JP7216968B2 - Amino acid quantification method and amino acid quantification kit - Google Patents

Amino acid quantification method and amino acid quantification kit Download PDF

Info

Publication number
JP7216968B2
JP7216968B2 JP2019544537A JP2019544537A JP7216968B2 JP 7216968 B2 JP7216968 B2 JP 7216968B2 JP 2019544537 A JP2019544537 A JP 2019544537A JP 2019544537 A JP2019544537 A JP 2019544537A JP 7216968 B2 JP7216968 B2 JP 7216968B2
Authority
JP
Japan
Prior art keywords
reaction
nrps
amino acid
amino acids
pyrophosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019544537A
Other languages
Japanese (ja)
Other versions
JPWO2019065211A1 (en
Inventor
朋子 中柄
秀之 青木
幹子 喜田
健太 山田
吉十 濱野
千登勢 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUI PREFECTURAL UNIVERSITY
Ikeda Food Research Co Ltd
Original Assignee
FUKUI PREFECTURAL UNIVERSITY
Ikeda Food Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUI PREFECTURAL UNIVERSITY, Ikeda Food Research Co Ltd filed Critical FUKUI PREFECTURAL UNIVERSITY
Publication of JPWO2019065211A1 publication Critical patent/JPWO2019065211A1/en
Application granted granted Critical
Publication of JP7216968B2 publication Critical patent/JP7216968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/25Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving enzymes not classifiable in groups C12Q1/26 - C12Q1/66
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes

Description

本発明は、アミノ酸定量方法及びアミノ酸定量用キット等に関する。 The present invention relates to an amino acid quantification method, an amino acid quantification kit, and the like.

アミノ酸は、生体内のタンパク質の構成成分として重要な役割を担っている。アミノ酸の機能性に関し多くの研究がなされ、アミノ酸は、医薬品、加工食品、健康食品など様々な産業で使用されている。例えば、食品中の遊離アミノ酸は、味、加熱後の香り、保存性、摂取後の生体調節機能等に関係しており、食品科学や栄養科学分野における重要な要素として注目されている。また、近年、疾病により血液中のアミノ酸濃度が変化することが見いだされ、血液中のアミノ酸濃度を測定することで、肺がん、胃がん、大腸がんなどのがん診断を可能とするバイオマーカーとしても活用されている。その為、アミノ酸定量技術は、アミノ酸を使用する製品開発、品質管理、診断などの様々な分野で必要不可欠な技術となっている。 Amino acids play important roles as constituents of proteins in living organisms. Many studies have been made on the functionality of amino acids, and amino acids are used in various industries such as pharmaceuticals, processed foods, and health foods. For example, free amino acids in food are related to taste, flavor after heating, preservability, bioregulatory function after ingestion, etc., and are attracting attention as important factors in the fields of food science and nutritional science. In recent years, it has been found that the amino acid concentration in the blood changes due to disease, and by measuring the amino acid concentration in the blood, it is also used as a biomarker that enables cancer diagnosis such as lung cancer, stomach cancer, and colon cancer. It is utilized. Therefore, amino acid quantification technology has become an indispensable technology in various fields such as product development, quality control, and diagnosis using amino acids.

アミノ酸定量技術として、アミノ酸を液体クロマトグラフィーで分離し、ニンヒドリンやオルトフタルアルデヒドによる呈色反応で検出する方法が知られている(非特許文献1)。しかし、該方法は、1検体の分析時間が2時間程度必要なため分析時間がかかり、多数の検体を測定するには不向きであるという問題点があった。 As an amino acid quantification technique, a method is known in which amino acids are separated by liquid chromatography and detected by color reaction with ninhydrin or orthophthalaldehyde (Non-Patent Document 1). However, this method has the problem that it takes about 2 hours to analyze one specimen, and thus it is not suitable for measuring a large number of specimens.

別のアミノ酸定量技術として、アミノ酸に作用する酵素を利用するアミノ酸の測定方法が知られている(特許文献1)。しかし、該方法は目的基質とするアミノ酸に対する選択性が低く、目的以外のアミノ酸にも反応する問題点があった。 As another amino acid quantification technique, a method for measuring amino acids using an enzyme that acts on amino acids is known (Patent Document 1). However, this method has the problem that it has low selectivity for the desired amino acid as a substrate and also reacts with amino acids other than the desired substrate.

アミノアシルtRNA合成酵素(AARS)は、生体内のタンパク質合成に係る酵素であり、20種類のアミノ酸に対し特異的な20種類のAARSが存在する。その為、標的とするアミノ酸に対する選択性が極めて高い酵素であるとされ、AARSが関与する反応(AARS反応)を利用したアミノ酸定量技術がこれまで開発されてきた。例えば、AARSを用いたアミノ酸の分析方法が特許文献2に記載されている。該方法では、AARSが触媒として機能してATP、アミノ酸が1分子ずつ反応することでアミノアシルAMPとピロリン酸が産生され、産生するピロリン酸を指標とすることによりアミノ酸を分析する。しかしながら、該方法ではAARSが1分子のアミノ酸とATPと反応し、1分子のアミノアシルAMPを産生するため、試料中のアミノ酸と同量かそれ以下のピロリン酸しか産生されない(非特許文献2、3、4)。 Aminoacyl-tRNA synthetase (AARS) is an enzyme involved in protein synthesis in vivo, and there are 20 types of AARS specific to 20 types of amino acids. Therefore, it is considered that the enzyme has extremely high selectivity for target amino acids, and an amino acid quantification technique using a reaction involving AARS (AARS reaction) has been developed so far. For example, Patent Document 2 describes a method for analyzing amino acids using AARS. In this method, AARS functions as a catalyst to react ATP and amino acid molecules one by one to produce aminoacyl AMP and pyrophosphate, and aminoacids are analyzed using the produced pyrophosphate as an indicator. However, in this method, AARS reacts with one molecule of amino acid and ATP to produce one molecule of aminoacyl AMP, so only the same amount of pyrophosphate as the amino acid in the sample or less is produced (Non-Patent Documents 2 and 3). , 4).

更に、AARS反応に基づくアミノ酸の定量方法が上記の特許文献3に記載されている。即ち、前述の通りアミノアシルAMPは、通常、AARSに強く結合してアミノアシルAMP-AARS複合体を形成している。そこで、この方法では、アミノアシルAMP-AARS複合体分解試薬としてヒドロキシルアミンなどのアミン類(求核剤)を添加することで、AARSを再び反応可能な状態とし、その結果、少量のAARSでアミノ酸を定量することを特徴とする。しかしながら、特許文献3に記載の方法は、該複合体分解試薬が複合体のアミノ酸と反応して化合物が産生される(例えば、特許文献3の段落番号0037に示されるように、該複合体分解試薬としてヒドロキシルアミンを使用した場合は、「アミノ酸ヒドロキサム酸」が産生される)ため、アミノ酸は再利用することが出来ず、その結果、試料中のアミノ酸と同等量の産生物であるピロリン酸しか得られない(特許文献3の段落番号0023)。 Furthermore, a method for quantifying amino acids based on the AARS reaction is described in Patent Document 3 mentioned above. That is, as described above, aminoacyl AMP normally binds strongly to AARS to form an aminoacyl AMP-AARS complex. Therefore, in this method, by adding an amine (nucleophilic agent) such as hydroxylamine as an aminoacyl AMP-AARS complex decomposing reagent, the AARS is made to be in a state capable of reacting again, and as a result, an amino acid can be decomposed with a small amount of AARS. It is characterized by quantifying. However, in the method described in Patent Document 3, the complex-dissolving reagent reacts with the amino acid of the complex to produce a compound (for example, as shown in paragraph 0037 of Patent Document 3, the complex-dissolving When hydroxylamine is used as a reagent, "amino acid hydroxamic acid" is produced), amino acids cannot be reused, and as a result, only pyrophosphate, which is a product equivalent to the amino acids in the sample, is produced. It cannot be obtained (Paragraph No. 0023 of Patent Document 3).

このように、AARSが関与する該方法は、ピロリン酸産生量が少ないため、高感度分析を行う問題点があった。さらにAARSは、20種類のアミノ酸に対する特異的な20種類のAARSが存在するが、オルニチンなどの20種類のアミノ酸以外に反応するAARSは存在しない課題もある。 As described above, the method involving AARS has a problem in high-sensitivity analysis because the amount of pyrophosphate produced is small. Furthermore, there are 20 types of AARS that are specific to 20 types of amino acids, but there is also a problem that there is no AARS that reacts with other than 20 types of amino acids such as ornithine.

非リボソーム型ペプチド合成酵素(NRPS)は、複合ペプチド合成に関与する酵素であり、抗生物質などの合成に利用されている。NRPSは、タンパク質性アミノ酸(タンパク質を構成する20種のL型のアミノ酸)に作用すると共に、異性体であるD型のアミノ酸、さらにはメチル化、アシル化、グリコシル化などの修飾アミノ酸及びオルニチン等の非タンパク質性アミノ酸(タンパク質の構成単位ではないアミノ酸)にも作用し、更に、選択性(特異性)が極めて高い酵素であるとされている。NRPSは、アデニレーション・ドメイン(Aドメイン)、チオレーション・ドメイン(Tドメイン)、コンデンセーション・ドメイン(Cドメイン)の3つのドメインから構成される。NRPS反応は、図1に示す通りで、Aドメインでは、NRPSにアデノシン三リン酸(ATP)、アミノ酸(AA)が1分子ずつ作用することで、アミノアシルアデニル酸(アミノアシルAMP)とピロリン酸(PPi)が産生される。次いでTドメインでは、アミノアシルAMPとTドメインのアミノアシル4’ホスホパンテテイン基(4’PP)が反応し、アミノアシル-Tドメイン複合体を形成する。続いてCドメインでは、アミノアシル-Tドメイン複合体に結合しているアミノ酸同士を結合させるペプチド縮合反応を起こさせることで、ペプチドが産生する。NRPSは、このような反応を繰り返すことでアミノ酸が3~15量体の直線状或いは環状に連なったペプチドを合成する(非特許文献5、非特許文献6)。 Non-ribosomal peptide synthetase (NRPS) is an enzyme involved in complex peptide synthesis and is used for the synthesis of antibiotics and the like. NRPS acts on proteinogenic amino acids (20 types of L-type amino acids that constitute proteins), and also isomers of D-type amino acids, as well as modified amino acids such as methylation, acylation, and glycosylation, ornithine, and the like. It also acts on non-protein amino acids (amino acids that are not structural units of proteins), and is said to be an enzyme with extremely high selectivity (specificity). NRPS is composed of three domains: an adenylation domain (A domain), a thiolation domain (T domain), and a condensation domain (C domain). The NRPS reaction is as shown in FIG. 1. In the A domain, aminoacyl adenylic acid (aminoacyl AMP) and pyrophosphate (PPi ) is produced. In the T domain, aminoacyl AMP then reacts with the aminoacyl 4'phosphopantetheine group (4'PP) of the T domain to form an aminoacyl-T domain complex. Subsequently, in the C domain, a peptide is produced by causing a peptide condensation reaction that bonds the amino acids bound to the aminoacyl-T domain complex. NRPS synthesizes a linear or cyclic peptide consisting of 3- to 15-mer amino acids by repeating such reactions (Non-Patent Document 5, Non-Patent Document 6).

NRPSに関する公知文献(特許文献4、5、非特許文献5、6)に記載された技術は、A、T及びCドメインから成るNRPSによるペプチド合成に関するものであって、Aドメイン、又は、Aドメイン及びTドメインから成るNRPSによるアミノ酸の定量に関する技術的課題を解決することを目的とするものではない。また、NRPSの公知文献(非特許文献7)では、バイオポリマー合成のために使用するNRPSの活性測定法の記載があるが、1分子のNRPSに対し1分子のアミノ酸とATPが反応し、アミノアシルAMP-Aドメイン複合体を形成するため、試料中のNRPS濃度までしか反応しないことから、アミノアシルAMP-NRPS複合体分解試薬としてヒドロキシルアミン(アミン類の求核剤)を添加することで、NRPSを再び反応可能な状態とし、NRPSの活性確認をしている。しかしながら、本方法は、該複合体分解試薬が複合体のアミノ酸と反応して化合物が産生されるため、アミノ酸は再利用することが出来ず、その結果、試料中のアミノ酸と同等量の産生物であるピロリン酸しか生成されない。これら公知文献には、NRPS反応を活用したアミノ酸の定量、及び、アミノ酸の定量にAドメイン、又は、Aドメイン及びTドメインから成るNRPSを用いることについては何ら言及されておらず、更に、アミノ酸とNRPSとの反応におけるアミノ酸及びNRPSの再利用に関しても一切触れられていない。 Techniques described in known documents (Patent Documents 4 and 5, Non-Patent Documents 5 and 6) relating to NRPS relate to peptide synthesis by NRPS consisting of A, T and C domains, wherein the A domain or the A domain and a T domain, and does not aim to solve technical problems related to amino acid quantification by NRPS. In addition, in the known literature on NRPS (Non-Patent Document 7), there is a description of a method for measuring the activity of NRPS used for biopolymer synthesis. Since the AMP-A domain complex is formed, it reacts only up to the concentration of NRPS in the sample. It is now in a state where it can react again, and the activity of NRPS is being confirmed. However, in this method, the complex-dissolving reagent reacts with the amino acid of the complex to produce a compound, and the amino acid cannot be reused. only pyrophosphate is produced. These known documents make no mention of amino acid quantification utilizing the NRPS reaction and the use of an NRPS consisting of an A domain or an A domain and a T domain for amino acid quantification. Nor is there any mention of the recycling of amino acids and NRPS in reactions with NRPS.

