WO2019208324A1 - Semiconductor composition, semiconductor resin composite composition, semiconductor sensor, method of producing semiconductor composition, and method of producing semiconductor resin composite composition - Google Patents

Semiconductor composition, semiconductor resin composite composition, semiconductor sensor, method of producing semiconductor composition, and method of producing semiconductor resin composite composition Download PDF

Info

Publication number
WO2019208324A1
WO2019208324A1 PCT/JP2019/016279 JP2019016279W WO2019208324A1 WO 2019208324 A1 WO2019208324 A1 WO 2019208324A1 JP 2019016279 W JP2019016279 W JP 2019016279W WO 2019208324 A1 WO2019208324 A1 WO 2019208324A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
composition
metal oxide
resin composite
metal
Prior art date
Application number
PCT/JP2019/016279
Other languages
French (fr)
Japanese (ja)
Inventor
鷹一 斎藤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2020516253A priority Critical patent/JP6977874B2/en
Publication of WO2019208324A1 publication Critical patent/WO2019208324A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a semiconductor composition, a semiconductor resin composite composition, a semiconductor sensor, a method for producing a semiconductor composition, and a method for producing a semiconductor resin composite composition.
  • metal oxide semiconductors have a wide band gap, and show high charge carrier concentration, mobility, optical / thermal / electronic characteristics, and are therefore used in various devices using these characteristics.
  • a bulk semiconductor composition is generally used in a device using a metal oxide semiconductor.
  • Methods for obtaining bulk metal oxides include high-temperature firing of metal oxide fine particles, atomic layer lamination (ALD) method under high vacuum, sol-gel method, etc. There is a problem that a large load is applied to the material.
  • metal oxides are generally hard and brittle materials, and when used in bulk, distortion and cracking occur due to impact, stress, thermal shock, etc., and there is a problem of limiting the application and use environment of the device. .
  • Patent Document 1 discloses a technique using a semiconductor resin composite composition in which a semiconductor or a precursor thereof and a resin are combined and semiconductor particles are dispersed in the resin.
  • semiconductor particles with semiconductor characteristics dispersed in the resin are carried, and by reducing the impact and stress from the outside with the resin matrix, the damage received by the semiconductor particles can be reduced, and a certain flexibility can be given.
  • the electrical conduction in the semiconductor particles is either band conduction or hopping conduction, and the electrical resistivity can be considered constant, but the conduction between the semiconductor particles is tunnel conduction, It is strongly influenced by fluctuations in distance, particle surface defects, distribution of dopants existing near the particle surface, and trap levels accompanying polar functional groups adsorbed on the particle surface. For this reason, it is difficult to stably maintain electrical characteristics as a semiconductor, and the use of the characteristics is limited as compared with a bulk semiconductor.
  • the present invention has been made to solve the above-described problem, and an object thereof is to suppress instability of electrical characteristics caused by the influence of tunnel conduction accompanying discontinuity of a semiconductor layer.
  • the semiconductor composition of the present invention is a semiconductor composition containing a metal oxide semiconductor, wherein the metal oxide semiconductor is mutually connected by a continuous portion containing a semiconducting metal oxide having a composition different from that of the metal oxide semiconductor. They are connected to form a continuous phase.
  • the semiconductor resin composite composition of the present invention is characterized in that the semiconductor composition of the present invention is disposed in a resin.
  • the semiconductor sensor of the present invention comprises the semiconductor resin composite composition of the present invention.
  • the method for producing a semiconductor composition of the present invention is a method for producing the semiconductor composition of the present invention, comprising a mixture production step of producing a mixture by mixing a metal oxide semiconductor and metal nanoparticles, and the above mixture.
  • the method for producing a semiconductor resin composite composition of the present invention is a method for producing the semiconductor resin composite composition of the present invention, comprising a step of producing a resin mixture by mixing a metal oxide semiconductor, metal nanoparticles, and a resin. And a step of heating and / or light baking the resin mixture.
  • FIG. 1 is a schematic view showing an example of the semiconductor composition of the present invention.
  • FIG. 2 is a schematic view showing an example of the semiconductor resin composite composition of the present invention.
  • FIG. 3A is a diagram schematically showing an example of the semiconductor sensor of the present invention, and
  • FIG. 3B is an enlarged view of the sensing unit 60 shown in FIG.
  • FIG. 4 is a diagram schematically showing an example of a mixture produced in the step of producing a mixture constituting the method for producing a semiconductor composition of the present invention.
  • Fig.5 (a) is a SEM image of the semiconductor resin composite composition which concerns on Example 1,
  • FIG.5 (b) expands the area
  • the semiconductor composition the semiconductor resin composite composition, the semiconductor sensor, the method for manufacturing the semiconductor composition, and the method for manufacturing the semiconductor resin composite composition of the present invention will be described.
  • the present invention is not limited to the following configurations, and can be applied with appropriate modifications without departing from the scope of the present invention.
  • the present invention also includes a combination of two or more desirable configurations of the present invention described below.
  • the semiconductor composition of the present invention is a semiconductor composition containing a metal oxide semiconductor, wherein the metal oxide semiconductor is mutually connected by a continuous portion containing a semiconducting metal oxide having a composition different from that of the metal oxide semiconductor. They are connected to form a continuous phase.
  • the metal oxide semiconductor is connected to each other by a continuous portion including a semiconducting metal oxide having a composition different from that of the metal oxide semiconductor to form a continuous phase.
  • Conduction between semiconductors is not tunnel conduction but band conduction or hopping conduction depending on the band gap of the semiconductor metal oxide. For this reason, the influence of fluctuations in the distance between metal oxide semiconductors and the state near the surface of metal oxide semiconductors, such as defects, dopant distribution, adsorbing functional groups, etc., is eliminated, and the electrical characteristics as a semiconductor are stabilized. Can keep.
  • the metal oxide semiconductor and the continuous part have different compositions.
  • the metal oxide semiconductor and the continuous portion are not completely identical, and the metal oxide semiconductor and the continuous portion can be distinguished from each other by, for example, appearance observation such as SEM or elemental analysis such as XRF. That is, the metal oxide semiconductor and the continuous part may contain a compound having the same composition.
  • FIG. 1 is a schematic view showing an example of the semiconductor composition of the present invention.
  • the semiconductor composition 1 includes a metal oxide semiconductor 10 and a continuous portion 11 to form a continuous phase.
  • the continuous part 11 includes a semiconductive metal oxide having a composition different from that of the metal oxide semiconductor 10.
  • the metal oxide semiconductors 10 are connected to each other by a continuous portion 11. Therefore, conduction between the metal oxide semiconductors 10 in the semiconductor composition 1 depends on the material constituting the continuous portion 11. Since the continuous portion 11 includes a semiconductor metal oxide having a composition different from that of the metal oxide semiconductor 10, the conduction between the metal oxide semiconductors 10 depends on the band gap of the semiconductor metal oxide.
