WO2019208518A1 - Optical filter and composition for optical filter - Google Patents

Optical filter and composition for optical filter Download PDF

Info

Publication number
WO2019208518A1
WO2019208518A1 PCT/JP2019/017086 JP2019017086W WO2019208518A1 WO 2019208518 A1 WO2019208518 A1 WO 2019208518A1 JP 2019017086 W JP2019017086 W JP 2019017086W WO 2019208518 A1 WO2019208518 A1 WO 2019208518A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical filter
wavelength
liquid
composition
phosphonic acid
Prior art date
Application number
PCT/JP2019/017086
Other languages
French (fr)
Japanese (ja)
Inventor
雄一郎 久保
雷 蔡
新毛 勝秀
一瞳 増田
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to JP2019538708A priority Critical patent/JP6606626B1/en
Publication of WO2019208518A1 publication Critical patent/WO2019208518A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present invention relates to an optical filter and a composition for an optical filter.
  • CMOS Complementary Metal-Oxide-Semiconductor
  • various optical filters are placed on the front of the solid-state image sensor to obtain an image with good color reproducibility.
  • a solid-state imaging device has spectral sensitivity in a wide wavelength range from an ultraviolet region to an infrared region.
  • human visibility exists only in the visible light region.
  • a technique is known in which an optical filter that shields infrared rays or ultraviolet rays is disposed in front of the solid-state image sensor in order to bring the spectral sensitivity of the solid-state image sensor in the image pickup apparatus closer to human visibility.
  • Patent Document 1 includes a UV-IR absorption layer capable of absorbing infrared rays and ultraviolet rays, and exhibits predetermined transmission characteristics when light having a wavelength of 300 nm to 1200 nm is incident at incidence angles of 0 ° and 40 °.
  • An optical filter is described.
  • the UV-IR absorption layer of this optical filter contains a UV-IR absorber formed by phosphonic acid and copper ions.
  • the optical filter described in Patent Document 1 has desired characteristics with respect to transmittance, but Patent Document 1 does not discuss any haze of the optical filter. Accordingly, the present invention provides an optical filter having a desired haze while including a UV-IR absorber formed by at least one acid of phosphonic acid and sulfonic acid and copper ions. The present invention also provides an optical filter composition that is advantageous for producing the optical filter.
  • the present invention Comprising a UV-IR absorber layer comprising a UV-IR absorber capable of absorbing ultraviolet and infrared rays formed by at least one acid of phosphonic acid and sulfonic acid and copper ions; Having a haze of 5% or less, An optical filter is provided.
  • the present invention also provides: An optical filter composition comprising: Including at least one acid of phosphonic acid and sulfonic acid, and copper ion, When the coating film of the optical filter composition is cured to form a layer having a thickness of 100 to 300 ⁇ m, the layer can absorb ultraviolet rays and infrared rays, and the haze of the layer is 5% or less. is there, A composition is provided.
  • the above optical filter has a haze of 5% or less while containing a UV-IR absorber formed by at least one acid of phosphonic acid and sulfonic acid and copper ions.
  • the above composition is advantageous for producing such an optical filter.
  • FIG. 1A is a cross-sectional view showing an example of the optical filter of the present invention.
  • FIG. 1B is a cross-sectional view showing another example of the optical filter of the present invention.
  • FIG. 1C is a cross-sectional view showing still another example of the optical filter of the present invention.
  • FIG. 1D is a cross-sectional view showing still another example of the optical filter of the present invention.
  • FIG. 1E is a cross-sectional view showing still another example of the optical filter of the present invention.
  • FIG. 1F is a cross-sectional view showing still another example of the optical filter of the present invention.
  • FIG. 2 is a cross-sectional view showing an example of a camera module provided with the optical filter of the present invention.
  • FIG. 3 is a transmittance spectrum of the optical filter according to the first embodiment.
  • FIG. 4 is a transmittance spectrum of the optical filter according to the fourth embodiment.
  • FIG. 5 is a transmittance spectrum of the optical filter according to Example 13.
  • FIG. 6 is a transmittance spectrum of the optical filter according to Example 14.
  • FIG. 7 is a transmittance spectrum of the optical filter according to Example 15.
  • FIG. 8 is a transmittance spectrum of the optical filter according to Comparative Example 1.
  • an optical filter including a UV-IR absorption layer containing a UV-IR absorber formed of phosphonic acid and copper ions may have desired characteristics with respect to transmittance.
  • the present inventors newly found that an optical filter having a UV-IR absorption layer containing a UV-IR absorber formed by phosphonic acid and copper ions does not necessarily have a desirable haze. It was.
  • the haze corresponds to a percentage of the diffuse transmittance with respect to the total light transmittance. For example, in the Japanese Industrial Standard (JIS) K 7136: 2000, the haze is 0. It is defined as the percentage of transmitted light deviating by 044 rad (2.5 °) or more.
  • JIS K7136 2000
  • haze is measured in accordance with JIS K7136: 2000.
  • the optical filter has desirable characteristics in terms of transmittance but has high haze
  • disposing the optical filter in front of the solid-state image sensor of the imaging device may reduce the image quality of the image obtained by the imaging device.
  • problems such as uneven color, blurring, flare, and lightness may occur in an image. Therefore, the present inventors have studied day and night on a technique for keeping the haze low in an optical filter including a UV-IR absorption layer containing a UV-IR absorber formed of phosphonic acid and copper ions.
  • the present inventors have a possibility that the dispersion state of the UV-IR absorber formed by phosphonic acid and copper ions in the composition for producing an optical filter may affect the haze of the optical filter. I found something new.
  • the optical filter 1 a includes a UV-IR absorption layer 10.
  • the UV-IR absorption layer 10 includes a UV-IR absorber capable of absorbing ultraviolet rays and infrared rays formed by at least one acid of phosphonic acid and sulfonic acid and copper ions.
  • the optical filter 1a has a haze of 5% or less. For this reason, a high-quality image can be obtained by an imaging device incorporating the optical filter 1a.
  • the optical filter 1a desirably has a haze of 4% or less. Thereby, a high-quality image can be obtained more reliably by the imaging device in which the optical filter 1a is incorporated.
  • the optical filter 1a desirably has a haze of 1% or less. Thereby, a higher quality image can be obtained by the imaging device in which the optical filter 1a is incorporated.
  • the optical filter 1a desirably exhibits the following optical performances (i) to (iv) when light having a wavelength of 300 nm to 1200 nm is incident at an incident angle of 0 °.
  • the optical filter 1a exhibits the following optical performance together with a haze of 5% or less, a high-quality image can be obtained in an imaging device incorporating the optical filter 1a.
  • spectral transmittance is transmittance when incident light of a specific wavelength is incident on an object such as a sample
  • average transmittance is spectral transmittance within a predetermined wavelength range
  • the “transmittance spectrum” is obtained by arranging spectral transmittances at respective wavelengths within a predetermined wavelength range in order of wavelength.
  • IR cutoff wavelength indicates a spectral transmittance of 50% in a wavelength range of 600 nm or more when light having a wavelength of 300 nm to 1200 nm is incident on an optical filter at a predetermined incident angle. It means wavelength.
  • the “first IR cutoff wavelength” is an IR cutoff wavelength when light is incident on the optical filter at an incident angle of 0 °.
  • the “UV cut-off wavelength” is a wavelength showing a spectral transmittance of 50% in a wavelength range of 450 nm or less when light having a wavelength of 300 nm to 1200 nm is incident on the optical filter at a predetermined incident angle. means.
  • the “first UV cutoff wavelength” is a UV cutoff wavelength when light is incident on the optical filter at an incident angle of 0 °.
  • the optical filter 1a Since the optical filter 1a exhibits the optical performances (i) to (iv) described above, the optical filter 1a has a large amount of transmitted light having a wavelength of 450 nm to 600 nm, and light having a wavelength of 300 nm to 400 nm and a wavelength of 650 nm or more. Can be cut effectively. For this reason, the transmittance spectrum of the optical filter 1a is suitable for human visibility. Moreover, even if the optical filter 1a is not provided with a layer other than the UV-IR absorption layer 10, the optical performances (i) to (iv) described above can be exhibited, and a haze of 5% or less can be realized.
  • the optical filter 1a preferably has an average transmittance of 80% or more, more preferably 82% or more, at a wavelength of 450 nm to 600 nm.
  • the optical filter 1a desirably has a spectral transmittance of 0.5% or less at a wavelength of 300 nm to 350 nm. Thereby, the optical filter 1a can cut light in the ultraviolet region more effectively.
  • the first IR cutoff wavelength (wavelength exhibiting a spectral transmittance of 50%) is preferably present in the wavelength range of 610 nm to 660 nm, and more preferably in the wavelength range of 610 nm to 650 nm. Exists. Thereby, the transmittance spectrum of the optical filter 1a is more suitable for human visibility.
  • the first UV cutoff wavelength (wavelength exhibiting a spectral transmittance of 50%) is preferably present in the wavelength range of 390 nm to 430 nm, and more preferably in the wavelength range of 400 nm to 425 nm. Exists. Thereby, the transmittance spectrum of the optical filter 1a is more suitable for human visibility.
  • the optical filter 1a desirably exhibits the following optical performance (v) when light having a wavelength of 300 nm to 1200 nm is incident at an incident angle of 0 °. Thereby, the optical filter 1a can cut the light of a near infrared region effectively.
  • V Spectral transmittance of 5% or less at wavelengths of 750 nm to 1080 nm
  • the optical filter 1a desirably exhibits the following optical performance (vi) when light having a wavelength of 300 nm to 1200 nm is incident at an incident angle of 0 °. Thereby, infrared rays having a relatively long wavelength (wavelength 1000 to 1100 nm) can be cut. Conventionally, in order to cut light of this wavelength, a light reflecting film made of a dielectric multilayer film is often used. However, according to the optical filter 1a, light having this wavelength can be effectively cut without using such a dielectric multilayer film.
  • the optical filter 1a desirably exhibits the following optical performance (vii) when light having a wavelength of 300 nm to 1200 nm is incident at an incident angle of 0 °. In this case, infrared rays having a wavelength of 1100 to 1200 nm can be cut. As a result, the optical filter 1a can effectively cut light of this wavelength without using a dielectric multilayer film or even when the number of dielectric layers in the dielectric multilayer film is small. (Vii) Spectral transmittance of 15% or less at a wavelength of 1100 to 1200 nm
  • the phosphonic acid that forms the UV-IR absorber in the UV-IR absorption layer 10 includes, for example, a first phosphonic acid having an aryl group.
  • the optical filter 1a easily exhibits the optical characteristics (i) to (iv).
  • the aryl group of the first phosphonic acid is, for example, a phenyl group, a benzyl group, a toluyl group, a nitrophenyl group, a hydroxyphenyl group, a halogenated phenyl group in which at least one hydrogen atom in the phenyl group is substituted with a halogen atom, Alternatively, it is a halogenated benzyl group in which at least one hydrogen atom in the benzyl group is substituted with a halogen atom.
  • the first phosphonic acid has, in part, a halogenated phenyl group. In this case, the optical filter 1a can more reliably exhibit the optical performances (i) to (iv).
  • the phosphonic acid that forms the UV-IR absorber in the UV-IR absorption layer 10 desirably further includes a second phosphonic acid having an alkyl group.
  • the alkyl group is bonded to the phosphorus atom.
  • the alkyl group of the second phosphonic acid may be an aromatic alkyl group.
  • a phenylmethyl group, a phenylethyl group, a phenylpropyl group, a phenylbutyl group, a phenylheptyl group, and a phenylhexyl group can be exemplified.
  • the aromatic alkyl group may be a halogenated aromatic alkyl group.
  • the halogenated aromatic alkyl group is, for example, a halogenated phenylalkyl group in which at least one hydrogen atom in the phenyl group is substituted with a halogen atom.
  • the alkyl group possessed by the second phosphonic acid is, for example, an alkyl group having 6 or less carbon atoms. This alkyl group may have either a straight chain or a branched chain. As described above, the alkyl group of the second phosphonic acid may have an aromatic substituent or a halogenated aromatic substituent.
  • the sulfonic acid that forms the UV-IR absorber in the UV-IR absorption layer 10 includes, for example, a first sulfonic acid having an aryl group.
  • the aryl group of the first sulfonic acid is, for example, a phenyl group, a benzyl group, a toluyl group, a nitrophenyl group, a hydroxyphenyl group, or a halogenated phenyl group in which at least one hydrogen atom in the phenyl group is substituted with a halogen atom. .
  • the primary sulfonic acid can be benzenesulfonic acid, p-toluenesulfonic acid, 4-bromobenzenesulfonic acid, 4-methylbenzylsulfonic acid, or 4-bromobenzylsulfonic acid.
  • the sulfonic acid that forms the UV-IR absorber in the UV-IR absorption layer 10 desirably further includes a second sulfonic acid having an alkyl group.
  • the second sulfonic acid is, for example, a sulfonic acid having a methyl group, an ethyl group, a propyl group, a butyl group, a heptyl group, or a hexyl group.
  • the alkyl group of the second sulfonic acid may have an aromatic substituent.
  • the UV-IR absorption layer 10 preferably further includes a phosphate ester in which the UV-IR absorber is dispersed and a matrix resin.
  • the phosphate ester contained in the UV-IR absorption layer 10 is not particularly limited as long as the UV-IR absorber can be appropriately dispersed.
  • R 21 , R 22 , and R 3 are each a monovalent functional group represented by — (CH 2 CH 2 O) n R 4 , n Is an integer of 1 to 25, and R 4 represents an alkyl group having 6 to 25 carbon atoms.
  • R 21 , R 22 , and R 3 are the same or different types of functional groups.
  • the phosphate ester is not particularly limited.
  • Plysurf A208N polyoxyethylene alkyl (C12, C13) ether phosphate ester
  • Plysurf A208F polyoxyethylene alkyl (C8) ether phosphate ester
  • Plysurf A208B Polyoxyethylene lauryl ether phosphate ester
  • plysurf A219B polyoxyethylene lauryl ether phosphate ester
  • plysurf AL polyoxyethylene styrenated phenyl ether phosphate ester
  • plysurf A212C polyoxyethylene tridecyl ether phosphate ester
  • Plysurf A215C Polyoxyethylene tridecyl ether phosphate.
  • NIKKOL DDP-2 polyoxyethylene alkyl ether phosphate ester
  • NIKKOL DDP-4 polyoxyethylene alkyl ether phosphate ester
  • NIKKOL DDP-6 polyoxyethylene alkyl ether phosphate ester. possible.
  • the matrix resin included in the UV-IR absorption layer 10 is, for example, a resin that can disperse a UV-IR absorber and can be cured by heat or ultraviolet light. Furthermore, when a resin layer having a thickness of 0.1 mm is formed from the resin as the matrix resin, the transmittance of the resin layer with respect to a wavelength of 350 nm to 900 nm is, for example, 70% or more, desirably 75% or more, and more desirably. May be a resin that is 80% or more. The content of at least one of phosphonic acid and sulfonic acid is, for example, 5 to 400 parts by mass with respect to 100 parts by mass of the matrix resin.
  • the matrix resin contained in the UV-IR absorption layer 10 is not particularly limited as long as the above properties are satisfied.
  • the matrix resin may contain an aryl group such as a phenyl group, and is preferably a silicone resin containing an aryl group such as a phenyl group.
  • the UV-IR absorption layer 10 is hard (rigid), as the thickness of the UV-IR absorption layer 10 increases, cracks tend to occur due to curing shrinkage during the manufacturing process of the optical filter 1a.
  • the matrix resin is a silicone resin containing an aryl group
  • the UV-IR absorption layer 10 tends to have good crack resistance.
  • the UV-IR absorber formed by at least one acid of phosphonic acid and sulfonic acid and a copper ion hardly aggregates.
  • the matrix resin of the UV-IR absorption layer 10 is a silicone resin containing an aryl group
  • the phosphoric acid ester contained in the UV-IR absorption layer 10 is a phosphorus represented by the formula (c1) or the formula (c2). It is desirable to have a linear organic functional group having flexibility such as an oxyalkyl group such as an acid ester.
  • silicone resin containing an aryl group, and a phosphate ester having a linear organic functional group such as an oxyalkyl group UV- This is because the IR absorber hardly aggregates and can provide the UV-IR absorption layer 10 with good rigidity and good flexibility.
  • Specific examples of the silicone resin used as the matrix resin include KR-255, KR-300, KR-2621-1, KR-211, KR-311, KR-216, KR-212, and KR-251. be able to. These are all silicone resins manufactured by Shin-Etsu Chemical Co., Ltd.
  • the optical filter 1a further includes a hydrolysis-condensation product of an alkoxysilane monomer as necessary.
  • the optical filter 1a contains a hydrolysis-condensation product of an alkoxysilane monomer
  • the optical filter 1a has good moisture resistance due to the siloxane bond (—Si—O—Si—) of the hydrolysis-condensation product of the alkoxysilane monomer.
  • the optical filter 1a has good heat resistance. This is because a siloxane bond has a higher bond energy and is chemically stable than bonds such as a —C—C— bond and a —C—O— bond, and is excellent in heat resistance and moisture resistance.
  • the UV-IR absorption layer 10 in the optical filter 1a can be formed by curing a coating film of a predetermined optical filter composition.
  • the composition for an optical filter contains at least one acid of phosphonic acid and sulfonic acid and copper ions.
  • the optical filter composition can absorb ultraviolet rays and infrared rays when the coating film of the composition is cured to form a layer having a thickness of 100 to 300 ⁇ m.
  • the haze is 5% or less (preferably 4% or less). It should be noted that such a characteristic should appear when the cured layer of the optical filter composition has a specific thickness within the range of 100 to 300 ⁇ m. That is, the cured product layer of the optical filter composition need not satisfy such characteristics in the entire range of 100 to 300 ⁇ m.
  • the coating film of the composition is cured to form a layer having a thickness of 100 to 300 ⁇ m, and light having a wavelength of 300 nm to 1200 nm is incident on this layer at an incident angle of 0 °.
  • the following conditions (I) to (IV) are satisfied.
  • (I) It has an average transmittance of 78% or more at a wavelength of 450 nm to 600 nm.
  • (II) It has a spectral transmittance of 1% or less at a wavelength of 300 nm to 350 nm.
  • the first IR cutoff wavelength having a spectral transmittance that decreases with an increase in wavelength at a wavelength of 600 nm to 750 nm and a spectral transmittance of 50% at a wavelength of 600 nm to 750 nm is within the wavelength range of 610 nm to 680 nm.
  • the first UV cut-off wavelength having a spectral transmittance that increases with an increase in wavelength at a wavelength of 350 nm to 450 nm and a spectral transmittance of 50% at a wavelength of 350 nm to 450 nm is in the range of a wavelength of 380 nm to 430 nm.
  • the optical filter composition has a viscosity of 1 to 200 mPa ⁇ s at 22 to 23 ° C., for example.
  • the composition for optical filters tends to flow, and seems to be disadvantageous for forming a coating film with the composition for optical filters.
  • the present inventors drastically reviewed the viscosity of the optical filter composition from the viewpoint of reducing the haze of the UV-IR absorption layer obtained by curing the coating film of the optical filter composition. As a result, it was newly found out that it is desirable to adjust the viscosity at 22 to 23 ° C. of the optical filter composition to 1 to 200 mPa ⁇ s from the viewpoint of reducing the haze of the UV-IR absorption layer.
  • the state of aggregation in the coating film of the optical filter composition is It is considered that the haze of the UV-IR absorption layer tends to be high unless properly eliminated.
  • the optical filter composition has a viscosity of 1 to 200 mPa ⁇ s at 22 to 23 ° C., the optical filter composition flows appropriately in the coating film of the optical filter composition, and the UV-IR absorber It is thought that the aggregated state of is easy to be eliminated. As a result, it is considered that the haze of the UV-IR absorption layer can be reduced.
  • the viscosity at 22 to 23 ° C. of the optical filter composition is less than 1 mPa ⁇ s, the amount of the solvent in the optical filter composition is too large, and the physical distance of the components forming the UV-IR absorption layer is small. growing. For this reason, a UV-IR absorption layer may not be formed appropriately.
  • the viscosity of the optical filter composition at 22 to 23 ° C. can be measured using, for example, a vibration viscometer (probe: PR-10 L, controller: VM-10A) manufactured by Seconic.
  • the optical filter composition desirably has a viscosity of 2 to 180 mPa ⁇ s at 22 to 23 ° C., and more desirably has a viscosity of 2 to 160 mPa ⁇ s at 22 to 23 ° C.
  • the haze of the UV-IR absorption layer obtained by curing the coating film of this composition can be more reliably reduced to 5% or less.
  • the solid content is, for example, 3 to 17% by mass. In this case, it is considered that the content of solids is relatively small, the optical filter composition easily flows appropriately in the coating film of the optical filter composition, and the haze of the UV-IR absorbing layer is easily reduced.
  • the solid content is desirably 5 to 17% by mass, and more desirably 6 to 17% by mass.
  • the copper ion content is, for example, 0.5 to 2.2% by mass.
  • the content of copper ions in the composition is relatively small, aggregation of the UV-IR absorber is unlikely to occur in the coating film of the optical filter composition, and the haze of the UV-IR absorption layer is likely to be reduced. It is done.
  • the copper ion content is desirably 0.6 to 2.1% by mass.
  • the composition for an optical filter includes a component contained in the UV-IR absorption layer 10 or a precursor of the component.
  • the optical filter composition further includes, for example, a predetermined solvent (dispersion medium).
  • the composition for optical filters may contain, for example, an alkoxysilane monomer. When the optical filter composition contains an alkoxysilane monomer, it is possible to suppress the aggregation of the UV-IR absorber particles in the optical filter composition, and even if the phosphate ester content is reduced, the optical filter composition The UV-IR absorber is well dispersed in the filter composition.
  • An example of a method for manufacturing the optical filter 1a will be described.
  • a copper salt such as copper acetate monohydrate is added to a predetermined solvent such as tetrahydrofuran (THF) and stirred to obtain a copper salt solution.
  • a phosphoric acid ester compound such as a phosphoric acid diester represented by the formula (c1) or a phosphoric acid monoester represented by the formula (c2) is added to the solution of the copper salt and stirred to prepare a solution A.
  • the first phosphonic acid or the first sulfonic acid is added to a predetermined solvent such as THF and stirred to prepare the liquid B.
  • the first phosphonic acid or the first sulfonic acid is added to a predetermined solvent such as THF and stirred to obtain the first phosphonic acid.
  • a predetermined solvent such as THF
  • a plurality of preliminary solutions prepared for each type of acid or primary sulfonic acid may be mixed to prepare solution B.
  • An alkoxysilane monomer may be added in the preparation of the liquid B.
  • the liquid B is added to the liquid A and stirred for a predetermined time.
  • a predetermined solvent such as toluene is added to this solution and stirred to obtain liquid C.
  • desolvation treatment is performed for a predetermined time while heating the C liquid to obtain the D liquid. This removes components generated by dissociation of a solvent such as THF and a copper salt such as acetic acid (boiling point: about 118 ° C.), and the UV-IR absorber is absorbed by the first phosphonic acid or first sulfonic acid and copper ions. Generated. The temperature at which the liquid C is heated is determined based on the boiling point of the component to be removed that has dissociated from the copper salt.
  • the solvent such as toluene (boiling point: about 110 ° C.) used to obtain the liquid C also volatilizes, but the solvent remains in the liquid D so that the viscosity of the liquid D is in a desired range.
  • the addition amount of the solvent for obtaining the liquid C may be adjusted so that the viscosity of the liquid D is in a desired range, or the time for the solvent removal treatment may be adjusted.
  • a liquid H is further prepared as follows. First, a copper salt such as copper acetate monohydrate is added to a predetermined solvent such as tetrahydrofuran (THF) and stirred to obtain a copper salt solution. Next, a phosphoric acid ester compound such as a phosphoric acid diester represented by the formula (c1) or a phosphoric acid monoester represented by the formula (c2) is added to the solution of the copper salt and stirred to prepare a solution E. To do. Further, the second phosphonic acid or the second sulfonic acid is added to a predetermined solvent such as THF and stirred to prepare a solution F.
  • a predetermined solvent such as THF
  • the second phosphonic acid or the second sulfonic acid is added to a predetermined solvent such as THF and then stirred to add the second phosphonic acid.
  • a predetermined solvent such as THF
  • the F solution may be prepared by mixing a plurality of preliminary solutions prepared for each type of the second sulfonic acid. While stirring E liquid, F liquid is added to E liquid and stirred for a predetermined time. Next, a predetermined solvent such as toluene is added to this solution and stirred to obtain a solution G. Next, a solvent removal process is performed for a predetermined time while the G solution is heated to obtain the H solution.
  • the temperature for heating the G liquid is determined in the same manner as in the C liquid, and the solvent for obtaining the G liquid is also determined in the same manner as in the C liquid.
  • the addition amount of the solvent for obtaining the G liquid is not particularly limited.
  • the composition for optical filters can be prepared by adding a matrix resin such as silicone resin to D solution and stirring.
  • a matrix resin such as silicone resin
  • a matrix resin such as a silicone resin is added to the liquid D and stirred.
  • the composition for optical filters can be prepared by further adding the H liquid to the I liquid obtained in this manner and stirring.
  • the optical filter composition is applied to one main surface of a predetermined substrate to form a coating film.
  • the substrate is not particularly limited, and a glass substrate, a resin substrate, or a metal substrate (steel substrate or stainless steel substrate) can be used.
  • a liquid optical filter composition is applied to one main surface of the substrate by spin coating, die coating, or application by a dispenser to form a coating film.
  • the coating film is cured by performing a predetermined heat treatment on the coating film.
  • the coating film is exposed to an environment having a temperature of 40 ° C. to 200 ° C. If necessary, the coating film is humidified in order to sufficiently hydrolyze and polycondensate the alkoxysilane monomer contained in the optical filter composition.
  • the cured coating film is exposed to an environment having a temperature of 40 ° C. to 100 ° C. and a relative humidity of 40% to 100%.
  • a repeating structure of siloxane bonds (Si—O) n is formed.
  • the alkoxysilane and water may coexist in the liquid composition to cause these reactions.
  • water is added to the optical filter composition in advance when manufacturing the optical filter, the phosphate ester or the UV-IR absorber deteriorates in the process of forming the UV-IR absorption layer, and UV -IR absorption performance may be degraded, and the durability of the optical filter may be impaired.
  • the UV-IR absorption layer 10 can be formed on the substrate.
  • the optical filter 1a is obtained by peeling the UV-IR absorption layer 10 from the substrate.
  • the optical filter 1a has a simple configuration and is easily reduced in thickness. For this reason, the optical filter 1a can contribute to the low profile of the imaging device and the optical system.
  • the optical filter composition has a relatively low viscosity of, for example, a viscosity of 1 to 200 mPa ⁇ s at 22 to 23 ° C.
  • the optical filter composition contains a relatively large amount of solvent.
  • the coating film of the composition for optical filters is cured by heating, if the coating film is heated at a high temperature from the beginning, the UV-IR absorption layer is likely to crack due to rapid volatilization of the solvent.
  • the coating film of the optical filter composition after heating the coating film of the optical filter composition for a predetermined time in a relatively low temperature environment of 60 ° C. or less, the coating film can be heated for a predetermined time in a relatively high temperature environment having a temperature exceeding 60 ° C. desirable.
  • the coating film of the optical filter composition is desirably heated in an environment of 60 ° C. or lower for 10 minutes or more, and then exposed to an environment exceeding 60 ° C. More preferably, the coating film of the optical filter composition is exposed to an environment exceeding 60 ° C. after being heated for 20 minutes or more in an environment of 45 ° C. or less.
  • the optical filter 1a can be changed from various viewpoints.
  • the optical filter 1a may be changed to the optical filters 1b to 1f shown in FIGS. 1B to 1F, respectively.
  • the optical filters 1b to 1f are configured in the same manner as the optical filter 1a unless otherwise described.
  • Constituent elements of the optical filters 1b to 1f that are the same as or correspond to the constituent elements of the optical filter 1a are assigned the same reference numerals, and detailed descriptions thereof are omitted.
  • the description regarding the optical filter 1a also applies to the optical filters 1b to 1f unless there is a technical contradiction.
  • an optical filter 1b includes a UV-IR absorption layer 10 and a pair of antireflection films 30 disposed on both surfaces thereof.
  • the antireflection film 30 is a film that is formed so as to form an interface between the optical filter 1b and air and reduces reflection of light in the visible light region.
  • the antireflection film 30 is a film formed of a dielectric material such as resin, oxide, and fluoride.
  • the antireflection film 30 may be a multilayer film formed by laminating two or more kinds of dielectrics having different refractive indexes.
  • the antireflection film 30 may be a dielectric multilayer film made of a low refractive index material such as SiO 2 and a high refractive index material such as TiO 2 or Ta 2 O 5 .
  • a resin layer containing a silane coupling agent may be formed between the UV-IR absorption layer 10 and the antireflection film 30.
  • the antireflection film 30 may be disposed on both main surfaces of the UV-IR absorption layer 10 or may be disposed only on one main surface.
  • the optical filter 1b can contribute to lowering the height of the imaging device and the optical system, and can increase the amount of light in the visible light region as compared to the optical filter 1a.
  • an optical filter 1c includes a UV-IR absorption layer 10 and a reflective film 40 that reflects infrared rays and / or ultraviolet rays disposed on one main surface thereof.
  • the reflective film 40 is, for example, a film formed by vapor deposition of a metal such as aluminum, or a dielectric multilayer film in which layers made of a high refractive index material and layers made of a low refractive index material are alternately laminated. is there.
  • a material having a refractive index of 1.7 to 2.5 such as TiO 2 , ZrO 2 , Ta 2 O 5 , Nb 2 O 5 , ZnO, and In 2 O 3 is used.
  • a material having a refractive index of 1.2 to 1.6 such as SiO 2 , Al 2 O 3 , and MgF 2 is used.
  • a method for forming the dielectric multilayer film is, for example, a chemical vapor deposition (CVD) method, a sputtering method, or a vacuum evaporation method.
  • such a reflective film may be formed so as to form both main surfaces of the optical filter (not shown). When reflective films are formed on both main surfaces of the optical filter, the stress is balanced on both the front and back surfaces of the optical filter, so that the optical filter is less likely to warp.
  • an optical filter 1d includes a transparent dielectric substrate 20 and a UV-IR absorption layer 10 formed on one main surface of the transparent dielectric substrate 20.
  • the transparent dielectric substrate 20 is not particularly limited as long as it is a dielectric substrate having a high average transmittance (for example, 80% or more) at 450 nm to 600 nm. In some cases, the transparent dielectric substrate 20 may have an absorptivity in the ultraviolet region or the infrared region.
  • the transparent dielectric substrate 20 is made of, for example, glass or resin.
  • the glass contains, for example, borosilicate glass such as D263 T eco, soda lime glass (blue plate), white plate glass such as B270, non-alkali glass, or copper.
  • Infrared absorbing glass such as phosphate glass or fluorophosphate glass containing copper.
  • the transparent dielectric substrate 20 is an infrared absorbing glass such as a phosphate glass containing copper or a fluorophosphate glass containing copper, the infrared absorbing performance and UV of the transparent dielectric substrate 20 are included.
  • the infrared absorption performance required for the optical filter 1d can be realized by the combination with the infrared absorption performance of the IR absorption layer 10. For this reason, the level of infrared absorption performance required for the UV-IR absorption layer 10 can be lowered.
  • Such infrared-absorbing glass is, for example, BG-60, BG-61, BG-62, BG-63, or BG-67 manufactured by Schott, 500EXL manufactured by Nippon Electric Glass, or HOYA. CM5000, CM500, C5000, or C500S manufactured by the company. Further, the infrared absorbing glass may have an ultraviolet absorbing property.
  • the transparent dielectric substrate 20 may be a crystalline substrate having transparency such as magnesium oxide, sapphire, or quartz.
  • the plate-like sapphire may be disposed as a scratch-resistant protective material (protect filter) in front of a camera module or a lens provided in a mobile terminal such as a smartphone or a mobile phone.
  • protect filter a scratch-resistant protective material
  • UV-IR absorption layer 10 is formed on the plate-like sapphire, it can contribute to the low profile of the camera module.
  • the resin is, for example, (poly) olefin resin, polyimide resin, polyvinyl butyral resin, polycarbonate resin, polyamide resin, polysulfone resin, polyethersulfone resin, polyamideimide resin. (Modified) acrylic resin, epoxy resin, or silicone resin.
  • the transparent dielectric substrate 20 is a glass substrate
  • a resin layer containing a silane coupling agent is applied to the transparent dielectric substrate 20 and the UV. -You may form between IR absorption layers 10.
  • an optical filter 1e has UV-IR absorption layers 10 formed on both main surfaces of a transparent dielectric substrate 20.
  • the optical filter 1e can exhibit the optical performances (i) to (iv) described above not by the single UV-IR absorption layer 10 but by the two UV-IR absorption layers 10.
  • the thickness of the UV-IR absorption layer 10 on both main surfaces of the transparent dielectric substrate 20 may be the same or different. That is, the UV-IR absorption layer 10 necessary for the optical filter 1e to obtain desired optical characteristics is uniformly or non-uniformly distributed on both main surfaces of the transparent dielectric substrate 20 with UV. -IR absorption layer 10 is formed.
  • each UV-IR absorption layer 10 formed on both main surfaces of the transparent dielectric substrate 20 is relatively small.
  • the internal pressure of the coating film is low and the occurrence of cracks can be prevented.
  • the time for applying the liquid optical filter composition can be shortened, and the time for curing the coating film of the optical filter composition can be shortened.
  • the UV-IR absorption layer 10 is formed on both main surfaces of the transparent dielectric substrate 20, even when the transparent dielectric substrate 20 is thin, warping is suppressed in the optical filter 1e. Also in this case, in order to improve the adhesion between the transparent dielectric substrate 20 and the UV-IR absorption layer 10, a resin layer containing a silane coupling agent is interposed between the transparent dielectric substrate 20 and the UV-IR absorption layer 10. You may form in.
  • the optical filter 1 f includes an antireflection film 30.
  • the antireflection film 30 is formed so as to form an interface between the optical filter 1f and air.
  • the antireflection film 30 is arranged on both main surfaces of the optical filter 1f, but may be arranged only on one main surface. In this case, the amount of light in the visible light region of the optical filter 1f can be increased.
  • Each of the optical filters 1a to 1f may be changed to include an infrared absorption film (not shown) separately from the UV-IR absorption layer 10 as necessary.
  • the infrared absorbing film contains, for example, an organic infrared absorbing agent such as cyanine-based, phthalocyanine-based, squarylium-based, diimmonium-based, and azo-based or an infrared absorbing agent made of a metal complex.
  • the infrared absorbing film contains, for example, one or more infrared absorbers selected from these infrared absorbers. This organic infrared absorber has a small wavelength range (absorption band) of light that can be absorbed, and is suitable for absorbing light in a specific range of wavelengths.
  • Each of the optical filters 1a to 1f may be changed to include an ultraviolet absorbing film (not shown) separately from the UV-IR absorbing layer 10 as necessary.
  • the ultraviolet absorbing film contains, for example, an ultraviolet absorber such as benzophenone, triazine, indole, merocyanine, and oxazole.
  • the ultraviolet absorbing film contains, for example, one or more ultraviolet absorbers selected from these ultraviolet absorbers. These ultraviolet absorbers include, for example, those that absorb ultraviolet rays in the vicinity of 300 nm to 340 nm, emit light having a wavelength longer than the absorbed wavelength (fluorescence), and function as a fluorescent agent or fluorescent whitening agent.
  • the ultraviolet absorbing film can reduce the incidence of ultraviolet rays that cause deterioration of materials used for optical filters such as resins.
  • the above infrared absorber or ultraviolet absorber may be preliminarily contained in the transparent dielectric substrate 20 made of resin.
  • the infrared absorbing film and the ultraviolet absorbing film can be formed, for example, by forming a resin containing an infrared absorbing agent or an ultraviolet absorbing agent. In this case, the resin needs to be able to appropriately dissolve or disperse the infrared absorber or the ultraviolet absorber and be transparent.
  • Such resins include (poly) olefin resins, polyimide resins, polyvinyl butyral resins, polycarbonate resins, polyamide resins, polysulfone resins, polyethersulfone resins, polyamideimide resins, (modified) acrylic resins, epoxy resins, and silicone resins. Can be illustrated.
  • the optical filters 1a to 1f are arranged, for example, on the front surface (the side close to the subject) of a solid-state imaging device such as a CCD or CMOS inside the imaging device in order to bring the spectral sensitivity of the imaging device closer to human visibility.
  • a solid-state imaging device such as a CCD or CMOS
  • the camera module 100 using the optical filter 1d can be provided.
  • the camera module 100 includes, for example, a lens system 2, a low-pass filter 3, a solid-state imaging device 4, a circuit board 5, an optical filter support housing 7, and an optical system housing 8.
  • the peripheral edge of the optical filter 1d is fitted in an annular recess that is in contact with an opening formed in the center of the optical filter support housing 7, for example.
  • the optical filter support housing 7 is fixed to the optical system housing 8. Inside the optical system housing 8, the lens system 2, the low-pass filter 3, and the solid-state imaging device 4 are arranged in this order along the optical axis.
  • the solid-state image sensor 4 is, for example, a CCD or a CMOS.
  • the light from the subject is cut by ultraviolet and infrared rays by the optical filter 1 d, condensed by the lens system 2, and further passes through the low-pass filter 3 and enters the solid-state imaging device 4.
  • the electrical signal generated by the solid-state imaging device 4 is sent to the outside of the camera module 100 by the circuit board 5.
  • the optical filter 1d also functions as a cover (protect filter) for protecting the lens system 2.
  • a sapphire substrate is preferably used as the transparent dielectric substrate 20 in the optical filter 1d. Since the sapphire substrate has high scratch resistance, for example, it is desirable that the sapphire substrate is disposed on the outside (the side opposite to the solid-state imaging device 4 side). Thereby, the optical filter 1d has high scratch resistance against external contact and the like, absorbs ultraviolet rays and infrared rays, and has a low haze of 5% or less.
  • the optical filter 1d desirably has the optical performances (i) to (iv) described above, and more desirably has the optical performances (v) to (vii).
  • the camera module 100 shown in FIG. 2 is a schematic diagram for illustrating the arrangement and the like of each component, and describes an aspect in which the optical filter 1d is used as a protection filter.
  • the optical filter 1d functions as a protection filter
  • the camera module using the optical filter 1d is not limited to that shown in FIG. 2, and the low-pass filter 3 may be omitted if necessary.
  • Other filters may be provided.
  • Example 1 Copper acetate monohydrate (4.500 g) and tetrahydrofuran (THF) (240 g) were mixed and stirred for 3 hours to obtain a copper acetate solution. Next, 1.646 g of Prisurf A208N (Daiichi Kogyo Seiyaku Co., Ltd.), which is a phosphate ester compound, was added to the obtained copper acetate solution and stirred for 30 minutes to obtain Liquid A. 40 g of THF was added to 0.706 g of phenylphosphonic acid and stirred for 30 minutes to obtain a solution B-1.
  • Prisurf A208N (Daiichi Kogyo Seiyaku Co., Ltd.)
  • Liquid D which is a dispersion of fine particles of phenyl-based copper phosphonate (UV-IR absorber), was transparent, and the fine particles were well dispersed in Liquid D.
  • the obtained D liquid was 107.06g. Table 1 shows the amount of toluene added to obtain the D liquid, the mass of the obtained D liquid, and the concentration of copper ions in the D liquid.
  • Copper acetate monohydrate (4.500 g) and THF (240 g) were mixed and stirred for 3 hours to obtain a copper acetate solution.
  • 2.572 g of PRISURF A208N which is a phosphate ester compound, was added to the obtained copper acetate solution and stirred for 30 minutes to obtain solution E.
  • 40 g of THF was added to 2.886 g of n-butylphosphonic acid, followed by stirring for 30 minutes to obtain a liquid F. While stirring E solution, F solution was added to E solution and stirred at room temperature for 1 minute.
  • 84 g of toluene was added to this solution, followed by stirring at room temperature for 1 minute to obtain solution G.
  • the solvent G was put into a flask and heated with an oil bath, and the solvent was removed by a rotary evaporator. The set temperature of the oil bath was adjusted to 105 ° C. Thereafter, the liquid H according to Example 1 after the solvent removal treatment was taken out of the flask. The solvent removal treatment was performed so that the viscosity of the liquid H became a predetermined viscosity without completely removing the solvent in the solvent removal treatment.
  • Liquid H which is a dispersion of fine particles of copper butylphosphonate (UV-IR absorber), was transparent, and fine particles were well dispersed in the liquid H.
  • the obtained liquid H was 68.12 g.
  • Table 2 shows the amount of toluene added to obtain the H liquid, the mass of the obtained H liquid, and the concentration of copper ions in the H liquid.
  • Silicone resin manufactured by Shin-Etsu Chemical Co., Ltd., product name: KR-300 was added to solution D and stirred for 30 minutes to obtain solution I. 27.25 g of liquid H corresponding to 40% by mass of the total amount of liquid H was added to liquid I and stirred for 30 minutes to obtain an optical filter composition according to Example 1.
  • Table 3 shows the addition amounts of the D solution, the H solution, and the silicone resin in the optical filter composition according to Example 1.
  • the optical filter composition according to Example 1 was applied to form a coating film in a rectangular area having a center of about 30 mm ⁇ 30 mm on the main surface of the glass substrate subjected to fluorine treatment.
  • a frame having a 30 mm ⁇ 30 mm square hole in the center and a thickness of 5 mm was attached to a glass substrate, and the optical filter composition according to Example 1 was applied to the inside of the frame.
  • the transparent glass substrate having an undried coating film was placed in an oven and subjected to a heat treatment at 45 ° C. for 2 hours and further at 85 ° C. for 6 hours to cure the coating film.
  • a glass substrate having a coating film was placed in a constant temperature and humidity chamber set at a temperature of 85 ° C. and a relative humidity of 85% for 2 hours for humidification treatment. Thereafter, the layer formed by curing the coating film of the optical filter composition from the glass substrate was peeled off to produce an optical filter according to Example 1.
  • Examples 2 to 15 and Comparative Example 1 Except that the preparation conditions for the D solution were changed so that the amount of toluene added to obtain the D solution, the mass of the obtained D solution, and the concentration of copper ions in the D solution were as shown in Table 1.
  • D liquids according to Examples 2 to 15 and D liquid according to Comparative Example 1 were prepared. Except for changing the preparation conditions of the H liquid so that the amount of toluene added to obtain the H liquid, the mass of the obtained H liquid, and the concentration of copper ions in the H liquid are as shown in Table 2.
  • solutions H according to Examples 2 to 15 and Comparative Example 1 were prepared.
  • compositions for optical filters according to Examples 2 to 15 and Comparative Example 1 were prepared in the same manner as in Example 1, except that the addition amounts of D liquid, H liquid, and silicone resin were adjusted as shown in Table 3. did. Further, in the same manner as in Example 1, except that the optical filter composition according to Examples 2 to 15 and Comparative Example 1 was used instead of the optical filter composition according to Example 1, each of the examples. Optical filters according to 2 to 15 and Comparative Example 1 were produced.
  • Example 16 Copper acetate monohydrate (4.500 g) and tetrahydrofuran (THF) (240 g) were mixed and stirred for 3 hours to obtain a copper acetate solution. Next, 1.646 g of Prisurf A208N (Daiichi Kogyo Seiyaku Co., Ltd.), which is a phosphate ester compound, was added to the obtained copper acetate solution and stirred for 30 minutes to obtain Liquid A. 40 g of THF was added to 0.769 g of paratoluenesulfonic acid and stirred for 30 minutes to obtain a solution B-1.
  • Prisurf A208N (Daiichi Kogyo Seiyaku Co., Ltd.)
  • Liquid D which is a dispersion of fine particles of copper phenyl sulfonate (UV-IR absorber), was transparent, and the fine particles were well dispersed in Liquid D.
  • the obtained D liquid was 107.12g.
  • Table 1 shows the amount of toluene added to obtain the D liquid, the mass of the obtained D liquid, and the concentration of copper ions in the D liquid.
  • Copper acetate monohydrate (4.500 g) and THF (240 g) were mixed and stirred for 3 hours to obtain a copper acetate solution.
  • 2.572 g of PRISURF A208N which is a phosphate ester compound, was added to the obtained copper acetate solution and stirred for 30 minutes to obtain solution E.
  • 40 g of THF was added to 2.886 g of 1-butanesulfonic acid and stirred for 30 minutes to obtain a liquid F.
  • F solution was added to E solution and stirred at room temperature for 1 minute.
  • 84 g of toluene was added to this solution, followed by stirring at room temperature for 1 minute to obtain solution G.
  • the solvent G was put into a flask and heated with an oil bath, and the solvent was removed by a rotary evaporator.
  • the set temperature of the oil bath was adjusted to 105 ° C.
  • the liquid H according to Example 1 after the solvent removal treatment was taken out of the flask.
  • the solvent removal treatment was performed so that the viscosity of the liquid H became a predetermined viscosity without completely removing the solvent in the solvent removal treatment.
  • the liquid H which is a dispersion of fine particles of copper butanesulfonate (UV-IR absorber), was transparent, and the fine particles were well dispersed in the liquid H.
  • the obtained liquid H was 68.12 g.
  • Table 2 shows the amount of toluene added to obtain the H liquid, the mass of the obtained H liquid, and the concentration of copper ions in the H liquid.
  • Silicone resin manufactured by Shin-Etsu Chemical Co., Ltd., product name: KR-300 was added to solution D and stirred for 30 minutes to obtain solution I. 27.25 g of liquid H corresponding to 40% by mass of the total amount of liquid H was added to liquid I and stirred for 30 minutes to obtain an optical filter composition according to Example 1.
  • Table 3 shows the addition amounts of the D solution, the H solution, and the silicone resin in the optical filter composition according to Example 16.
  • Example An optical filter according to Example 16 was produced in the same manner as in Example 1 except that the optical filter composition according to Example 16 was used instead of the optical filter composition according to Example 1.
  • the oven was turned off and allowed to cool naturally, and the sample was taken out of the oven after the temperature inside the oven had dropped to about room temperature.
  • the sample is put into a constant temperature and humidity chamber, and the inside of the constant temperature and humidity chamber is changed to an environment of a temperature of 85 ° C. and a relative humidity of 85% over 45 minutes. Kept.
  • the sample was taken out from the constant temperature and humidity chamber.
  • the sample was fully dried and cured.
  • the mass Wb of the sample after curing was measured, and the measurement result was determined as the mass of the solid content. From the mass Wb of the sample after curing and the mass Wa of the sample before curing, the solid content ratio (Wb / Wa ⁇ 100) in the optical filter composition according to each Example and Comparative Example 1 was determined. The results are shown in Table 3.
  • the average transmittance at a wavelength of 450 nm to 600 nm was 78% or more, and the average transmittance at a wavelength of 300 nm to 350 nm was less than 0.2%.
  • the IR cutoff wavelength was in the range of 610 nm to 680 nm, and the UV cutoff wavelength was in the range of 380 nm to 430 nm. From this result, the optical filter according to each example had good transmittance characteristics.
  • the haze of the optical filter according to each example was 5% or less. For this reason, the optical filter according to each example had good optical characteristics from the viewpoint of haze in addition to the transmittance characteristics.
  • the average transmittance at a wavelength of 450 nm to 600 nm was 81.9%, and the average transmittance at a wavelength of 300 nm to 350 nm was less than 0.2%.
  • the IR cutoff wavelength was 631 nm, and the UV cutoff wavelength was 407 nm. From this result, the optical filter according to Comparative Example 1 had a good transmittance characteristic to some extent.
  • the haze of the optical filter according to Comparative Example 1 was 8.4%, greatly exceeding 5%. For this reason, it was difficult to say that the optical filter according to Comparative Example 1 had desirable optical characteristics from the viewpoint of haze.