特開2013-146264号公報JP 2013-146264 A 特開2011-50357号公報JP 2011-50357 A 特許5305208号明細書Patent No. 5305208 WO2006/001382WO2006/001382 特許5367272号明細書Patent No. 5367272

“化学と生物”、(日本)、2015年、Vol.53、p.192-197"Chemistry and Biology", (Japan), 2015, Vol.53, p. 192-197 “広島市立大学情報科学研究科創造科学専攻 釘宮章光”[online]、 広島市立大ホームページ、[2016/01/13検索]、インターネット(URL:http://rsw.office.hiroshima-cu.ac.jp/Profiles/2/000129/profile.html)"Akimitsu Kugimiya, Department of Creative Science, Graduate School of Information Science, Hiroshima City University" [online], Hiroshima City University website, [Searched 2016/01/13], Internet (URL: http://rsw.office.hiroshima-cu.ac. jp/Profiles/2/000129/profile.html) Analytical Biochem., 443, 22-26, 2013Analytical Biochem., 443, 22-26, 2013 Appl. Biochem. Biotechnol., 174, 2527-2536, 2014Appl. Biochem. Biotechnol., 174, 2527-2536, 2014 “社団法人日本化学会 NEWS LETTER”、(日本)、2015年、Vol.29、p.3-6"The Chemical Society of Japan NEWS LETTER", (Japan), 2015, Vol.29, p. 3-6 “化学と生物”、(日本)、2006年、Vol.44、p.85-92"Chemistry and Biology", (Japan), 2006, Vol.44, p. 85-92 Analytical Sciences January, 30, 17-24, 2014Analytical Sciences January, 30, 17-24, 2014

本発明は、上記のアミノ酸定量法に関する従来技術に於ける様々な問題点を解決し、測定対象のタンパク質性アミノ酸(タンパク質を構成する20種のL型のアミノ酸)、また、D型アミノ酸、修飾アミノ酸及びオルニチン等の非タンパク質性アミノ酸を特異的且つ簡便、高感度に定量する方法及びアミノ酸定量用キットを提供することを目的とする。 The present invention solves various problems in the prior art related to the above-described amino acid quantification method, and provides proteinogenic amino acids to be measured (20 L-type amino acids that constitute proteins), D-type amino acids, modified An object of the present invention is to provide a method and a kit for amino acid quantification that are specific, simple, and highly sensitive to quantify amino acids and non-protein amino acids such as ornithine.

NRPSを用いて試料中のアミノ酸量を定量する方法に於いて、従来のA、T及びCドメインから成るNRPS反応では、NRPSに対しアミノ酸とATPが反応し、ペプチドを産生するため、試料中のアミノ酸を再利用できないと共に、アミノ酸と同量かそれ以下のピロリン酸しか産生されない、と考えられる。また、A及びTドメインから成るNRPS反応では、1分子のNRPSに対し1分子のアミノ酸とATPが反応するが、アミノアシル-Tドメイン複合体を形成するため、試料中のアミノ酸を再利用できないと共に、試料中のNRPSと同量かそれ以下のピロリン酸しか産生されない、と考えられる。さらにAドメインから成るNRPS反応では、1分子のNRPSに対し1分子のアミノ酸とATPが反応するが、アミノアシルAMP-Aドメイン複合体を形成するため、試料中のNRPSと同量かそれ以下のピロリン酸しか産生されない、と考えられる。そこで発明者らは、種々の検討を行った結果、図2に示すように、一度形成させたアミノアシルAMP-NRPS複合体からNRPS及びアミノ酸(AA)を遊離させ、それらを再度、アミノアシルAMP-NRPS複合体の形成に利用することによって、最終的に、測定対象であるピロリン酸等の反応産生物が、試料中に含まれるNRPS及び/又はアミノ酸より多くのモル数まで産生され得ることを見出し、本発明を完成させた。 In the method of quantifying the amount of amino acids in a sample using NRPS, in the conventional NRPS reaction consisting of A, T and C domains, amino acids and ATP react with NRPS to produce peptides. It is thought that the amino acids cannot be reused and that the amount of pyrophosphate that is equal to or less than the amino acids is produced. In addition, in the NRPS reaction consisting of A and T domains, one molecule of NRPS reacts with one amino acid molecule and ATP, but since an aminoacyl-T domain complex is formed, the amino acids in the sample cannot be reused, It is believed that as much pyrophosphate as or less than the NRPS in the sample is produced. Furthermore, in the NRPS reaction consisting of the A domain, one molecule of NRPS reacts with one molecule of amino acid and ATP. It is believed that only acid is produced. As a result of various studies, the inventors released NRPS and amino acid (AA) from the once-formed aminoacyl AMP-NRPS complex, as shown in FIG. It was found that by using the compound to form a complex, a reaction product such as pyrophosphate, which is the object of measurement, can be produced to a higher molar number than the NRPS and/or amino acids contained in the sample, I completed the present invention.

本発明は、以下の[1]~[6]の態様に関する。
[1]以下の各工程を含む工程(I):
(工程I-1)二価陽イオンの存在下、試料中のアミノ酸(AA)、該AAに対応する非リボソーム型ペプチド合成酵素(NRPS)、及び、アデノシン三リン酸(ATP)を反応させて、アミノアシルアデニル酸(アミノアシルAMP)とNRPSから成る複合体(アミノアシルAMP-NRPS複合体)を形成させる反応(反応1)を含む工程;
(工程I-2)反応1及び/又は反応3で形成されたアミノアシルAMP-NRPS複合体にアミノ酸再生試薬が作用して、該複合体からNRPS及びAAが遊離する反応(反応2)を含む工程;
(工程I-3)反応2で遊離されたAA及び/又はNRPSを反応1において再利用することによってアミノアシルAMP-NRPS複合体反応を形成させる反応(反応3)を含む工程;及び、
(工程I-4)工程I-2及び工程I-3を繰り返す工程、並びに、
工程(I)で生じた反応産生物の量を測定し、該反応産生物の測定量に基づきアミノ酸の量を決定することを含む工程(II)、
を含み、前記NRPSは少なくともAドメインを含む、試料中のアミノ酸定量方法。
[2]NRPSがAドメインから構成されるもの、並びに/又は、Aドメイン及びTドメインから構成されるものである、[1]に記載のアミノ酸定量方法。
[3]工程(I)で用いるアミノ酸再生試薬が、ヌクレオチド及び/又はアルカリ性化合物であることを特徴とする、[1]に記載のアミノ酸定量方法。
[4]吸光度法により吸光度変化を測定することによって、工程(I)で生じた反応産生物の量を測定する、[1]~[3]の何れか一項に記載のアミノ酸定量方法。
[5]工程(I)で生じる反応産生物として、ピロリン酸又は水素イオンの少なくとも何れか1つを測定する、[1]~[4]の何れか一項に記載のアミノ酸定量方法。
[6]工程(I)で生じた反応産生物のモル数が試料中のNRPS及び/又はアミノ酸のモル数より多いことを特徴とする、[1]~[5]のいずれか一項に記載のアミノ酸定量方法。
[7][1]~[6]に記載のアミノ酸定量法を実施するためのアミノ酸定量用キットであって、ATP、ヌクレオチド及び該アミノ酸に対応するNRPSを含む、アミノ酸定量用キット。
The present invention relates to the following aspects [1] to [6].
[1] Step (I) including the following steps:
(Step I-1) In the presence of divalent cations, an amino acid (AA) in a sample, a non-ribosomal peptide synthetase (NRPS) corresponding to the AA, and adenosine triphosphate (ATP) are reacted. , a reaction (reaction 1) to form a conjugate consisting of aminoacyl adenylic acid (aminoacyl AMP) and NRPS (aminoacyl AMP-NRPS conjugate);
(Step I-2) A step including a reaction (Reaction 2) in which an aminoacyl AMP-NRPS complex formed in Reaction 1 and/or Reaction 3 is reacted with an amino acid regenerating reagent to liberate NRPS and AA from the complex. ;
(Step I-3) a step comprising a reaction (reaction 3) to form an aminoacyl AMP-NRPS conjugate reaction by recycling the AA and/or NRPS liberated in reaction 2 in reaction 1;
(Step I-4) repeating steps I-2 and I-3, and
step (II) comprising measuring the amount of the reaction product generated in step (I) and determining the amount of the amino acid based on the measured amount of the reaction product;
and wherein said NRPS comprises at least an A domain.
[2] The method for quantifying amino acids according to [1], wherein the NRPS consists of an A domain and/or an A domain and a T domain.
[3] The method for quantifying amino acids according to [1], wherein the amino acid regeneration reagent used in step (I) is a nucleotide and/or an alkaline compound.
[4] The method for quantifying amino acids according to any one of [1] to [3], wherein the amount of the reaction product produced in step (I) is measured by measuring absorbance change by an absorbance method.
[5] The method for quantifying amino acids according to any one of [1] to [4], wherein at least one of pyrophosphate and hydrogen ions is measured as the reaction product generated in step (I).
[6] Any one of [1] to [5], wherein the number of moles of the reaction product produced in step (I) is greater than the number of moles of NRPS and/or amino acids in the sample. Amino acid quantification method.
[7] An amino acid quantification kit for performing the amino acid quantification method according to [1] to [6], comprising ATP, a nucleotide, and an NRPS corresponding to the amino acid.

本発明に係るアミノ酸定量方法に於いては、タンパク質性アミノ酸(タンパク質を構成する20種のL型のアミノ酸)が特異的に測定できると共に、異性体であるD型のアミノ酸、さらにはメチル化、アシル化、グリコシル化などの修飾アミノ酸及びオルニチン等の非タンパク質性アミノ酸も特異的に測定できる。また、形成されたアミノアシルAMP-NRPS複合体からNRPS及びアミノ酸を遊離させ、それらをアミノアシルAMP-NRPS複合体の形成に繰り返し利用することによって、測定対象であるピロリン酸等の反応産生物を、試料中に含まれるNRPS及び/又は、アミノ酸より多くのモル数まで産生させることができる。その結果、従来技術に比べてより簡便な手段でこれら反応産生物を測定する場合であっても、従来技術の多段階酵素反応を用いた蛍光法などによる高感度分析のアミノ酸定量法のアミノ酸定量範囲と同等の範囲での定量が可能となる。更に、同じ測定手段を用いる場合には、より低濃度範囲のアミノ酸の定量が可能である。 In the amino acid quantification method according to the present invention, proteinogenic amino acids (20 types of L-type amino acids that constitute proteins) can be specifically measured, and isomers of D-type amino acids, methylation, Modified amino acids such as acylation, glycosylation and non-proteinogenic amino acids such as ornithine can also be specifically measured. In addition, by liberating NRPS and amino acids from the formed aminoacyl AMP-NRPS conjugate and repeatedly using them to form the aminoacyl AMP-NRPS conjugate, reaction products such as pyrophosphate to be measured can be obtained from the sample. Up to more moles than the NRPS and/or amino acids contained therein can be produced. As a result, even when these reaction products are measured by means that are simpler than those of the conventional techniques, the conventional techniques for amino acid quantification using high-sensitivity analytical methods such as fluorescence methods using multi-step enzymatic reactions have been proposed. It becomes possible to quantify in a range equivalent to the range. Furthermore, when using the same measurement means, it is possible to quantify amino acids in a lower concentration range.

更に、本発明によって、NRPSを用いた、測定対象のタンパク質性アミノ酸、また、D型アミノ酸、修飾アミノ酸及びオルニチン等の非タンパク質性アミノ酸を特異的且つ簡便、高感度に定量する方法及びアミノ酸定量用キットを提供できる。 Furthermore, according to the present invention, a method for specifically, simply, and highly sensitively quantifying proteinogenic amino acids to be measured, as well as non-proteinogenic amino acids such as D-amino acids, modified amino acids and ornithine, using NRPS, and for amino acid quantification We can provide a kit.

NRPS反応を示す図である。FIG. 3 shows an NRPS reaction; 本発明の反応工程を示す図である。It is a figure which shows the reaction process of this invention. 各種NRPS反応により生じるピロリン酸産生量を示す図である。FIG. 4 is a diagram showing the amount of pyrophosphate produced by various NRPS reactions. 各種ATP及び酵素濃度によるピロリン酸産生量を示す図である。FIG. 4 is a diagram showing the amount of pyrophosphate produced by various ATP and enzyme concentrations. 二価陽イオンの種類によるピロリン酸産生量を示す図である。FIG. 4 is a diagram showing the amount of pyrophosphate produced depending on the type of divalent cation. 各種二価陽イオン濃度によるピロリン酸産生量を示す図である。FIG. 4 is a diagram showing the amount of pyrophosphate produced at various divalent cation concentrations. 各pHにおけるピロリン酸産生量を示す図である。It is a figure which shows the pyrophosphate production amount in each pH. 各温度におけるピロリン酸産生量を示す図である。It is a figure which shows the pyrophosphate production amount in each temperature. 本発明と公知文献(非特許文献7)のNRPS反応におけるピロリン酸産生量を示す図である。FIG. 10 is a diagram showing the amount of pyrophosphate produced in the NRPS reaction of the present invention and a known document (Non-Patent Document 7). モリブデンブルー法によるピロリン酸測定におけるアミノ酸検量線を示す図である。FIG. 4 shows an amino acid calibration curve in pyrophosphate measurement by the molybdenum blue method.