  • the continuous part includes a metal element constituting the metal oxide semiconductor.
  • the metal element constituting the metal oxide semiconductor is contained in the continuous portion, the electrical characteristics of the semiconductor composition are likely to be stabilized.
  • the material constituting the metal oxide semiconductor is not particularly limited as long as it is a metal oxide having semiconductivity, but zinc oxide, tin oxide, copper oxide, indium oxide, gallium oxide, manganese oxide Indium tin oxide (also referred to as ITO), antimony tin oxide (also referred to as ATO), and the like.
  • the shape of the metal oxide semiconductor is not particularly limited, but considering that it is desirable that the surface area be small in order to suppress tunnel conduction, a plate shape or a spherical shape is preferable to an indeterminate shape, and a spherical shape is more preferable.
  • the average particle size of the metal oxide semiconductor is not particularly limited, but is preferably 0.05 ⁇ m or more and 50 ⁇ m or less, more preferably 0.1 ⁇ m or more and 25 ⁇ m or less, and 0.25 ⁇ m or more and 2.5 ⁇ m or less. Is more desirable.
  • the average particle diameter of the metal oxide semiconductor is obtained by measuring the particle size distribution of the metal oxide semiconductor using a microtrack measuring device (laser diffraction, scattering method) and calculating the value of D50.
  • the average particle diameter of the metal oxide semiconductor is less than 0.05 ⁇ m, the number of contacts between the metal oxide semiconductor and the continuous portion is excessive, and the contribution ratio of band conduction or hopping conduction to the conductivity of the entire semiconductor composition May decrease, and desired electrical characteristics may not be exhibited.
  • the average particle diameter of the metal oxide semiconductor exceeds 50 ⁇ m, it becomes difficult to connect the metal oxide semiconductors to each other by the continuous portion, and the shape stability of the semiconductor composition may be lowered and become brittle. .
  • the composition of the semiconductive metal oxide constituting the continuous portion and the composition of the metal oxide semiconductor need not be completely the same, but the metal element and metal constituting the semiconductive metal oxide
  • the metal element included in the oxide semiconductor is preferably the same.
  • the metal oxide semiconductor is Mn 3 O 4 and the continuous part is a semiconductive metal
  • MnO x the oxidation number is indefinite
  • the distance between metal oxide semiconductors connected by the continuous part is not particularly limited, but is preferably 1 nm or more and 50 nm or less, and more preferably 3 nm or more and 15 nm or less.
  • the thickness of the continuous portion exceeds 50 nm, the characteristics of the continuous phase become larger than the characteristics of the metal oxide semiconductor, and it becomes difficult to obtain the target characteristics.
  • the thickness of the continuous portion is less than 1 nm, the thickness of the continuous portion is too thin, so that direct tunnel conduction occurs between metal oxide semiconductors, making it difficult to reduce instability of electrical characteristics. There is.
  • the thickness of the continuous part is determined between two metal oxide semiconductors connected by a continuous part in a region of 100 nm ⁇ 100 nm, which is randomly extracted from an enlarged image when the semiconductor composition is observed with a scanning electron microscope. Use the average distance.
  • the distance between metal oxide semiconductors in each SEM image can be obtained by analyzing with commercially available image processing software (for example, “Particle Analysis” manufactured by NSST).
  • the ratio of the metal oxide semiconductor constituting the semiconductor composition of the present invention is not particularly limited as long as it is 70% by weight or more, but is preferably 80% by weight or more, and more preferably 90% by weight or more. When the ratio of the metal oxide semiconductor is less than 70% by weight, the contribution to the electrical characteristics of the oxide semiconductor becomes too small, and desired electrical characteristics as a semiconductor may not be obtained.
  • the semiconductor composition may include an oxide semiconductor having a composition different from that of the metal oxide semiconductor, carbon, and a metal element that does not contribute to conduction of the entire semiconductor composition.
  • the semiconductor resin composite composition of the present invention is characterized in that the semiconductor composition of the present invention is disposed in a resin. Since the semiconductor composition of the present invention is disposed in the resin, the semiconductor resin composite composition of the present invention has stable electrical characteristics as a semiconductor and is excellent in flexibility and stretchability as a semiconductor element.
  • FIG. 2 is a schematic view showing an example of the semiconductor resin composite composition of the present invention.
  • the semiconductor resin composite composition 3 is obtained by arranging the semiconductor composition 1 in a resin 12.
  • the composition of the semiconductor composition 1 is the same as that of the semiconductor composition of the present invention. Since the semiconductor resin composite composition 3 is formed by arranging the semiconductor composition 1 in the resin 12, the semiconductor resin composite composition 3 has electrical characteristics as a semiconductor similarly to the semiconductor composition 1, and is excellent in flexibility and stretchability.
  • the resin used in the semiconductor resin composite composition of the present invention is not particularly limited, but it is desirable that the semiconductor resin composite composition can be provided with stretchability and flexibility, and examples thereof include thermosetting resins and thermoplastic resins.
  • thermosetting resin include an epoxy resin, a phenol resin, a melamine resin, and a thermosetting polyimide.
  • thermoplastic resin include an alkyl resin, polyurethane, silicone, and polyamide.
  • the volume ratio of the resin is desirably 5% by volume or more and 80% by volume or less. If the volume ratio of the resin is less than 5% by volume, sufficient flexibility and stretchability may not be ensured as the semiconductor resin composite composition. On the other hand, when the volume ratio which a resin occupies exceeds 80 volume%, it becomes difficult for a semiconductor composition to maintain a continuous phase in resin, and the electrical characteristics as a semiconductor may become unstable.
  • the semiconductor sensor of the present invention comprises the semiconductor resin composite composition of the present invention. Since the semiconductor resin composite composition of the present invention has stable electrical characteristics as a semiconductor and is excellent in flexibility and stretchability, the semiconductor sensor of the present invention comprising such a semiconductor resin composite composition is durable. And excellent reliability.
  • the semiconductor sensor of the present invention can be used for various sensors according to the semiconductor characteristics of the semiconductor resin composite composition, and can be used as, for example, a pressure (strain) sensor, a temperature sensor, a humidity sensor, a sound sensor, and the like.
  • FIG. 3A is a diagram schematically showing an example of the semiconductor sensor of the present invention
  • FIG. 3B is an enlarged view of the sensing unit 60 shown in FIG.
  • the semiconductor sensor 100 includes a main wiring 50 disposed on the semiconductor resin composite composition 3 and a sensing unit 60 disposed in a lattice pattern in the main wiring 50.
  • the sensing unit 60 includes opposing comb-shaped electrodes (also referred to as comb-shaped electrodes) 61a and 61b. As shown in FIG.
