラスミドベクターの作成
 (2)-1で取得した3種の輸送体遺伝子増幅産物に、新たに表2のプライマーを用いて取得した3種の輸送体遺伝子増幅産物を加えた計6種類のコリネバクテリウム・グルタミカム(Corynebacterium glutamicum)の輸送体遺伝子ライブラリーをpTrc99A_mstX_C8_Hisにライゲーションした。ライゲーションの具体的方法は実施例(2)-1と同じ手順で行った。
(3) -1. Preparation of plasmid vector for expression of membrane transporter (3) A total of three transporter gene amplification products obtained using the primers shown in Table 2 in addition to the three transporter gene amplification products obtained in (2) -1. Six types of Corynebacterium glutamicum transporter gene libraries were ligated into pTrc99A_mstX_C8_His. The specific method of ligation was performed in the same procedure as in Example (2) -1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (3)-2.膜タンパク質発現用大腸菌の形質転換
  大腸菌MLA301ΔygaWを(3)-1で得た膜タンパク質発現用プラスミドベクターの発現宿主とした。またコントロールとして、輸送体遺伝子ライブラリーをライゲーションしていないpTrc99A_mstX_C8_Hisを前記発現宿主に導入しコントール株を取得した。
(3) -2. Transformation of Escherichia coli for Membrane Protein Expression Escherichia coli MLA301ΔygaW was used as an expression host for the plasmid vector for membrane protein expression obtained in (3) -1. As a control, pTrc99A_mstX_C8_His not ligated with a transporter gene library was introduced into the expression host to obtain a control strain.
 膜タンパク質発現用プラスミドベクターを形質転換した大腸菌MLA301ΔygaW株およびコントロール株をLB培地を用いて30℃、20h前培養し、前培養液を得た。ついで、培養後の菌体は7,500 rpm(KUBOTA 3700)で1分間、4℃で遠心し、全量を集菌した。集菌後の上清を取り除き、最少培地(Glucose 220mM、MgSO4 17mM、(NH4)2SO4 7.5mM、K2SO4 7mM、NaCl 22mM、Sodium phosphate(pH7.0)、D-Ala 50 μg/ml、Asp-K(pH7.0) 50 mM)で懸濁し、7,500 rpm(KUBOTA 3700)で1分間遠心した(菌体洗浄)。洗浄を2度行った後、3度目に懸濁した際の吸光度を測定し、最少培地にO.D.660 = 0.002となるように添加後、25℃で培養した(本培養)。経時的に培養液をサンプリングし、660 nmにおける吸光度(O.D.660)を測定した。LB 培地および最少培地には必要に応じて 0.5 mM Ala-Ala、30 μg/ml Carbenicillin、30 μg/ml Spectinomycinを添加した。 The Escherichia coli MLA301ΔygaW strain and control strain transformed with a membrane protein expression plasmid vector were pre-cultured using LB medium at 30 ° C. for 20 hours to obtain a preculture solution. Subsequently, the cultured cells were centrifuged at 7,500 rpm (KUBOTA 3700) for 1 minute at 4 ° C. to collect the whole amount. The supernatant after collection was removed, and a minimal medium (Glucose 220 mM, MgSO 4 17 mM, (NH 4) 2 SO 4 7.5 mM, K 2 SO 4 7 mM, NaCl 22 mM, Sodium phosphate (pH 7.0), D-Ala 50 μg / ml, Asp- The suspension was suspended in K (pH 7.0) 50 mM) and centrifuged at 7,500 rpm (KUBOTA 3700) for 1 minute (bacterial cell washing). After washing twice, the absorbance when suspended for the third time is measured, and O.O. D. After adding so that 660 = 0.002, it was cultured at 25 ° C. (main culture). The culture solution was sampled over time, and the absorbance at 660 nm (OD 660) was measured. As needed, 0.5 mM Ala-Ala, 30 μg / ml Carbenicillin, 30 μg / ml Spectamycin was added to the LB medium and the minimal medium.