本発明方法の反応1及び反応3では、アミノ酸、該アミノ酸に対応するNRPS、及びATPを反応させて、アミノアシルAMP-NRPS複合体を形成させる。本発明方法に使用するNRPSは、各アミノ酸に対し特異的に作用する当業者に公知の任意のNRPSを用いることができる。例えば、オルニチン(Orn)であれば、オルニチンに特異的に作用するNRPS、リジン(Lys)であれば、リジンに特異的に作用するNRPSなどが挙げられる。また、本発明に使用するNRPSは、例えば、Streptomyces属、Corynebacterium属、Pseudomonas属、Aspergillus属、Saccharopolyspora属、及びLecanicillum属などの微生物由来など、各種生物由来のNRPSであれば、いずれのNRPSでも良く、特に取扱及び生産性の面の観点から、微生物由来のNRPSが好ましい。NRPSは、Aドメイン、Tドメイン及びCドメインから構成されるが、好ましくは、Aドメインのみから構成されるもの、並びに/又は、AドメインとTドメインから構成されるものが良い。また、組換え型NRPSでも良く、合成したNRPSでも良い。可溶性酵素が好ましいが、不溶性酵素に界面活性剤を組み合わせても良く、可溶化タンパクとの融合又は膜結合部分の削除等により不溶性酵素を可溶化させた酵素でも良い。NRPSの公知のアミノ酸配列を利用でき、Aドメインから構成される組換え型のNRPSは、60%、70%、80%、90%又は95%以上の同一性を有する配列を有し、また、AドメインとTドメインから構成される組換え型のNRPSは、60%、70%、80%、90%又は95%以上の同一性を有する配列を有し、NRPS活性を有する蛋白質を使用しても良い。 In Reaction 1 and Reaction 3 of the method of the present invention, an amino acid, NRPS corresponding to the amino acid, and ATP are reacted to form an aminoacyl AMP-NRPS conjugate. Any NRPS known to those skilled in the art that acts specifically on each amino acid can be used as the NRPS used in the method of the present invention. For example, ornithine (Orn) includes NRPS that specifically acts on ornithine, and lysine (Lys) includes NRPS that specifically acts on lysine. The NRPS used in the present invention may be any NRPS that is derived from various organisms, such as those derived from microorganisms such as Streptomyces, Corynebacterium, Pseudomonas, Aspergillus, Saccharopolyspora, and Lecanicillum. NRPS derived from microorganisms is preferred, particularly from the viewpoint of handling and productivity. The NRPS is composed of an A domain, a T domain and a C domain, preferably composed of only the A domain and/or composed of the A domain and the T domain. Alternatively, it may be a recombinant NRPS or a synthetic NRPS. Soluble enzymes are preferred, but surfactants may be combined with insoluble enzymes, and enzymes obtained by solubilizing insoluble enzymes by fusion with solubilizing proteins or deletion of membrane-binding portions may be used. The known amino acid sequence of NRPS can be used, and the recombinant NRPS composed of the A domain has a sequence with 60%, 70%, 80%, 90% or 95% or more identity, and A recombinant NRPS composed of an A domain and a T domain has a sequence with 60%, 70%, 80%, 90% or 95% or more identity and has NRPS activity. Also good.

本発明に使用するNRPSの調製方法としては、当業者に公知の任意の方法・手段、例えば、NRPSを含む対象物に加水し、粉砕機、超音波破砕機などで粉砕後、破砕した破砕物を遠心分離、濾過などで固形物を取り除いた抽出物、さらに当該抽出物をカラムクロマトグラフィーなどにより精製、単離したNRPSなどを用いることができる。即ち、本発明の主な技術的特徴は、NRPSを用いるアミノ酸定量方法に於いて、形成されたアミノアシルAMP-NRPS複合体中からNRPS及びアミノ酸を遊離させて、それらをアミノアシルAMP-NRPS複合体の形成に繰り返し利用することによって、測定対象であるピロリン酸等の反応産生物を、試料中に含まれるNRPS及び/又はアミノ酸より多くのモル数まで産生させることであり、NRPSの調製方法は何ら限定されるものではない。 The NRPS used in the present invention can be prepared by any method or means known to those skilled in the art, for example, water is added to an object containing NRPS, crushed with a crusher, an ultrasonic crusher, etc., and then crushed. An extract obtained by removing solid matter by centrifugation, filtration, or the like, and NRPS obtained by further purifying and isolating the extract by column chromatography or the like can be used. That is, the main technical feature of the present invention is that, in a method for quantifying amino acids using NRPS, NRPS and amino acids are liberated from the formed aminoacyl AMP-NRPS complex, and they are converted into an aminoacyl AMP-NRPS complex. By repeatedly using it for formation, the reaction product such as pyrophosphate to be measured is produced to a larger number of moles than the NRPS and/or amino acids contained in the sample, and the method for preparing NRPS is not limited at all. not to be

本発明の測定対象となるアミノ酸は、L-リジン、L-ロイシン及びL-イソロイシンなどのL型の20種類のタンパク質性アミノ酸、L型アミノ酸の異性体であるD-リジン、D-ロイシン及びD-イソロイシンなどのD型のアミノ酸、オルニチン、β-リジン及びα-メチル-Lセリンなど非タンパク質性アミノ酸でも良い。 Amino acids to be measured in the present invention include 20 types of L-type proteinogenic amino acids such as L-lysine, L-leucine and L-isoleucine, and L-type amino acid isomers D-lysine, D-leucine and D - D-form amino acids such as isoleucine, non-proteinogenic amino acids such as ornithine, β-lysine and α-methyl-L serine.

また、本発明に使用する試料に特に制限はなく、例えば、血液、生鮮食品、加工食品及び飲料などがあげられる。各試料中のアミノ酸濃度は、各アミノ酸により異なる。例えば、血液中のアミノ酸濃度は、イソロイシンは、41~85nmol/mL、ロイシンは、81~154nmol/mL、バリンは、158~288nmol/mL、リジンは、119~257nmol/mL、オルニチンは、43~96nmol/mLなどである。生鮮食品中の遊離アミノ酸含量は、例えば、ニンニクでは、リジンは、5mg/100g、アルギニンは、136mg/100gなどである。加工食品や飲料中の遊離アミノ酸含量は、例えば、醤油では、リジンは、213mg/100g、アラニンは、348mg/100g、ロイシンは、450mg/100gなどである。コーヒー生豆ロブスタ種の完熟では、アスパラギン酸は、76mg/100g、ロイシンは、6mg/100g、バリンは、10mg/100gなどである。これら各試料中の予想されるアミノ酸濃度によって、適宜、希釈調製し、本発明の試料として使用できる。 Moreover, the sample used in the present invention is not particularly limited, and examples thereof include blood, fresh foods, processed foods and beverages. The amino acid concentration in each sample is different for each amino acid. For example, the amino acid concentration in blood is 41-85 nmol/mL for isoleucine, 81-154 nmol/mL for leucine, 158-288 nmol/mL for valine, 119-257 nmol/mL for lysine, and 43-257 nmol/mL for ornithine. such as 96 nmol/mL. The content of free amino acids in fresh foods, for example, in garlic, is 5 mg/100 g for lysine and 136 mg/100 g for arginine. The content of free amino acids in processed foods and beverages, for example, in soy sauce, is 213 mg/100 g for lysine, 348 mg/100 g for alanine, and 450 mg/100 g for leucine. For fully ripe Robusta coffee beans, aspartic acid is 76 mg/100 g, leucine is 6 mg/100 g, valine is 10 mg/100 g, and so on. Depending on the expected amino acid concentration in each of these samples, appropriate dilutions can be prepared and used as the samples of the present invention.

本発明に使用する試料中のアミノ酸には、L体及びD体が混在してもよい。そのような場合には、例えば、本発明方法における前処理として、L体又はD体のアミノ酸の何れか一方を除去するのが好ましい。L体又はD体の何れか一方を除去する方法として、カラムクロマトグラフィー又は適当な酵素によるL体又はD体のアミノ酸の何れか一方を除去する等、当業者に公知の任意の方法が挙げられる。尚、生体試料には、L体及びD体が混在するが、哺乳類体内中の殆どのD体アミノ酸は、L体アミノ酸の0.1~1.0%程度、果物では、D体アミノ酸は、L体アミノ酸の3.0%以下であり、生体試料中のD体アミノ酸含量は、L体アミノ酸の定量に影響を与えるほど含有していない。 Amino acids in a sample used in the present invention may be in a mixture of L- and D-forms. In such a case, for example, it is preferable to remove either the L- or D-amino acid as a pretreatment in the method of the present invention. Methods for removing either the L or D amino acid include any method known to those skilled in the art, such as removal of either the L or D amino acid by column chromatography or an appropriate enzyme. . In addition, although L- and D-forms are mixed in biological samples, most D-form amino acids in mammals are about 0.1 to 1.0% of L-form amino acids, and in fruits, D-form amino acids are It is 3.0% or less of the L-amino acid, and the D-amino acid content in the biological sample does not affect the determination of the L-amino acid.

当該反応に使用される反応液中のNRPS濃度は、試料の種類、推定される試料中のアミノ酸濃度、ATP濃度、及び、反応時間・温度等の各種反応条件に応じて、当業者が適宜決められる。NRPS濃度を高濃度することによって反応を短時間に完了させることが出来、逆に反応時間が長時間でも良い場合は、NRPS濃度は低濃度で良い。例えば、Streptomyces属、Saccharopolyspora属及びCorynebacterium属などの放線菌由来のNRPSの濃度は、0.1μM以上、より好ましくは0.5μM以上、さらに好ましくは1.0μM以上、特に好ましくは5.0μM以上、最も好ましくは10.0μM以上とすることができる。いずれにしても、本発明方法では、NRPSを繰り返し使用されるので、予想される試料中のアミノ酸量に対して、過剰量のNRPSを添加する必要はない、という利点を有する。従って、NRPS濃度の上限は、経済性なども考慮して当業者が適宜設定することが出来る。 The NRPS concentration in the reaction solution used for the reaction can be appropriately determined by a person skilled in the art according to the type of sample, the estimated amino acid concentration in the sample, the ATP concentration, and various reaction conditions such as reaction time and temperature. be done. By increasing the NRPS concentration, the reaction can be completed in a short time. Conversely, if a long reaction time is acceptable, the NRPS concentration may be low. For example, the concentration of NRPS derived from actinomycetes such as Streptomyces, Saccharopolyspora and Corynebacterium is 0.1 μM or more, more preferably 0.5 μM or more, still more preferably 1.0 μM or more, particularly preferably 5.0 μM or more, Most preferably, it can be 10.0 μM or more. In any case, the method of the present invention has the advantage that NRPS is used repeatedly, so that it is not necessary to add an excess amount of NRPS relative to the expected amount of amino acids in the sample. Therefore, the upper limit of the NRPS concentration can be appropriately set by a person skilled in the art in consideration of economic efficiency and the like.

本発明方法の反応1又は反応3ではNRPSと共にATP、二価陽イオンを用いる。本発明に使用するATPは、ナトリウム塩、リチウム塩などが使用できる。当該反応に使用される反応液中のATPの濃度は、試料の種類、予想される試料中のアミノ酸濃度、NRPS濃度、ヌクレオチド濃度、及び、反応時間・温度等の各種反応条件に応じて、当業者が適宜決められるが、予想される試料中のアミノ酸濃度に対して過剰となるように添加するのが好ましい。例えば試料が血液の場合、ATP濃度は、0.01mM以上、より好ましくは0.1mM以上、さらに好ましくは1.0mM以上、特に好ましくは10.0mM以上、最も好ましくは40.0mM以上とすることができる。ATP濃度の上限は、経済性なども考慮して当業者が適宜設定することが出来る。また、本発明に使用する二価陽イオンは、マグネシウム、マンガン、コバルト、カルシウムなどが使用できる。二価陽イオンは、NRPSにより要求性が異なるため、使用するNRPSに適した二価陽イオンを適宜使用すれば良い。当該反応に使用される反応液中の二価陽イオンの濃度は、適宜決められるが、ATP濃度に対して同等以上に添加するのが好ましい。例えば、NRPSにおけるATP:二価陽イオンの比率は、少なくとも1:10、より好ましくは少なくとも1:7、さらに好ましくは少なくとも1:5、特に好ましくは少なくとも1:3、最も好ましくは少なくとも1:1とすることができる。 ATP and divalent cations are used together with NRPS in Reaction 1 or Reaction 3 of the method of the present invention. ATP used in the present invention may be sodium salt, lithium salt, or the like. The concentration of ATP in the reaction solution used in the reaction depends on the type of sample, expected amino acid concentration, NRPS concentration, nucleotide concentration in the sample, and various reaction conditions such as reaction time and temperature. The manufacturer can appropriately determine the amount, but it is preferable to add the amino acid in an excess amount relative to the expected amino acid concentration in the sample. For example, when the sample is blood, the ATP concentration should be 0.01 mM or higher, more preferably 0.1 mM or higher, still more preferably 1.0 mM or higher, particularly preferably 10.0 mM or higher, and most preferably 40.0 mM or higher. can be done. The upper limit of the ATP concentration can be appropriately set by those skilled in the art in consideration of economic efficiency and the like. Divalent cations used in the present invention can be magnesium, manganese, cobalt, calcium and the like. Since divalent cations have different requirements depending on the NRPS, divalent cations suitable for the NRPS to be used may be appropriately used. The concentration of the divalent cation in the reaction solution used for the reaction can be determined appropriately, but it is preferable to add the divalent cation in an amount equal to or higher than the ATP concentration. For example, the ATP: divalent cation ratio in NRPS is at least 1:10, more preferably at least 1:7, even more preferably at least 1:5, particularly preferably at least 1:3, most preferably at least 1:1. can be