  • the semiconductor sensor 100 includes: Functions as a pressure sensor. Moreover, when the semiconductor resin composite composition 3 has a characteristic of changing the resistance value with respect to the temperature, the semiconductor sensor 100 functions as a temperature sensor.
  • the material constituting the electrode is not particularly limited, but may be a metal such as Cu, Ni, Ag, Au, or a conductive polymer such as PEDOT / PSS. Also good.
  • FIG. 3 demonstrated the example of the semiconductor sensor by which the semiconductor resin composite composition of this invention is arrange
  • the position of an electrode and a semiconductor resin composite composition is demonstrated.
  • the relationship is not limited to that shown in FIG.
  • electrode patterns having substantially the same shape may be arranged in the thickness direction on both surfaces of a layered material containing a semiconductor resin composite composition.
  • the method for producing a semiconductor composition of the present invention is a method for producing the semiconductor composition of the present invention, comprising a mixture production step of producing a mixture by mixing a metal oxide semiconductor and metal nanoparticles, and the above mixture. A heating step of heating and / or a photo-baking step of photo-baking the mixture.
  • a metal oxide semiconductor and metal nanoparticles are mixed to prepare a mixture, and then the mixture is heated and / or light baked.
  • the metal nanoparticles exist around the metal oxide semiconductor.
  • the metal nano particles existing around the metal oxide semiconductor are melted and oxidized, and a continuous part joining the metal oxide semiconductors is formed. It is thought that it is formed.
  • the continuous part is composed of a semiconducting metal oxide which is an oxide of metal nanoparticles and non-oxidized metal nanoparticles, and the semiconducting metal oxide has semiconducting properties.
  • the band conduction or hopping conduction of the semiconducting metal oxide, which is an oxide of nanoparticles, is considered to be dominant. If it does so, the semiconductor composition obtained by the manufacturing method of the semiconductor composition of this invention is the semiconductor composition of this invention, and the electrical property as a semiconductor is stable.
  • FIG. 4 is a diagram schematically showing an example of a mixture produced in the step of producing a mixture constituting the method for producing a semiconductor composition of the present invention.
  • the mixture 5 includes a metal oxide semiconductor 10 and metal nanoparticles 13.
  • the metal nanoparticles 13 are adsorbed on the surface of the metal oxide semiconductor 10 while causing a melting / oxidation reaction, thereby forming a continuous portion 11 as shown in FIG. Is done.
  • the temperature of the mixture in the heating step and / or the light baking step is lower than the sintering temperature of the metal oxide semiconductor.
  • the sintering temperature is a temperature at which each chemical species constituting the metal oxide semiconductor particles moves to lower the surface free energy, and is usually a temperature that is 90% or more of the melting point in absolute temperature.
  • the heating process is complicated.
  • the metal constituting the metal nanoparticle is bonded to oxygen on the surface of the metal oxide semiconductor by melting and oxidizing the metal nanoparticle.
  • the energy is small compared to the thermal energy required to sinter the metal oxide semiconductor. Accordingly, even if the heating step and / or the light firing step are performed under such conditions that the temperature of the mixture is lower than the sintering temperature of the metal oxide semiconductor, the metal oxide semiconductors are melted and oxidized by the metal nanoparticles.
  • the continuous part which connects can be formed.
  • since it is not necessary to sinter the metal oxide semiconductor there is no need for addition of a reducing agent or sintering aid, or a reduced pressure condition. As mentioned above, in the manufacturing method of the semiconductor composition of this invention, manufacturing cost can be suppressed.
  • the heating temperature in the heating step is desirably 100 ° C. or more lower than the sintering temperature of the metal oxide semiconductor, more desirably 200 ° C. or more, and desirably 300 ° C. or less. More desirable.
  • energy for manufacturing can be reduced.
  • the light baking step is a non-heating step.
  • Light baking is a method of causing a chemical reaction by irradiating an object (mixture) with light (electromagnetic waves). According to light baking, since the object to which energy is given can be selected, it can be processed without damaging materials other than the object. Therefore, a material that cannot be used in a general baking process, such as a resin that disappears in a normal baking process, can be added to the mixture, which increases the degree of freedom in design. In addition, since the time for photo-baking is generally about microseconds to milliseconds, the time required for forming the continuous portion is very short, and the manufacturing cost can be suppressed.
  • the mixture is exothermic and does not.
  • microwaves when microwaves are used for a specific material, energy can be transmitted and chemical reactions can occur without passing through the form of “heat”.
  • light baking is performed without heat generation of the mixture.
  • the case where the mixture is not heated is also referred to as a non-heating step.
  • the amount of energy irradiated by the light source is not particularly limited, but is desirably 1 J / cm 2 or more and 10 J / cm 2 or less.
  • the amount of energy irradiated by the light source is not particularly limited, but is desirably 1 J / cm 2 or more and 10 J / cm 2 or less.
  • the energy amount is less than 1 J / cm 2 , the energy necessary for melting and oxidizing the metal nanoparticles cannot be sufficiently supplied, and a continuous phase may not be formed.
  • the amount of energy exceeds 10 J / cm 2 , the energy per area applied to the mixture becomes too large and may cause side reactions such as evaporation of metal nanoparticles.
  • the average particle diameter of a metal nanoparticle is not specifically limited, It is desirable that they are 5 nm or more and 100 nm or less. When the average particle diameter of the metal nanoparticles is less than 5 nm, there are few contacts between the continuous portions when the metal nanoparticles are melted and oxidized by heating or light baking, and the electrical characteristics of the semiconductor composition may not be stable. On the other hand, when the average particle diameter of the metal nanoparticles exceeds 100 nm, the size of the metal nanoparticles is too large, and the metal oxide semiconductors may not be sufficiently connected by the continuous part.
  • the metal element constituting the metal nanoparticle is not particularly limited, but is preferably a metal having a standard oxidation-reduction potential of ⁇ 2.5 V to +0.8 V, preferably ⁇ 2.0 V to +0.4 V. Is more desirable.
  • a metal element having a standard oxidation-reduction potential of less than ⁇ 2.5 V is adopted as the metal nanoparticle, the metal nanoparticle is likely to react with moisture and oxygen in the atmosphere, making handling difficult.
  • the standard oxidation-reduction potential exceeds +0.8 V, it is difficult to oxidize in the firing step, and it is necessary to input a large amount of energy in order to advance the oxidation.
  • the metal nanoparticle which is not oxidized is easy to be contained in the continuous part after heating and / or photobaking.
  • it is desirable that the non-oxidized metal nanoparticles are contained in a small amount.
  • the amount of the metal nanoparticles is too large, the electrical properties of the semiconductor composition may be reduced. The contribution of metal nanoparticles increases, making it difficult to obtain desired semiconductor characteristics.