 (3)-3.結果
 図3に示す。コントロール株および輸送体CT035導入株は増殖が見られず、菌体内モノアラニンの増加による生育阻害が認められた。一方CT005、032各導入株は培養時間にともない菌体数の増加が認められ、これらはアラニン排出輸送体であることが特定された。本発明の新規膜輸送体およびその機能の探索方法としての有用性が示された。
(3) -3. Results are shown in FIG. The control strain and the transporter CT035-introduced strain did not grow, and growth inhibition due to an increase in intracellular monoalanine was observed. On the other hand, each of the introduced strains of CT005 and 032 showed an increase in the number of cells with the culturing time, and these were identified as alanine excretion transporters. The novel membrane transporter of the present invention and its usefulness as a method for searching for its function were shown.
 (4)実施例3.物質の増産性その1
実施例1にて、バリン輸送体と特定された輸送体を、本発明を用いた増産性についての検証に供した。輸送体遺伝子を含むpTrc99A_mstX_C8_Hisプラスミドベクターを導入したC43 (DE3) Rosetta株(実施例株)、輸送体遺伝子を含むpTrc99A_C8_Hisプラスミドベクターを導入したC43 (DE3) Rosetta株(比較例株)を、実施例1の培養条件と同じ条件で培養し、培養上清を0.22μmのフィルターを用いてろ過した。それぞれの培養上清中のアミノ酸の分析は、ろ液をイオン化のために等量のマトリックス(5mg/mL CHCA(溶媒は70%アセトニトリル、0.1%TFA))と混合し、TOF/TOFTM 5800(SCIEX社製)に供し、付属のプロトコルに従って検出を行った。内部標準としてプロリンを使用、バリンのピークは、標品を用いて確認(図4B、Val(Std.))し、各ろ液のバリンのピーク強度を比較した。
(4) Example 3 Productivity increase 1
In Example 1, the transporter identified as the valine transporter was subjected to verification for increased productivity using the present invention. C43 (DE3) Rosetta strain (Example strain) introduced with the pTrc99A_mstX_C8_His plasmid vector containing the transporter gene, C43 (DE3) Rosetta strain (Comparative Example strain) introduced with the pTrc99A_C8_His plasmid vector containing the transporter gene, Example 1 The culture supernatant was filtered using a 0.22 μm filter. For analysis of amino acids in each culture supernatant, the filtrate was mixed with an equal volume of matrix (5 mg / mL CHCA (solvent is 70% acetonitrile, 0.1% TFA)) for ionization, and TOF / TOF The sample was subjected to 5800 (manufactured by SCIEX) and detected according to the attached protocol. Proline was used as an internal standard, and the peak of valine was confirmed using a sample (FIG. 4B, Val (Std.)), And the peak intensity of valine in each filtrate was compared.
 結果を図4に示す。図4Aは最少培地のみのブランクである。図4B~Fには内部標準としてプロリン(終濃度100μM)を添加し、標品のバリンのピークを確認(図4B: Std.)、pTrc99A_C8_Hisプラスミドベクターのみを導入したC43 (DE3) Rosetta株を最少培地で培養して得た培養上清(図4C)、pTrc99A_mstX_C8_Hisプラスミドベクターのみを導入したC43 (DE3) Rosetta株を最少培地で培養して得た培養上清(図4D)、比較例株を最少培地で培養して得た培養上清(図4E)、実施例株を最少培地で培養して得た培養上清(図4F)のTOF/MSデータを示す。実施例株および比較例株それぞれのバリンの産生量を内部標準のプロリン由来シグナル比で比較すると実施例株の方が顕著に(約4倍に)増加していた(図5)。このことから、本発明の物質の生産方法により、所定の物質の産生量の増加を期待でいることが実証された。 The results are shown in FIG. FIG. 4A is a blank of minimal medium only. In FIGS. 4B to F, proline (final concentration of 100 μM) was added as an internal standard, and the peak of valine in the standard was confirmed (FIG. 4B: Std.). Culture supernatant obtained by culturing in medium (FIG. 4C), culture supernatant obtained by culturing C43 (DE3) Rosetta strain only introduced with pTrc99A_mstX_C8_His plasmid vector in minimal medium (FIG. 4D), and minimal comparative strain The TOF / MS data of the culture supernatant (FIG. 4E) obtained by culturing in a medium and the culture supernatant (FIG. 4F) obtained by culturing Example strains in a minimal medium are shown. When the amount of valine produced in each of the Example strain and Comparative Example strain was compared with the signal ratio derived from the internal standard proline, the Example strain increased remarkably (about 4 times) (FIG. 5). From this, it was demonstrated that the production method of the substance of the present invention is expected to increase the production amount of the predetermined substance.