続いて、本発明方法の反応2では、反応1及び/又は反応3で形成させたアミノアシルAMP-NRPS複合体に対してアミノ酸再生試薬が作用し、該複合体からNRPS及びアミノ酸が遊離する。当該反応のアミノ酸再生試薬としては、ATP、アデノシン二リン酸(ADP)、アデノシン一リン酸(AMP)、グアノシン三リン酸(GTP)、デオキシアデノシン三リン酸(dATP)などから任意に選択される一種又はそれらの組み合わせからなるヌクレオチドや、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム及び緩衝剤などの水酸化物イオンを発生するアルカリ性化合物を使用できる。反応2に於いては、アミノアシルAMP-NRPS複合体からのNRPS及びアミノ酸の遊離と共に、使用するアミノ酸再生試薬に応じて、AMP、Ap4A等が生成される。当該反応に使用される反応液中のアミノ酸再生試薬の濃度は、試料の種類、予想される試料中のアミノ酸濃度、NRPS濃度、ATP濃度及び反応時間・温度等の各種反応条件に応じて、当業者が適宜決められるが、AMP、Ap4A等の生成に於いて消費されるので、ヌクレオチドは試料中のアミノ酸濃度に対して過剰となるように添加するのが好ましい。例えば、試料が血液の場合、ヌクレオチド濃度は、0.01mM以上、より好ましくは0.1mM以上、さらに好ましくは1.0mM以上、特に好ましくは10.0mM以上、最も好ましくは40.0mM以上とすることができる。また、アルカリ性化合物は、反応の場(反応系)をpH7以上にできれば良い。例えば、Streptomyces属、Saccharopolyspora属及びCorynebacterium属などの放線菌由来のNRPSでは、好ましくはpH7.0以上、より好ましくはpH7.5以上、さらに好ましくは、pH8.0以上とする。尚、反応pHは、当業者に公知の任意の当業者に公知の任意の緩衝剤である、HEPESバッファー、CHESバッファー、TRISバッファー、MOPSバッファーなどを使用して調整することが出来る。従って、本発明方法では、NRPSを再び反応可能な状態とさせるために、特許文献3に記載されているようなアミン類等のアミノアシルAMP-NRPS複合体分解試薬を添加する必要がなく、更に、遊離したアミノ酸が該試薬と反応することがないので、遊離したアミノ酸をアミノアシルAMP-NRPS複合体の形成に再び利用することができる。 Subsequently, in Reaction 2 of the method of the present invention, an amino acid regeneration reagent acts on the aminoacyl AMP-NRPS complex formed in Reaction 1 and/or Reaction 3 to liberate NRPS and amino acids from the complex. The amino acid regeneration reagent for the reaction is arbitrarily selected from ATP, adenosine diphosphate (ADP), adenosine monophosphate (AMP), guanosine triphosphate (GTP), deoxyadenosine triphosphate (dATP), and the like. Nucleotides consisting of one type or a combination thereof, and alkaline compounds that generate hydroxide ions such as sodium hydroxide, potassium hydroxide, sodium carbonate and buffering agents can be used. In Reaction 2, NRPS and amino acids are liberated from the aminoacyl AMP-NRPS conjugate with the formation of AMP, Ap4A, etc., depending on the amino acid regenerating reagent used. The concentration of the amino acid regeneration reagent in the reaction solution used in the reaction depends on various reaction conditions such as the type of sample, expected amino acid concentration in the sample, NRPS concentration, ATP concentration, and reaction time/temperature. Although determined by the manufacturer, it is preferable to add nucleotides in an excess amount relative to the concentration of amino acids in the sample because they are consumed in the production of AMP, Ap4A, and the like. For example, when the sample is blood, the nucleotide concentration is 0.01 mM or higher, more preferably 0.1 mM or higher, still more preferably 1.0 mM or higher, particularly preferably 10.0 mM or higher, and most preferably 40.0 mM or higher. be able to. Further, the alkaline compound should be able to make the reaction field (reaction system) pH 7 or higher. For example, for NRPS derived from actinomycetes such as Streptomyces, Saccharopolyspora and Corynebacterium, the pH is preferably 7.0 or higher, more preferably 7.5 or higher, and still more preferably 8.0 or higher. The reaction pH can be adjusted using any buffer known to those skilled in the art, such as HEPES buffer, CHES buffer, TRIS buffer, MOPS buffer, and the like. Therefore, in the method of the present invention, there is no need to add an aminoacyl AMP-NRPS complex decomposing reagent such as amines as described in Patent Document 3 in order to restore the NRPS to a state capable of reacting. Since the released amino acid does not react with the reagent, the released amino acid can be reused to form the aminoacyl AMP-NRPS conjugate.

本発明方法の反応3では、反応2で遊離したアミノ酸及び/又はNRPSを反応1において再び使用することによってアミノアシルAMP-NRPS複合体反応を形成させる。更に、本発明方法の工程(I)において、当業者に公知の任意の方法によって、反応1又は3で生じたピロリン酸及び反応系中のAMPにホスホエノールピルビン酸とピルビン酸ジキナーゼとを反応させることによって産生されるATPを、アミノアシルAMP-NRPS複合体形成及び該複合体からのNRPS及びアミノ酸の遊離に再利用すること、及び/又は、反応2でヌクレオチドから生成されるAp4Aに対しAp4Aピロホスホヒドラーゼを作用させることによって産生されるADPを、反応2におけるヌクレオチドとして再利用することもできる。 In Reaction 3 of the method of the present invention, the amino acid and/or NRPS liberated in Reaction 2 are reused in Reaction 1 to form an aminoacyl AMP-NRPS conjugate reaction. Furthermore, in step (I) of the method of the present invention, the pyrophosphate generated in Reaction 1 or 3 and AMP in the reaction system are reacted with phosphoenolpyruvate and pyruvate dikinase by any method known to those skilled in the art. and/or Ap4A pyrophosphorus to Ap4A generated from nucleotides in Reaction 2. ADP produced by the action of hydrolase can also be reused as a nucleotide in Reaction 2.

例えば、反応2で作用するヌクレオチドとしてATPを選択し、更に、上記のような反応を利用してATPの再産生をしない場合には、本明細書の実施例に示されるように、工程(I)の反応系全体で、上記に示したATP及びヌクレオチドの夫々の濃度を合計した、より高濃度のATPを添加することが好ましい。 For example, if ATP is selected as the nucleotide that acts in reaction 2 and the reaction as described above is not used to regenerate ATP, step (I ), it is preferable to add a higher concentration of ATP, which is the sum of the respective concentrations of ATP and nucleotides shown above, to the entire reaction system.

以上の結果、前述のアミノ酸再生試薬(ATPなどのヌクレオチド及び/又はアルカリ性化合物)及び該アミノ酸に対応するNRPSの組成等の反応条件において、工程(I)に於ける反応の結果、ピロリン酸及び/又は水素イオン等の夫々の反応産生物の各々について、試料中に含まれているNRPS及び/又は、測定対象のアミノ酸のモル数より多いモル数の分子が産生され得る。その結果、本発明方法では、従来技術より極めて低いアミノ酸濃度から定量可能となる。従って、この点は従来技術と比較して本発明の顕著な効果といえる。 As a result of the above, under the reaction conditions such as the above-mentioned amino acid regeneration reagent (nucleotide such as ATP and/or alkaline compound) and the composition of NRPS corresponding to the amino acid, the result of the reaction in step (I) was pyrophosphate and/or Or for each of the respective reaction products, such as hydrogen ions, more moles of molecules can be produced than the moles of NRPS and/or amino acid to be measured contained in the sample. As a result, the method of the present invention enables quantification of amino acids at concentrations much lower than those of the prior art. Therefore, this point can be said to be a remarkable effect of the present invention as compared with the prior art.

しかしながら、当該反応条件下で産生されるピロリン酸等の反応産生物が、試料中のアミノ酸のモル数以下の量であっても、該反応産生物に基づきアミノ酸の定量が可能であれば、ピロリン酸等の反応産生物が当該アミノ酸のモル数以上に産生される必要はない。従って、本発明の工程(I)に於いて産生されるピロリン酸や水素イオンの量は、工程(II)に於ける該反応産生物の適当な測定方法によってアミノ酸の定量が可能となる限り、特に限定されない。また、本発明方法の(工程I-4)に於ける、反応2(工程I-2)及び反応3(工程I-3)の繰り返しの回数についても、工程(II)に於ける該反応産生物の適当な測定方法によってアミノ酸の定量が可能となる限り、特に制限はない。 However, even if the reaction product such as pyrophosphate produced under the reaction conditions is in an amount equal to or less than the number of moles of amino acids in the sample, if the amino acid can be quantified based on the reaction product, pyroline It is not necessary that reaction products such as acids be produced in excess of the number of moles of the amino acid. Therefore, the amounts of pyrophosphate and hydrogen ions produced in step (I) of the present invention are as long as amino acids can be quantified by an appropriate method for measuring the reaction product in step (II). It is not particularly limited. In addition, regarding the number of repetitions of Reaction 2 (Step I-2) and Reaction 3 (Step I-3) in (Step I-4) of the method of the present invention, the reaction product in Step (II) There is no particular limitation as long as the amino acids can be quantified by an appropriate measuring method for living organisms.

本発明方法の工程(I)における反応温度は、各反応が生じるような任意の温度で良い。例えば、Streptomyces属,Saccharopolyspora属及びCorynebacterium属等の放線菌由来のNRPSの場合、好ましくは4~50℃、より好ましくは10~40℃、最も好ましくは20~35℃とすることが適している。また、当該反応時間も試料中のアミノ酸とNRPS反応が生じるような任意の時間で良いが、好ましくは5~120分程度、より好ましくは10~90分程度、さらに好ましくは、15~60分程度であることが望ましい。 The reaction temperature in step (I) of the process of the present invention may be any temperature at which each reaction occurs. For example, in the case of NRPS derived from actinomycetes such as Streptomyces, Saccharopolyspora and Corynebacterium, the temperature is preferably 4 to 50°C, more preferably 10 to 40°C, and most preferably 20 to 35°C. In addition, the reaction time may be any time that causes the NRPS reaction with the amino acid in the sample, preferably about 5 to 120 minutes, more preferably about 10 to 90 minutes, and still more preferably about 15 to 60 minutes. is desirable.

本発明方法の工程(I)に含まれる各工程で使用する試薬・酵素等の各反応成分は、NRPS反応が生じる添加方法である限り、当業者に公知の任意の手段・手順等で反応系に添加することができる。例えば、各成分を反応開始前に一度に反応系に予め添加するか、又は、NRPS又はアミノ酸を最後に添加し反応させても良い。 Reaction components such as reagents and enzymes used in each step included in step (I) of the method of the present invention can be added to the reaction system by any means, procedures, etc. known to those skilled in the art, as long as the addition method causes the NRPS reaction. can be added to For example, each component may be added to the reaction system at once before starting the reaction, or the NRPS or amino acid may be added last and allowed to react.

本発明方法の工程(II)では、工程(I)で生じたピロリン酸及び水素イオン等の各反応産生物の夫々の量を測定し、該反応産生物の測定量に基づきアミノ酸の量を決定する。工程(II)は、測定方法等に応じて、工程(I)に於ける試料中のアミノ酸とNRPSとの反応を、例えば、実施例に記載されているように、トリクロロ酢酸を反応系に添加する等の当業者に公知の任意の方法・手段で停止させた後、あるいは、工程(I)に於ける反応が進行中の任意の段階で適宜、実施することが出来る。 In step (II) of the method of the present invention, the amount of each reaction product such as pyrophosphate and hydrogen ion produced in step (I) is measured, and the amount of amino acid is determined based on the measured amount of the reaction product. do. In step (II), the reaction between the amino acids in the sample in step (I) and NRPS is performed, depending on the measurement method, for example, by adding trichloroacetic acid to the reaction system as described in the Examples. After terminating the reaction by any method or means known to those skilled in the art, or at any stage during the reaction in step (I), the reaction can be carried out as appropriate.