  • a light baking step is performed. According to light baking, since the target to which energy is given can be selected, processing can be performed without damaging materials other than the target.
  • the wavelength of the light irradiated in light baking is not specifically limited, A gamma ray, X-ray
  • the wavelength at which a chemical reaction can be directly caused by irradiated energy, or a heat reaction can be caused after conversion to heat can be appropriately selected according to the composition of the mixture to be irradiated.
  • the light source for irradiating light may be a single wavelength light source (for example, laser light source) or a light source (for example, lamp light source) having a predetermined emission spectrum. Moreover, you may provide the filter which absorbs the light of an unnecessary wavelength as needed.
  • a plurality of light sources having different light sources may be irradiated simultaneously, the light source A is irradiated in the first baking step, and the light source B is irradiated in the subsequent second baking step.
  • heating the resin at a temperature equal to or higher than the glass transition point of the resin softens the resin and does not inhibit the oxidation of the metal nanoparticles.
  • the metal element constituting the metal oxide semiconductor and the metal element constituting the metal nanoparticle are the same.
  • the metal element composing the metal oxide semiconductor is the same as the metal element composing the metal nanoparticle, the contact between the metal oxide semiconductor and the continuous portion connecting the metal oxide semiconductors is improved, and the semiconductor As a result, it becomes easier to stabilize the electrical characteristics.
  • the temperature of the mixture in the heating step and / or the light baking step is lower than the sintering temperature of the metal oxide semiconductor.
  • the melting start temperature and the oxidation start temperature of metal nanoparticles that are metals are lower than the sintering temperature of metal oxide semiconductors that are oxides, and therefore lower than the sintering temperature of metal oxide semiconductors. The melting and oxidation of the metal nanoparticles are started to obtain the semiconductor composition of the present invention.
  • the temperature of the mixture in the heating step and / or the light firing step is lower than the sintering temperature of the metal oxide semiconductor. Even if it sets to temperature, a semiconductor composition can be manufactured and it is excellent from a viewpoint of manufacturing cost.
  • the method for producing a semiconductor resin composite composition of the present invention is a method for producing the semiconductor resin composite composition of the present invention, comprising a step of producing a resin mixture by mixing a metal oxide semiconductor, metal nanoparticles, and a resin. And a step of heating and / or light baking the resin mixture.
  • a metal oxide semiconductor, metal nanoparticles, and a resin are mixed to prepare a resin mixture, and then the resin mixture is heated and / or light baked.
  • a resin mixture obtained by mixing a metal oxide semiconductor, metal nanoparticles, and a resin it is considered that the metal nanoparticles are dispersed in the resin in a state where the metal nanoparticles exist around the metal oxide semiconductor.
  • the metal nanoparticles present around the metal oxide semiconductor are melted and oxidized to form a continuous portion where the metal oxide semiconductors are joined together. It is done.
  • the continuous part is composed of a semiconducting metal oxide which is an oxide of metal nanoparticles and non-oxidized metal nanoparticles, and the semiconducting metal oxide has semiconducting properties.
  • the band conduction or hopping conduction of the semiconducting metal oxide, which is an oxide of nanoparticles, is considered to be dominant.
  • the semiconductor resin composite composition obtained by the method for producing a semiconductor resin composite composition of the present invention is the semiconductor resin composite composition of the present invention, and has stable electrical characteristics as a semiconductor, and further as a semiconductor element. Excellent flexibility and elasticity.
  • the metal oxide semiconductor and metal nanoparticles used in the method for producing a semiconductor resin composite composition of the present invention can be preferably used. .
  • the conditions in the heating process and the light baking process are also the same.
  • metal indium particles average particles, metal nanoparticles
  • the dried body of the above mixture was irradiated with light having an intensity of 4.6 J / cm 2 for 500 microseconds using a xenon lamp (radiation wavelength: 200 to 1000 nm) for 500 microseconds.
  • a semiconductor resin composite composition was obtained.
  • Example 2 to 12 The semiconductor resin composite compositions according to Examples 2 to 12 in the same procedure as in Example 1 except that the types and addition amounts of metal oxide semiconductors and the types and addition amounts of metal nanoparticles were changed as shown in Table 1. Got.
  • Comparative Examples 1 to 5 The semiconductor resin composite compositions according to Comparative Examples 1 to 5 were prepared in the same procedure as in Example 1 except that the type and addition amount of the metal oxide semiconductor were changed as shown in Table 1 and no metal nanoparticles were added. Got.
  • FIGS. 5 (a) and 5 (b) are SEM images of the semiconductor resin composite composition which concerns on Example 1
  • FIG.5 (b) expands the area
  • the contrast is adjusted.
  • FIGS. 5A and 5B in the semiconductor resin composite composition according to Example 1, the metal oxide semiconductors 10 (the relatively black portions in FIG. 5B) are It can be confirmed that the continuous phase is constituted by being connected to each other by the continuous portion 11 having a mesh shape (a relatively gray portion or a white portion in FIG. 5B).
  • the white part around the area labeled (10, 11) in FIG. 5B only looks white due to the irradiation angle of the electron gun and contrast adjustment at the time of imaging.
  • the resistance variation rate is obtained by dividing the difference between the initial resistance value and the calculated value 60 minutes after the start of measurement (R 60min ) by the initial resistance value [(R 60min ⁇ R 5min ) / (R 5min ) ⁇ 100]. Calculated as [%]. The results are shown in Table 1.
  • the semiconductor resin composite compositions according to Examples 1 to 12 have lower initial resistance values than those of Comparative Examples 1 to 5 that do not contain metal nanoparticles, and the resistance variation rate approaches 0%. I found out. This is because the semiconductor resin composite compositions according to Comparative Examples 1 to 5 do not contain metal nanoparticles that are continuous parts, and thus form a continuous phase in which the metal oxide semiconductors in the resin are connected to each other by connection parts. It is considered that the initial resistance value has increased because the effect of tunnel conduction between metal oxide semiconductors cannot be ignored. Tunnel conduction is influenced by the state near the surface of the metal oxide semiconductor, for example, defects, dopant distribution, adsorbing functional groups, and the like, so that the trap level is not stable.
  • the initial resistance value is lower than that of the semiconductor resin composite compositions according to Comparative Examples 1 to 5 that do not contain metal nanoparticles. Therefore, it is considered that metal oxide semiconductors are connected to each other by metal nanoparticles to form a continuous phase. Further, since the continuous phase is formed, it is presumed that the resistance fluctuation rate approaches 0% without being affected by the state near the surface of the metal oxide semiconductor.
  • the semiconductor composition of the present invention can be used as a flexible transparent electrode, and is expected to be applied as an optical sensor, gas sensor, pressure (strain) sensor, temperature / humidity sensor, and sound sensor using the semiconductor characteristics of an oxide semiconductor. it can.