Abstract

An optical filter (1a) is provided with a UV-IR absorption layer (10), and has a haze of 5% or less. The UV-IR absorption layer (10) includes a UV-IR absorbing agent capable of absorbing ultraviolet rays and infrared rays, formed by copper ions and phosphonic acid and/or sulfonic acid. A high-quality image can thereby be obtained by an imaging device in which the optical filter (1a) is incorporated, for example.

Description

光学フィルタ及び光学フィルタ用組成物Optical filter and optical filter composition
 本発明は、光学フィルタ及び光学フィルタ用組成物に関する。 The present invention relates to an optical filter and a composition for an optical filter.
 CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を用いた撮像装置において、良好な色再現性を有する画像を得るために様々な光学フィルタが固体撮像素子の前面に配置されている。一般的に、固体撮像素子は紫外線領域から赤外線領域に至る広い波長範囲で分光感度を有する。一方、人間の視感度は可視光の領域にのみに存在する。このため、撮像装置における固体撮像素子の分光感度を人間の視感度に近づけるために、固体撮像素子の前面に赤外線又は紫外線を遮蔽する光学フィルタを配置する技術が知られている。 In an imaging device using a solid-state image sensor such as CCD (Charge-Coupled Device) or CMOS (Complementary Metal-Oxide-Semiconductor), various optical filters are placed on the front of the solid-state image sensor to obtain an image with good color reproducibility. Has been. In general, a solid-state imaging device has spectral sensitivity in a wide wavelength range from an ultraviolet region to an infrared region. On the other hand, human visibility exists only in the visible light region. For this reason, a technique is known in which an optical filter that shields infrared rays or ultraviolet rays is disposed in front of the solid-state image sensor in order to bring the spectral sensitivity of the solid-state image sensor in the image pickup apparatus closer to human visibility.
 例えば、特許文献1には、赤外線及び紫外線を吸収可能なUV‐IR吸収層を備え、0°及び40°の入射角度で波長300nm~1200nmの光を入射させたときに、所定の透過特性を有する光学フィルタが記載されている。この光学フィルタのUV‐IR吸収層は、ホスホン酸と銅イオンとによって形成されたUV‐IR吸収剤を含んでいる。 For example, Patent Document 1 includes a UV-IR absorption layer capable of absorbing infrared rays and ultraviolet rays, and exhibits predetermined transmission characteristics when light having a wavelength of 300 nm to 1200 nm is incident at incidence angles of 0 ° and 40 °. An optical filter is described. The UV-IR absorption layer of this optical filter contains a UV-IR absorber formed by phosphonic acid and copper ions.
特許第6232161号公報Japanese Patent No. 6232161
 特許文献1に記載の光学フィルタは透過率に関し所望の特性を有しているが、特許文献1において、この光学フィルタのヘイズについては何ら検討されていない。そこで、本発明は、ホスホン酸及びスルホン酸の少なくとも一つの酸と銅イオンとによって形成されたUV‐IR吸収剤を含みつつ、所望のヘイズを有する光学フィルタを提供する。また、本発明は、その光学フィルタを作製するのに有利な光学フィルタ用組成物を提供する。 The optical filter described in Patent Document 1 has desired characteristics with respect to transmittance, but Patent Document 1 does not discuss any haze of the optical filter. Accordingly, the present invention provides an optical filter having a desired haze while including a UV-IR absorber formed by at least one acid of phosphonic acid and sulfonic acid and copper ions. The present invention also provides an optical filter composition that is advantageous for producing the optical filter.
 本発明は、
 ホスホン酸及びスルホン酸の少なくとも一つの酸と銅イオンとによって形成された紫外線及び赤外線を吸収可能なUV‐IR吸収剤を含むUV‐IR吸収層を備え、
 5%以下のヘイズを有する、
 光学フィルタを提供する。
The present invention
Comprising a UV-IR absorber layer comprising a UV-IR absorber capable of absorbing ultraviolet and infrared rays formed by at least one acid of phosphonic acid and sulfonic acid and copper ions;
Having a haze of 5% or less,
An optical filter is provided.
 また、本発明は、
 光学フィルタ用組成物であって、
 ホスホン酸及びスルホン酸の少なくとも一つの酸と、銅イオンとを含み、
 当該光学フィルタ用組成物の塗膜を硬化させて100~300μmの厚みを有する層を形成したときに、前記層が紫外線及び赤外線を吸収可能であり、かつ、前記層のヘイズが5%以下である、
 組成物を提供する。
The present invention also provides:
An optical filter composition comprising:
Including at least one acid of phosphonic acid and sulfonic acid, and copper ion,
When the coating film of the optical filter composition is cured to form a layer having a thickness of 100 to 300 μm, the layer can absorb ultraviolet rays and infrared rays, and the haze of the layer is 5% or less. is there,
A composition is provided.
 上記の光学フィルタは、ホスホン酸及びスルホン酸の少なくとも一つの酸と銅イオンとによって形成されたUV‐IR吸収剤を含みつつ、5%以下のヘイズを有する。また、上記の組成物は、このような光学フィルタを作製するのに有利である。 The above optical filter has a haze of 5% or less while containing a UV-IR absorber formed by at least one acid of phosphonic acid and sulfonic acid and copper ions. In addition, the above composition is advantageous for producing such an optical filter.
図1Aは、本発明の光学フィルタの一例を示す断面図である。FIG. 1A is a cross-sectional view showing an example of the optical filter of the present invention. 図1Bは、本発明の光学フィルタの別の一例を示す断面図である。FIG. 1B is a cross-sectional view showing another example of the optical filter of the present invention. 図1Cは、本発明の光学フィルタのさらに別の一例を示す断面図である。FIG. 1C is a cross-sectional view showing still another example of the optical filter of the present invention. 図1Dは、本発明の光学フィルタのさらに別の一例を示す断面図である。FIG. 1D is a cross-sectional view showing still another example of the optical filter of the present invention. 図1Eは、本発明の光学フィルタのさらに別の一例を示す断面図である。FIG. 1E is a cross-sectional view showing still another example of the optical filter of the present invention. 図1Fは、本発明の光学フィルタのさらに別の一例を示す断面図である。FIG. 1F is a cross-sectional view showing still another example of the optical filter of the present invention. 図2は、本発明の光学フィルタを備えたカメラモジュールの一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a camera module provided with the optical filter of the present invention. 図3は、実施例1に係る光学フィルタの透過率スペクトルである。FIG. 3 is a transmittance spectrum of the optical filter according to the first embodiment. 図4は、実施例4に係る光学フィルタの透過率スペクトルである。FIG. 4 is a transmittance spectrum of the optical filter according to the fourth embodiment. 図5は、実施例13に係る光学フィルタの透過率スペクトルである。FIG. 5 is a transmittance spectrum of the optical filter according to Example 13. 図6は、実施例14に係る光学フィルタの透過率スペクトルである。FIG. 6 is a transmittance spectrum of the optical filter according to Example 14. 図7は、実施例15に係る光学フィルタの透過率スペクトルである。FIG. 7 is a transmittance spectrum of the optical filter according to Example 15. 図8は、比較例1に係る光学フィルタの透過率スペクトルである。FIG. 8 is a transmittance spectrum of the optical filter according to Comparative Example 1.
 以下、本発明の実施形態について図面を参照しながら説明する。なお、以下の説明は、本発明の一例に関するものであり、本発明はこれらによって限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description relates to an example of the present invention, and the present invention is not limited to these.
 特許文献1に記載の通り、ホスホン酸と銅イオンとによって形成されたUV‐IR吸収剤を含むUV‐IR吸収層を備えた光学フィルタは、透過率に関し所望の特性を有しうる。一方、本発明者らは、ホスホン酸と銅イオンとによって形成されたUV‐IR吸収剤を含むUV‐IR吸収層を備えた光学フィルタが必ずしも望ましいヘイズを有するとは限らないことを新たに見出した。ヘイズは、全光線透過率に対する拡散透過率の百分率に相当し、例えば、日本工業規格(JIS) K 7136:2000において、試験片を通過する透過光のうち、前方散乱によって、入射光から0.044rad(2.5°)以上それた透過光の百分率と定められている。本明細書において、ヘイズの定義はJIS K 7136:2000に従い、ヘイズは、JIS K 7136:2000に準拠して測定される。 As described in Patent Document 1, an optical filter including a UV-IR absorption layer containing a UV-IR absorber formed of phosphonic acid and copper ions may have desired characteristics with respect to transmittance. On the other hand, the present inventors newly found that an optical filter having a UV-IR absorption layer containing a UV-IR absorber formed by phosphonic acid and copper ions does not necessarily have a desirable haze. It was. The haze corresponds to a percentage of the diffuse transmittance with respect to the total light transmittance. For example, in the Japanese Industrial Standard (JIS) K 7136: 2000, the haze is 0. It is defined as the percentage of transmitted light deviating by 044 rad (2.5 °) or more. In this specification, the definition of haze is in accordance with JIS K7136: 2000, and haze is measured in accordance with JIS K7136: 2000.
 光学フィルタが透過率の点で望ましい特性を有するものの高いヘイズを有する場合、その光学フィルタを撮像装置の固体撮像素子の前面に配置すると、撮像装置によって得られる画像の画質が低下する可能性がある。例えば、色むら、滲み、フレアの発生、及び明度の低下等の問題が画像に生じる可能性がある。そこで、本発明者らは、ホスホン酸と銅イオンとによって形成されたUV‐IR吸収剤を含むUV‐IR吸収層を備えた光学フィルタにおいて、ヘイズを低く保つ技術について日夜検討を重ねた。その結果、本発明者らは、光学フィルタを作製するための組成物における、ホスホン酸と銅イオンとによって形成されたUV‐IR吸収剤の分散状態が光学フィルタのヘイズに影響を及ぼす可能性があることを新たに見出した。光学フィルタにおいて所望の透過率を実現する観点からホスホン酸と銅イオンとによって形成されたUV‐IR吸収剤の分散状態が適切であっても、この分散状態が低いヘイズを実現するために有利とは限らないことが新たに見出された。さらにこの新たに見出された知見に基づき、スルホン酸と銅イオンとによって形成されたUV‐IR吸収剤の分散状態が光学フィルタのヘイズに影響を及ぼす可能性があることも新たに見出された。そこで、本発明者らは、多大な試行錯誤を繰り返して、低いヘイズを有する光学フィルタを遂に案出した。 If the optical filter has desirable characteristics in terms of transmittance but has high haze, disposing the optical filter in front of the solid-state image sensor of the imaging device may reduce the image quality of the image obtained by the imaging device. . For example, problems such as uneven color, blurring, flare, and lightness may occur in an image. Therefore, the present inventors have studied day and night on a technique for keeping the haze low in an optical filter including a UV-IR absorption layer containing a UV-IR absorber formed of phosphonic acid and copper ions. As a result, the present inventors have a possibility that the dispersion state of the UV-IR absorber formed by phosphonic acid and copper ions in the composition for producing an optical filter may affect the haze of the optical filter. I found something new. Even if the dispersion state of the UV-IR absorber formed by phosphonic acid and copper ions is appropriate from the viewpoint of realizing a desired transmittance in the optical filter, this dispersion state is advantageous for realizing a low haze. It was newly discovered that there is no limit. Furthermore, based on this newly discovered knowledge, it was newly discovered that the dispersion state of the UV-IR absorber formed by sulfonic acid and copper ions may affect the haze of the optical filter. It was. Therefore, the present inventors have devised an optical filter having a low haze by repeating a great deal of trial and error.
 図1Aに示す通り、光学フィルタ1aは、UV‐IR吸収層10を備えている。UV‐IR吸収層10は、ホスホン酸及びスルホン酸の少なくとも一つの酸と銅イオンとによって形成された紫外線及び赤外線を吸収可能なUV‐IR吸収剤を含んでいる。光学フィルタ1aは、5%以下のヘイズを有する。このため、光学フィルタ1aが組み込まれた撮像装置によって高画質の画像を得ることができる。 As shown in FIG. 1A, the optical filter 1 a includes a UV-IR absorption layer 10. The UV-IR absorption layer 10 includes a UV-IR absorber capable of absorbing ultraviolet rays and infrared rays formed by at least one acid of phosphonic acid and sulfonic acid and copper ions. The optical filter 1a has a haze of 5% or less. For this reason, a high-quality image can be obtained by an imaging device incorporating the optical filter 1a.
 光学フィルタ1aは、望ましくは、4%以下のヘイズを有する。これにより、光学フィルタ1aが組み込まれた撮像装置によって、より確実に高画質の画像を得ることができる。光学フィルタ1aは、望ましくは、1%以下のヘイズを有する。これにより、光学フィルタ1aが組み込まれた撮像装置によって、より高画質な画像を得ることができる。 The optical filter 1a desirably has a haze of 4% or less. Thereby, a high-quality image can be obtained more reliably by the imaging device in which the optical filter 1a is incorporated. The optical filter 1a desirably has a haze of 1% or less. Thereby, a higher quality image can be obtained by the imaging device in which the optical filter 1a is incorporated.
 光学フィルタ1aは、望ましくは、0°の入射角度で波長300nm~1200nmの光を入射させたときに、下記(i)~(iv)の光学性能を発揮する。光学フィルタ1aが5%以下のヘイズとともに、下記の光学性能を発揮することにより、光学フィルタ1aが組み込まれた撮像装置において高画質の画像を得ることができる。
(i)波長450nm~600nmにおいて78%以上の平均透過率
(ii)波長300nm~350nmにおいて1%以下の分光透過率
(iii)波長600nm~750nmにおいて波長の増加に伴い減少する分光透過率及び波長610nm~680nmの範囲内に存在する第一IRカットオフ波長
(iv)波長350nm~450nmにおいて波長の増加に伴い増加する分光透過率及び波長380nm~430nmの範囲内に存在する第一UVカットオフ波長
The optical filter 1a desirably exhibits the following optical performances (i) to (iv) when light having a wavelength of 300 nm to 1200 nm is incident at an incident angle of 0 °. When the optical filter 1a exhibits the following optical performance together with a haze of 5% or less, a high-quality image can be obtained in an imaging device incorporating the optical filter 1a.
(I) Average transmittance of 78% or more at wavelengths of 450 nm to 600 nm (ii) Spectral transmittance of 1% or less at wavelengths of 300 nm to 350 nm (iii) Spectral transmittance and wavelength that decrease with increasing wavelength at wavelengths of 600 nm to 750 nm First IR cutoff wavelength (iv) existing in the range of 610 nm to 680 nm (iv) Spectral transmittance increasing with increasing wavelength at a wavelength of 350 nm to 450 nm, and first UV cutoff wavelength existing in the range of 380 nm to 430 nm
 本明細書において、「分光透過率」とは、特定の波長の入射光が試料等の物体に入射するときの透過率であり、「平均透過率」とは、所定の波長範囲内の分光透過率の平均値であり、また、本明細書において、「透過率スペクトル」とは所定の波長範囲内の各波長における分光透過率を波長の順に並べたものである。 In this specification, “spectral transmittance” is transmittance when incident light of a specific wavelength is incident on an object such as a sample, and “average transmittance” is spectral transmittance within a predetermined wavelength range. Further, in this specification, the “transmittance spectrum” is obtained by arranging spectral transmittances at respective wavelengths within a predetermined wavelength range in order of wavelength.
 本明細書において、「IRカットオフ波長」とは、光学フィルタに波長300nm~1200nmの光を、所定の入射角度で入射させたときに、600nm以上の波長範囲において50%の分光透過率を示す波長を意味する。「第一IRカットオフ波長」は、0°の入射角度で光学フィルタに光を入射させたときのIRカットオフ波長である。また、「UVカットオフ波長」とは、光学フィルタに波長300nm~1200nmの光を、所定の入射角度で入射させたときに、450nm以下の波長範囲において、50%の分光透過率を示す波長を意味する。「第一UVカットオフ波長」は、0°の入射角度で光学フィルタに光を入射させたときのUVカットオフ波長である。 In this specification, “IR cutoff wavelength” indicates a spectral transmittance of 50% in a wavelength range of 600 nm or more when light having a wavelength of 300 nm to 1200 nm is incident on an optical filter at a predetermined incident angle. It means wavelength. The “first IR cutoff wavelength” is an IR cutoff wavelength when light is incident on the optical filter at an incident angle of 0 °. The “UV cut-off wavelength” is a wavelength showing a spectral transmittance of 50% in a wavelength range of 450 nm or less when light having a wavelength of 300 nm to 1200 nm is incident on the optical filter at a predetermined incident angle. means. The “first UV cutoff wavelength” is a UV cutoff wavelength when light is incident on the optical filter at an incident angle of 0 °.
 光学フィルタ1aが上記の(i)~(iv)の光学性能を発揮することにより、光学フィルタ1aにおいて波長450nm~600nmの光の透過量が多く、かつ、波長300nm~400nm及び波長650nm以上の光を効果的にカットできる。このため、光学フィルタ1aの透過率スペクトルは、人間の視感度に適合している。しかも、光学フィルタ1aは、UV‐IR吸収層10以外の層を備えていなくても、上記の(i)~(iv)の光学性能を発揮でき、さらに、5%以下のヘイズを実現できる。 Since the optical filter 1a exhibits the optical performances (i) to (iv) described above, the optical filter 1a has a large amount of transmitted light having a wavelength of 450 nm to 600 nm, and light having a wavelength of 300 nm to 400 nm and a wavelength of 650 nm or more. Can be cut effectively. For this reason, the transmittance spectrum of the optical filter 1a is suitable for human visibility. Moreover, even if the optical filter 1a is not provided with a layer other than the UV-IR absorption layer 10, the optical performances (i) to (iv) described above can be exhibited, and a haze of 5% or less can be realized.
 上記(i)に関し、光学フィルタ1aは、波長450nm~600nmにおいて、望ましくは80%以上の平均透過率を有し、より望ましくは82%以上の平均透過率を有する。 Regarding (i) above, the optical filter 1a preferably has an average transmittance of 80% or more, more preferably 82% or more, at a wavelength of 450 nm to 600 nm.
 上記(ii)に関し、光学フィルタ1aは、望ましくは、波長300nm~350nmにおいて0.5%以下の分光透過率を有する。これにより、光学フィルタ1aは、紫外線領域の光をより効果的にカットできる。 Regarding (ii) above, the optical filter 1a desirably has a spectral transmittance of 0.5% or less at a wavelength of 300 nm to 350 nm. Thereby, the optical filter 1a can cut light in the ultraviolet region more effectively.
 上記(iii)に関し、第一IRカットオフ波長(50%の分光透過率を示す波長)は、望ましくは、波長610nm~660nmの範囲内に存在し、より望ましくは、波長610nm~650nmの範囲内に存在する。これにより、光学フィルタ1aの透過率スペクトルが人間の視感度により適合する。 Regarding the above (iii), the first IR cutoff wavelength (wavelength exhibiting a spectral transmittance of 50%) is preferably present in the wavelength range of 610 nm to 660 nm, and more preferably in the wavelength range of 610 nm to 650 nm. Exists. Thereby, the transmittance spectrum of the optical filter 1a is more suitable for human visibility.
 上記(iv)に関し、第一UVカットオフ波長(50%の分光透過率を示す波長)は、望ましくは、波長390nm~430nmの範囲内に存在し、より望ましくは、波長400nm~425nmの範囲内に存在する。これにより、光学フィルタ1aの透過率スペクトルが人間の視感度により適合する。 Regarding the above (iv), the first UV cutoff wavelength (wavelength exhibiting a spectral transmittance of 50%) is preferably present in the wavelength range of 390 nm to 430 nm, and more preferably in the wavelength range of 400 nm to 425 nm. Exists. Thereby, the transmittance spectrum of the optical filter 1a is more suitable for human visibility.
 光学フィルタ1aは、望ましくは、0°の入射角度で波長300nm~1200nmの光を入射させたときに、下記(v)の光学性能を発揮する。これにより、光学フィルタ1aが、近赤外線域の光を効果的にカットできる。
(v)波長750nm~1080nmにおいて5%以下の分光透過率
The optical filter 1a desirably exhibits the following optical performance (v) when light having a wavelength of 300 nm to 1200 nm is incident at an incident angle of 0 °. Thereby, the optical filter 1a can cut the light of a near infrared region effectively.
(V) Spectral transmittance of 5% or less at wavelengths of 750 nm to 1080 nm
 光学フィルタ1aは、望ましくは、0°の入射角度で波長300nm~1200nmの光を入射させたときに、下記(vi)の光学性能を発揮する。これにより、比較的長い波長(波長1000~1100nm)を有する赤外線をカットできる。従来、この波長の光をカットするためには誘電体多層膜からなる光反射膜が用いられることが多い。しかし、光学フィルタ1aによれば、このような誘電体多層膜を用いなくともこの波長の光を効果的にカットできる。誘電体多層膜からなる光反射膜が必要であったとしても、光反射膜に要求される反射性能のレベルを低くできるので、光反射膜における誘電体の積層数を低減でき、光反射膜の形成に要するコストを低減できる。
(vi)波長1000~1100nmにおいて10%以下の分光透過率
The optical filter 1a desirably exhibits the following optical performance (vi) when light having a wavelength of 300 nm to 1200 nm is incident at an incident angle of 0 °. Thereby, infrared rays having a relatively long wavelength (wavelength 1000 to 1100 nm) can be cut. Conventionally, in order to cut light of this wavelength, a light reflecting film made of a dielectric multilayer film is often used. However, according to the optical filter 1a, light having this wavelength can be effectively cut without using such a dielectric multilayer film. Even if a light reflecting film composed of a dielectric multilayer film is required, the level of reflection performance required for the light reflecting film can be lowered, so the number of dielectric layers in the light reflecting film can be reduced, and the light reflecting film The cost required for formation can be reduced.
(Vi) Spectral transmittance of 10% or less at a wavelength of 1000 to 1100 nm
 光学フィルタ1aは、望ましくは、0°の入射角度で波長300nm~1200nmの光を入射させたときに、下記(vii)の光学性能を発揮する。この場合、波長1100~1200nmの赤外線をカットできる。これにより、誘電体多層膜を用いなくとも又は誘電体多層膜における誘電体の積層数が少なくても、光学フィルタ1aがこの波長の光を効果的にカットできる。
(vii)波長1100~1200nmにおいて15%以下の分光透過率
The optical filter 1a desirably exhibits the following optical performance (vii) when light having a wavelength of 300 nm to 1200 nm is incident at an incident angle of 0 °. In this case, infrared rays having a wavelength of 1100 to 1200 nm can be cut. As a result, the optical filter 1a can effectively cut light of this wavelength without using a dielectric multilayer film or even when the number of dielectric layers in the dielectric multilayer film is small.
(Vii) Spectral transmittance of 15% or less at a wavelength of 1100 to 1200 nm
 UV‐IR吸収層10においてUV‐IR吸収剤を形成するホスホン酸は、例えば、アリール基を有する第一ホスホン酸を含む。これにより、光学フィルタ1aが上記の(i)~(iv)の光学特性を発揮しやすい。 The phosphonic acid that forms the UV-IR absorber in the UV-IR absorption layer 10 includes, for example, a first phosphonic acid having an aryl group. As a result, the optical filter 1a easily exhibits the optical characteristics (i) to (iv).