本発明の工程(I)で生じたピロリン酸量の測定には、当業者に公知の任意の方法・手段、例えば、モリブデン酸とピロリン酸を反応させ産生した青色の錯体の吸光度を測定するモリブデンブルー法、ヒポキサンチン-グアニンホスホリボシルトランスフェラーゼ、キサンチンオキシダーゼ又はキサンチンデヒドロゲナーゼを組みわせる方法、ルミノールと無機ピロホスファターゼ、ピルビン酸オキシダーゼ及びペルオキシダーゼを組み合わせ産生物の発光を測定する方法などのピロリン酸を測定できる酵素法などが使用できる。また、酵素反応などで酸化還元反応を起こし、その酸化還元反応に由来する電流値を検出する多電極電位計測計により電位変化を測定する測定方法などを使用することができる。さらに、当該反応で産生された水素イオンの測定には、水素イオンを検出するガラス電極やイオン感応性電界効果トランジスタにより電位変化を測定する測定方法などを使用することができる。本発明の工程(I)で生じたピロリン酸、水素イオンなどは、反応溶液から分離し、測定することができる。反応溶液からのピロリン酸、水素イオンなどの分離方法としては、測定に影響の無い方法であれば特に限定されないが、例えば、酸処理による除タンパク質、ペーパークロマトグラフィー分離、マイクロ流体デバイスでの分離などが挙げられる。本発明の主な技術的特徴は、NRPSを用いるアミノ酸定量方法に於いて、形成されたアミノアシルAMP-NRPS複合体中からNRPS及びアミノ酸を遊離させて、これら化合物を、再度、該複合体の形成に繰り返し利用することにより、測定対象であるピロリン酸等の反応産生物を、試料中に含まれるNRPS及び/又は、アミノ酸より多くのモル数まで産生させることであり、反応産生物の量の測定方法は何ら限定されるものではない。 Any method or means known to those skilled in the art can be used to measure the amount of pyrophosphate produced in step (I) of the present invention, for example, measuring the absorbance of a blue complex produced by reacting molybdic acid with pyrophosphate. Pyrophosphate can be measured by the Blue method, a method of combining hypoxanthine-guanine phosphoribosyltransferase, xanthine oxidase or xanthine dehydrogenase, a method of combining luminol with inorganic pyrophosphatase, pyruvate oxidase and peroxidase and measuring the luminescence of the product. An enzymatic method or the like can be used. Alternatively, a measurement method may be used in which an oxidation-reduction reaction is caused by an enzyme reaction or the like, and a potential change is measured by a multi-electrode potential measuring instrument that detects a current value derived from the oxidation-reduction reaction. Furthermore, for the measurement of hydrogen ions produced in the reaction, a measurement method of measuring a potential change using a glass electrode for detecting hydrogen ions or an ion-sensitive field effect transistor, or the like can be used. Pyrophosphate, hydrogen ions, and the like generated in step (I) of the present invention can be separated from the reaction solution and measured. The method for separating pyrophosphate, hydrogen ions, etc. from the reaction solution is not particularly limited as long as it is a method that does not affect the measurement. For example, protein removal by acid treatment, paper chromatography separation, separation with a microfluidic device, etc. is mentioned. The main technical feature of the present invention is that, in a method for quantifying amino acids using NRPS, NRPS and amino acids are released from the formed aminoacyl AMP-NRPS complex, and these compounds are used to form the complex again. By repeatedly using it, the reaction product such as pyrophosphate to be measured is produced to a larger number of moles than the NRPS and / or amino acids contained in the sample, and the amount of the reaction product is measured. The method is not limited at all.

本発明は、上記の本発明方法を実施するための、試料中のアミノ酸定量に必要な前述の各成分を含む、アミノ酸定量用キットを提供する。当該キットは、安定化剤又は緩衝剤等の当業者に公知の他の任意成分を適宜含有させ、前記酵素等試薬成分の安定性を高めても良い。測定に影響の無い成分であれば特に限定されないが、例えば、牛血清アルブミン(BSA)、卵白アルブミン、糖類、糖アルコール類、カルボキシル基含有化合物、酸化防止剤、界面活性剤、又は酵素と作用性のないアミノ酸類等を例示できる。また、当該キットの一例として前述のピロリン酸や水素イオンを測定するためのキットを挙げることが出来る。 The present invention provides an amino acid quantification kit for carrying out the above-described method of the present invention, which contains the aforementioned components necessary for quantifying amino acids in a sample. The kit may appropriately contain other optional components known to those skilled in the art, such as stabilizers or buffers, to enhance the stability of reagent components such as enzymes. Although there are no particular limitations as long as it is a component that does not affect the measurement, for example, bovine serum albumin (BSA), ovalbumin, sugars, sugar alcohols, carboxyl group-containing compounds, antioxidants, surfactants, or enzymes and activity can be exemplified by amino acids without Further, as an example of the kit, the aforementioned kit for measuring pyrophosphate and hydrogen ions can be mentioned.

以下、実施例によって本発明を具体的に説明するが、本発明の技術的範囲は以下の実施例によって限定されるものではない。 EXAMPLES The present invention will be specifically described below with reference to examples, but the technical scope of the present invention is not limited by the following examples.

(酵素の調製)
放線菌(Saccharopolyspora属又はCorynebacterium属)由来のNRPS配列(Pls-se-Aドメイン、Pls-cg-Aドメイン又はPls-cg-ATドメイン)をもつプラスミドで大腸菌JM109を形質転換し、発現株として用いた。各発現株についてアンピシリンを終濃度200μg/mLを含むLB培地により37℃で培養後、OD660=0.6-0.8に達したところで、培養液を氷水で冷却し、終濃度0.1mMとなるようにIPTGを添加した。培養液を18℃で終夜培養後、集菌を行い、得られた菌体を超音波破砕し、無細胞抽出液を調製した。さらに遠心分離を行い、得られた上清の一部を用いて電気泳動法により目的酵素の発現を確認した。次いで残りの上清をHisタグカラム(商品名:TALON superflow、GEヘルスケア製)により夾雑タンパクを除去することにより、L-オルニチンに特異的に作用するAドメインから成るNRPSのPls-se-A、L-リジン及びD-リジンに特異的に作用するAドメインから成るNRPSのPls-cg-A、L-リジン及びD-リジンに特異的に作用するAドメイン及びTドメイン(以下、ATドメイン)から成るNRPSのPls-cg-ATを得た。
(Enzyme preparation)
E. coli JM109 was transformed with a plasmid having an NRPS sequence (Pls-se-A domain, Pls-cg-A domain or Pls-cg-AT domain) derived from actinomycetes (genus Saccharopolyspora or Corynebacterium) and used as an expression strain. board. Each expression strain was cultured at 37°C in LB medium containing ampicillin at a final concentration of 200 µg/mL. IPTG was added so that the After culturing the culture at 18° C. overnight, the cells were harvested, and the resulting cells were sonicated to prepare a cell-free extract. After further centrifugation, expression of the target enzyme was confirmed by electrophoresis using a portion of the resulting supernatant. Next, the remaining supernatant was treated with a His-tag column (trade name: TALON superflow, manufactured by GE Healthcare) to remove contaminating proteins, resulting in an NRPS Pls-se-A consisting of an A domain that specifically acts on L-ornithine, Pls-cg-A of NRPS consisting of A domain that specifically acts on L-lysine and D-lysine, A domain and T domain (hereinafter referred to as AT domain) that specifically acts on L-lysine and D-lysine An NRPS consisting of Pls-cg-AT was obtained.

(各種NRPS反応により生じるピロリン酸の産生量:本発明方法の工程(I))
200mM HEPES-KOH(pH8.0)、40mM ATP、40mM MnCl、50μM L-オルニチン、5.0μM Pls-se-A(放線菌由来)を含む反応溶液を150μL調製し、30℃、60分間処理した。反応後、トリクロロ酢酸を終濃度4%となるように30μL添加し、反応を停止した。反応停止後、遠心分離で沈殿を除去し、実施品(本発明品)1を調製した。
(Amount of pyrophosphate produced by various NRPS reactions: step (I) of the method of the present invention)
150 μL of a reaction solution containing 200 mM HEPES-KOH (pH 8.0), 40 mM ATP, 40 mM MnCl 2 , 50 μM L-ornithine, and 5.0 μM Pls-se-A (derived from actinomycetes) was prepared and treated at 30° C. for 60 minutes. bottom. After the reaction, 30 μL of trichloroacetic acid was added to a final concentration of 4% to terminate the reaction. After the reaction was stopped, the precipitate was removed by centrifugation to prepare a working product (product of the present invention) 1.

200mM HEPES-KOH(pH8.0)、40mM ATP、40mM MnCl、50μM L-リジン又はD-リジン、5.0μM Pls-cg-A(放線菌由来)を含む反応溶液を150μL調製し、30℃、60分間処理した。反応後、トリクロロ酢酸を終濃度4%となるように30μL添加し、反応を停止した。反応停止後、遠心分離で沈殿を除去し、実施品(本発明品)2、3を調製した。150 μL of a reaction solution containing 200 mM HEPES-KOH (pH 8.0), 40 mM ATP, 40 mM MnCl 2 , 50 μM L-lysine or D-lysine, and 5.0 μM Pls-cg-A (derived from actinomycete) was prepared and heated to 30°C. , was processed for 60 minutes. After the reaction, 30 μL of trichloroacetic acid was added to a final concentration of 4% to terminate the reaction. After stopping the reaction, the precipitate was removed by centrifugation to prepare working products (products of the present invention) 2 and 3.

200mM HEPES-KOH(pH8.0)、40mM ATP、40mM MnCl、50μM L-リジン又はD-リジン、5.0μM Pls-cg-AT(放線菌由来)を含む反応溶液を150μL調製し、30℃、60分間処理した。反応後、トリクロロ酢酸を終濃度4%となるように30μL添加し、反応を停止した。反応停止後、遠心分離で沈殿を除去し、実施品(本発明品)4、5を調製した。150 μL of a reaction solution containing 200 mM HEPES-KOH (pH 8.0), 40 mM ATP, 40 mM MnCl 2 , 50 μM L-lysine or D-lysine, and 5.0 μM Pls-cg-AT (derived from actinomycete) was prepared and heated to 30°C. , was processed for 60 minutes. After the reaction, 30 μL of trichloroacetic acid was added to a final concentration of 4% to terminate the reaction. After stopping the reaction, the precipitate was removed by centrifugation to prepare working products (products of the present invention) 4 and 5.

(モリブデンブルー法によるピロリン酸の測定:本発明方法の工程(II))
調製した実施品1~5の反応溶液150μLに1Mメルカプトエタノール15μL、発色液(2.5%モリブデン酸アンモニウム/5N硫酸)60μLを混合し、室温で20分間静置した後、580nmの吸光度を測定した。なお、基質アミノ酸の代わりに水を添加したサンプルの吸光値を、ブランクとして各サンプルの吸光値から差し引いた値から、反応溶液中のピロリン酸量を求めた。その結果、図3に示す通り、Aドメイン及びATドメインから成るNRPS共に、NRPSの分子数以上、さらに各基質アミノ酸が酵素反応に使用された場合に産生されるピロリン酸量の理論値より多くのピロリン酸が産生されていた。従って、本発明の方法によれば、試料中に含まれるNRPS及びアミノ酸分子数より多くのモル数のピロリン酸が産生されることが示された。
(Measurement of pyrophosphate by molybdenum blue method: step (II) of the method of the present invention)
150 μL of the prepared reaction solution of Examples 1 to 5 was mixed with 15 μL of 1 M mercaptoethanol and 60 μL of a coloring solution (2.5% ammonium molybdate/5N sulfuric acid), allowed to stand at room temperature for 20 minutes, and then the absorbance at 580 nm was measured. bottom. The amount of pyrophosphate in the reaction solution was determined from the value obtained by subtracting the absorbance value of the sample to which water was added instead of the substrate amino acid as a blank from the absorbance value of each sample. As a result, as shown in FIG. 3, both the NRPS consisting of the A domain and the AT domain had more than the number of molecules of the NRPS and more than the theoretical amount of pyrophosphate produced when each substrate amino acid was used in the enzymatic reaction. Pyrophosphate was produced. Therefore, according to the method of the present invention, it was shown that more moles of pyrophosphate are produced than the number of NRPS and amino acid molecules contained in the sample.

(各種ATP濃度及び酵素濃度によるピロリン酸の産生量:本発明方法の工程(I))
200mM HEPES-KOH(pH8.0)、25mM ATP、25mM MnCl、50μM L-オルニチン、5.0μM Pls-se-A(放線菌由来)を含む反応溶液、又は200mM HEPES-KOH(pH8.0)、40mM ATP、40mM MnCl、50μM L-オルニチン、5.0μM Pls-se-AT(放線菌由来)を含む反応溶液を150μL調製し、30℃、60分間処理した。反応後、トリクロロ酢酸を終濃度4%となるように30μL添加し、反応を停止した。反応停止後、遠心分離で沈殿を除去し、実施品(本発明品)6、7を調製した。
(Amount of Pyrophosphate Produced at Various ATP Concentrations and Enzyme Concentrations: Step (I) of the Method of the Present Invention)
Reaction solution containing 200 mM HEPES-KOH (pH 8.0), 25 mM ATP, 25 mM MnCl 2 , 50 μM L-ornithine, 5.0 μM Pls-se-A (derived from actinomycetes), or 200 mM HEPES-KOH (pH 8.0) , 40 mM ATP, 40 mM MnCl 2 , 50 μM L-ornithine, and 5.0 μM Pls-se-AT (derived from actinomycete) was prepared in an amount of 150 μL, and treated at 30° C. for 60 minutes. After the reaction, 30 μL of trichloroacetic acid was added to a final concentration of 4% to terminate the reaction. After stopping the reaction, the precipitate was removed by centrifugation to prepare working products (products of the present invention) 6 and 7.

200mM HEPES-KOH(pH8.0)、40mM ATP、40mM MnCl、50μM L-リジン、1.0μM Pls-cg-A(放線菌由来)を含む反応溶液を150μL調製し、30℃、60分間処理した。反応後、トリクロロ酢酸を終濃度4%となるように30μL添加し、反応を停止した。反応停止後、遠心分離で沈殿を除去し、実施品(本発明品)8を調製した。150 μL of a reaction solution containing 200 mM HEPES-KOH (pH 8.0), 40 mM ATP, 40 mM MnCl 2 , 50 μM L-lysine, and 1.0 μM Pls-cg-A (derived from actinomycete) was prepared and treated at 30° C. for 60 minutes. bottom. After the reaction, 30 μL of trichloroacetic acid was added to a final concentration of 4% to terminate the reaction. After the reaction was stopped, the precipitate was removed by centrifugation to prepare a working product (product of the present invention) 8.