 (5)実施例4.物質の増産性その2
実施例2で特定したCT005について、本発明を用いたアラニンの増産性を検証した。   
(5) Example 4 Productivity increase 2
About CT005 specified in Example 2, the alanine production increase ability using this invention was verified.
 実施例2にて得られたCT005をライゲーションした膜輸送体発現用プラスミドベクターを導入した大腸菌C43 (DE3)株(実施例株)、およびCT005をライゲーションしていない膜輸送体発現用プラスミドベクターを導入した大腸菌C43 (DE3)株(比較例株)を取得し、LB 液体培地 (30 μg/ml Carbenicillin) で30℃、24 時間震盪培養した。前培養液0.5 mlを50 mlの最少培地(Glucose 220mM、MgSO4 17mM、(NH4)2SO4 7.5mM、K2SO4 7mM、NaCl 22mM、Sodium phosphate(pH7.0))に添加し、37℃、振とう培養した。O. D. 660=0.5~0.6 で、さらに22 mM D-glucose、30 μg/ml Carbenicillin、1 mM Pyridoxal-5’-phosphate、0.2mM IPTGおよび必要に応じて0~50 mM Asp-K pH 7.0を添加し、37℃、12時間振盪培養した。集菌後の培養上清中に含まれるアミノ酸はo-フタルアルデヒドを用いて誘導化し、陽イオン交換カラム(Shim-pack AMINO NA、Shimadzu、Japan)を装備したHPLC(LC-10A、Shimadzu、Japan)で定量した。LB 培地および最少培地には必要に応じて30 μg/ml Carbenicillinを添加した。 E. coli C43 (DE3) strain (Example strain) introduced with the plasmid vector for ligation of CT005 obtained in Example 2 and the plasmid vector for expression of the membrane transporter without ligation of CT005 were introduced. Escherichia coli C43 (DE3) strain (comparative example strain) was obtained and cultured with shaking in an LB liquid medium (30 μg / ml Carbenicillin) at 30 ° C. for 24 hours. Add 0.5 ml of the preculture to 50 ml of minimal medium (Glucose 220 mM, MgSO 4 17 mM, (NH 4) 2 SO 4 7.5 mM, K 2 SO 4 7 mM, NaCl 22 mM, Sodium phosphate (pH 7.0)), shake at 37 ° C. Cultured at last. O. D. 660 = 0.5-0.6, 22 mM D-glucose, 30 μg / ml Carbenicillin, 1 mM Pyridoxal-5′-phosphate, 0.2 mM IPTG, and 0-50 mM Asp-K pH as required 7.0 was added and cultured with shaking at 37 ° C. for 12 hours. Amino acids contained in the culture supernatant after collection were derivatized using o-phthalaldehyde, and HPLC (LC-10A, Shimadzu, Japan) equipped with a cation exchange column (Shim-pack AMINO NA, Shimadzu, Japan). ). 30 μg / ml Carbenicillin was added to the LB medium and minimal medium as needed.
 結果を図6に示す。培養時間の経過に伴い実施例株および比較例株それぞれの培養上清中のアラニン産生量差は大きくなり、各菌株を継続培養すればこの産生量差の拡大が予想される傾向となった。培養後12時間経過時点では実施例株の産生量は比較例株のそれに比べ1.5倍量となった。このことから、本発明の物質の生産方法により、所定の物質の産生量の増加を期待できることが実証された。 The results are shown in FIG. As the culture time elapses, the difference in the amount of alanine produced in the culture supernatant of each of the example strain and the comparative strain increased, and if each strain was continuously cultured, the production amount difference was expected to increase. At 12 hours after the cultivation, the production amount of the Example strain was 1.5 times that of the Comparative strain. From this, it was proved that the production amount of the predetermined substance can be expected by the production method of the substance of the present invention.