Abstract

The present invention relates to a semiconductor composition that comprises metal-oxide semiconductors, the semiconductor composition being characterized in that the metal-oxide semiconductors form a continuous phase by being linked to one another by a continuous portion that comprises a semiconducting metal oxide that has a composition different from that of the metal-oxide semiconductors.

Description

半導体組成物、半導体樹脂複合組成物、半導体センサ、半導体組成物の製造方法及び半導体樹脂複合組成物の製造方法Semiconductor composition, semiconductor resin composite composition, semiconductor sensor, method for manufacturing semiconductor composition, and method for manufacturing semiconductor resin composite composition
本発明は、半導体組成物、半導体樹脂複合組成物、半導体センサ、半導体組成物の製造方法及び半導体樹脂複合組成物の製造方法に関する。 The present invention relates to a semiconductor composition, a semiconductor resin composite composition, a semiconductor sensor, a method for producing a semiconductor composition, and a method for producing a semiconductor resin composite composition.
金属酸化物半導体は、多くが広いバンドギャップを有し、高い電荷担体濃度や移動度、光・熱・電子特性を示すため、これらの特性を利用した様々なデバイスに用いられている。これらのデバイスでは半導体のバンドギャップを積極的に利用する必要があるため、デバイス内で金属酸化物半導体中に導通をとる必要がある。このため、金属酸化物半導体を用いるデバイスでは、バルク状の半導体組成物が一般に用いられる。 Many metal oxide semiconductors have a wide band gap, and show high charge carrier concentration, mobility, optical / thermal / electronic characteristics, and are therefore used in various devices using these characteristics. In these devices, since it is necessary to actively use the band gap of the semiconductor, it is necessary to establish conduction in the metal oxide semiconductor in the device. For this reason, in a device using a metal oxide semiconductor, a bulk semiconductor composition is generally used.
バルク状の金属酸化物を得る手法としては、金属酸化物微粒子の高温焼成、高真空下での原子層積層(ALD)法、ゾルゲル法などが挙げられるが、いずれの手法もデバイスを構成する他の材料に大きな負荷をかけるという問題がある。
さらに、金属酸化物は一般に硬く脆い材料であり、バルク状で使用する場合、衝撃・応力・熱衝撃などにより歪やクラックが生じるため、デバイスの用途や使用環境を限定してしまうという問題がある。
Methods for obtaining bulk metal oxides include high-temperature firing of metal oxide fine particles, atomic layer lamination (ALD) method under high vacuum, sol-gel method, etc. There is a problem that a large load is applied to the material.
In addition, metal oxides are generally hard and brittle materials, and when used in bulk, distortion and cracking occur due to impact, stress, thermal shock, etc., and there is a problem of limiting the application and use environment of the device. .
これらの問題を回避するため、特許文献1には、半導体あるいはその前駆体と樹脂とを複合化させ、樹脂中に半導体粒子が分散した半導体樹脂複合組成物を用いる手法が開示されている。このコンポジットでは、半導体特性を樹脂中に分散した半導体粒子が担い、外部からの衝撃や応力を樹脂マトリクスにより緩和することで半導体粒子の受けるダメージを減じるほか、一定の柔軟性を付与させることができる。 In order to avoid these problems, Patent Document 1 discloses a technique using a semiconductor resin composite composition in which a semiconductor or a precursor thereof and a resin are combined and semiconductor particles are dispersed in the resin. In this composite, semiconductor particles with semiconductor characteristics dispersed in the resin are carried, and by reducing the impact and stress from the outside with the resin matrix, the damage received by the semiconductor particles can be reduced, and a certain flexibility can be given. .
特開2012-109088号公報JP 2012-109088 A
しかしながら、上記の半導体樹脂複合組成物では、半導体粒子内の電気伝導はバンド伝導・ホッピング伝導のいずれかであり電気抵抗率は一定と見なせるものの、半導体粒子間の伝導はトンネル伝導であり、粒子間距離の変動や、粒子の表面欠陥や粒子表面近傍に存在するドーパントの分布、粒子表面に吸着した極性官能基などに伴うトラップ準位に強く影響される。このため、半導体としての電気特性を安定的に保つことが難しく、バルク状の半導体に比べその特性の利用は制限される。 However, in the above semiconductor resin composite composition, the electrical conduction in the semiconductor particles is either band conduction or hopping conduction, and the electrical resistivity can be considered constant, but the conduction between the semiconductor particles is tunnel conduction, It is strongly influenced by fluctuations in distance, particle surface defects, distribution of dopants existing near the particle surface, and trap levels accompanying polar functional groups adsorbed on the particle surface. For this reason, it is difficult to stably maintain electrical characteristics as a semiconductor, and the use of the characteristics is limited as compared with a bulk semiconductor.
本発明は上記の問題を解決するためになされたものであり、半導体層の不連続性に伴うトンネル伝導の影響により生じる電気特性の不安定性を抑制することを目的とする。 The present invention has been made to solve the above-described problem, and an object thereof is to suppress instability of electrical characteristics caused by the influence of tunnel conduction accompanying discontinuity of a semiconductor layer.
本発明の半導体組成物は、金属酸化物半導体を含む半導体組成物であって、上記金属酸化物半導体が、上記金属酸化物半導体とは異なる組成を有する半導体性金属酸化物を含む連続部により互いに連結されて連続相を構成していることを特徴とする。 The semiconductor composition of the present invention is a semiconductor composition containing a metal oxide semiconductor, wherein the metal oxide semiconductor is mutually connected by a continuous portion containing a semiconducting metal oxide having a composition different from that of the metal oxide semiconductor. They are connected to form a continuous phase.
本発明の半導体樹脂複合組成物は、本発明の半導体組成物が樹脂中に配置されることを特徴とする。 The semiconductor resin composite composition of the present invention is characterized in that the semiconductor composition of the present invention is disposed in a resin.
本発明の半導体センサは、本発明の半導体樹脂複合組成物を含んでなることを特徴とする。 The semiconductor sensor of the present invention comprises the semiconductor resin composite composition of the present invention.
本発明の半導体組成物の製造方法は、本発明の半導体組成物を製造する方法であって、金属酸化物半導体と金属ナノ粒子とを混合して混合物を作製する混合物作製工程と、上記混合物を加熱する加熱工程及び/又は上記混合物を光焼成する光焼成工程と、を備えることを特徴とする。 The method for producing a semiconductor composition of the present invention is a method for producing the semiconductor composition of the present invention, comprising a mixture production step of producing a mixture by mixing a metal oxide semiconductor and metal nanoparticles, and the above mixture. A heating step of heating and / or a photo-baking step of photo-baking the mixture.