200mM HEPES-KOH(pH8.0)、10mM ATP、10mM MnCl、50μM L-リジン、5.0μM Pls-cg-A(放線菌由来)を含む反応溶液、又は200mM HEPES-KOH(pH8.0)、25mM ATP、25mM MnCl、50μM L-リジン、5.0μM Pls-cg-A(放線菌由来)を含む反応溶液、又は200mM HEPES-KOH(pH8.0)、40mM ATP、40mM MnCl、50μM L-リジン、5.0μM Pls-cg-A(放線菌由来)を含む反応溶液を150μL調製し、30℃、60分間処理した。反応後、トリクロロ酢酸を終濃度4%となるように30μL添加し、反応を停止した。反応停止後、遠心分離で沈殿を除去し、実施品(本発明品)9、10、11を調製した。Reaction solution containing 200 mM HEPES-KOH (pH 8.0), 10 mM ATP, 10 mM MnCl 2 , 50 μM L-lysine, 5.0 μM Pls-cg-A (derived from actinomycetes), or 200 mM HEPES-KOH (pH 8.0) , 25 mM ATP, 25 mM MnCl 2 , 50 μM L-lysine, 5.0 μM Pls-cg-A (derived from actinomycete), or 200 mM HEPES-KOH (pH 8.0), 40 mM ATP, 40 mM MnCl 2 , 50 μM 150 μL of a reaction solution containing L-lysine and 5.0 μM Pls-cg-A (derived from actinomycete) was prepared and treated at 30° C. for 60 minutes. After the reaction, 30 μL of trichloroacetic acid was added to a final concentration of 4% to terminate the reaction. After stopping the reaction, the precipitate was removed by centrifugation, and working products (products of the present invention) 9, 10 and 11 were prepared.

(モリブデンブルー法によるピロリン酸の測定:本発明方法の工程(II))
実施例6、7、8で調製した実施品6~11のピロリン酸を実施例5に記載のモリブデンブルー法により測定した。その結果、図4に示す通り、各種NRPSにおいてATP又は酵素濃度の増加と共にピロリン酸の増加が認められた。また、添加したアミノ酸が全て酵素反応に使用された場合に産生されるピロリン酸量である理論値より多くのピロリン酸が産生されていた。
(Measurement of pyrophosphate by molybdenum blue method: step (II) of the method of the present invention)
The pyrophosphates of Examples 6-11 prepared in Examples 6, 7 and 8 were measured by the molybdenum blue method described in Example 5. As a result, as shown in FIG. 4, an increase in pyrophosphate was observed with an increase in ATP or enzyme concentration in various NRPSs. Moreover, more pyrophosphate was produced than the theoretical value, which is the amount of pyrophosphate produced when all the added amino acids were used in the enzymatic reaction.

(二価陽イオンの種類の違いによるピロリン酸の産生量:本発明方法の工程(I))
200mM HEPES-KOH(pH8.0)、40mM ATP、40mM MnCl、50μM L-オルニチン、5.0μM Pls-se-A(放線菌由来)を含む反応溶液、又は200mM HEPES-KOH(pH8.0)、40mM ATP、40mM MgCl、50μM L-オルニチン、5.0μM Pls-se-A(放線菌由来)を含む反応溶液、又は200mM HEPES-KOH(pH8.0)、40mM ATP、40mM CaCl、50μM L-オルニチン、5.0μM Pls-se-A(放線菌由来)を含む反応溶液を150μL調製し、30℃、60分間処理した。反応後、トリクロロ酢酸を終濃度4%となるように30μL添加し、反応を停止した。反応停止後、遠心分離で沈殿を除去し、実施品(本発明品)12、13、14を調製した。
(Production amount of pyrophosphate depending on the type of divalent cation: step (I) of the method of the present invention)
Reaction solution containing 200 mM HEPES-KOH (pH 8.0), 40 mM ATP, 40 mM MnCl 2 , 50 μM L-ornithine, 5.0 μM Pls-se-A (derived from actinomycete), or 200 mM HEPES-KOH (pH 8.0) , 40 mM ATP, 40 mM MgCl 2 , 50 μM L-ornithine, 5.0 μM Pls-se-A (derived from actinomycetes), or 200 mM HEPES-KOH (pH 8.0), 40 mM ATP, 40 mM CaCl 2 , 50 μM 150 μL of a reaction solution containing L-ornithine and 5.0 μM Pls-se-A (derived from actinomycete) was prepared and treated at 30° C. for 60 minutes. After the reaction, 30 μL of trichloroacetic acid was added to a final concentration of 4% to terminate the reaction. After stopping the reaction, the precipitate was removed by centrifugation to prepare working products (products of the present invention) 12, 13 and 14.

200mM HEPES-KOH(pH8.0)、40mM ATP、40mM MnCl、50μM L-リジン、5.0μM Pls-cg-A(放線菌由来)を含む反応溶液、又は200mM HEPES-KOH(pH8.0)、40mM ATP、40mM MgCl、50μM L-リジン、5.0μM Pls-cg-A(放線菌由来)を含む反応溶液、又は200mM HEPES-KOH(pH8.0)、40mM ATP、40mM CaCl、50μM L-リジン、5.0μM Pls-cg-A(放線菌由来)を含む反応溶液を150μL調製し、30℃、60分間処理した。反応後、トリクロロ酢酸を終濃度4%となるように30μL添加し、反応を停止した。反応停止後、遠心分離で沈殿を除去し、実施品(本発明品)15、16、17を調製した。Reaction solution containing 200 mM HEPES-KOH (pH 8.0), 40 mM ATP, 40 mM MnCl 2 , 50 μM L-lysine, 5.0 μM Pls-cg-A (derived from actinomycete), or 200 mM HEPES-KOH (pH 8.0) , 40 mM ATP, 40 mM MgCl 2 , 50 μM L-lysine, 5.0 μM Pls-cg-A (derived from actinomycete), or 200 mM HEPES-KOH (pH 8.0), 40 mM ATP, 40 mM CaCl 2 , 50 μM 150 μL of a reaction solution containing L-lysine and 5.0 μM Pls-cg-A (derived from actinomycete) was prepared and treated at 30° C. for 60 minutes. After the reaction, 30 μL of trichloroacetic acid was added to a final concentration of 4% to terminate the reaction. After stopping the reaction, the precipitate was removed by centrifugation to prepare working products (products of the present invention) 15, 16 and 17.

(モリブデンブルー法によるピロリン酸の測定:本発明方法の工程(II))
実施例10、11で調製した実施品12~17のピロリン酸を実施例5に記載のモリブデンブルー法により測定した。その結果、図5に示す通り、各種二価陽イオンを用いた条件で、基質アミノ酸が酵素反応に使用された場合に産生されるピロリン酸量である理論値より多くのピロリン酸が産生されていた。また、少なくとも上記実施例で使用したNRPSに関しては、Mnが最適な二価陽イオンであることが示された。
(Measurement of pyrophosphate by molybdenum blue method: step (II) of the method of the present invention)
Pyrophosphate of Examples 12 to 17 prepared in Examples 10 and 11 was measured by the molybdenum blue method described in Example 5. As a result, as shown in FIG. 5, under the conditions using various divalent cations, more pyrophosphate than the theoretical value, which is the amount of pyrophosphate produced when the substrate amino acid is used in the enzymatic reaction, was produced. rice field. Also, Mn was shown to be the divalent cation of choice, at least for the NRPS used in the above examples.

(二価陽イオン濃度の違いによるピロリン酸の産生量:本発明方法の工程(I))
200mM HEPES-KOH(pH8.0)、40mM ATP、40mM MgCl、50μM L-オルニチン、5.0μM Pls-se-A(放線菌由来)を含む反応溶液、又は200mM HEPES-KOH(pH8.0)、40mM ATP、120mM MgCl、50μM L-オルニチン、5.0μM Pls-se-A(放線菌由来)を含む反応溶液、又は200mM HEPES-KOH(pH8.0)、40mM ATP、200mM MgCl、50μM L-オルニチン、5.0μM Pls-se-A(放線菌由来)を含む反応溶液、又は200mM HEPES-KOH(pH8.0)、40mM ATP、400mM MgCl、50μM L-オルニチン、5.0μM Pls-se-A(放線菌由来)を含む反応溶液を150μL調製し、30℃、60分間処理した。反応後、トリクロロ酢酸を終濃度4%となるように30μL添加し、反応を停止した。反応停止後、遠心分離で沈殿を除去し、実施品(本発明品)18~21を調製した。
(Amount of Pyrophosphate Produced by Difference in Divalent Cation Concentration: Step (I) of the Method of the Present Invention)
Reaction solution containing 200 mM HEPES-KOH (pH 8.0), 40 mM ATP, 40 mM MgCl 2 , 50 μM L-ornithine, 5.0 μM Pls-se-A (derived from actinomycete), or 200 mM HEPES-KOH (pH 8.0) , 40 mM ATP, 120 mM MgCl 2 , 50 μM L-ornithine, 5.0 μM Pls-se-A (derived from actinomycetes), or 200 mM HEPES-KOH (pH 8.0), 40 mM ATP, 200 mM MgCl 2 , 50 μM Reaction solution containing L-ornithine, 5.0 μM Pls-se-A (derived from actinomycetes), or 200 mM HEPES-KOH (pH 8.0), 40 mM ATP, 400 mM MgCl 2 , 50 μM L-ornithine, 5.0 μM Pls- 150 μL of a reaction solution containing se-A (derived from actinomycete) was prepared and treated at 30° C. for 60 minutes. After the reaction, 30 μL of trichloroacetic acid was added to a final concentration of 4% to terminate the reaction. After stopping the reaction, the precipitate was removed by centrifugation to prepare working products (products of the present invention) 18 to 21.

(モリブデンブルー法によるピロリン酸の測定:本発明方法の工程(II))
実施例13で調製した実施品18~21のピロリン酸を実施例5に記載のモリブデンブルー法により測定した。その結果、図6に示す通り、二価陽イオンの濃度によって、酵素反応により産生されるピロリン酸量は異なることが示された。
(Measurement of pyrophosphate by molybdenum blue method: step (II) of the method of the present invention)
The pyrophosphate of Examples 18-21 prepared in Example 13 was determined by the molybdenum blue method described in Example 5. As a result, as shown in FIG. 6, it was shown that the amount of pyrophosphate produced by the enzymatic reaction varied depending on the divalent cation concentration.

(反応pHによるピロリン酸産生量)
200mM MES(pH6.0)、又は200mM HEPES-KOH(pH7.0)、又は200mM HEPES-KOH(pH7.5)、又は200mM HEPES-KOH(pH8.0)と、40mM ATP、40mM MnCl、50μM L-オルニチン、5.0μM Pls-se-A(放線菌由来)を含む反応溶液を150μL調製し、30℃で60分間処理した。反応後、トリクロロ酢酸を終濃度4%となるように30μL添加し、反応を停止した。反応停止後、遠心分離で沈殿を除去し、上清中のピロリン酸を実施例5に記載のモリブデンブルー法により測定した。その結果、図7に示す通り、pHがアルカリ側になるほどピロリン酸産生量が増加し、pH8.0において、良好なピロリン酸の産生が認められた。
(Pyrophosphate production amount by reaction pH)
200 mM MES (pH 6.0), or 200 mM HEPES-KOH (pH 7.0), or 200 mM HEPES-KOH (pH 7.5), or 200 mM HEPES-KOH (pH 8.0), 40 mM ATP, 40 mM MnCl 2 , 50 μM 150 μL of a reaction solution containing L-ornithine and 5.0 μM Pls-se-A (derived from actinomycete) was prepared and treated at 30° C. for 60 minutes. After the reaction, 30 μL of trichloroacetic acid was added to a final concentration of 4% to terminate the reaction. After stopping the reaction, the precipitate was removed by centrifugation, and pyrophosphate in the supernatant was measured by the molybdenum blue method described in Example 5. As a result, as shown in FIG. 7, the more alkaline the pH, the more the amount of pyrophosphate produced, and good pyrophosphate production was observed at pH 8.0.

(反応pHによるピロリン酸産生量)
200mM MES(pH6.0)、又は200mM HEPES-KOH(pH7.0)、又は200mM HEPES-KOH(pH8.0)と、40mM ATP、40mM MnCl、50μM L-リジン、2.5μM Pls-cg-A(放線菌由来)を含む反応溶液を150μL調製し、30℃で60分間処理した。反応後、トリクロロ酢酸を終濃度4%となるように30μL添加し、反応を停止した。反応停止後、遠心分離で沈殿を除去し、上清中のピロリン酸を実施例5に記載のモリブデンブルー法により測定した。その結果、図7に示す通り、pHがアルカリ側になるほどピロリン酸産生量が増加し、pH8.0において、良好なピロリン酸の産生が認められた。
(Pyrophosphate production amount by reaction pH)
200 mM MES (pH 6.0), or 200 mM HEPES-KOH (pH 7.0), or 200 mM HEPES-KOH (pH 8.0), 40 mM ATP, 40 mM MnCl 2 , 50 μM L-lysine, 2.5 μM Pls-cg- 150 μL of a reaction solution containing A (derived from actinomycete) was prepared and treated at 30° C. for 60 minutes. After the reaction, 30 μL of trichloroacetic acid was added to a final concentration of 4% to terminate the reaction. After stopping the reaction, the precipitate was removed by centrifugation, and pyrophosphate in the supernatant was measured by the molybdenum blue method described in Example 5. As a result, as shown in FIG. 7, the more alkaline the pH, the more the amount of pyrophosphate produced, and good pyrophosphate production was observed at pH 8.0.