 第一ホスホン酸が有するアリール基は、例えば、フェニル基、ベンジル基、トルイル基、ニトロフェニル基、ヒドロキシフェニル基、フェニル基における少なくとも1つの水素原子がハロゲン原子に置換されているハロゲン化フェニル基、又はベンジル基における少なくとも1つの水素原子がハロゲン原子に置換されているハロゲン化ベンジル基である。望ましくは、第一ホスホン酸は、その一部において、ハロゲン化フェニル基を有する。この場合、より確実に、光学フィルタ1aが上記(i)~(iv)の光学性能を発揮しやすい。 The aryl group of the first phosphonic acid is, for example, a phenyl group, a benzyl group, a toluyl group, a nitrophenyl group, a hydroxyphenyl group, a halogenated phenyl group in which at least one hydrogen atom in the phenyl group is substituted with a halogen atom, Alternatively, it is a halogenated benzyl group in which at least one hydrogen atom in the benzyl group is substituted with a halogen atom. Desirably, the first phosphonic acid has, in part, a halogenated phenyl group. In this case, the optical filter 1a can more reliably exhibit the optical performances (i) to (iv).
 UV‐IR吸収層10においてUV‐IR吸収剤を形成するホスホン酸は、望ましくは、アルキル基を有する第二ホスホン酸をさらに含む。第二ホスホン酸において、アルキル基はリン原子に結合している。第二ホスホン酸のアルキル基は、芳香族アルキル基であってもよい。例えば、フェニルメチル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、フェニルヘプチル基、及びフェニルヘキシル基を例示できる。芳香族アルキル基は、ハロゲン化芳香族アルキル基であってもよい。ハロゲン化芳香族アルキル基は、例えば、フェニル基における少なくとも1つの水素原子がハロゲン原子に置換されているハロゲン化フェニルアルキル基である。 The phosphonic acid that forms the UV-IR absorber in the UV-IR absorption layer 10 desirably further includes a second phosphonic acid having an alkyl group. In the second phosphonic acid, the alkyl group is bonded to the phosphorus atom. The alkyl group of the second phosphonic acid may be an aromatic alkyl group. For example, a phenylmethyl group, a phenylethyl group, a phenylpropyl group, a phenylbutyl group, a phenylheptyl group, and a phenylhexyl group can be exemplified. The aromatic alkyl group may be a halogenated aromatic alkyl group. The halogenated aromatic alkyl group is, for example, a halogenated phenylalkyl group in which at least one hydrogen atom in the phenyl group is substituted with a halogen atom.
 第二ホスホン酸が有するアルキル基は、例えば、6個以下の炭素原子を有するアルキル基である。このアルキル基は、直鎖及び分岐鎖のいずれを有していてもよい。また、上記の通り、第二ホスホン酸が有するアルキル基は、芳香族置換基又はハロゲン化芳香族置換基を有していてもよい。 The alkyl group possessed by the second phosphonic acid is, for example, an alkyl group having 6 or less carbon atoms. This alkyl group may have either a straight chain or a branched chain. As described above, the alkyl group of the second phosphonic acid may have an aromatic substituent or a halogenated aromatic substituent.
 UV‐IR吸収層10においてUV‐IR吸収剤を形成するスルホン酸は、例えば、アリール基を有する第一スルホン酸を含む。これにより、光学フィルタ1aが上記の(i)~(iv)の光学特性を発揮しやすい。第一スルホン酸のアリール基は、例えば、フェニル基、ベンジル基、トルイル基、ニトロフェニル基、ヒドロキシフェニル基、フェニル基における少なくとも1つの水素原子がハロゲン原子に置換されているハロゲン化フェニル基である。又はベンジル基における少なくとも1つの水素原子がハロゲン原子に置換されているハロゲン化ベンジル基である。第一スルホン酸は、ベンゼンスルホン酸、p-トルエンスルホン酸、4-ブロモベンゼンスルホン酸、4-メチルベンジルスルホン酸、又は4-ブロモベンジルスルホン酸でありうる。 The sulfonic acid that forms the UV-IR absorber in the UV-IR absorption layer 10 includes, for example, a first sulfonic acid having an aryl group. As a result, the optical filter 1a easily exhibits the optical characteristics (i) to (iv). The aryl group of the first sulfonic acid is, for example, a phenyl group, a benzyl group, a toluyl group, a nitrophenyl group, a hydroxyphenyl group, or a halogenated phenyl group in which at least one hydrogen atom in the phenyl group is substituted with a halogen atom. . Alternatively, it is a halogenated benzyl group in which at least one hydrogen atom in the benzyl group is substituted with a halogen atom. The primary sulfonic acid can be benzenesulfonic acid, p-toluenesulfonic acid, 4-bromobenzenesulfonic acid, 4-methylbenzylsulfonic acid, or 4-bromobenzylsulfonic acid.
 UV‐IR吸収層10においてUV‐IR吸収剤を形成するスルホン酸は、望ましくは、アルキル基を有する第二スルホン酸をさらに含む。第二スルホン酸は、例えば、メチル基、エチル基、プロピル基、ブチル基、ヘプチル基、又はヘキシル基を有するスルホン酸である。第二スルホン酸のアルキル基は、芳香族置換基を有していてもよい。 The sulfonic acid that forms the UV-IR absorber in the UV-IR absorption layer 10 desirably further includes a second sulfonic acid having an alkyl group. The second sulfonic acid is, for example, a sulfonic acid having a methyl group, an ethyl group, a propyl group, a butyl group, a heptyl group, or a hexyl group. The alkyl group of the second sulfonic acid may have an aromatic substituent.
 UV‐IR吸収層10は、望ましくは、UV‐IR吸収剤を分散させるリン酸エステルと、マトリクス樹脂とをさらに含む。 The UV-IR absorption layer 10 preferably further includes a phosphate ester in which the UV-IR absorber is dispersed and a matrix resin.
 UV‐IR吸収層10に含有されているリン酸エステルは、UV‐IR吸収剤を適切に分散できる限り特に制限されないが、例えば、下記式(c1)で表されるリン酸ジエステル及び下記式(c2)で表されるリン酸モノエステルの少なくとも一方を含む。下記式(c1)及び下記式(c2)において、R21、R22、及びR3は、それぞれ、-(CH2CH2O)n4で表される1価の官能基であり、nは、1~25の整数であり、R4は、炭素数6~25のアルキル基を示す。R21、R22、及びR3は、互いに同一又は異なる種類の官能基である。 The phosphate ester contained in the UV-IR absorption layer 10 is not particularly limited as long as the UV-IR absorber can be appropriately dispersed. For example, the phosphate diester represented by the following formula (c1) and the following formula ( at least one of phosphoric acid monoesters represented by c2). In the following formula (c1) and the following formula (c2), R 21 , R 22 , and R 3 are each a monovalent functional group represented by — (CH 2 CH 2 O) n R 4 , n Is an integer of 1 to 25, and R 4 represents an alkyl group having 6 to 25 carbon atoms. R 21 , R 22 , and R 3 are the same or different types of functional groups.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 リン酸エステルは、特に制限されないが、例えば、プライサーフA208N:ポリオキシエチレンアルキル(C12、C13)エーテルリン酸エステル、プライサーフA208F:ポリオキシエチレンアルキル(C8)エーテルリン酸エステル、プライサーフA208B:ポリオキシエチレンラウリルエーテルリン酸エステル、プライサーフA219B:ポリオキシエチレンラウリルエーテルリン酸エステル、プライサーフAL:ポリオキシエチレンスチレン化フェニルエーテルリン酸エステル、プライサーフA212C:ポリオキシエチレントリデシルエーテルリン酸エステル、又はプライサーフA215C:ポリオキシエチレントリデシルエーテルリン酸エステルであり得る。これらはいずれも第一工業製薬社製の製品である。また、リン酸エステルは、NIKKOL DDP-2:ポリオキシエチレンアルキルエーテルリン酸エステル、NIKKOL DDP-4:ポリオキシエチレンアルキルエーテルリン酸エステル、又はNIKKOL DDP-6:ポリオキシエチレンアルキルエーテルリン酸エステルであり得る。これらは、いずれも日光ケミカルズ社製の製品である。 The phosphate ester is not particularly limited. For example, Plysurf A208N: polyoxyethylene alkyl (C12, C13) ether phosphate ester, Plysurf A208F: polyoxyethylene alkyl (C8) ether phosphate ester, Plysurf A208B: Polyoxyethylene lauryl ether phosphate ester, plysurf A219B: polyoxyethylene lauryl ether phosphate ester, plysurf AL: polyoxyethylene styrenated phenyl ether phosphate ester, plysurf A212C: polyoxyethylene tridecyl ether phosphate ester Or Plysurf A215C: Polyoxyethylene tridecyl ether phosphate. These are all products manufactured by Daiichi Kogyo Seiyaku. Also, the phosphoric acid ester is NIKKOL DDP-2: polyoxyethylene alkyl ether phosphate ester, NIKKOL DDP-4: polyoxyethylene alkyl ether phosphate ester, or NIKKOL DDP-6: polyoxyethylene alkyl ether phosphate ester. possible. These are all products manufactured by Nikko Chemicals.
 UV‐IR吸収層10に含まれるマトリクス樹脂は、例えば、UV‐IR吸収剤を分散させることができ、熱硬化又は紫外線硬化が可能な樹脂である。さらに、マトリクス樹脂として、その樹脂によって0.1mmの樹脂層を形成した場合に、その樹脂層の波長350nm~900nmに対する透過率が例えば70%以上であり、望ましくは75%以上であり、より望ましくは80%以上である樹脂を用いることができる。ホスホン酸及びスルホン酸の少なくとも一つの酸の含有量は、例えば、マトリクス樹脂100質量部に対して5~400質量部である。 The matrix resin included in the UV-IR absorption layer 10 is, for example, a resin that can disperse a UV-IR absorber and can be cured by heat or ultraviolet light. Furthermore, when a resin layer having a thickness of 0.1 mm is formed from the resin as the matrix resin, the transmittance of the resin layer with respect to a wavelength of 350 nm to 900 nm is, for example, 70% or more, desirably 75% or more, and more desirably. May be a resin that is 80% or more. The content of at least one of phosphonic acid and sulfonic acid is, for example, 5 to 400 parts by mass with respect to 100 parts by mass of the matrix resin.
 UV‐IR吸収層10に含まれるマトリクス樹脂は、上記の特性を満足する限り特に限定されないが、例えば(ポリ)オレフィン樹脂、ポリイミド樹脂、ポリビニルブチラール樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリアミドイミド樹脂、(変性)アクリル樹脂、エポキシ樹脂、又はシリコーン樹脂である。マトリクス樹脂は、フェニル基等のアリール基を含んでいてもよく、望ましくはフェニル基等のアリール基を含んでいるシリコーン樹脂である。UV‐IR吸収層10が硬い(リジッドである)と、そのUV‐IR吸収層10の厚みが増すにつれて、光学フィルタ1aの製造工程中に硬化収縮によりクラックが生じやすい。マトリクス樹脂がアリール基を含むシリコーン樹脂であるとUV‐IR吸収層10が良好な耐クラック性を有しやすい。また、アリール基を含むシリコーン樹脂を用いると、上記のホスホン酸及びスルホン酸の少なくとも一つの酸と銅イオンとによって形成されたUV‐IR吸収剤が凝集しにくい。さらに、UV‐IR吸収層10のマトリクス樹脂がアリール基を含むシリコーン樹脂である場合に、UV‐IR吸収層10に含まれるリン酸エステルが式(c1)又は式(c2)で表されるリン酸エステルのようにオキシアルキル基等の柔軟性を有する直鎖有機官能基を有することが望ましい。なぜなら、上記のホスホン酸及びスルホン酸の少なくとも一つの酸と、アリール基を含むシリコーン樹脂と、オキシアルキル基等の直鎖有機官能基を有するリン酸エステルとの組合せに基づく相互作用により、UV‐IR吸収剤が凝集しにくく、かつ、UV‐IR吸収層10に良好な剛性及び良好な柔軟性をもたらすことができるからである。マトリクス樹脂として使用されるシリコーン樹脂の具体例としては、KR-255、KR-300、KR-2621-1、KR-211、KR-311、KR-216、KR-212、及びKR-251を挙げることができる。これらはいずれも信越化学工業社製のシリコーン樹脂である。 The matrix resin contained in the UV-IR absorption layer 10 is not particularly limited as long as the above properties are satisfied. For example, (poly) olefin resin, polyimide resin, polyvinyl butyral resin, polycarbonate resin, polyamide resin, polysulfone resin, polyether Sulphone resin, polyamideimide resin, (modified) acrylic resin, epoxy resin, or silicone resin. The matrix resin may contain an aryl group such as a phenyl group, and is preferably a silicone resin containing an aryl group such as a phenyl group. If the UV-IR absorption layer 10 is hard (rigid), as the thickness of the UV-IR absorption layer 10 increases, cracks tend to occur due to curing shrinkage during the manufacturing process of the optical filter 1a. When the matrix resin is a silicone resin containing an aryl group, the UV-IR absorption layer 10 tends to have good crack resistance. In addition, when a silicone resin containing an aryl group is used, the UV-IR absorber formed by at least one acid of phosphonic acid and sulfonic acid and a copper ion hardly aggregates. Further, when the matrix resin of the UV-IR absorption layer 10 is a silicone resin containing an aryl group, the phosphoric acid ester contained in the UV-IR absorption layer 10 is a phosphorus represented by the formula (c1) or the formula (c2). It is desirable to have a linear organic functional group having flexibility such as an oxyalkyl group such as an acid ester. Because of the interaction based on the combination of at least one of the above-mentioned phosphonic acid and sulfonic acid, a silicone resin containing an aryl group, and a phosphate ester having a linear organic functional group such as an oxyalkyl group, UV- This is because the IR absorber hardly aggregates and can provide the UV-IR absorption layer 10 with good rigidity and good flexibility. Specific examples of the silicone resin used as the matrix resin include KR-255, KR-300, KR-2621-1, KR-211, KR-311, KR-216, KR-212, and KR-251. be able to. These are all silicone resins manufactured by Shin-Etsu Chemical Co., Ltd.
 光学フィルタ1aは、必要に応じて、アルコキシシランモノマーの加水分解縮重合物をさらに含む。光学フィルタ1aがアルコキシシランモノマーの加水分解縮重合物を含むと、アルコキシシランモノマーの加水分解縮重合物のシロキサン結合(-Si-O-Si-)により、光学フィルタ1aが良好な耐湿性を有する。加えて、光学フィルタ1aが良好な耐熱性を有する。なぜなら、シロキサン結合は、-C-C-結合及び-C-O-結合等の結合よりも結合エネルギーが高く化学的に安定しており、耐熱性及び耐湿性に優れているからである。 The optical filter 1a further includes a hydrolysis-condensation product of an alkoxysilane monomer as necessary. When the optical filter 1a contains a hydrolysis-condensation product of an alkoxysilane monomer, the optical filter 1a has good moisture resistance due to the siloxane bond (—Si—O—Si—) of the hydrolysis-condensation product of the alkoxysilane monomer. . In addition, the optical filter 1a has good heat resistance. This is because a siloxane bond has a higher bond energy and is chemically stable than bonds such as a —C—C— bond and a —C—O— bond, and is excellent in heat resistance and moisture resistance.
 光学フィルタ1aにおけるUV‐IR吸収層10は、所定の光学フィルタ用組成物の塗膜を硬化させることによって形成できる。 The UV-IR absorption layer 10 in the optical filter 1a can be formed by curing a coating film of a predetermined optical filter composition.
 光学フィルタ用組成物は、ホスホン酸及びスルホン酸の少なくとも一つの酸と、銅イオンとを含む。加えて、光学フィルタ用組成物は、この組成物の塗膜を硬化させて100~300μmの厚みを有する層を形成したときに、この層が紫外線及び赤外線を吸収可能であり、かつ、この層のヘイズが5%以下(望ましくは4%以下)であるように調製されている。なお、光学フィルタ用組成物の硬化物の層が100~300μmの範囲に含まれる特定の厚みであるときにこのような特性が現れればよい。すなわち、光学フィルタ用組成物の硬化物の層は、100~300μmの範囲のすべてにおいてこのような特性を満たす必要があるわけではない。 The composition for an optical filter contains at least one acid of phosphonic acid and sulfonic acid and copper ions. In addition, the optical filter composition can absorb ultraviolet rays and infrared rays when the coating film of the composition is cured to form a layer having a thickness of 100 to 300 μm. The haze is 5% or less (preferably 4% or less). It should be noted that such a characteristic should appear when the cured layer of the optical filter composition has a specific thickness within the range of 100 to 300 μm. That is, the cured product layer of the optical filter composition need not satisfy such characteristics in the entire range of 100 to 300 μm.
 光学フィルタ用組成物は、望ましくは、この組成物の塗膜を硬化させて100~300μmの厚みを有する層を形成し、0°の入射角度で波長300nm~1200nmの光をこの層に入射させたときに、下記の(I)~(IV)の条件を満たすように調製されている。
 (I)波長450nm~600nmにおいて78%以上の平均透過率を有する。
 (II)波長300nm~350nmにおいて1%以下の分光透過率を有する。
 (III)波長600nm~750nmにおいて波長の増加に伴い減少する分光透過率を有するとともに、波長600nm~750nmにおいて分光透過率が50%を示す第一IRカットオフ波長が波長610nm~680nmの範囲内に存在する。
 (IV)波長350nm~450nmにおいて波長の増加に伴い増加する分光透過率を有するとともに、波長350nm~450nmにおいて分光透過率が50%を示す第一UVカットオフ波長が波長380nm~430nmの範囲内に存在する。
In the optical filter composition, desirably, the coating film of the composition is cured to form a layer having a thickness of 100 to 300 μm, and light having a wavelength of 300 nm to 1200 nm is incident on this layer at an incident angle of 0 °. When prepared, the following conditions (I) to (IV) are satisfied.
(I) It has an average transmittance of 78% or more at a wavelength of 450 nm to 600 nm.
(II) It has a spectral transmittance of 1% or less at a wavelength of 300 nm to 350 nm.
(III) The first IR cutoff wavelength having a spectral transmittance that decreases with an increase in wavelength at a wavelength of 600 nm to 750 nm and a spectral transmittance of 50% at a wavelength of 600 nm to 750 nm is within the wavelength range of 610 nm to 680 nm. Exists.
(IV) The first UV cut-off wavelength having a spectral transmittance that increases with an increase in wavelength at a wavelength of 350 nm to 450 nm and a spectral transmittance of 50% at a wavelength of 350 nm to 450 nm is in the range of a wavelength of 380 nm to 430 nm. Exists.
 光学フィルタ用組成物は、例えば、22~23℃において1~200mPa・sの粘度を有する。この場合、光学フィルタ用組成物が流動しやすく、光学フィルタ用組成物によって塗膜を形成するには不利であるように思われる。加えて、光学フィルタ用組成物の粘度をこのような範囲に調整するには比較的多くの溶媒(分散媒)を加える必要があり、光学フィルタ用組成物の塗膜を硬化させるための処理が長くなる可能性がある。このため、これまでは、本発明者らは、光学フィルタ用組成物の22~23℃における粘度が200mPa・sの粘度を超えるように(例えば、300mPa・s以上に)調製することが望ましいと考えていた。一方、本発明者らは、光学フィルタ用組成物の塗膜を硬化させて得られたUV‐IR吸収層のヘイズを低減する観点から光学フィルタ用組成物の粘度を抜本的に見直した。その結果、光学フィルタ用組成物の22~23℃における粘度を1~200mPa・sに調製することがUV‐IR吸収層のヘイズを低減する観点から望ましいことを新たに見出した。光学フィルタ用組成物において上記のUV‐IR吸収剤がUV‐IR吸収層の透過率特性に影響を与えない程度に凝集している場合でも、光学フィルタ用組成物の塗膜においてその凝集状態が適切に解消されなければ、UV‐IR吸収層のヘイズが高くなりやすいと考えられる。一方、光学フィルタ用組成物が、22~23℃において1~200mPa・sの粘度を有すると、光学フィルタ用組成物の塗膜において光学フィルタ用組成物が適度に流動し、UV‐IR吸収剤の凝集状態が解消されやすいと考えられる。その結果、UV‐IR吸収層のヘイズを低減できると考えられる。なお、光学フィルタ用組成物の22~23℃における粘度が1mPa・sを下回ると、光学フィルタ用組成物における溶媒の量が多すぎて、UV‐IR吸収層をなす成分の物理的な距離が大きくなる。このため、UV‐IR吸収層を適切に形成できない可能性がある。 The optical filter composition has a viscosity of 1 to 200 mPa · s at 22 to 23 ° C., for example. In this case, the composition for optical filters tends to flow, and seems to be disadvantageous for forming a coating film with the composition for optical filters. In addition, in order to adjust the viscosity of the optical filter composition to such a range, it is necessary to add a relatively large amount of solvent (dispersion medium), and a process for curing the coating film of the optical filter composition is required. May be longer. Therefore, until now, it is desirable for the present inventors to prepare the optical filter composition so that the viscosity at 22 to 23 ° C. exceeds the viscosity of 200 mPa · s (for example, 300 mPa · s or more). I was thinking. On the other hand, the present inventors drastically reviewed the viscosity of the optical filter composition from the viewpoint of reducing the haze of the UV-IR absorption layer obtained by curing the coating film of the optical filter composition. As a result, it was newly found out that it is desirable to adjust the viscosity at 22 to 23 ° C. of the optical filter composition to 1 to 200 mPa · s from the viewpoint of reducing the haze of the UV-IR absorption layer. Even when the above-mentioned UV-IR absorber is aggregated to such an extent that it does not affect the transmittance characteristics of the UV-IR absorption layer in the optical filter composition, the state of aggregation in the coating film of the optical filter composition is It is considered that the haze of the UV-IR absorption layer tends to be high unless properly eliminated. On the other hand, when the optical filter composition has a viscosity of 1 to 200 mPa · s at 22 to 23 ° C., the optical filter composition flows appropriately in the coating film of the optical filter composition, and the UV-IR absorber It is thought that the aggregated state of is easy to be eliminated. As a result, it is considered that the haze of the UV-IR absorption layer can be reduced. When the viscosity at 22 to 23 ° C. of the optical filter composition is less than 1 mPa · s, the amount of the solvent in the optical filter composition is too large, and the physical distance of the components forming the UV-IR absorption layer is small. growing. For this reason, a UV-IR absorption layer may not be formed appropriately.
 22~23℃における光学フィルタ用組成物の粘度は、例えば、セコニック社製の振動式粘度計(プローブ:PR-10 L、コントローラ:VM-10A)を用いて測定できる。 The viscosity of the optical filter composition at 22 to 23 ° C. can be measured using, for example, a vibration viscometer (probe: PR-10 L, controller: VM-10A) manufactured by Seconic.
 光学フィルタ用組成物は、望ましくは、22~23℃において2~180mPa・sの粘度を有し、より望ましくは、22~23℃において2~160mPa・sの粘度を有する。これにより、この組成物の塗膜を硬化させて得られたUV‐IR吸収層のヘイズをより確実に5%以下に低減できる。 The optical filter composition desirably has a viscosity of 2 to 180 mPa · s at 22 to 23 ° C., and more desirably has a viscosity of 2 to 160 mPa · s at 22 to 23 ° C. Thereby, the haze of the UV-IR absorption layer obtained by curing the coating film of this composition can be more reliably reduced to 5% or less.
 光学フィルタ用組成物において、固形分の含有量は、例えば3~17質量%である。この場合、固形分の含有量が比較的少なく、光学フィルタ用組成物の塗膜において光学フィルタ用組成物が適度に流動しやすく、UV‐IR吸収層のヘイズを低減しやすいと考えられる。 In the optical filter composition, the solid content is, for example, 3 to 17% by mass. In this case, it is considered that the content of solids is relatively small, the optical filter composition easily flows appropriately in the coating film of the optical filter composition, and the haze of the UV-IR absorbing layer is easily reduced.
 光学フィルタ用組成物において、固形分の含有量は、望ましくは、5~17質量%であり、より望ましくは、6~17質量%である。 In the optical filter composition, the solid content is desirably 5 to 17% by mass, and more desirably 6 to 17% by mass.