 (6)実施例5.物質の生産性の比較
 本発明による所定の化合物の生産性を検証した。本実施例5において実施例1における実施例株14を実施例株とした。そして、本実施例5において比較例株は2種類用意した。図7に示すように、比較例株1はフュージョンパートナー遺伝子の終止コドン部とNCgl2232遺伝子の開始コドン部を別のアミノ酸をコードするコドンに置き換え、フュージョンパートナーとNCgl2232の融合タンパク質をコードする遺伝子として連結したもの(以下、融合タンパク質遺伝子という。)を、比較例株2は、フュージョンパートナー遺伝子とNCgl2232遺伝子とが互いに異なるオープンリーディングフレームにより発現するように連結したもの(以下、単シストロン遺伝子という。)を用いた。比較例株1及び2は、前記(1)-1に記載のpTrc99A_mstX_C8_Hisに、下記のプライマーセットを用いる以外前記(2)-1に記載の方法と同様にして融合タンパク質遺伝子及び単シストロン遺伝子増幅産物を得、さらにこれをライゲーションしたプラスミドベクターを、前記(2)-2と同様の方法に記載の大腸菌を宿主として遺伝子導入することで得た。
FW(融合タンパク質遺伝子):GAAAAAGAGGGACAACAGGTGCTCATG(Translational fusion)
FW(単シストロン遺伝子):GAAAAAGAGTGAGTGGATGCAACAGGTGCTCATG(:Individual)
RV(実施例株及び比較例株共通):CACCGCCACCTCTAGAAGATCCAAAGATAATGGAGACCGC(表1の実施例株14のRV)。
実施例株14、2種類の比較例株及び前記(2)-2に記載のコントロール株をいずれも前記(2)-2の培養条件と同じ条件で、培養し、(4)に記載と同様の方法でアミノ酸の検出を行った。ただし、内部標準としてプロリン(終濃度1mM)を使用、バリンのピークは標品を用いて確認(図7左上段、Val(Std.))し、各ろ液のバリンのピーク強度を比較した(図7)。
(6) Example 5 Comparison of Productivity The productivity of a given compound according to the present invention was verified. In Example 5, the Example strain 14 in Example 1 was used as the Example strain. In Example 5, two types of comparative strains were prepared. As shown in FIG. 7, Comparative strain 1 replaces the termination codon part of the fusion partner gene and the start codon part of the NCgl2232 gene with a codon encoding another amino acid, and is linked as a gene encoding a fusion protein of the fusion partner and NCgl2232. Comparative strain 2 was obtained by linking the fusion partner gene and NCgl2232 gene so that they were expressed by different open reading frames (hereinafter referred to as a single cistron gene). Using. Comparative strains 1 and 2 were the same as in the method described in (2) -1, except that the following primer set was used for pTrc99A_mstX_C8_His described in (1) -1 above, and a fusion protein gene and a single cistron gene amplification product And a ligated plasmid vector was obtained by gene transfer using E. coli as described in the same method as in (2) -2.
FW (fusion protein gene): GAAAAAGAGGGACAACAGGTGCTCATG (Translational fusion)
FW (single cistron gene): GAAAAAGAGTGAGTGGATGCAACAGGTGCTCATG (: Individual)
RV (common to Example strain and Comparative strain): CACCGCCACCTCTAGAAGATCCAAAGATAATGGAGACCGC (RV of Example strain 14 in Table 1).
Example strain 14, two types of comparative strains and the control strain described in (2) -2 were both cultured under the same conditions as in (2) -2, and the same as described in (4) The amino acid was detected by this method. However, proline (final concentration 1 mM) was used as an internal standard, and the peak of valine was confirmed using a standard (FIG. 7, upper left, Val (Std.)), And the peak intensity of valine in each filtrate was compared ( FIG. 7).