本発明の半導体樹脂複合組成物の製造方法は、本発明の半導体樹脂複合組成物を製造する方法であって、金属酸化物半導体と金属ナノ粒子と樹脂を混合して樹脂混合物を作製する工程と、上記樹脂混合物を加熱及び/又は光焼成する工程と、を備えることを特徴とする。 The method for producing a semiconductor resin composite composition of the present invention is a method for producing the semiconductor resin composite composition of the present invention, comprising a step of producing a resin mixture by mixing a metal oxide semiconductor, metal nanoparticles, and a resin. And a step of heating and / or light baking the resin mixture.
本発明によれば、半導体層の不連続性に伴うトンネル伝導の影響により生じる電気特性の不安定性を抑制することができる。 According to the present invention, instability of electrical characteristics caused by the influence of tunnel conduction accompanying discontinuity of a semiconductor layer can be suppressed.
図1は、本発明の半導体組成物の一例を示す模式図である。FIG. 1 is a schematic view showing an example of the semiconductor composition of the present invention. 図2は、本発明の半導体樹脂複合組成物の一例を示す模式図である。FIG. 2 is a schematic view showing an example of the semiconductor resin composite composition of the present invention. 図3(a)は、本発明の半導体センサの一例を模式的に示す図であり、図3(b)は、図3(a)に示す感知部60の拡大図である。FIG. 3A is a diagram schematically showing an example of the semiconductor sensor of the present invention, and FIG. 3B is an enlarged view of the sensing unit 60 shown in FIG. 図4は、本発明の半導体組成物の製造方法を構成する混合物を作製する工程で作製される混合物の一例を模式的に示す図である。FIG. 4 is a diagram schematically showing an example of a mixture produced in the step of producing a mixture constituting the method for producing a semiconductor composition of the present invention. 図5(a)は、実施例1に係る半導体樹脂複合組成物のSEM画像であり、図5(b)は、図5(a)に示すSEM画像のうち破線部で示す領域を拡大してコントラストを調整したものである。Fig.5 (a) is a SEM image of the semiconductor resin composite composition which concerns on Example 1, FIG.5 (b) expands the area | region shown with a broken line part among the SEM images shown to Fig.5 (a). The contrast is adjusted.
以下、本発明の半導体組成物、半導体樹脂複合組成物、半導体センサ、半導体組成物の製造方法及び半導体樹脂複合組成物の製造方法について説明する。
しかしながら、本発明は、以下の構成に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の望ましい構成を2つ以上組み合わせたものもまた本発明である。
Hereinafter, the semiconductor composition, the semiconductor resin composite composition, the semiconductor sensor, the method for manufacturing the semiconductor composition, and the method for manufacturing the semiconductor resin composite composition of the present invention will be described.
However, the present invention is not limited to the following configurations, and can be applied with appropriate modifications without departing from the scope of the present invention. Note that the present invention also includes a combination of two or more desirable configurations of the present invention described below.
[半導体組成物]
まず、本発明の半導体組成物について説明する。
本発明の半導体組成物は、金属酸化物半導体を含む半導体組成物であって、上記金属酸化物半導体が、上記金属酸化物半導体とは異なる組成を有する半導体性金属酸化物を含む連続部により互いに連結されて連続相を構成していることを特徴とする。
[Semiconductor composition]
First, the semiconductor composition of the present invention will be described.
The semiconductor composition of the present invention is a semiconductor composition containing a metal oxide semiconductor, wherein the metal oxide semiconductor is mutually connected by a continuous portion containing a semiconducting metal oxide having a composition different from that of the metal oxide semiconductor. They are connected to form a continuous phase.
本発明の半導体組成物では、金属酸化物半導体が該金属酸化物半導体とは異なる組成を有する半導体性金属酸化物を含む連続部により互いに連結して連続相を構成しているため、金属酸化物半導体間の伝導が、トンネル伝導ではなく半導体性金属酸化物のバンドギャップに依存したバンド伝導又はホッピング伝導となる。そのため、金属酸化物半導体同士の距離の変動や、金属酸化物半導体の表面近傍の状態、例えば、欠陥、ドーパントの分布、吸着官能基等による影響を排除し、半導体としての電気特性を安定的に保つことができる。 In the semiconductor composition of the present invention, the metal oxide semiconductor is connected to each other by a continuous portion including a semiconducting metal oxide having a composition different from that of the metal oxide semiconductor to form a continuous phase. Conduction between semiconductors is not tunnel conduction but band conduction or hopping conduction depending on the band gap of the semiconductor metal oxide. For this reason, the influence of fluctuations in the distance between metal oxide semiconductors and the state near the surface of metal oxide semiconductors, such as defects, dopant distribution, adsorbing functional groups, etc., is eliminated, and the electrical characteristics as a semiconductor are stabilized. Can keep.
なお、本発明の半導体組成物において、異なる組成を有しているのは、金属酸化物半導体と連続部である。これは、金属酸化物半導体と連続部とが完全同一ではなく、例えばSEM等の外観観察やXRF等の元素分析によって、金属酸化物半導体と連続部とが区別できることを意味している。すなわち、金属酸化物半導体と連続部とが同じ組成の化合物を含んでいてもよい。 In the semiconductor composition of the present invention, the metal oxide semiconductor and the continuous part have different compositions. This means that the metal oxide semiconductor and the continuous portion are not completely identical, and the metal oxide semiconductor and the continuous portion can be distinguished from each other by, for example, appearance observation such as SEM or elemental analysis such as XRF. That is, the metal oxide semiconductor and the continuous part may contain a compound having the same composition.
本発明の半導体組成物の構成を、図1を用いて説明する。
図1は、本発明の半導体組成物の一例を示す模式図である。
図1に示すように、半導体組成物1は、金属酸化物半導体10及び連続部11により構成されて連続相を構成している。連続部11は、金属酸化物半導体10とは異なる組成を有する半導体性金属酸化物を含んでいる。
図1に示すように、半導体組成物1においては、金属酸化物半導体10同士は連続部11により互いに連結されている。そのため、半導体組成物1における金属酸化物半導体10間の伝導は、連続部11を構成する材料に依存することとなる。連続部11は、金属酸化物半導体10とは異なる組成を有する半導体性金属酸化物を含んで構成されているから、金属酸化物半導体10間の伝導は、半導体性金属酸化物のバンドギャップに依存したバンド伝導又はホッピング伝導となる。従って、金属酸化物半導体10同士の距離の変動や、金属酸化物半導体10の表面近傍の状態、例えば、欠陥、ドーパントの分布、吸着官能基による影響を排除し、半導体としての電気特性を安定的に保つことができる。
The structure of the semiconductor composition of the present invention will be described with reference to FIG.
FIG. 1 is a schematic view showing an example of the semiconductor composition of the present invention.
As shown in FIG. 1, the semiconductor composition 1 includes a metal oxide semiconductor 10 and a continuous portion 11 to form a continuous phase. The continuous part 11 includes a semiconductive metal oxide having a composition different from that of the metal oxide semiconductor 10.