 光学フィルタ用組成物において、銅イオンの含有量は、例えば0.5~2.2質量%である。この場合、組成物における銅イオンの含有量が比較的少なく、光学フィルタ用組成物の塗膜においてUV‐IR吸収剤の凝集が発生しにくく、UV‐IR吸収層のヘイズを低減しやすいと考えられる。 In the optical filter composition, the copper ion content is, for example, 0.5 to 2.2% by mass. In this case, the content of copper ions in the composition is relatively small, aggregation of the UV-IR absorber is unlikely to occur in the coating film of the optical filter composition, and the haze of the UV-IR absorption layer is likely to be reduced. It is done.
 光学フィルタ用組成物において、銅イオンの含有量は、望ましくは、0.6~2.1質量%である。 In the optical filter composition, the copper ion content is desirably 0.6 to 2.1% by mass.
 光学フィルタ用組成物は、UV‐IR吸収層10に含まれる成分又はその成分の前駆物質を含む。また、光学フィルタ用組成物は、例えば、所定の溶媒(分散媒)をさらに含んでいる。光学フィルタ用組成物は、例えば、アルコキシシランモノマーを含んでいてもよい。光学フィルタ用組成物がアルコキシシランモノマーを含んでいると、光学フィルタ用組成物においてUV‐IR吸収剤の粒子同士が凝集することを抑制でき、リン酸エステルの含有量を低減しても、光学フィルタ用組成物においてUV‐IR吸収剤が良好に分散する。 The composition for an optical filter includes a component contained in the UV-IR absorption layer 10 or a precursor of the component. The optical filter composition further includes, for example, a predetermined solvent (dispersion medium). The composition for optical filters may contain, for example, an alkoxysilane monomer. When the optical filter composition contains an alkoxysilane monomer, it is possible to suppress the aggregation of the UV-IR absorber particles in the optical filter composition, and even if the phosphate ester content is reduced, the optical filter composition The UV-IR absorber is well dispersed in the filter composition.
 光学フィルタ1aの製造方法の一例について説明する。まず、光学フィルタ用組成物の調製方法の一例を説明する。酢酸銅一水和物などの銅塩をテトラヒドロフラン(THF)などの所定の溶媒に添加して撹拌し、銅塩の溶液を得る。次に、この銅塩の溶液に、式(c1)で表されるリン酸ジエステル又は式(c2)で表されるリン酸モノエステルなどのリン酸エステル化合物を加えて撹拌し、A液を調製する。また、第一ホスホン酸又は第一スルホン酸をTHFなどの所定の溶媒に加えて撹拌し、B液を調製する。第一ホスホン酸又は第一スルホン酸として複数種類のホスホン酸又はスルホン酸を用いる場合、第一ホスホン酸又は第一スルホン酸をTHFなどの所定の溶媒に加えたうえで撹拌して、第一ホスホン酸又は第一スルホン酸の種類ごとに調製した複数の予備液を混合してB液を調製してもよい。B液の調製においてアルコキシシランモノマーが加えられてもよい。 An example of a method for manufacturing the optical filter 1a will be described. First, an example of the preparation method of the composition for optical filters is demonstrated. A copper salt such as copper acetate monohydrate is added to a predetermined solvent such as tetrahydrofuran (THF) and stirred to obtain a copper salt solution. Next, a phosphoric acid ester compound such as a phosphoric acid diester represented by the formula (c1) or a phosphoric acid monoester represented by the formula (c2) is added to the solution of the copper salt and stirred to prepare a solution A. To do. Also, the first phosphonic acid or the first sulfonic acid is added to a predetermined solvent such as THF and stirred to prepare the liquid B. When using a plurality of types of phosphonic acid or sulfonic acid as the first phosphonic acid or the first sulfonic acid, the first phosphonic acid or the first sulfonic acid is added to a predetermined solvent such as THF and stirred to obtain the first phosphonic acid. A plurality of preliminary solutions prepared for each type of acid or primary sulfonic acid may be mixed to prepare solution B. An alkoxysilane monomer may be added in the preparation of the liquid B.
 次に、A液を撹拌しながら、A液にB液を加えて所定時間撹拌する。次に、この溶液にトルエンなどの所定の溶媒を加えて撹拌し、C液を得る。次に、C液を加温しながら所定時間脱溶媒処理を行って、D液を得る。これにより、THFなどの溶媒及び酢酸(沸点:約118℃)などの銅塩の解離により発生する成分が除去され、第一ホスホン酸又は第一スルホン酸と銅イオンとによってUV‐IR吸収剤が生成される。C液を加温する温度は、銅塩から解離した除去されるべき成分の沸点に基づいて定められている。なお、脱溶媒処理においては、C液を得るために用いたトルエン(沸点:約110℃)などの溶媒も揮発するが、D液の粘度が所望の範囲になるように溶媒がD液に残留する。D液の粘度が所望の範囲になるように、C液を得るための溶媒の添加量が調整されてもよいし、脱溶媒処理の時間が調整されてもよい。 Next, while stirring the liquid A, the liquid B is added to the liquid A and stirred for a predetermined time. Next, a predetermined solvent such as toluene is added to this solution and stirred to obtain liquid C. Next, desolvation treatment is performed for a predetermined time while heating the C liquid to obtain the D liquid. This removes components generated by dissociation of a solvent such as THF and a copper salt such as acetic acid (boiling point: about 118 ° C.), and the UV-IR absorber is absorbed by the first phosphonic acid or first sulfonic acid and copper ions. Generated. The temperature at which the liquid C is heated is determined based on the boiling point of the component to be removed that has dissociated from the copper salt. In the solvent removal treatment, the solvent such as toluene (boiling point: about 110 ° C.) used to obtain the liquid C also volatilizes, but the solvent remains in the liquid D so that the viscosity of the liquid D is in a desired range. To do. The addition amount of the solvent for obtaining the liquid C may be adjusted so that the viscosity of the liquid D is in a desired range, or the time for the solvent removal treatment may be adjusted.
 光学フィルタ用組成物が第二ホスホン酸又は第二スルホン酸をさらに含んでいる場合、例えば、以下のようにしてH液がさらに調製される。まず、酢酸銅一水和物などの銅塩をテトラヒドロフラン(THF)などの所定の溶媒に添加して撹拌し、銅塩の溶液を得る。次に、この銅塩の溶液に、式(c1)で表されるリン酸ジエステル又は式(c2)で表されるリン酸モノエステルなどのリン酸エステル化合物を加えて撹拌し、E液を調製する。また、第二ホスホン酸又は第二スルホン酸をTHFなどの所定の溶媒に加えて撹拌し、F液を調製する。第二ホスホン酸又は第二スルホン酸として複数種類のホスホン酸又はスルホン酸を用いる場合、第二ホスホン酸又は第二スルホン酸をTHFなどの所定の溶媒に加えたうえで撹拌して第二ホスホン酸又は第二スルホン酸の種類ごとに調製した複数の予備液を混合してF液を調製してもよい。E液を撹拌しながら、E液にF液を加えて所定時間撹拌する。次に、この溶液にトルエンなどの所定の溶媒を加えて撹拌し、G液を得る。次に、G液を加温しながら所定時間脱溶媒処理を行って、H液を得る。これにより、THFなどの溶媒及び酢酸などの銅塩の解離により発生する成分が除去され、第二ホスホン酸又は第二スルホン酸と銅イオンとによって別のUV‐IR吸収剤が生成される。G液を加温する温度はC液と同様に決定され、G液を得るための溶媒もC液と同様に決定される。G液を得るための溶媒の添加量は、特に制限されない。 When the optical filter composition further contains a second phosphonic acid or a second sulfonic acid, for example, a liquid H is further prepared as follows. First, a copper salt such as copper acetate monohydrate is added to a predetermined solvent such as tetrahydrofuran (THF) and stirred to obtain a copper salt solution. Next, a phosphoric acid ester compound such as a phosphoric acid diester represented by the formula (c1) or a phosphoric acid monoester represented by the formula (c2) is added to the solution of the copper salt and stirred to prepare a solution E. To do. Further, the second phosphonic acid or the second sulfonic acid is added to a predetermined solvent such as THF and stirred to prepare a solution F. When a plurality of types of phosphonic acid or sulfonic acid are used as the second phosphonic acid or the second sulfonic acid, the second phosphonic acid or the second sulfonic acid is added to a predetermined solvent such as THF and then stirred to add the second phosphonic acid. Alternatively, the F solution may be prepared by mixing a plurality of preliminary solutions prepared for each type of the second sulfonic acid. While stirring E liquid, F liquid is added to E liquid and stirred for a predetermined time. Next, a predetermined solvent such as toluene is added to this solution and stirred to obtain a solution G. Next, a solvent removal process is performed for a predetermined time while the G solution is heated to obtain the H solution. Thereby, components generated by dissociation of a solvent such as THF and a copper salt such as acetic acid are removed, and another UV-IR absorber is generated by the second phosphonic acid or the second sulfonic acid and the copper ion. The temperature for heating the G liquid is determined in the same manner as in the C liquid, and the solvent for obtaining the G liquid is also determined in the same manner as in the C liquid. The addition amount of the solvent for obtaining the G liquid is not particularly limited.
 D液にシリコーン樹脂等のマトリクス樹脂を加えて撹拌して光学フィルタ用組成物を調製できる。また、光学フィルタ用組成物が第二ホスホン酸又は第二スルホン酸と銅イオンとによって形成されたUV‐IR吸収剤を含有している場合、D液にシリコーン樹脂等のマトリクス樹脂を加えて撹拌して得られたI液に、さらにH液を加えて撹拌することにより、光学フィルタ用組成物を調製できる。 The composition for optical filters can be prepared by adding a matrix resin such as silicone resin to D solution and stirring. In addition, when the optical filter composition contains a UV-IR absorber formed by the second phosphonic acid or second sulfonic acid and copper ions, a matrix resin such as a silicone resin is added to the liquid D and stirred. The composition for optical filters can be prepared by further adding the H liquid to the I liquid obtained in this manner and stirring.
 次に、光学フィルタ用組成物を所定の基板の一方の主面に塗布して塗膜を形成する。基板は、特に制限されないが、ガラス基板、樹脂基板、又は金属基板(スチール基板若しくはステンレス基板)を使用できる。例えば、液状の光学フィルタ用組成物をスピンコーティング、ダイコーティング、又はディスペンサによる塗布により、基板の一方の主面に塗布して塗膜を形成する。次に、この塗膜に対して所定の加熱処理を行って塗膜を硬化させる。例えば、40℃~200℃の温度の環境にこの塗膜を曝す。必要に応じて、光学フィルタ用組成物に含有されているアルコキシシランモノマーを十分に加水分解及び縮重合させるために塗膜に加湿処理を施す。例えば、40℃~100℃の温度及び40%~100%の相対湿度の環境に硬化後の塗膜を曝す。これにより、シロキサン結合のくり返し構造(Si-O)nが形成される。一般的にはモノマーを含むアルコキシシランの加水分解及び縮重合反応においては、アルコキシシランと水とを液状組成物内に併存させてこれらの反応を行わせる場合がある。しかし、光学フィルタを製造するときに予め光学フィルタ用組成物に水を添加しておくと、UV‐IR吸収層の形成の過程でリン酸エステル又はUV‐IR吸収剤が劣化してしまい、UV‐IR吸収性能が低下したり、光学フィルタの耐久性を損ねたりする可能性がある。このため、所定の加熱処理により塗膜を硬化させた後に加湿処理を行うことが望ましい。このようにして、基板上にUV‐IR吸収層10を形成できる。その後、UV‐IR吸収層10を基板から剥離することによって、光学フィルタ1aが得られる。光学フィルタ1aは、簡素な構成であり、薄型化しやすい。このため、光学フィルタ1aは、撮像装置及び光学系の低背位化に貢献できる。 Next, the optical filter composition is applied to one main surface of a predetermined substrate to form a coating film. The substrate is not particularly limited, and a glass substrate, a resin substrate, or a metal substrate (steel substrate or stainless steel substrate) can be used. For example, a liquid optical filter composition is applied to one main surface of the substrate by spin coating, die coating, or application by a dispenser to form a coating film. Next, the coating film is cured by performing a predetermined heat treatment on the coating film. For example, the coating film is exposed to an environment having a temperature of 40 ° C. to 200 ° C. If necessary, the coating film is humidified in order to sufficiently hydrolyze and polycondensate the alkoxysilane monomer contained in the optical filter composition. For example, the cured coating film is exposed to an environment having a temperature of 40 ° C. to 100 ° C. and a relative humidity of 40% to 100%. As a result, a repeating structure of siloxane bonds (Si—O) n is formed. In general, in the hydrolysis and polycondensation reaction of an alkoxysilane containing a monomer, the alkoxysilane and water may coexist in the liquid composition to cause these reactions. However, if water is added to the optical filter composition in advance when manufacturing the optical filter, the phosphate ester or the UV-IR absorber deteriorates in the process of forming the UV-IR absorption layer, and UV -IR absorption performance may be degraded, and the durability of the optical filter may be impaired. For this reason, it is desirable to perform a humidification process after hardening a coating film by predetermined | prescribed heat processing. In this way, the UV-IR absorption layer 10 can be formed on the substrate. Then, the optical filter 1a is obtained by peeling the UV-IR absorption layer 10 from the substrate. The optical filter 1a has a simple configuration and is easily reduced in thickness. For this reason, the optical filter 1a can contribute to the low profile of the imaging device and the optical system.
 上記の通り、光学フィルタ用組成物は、例えば、22~23℃において1~200mPa・sの粘度という、比較的低い粘度を有する。この場合、光学フィルタ用組成物は、比較的多くの溶媒を含む。このため、光学フィルタ用組成物の塗膜を加熱により硬化させる場合に、この塗膜を最初から高温で加熱すると、急激な溶媒の揮発により、UV‐IR吸収層に亀裂が生じやすい。このため、光学フィルタ用組成物の塗膜を60℃以下の比較的低温の環境において所定時間加熱した後に、60℃を超える温度を有する比較的高温の環境において塗膜を所定時間加熱することが望ましい。溶媒が緩やかに揮発するとともに、アルコキシシランモノマー又はシリコーン樹脂の縮重合反応による結合が並行して進み、UV‐IR吸収層に亀裂が発生することを防止できる。その結果、所望の透過率特性及び低ヘイズを有する光学フィルタを安定的に製造できる。光学フィルタ用組成物の塗膜は、望ましくは、60℃以下の環境において10分以上加熱された後に、60℃を超える環境に曝される。光学フィルタ用組成物の塗膜は、より望ましくは、45℃以下の環境において20分以上加熱された後に、60℃を超える環境に曝される。 As described above, the optical filter composition has a relatively low viscosity of, for example, a viscosity of 1 to 200 mPa · s at 22 to 23 ° C. In this case, the optical filter composition contains a relatively large amount of solvent. For this reason, when the coating film of the composition for optical filters is cured by heating, if the coating film is heated at a high temperature from the beginning, the UV-IR absorption layer is likely to crack due to rapid volatilization of the solvent. For this reason, after heating the coating film of the optical filter composition for a predetermined time in a relatively low temperature environment of 60 ° C. or less, the coating film can be heated for a predetermined time in a relatively high temperature environment having a temperature exceeding 60 ° C. desirable. It is possible to prevent the solvent from volatilizing slowly and bond due to the polycondensation reaction of the alkoxysilane monomer or silicone resin to proceed in parallel, thereby preventing the UV-IR absorption layer from cracking. As a result, an optical filter having desired transmittance characteristics and low haze can be stably produced. The coating film of the optical filter composition is desirably heated in an environment of 60 ° C. or lower for 10 minutes or more, and then exposed to an environment exceeding 60 ° C. More preferably, the coating film of the optical filter composition is exposed to an environment exceeding 60 ° C. after being heated for 20 minutes or more in an environment of 45 ° C. or less.
 <変形例>
 光学フィルタ1aは、様々な観点から変更可能である。例えば、光学フィルタ1aは、図1B~図1Fに示す光学フィルタ1b~1fにそれぞれ変更されてもよい。光学フィルタ1b~1fは、特に説明する場合を除き、光学フィルタ1aと同様に構成されている。光学フィルタ1aの構成要素と同一又は対応する光学フィルタ1b~1fの構成要素には同一の符号を付し、詳細な説明を省略する。光学フィルタ1aに関する説明は、技術的に矛盾しない限り光学フィルタ1b~1fにも当てはまる。
<Modification>
The optical filter 1a can be changed from various viewpoints. For example, the optical filter 1a may be changed to the optical filters 1b to 1f shown in FIGS. 1B to 1F, respectively. The optical filters 1b to 1f are configured in the same manner as the optical filter 1a unless otherwise described. Constituent elements of the optical filters 1b to 1f that are the same as or correspond to the constituent elements of the optical filter 1a are assigned the same reference numerals, and detailed descriptions thereof are omitted. The description regarding the optical filter 1a also applies to the optical filters 1b to 1f unless there is a technical contradiction.
 図1Bに示す通り、本発明の別の一例に係る光学フィルタ1bは、UV‐IR吸収層10と、その両面に配置された一対の反射防止膜30とを備えている。反射防止膜30は、光学フィルタ1bと空気との界面をなすように形成された、可視光領域の光の反射を低減するための膜である。反射防止膜30は、例えば、樹脂、酸化物、及びフッ化物等の誘電体によって形成された膜である。反射防止膜30は、屈折率の異なる二種類以上の誘電体を積層して形成された多層膜であってもよい。特に、反射防止膜30は、SiO2等の低屈折率材料とTiO2又はTa25等の高屈折率材料とからなる誘電体多層膜であってもよい。この場合、光学フィルタ1bと空気との界面におけるフレネル反射が低減され、光学フィルタ1bの可視光領域の光量を増大させることができる。なお、反射防止膜30の付着性を向上させるために、シランカップリング剤を含む樹脂層をUV‐IR吸収層10と反射防止膜30との間に形成してもよい。反射防止膜30は、UV‐IR吸収層10の両方の主面に配置されていてもよいし、片方の主面にのみ配置されていてもよい。光学フィルタ1bは、撮像装置及び光学系の低背位化に貢献でき、かつ、光学フィルタ1aに比べて可視光領域の光量を増大させることができる。 As shown in FIG. 1B, an optical filter 1b according to another example of the present invention includes a UV-IR absorption layer 10 and a pair of antireflection films 30 disposed on both surfaces thereof. The antireflection film 30 is a film that is formed so as to form an interface between the optical filter 1b and air and reduces reflection of light in the visible light region. The antireflection film 30 is a film formed of a dielectric material such as resin, oxide, and fluoride. The antireflection film 30 may be a multilayer film formed by laminating two or more kinds of dielectrics having different refractive indexes. In particular, the antireflection film 30 may be a dielectric multilayer film made of a low refractive index material such as SiO 2 and a high refractive index material such as TiO 2 or Ta 2 O 5 . In this case, Fresnel reflection at the interface between the optical filter 1b and air is reduced, and the amount of light in the visible light region of the optical filter 1b can be increased. In order to improve the adhesion of the antireflection film 30, a resin layer containing a silane coupling agent may be formed between the UV-IR absorption layer 10 and the antireflection film 30. The antireflection film 30 may be disposed on both main surfaces of the UV-IR absorption layer 10 or may be disposed only on one main surface. The optical filter 1b can contribute to lowering the height of the imaging device and the optical system, and can increase the amount of light in the visible light region as compared to the optical filter 1a.
 図1Cに示す通り、本発明の別の一例に係る光学フィルタ1cは、UV‐IR吸収層10と、その一方の主面に配置された、赤外線及び/又は紫外線を反射する反射膜40とを備えている。反射膜40は、例えば、アルミニウム等の金属を蒸着することにより形成された膜、又は、高屈折率材料からなる層と低屈折率材料からなる層とが交互に積層された誘電体多層膜である。高屈折率材料としてはTiO2、ZrO2、Ta25、Nb25、ZnO、及びIn23等の1.7~2.5の屈折率を有する材料が用いられる。低屈折率材料としては、SiO2、Al23、及びMgF2等の1.2~1.6の屈折率を有する材料が用いられる。誘電体多層膜を形成する方法は、例えば、化学気相成長(CVD)法、スパッタ法、又は真空蒸着法である。また、このような反射膜が光学フィルタの両方の主面をなすように形成されてもよい(図示省略)。光学フィルタの両方の主面に反射膜が形成されていると、光学フィルタの表裏両面で応力がバランスし、光学フィルタが反りにくいというメリットが得られる。 As shown in FIG. 1C, an optical filter 1c according to another example of the present invention includes a UV-IR absorption layer 10 and a reflective film 40 that reflects infrared rays and / or ultraviolet rays disposed on one main surface thereof. I have. The reflective film 40 is, for example, a film formed by vapor deposition of a metal such as aluminum, or a dielectric multilayer film in which layers made of a high refractive index material and layers made of a low refractive index material are alternately laminated. is there. As the high refractive index material, a material having a refractive index of 1.7 to 2.5 such as TiO 2 , ZrO 2 , Ta 2 O 5 , Nb 2 O 5 , ZnO, and In 2 O 3 is used. As the low refractive index material, a material having a refractive index of 1.2 to 1.6 such as SiO 2 , Al 2 O 3 , and MgF 2 is used. A method for forming the dielectric multilayer film is, for example, a chemical vapor deposition (CVD) method, a sputtering method, or a vacuum evaporation method. Further, such a reflective film may be formed so as to form both main surfaces of the optical filter (not shown). When reflective films are formed on both main surfaces of the optical filter, the stress is balanced on both the front and back surfaces of the optical filter, so that the optical filter is less likely to warp.
 図1Dに示す通り、本発明の別の一例に係る光学フィルタ1dは、透明誘電体基板20と、透明誘電体基板20の一方の主面上に形成されたUV‐IR吸収層10とを備えている。透明誘電体基板20は、450nm~600nmにおいて高い平均透過率(例えば、80%以上)を有する誘電体基板である限り、特に制限されない。場合によっては、透明誘電体基板20は、紫外線領域又は赤外線領域に吸収能を有していてもよい。 As shown in FIG. 1D, an optical filter 1d according to another example of the present invention includes a transparent dielectric substrate 20 and a UV-IR absorption layer 10 formed on one main surface of the transparent dielectric substrate 20. ing. The transparent dielectric substrate 20 is not particularly limited as long as it is a dielectric substrate having a high average transmittance (for example, 80% or more) at 450 nm to 600 nm. In some cases, the transparent dielectric substrate 20 may have an absorptivity in the ultraviolet region or the infrared region.