(反応温度によるピロリン酸産生量)
200mM HEPES-KOH(pH8.0)、40mM ATP、40mM MnCl、50μM L-オルニチン、5.0μM Pls-se-A(放線菌由来)を含む反応溶液を150μL調製し、10、又は20、又は25、又は30、又は35、又は40℃で60分間処理した。反応後、トリクロロ酢酸を終濃度4%となるように30μL添加し、反応を停止した。反応停止後、遠心分離で沈殿を除去し、上清中のピロリン酸を実施例5に記載のモリブデンブルー法により測定した。その結果、図8に示す通り、10~40℃の広い範囲において、良好なピロリン酸の産生が認められた。
(Amount of pyrophosphate produced by reaction temperature)
Prepare 150 μL of a reaction solution containing 200 mM HEPES-KOH (pH 8.0), 40 mM ATP, 40 mM MnCl 2 , 50 μM L-ornithine, 5.0 μM Pls-se-A (derived from actinomycete), 10, or 20, or Treated at 25, or 30, or 35, or 40° C. for 60 minutes. After the reaction, 30 μL of trichloroacetic acid was added to a final concentration of 4% to terminate the reaction. After stopping the reaction, the precipitate was removed by centrifugation, and pyrophosphate in the supernatant was measured by the molybdenum blue method described in Example 5. As a result, as shown in FIG. 8, good pyrophosphate production was observed over a wide range of 10 to 40.degree.

(本発明と公知文献記載のNRPS反応におけるピロリン酸の産生量の比較:本発明方法の工程(I))
[比較例1]
非特許文献7記載の反応条件に従い、0.9μM Pls-cg-A(放線菌由来)、50μM L-リジン、5mM ATP、5mM MgCl、50mM Tris-HCl(pH8.0)、32mM ヒドロキシルアミンを含む反応液300μLを調製し、30℃で60分間酵素反応を行った。酵素反応後、トリクロロ酢酸を終濃度4%となるように60μL添加し反応を停止した。反応停止後、遠心分離で沈殿を除去し、比較品1を調製した。
(Comparison of the amount of pyrophosphate produced in the present invention and the NRPS reaction described in known literature: Step (I) of the method of the present invention)
[Comparative Example 1]
According to the reaction conditions described in Non-Patent Document 7, 0.9 μM Pls-cg-A (derived from actinomycetes), 50 μM L-lysine, 5 mM ATP, 5 mM MgCl 2 , 50 mM Tris-HCl (pH 8.0), 32 mM hydroxylamine. A reaction solution containing 300 μL was prepared, and an enzymatic reaction was performed at 30° C. for 60 minutes. After the enzymatic reaction, 60 μL of trichloroacetic acid was added to a final concentration of 4% to terminate the reaction. After stopping the reaction, the precipitate was removed by centrifugation to prepare a comparative product 1.

[比較例2]
非特許文献7記載の反応条件に従い、0.8μM Pls-cg-AT(放線菌由来)、50μM L-リジン、5mM ATP、5mM MgCl、50mM Tris-HCl(pH8.0)、32mM ヒドロキシルアミンを含む反応液300μLを調製し、30℃で60分間酵素反応を行った。酵素反応後、トリクロロ酢酸を終濃度4%となるように60μL添加し反応を停止した。反応停止後、遠心分離で沈殿を除去し、比較品2を調製した。
[Comparative Example 2]
According to the reaction conditions described in Non-Patent Document 7, 0.8 μM Pls-cg-AT (derived from actinomycetes), 50 μM L-lysine, 5 mM ATP, 5 mM MgCl 2 , 50 mM Tris-HCl (pH 8.0), 32 mM hydroxylamine. A reaction solution containing 300 μL was prepared, and an enzymatic reaction was performed at 30° C. for 60 minutes. After the enzymatic reaction, 60 μL of trichloroacetic acid was added to a final concentration of 4% to terminate the reaction. After stopping the reaction, the precipitate was removed by centrifugation to prepare a comparative product 2.

5.0μM Pls-cg-A(放線菌由来)、50μM L-リジン、40mM ATP、40mM MnCl、200mM HEPES-KOH(pH8.0)を含む反応液300μLを調製し、30℃で60分間酵素反応を行った。酵素反応後、トリクロロ酢酸を終濃度4%となるように60μL添加し反応を停止した。反応停止後、遠心分離で沈殿を除去し、実施品22を調製した。300 μL of a reaction solution containing 5.0 μM Pls-cg-A (derived from actinomycetes), 50 μM L-lysine, 40 mM ATP, 40 mM MnCl 2 , 200 mM HEPES-KOH (pH 8.0) was prepared and incubated with the enzyme at 30° C. for 60 minutes. reacted. After the enzymatic reaction, 60 μL of trichloroacetic acid was added to a final concentration of 4% to terminate the reaction. After the reaction was stopped, the precipitate was removed by centrifugation to prepare Working Product 22.

5.0μM Pls-cg-AT(放線菌由来)、50μM L-リジン、40mM ATP、40mM MnCl、200mM HEPES-KOH(pH8.0)を含む反応液300μLを調製し、30℃で60分間酵素反応を行った。酵素反応後、トリクロロ酢酸を終濃度4%となるように60μL添加し反応を停止した。反応停止後、遠心分離で沈殿を除去し、実施品23を調製した。300 μL of a reaction solution containing 5.0 μM Pls-cg-AT (derived from actinomycetes), 50 μM L-lysine, 40 mM ATP, 40 mM MnCl 2 , 200 mM HEPES-KOH (pH 8.0) was prepared and incubated with the enzyme at 30° C. for 60 minutes. reacted. After the enzymatic reaction, 60 μL of trichloroacetic acid was added to a final concentration of 4% to terminate the reaction. After the reaction was stopped, the precipitate was removed by centrifugation to prepare Working Product 23.

(モリブデンブルー法によるピロリン酸の測定:本発明方法の工程(II))
比較例1、2及び実施例16、17で得られた比較品1、2及び実施品22、23のピロリン酸を実施例5に記載のモリブデンブルー法により測定した。その結果、図9に示すように本発明の方法では、添加したアミノ酸が全て反応に使用された場合に産生されると推測されるピロリン酸量である理論値より多くのピロリン酸が産生されていた。一方、比較品の産生したピロリン酸は、理論値以下であった。
(Measurement of pyrophosphate by molybdenum blue method: step (II) of the method of the present invention)
The pyrophosphates of Comparative Products 1 and 2 and Examples 22 and 23 obtained in Comparative Examples 1 and 2 and Examples 16 and 17 were measured by the molybdenum blue method described in Example 5. As a result, as shown in FIG. 9, in the method of the present invention, more pyrophosphate was produced than the theoretical value, which is the amount of pyrophosphate expected to be produced when all the added amino acids were used in the reaction. rice field. On the other hand, the amount of pyrophosphate produced by the comparative product was below the theoretical value.

(モリブデンブルー法によるピロリン酸測定におけるアミノ酸検量線)
200mM HEPES-KOH(pH8.0)、40mM ATP、40mM MnCl、0、又は30、又は50、又は70、又は100μM L-オルニチン、5.0μM Pls-se-A(放線菌由来)を含む反応溶液150μLを調製し、40℃、60分間反応させた。反応後、トリクロロ酢酸を終濃度4%となるように30μL添加し、反応を停止した。反応停止後、遠心分離で沈殿を除去し、上清中のピロリン酸を実施例5に記載のモリブデンブルー法により測定した。その結果、図10に示すように、添加したアミノ酸が全て反応に使用された場合に産生されると推測されるピロリン酸量の理論値より多くのピロリン酸が産生されていた。また、0~100μM のアミノ酸濃度範囲においてアミノ酸濃度とピロリン酸量に相関関係(R=0.99)が認められ、L-オルニチンの定量が可能であることが示された。
(Amino acid calibration curve in pyrophosphate measurement by molybdenum blue method)
Reaction containing 200 mM HEPES-KOH (pH 8.0), 40 mM ATP, 40 mM MnCl 2 , 0, or 30, or 50, or 70, or 100 μM L-ornithine, 5.0 μM Pls-se-A (from actinomycete) 150 μL of solution was prepared and reacted at 40° C. for 60 minutes. After the reaction, 30 μL of trichloroacetic acid was added to a final concentration of 4% to terminate the reaction. After stopping the reaction, the precipitate was removed by centrifugation, and pyrophosphate in the supernatant was measured by the molybdenum blue method described in Example 5. As a result, as shown in FIG. 10, more pyrophosphate was produced than the theoretical amount of pyrophosphate that would be produced if all the added amino acids were used in the reaction. Moreover, a correlation (R=0.99) was observed between the amino acid concentration and the amount of pyrophosphate in the amino acid concentration range of 0 to 100 μM, indicating that L-ornithine can be quantified.

200mM HEPES-KOH(pH8.0)、40mM ATP、40mM MnCl、0、又は30、又は50、又は70、又は100μM L-リジン、5.0μM Pls-cg-A(放線菌由来)を含む反応溶液150μLを調製し、30℃、60分間反応させた。反応後、トリクロロ酢酸を終濃度4%となるように30μL添加し、反応を停止した。反応停止後、遠心分離で沈殿を除去し、上清中のピロリン酸を実施例5に記載のモリブデンブルー法により測定した。その結果、図10示すように添加したアミノ酸が全て反応に使用された場合に産生されると推測されるピロリン酸量の理論値より多くのピロリン酸が産生されていた。また、0~100μM のアミノ酸濃度範囲においてアミノ酸濃度とピロリン酸量に相関関係(R=0.97)が認められ、L-リジンの定量が可能であることが示された。Reaction containing 200 mM HEPES-KOH (pH 8.0), 40 mM ATP, 40 mM MnCl 2 , 0, or 30, or 50, or 70, or 100 μM L-lysine, 5.0 μM Pls-cg-A (from actinomycete) 150 μL of solution was prepared and reacted at 30° C. for 60 minutes. After the reaction, 30 μL of trichloroacetic acid was added to a final concentration of 4% to terminate the reaction. After stopping the reaction, the precipitate was removed by centrifugation, and pyrophosphate in the supernatant was measured by the molybdenum blue method described in Example 5. As a result, as shown in FIG. 10, more pyrophosphate was produced than the theoretical amount of pyrophosphate that would be produced if all the added amino acids were used in the reaction. Moreover, a correlation (R=0.97) was observed between the amino acid concentration and the amount of pyrophosphate in the amino acid concentration range of 0 to 100 μM, indicating that L-lysine can be quantified.

以上の結果から、本発明方法におけるNRPS反応では、NRPS及びアミノ酸を繰り返し反応に使用することで、産生されるピロリン酸を増幅できることが示された。実施例2~5に示されるように、L-オルニチン、L-リジン及びD-リジンの様々なアミノ酸のいずれにおいても当該反応で産生されるピロリン酸をNRPS及びアミノ酸のモル数より多く産生させることができた。実施例6~9に示されるように、ATPや酵素濃度、実施例10~17に示されるように、二価陽イオンの種類や濃度、反応温度及び反応pHによってもピロリン酸の産生量は変化することが分かった。また、比較例1、2及び実施例18、19、20に示されるように、従来のNRPS反応では、産生されるピロリン酸量が、アミノ酸分子数以下であったが、本発明の方法では、アミノ酸分子数以上のピロリン酸が産生されることが分かった。さらに、実施例21、22に示されるように、アミノ酸濃度に依存して直線的にピロリン酸が増加する、即ちアミノ酸濃度とピロリン酸量に相関関係があることが分かり、本発明のNRPS反応により産生したピロリン酸について、簡便な方法であるモリブデンブルー法による各種アミノ酸の定量が可能であることが確認された。 From the above results, it was shown that in the NRPS reaction in the method of the present invention, the pyrophosphate produced can be amplified by repeatedly using NRPS and amino acids in the reaction. As shown in Examples 2 to 5, any of the various amino acids L-ornithine, L-lysine and D-lysine produce more pyrophosphate produced in the reaction than the number of moles of NRPS and amino acids. was made. As shown in Examples 6 to 9, the amount of pyrophosphate produced varies depending on ATP and enzyme concentrations, and the type and concentration of divalent cations, reaction temperature, and reaction pH, as shown in Examples 10 to 17. I found out to do. In addition, as shown in Comparative Examples 1 and 2 and Examples 18, 19, and 20, in the conventional NRPS reaction, the amount of pyrophosphate produced was less than the number of amino acid molecules, but in the method of the present invention, It was found that more pyrophosphate was produced than the number of amino acid molecules. Furthermore, as shown in Examples 21 and 22, it was found that pyrophosphate increases linearly depending on the amino acid concentration, that is, there is a correlation between the amino acid concentration and the amount of pyrophosphate. It was confirmed that it was possible to quantify various amino acids from the produced pyrophosphate using the molybdenum blue method, which is a simple method.