 (6)-1.結果
  図7に示す。TOF-MSでの分析の結果、実施例株14の培養上清にはバリンが含まれ、その量は前培養液、2種類の比較株の培養上清及びコントロール培養上清での量に比べ顕著に多いことが分かった(図7)。以上から、本発明による所定の化合物の生産性は、バリンの生産性を例に、顕著に高く有益であることが示された。
(6) -1. Results are shown in FIG. As a result of analysis by TOF-MS, the culture supernatant of Example strain 14 contains valine, the amount of which is compared with the amount in the preculture solution, the culture supernatant of the two comparative strains, and the control culture supernatant. It was found that the number was significantly higher (FIG. 7). From the above, it was shown that the productivity of the predetermined compound according to the present invention is remarkably high and beneficial, taking the productivity of valine as an example.
 (7)実施例6.
 前記(2)-1に記載の通りに抽出したコリネバクテリウム・グルタミカムのゲノムDNAを鋳型に、下記のプライマーセットそれぞれを用いて増幅産物を得た。各増幅産物を前記(2)-1に記載の方法でpTrc99A_mstX_C8_Hisにライゲーションしたプラスミドベクターを、前記(2)-2に記載の大腸菌を宿主として遺伝子導入することで、実施例株55および68を得た。
FW-55:GAAAAAGAATGAGTGGTACCAGCGAACAACTTCAGGGTG
RV-55:CACCGCCACCTCTAGACTGAGCCGCGAGTTGG  
FW-68:GAAAAAGAATGAGTGGTACCACCACAACTGATCACTCCAC 
RV-68:CACCGCCACCTCTAGAGACCTCTCGGAGGTCG 
実施例株55、68及び前記(2)-2に記載のコントロール株をいずれも前記(2)-2に記載のとおりに培養し、0.22μmのフィルターを用いてろ過した。
(7) Example 6
An amplification product was obtained using each of the following primer sets, using the genomic DNA of Corynebacterium glutamicum extracted as described in (2) -1 as a template. Example strains 55 and 68 were obtained by introducing each amplified product into a plasmid vector ligated to pTrc99A_mstX_C8_His by the method described in (2) -1, using E. coli described in (2) -2 as a host. It was.
FW-55: GAAAAAGAATGAGTGGTACCAGCGAACAACTTCAGGGTG
RV-55: CACCGCCACCTCTAGACTGAGCCGCGAGTTGG
FW-68: GAAAAAGAATGAGTGGTACCACCACAACTGATCACTCCAC
RV-68: CACCGCCACCTCTAGAGACCTCTCGGAGGTCG
Example strains 55 and 68 and the control strain described in (2) -2 were all cultured as described in (2) -2 and filtered using a 0.22 μm filter.
 GCーMS 
上記のろ液50μLに、内部標準として2-イソプロピルリンゴ酸水溶液(0.5mg/mL)を10μL加え、さらに水:メタノール:クロロホルム=1:2.5:1溶液を250μL加えて攪拌し、37℃で30分間振盪した。16,000Gで3分間遠心し、上清を225μL 回収し、超純水を200μL加えて攪拌、再度16,000Gで3分間遠心して、上清250μLを回収した。
濃縮遠心機で25分間処理して溶液中のメタノールを気化させた後、遠心エバポレーターで乾燥させた。
乾燥後のサンプルに、メトキシアミン塩酸塩ピリジン溶液(20mg/mL)を80μL加え、30℃で90分間振盪し、続いてN-メチルNトリメチルシリルトリフルオロアセトアミド(MSTFA)を40μL加え、37℃で 30分間振盪した。16,000Gで3分間遠心して溶液中の残渣を沈殿させ、上清100μLをGCーMSバイアルに回収し、GCーMSサンプルとした。分析は、以下の装置とメソッドを用いて実施し、各ろ液に含まれる化合物のピーク強度を比較した:
 使用装置
ガスクロマトグラフ質量分析計:GCMS-TQ8040
 分析メソッド
島津製作所 OA_TMS_DB537min_V3_Scan: 37分メソッド、スプリットレス
 (7)-1.結果
 図8に示す。実施例株55の培養上清では3-α-マンノビオースが前培養液およびコントロール培養上清に比べ格段に含まれていることが分かった(図8A)。実施例株55に導入された遺伝子は、コリネバクテリウム・グルタミカムのゲノム上ではシキミ酸の輸送に関与するタンパク質としてアノテーション(機能推定)されていたが、本発明により、これが3-α-マンノビオースの輸送体として特定され、本発明のスクリーニング方法の有用性が示された。また同遺伝子を本発明の方法で発現させた微生物を培養することで、3-α-マンノビオースの生産性が向上することが確認され、本発明の所定の物質の生産方法の有用性が示された。
GC-MS
10 μL of 2-isopropylmalic acid aqueous solution (0.5 mg / mL) as an internal standard was added to 50 μL of the above filtrate, and 250 μL of water: methanol: chloroform = 1: 2.5: 1 solution was added and stirred. Shake for 30 minutes at ° C. Centrifugation was performed at 16,000 G for 3 minutes, 225 μL of the supernatant was collected, 200 μL of ultrapure water was added, stirred, and centrifuged again at 16,000 G for 3 minutes to recover 250 μL of the supernatant.