As shown in FIG. 1, in the semiconductor composition 1, the metal oxide semiconductors 10 are connected to each other by a continuous portion 11. Therefore, conduction between the metal oxide semiconductors 10 in the semiconductor composition 1 depends on the material constituting the continuous portion 11. Since the continuous portion 11 includes a semiconductor metal oxide having a composition different from that of the metal oxide semiconductor 10, the conduction between the metal oxide semiconductors 10 depends on the band gap of the semiconductor metal oxide. Band conduction or hopping conduction. Therefore, fluctuations in the distance between the metal oxide semiconductors 10 and the state near the surface of the metal oxide semiconductor 10, for example, the influence of defects, dopant distribution, adsorbing functional groups are eliminated, and the electrical characteristics as a semiconductor are stable. Can be kept in.
本発明の半導体組成物において、連続部は、金属酸化物半導体を構成する金属元素を含むことが望ましい。
連続部に金属酸化物半導体を構成する金属元素が含まれていると、半導体組成物の電気特性が安定しやすい。
In the semiconductor composition of the present invention, it is preferable that the continuous part includes a metal element constituting the metal oxide semiconductor.
When the metal element constituting the metal oxide semiconductor is contained in the continuous portion, the electrical characteristics of the semiconductor composition are likely to be stabilized.
本発明の半導体組成物において、金属酸化物半導体を構成する材料は、半導体性を有する金属酸化物であれば特に限定されないが、酸化亜鉛、酸化錫、酸化銅、酸化インジウム、酸化ガリウム、酸化マンガン、酸化インジウムスズ(ITOともいう)及び酸化アンチモンスズ(ATOともいう)等が挙げられる。 In the semiconductor composition of the present invention, the material constituting the metal oxide semiconductor is not particularly limited as long as it is a metal oxide having semiconductivity, but zinc oxide, tin oxide, copper oxide, indium oxide, gallium oxide, manganese oxide Indium tin oxide (also referred to as ITO), antimony tin oxide (also referred to as ATO), and the like.
金属酸化物半導体の形状は特に限定されないが、トンネル伝導を抑制するためには表面積が小さいことが望ましいことを考慮すると、不定形よりは板状や球形が望ましく、球形がより望ましい。 The shape of the metal oxide semiconductor is not particularly limited, but considering that it is desirable that the surface area be small in order to suppress tunnel conduction, a plate shape or a spherical shape is preferable to an indeterminate shape, and a spherical shape is more preferable.
金属酸化物半導体の平均粒子径は特に限定されないが、0.05μm以上50μm以下であることが望ましく、0.1μm以上25μm以下であることがより望ましく、0.25μm以上2.5μm以下であることがさらに望ましい。
金属酸化物半導体の平均粒子径は、マイクロトラック測定装置(レーザー回折、散乱法)を用いて金属酸化物半導体の粒度分布を測定し、D50の値を算出したものである。
金属酸化物半導体の平均粒子径が0.05μm未満の場合には、金属酸化物半導体と連続部との接点が多くなりすぎるため、半導体組成物全体の導電性に対するバンド伝導又はホッピング伝導の寄与率が低下してしまい、所望の電気特性を発揮できないことがある。
一方、金属酸化物半導体の平均粒子径が50μmを超える場合には、連続部によって金属酸化物半導体同士を連結しにくくなり、半導体組成物の形状安定性が低下し、脆くなってしまうことがある。
The average particle size of the metal oxide semiconductor is not particularly limited, but is preferably 0.05 μm or more and 50 μm or less, more preferably 0.1 μm or more and 25 μm or less, and 0.25 μm or more and 2.5 μm or less. Is more desirable.
The average particle diameter of the metal oxide semiconductor is obtained by measuring the particle size distribution of the metal oxide semiconductor using a microtrack measuring device (laser diffraction, scattering method) and calculating the value of D50.
When the average particle diameter of the metal oxide semiconductor is less than 0.05 μm, the number of contacts between the metal oxide semiconductor and the continuous portion is excessive, and the contribution ratio of band conduction or hopping conduction to the conductivity of the entire semiconductor composition May decrease, and desired electrical characteristics may not be exhibited.
On the other hand, when the average particle diameter of the metal oxide semiconductor exceeds 50 μm, it becomes difficult to connect the metal oxide semiconductors to each other by the continuous portion, and the shape stability of the semiconductor composition may be lowered and become brittle. .
本発明の半導体組成物においては、連続部を構成する半導体性金属酸化物の組成と、金属酸化物半導体の組成が完全同一でなければよいが、半導体性金属酸化物を構成する金属元素と金属酸化物半導体を構成する金属元素とが同じであることが望ましい。金属酸化物半導体と連続部の組成が完全同一ではなく、かつ、同じ種類の金属元素を含んでいる場合としては、例えば、金属酸化物半導体がMnであり、連続部が半導体性金属酸化物としてMnO(酸化数は不定)を含む場合が挙げられる。 In the semiconductor composition of the present invention, the composition of the semiconductive metal oxide constituting the continuous portion and the composition of the metal oxide semiconductor need not be completely the same, but the metal element and metal constituting the semiconductive metal oxide The metal element included in the oxide semiconductor is preferably the same. In the case where the composition of the continuous part is not completely the same as that of the metal oxide semiconductor and contains the same kind of metal element, for example, the metal oxide semiconductor is Mn 3 O 4 and the continuous part is a semiconductive metal A case where MnO x (the oxidation number is indefinite) is included as the oxide.
連続部により連結される金属酸化物半導体同士の距離、すなわち連続部の厚さは、特に限定されないが、1nm以上50nm以下であることが望ましく、3nm以上15nm以下であることがより望ましい。連続部の厚さが50nmを超えると、連続相の特性が金属酸化物半導体の特性よりも大きくなり、目的とする特性が得られにくくなる。
一方、連続部の厚さが1nm未満であると、連続部の厚さが薄すぎるために金属酸化物半導体間で直接トンネル伝導が起こり、電気特性の不安定化を軽減することが難しくなる場合がある。
連続部の厚さは、半導体組成物を走査型電子顕微鏡で観察した際の拡大画像から無作為に10箇所抽出した100nm×100nmの領域における連続部により連結される2つの金属酸化物半導体同士の距離の平均値とする。各SEM画像中における金属酸化物半導体同士の距離は、市販の画像処理ソフト(例えば、NSST社製「粒子解析」)により解析することで得られる。
The distance between metal oxide semiconductors connected by the continuous part, that is, the thickness of the continuous part is not particularly limited, but is preferably 1 nm or more and 50 nm or less, and more preferably 3 nm or more and 15 nm or less. When the thickness of the continuous portion exceeds 50 nm, the characteristics of the continuous phase become larger than the characteristics of the metal oxide semiconductor, and it becomes difficult to obtain the target characteristics.