従来のAARSを用いたアミノ酸定量法では、タンパク質性アミノ酸(タンパク質を構成する20種のL型のアミノ酸)に対する特異的な20種類のAARSが存在するが、オルニチンなどの20種類のアミノ酸以外に反応するAARSは存在しないため、測定対象のアミノ酸の制限があった。これに対して、NRPSは、上記20種類のアミノ酸に特異的に作用すると共に、異性体であるD型のアミノ酸、さらにはメチル化、アシル化、グリコシル化などの修飾アミノ酸、及びオルニチン等の非タンパク質性アミノ酸にも特異的に作用することから、様々なアミノ酸の定量を可能とする。また、本発明方法に於いて、形成されたアミノアシルAMP-NRPS複合体からNRPS及びアミノ酸を遊離し、再度それらをアミノアシルAMP-NRPS複合体の形成に繰り返し利用することによって、試料中に少ないアミノ酸しか含まれていない場合であっても、多量のピロリン酸や水素イオンを産生させることができるため、多段階酵素反応を用いた蛍光法などによる高感度分析は不必要である。従って、本発明によって、NRPSを用いてタンパク質性アミノ酸、また、D型アミノ酸、修飾アミノ酸及びオルニチン等の非タンパク質性アミノ酸を特異的且つ簡便、高感度に定量する方法及びアミノ酸定量用キットを提供することが可能となった。 In the conventional amino acid quantification method using AARS, there are 20 types of AARS specific for proteinogenic amino acids (20 types of L-type amino acids that make up proteins), but other than 20 types of amino acids such as ornithine, Since there is no AARS that does this, there are restrictions on the amino acids that can be measured. On the other hand, NRPS acts specifically on the above 20 kinds of amino acids, and also isomers of D-type amino acids, modified amino acids such as methylation, acylation, and glycosylation, and non-amino acids such as ornithine. Since it also acts specifically on proteinogenic amino acids, it enables the quantification of various amino acids. In addition, in the method of the present invention, by releasing NRPS and amino acids from the formed aminoacyl AMP-NRPS conjugate and repeatedly using them again to form the aminoacyl AMP-NRPS conjugate, only a small amount of amino acids is present in the sample. Even if it is not contained, a large amount of pyrophosphate and hydrogen ions can be produced, so high-sensitivity analysis by fluorescence method or the like using multistep enzymatic reaction is unnecessary. Therefore, the present invention provides a method and a kit for amino acid quantification that are specific, convenient, and highly sensitive for quantifying proteinogenic amino acids, D-amino acids, modified amino acids, and non-proteinogenic amino acids such as ornithine using NRPS. became possible.

実施例1で調製した各NRPSは具体的には以下の通り取得した。
目的アミノ酸の活性化を触媒すると予想されるNRPSについて、推定されるアミノ酸配列をPfam search(http://pfam.xfam.org/search#tabview=tab1)にてドメイン検索を行った。その結果から、ペプチド結合形成に必要な各NRPSドメイン(Aドメイン、Tドメインなど)に高く保存されている領域を推定し、下記、※1と※2において配列を決定した。
※1. Aドメインに高く保存されている配列
AMP-binding domain(下線部)
AMP-binding enzyme C-terminal domain(二重線部)
※2. Tドメインに高く保存されている配列
LGGxxSLxAモチーフ(4´-phosphopantetheine attachment site)(四角枠内)を中心にもつPP-binding domain
Specifically, each NRPS prepared in Example 1 was obtained as follows.
For NRPS that is expected to catalyze the activation of the target amino acid, a domain search was performed on the deduced amino acid sequence by Pfam search (http://pfam.xfam.org/search#tabview=tab1). Based on the results, highly conserved regions in each NRPS domain (A domain, T domain, etc.) necessary for peptide bond formation were deduced, and the sequences were determined in *1 and *2 below.
*1. Sequence highly conserved in the A domain AMP-binding domain (underlined)
AMP-binding enzyme C-terminal domain (double line)
*2. A PP-binding domain centered on the sequence LGGxxSLxA motif (4'-phosphopantetheine attachment site) highly conserved in the T domain (inside the square frame).

各NRPSのアミノ酸配列は以下の通りである。
(1)Pls-cg-A-domain
菌株名:Corynebacterium glutamicum NBRC12169
アミノ酸配列(大腸菌発現用プラスミドにクローニングした領域):
[配列番号1]

Figure 0007216968000001
アミノ酸配列(実際に活性測定に用いた組換え酵素):
[配列番号2]
Figure 0007216968000002
The amino acid sequences of each NRPS are as follows.
(1) Pls-cg-A-domain
Strain name: Corynebacterium glutamicum NBRC12169
Amino acid sequence (region cloned into E. coli expression plasmid):
[SEQ ID NO: 1]
Figure 0007216968000001
Amino acid sequence (recombinant enzyme actually used for activity measurement):
[SEQ ID NO: 2]
Figure 0007216968000002

(2)Pls-cg-AT-domain
菌株名:Corynebacterium glutamicum NBRC12169
アミノ酸配列(大腸菌発現用プラスミドにクローニングした領域):
[配列番号3]

Figure 0007216968000003
アミノ酸配列(実際に活性測定に用いた組換え酵素):
[配列番号4]
Figure 0007216968000004
(2) Pls-cg-AT-domain
Strain name: Corynebacterium glutamicum NBRC12169
Amino acid sequence (region cloned into E. coli expression plasmid):
[SEQ ID NO: 3]
Figure 0007216968000003
Amino acid sequence (recombinant enzyme actually used for activity measurement):
[SEQ ID NO: 4]
Figure 0007216968000004

(3)Pls-se-A-domain
菌株名:Saccharopolyspora erythraea NBRC13426
アミノ酸配列(大腸菌発現用プラスミドにクローニングした領域):
[配列番号5]

Figure 0007216968000005
アミノ酸配列(実際に活性測定に用いた組換え酵素):
[配列番号6]
Figure 0007216968000006
(3) Pls-se-A-domain
Strain name: Saccharopolyspora erythraea NBRC13426
Amino acid sequence (region cloned into E. coli expression plasmid):
[SEQ ID NO: 5]
Figure 0007216968000005
Amino acid sequence (recombinant enzyme actually used for activity measurement):
[SEQ ID NO: 6]
Figure 0007216968000006

Claims (7)

下の各工程を含む工程(I):
(工程I-1)二価陽イオンの存在下、試料中のアミノ酸(AA)、該AAに対応する非リボソーム型ペプチド合成酵素(NRPS)、及び、アデノシン三リン酸(ATP)を反応させて、アミノアシルアデニル酸(アミノアシルAMP)とNRPSから成る複合体(アミノアシルAMP-NRPS複合体)を形成させる反応(反応1)を含む工程;
(工程I-2)反応1及び/又は反応3で形成されたアミノアシルAMP-NRPS複合体にアミノ酸再生試薬が作用して、該複合体からNRPS及びAAが遊離する反応(反応2)を含む工程;
(工程I-3)反応2で遊離されたAA及び/又はNRPSを反応1において再利用することによってアミノアシルAMP-NRPS複合体反応を形成させる反応(反応3)を含む工程;及び、
(工程I-4)工程I-2及び工程I-3を繰り返す工程、並びに、
工程(I)で生じた反応産生物の量を測定し、該反応産生物の測定量に基づきアミノ酸の量を決定することを含む工程(II)、
を含み、前記NRPSは少なくともAドメインを含む、試料中のアミノ酸定量方法。
Step (I) comprising the following steps:
(Step I-1) In the presence of divalent cations, an amino acid (AA) in a sample, a non-ribosomal peptide synthetase (NRPS) corresponding to the AA, and adenosine triphosphate (ATP) are reacted. , a reaction (reaction 1) to form a conjugate consisting of aminoacyl adenylic acid (aminoacyl AMP) and NRPS (aminoacyl AMP-NRPS conjugate);
(Step I-2) A step including a reaction (Reaction 2) in which an aminoacyl AMP-NRPS complex formed in Reaction 1 and/or Reaction 3 is reacted with an amino acid regenerating reagent to liberate NRPS and AA from the complex. ;
(Step I-3) a step comprising a reaction (reaction 3) to form an aminoacyl AMP-NRPS conjugate reaction by recycling the AA and/or NRPS liberated in reaction 2 in reaction 1;
(Step I-4) repeating steps I-2 and I-3, and
step (II) comprising measuring the amount of the reaction product generated in step (I) and determining the amount of the amino acid based on the measured amount of the reaction product;
and wherein said NRPS comprises at least an A domain.
NRPSがAドメインから構成されるもの、並びに/又は、Aドメイン及びTドメインから構成されるものである、請求項1に記載のアミノ酸定量方法。 2. The method for quantifying amino acids according to claim 1, wherein the NRPS is composed of an A domain and/or composed of an A domain and a T domain. 工程(I)で用いるアミノ酸再生試薬が、ヌクレオチド及び/又はアルカリ性化合物であることを特徴とする、請求項1又は2に記載のアミノ酸定量方法。 3. The method for quantifying amino acids according to claim 1 or 2, wherein the amino acid regeneration reagent used in step (I) is a nucleotide and/or an alkaline compound. 吸光度法により吸光度変化を測定することによって、工程(I)で生じた反応産生物の量を測定する、請求項1~3の何れか一項に記載のアミノ酸定量方法。 4. The method for quantifying amino acids according to any one of claims 1 to 3, wherein the amount of the reaction product produced in step (I) is measured by measuring absorbance change by an absorbance method. 工程(I)で生じる反応産生物として、ピロリン酸又は水素イオンの少なくとも何れか1つを測定する、請求項1~4の何れか一項に記載のアミノ酸定量方法。 5. The method for quantifying amino acids according to any one of claims 1 to 4, wherein at least one of pyrophosphate and hydrogen ions is measured as the reaction product generated in step (I). 工程(I)で生じた反応産生物のモル数が試料中のNRPS及び/又はアミノ酸のモル数より多いことを特徴とする、請求項1~5のいずれか一項に記載のアミノ酸定量方法。 The method for quantifying amino acids according to any one of claims 1 to 5, wherein the number of moles of the reaction product produced in step (I) is greater than the number of moles of NRPS and/or amino acids in the sample. 請求項1~6に記載のアミノ酸定量法を実施するためのアミノ酸定量用キットであって、ATP、ヌクレオチド及び該アミノ酸に対応するNRPSを含む、アミノ酸定量用キット。

An amino acid quantification kit for carrying out the amino acid quantification method according to any one of claims 1 to 6, comprising ATP, a nucleotide and an NRPS corresponding to said amino acid.

JP2019544537A 2017-09-27 2018-09-11 Amino acid quantification method and amino acid quantification kit Active JP7216968B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017186527 2017-09-27
JP2017186527 2017-09-27
PCT/JP2018/033590 WO2019065211A1 (en) 2017-09-27 2018-09-11 Amino acid assay method and amino acid assay kit

Publications (2)

Publication Number Publication Date
JPWO2019065211A1 JPWO2019065211A1 (en) 2020-10-22
JP7216968B2 true JP7216968B2 (en) 2023-02-02

Family

ID=65903527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019544537A Active JP7216968B2 (en) 2017-09-27 2018-09-11 Amino acid quantification method and amino acid quantification kit

Country Status (2)

Country Link
JP (1) JP7216968B2 (en)
WO (1) WO2019065211A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050357A (en) 2009-09-04 2011-03-17 Hiroshima City Univ Analytical method for amino acid and biosensor
JP5305208B1 (en) 2012-03-26 2013-10-02 富山県 Amino acid quantification method using aminoacyl-tRNA synthetase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050357A (en) 2009-09-04 2011-03-17 Hiroshima City Univ Analytical method for amino acid and biosensor
JP5305208B1 (en) 2012-03-26 2013-10-02 富山県 Amino acid quantification method using aminoacyl-tRNA synthetase

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KATANO, H., et al.,Analytical methods for the detection and purification of ε-poly-L-lysine for studying biopolymer synthetases, and bioelectroanalysis methods for its functional evaluation,Analytical Sciences,2014年,Vol. 30,pp. 17-24
濱野吉十, 非リボソームペプチド合成酵素,生物工学会誌,2008, Vol. 86, No. 4, p. 191

Also Published As

Publication number Publication date
JPWO2019065211A1 (en) 2020-10-22
WO2019065211A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
JP3949854B2 (en) Method for measuring glycated protein
JP5442432B2 (en) Method for measuring glycated hexapeptide
US10767211B2 (en) Modified amadoriase reacting with fructosyl hexapeptide
CN110199019A (en) It is analyzed using the macromolecular of nucleic acid encode
EP3233884B1 (en) Microbial transglutaminases, substrates therefor and methods for the use thereof
CN104271739B (en) Modified leucine dehydrogenase
JP6978001B2 (en) Amino acid quantification method and amino acid quantification kit
US20210163947A1 (en) Ultrasensitive and multiplexed cell-free biosensors using cascaded amplification and positive feedback
US10088493B2 (en) Method for cell-free protein synthesis involved with pH control with amino acid decarboxylase
Cvetešić et al. Lack of discrimination against non-proteinogenic amino acid norvaline by elongation factor Tu from Escherichia coli
JP7216968B2 (en) Amino acid quantification method and amino acid quantification kit
JP5043081B2 (en) Quantitative determination of L-lysine in biological samples
JP7190685B2 (en) Amino acid quantification method and amino acid quantification kit
JP7333547B2 (en) Amino acid quantification method and amino acid quantification kit
JP2019193633A (en) Amino acid quantification method
WO2018168801A1 (en) Mutant histidine decarboxylase and use thereof
US20080076905A1 (en) Process For Producing Protein in Cell-Free Protein Synthesis System And Reagent Kit For Protein Synthesis
WO2019208724A1 (en) Method for screening membrane proteins for specific compound and method for producing specific compound
Watanabe et al. Four-base codon-mediated saturation mutagenesis in a cell-free translation system
Montes Modifications of Transfer Rna Enhance Selenoprotein Biosynthesis
Ogonkov et al. Characterization of an Unusual α‐Oxoamine Synthase Off‐Loading Domain from a Cyanobacterial Type I Fatty Acid Synthase
Voges Targeted quantification of central metabolic enzymes in Corynebacterium glutamicum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210901

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221018

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230113

R150 Certificate of patent or registration of utility model

Ref document number: 7216968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150