 透明誘電体基板20は、例えば、ガラス製又は樹脂製である。透明誘電体基板20がガラス製である場合、そのガラスは、例えば、D263 T eco等のホウケイ酸ガラス、ソーダ石灰ガラス(青板)、B270等の白板ガラス、無アルカリガラス、又は銅を含有しているリン酸塩ガラス若しくは銅を含有しているフツリン酸塩ガラス等の赤外線吸収性ガラスである。透明誘電体基板20が、銅を含有しているリン酸塩ガラス又は銅を含有しているフツリン酸塩ガラス等の赤外線吸収性ガラスである場合、透明誘電体基板20が有する赤外線吸収性能とUV‐IR吸収層10が有する赤外線吸収性能との組み合わせによって光学フィルタ1dに必要な赤外線吸収性能を実現できる。このため、UV‐IR吸収層10に要求される赤外線吸収性能のレベルを下げることができる。このような赤外線吸収性ガラスは、例えば、ショット社製のBG-60、BG-61、BG-62、BG-63、若しくはBG-67であり、日本電気硝子社製の500EXLであり、又はHOYA社製のCM5000、CM500、C5000、若しくはC500Sである。また、赤外線吸収性ガラスは紫外線吸収特性を有していてもよい。 The transparent dielectric substrate 20 is made of, for example, glass or resin. When the transparent dielectric substrate 20 is made of glass, the glass contains, for example, borosilicate glass such as D263 T eco, soda lime glass (blue plate), white plate glass such as B270, non-alkali glass, or copper. Infrared absorbing glass such as phosphate glass or fluorophosphate glass containing copper. When the transparent dielectric substrate 20 is an infrared absorbing glass such as a phosphate glass containing copper or a fluorophosphate glass containing copper, the infrared absorbing performance and UV of the transparent dielectric substrate 20 are included. -The infrared absorption performance required for the optical filter 1d can be realized by the combination with the infrared absorption performance of the IR absorption layer 10. For this reason, the level of infrared absorption performance required for the UV-IR absorption layer 10 can be lowered. Such infrared-absorbing glass is, for example, BG-60, BG-61, BG-62, BG-63, or BG-67 manufactured by Schott, 500EXL manufactured by Nippon Electric Glass, or HOYA. CM5000, CM500, C5000, or C500S manufactured by the company. Further, the infrared absorbing glass may have an ultraviolet absorbing property.
 透明誘電体基板20は、酸化マグネシウム、サファイア、又は石英などの透明性を有する結晶性の基板であってもよい。例えば、サファイアは高硬度であるので、傷がつきにくい。このため、板状のサファイアは、耐擦傷性の保護材料(プロテクトフィルタ)として、スマートフォン及び携帯電話等の携帯端末に備えられているカメラモジュール又はレンズの前面に配置される場合がある。このような板状のサファイア上にUV‐IR吸収層10が形成されることにより、カメラモジュール及びレンズの保護とともに、紫外線又は赤外線を遮蔽できる。これにより、紫外線又は赤外線の遮蔽性を備える光学フィルタをCCDやCMOSなどの固体撮像素子の周辺又はカメラモジュールの内部に配置する必要がなくなる。このため、板状のサファイア上にUV‐IR吸収層10を形成すれば、カメラモジュールの低背位化に貢献できる。 The transparent dielectric substrate 20 may be a crystalline substrate having transparency such as magnesium oxide, sapphire, or quartz. For example, since sapphire has high hardness, it is hard to be damaged. For this reason, the plate-like sapphire may be disposed as a scratch-resistant protective material (protect filter) in front of a camera module or a lens provided in a mobile terminal such as a smartphone or a mobile phone. By forming the UV-IR absorption layer 10 on such plate-like sapphire, it is possible to shield ultraviolet rays or infrared rays as well as protecting the camera module and the lens. This eliminates the need to arrange an optical filter having ultraviolet or infrared shielding properties around a solid-state imaging device such as a CCD or CMOS or inside a camera module. For this reason, if the UV-IR absorption layer 10 is formed on the plate-like sapphire, it can contribute to the low profile of the camera module.
 透明誘電体基板20が、樹脂製である場合、その樹脂は、例えば、(ポリ)オレフィン樹脂、ポリイミド樹脂、ポリビニルブチラール樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリアミドイミド樹脂、(変性)アクリル樹脂、エポキシ樹脂、又はシリコーン樹脂である。 When the transparent dielectric substrate 20 is made of a resin, the resin is, for example, (poly) olefin resin, polyimide resin, polyvinyl butyral resin, polycarbonate resin, polyamide resin, polysulfone resin, polyethersulfone resin, polyamideimide resin. (Modified) acrylic resin, epoxy resin, or silicone resin.
 透明誘電体基板20がガラス基板である場合、透明誘電体基板20とUV‐IR吸収層10との付着性を向上させるために、シランカップリング剤を含む樹脂層を透明誘電体基板20とUV‐IR吸収層10との間に形成してもよい。 When the transparent dielectric substrate 20 is a glass substrate, in order to improve the adhesion between the transparent dielectric substrate 20 and the UV-IR absorption layer 10, a resin layer containing a silane coupling agent is applied to the transparent dielectric substrate 20 and the UV. -You may form between IR absorption layers 10.
 図1Eに示す通り、本発明の別の一例に係る光学フィルタ1eは、透明誘電体基板20の両方の主面上にUV‐IR吸収層10が形成されている。これにより、1つのUV‐IR吸収層10によってではなく、2つのUV‐IR吸収層10によって、光学フィルタ1eが上記の(i)~(iv)の光学性能を発揮できる。透明誘電体基板20の両方の主面上におけるUV‐IR吸収層10の厚みは同一であってもよいし、異なっていてもよい。すなわち、光学フィルタ1eが所望の光学特性を得るために必要なUV‐IR吸収層10の厚みが均等に又は不均等に分配されるように、透明誘電体基板20の両方の主面上にUV‐IR吸収層10が形成されている。これにより、透明誘電体基板20の両方の主面上に形成された各UV‐IR吸収層10の厚みが比較的小さい。その結果、塗膜の内部圧力が低くクラックの発生を防止できる。また、液状の光学フィルタ用組成物を塗布する時間を短縮でき、光学フィルタ用組成物の塗膜を硬化させるための時間を短縮できる。透明誘電体基板20が薄い場合、透明誘電体基板20の一方の主面上のみにUV‐IR吸収層10を形成すると、光学フィルタ用組成物からUV‐IR吸収層10を形成する場合に生じる収縮に伴う応力によって、光学フィルタが反る可能性がある。しかし、透明誘電体基板20の両方の主面上にUV‐IR吸収層10が形成されていることにより、透明誘電体基板20が薄い場合でも、光学フィルタ1eにおいて反りが抑制される。この場合も、透明誘電体基板20とUV‐IR吸収層10との付着性を向上させるために、シランカップリング剤を含む樹脂層を透明誘電体基板20とUV‐IR吸収層10との間に形成してもよい。 As shown in FIG. 1E, an optical filter 1e according to another example of the present invention has UV-IR absorption layers 10 formed on both main surfaces of a transparent dielectric substrate 20. Thereby, the optical filter 1e can exhibit the optical performances (i) to (iv) described above not by the single UV-IR absorption layer 10 but by the two UV-IR absorption layers 10. The thickness of the UV-IR absorption layer 10 on both main surfaces of the transparent dielectric substrate 20 may be the same or different. That is, the UV-IR absorption layer 10 necessary for the optical filter 1e to obtain desired optical characteristics is uniformly or non-uniformly distributed on both main surfaces of the transparent dielectric substrate 20 with UV. -IR absorption layer 10 is formed. Thereby, the thickness of each UV-IR absorption layer 10 formed on both main surfaces of the transparent dielectric substrate 20 is relatively small. As a result, the internal pressure of the coating film is low and the occurrence of cracks can be prevented. Moreover, the time for applying the liquid optical filter composition can be shortened, and the time for curing the coating film of the optical filter composition can be shortened. When the transparent dielectric substrate 20 is thin, when the UV-IR absorption layer 10 is formed only on one main surface of the transparent dielectric substrate 20, this occurs when the UV-IR absorption layer 10 is formed from the optical filter composition. The optical filter may be warped due to the stress accompanying the shrinkage. However, since the UV-IR absorption layer 10 is formed on both main surfaces of the transparent dielectric substrate 20, even when the transparent dielectric substrate 20 is thin, warping is suppressed in the optical filter 1e. Also in this case, in order to improve the adhesion between the transparent dielectric substrate 20 and the UV-IR absorption layer 10, a resin layer containing a silane coupling agent is interposed between the transparent dielectric substrate 20 and the UV-IR absorption layer 10. You may form in.
 図1Fに示す通り、本発明の別の一例に係る光学フィルタ1fは、反射防止膜30を備えている。反射防止膜30は、光学フィルタ1fと空気との界面をなすように形成されている。光学フィルタ1fにおいて、反射防止膜30は、光学フィルタ1fの両方の主面に配置されているが、片方の主面にのみ配置されていてもよい。この場合、光学フィルタ1fの可視光領域の光量を増大させることができる。 As shown in FIG. 1F, the optical filter 1 f according to another example of the present invention includes an antireflection film 30. The antireflection film 30 is formed so as to form an interface between the optical filter 1f and air. In the optical filter 1f, the antireflection film 30 is arranged on both main surfaces of the optical filter 1f, but may be arranged only on one main surface. In this case, the amount of light in the visible light region of the optical filter 1f can be increased.
 光学フィルタ1a~1fは、それぞれ、必要に応じて、UV‐IR吸収層10とは別に、赤外線吸収膜(図示省略)を備えるように変更されてもよい。赤外線吸収膜は、例えば、シアニン系、フタロシアニン系、スクアリリウム系、ジインモニウム系、及びアゾ系等の有機系の赤外線吸収剤又は金属錯体からなる赤外線吸収剤を含有している。赤外線吸収膜は、例えば、これらの赤外線吸収剤から選ばれる1つ又は複数の赤外線吸収剤を含有している。この有機系の赤外線吸収剤は、吸収可能な光の波長範囲(吸収バンド)が小さく、特定の範囲の波長の光を吸収するのに適している。 Each of the optical filters 1a to 1f may be changed to include an infrared absorption film (not shown) separately from the UV-IR absorption layer 10 as necessary. The infrared absorbing film contains, for example, an organic infrared absorbing agent such as cyanine-based, phthalocyanine-based, squarylium-based, diimmonium-based, and azo-based or an infrared absorbing agent made of a metal complex. The infrared absorbing film contains, for example, one or more infrared absorbers selected from these infrared absorbers. This organic infrared absorber has a small wavelength range (absorption band) of light that can be absorbed, and is suitable for absorbing light in a specific range of wavelengths.
 光学フィルタ1a~1fは、それぞれ、必要に応じて、UV‐IR吸収層10とは別に、紫外線吸収膜(図示省略)を備えるように変更されてもよい。紫外線吸収膜は、例えば、ベンゾフェノン系、トリアジン系、インドール系、メロシアニン系、及びオキサゾール系等の紫外線吸収剤を含有している。紫外線吸収膜は、例えば、これらの紫外線吸収剤から選ばれる1つ又は複数の紫外線吸収剤を含有している。これらの紫外線吸収剤は、例えば300nm~340nm付近の紫外線を吸収し、吸収した波長よりも長い波長の光(蛍光)を発し、蛍光剤又は蛍光増白剤として機能するものも含まれうるが、紫外線吸収膜により、樹脂等の光学フィルタに使用されている材料の劣化をもたらす紫外線の入射を低減できる。 Each of the optical filters 1a to 1f may be changed to include an ultraviolet absorbing film (not shown) separately from the UV-IR absorbing layer 10 as necessary. The ultraviolet absorbing film contains, for example, an ultraviolet absorber such as benzophenone, triazine, indole, merocyanine, and oxazole. The ultraviolet absorbing film contains, for example, one or more ultraviolet absorbers selected from these ultraviolet absorbers. These ultraviolet absorbers include, for example, those that absorb ultraviolet rays in the vicinity of 300 nm to 340 nm, emit light having a wavelength longer than the absorbed wavelength (fluorescence), and function as a fluorescent agent or fluorescent whitening agent. The ultraviolet absorbing film can reduce the incidence of ultraviolet rays that cause deterioration of materials used for optical filters such as resins.
 上記の赤外線吸収剤又は紫外線吸収剤は、樹脂製の透明誘電体基板20に予め含有させてもよい。赤外線吸収膜や紫外線吸収膜は、例えば、赤外線吸収剤又は紫外線吸収剤を含有している樹脂を成膜することによって形成できる。この場合、樹脂は、赤外線吸収剤又は紫外線吸収剤を適切に溶解又は分散させることができ、かつ、透明であることが必要である。このような樹脂として、(ポリ)オレフィン樹脂、ポリイミド樹脂、ポリビニルブチラール樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリアミドイミド樹脂、(変性)アクリル樹脂、エポキシ樹脂、及びシリコーン樹脂を例示できる。 The above infrared absorber or ultraviolet absorber may be preliminarily contained in the transparent dielectric substrate 20 made of resin. The infrared absorbing film and the ultraviolet absorbing film can be formed, for example, by forming a resin containing an infrared absorbing agent or an ultraviolet absorbing agent. In this case, the resin needs to be able to appropriately dissolve or disperse the infrared absorber or the ultraviolet absorber and be transparent. Such resins include (poly) olefin resins, polyimide resins, polyvinyl butyral resins, polycarbonate resins, polyamide resins, polysulfone resins, polyethersulfone resins, polyamideimide resins, (modified) acrylic resins, epoxy resins, and silicone resins. Can be illustrated.
 光学フィルタ1a~1fは、例えば、撮像装置の分光感度を人間の視感度に近づけるために、撮像装置の内部のCCD又はCMOS等の固体撮像素子の前面(被写体に近い側)に配置される。 The optical filters 1a to 1f are arranged, for example, on the front surface (the side close to the subject) of a solid-state imaging device such as a CCD or CMOS inside the imaging device in order to bring the spectral sensitivity of the imaging device closer to human visibility.
 また、図2に示す通り、例えば、光学フィルタ1dを用いたカメラモジュール100を提供できる。カメラモジュール100は、光学フィルタ1dに加え、例えば、レンズ系2、ローパスフィルタ3、固体撮像素子4、回路基板5、光学フィルタ支持筐体7、及び光学系筐体8を備えている。光学フィルタ1dの周縁は、例えば、光学フィルタ支持筐体7の中央に形成された開口に接する環状の凹部に嵌められている。光学フィルタ支持筐体7は、光学系筐体8に固定されている。光学系筐体8の内部には、レンズ系2、ローパスフィルタ3、及び固体撮像素子4が光軸に沿ってこの順番で配置されている。固体撮像素子4は、例えば、CCD又はCMOSである。被写体からの光は、光学フィルタ1dによって、紫外線及び赤外線がカットされた後、レンズ系2によって集光され、さらにローパスフィルタ3を通過して固体撮像素子4に入る。固体撮像素子4によって生成された電気信号は回路基板5によってカメラモジュール100の外部に送られる。 Further, as shown in FIG. 2, for example, the camera module 100 using the optical filter 1d can be provided. In addition to the optical filter 1d, the camera module 100 includes, for example, a lens system 2, a low-pass filter 3, a solid-state imaging device 4, a circuit board 5, an optical filter support housing 7, and an optical system housing 8. The peripheral edge of the optical filter 1d is fitted in an annular recess that is in contact with an opening formed in the center of the optical filter support housing 7, for example. The optical filter support housing 7 is fixed to the optical system housing 8. Inside the optical system housing 8, the lens system 2, the low-pass filter 3, and the solid-state imaging device 4 are arranged in this order along the optical axis. The solid-state image sensor 4 is, for example, a CCD or a CMOS. The light from the subject is cut by ultraviolet and infrared rays by the optical filter 1 d, condensed by the lens system 2, and further passes through the low-pass filter 3 and enters the solid-state imaging device 4. The electrical signal generated by the solid-state imaging device 4 is sent to the outside of the camera module 100 by the circuit board 5.
 カメラモジュール100において、光学フィルタ1dはレンズ系2を保護するカバー(プロテクトフィルタ)としての機能も果たしている。この場合、望ましくは、光学フィルタ1dにおける透明誘電体基板20としてサファイア基板が使用される。サファイア基板は高い耐擦傷性を有するので、例えばサファイア基板が外側(固体撮像素子4の側とは反対側)に配置されることが望ましい。これにより、光学フィルタ1dは、外部からの接触等に対して高い耐擦傷性を有するとともに、紫外線及び赤外線を吸収するとともに、5%以下の低いヘイズを有する。光学フィルタ1dは、望ましくは、上記(i)~(iv)の光学性能を有し、より望ましくはさらに(v)~(vii)の光学性能を有する。これにより、固体撮像素子4の近くに赤外線又は紫外線をカットするための光学フィルタを配置する必要がなくなり、カメラモジュール100を低背位化しやすい。なお、図2に示すカメラモジュール100は、各部品の配置等を例示するための概略図であり、光学フィルタ1dがプロテクトフィルタとして用いられる態様を説明するものである。光学フィルタ1dがプロテクトフィルタとしての機能を果たす限り、光学フィルタ1dを用いたカメラモジュールは、図2で表したものに限定されず、必要に応じて、ローパスフィルタ3は省略されてもよいし、他のフィルタを備えていてもよい。 In the camera module 100, the optical filter 1d also functions as a cover (protect filter) for protecting the lens system 2. In this case, a sapphire substrate is preferably used as the transparent dielectric substrate 20 in the optical filter 1d. Since the sapphire substrate has high scratch resistance, for example, it is desirable that the sapphire substrate is disposed on the outside (the side opposite to the solid-state imaging device 4 side). Thereby, the optical filter 1d has high scratch resistance against external contact and the like, absorbs ultraviolet rays and infrared rays, and has a low haze of 5% or less. The optical filter 1d desirably has the optical performances (i) to (iv) described above, and more desirably has the optical performances (v) to (vii). Thereby, it is not necessary to arrange an optical filter for cutting infrared rays or ultraviolet rays in the vicinity of the solid-state imaging device 4, and the camera module 100 can be easily lowered. Note that the camera module 100 shown in FIG. 2 is a schematic diagram for illustrating the arrangement and the like of each component, and describes an aspect in which the optical filter 1d is used as a protection filter. As long as the optical filter 1d functions as a protection filter, the camera module using the optical filter 1d is not limited to that shown in FIG. 2, and the low-pass filter 3 may be omitted if necessary. Other filters may be provided.
 実施例により本発明をより詳細に説明する。なお、本発明は以下の実施例に限定されない。 The present invention will be described in more detail by way of examples. The present invention is not limited to the following examples.
 <実施例1>
 酢酸銅一水和物4.500gとテトラヒドロフラン(THF)240gとを混合して、3時間撹拌し酢酸銅溶液を得た。次に、得られた酢酸銅溶液に、リン酸エステル化合物であるプライサーフA208N(第一工業製薬社製)を1.646g加えて30分間撹拌し、A液を得た。フェニルホスホン酸0.706gにTHF40gを加えて30分間撹拌し、B-1液を得た。4‐ブロモフェニルホスホン酸4.230gにTHF40gを加えて30分間撹拌し、B-2液を得た。次に、B-1液とB-2液とを混ぜて1分間撹拌し、メチルトリエトキシシラン(MTES:信越化学工業社製)8.664gとテトラエトキシシラン(TEOS:キシダ化学社製 特級)2.840gとをこの混合液に加えて、さらに1分間撹拌し、B液を得た。A液を撹拌しながらA液にB液を加え、室温で1分間撹拌した。次に、この溶液にトルエン140gを加えた後、室温で1分間撹拌し、C液を得た。このC液をフラスコに入れてオイルバス(東京理化器械社製、型式:OSB-2100)で加温しながら、ロータリーエバポレータ(東京理化器械社製、型式:N-1110SF)によって、脱溶媒処理を行った。オイルバスの設定温度は、105℃に調整した。その後、フラスコの中から脱溶媒処理後の実施例1に係るD液を取り出した。脱溶媒処理において溶媒を完全に除去してしまわずに、D液の粘度がある程度低くなるように脱溶媒処理を実施した。フェニル系ホスホン酸銅(UV‐IR吸収剤)の微粒子の分散液であるD液は透明であり、D液においてその微粒子が良好に分散していた。得られたD液は107.06gであった。D液を得るためのトルエンの添加量、得られたD液の質量、及びD液における銅イオンの濃度を表1に示す。
<Example 1>
Copper acetate monohydrate (4.500 g) and tetrahydrofuran (THF) (240 g) were mixed and stirred for 3 hours to obtain a copper acetate solution. Next, 1.646 g of Prisurf A208N (Daiichi Kogyo Seiyaku Co., Ltd.), which is a phosphate ester compound, was added to the obtained copper acetate solution and stirred for 30 minutes to obtain Liquid A. 40 g of THF was added to 0.706 g of phenylphosphonic acid and stirred for 30 minutes to obtain a solution B-1. 40 g of THF was added to 4.230 g of 4-bromophenylphosphonic acid and stirred for 30 minutes to obtain a liquid B-2. Next, the B-1 liquid and the B-2 liquid were mixed and stirred for 1 minute. 8.664 g of methyltriethoxysilane (MTES: manufactured by Shin-Etsu Chemical Co., Ltd.) and tetraethoxysilane (TEOS: special grade manufactured by Kishida Chemical Co., Ltd.) 2.840g was added to this liquid mixture, and also it stirred for 1 minute, and B liquid was obtained. Liquid B was added to liquid A while stirring liquid A, and the mixture was stirred at room temperature for 1 minute. Next, after adding 140 g of toluene to this solution, it stirred at room temperature for 1 minute, and obtained C liquid. The solution C was put into a flask and heated with an oil bath (Tokyo Rika Kikai Co., Ltd., model: OSB-2100), and the solvent was removed by a rotary evaporator (Tokyo Rika Kikai Co., Ltd., model: N-1110SF). went. The set temperature of the oil bath was adjusted to 105 ° C. Thereafter, the liquid D according to Example 1 after the solvent removal treatment was taken out from the flask. The solvent removal treatment was carried out so that the viscosity of the liquid D was lowered to some extent without completely removing the solvent in the solvent removal treatment. Liquid D, which is a dispersion of fine particles of phenyl-based copper phosphonate (UV-IR absorber), was transparent, and the fine particles were well dispersed in Liquid D. The obtained D liquid was 107.06g. Table 1 shows the amount of toluene added to obtain the D liquid, the mass of the obtained D liquid, and the concentration of copper ions in the D liquid.
 酢酸銅一水和物4.500gとTHF240gとを混合して3時間撹拌し酢酸銅溶液を得た。次に、得られた酢酸銅溶液に、リン酸エステル化合物であるプライサーフA208Nを2.572g加えて30分間撹拌し、E液を得た。また、n-ブチルホスホン酸2.886gにTHF40gを加えて30分間撹拌し、F液を得た。E液を撹拌しながらE液にF液を加え、室温で1分間撹拌した。次に、この溶液にトルエン84gを加えた後、室温で1分間撹拌し、G液を得た。このG液をフラスコに入れてオイルバスで加温しながら、ロータリーエバポレータによって、脱溶媒処理を行った。オイルバスの設定温度は、105℃に調整した。その後、フラスコの中から脱溶媒処理後の実施例1に係るH液を取り出した。脱溶媒処理において溶媒を完全に除去してしまわずに、H液の粘度が所定の粘度になるように脱溶媒処理を実施した。ブチルホスホン酸銅(UV‐IR吸収剤)の微粒子の分散液であるH液は透明であり、H液において、微粒子が良好に分散していた。得られたH液は68.12gであった。H液を得るためのトルエンの添加量、得られたH液の質量、及びH液における銅イオンの濃度を表2に示す。 Copper acetate monohydrate (4.500 g) and THF (240 g) were mixed and stirred for 3 hours to obtain a copper acetate solution. Next, 2.572 g of PRISURF A208N, which is a phosphate ester compound, was added to the obtained copper acetate solution and stirred for 30 minutes to obtain solution E. Further, 40 g of THF was added to 2.886 g of n-butylphosphonic acid, followed by stirring for 30 minutes to obtain a liquid F. While stirring E solution, F solution was added to E solution and stirred at room temperature for 1 minute. Next, 84 g of toluene was added to this solution, followed by stirring at room temperature for 1 minute to obtain solution G. The solvent G was put into a flask and heated with an oil bath, and the solvent was removed by a rotary evaporator. The set temperature of the oil bath was adjusted to 105 ° C. Thereafter, the liquid H according to Example 1 after the solvent removal treatment was taken out of the flask. The solvent removal treatment was performed so that the viscosity of the liquid H became a predetermined viscosity without completely removing the solvent in the solvent removal treatment. Liquid H, which is a dispersion of fine particles of copper butylphosphonate (UV-IR absorber), was transparent, and fine particles were well dispersed in the liquid H. The obtained liquid H was 68.12 g. Table 2 shows the amount of toluene added to obtain the H liquid, the mass of the obtained H liquid, and the concentration of copper ions in the H liquid.