After treating with a concentration centrifuge for 25 minutes to vaporize methanol in the solution, it was dried with a centrifugal evaporator.
To the dried sample, 80 μL of methoxyamine hydrochloride pyridine solution (20 mg / mL) was added, shaken at 30 ° C. for 90 minutes, and then 40 μL of N-methyl N trimethylsilyl trifluoroacetamide (MSTFA) was added, followed by 30 ° C. at 30 ° C. Shake for minutes. The solution was centrifuged at 16,000 G for 3 minutes to precipitate the residue in the solution, and 100 μL of the supernatant was collected in a GC-MS vial to obtain a GC-MS sample. The analysis was performed using the following equipment and method to compare the peak intensities of the compounds contained in each filtrate:
Equipment used <br/> Gas chromatograph mass spectrometer: GCMS-TQ8040
Analysis method <br/> Shimadzu Corporation OA_TMS_DB537min_V3_Scan: 37 minutes method, splitless (7) -1. Results are shown in FIG. It was found that the culture supernatant of Example strain 55 contained 3-α-mannobiose much more than the preculture and control culture supernatants (FIG. 8A). The gene introduced into Example strain 55 was annotated (function estimation) as a protein involved in shikimate transport on the genome of Corynebacterium glutamicum, but according to the present invention, this was expressed as 3-α-mannobiose. It was identified as a transporter, and the utility of the screening method of the present invention was shown. Further, it was confirmed that the productivity of 3-α-mannobiose was improved by culturing a microorganism in which the same gene was expressed by the method of the present invention, and the usefulness of the method for producing a predetermined substance of the present invention was demonstrated. It was.
 また、同様に図8Bに示す通り、実施例株68の培養上清では乳酸が前培養液およびコントロール培養上清に比べ格段に含まれていることが分かった。実施例株68に導入された輸送体遺伝子は、コリネバクテリウム・グルタミカムのゲノム上では代謝物の輸送に関与するタンパク質としてアノテーション(機能推定)されていたが、本発明により、これが乳酸を排出する輸送体であることが特定され、本発明のスクリーニング方法の有用性が示された。また、図8Bに示すように、同遺伝子を本発明の方法で発現させた微生物を培養することで乳酸の生産性が向上することが確認され、本発明の所定の物質の生産方法の有用性が示された。 Similarly, as shown in FIG. 8B, it was found that the culture supernatant of Example strain 68 contained much lactic acid as compared with the preculture solution and the control culture supernatant. The transporter gene introduced into Example strain 68 was annotated (function estimation) as a protein involved in metabolite transport on the genome of Corynebacterium glutamicum, but according to the present invention, it excretes lactic acid. It was identified as a transporter, and the usefulness of the screening method of the present invention was shown. Further, as shown in FIG. 8B, it was confirmed that lactic acid productivity was improved by culturing a microorganism in which the same gene was expressed by the method of the present invention, and the usefulness of the method for producing a predetermined substance of the present invention was confirmed. It has been shown.