 D液にシリコーン樹脂(信越化学工業社製、製品名:KR-300)を10.69g添加し30分間撹拌して、I液を得た。H液全量の40質量%に相当する27.25gのH液をI液に加えて30分撹拌し、実施例1に係る光学フィルタ用組成物を得た。実施例1に係る光学フィルタ用組成物における、D液、H液、及びシリコーン樹脂の添加量を表3に示す。 10. Silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KR-300) was added to solution D and stirred for 30 minutes to obtain solution I. 27.25 g of liquid H corresponding to 40% by mass of the total amount of liquid H was added to liquid I and stirred for 30 minutes to obtain an optical filter composition according to Example 1. Table 3 shows the addition amounts of the D solution, the H solution, and the silicone resin in the optical filter composition according to Example 1.
 表面防汚コーティング剤(ダイキン工業社製、製品名:オプツールDSX、有効成分の濃度:20質量%)0.1gとノベック7100(3M社製、成分:ハイドロフルオロエーテル)19.9gとを混合し、5分間撹拌して、フッ素処理剤(有効成分の濃度:0.1質量%)を調製した。このフッ素処理剤を、76mm×76mm×0.21mmの寸法を有するホウケイ酸ガラスでできた透明ガラス基板(SCHOTT社製、製品名:D263 T eco)に3000rpm(revolutions per minute)の回転数にてスピンコーティングした。その後、透明ガラス基板を室温で24時間放置してフッ素処理剤の塗膜を乾燥させ、フッ素処理(易剥離処理)がなされたガラス基板を得た。 Surface antifouling coating agent (Daikin Kogyo Co., Ltd., product name: OPTOOL DSX, active ingredient concentration: 20% by mass) 0.1 g and Novec 7100 (manufactured by 3M, ingredient: hydrofluoroether) 19.9 g were mixed. The mixture was stirred for 5 minutes to prepare a fluorination agent (active ingredient concentration: 0.1% by mass). This fluorination agent is applied to a transparent glass substrate (manufactured by SCHOTT, product name: D263 T eco) made of borosilicate glass having dimensions of 76 mm × 76 mm × 0.21 mm at a rotation speed of 3000 rpm (revolutions per minute). Spin coated. Thereafter, the transparent glass substrate was allowed to stand at room temperature for 24 hours to dry the coating film of the fluorine treatment agent, thereby obtaining a glass substrate subjected to fluorine treatment (easy peeling treatment).
 フッ素処理がなされたガラス基板の主面の中心約30mm×30mmの方形状の範囲にディスペンサを用いて実施例1に係る光学フィルタ用組成物を塗布して塗膜を形成した。30mm×30mmの方形状の穴を中心に有し、5mmの厚みを有する枠をガラス基板に貼り付けて、その枠の内側に実施例1に係る光学フィルタ用組成物を塗布した。次に、未乾燥の塗膜を有する透明ガラス基板をオーブンに入れて、45℃で2時間、さらに85℃で6時間の条件で加熱処理を行い、塗膜を硬化させた。その後、温度85℃及び相対湿度85%に設定された恒温恒湿槽に塗膜を有するガラス基板を2時間置いて加湿処理を行った。その後ガラス基板から光学フィルタ用組成物の塗膜が硬化して形成された層を剥離し、実施例1に係る光学フィルタを作製した。 Using the dispenser, the optical filter composition according to Example 1 was applied to form a coating film in a rectangular area having a center of about 30 mm × 30 mm on the main surface of the glass substrate subjected to fluorine treatment. A frame having a 30 mm × 30 mm square hole in the center and a thickness of 5 mm was attached to a glass substrate, and the optical filter composition according to Example 1 was applied to the inside of the frame. Next, the transparent glass substrate having an undried coating film was placed in an oven and subjected to a heat treatment at 45 ° C. for 2 hours and further at 85 ° C. for 6 hours to cure the coating film. Thereafter, a glass substrate having a coating film was placed in a constant temperature and humidity chamber set at a temperature of 85 ° C. and a relative humidity of 85% for 2 hours for humidification treatment. Thereafter, the layer formed by curing the coating film of the optical filter composition from the glass substrate was peeled off to produce an optical filter according to Example 1.
 <実施例2~15及び比較例1>
 D液を得るためのトルエンの添加量、得られたD液の質量、及びD液における銅イオンの濃度が表1に示す通りになるように、D液の調製条件を変更した以外は、実施例1と同様にして、実施例2~15に係るD液及び比較例1に係るD液を調製した。H液を得るためのトルエンの添加量、得られたH液の質量、及びH液における銅イオンの濃度が表2に示す通りになるように、H液の調製条件を変更した以外は、実施例1と同様にして、実施例2~15及び比較例1に係るH液を調製した。D液、H液、及びシリコーン樹脂の添加量を表3に示すように調整した以外は、実施例1と同様にして、実施例2~15及び比較例1に係る光学フィルタ用組成物を調製した。さらに、実施例1に係る光学フィルタ用組成物の代わりに、実施例2~15及び比較例1に係る光学フィルタ用組成物を用いた以外は、実施例1と同様にして、それぞれ、実施例2~15及び比較例1に係る光学フィルタを作製した。
<Examples 2 to 15 and Comparative Example 1>
Except that the preparation conditions for the D solution were changed so that the amount of toluene added to obtain the D solution, the mass of the obtained D solution, and the concentration of copper ions in the D solution were as shown in Table 1. In the same manner as Example 1, D liquids according to Examples 2 to 15 and D liquid according to Comparative Example 1 were prepared. Except for changing the preparation conditions of the H liquid so that the amount of toluene added to obtain the H liquid, the mass of the obtained H liquid, and the concentration of copper ions in the H liquid are as shown in Table 2. In the same manner as in Example 1, solutions H according to Examples 2 to 15 and Comparative Example 1 were prepared. The compositions for optical filters according to Examples 2 to 15 and Comparative Example 1 were prepared in the same manner as in Example 1, except that the addition amounts of D liquid, H liquid, and silicone resin were adjusted as shown in Table 3. did. Further, in the same manner as in Example 1, except that the optical filter composition according to Examples 2 to 15 and Comparative Example 1 was used instead of the optical filter composition according to Example 1, each of the examples. Optical filters according to 2 to 15 and Comparative Example 1 were produced.
 <実施例16>
 酢酸銅一水和物4.500gとテトラヒドロフラン(THF)240gとを混合して、3時間撹拌し酢酸銅溶液を得た。次に、得られた酢酸銅溶液に、リン酸エステル化合物であるプライサーフA208N(第一工業製薬社製)を1.646g加えて30分間撹拌し、A液を得た。パラトルエンスルホン酸0.769gにTHF40gを加えて30分間撹拌し、B-1液を得た。4‐ブロモベンゼンスルホン酸4.230gにTHF40gを加えて30分間撹拌し、B-2液を得た。次に、B-1液とB-2液とを混ぜて1分間撹拌し、メチルトリエトキシシラン(MTES:信越化学工業社製)8.664gとテトラエトキシシラン(TEOS:キシダ化学社製 特級)2.840gとをこの混合液に加えて、さらに1分間撹拌し、B液を得た。A液を撹拌しながらA液にB液を加え、室温で1分間撹拌した。次に、この溶液にトルエン140gを加えた後、室温で1分間撹拌し、C液を得た。このC液をフラスコに入れてオイルバス(東京理化器械社製、型式:OSB-2100)で加温しながら、ロータリーエバポレータ(東京理化器械社製、型式:N-1110SF)によって、脱溶媒処理を行った。オイルバスの設定温度は、105℃に調整した。その後、フラスコの中から脱溶媒処理後の実施例1に係るD液を取り出した。脱溶媒処理において溶媒を完全に除去してしまわずに、D液の粘度がある程度低くなるように脱溶媒処理を実施した。フェニル系スルホン酸銅(UV‐IR吸収剤)の微粒子の分散液であるD液は透明であり、D液においてその微粒子が良好に分散していた。得られたD液は107.12gであった。D液を得るためのトルエンの添加量、得られたD液の質量、及びD液における銅イオンの濃度を表1に示す。
<Example 16>
Copper acetate monohydrate (4.500 g) and tetrahydrofuran (THF) (240 g) were mixed and stirred for 3 hours to obtain a copper acetate solution. Next, 1.646 g of Prisurf A208N (Daiichi Kogyo Seiyaku Co., Ltd.), which is a phosphate ester compound, was added to the obtained copper acetate solution and stirred for 30 minutes to obtain Liquid A. 40 g of THF was added to 0.769 g of paratoluenesulfonic acid and stirred for 30 minutes to obtain a solution B-1. 40 g of THF was added to 4.230 g of 4-bromobenzenesulfonic acid, and the mixture was stirred for 30 minutes to obtain a liquid B-2. Next, the B-1 liquid and the B-2 liquid were mixed and stirred for 1 minute. 8.664 g of methyltriethoxysilane (MTES: manufactured by Shin-Etsu Chemical Co., Ltd.) and tetraethoxysilane (TEOS: special grade manufactured by Kishida Chemical Co., Ltd.) 2.840g was added to this liquid mixture, and also it stirred for 1 minute, and B liquid was obtained. Liquid B was added to liquid A while stirring liquid A, and the mixture was stirred at room temperature for 1 minute. Next, after adding 140 g of toluene to this solution, it stirred at room temperature for 1 minute, and obtained C liquid. The solution C was put into a flask and heated with an oil bath (Tokyo Rika Kikai Co., Ltd., model: OSB-2100), and the solvent was removed by a rotary evaporator (Tokyo Rika Kikai Co., Ltd., model: N-1110SF). went. The set temperature of the oil bath was adjusted to 105 ° C. Thereafter, the liquid D according to Example 1 after the solvent removal treatment was taken out from the flask. The solvent removal treatment was carried out so that the viscosity of the liquid D was lowered to some extent without completely removing the solvent in the solvent removal treatment. Liquid D, which is a dispersion of fine particles of copper phenyl sulfonate (UV-IR absorber), was transparent, and the fine particles were well dispersed in Liquid D. The obtained D liquid was 107.12g. Table 1 shows the amount of toluene added to obtain the D liquid, the mass of the obtained D liquid, and the concentration of copper ions in the D liquid.
 酢酸銅一水和物4.500gとTHF240gとを混合して3時間撹拌し酢酸銅溶液を得た。次に、得られた酢酸銅溶液に、リン酸エステル化合物であるプライサーフA208Nを2.572g加えて30分間撹拌し、E液を得た。また、1-ブタンスルホン酸2.886gにTHF40gを加えて30分間撹拌し、F液を得た。E液を撹拌しながらE液にF液を加え、室温で1分間撹拌した。次に、この溶液にトルエン84gを加えた後、室温で1分間撹拌し、G液を得た。このG液をフラスコに入れてオイルバスで加温しながら、ロータリーエバポレータによって、脱溶媒処理を行った。オイルバスの設定温度は、105℃に調整した。その後、フラスコの中から脱溶媒処理後の実施例1に係るH液を取り出した。脱溶媒処理において溶媒を完全に除去してしまわずに、H液の粘度が所定の粘度になるように脱溶媒処理を実施した。ブタンスルホン酸銅(UV‐IR吸収剤)の微粒子の分散液であるH液は透明であり、H液において、微粒子が良好に分散していた。得られたH液は68.12gであった。H液を得るためのトルエンの添加量、得られたH液の質量、及びH液における銅イオンの濃度を表2に示す。 Copper acetate monohydrate (4.500 g) and THF (240 g) were mixed and stirred for 3 hours to obtain a copper acetate solution. Next, 2.572 g of PRISURF A208N, which is a phosphate ester compound, was added to the obtained copper acetate solution and stirred for 30 minutes to obtain solution E. Further, 40 g of THF was added to 2.886 g of 1-butanesulfonic acid and stirred for 30 minutes to obtain a liquid F. While stirring E solution, F solution was added to E solution and stirred at room temperature for 1 minute. Next, 84 g of toluene was added to this solution, followed by stirring at room temperature for 1 minute to obtain solution G. The solvent G was put into a flask and heated with an oil bath, and the solvent was removed by a rotary evaporator. The set temperature of the oil bath was adjusted to 105 ° C. Thereafter, the liquid H according to Example 1 after the solvent removal treatment was taken out of the flask. The solvent removal treatment was performed so that the viscosity of the liquid H became a predetermined viscosity without completely removing the solvent in the solvent removal treatment. The liquid H, which is a dispersion of fine particles of copper butanesulfonate (UV-IR absorber), was transparent, and the fine particles were well dispersed in the liquid H. The obtained liquid H was 68.12 g. Table 2 shows the amount of toluene added to obtain the H liquid, the mass of the obtained H liquid, and the concentration of copper ions in the H liquid.
 D液にシリコーン樹脂(信越化学工業社製、製品名:KR-300)を10.69g添加し30分間撹拌して、I液を得た。H液全量の40質量%に相当する27.25gのH液をI液に加えて30分撹拌し、実施例1に係る光学フィルタ用組成物を得た。実施例16に係る光学フィルタ用組成物における、D液、H液、及びシリコーン樹脂の添加量を表3に示す。 10. Silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KR-300) was added to solution D and stirred for 30 minutes to obtain solution I. 27.25 g of liquid H corresponding to 40% by mass of the total amount of liquid H was added to liquid I and stirred for 30 minutes to obtain an optical filter composition according to Example 1. Table 3 shows the addition amounts of the D solution, the H solution, and the silicone resin in the optical filter composition according to Example 16.
 実施例1に係る光学フィルタ用組成物の代わりに、実施例16に係る光学フィルタ用組成物を用いた以外は、実施例1と同様にして、実施例16に係る光学フィルタを作製した。 Example An optical filter according to Example 16 was produced in the same manner as in Example 1 except that the optical filter composition according to Example 16 was used instead of the optical filter composition according to Example 1.
 (光学フィルタ用組成物の粘度測定)
 振動式粘度計(セコニック社製、プローブ:PR-10 L、コントローラ:VM-10A)を用いて、各実施例及び比較例1に係る光学フィルタ用組成物の22~23℃における粘度を測定した。結果を表3に示す。表3に示す通り、各実施例に係る光学フィルタ用組成物の22~23℃における粘度は1~200mPa・sの範囲に含まれていたのに対し、比較例1に係る光学フィルタ用組成物の22~23℃における粘度は330mPa・sであった。
(Measurement of viscosity of optical filter composition)
Using a vibration viscometer (Seconic, probe: PR-10 L, controller: VM-10A), the viscosity at 22-23 ° C. of the optical filter composition according to each Example and Comparative Example 1 was measured. . The results are shown in Table 3. As shown in Table 3, the optical filter composition according to each example had a viscosity at 22 to 23 ° C. in the range of 1 to 200 mPa · s, whereas the optical filter composition according to Comparative Example 1 The viscosity at 22 to 23 ° C. was 330 mPa · s.
 (光学フィルタ用組成物の固形分量の測定と固形分比の算出)
 ステンレス製トレイの底に、アルミニウムシート(住軽アルミ箔社製、厚み:12μm)を敷き、そのアルミニウムシート上に、硬化後の厚みが100~300μmになるように、各実施例及び比較例1に係る光学フィルタ用組成物を塗布し、硬化前サンプルを準備した。硬化前サンプルを、内部の温度が45℃に保たれているオーブンに入れてそのままオーブンの内部の温度を45℃で2時間保った。その後、さらにオーブンの内部の温度を30分間かけて85℃まで上昇させ、そのままオーブンの内部の温度を85℃で6時間保った。その後、オーブンの電源を切って自然冷却させ、オーブンの内部の温度が室温程度の温度まで下がった後にオーブンからサンプルを取り出した。次に、そのサンプルを恒温恒湿槽に入れて、恒温恒湿槽の内部を45分間かけて温度85℃及び相対湿度85%の環境に変化させ、そのまま恒温恒湿槽をその環境で2時間保った。その後、恒温恒湿槽の環境を45分間かけて温度及び湿度を十分に低下させてから恒温恒湿槽からサンプルを取り出した。サンプルは十分に乾燥し硬化していた。硬化後のサンプルの質量Wbを計測して、その計測結果を固形分の質量と決定した。硬化後のサンプルの質量Wb及び硬化前のサンプルの質量Waから、各実施例及び比較例1に係る光学フィルタ用組成物における固形分比(Wb/Wa×100)を求めた。結果を表3に示す。
(Measurement of solid content of optical filter composition and calculation of solid content ratio)
Each example and comparative example 1 were laid on the bottom of a stainless steel tray with an aluminum sheet (manufactured by Sumi Light Aluminum Foil Co., Ltd., thickness: 12 μm) so that the thickness after curing was 100 to 300 μm. The composition for optical filters which concerns on was apply | coated, and the sample before hardening was prepared. The sample before curing was placed in an oven in which the internal temperature was maintained at 45 ° C., and the internal temperature of the oven was maintained at 45 ° C. for 2 hours. Thereafter, the temperature inside the oven was further raised to 85 ° C. over 30 minutes, and the temperature inside the oven was kept at 85 ° C. for 6 hours. Thereafter, the oven was turned off and allowed to cool naturally, and the sample was taken out of the oven after the temperature inside the oven had dropped to about room temperature. Next, the sample is put into a constant temperature and humidity chamber, and the inside of the constant temperature and humidity chamber is changed to an environment of a temperature of 85 ° C. and a relative humidity of 85% over 45 minutes. Kept. Then, after the temperature and humidity were sufficiently lowered for 45 minutes in the environment of the constant temperature and humidity chamber, the sample was taken out from the constant temperature and humidity chamber. The sample was fully dried and cured. The mass Wb of the sample after curing was measured, and the measurement result was determined as the mass of the solid content. From the mass Wb of the sample after curing and the mass Wa of the sample before curing, the solid content ratio (Wb / Wa × 100) in the optical filter composition according to each Example and Comparative Example 1 was determined. The results are shown in Table 3.
 (光学フィルタの厚みの測定)
 レーザー変位計(キーエンス社製、製品名:LK-H008)を用いて、各実施例及び比較例1に係る光学フィルタの表裏面の距離を測定して、各実施例及び比較例1に係る光学フィルタの厚みを算出した。結果を表4に示す。
(Measurement of optical filter thickness)
Using a laser displacement meter (manufactured by Keyence Corporation, product name: LK-H008), the distance between the front and back surfaces of the optical filter according to each example and comparative example 1 is measured, and the optical according to each example and comparative example 1 is measured. The filter thickness was calculated. The results are shown in Table 4.
 (ヘイズの測定)
 ヘイズメーター(村上色彩技術研究所社製、製品名:HM-65L2)を用いて、各実施例及び比較例1に係る光学フィルタのヘイズをJIS K 7136:2000に準拠して測定した。
結果を表4に示す。
(Measure haze)
Using a haze meter (manufactured by Murakami Color Research Laboratory Co., Ltd., product name: HM-65L2), the haze of the optical filter according to each Example and Comparative Example 1 was measured in accordance with JIS K 7136: 2000.
The results are shown in Table 4.
 (分光透過率の測定)
 紫外線可視分光光度計(日本分光社製、製品名:V-670)を用いて、波長300nm~1200nmの光を0°の入射角度で各実施例及び比較例1に係る光学フィルタに入射させたときの透過率スペクトルを測定した。この透過率スペクトルから、各実施例及び比較例1に係る光学フィルタに対し、波長450~600nmにおける平均透過率、波長300~350nmにおける平均透過率、IRカットオフ波長、及びUVカットオフ波長を求めた。結果を表4に示す。実施例1、4、13、14、及び15並びに比較例1に係る透過率スペクトルをそれぞれ図3~図8に示す。
(Measurement of spectral transmittance)
Using an ultraviolet visible spectrophotometer (product name: V-670, manufactured by JASCO Corporation), light having a wavelength of 300 nm to 1200 nm was incident on the optical filter according to each of the examples and the comparative example 1 at an incident angle of 0 °. The transmittance spectrum was measured. From this transmittance spectrum, the average transmittance at a wavelength of 450 to 600 nm, the average transmittance at a wavelength of 300 to 350 nm, the IR cut-off wavelength, and the UV cut-off wavelength are obtained for the optical filters according to the examples and comparative example 1. It was. The results are shown in Table 4. The transmittance spectra according to Examples 1, 4, 13, 14, and 15 and Comparative Example 1 are shown in FIGS. 3 to 8, respectively.
 各実施例に係る光学フィルタにおいて、波長450nm~600nmにおける平均透過率は78%以上であり、波長300nm~350nmにおける平均透過率は0.2%未満であった。また、各実施例に係る光学フィルタにおいて、IRカットオフ波長は610nm~680nmの範囲内に存在し、UVカットオフ波長は380nm~430nmの範囲内に存在していた。この結果から、各実施例に係る光学フィルタは良好な透過率特性を有していた。加えて、各実施例に係る光学フィルタのヘイズは5%以下であった。このため、各実施例に係る光学フィルタは、透過率特性に加えて、ヘイズの観点からも良好な光学特性を有していた。 In the optical filter according to each example, the average transmittance at a wavelength of 450 nm to 600 nm was 78% or more, and the average transmittance at a wavelength of 300 nm to 350 nm was less than 0.2%. In the optical filter according to each example, the IR cutoff wavelength was in the range of 610 nm to 680 nm, and the UV cutoff wavelength was in the range of 380 nm to 430 nm. From this result, the optical filter according to each example had good transmittance characteristics. In addition, the haze of the optical filter according to each example was 5% or less. For this reason, the optical filter according to each example had good optical characteristics from the viewpoint of haze in addition to the transmittance characteristics.
 比較例1に係る光学フィルタにおいて、波長450nm~600nmにおける平均透過率は81.9%であり、波長300nm~350nmにおける平均透過率は0.2%未満であった。また、各実施例に係る光学フィルタにおいて、IRカットオフ波長は631nmであり、UVカットオフ波長は407nmであった。この結果から、比較例1に係る光学フィルタはある程度良好な透過率特性を有していた。一方、比較例1に係る光学フィルタのヘイズは、8.4%であり、5%を大きく超えていた。このため、比較例1に係る光学フィルタは、ヘイズの観点から望ましい光学特性を有しているとは言い難かった。 In the optical filter according to Comparative Example 1, the average transmittance at a wavelength of 450 nm to 600 nm was 81.9%, and the average transmittance at a wavelength of 300 nm to 350 nm was less than 0.2%. In the optical filter according to each example, the IR cutoff wavelength was 631 nm, and the UV cutoff wavelength was 407 nm. From this result, the optical filter according to Comparative Example 1 had a good transmittance characteristic to some extent. On the other hand, the haze of the optical filter according to Comparative Example 1 was 8.4%, greatly exceeding 5%. For this reason, it was difficult to say that the optical filter according to Comparative Example 1 had desirable optical characteristics from the viewpoint of haze.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 

Claims (10)

  1.  ホスホン酸及びスルホン酸の少なくとも一つの酸と銅イオンとによって形成された紫外線及び赤外線を吸収可能なUV‐IR吸収剤を含むUV‐IR吸収層を備え、
     5%以下のヘイズを有する、
     光学フィルタ。
    Comprising a UV-IR absorber layer comprising a UV-IR absorber capable of absorbing ultraviolet and infrared rays formed by at least one acid of phosphonic acid and sulfonic acid and copper ions;
    Having a haze of 5% or less,
    Optical filter.
  2.  0°の入射角度で波長300nm~1200nmの光を入射させたときに、
     (i)波長450nm~600nmにおいて78%以上の平均透過率を有し、
     (ii)波長300nm~350nmにおいて1%以下の分光透過率を有し、
     (iii)波長600nm~750nmにおいて波長の増加に伴い減少する分光透過率を有するとともに、波長600nm~750nmにおいて分光透過率が50%を示す第一IRカットオフ波長が波長610nm~680nmの範囲内に存在し、
     (iv)波長350nm~450nmにおいて波長の増加に伴い増加する分光透過率を有するとともに、波長350nm~450nmにおいて分光透過率が50%を示す第一UVカットオフ波長が波長380nm~430nmの範囲内に存在する、
     請求項1に記載の光学フィルタ。
    When light with a wavelength of 300 nm to 1200 nm is incident at an incident angle of 0 °,
    (I) having an average transmittance of 78% or more at a wavelength of 450 nm to 600 nm;
    (Ii) has a spectral transmittance of 1% or less at a wavelength of 300 nm to 350 nm,
    (Iii) The first IR cut-off wavelength having a spectral transmittance that decreases with increasing wavelength at a wavelength of 600 nm to 750 nm and a spectral transmittance of 50% at a wavelength of 600 nm to 750 nm is within the wavelength range of 610 nm to 680 nm. Exists,
    (Iv) The first UV cutoff wavelength having a spectral transmittance that increases with an increase in wavelength at a wavelength of 350 nm to 450 nm and a spectral transmittance of 50% at a wavelength of 350 nm to 450 nm is in the range of a wavelength of 380 nm to 430 nm. Exists,
    The optical filter according to claim 1.
  3.  前記ホスホン酸は、アリール基を有する第一ホスホン酸を含む、請求項1又は2に記載の光学フィルタ。 The optical filter according to claim 1 or 2, wherein the phosphonic acid includes a first phosphonic acid having an aryl group.
  4.  前記第一ホスホン酸は、その一部において、フェニル基における少なくとも1つの水素原子がハロゲン原子に置換されているハロゲン化フェニル基を有する、請求項3に記載の光学フィルタ。 The optical filter according to claim 3, wherein the first phosphonic acid has, in part, a halogenated phenyl group in which at least one hydrogen atom in the phenyl group is substituted with a halogen atom.
  5.  前記ホスホン酸は、アルキル基を有する第二ホスホン酸をさらに含む、請求項3又は4に記載の光学フィルタ。 The optical filter according to claim 3 or 4, wherein the phosphonic acid further includes a second phosphonic acid having an alkyl group.
  6.  光学フィルタ用組成物であって、
     ホスホン酸及びスルホン酸の少なくとも一つの酸と、銅イオンとを含み、
     当該光学フィルタ用組成物の塗膜を硬化させて100~300μmの厚みを有する層を形成したときに、前記層が紫外線及び赤外線を吸収可能であり、かつ、前記層のヘイズが5%以下である、
     組成物。
    An optical filter composition comprising:
    Including at least one acid of phosphonic acid and sulfonic acid, and copper ion,
    When the coating film of the optical filter composition is cured to form a layer having a thickness of 100 to 300 μm, the layer can absorb ultraviolet rays and infrared rays, and the haze of the layer is 5% or less. is there,
    Composition.
  7.  0°の入射角度で波長300nm~1200nmの光を前記層に入射させたときに、
     (I)波長450nm~600nmにおいて78%以上の平均透過率を有し、
     (II)波長300nm~350nmにおいて1%以下の分光透過率を有し、
     (III)波長600nm~750nmにおいて波長の増加に伴い減少する分光透過率を有するとともに、波長600nm~750nmにおいて分光透過率が50%を示す第一IRカットオフ波長が波長610nm~680nmの範囲内に存在し、
     (IV)波長350nm~450nmにおいて波長の増加に伴い増加する分光透過率を有するとともに、波長350nm~450nmにおいて分光透過率が50%を示す第一UVカットオフ波長が波長380nm~430nmの範囲内に存在する、
     請求項6に記載の組成物。
    When light having a wavelength of 300 nm to 1200 nm is incident on the layer at an incident angle of 0 °,
    (I) having an average transmittance of 78% or more at a wavelength of 450 nm to 600 nm,
    (II) has a spectral transmittance of 1% or less at a wavelength of 300 nm to 350 nm,
    (III) The first IR cutoff wavelength having a spectral transmittance that decreases with an increase in wavelength at a wavelength of 600 nm to 750 nm and a spectral transmittance of 50% at a wavelength of 600 nm to 750 nm is within the wavelength range of 610 nm to 680 nm. Exists,
    (IV) The first UV cut-off wavelength having a spectral transmittance that increases with an increase in wavelength at a wavelength of 350 nm to 450 nm and a spectral transmittance of 50% at a wavelength of 350 nm to 450 nm is in the range of a wavelength of 380 nm to 430 nm. Exists,
    The composition according to claim 6.
  8.  22~23℃において1~200mPa・sの粘度を有する、請求項6又は7に記載の組成物。 The composition according to claim 6 or 7, which has a viscosity of 1 to 200 mPa · s at 22 to 23 ° C.
  9.  固形分の含有量が3~17質量%である、請求項6~8のいずれか1項に記載の組成物。 The composition according to any one of claims 6 to 8, wherein the solid content is 3 to 17% by mass.
  10.  銅イオンの含有量が、0.5~2.2質量%である、請求項6~9のいずれか1項に記載の組成物。 The composition according to any one of claims 6 to 9, wherein the copper ion content is 0.5 to 2.2 mass%.
PCT/JP2019/017086 2018-04-27 2019-04-22 Optical filter and composition for optical filter WO2019208518A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019538708A JP6606626B1 (en) 2018-04-27 2019-04-22 Optical filter and optical filter composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-086686 2018-04-27
JP2018086686 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019208518A1 true WO2019208518A1 (en) 2019-10-31