Claims (9)

  1. 所定の化合物の生産方法であって、
    フュージョンパートナーをコードする遺伝子と、前記所定の化合物の輸送に関わる膜タンパク質をコードする遺伝子とがポリシストロニックmRNAの翻訳により発現するように連結された遺伝子を組み込んだ微生物を培養する工程を含み、
     前記連結された遺伝子が、前記フュージョンパートナーをコードする遺伝子の終止コドンを構成するヌクレオチドの一部が前記所定の化合物の輸送に関わる膜タンパク質をコードする遺伝子の開始コドンの一部となるように連結された遺伝子である、方法。
    A method for producing a predetermined compound, comprising:
    Culturing a microorganism incorporating a gene in which a gene encoding a fusion partner and a gene encoding a membrane protein involved in transport of the predetermined compound are linked so as to be expressed by translation of polycistronic mRNA,
    The linked genes are linked such that a part of the nucleotides constituting the stop codon of the gene encoding the fusion partner is part of the start codon of the gene encoding the membrane protein involved in the transport of the predetermined compound A method, which is a genetically generated gene.
  2.  前記微生物を培養する工程で得られた培養液から前記所定の化合物を回収する工程をさらに含む、請求項1に記載の方法。 The method according to claim 1, further comprising a step of recovering the predetermined compound from a culture solution obtained in the step of culturing the microorganism.
  3.  前記微生物がバクテリアである請求項1に記載の方法。 2. The method according to claim 1, wherein the microorganism is a bacterium.
  4. 前記微生物に、当該微生物のレアコドンに対応するtRNAをコードする遺伝子がさらに組み込まれている、請求項1に記載の方法。 The method according to claim 1, wherein a gene encoding a tRNA corresponding to a rare codon of the microorganism is further incorporated into the microorganism.
  5.  膜タンパク質が、エクスポータータンパク質、インポータータンパク質、合成酵素タンパク質、タンパク質分泌装置の構成要素であるタンパク質である、請求項1に記載の方法。 The method according to claim 1, wherein the membrane protein is an exporter protein, an importer protein, a synthase protein, or a protein that is a component of a protein secretion apparatus.
  6. 下記工程(1)~(4)を含む、所定の化合物に対する膜タンパク質をスクリーニングするための方法:
    (1)フュージョンパートナーをコードする遺伝子と膜タンパク質候補をコードする遺伝子とがポリシストロニックmRNAの翻訳により発現するように連結された遺伝子であって、前記フュージョンパートナーをコードする遺伝子の終止コドンを構成するヌクレオチドの一部が前記膜タンパク質候補をコードする遺伝子の開始コドンの一部となるように連結された遺伝子を組み込んだ微生物のライブラリーを作成する工程、
    (2)前記微生物を培養する工程
    (3)培養前に比べて前記所定の化合物の量に変動が認められる培養液またはその上清を特定する工程、
    (4)前記特定された培養液またはその上清を得た微生物に組み込まれ発現する膜タンパク質候補が、前記所定の化合物の膜内外の輸送能を有する膜タンパク質であると特定する工程。
    A method for screening a membrane protein for a predetermined compound, comprising the following steps (1) to (4):
    (1) A gene in which a gene encoding a fusion partner and a gene encoding a membrane protein candidate are linked so as to be expressed by translation of polycistronic mRNA, and constitutes a stop codon of the gene encoding the fusion partner Creating a library of microorganisms incorporating a gene linked so that a part of the nucleotide to be a part of the start codon of the gene encoding the membrane protein candidate,
    (2) a step of culturing the microorganism (3) a step of identifying a culture solution or a supernatant thereof in which a variation is observed in the amount of the predetermined compound compared to before the culture,
    (4) A step of specifying that the membrane protein candidate incorporated and expressed in the microorganism from which the specified culture solution or supernatant is obtained is a membrane protein having the ability to transport the predetermined compound inside and outside the membrane.
  7.  膜タンパク質が、エクスポータータンパク質、インポータータンパク質、合成構想タンパク質、タンパク質分泌装置を構成要素であるタンパク質である、請求項6に記載の方法。 The method according to claim 6, wherein the membrane protein is an exporter protein, an importer protein, a synthetic concept protein, or a protein that is a protein secretion apparatus.
  8.  前記微生物がバクテリアである請求項6に記載の方法。 The method according to claim 6, wherein the microorganism is a bacterium.
  9. 前記微生物に、当該微生物のレアコドンに対応するtRNAをコードする遺伝子がさらに組み込まれている、請求項6に記載の方法。 The method according to claim 6, wherein a gene encoding a tRNA corresponding to a rare codon of the microorganism is further incorporated into the microorganism.
PCT/JP2019/017768 2018-04-27 2019-04-25 Method for screening membrane proteins for specific compound and method for producing specific compound WO2019208724A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020515581A JPWO2019208724A1 (en) 2018-04-27 2019-04-25 A method for screening a membrane protein for a predetermined compound and a method for producing a predetermined compound.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018087700 2018-04-27
JP2018-087700 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019208724A1 true WO2019208724A1 (en) 2019-10-31

Family

ID=68295560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017768 WO2019208724A1 (en) 2018-04-27 2019-04-25 Method for screening membrane proteins for specific compound and method for producing specific compound

Country Status (2)

Country Link
JP (1) JPWO2019208724A1 (en)
WO (1) WO2019208724A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070202573A1 (en) * 2004-08-11 2007-08-30 Ramot At Tel Aviv University Ltd. Soluble fusion proteins comprising heterologous polypeptides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070202573A1 (en) * 2004-08-11 2007-08-30 Ramot At Tel Aviv University Ltd. Soluble fusion proteins comprising heterologous polypeptides

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LEVIATAN S. ET AL.: "Combinatorial Method for Overexpression of Membrane Proteins in Escherichia coli", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 285, no. 31, 2010, pages 23548 - 23556 *
MARINO J. ET AL.: "Bicistronic mRNAs to Enhance Membrane Protein Overexpression", J MOL BIOL, vol. 427, 2015, pages 943 - 954, XP029136771, DOI: 10.1016/j.jmb.2014.11.002 *
MIYAJI ET AL., vol. 51, no. 2, 2011 *

Also Published As

Publication number Publication date
JPWO2019208724A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
US11427818B2 (en) S. pyogenes CAS9 mutant genes and polypeptides encoded by same
US9322023B2 (en) Constructs and methods for the assembly of biological pathways
US20200270665A1 (en) Cell-free protein synthesis platforms derived from clostridia extracts
US20240067997A1 (en) Genomic engineering of biosynthetic pathways leading to increased nadph
CA3095952A1 (en) Methods for producing, discovering, and optimizing lasso peptides
WO2011140342A1 (en) Mutations and genetic targets for enhanced l-tyrosine production
US20220033446A1 (en) Systems and methods for discovering and optimizing lasso peptides
Hyeon et al. GntR-type transcriptional regulator PckR negatively regulates the expression of phosphoenolpyruvate carboxykinase in Corynebacterium glutamicum
Wang et al. A disjointed pathway for malonate degradation by Rhodopseudomonas palustris
Clifton et al. Evolutionary repair reveals an unexpected role of the tRNA modification m1G37 in aminoacylation
Holzberger et al. A highly active DNA polymerase with a fluorous core
Han et al. Proteome profiling and its use in metabolic and cellular engineering
CN111485008A (en) Biological preparation method of cis-5-hydroxy-L-hexahydropicolinic acid
KR20200072543A (en) Production and separation of 3-hydroxypropionic acid
WO2019208724A1 (en) Method for screening membrane proteins for specific compound and method for producing specific compound
CN109897810B (en) De novo synthesis of vitamin B12Escherichia coli recombinant strain and construction method and application thereof
Sissler et al. Handling mammalian mitochondrial tRNAs and aminoacyl-tRNA synthetases for functional and structural characterization
US20220002719A1 (en) Oligonucleotide-mediated sense codon reassignment
US20230074955A1 (en) Compound Library and Method for Producing Compound Library
Urbonavicius et al. Deciphering the complex enzymatic pathway for biosynthesis of wyosine derivatives in anticodon of tRNAPhe
WO2018180568A1 (en) Mutant type 2-deoxy-scyllo-inosose synthase
JP7216968B2 (en) Amino acid quantification method and amino acid quantification kit
JP2022109064A (en) Method for producing nucleobases, organic acids and/or polyamines
EP4310174A1 (en) Recombinant methylotrophic microorganism
US20230235368A1 (en) Methods for Producing Designer Esters and Assessing Alcohol Acyltransferase Specificity for Ester Biosynthesis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020515581

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793975

Country of ref document: EP

Kind code of ref document: A1