Family

ID=68295330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017086 WO2019208518A1 (en) 2018-04-27 2019-04-22 Optical filter and composition for optical filter

Country Status (3)

Country Link
JP (4) JP6606626B1 (en)
TW (2) TWI791823B (en)
WO (1) WO2019208518A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110842A (en) * 2020-01-10 2021-08-02 日本板硝子株式会社 Optical filter
WO2023162864A1 (en) * 2022-02-22 2023-08-31 日本板硝子株式会社 Optical filter, light absorbing composition, method for producing optical filter, sensing device and sensing method
JP7474056B2 (en) 2020-01-10 2024-04-24 日本板硝子株式会社 Optical Filters

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248738A1 (en) * 2022-06-24 2023-12-28 日本板硝子株式会社 Light absorption body, light absorbent compound, liquid dispersion of light absorbent compound, light absorbent composition, optical filter, photoelectric conversion element, ambient light sensor, and imaging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123016A1 (en) * 2008-03-31 2009-10-08 株式会社クレハ Copper phosphonate compound, and infrared absorption material and laminate containing the copper phosphonate compound
JP2009242650A (en) * 2008-03-31 2009-10-22 Kureha Corp Copper salt composition, resin composition using the same, infrared-absorbing film and optical member
WO2017183671A1 (en) * 2016-04-21 2017-10-26 日本板硝子株式会社 Infrared-absorbing composition, infrared-cut filter, optical system for imaging
JP6267823B1 (en) * 2017-07-27 2018-01-24 日本板硝子株式会社 Optical filter, camera module, and information terminal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2633170B2 (en) * 1992-08-20 1997-07-23 呉羽化学工業株式会社 Optical filter
JP5594110B2 (en) * 2010-01-15 2014-09-24 旭硝子株式会社 Lens for imaging apparatus and imaging apparatus
JP5611631B2 (en) * 2010-03-25 2014-10-22 株式会社クレハ Near-infrared absorbing filter and manufacturing method thereof
JP6180379B2 (en) * 2013-07-12 2017-08-16 富士フイルム株式会社 Near-infrared absorbing composition, near-infrared cut filter, method for producing the same, and solid-state imaging device
JP6232161B1 (en) * 2017-07-27 2017-11-15 日本板硝子株式会社 Optical filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123016A1 (en) * 2008-03-31 2009-10-08 株式会社クレハ Copper phosphonate compound, and infrared absorption material and laminate containing the copper phosphonate compound
JP2009242650A (en) * 2008-03-31 2009-10-22 Kureha Corp Copper salt composition, resin composition using the same, infrared-absorbing film and optical member
WO2017183671A1 (en) * 2016-04-21 2017-10-26 日本板硝子株式会社 Infrared-absorbing composition, infrared-cut filter, optical system for imaging
JP6267823B1 (en) * 2017-07-27 2018-01-24 日本板硝子株式会社 Optical filter, camera module, and information terminal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021110842A (en) * 2020-01-10 2021-08-02 日本板硝子株式会社 Optical filter
JP7474056B2 (en) 2020-01-10 2024-04-24 日本板硝子株式会社 Optical Filters
WO2023162864A1 (en) * 2022-02-22 2023-08-31 日本板硝子株式会社 Optical filter, light absorbing composition, method for producing optical filter, sensing device and sensing method

Also Published As

Publication number Publication date
JP6646179B2 (en) 2020-02-14
JPWO2019208518A1 (en) 2020-04-30
JP6783966B2 (en) 2020-11-11
TW202001301A (en) 2020-01-01
JP2020024446A (en) 2020-02-13
JP6606626B1 (en) 2019-11-13
JP2020024447A (en) 2020-02-13
TWI791823B (en) 2023-02-11
JP2020112826A (en) 2020-07-27
JP6686222B2 (en) 2020-04-22
TW202323871A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
US11885993B2 (en) Optical filter and method of manufacturing
US20230152502A1 (en) Optical filter and camera-equipped information device
JP6538294B1 (en) Optical filter and imaging device
JP6783966B2 (en) Optical filter
JP6435033B1 (en) Optical filter
JP6368443B1 (en) UV-IR absorbing composition
JP6368444B1 (en) Manufacturing method of optical filter
JP6368417B1 (en) Optical filter
JP6778222B2 (en) Optical filter and camera module
JP6634541B1 (en) Optical filter, camera module, and information terminal
JP6634540B1 (en) Optical filter, camera module, and information terminal
JP6640404B2 (en) Information terminal with optical filter and camera
JP6545780B2 (en) Optical filter and information terminal with camera
JP6516948B1 (en) Optical filter and imaging device
JP2020057009A (en) Optical filter and information terminal with camera

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019538708

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793463

Country of ref document: EP

Kind code of ref document: A1