On the other hand, when the thickness of the continuous portion is less than 1 nm, the thickness of the continuous portion is too thin, so that direct tunnel conduction occurs between metal oxide semiconductors, making it difficult to reduce instability of electrical characteristics. There is.
The thickness of the continuous part is determined between two metal oxide semiconductors connected by a continuous part in a region of 100 nm × 100 nm, which is randomly extracted from an enlarged image when the semiconductor composition is observed with a scanning electron microscope. Use the average distance. The distance between metal oxide semiconductors in each SEM image can be obtained by analyzing with commercially available image processing software (for example, “Particle Analysis” manufactured by NSST).
本発明の半導体組成物を構成する金属酸化物半導体の割合は、70重量%以上であれば特に限定されないが、80重量%以上が望ましく、90重量%以上が更に望ましい。
金属酸化物半導体の割合が70重量%未満となると、酸化物半導体の電気特性に対する寄与が小さくなりすぎて、半導体として所望の電気特性を得られないことがある。
半導体組成物には、金属酸化物半導体の他に、金属酸化物半導体と異なる組成の酸化物半導体及び炭素や、半導体組成物全体の導通に寄与しない金属元素が含まれていてもよい。
The ratio of the metal oxide semiconductor constituting the semiconductor composition of the present invention is not particularly limited as long as it is 70% by weight or more, but is preferably 80% by weight or more, and more preferably 90% by weight or more.
When the ratio of the metal oxide semiconductor is less than 70% by weight, the contribution to the electrical characteristics of the oxide semiconductor becomes too small, and desired electrical characteristics as a semiconductor may not be obtained.
In addition to the metal oxide semiconductor, the semiconductor composition may include an oxide semiconductor having a composition different from that of the metal oxide semiconductor, carbon, and a metal element that does not contribute to conduction of the entire semiconductor composition.
[半導体樹脂複合組成物]
続いて、本発明の半導体樹脂複合組成物について説明する。
本発明の半導体樹脂複合組成物は、本発明の半導体組成物が樹脂中に配置されることを特徴とする。
本発明の半導体樹脂複合組成物は、本発明の半導体組成物が樹脂中に配置されているため、半導体としての電気特性が安定しており、さらに半導体素子としての柔軟性及び伸縮性に優れる。
[Semiconductor resin composite composition]
Next, the semiconductor resin composite composition of the present invention will be described.
The semiconductor resin composite composition of the present invention is characterized in that the semiconductor composition of the present invention is disposed in a resin.
Since the semiconductor composition of the present invention is disposed in the resin, the semiconductor resin composite composition of the present invention has stable electrical characteristics as a semiconductor and is excellent in flexibility and stretchability as a semiconductor element.
本発明の半導体樹脂複合組成物の構成を、図2を用いて説明する。
図2は、本発明の半導体樹脂複合組成物の一例を示す模式図である。
図2に示すように、半導体樹脂複合組成物3は、半導体組成物1が樹脂12中に配置されてなる。半導体組成物1の構成は本発明の半導体組成物と同様である。
半導体樹脂複合組成物3は、半導体組成物1が樹脂12中に配置されてなるため、半導体組成物1と同様に半導体としての電気特性を備え、さらに柔軟性及び伸縮性に優れる。
The structure of the semiconductor resin composite composition of this invention is demonstrated using FIG.
FIG. 2 is a schematic view showing an example of the semiconductor resin composite composition of the present invention.
As shown in FIG. 2, the semiconductor resin composite composition 3 is obtained by arranging the semiconductor composition 1 in a resin 12. The composition of the semiconductor composition 1 is the same as that of the semiconductor composition of the present invention.
Since the semiconductor resin composite composition 3 is formed by arranging the semiconductor composition 1 in the resin 12, the semiconductor resin composite composition 3 has electrical characteristics as a semiconductor similarly to the semiconductor composition 1, and is excellent in flexibility and stretchability.
本発明の半導体樹脂複合組成物において用いられる樹脂は特に限定されないが、半導体樹脂複合組成物に伸縮性や柔軟性を付与できることが望ましく、熱硬化性樹脂や熱可塑性樹脂が挙げられる。
熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂、熱硬化性ポリイミド等が挙げられる。
熱可塑性樹脂としては、アルキル樹脂、ポリウレタン、シリコーン、ポリアミド等が挙げられる。
The resin used in the semiconductor resin composite composition of the present invention is not particularly limited, but it is desirable that the semiconductor resin composite composition can be provided with stretchability and flexibility, and examples thereof include thermosetting resins and thermoplastic resins.
Examples of the thermosetting resin include an epoxy resin, a phenol resin, a melamine resin, and a thermosetting polyimide.
Examples of the thermoplastic resin include an alkyl resin, polyurethane, silicone, and polyamide.
本発明の半導体樹脂複合組成物において、樹脂が占める体積割合は、5体積%以上80体積%以下であることが望ましい。
樹脂が占める体積割合が5体積%未満であると、半導体樹脂複合組成物として充分な柔軟性及び伸縮性を確保できない場合がある。一方、樹脂が占める体積割合が80体積%を超える場合、樹脂中で半導体組成物が連続相を保つことが難しくなり、半導体としての電気特性が安定しなくなることがある。
In the semiconductor resin composite composition of the present invention, the volume ratio of the resin is desirably 5% by volume or more and 80% by volume or less.
If the volume ratio of the resin is less than 5% by volume, sufficient flexibility and stretchability may not be ensured as the semiconductor resin composite composition. On the other hand, when the volume ratio which a resin occupies exceeds 80 volume%, it becomes difficult for a semiconductor composition to maintain a continuous phase in resin, and the electrical characteristics as a semiconductor may become unstable.
[半導体センサ]
続いて、本発明の半導体センサについて説明する。
本発明の半導体センサは、本発明の半導体樹脂複合組成物を含んでなることを特徴とする。
本発明の半導体樹脂複合組成物は半導体としての電気特性が安定しており、柔軟性及び伸縮性に優れるため、このような半導体樹脂複合組成物を含んでなる本発明の半導体センサは、耐久性及び信頼性に優れる。
[Semiconductor sensor]
Next, the semiconductor sensor of the present invention will be described.
The semiconductor sensor of the present invention comprises the semiconductor resin composite composition of the present invention.
Since the semiconductor resin composite composition of the present invention has stable electrical characteristics as a semiconductor and is excellent in flexibility and stretchability, the semiconductor sensor of the present invention comprising such a semiconductor resin composite composition is durable. And excellent reliability.
本発明の半導体センサは、半導体樹脂複合組成物の半導体特性に応じた各種センサに使用することができ、例えば、圧力(歪み)センサ、温度センサ、湿度センサ、音センサ等として用いることができる。 The semiconductor sensor of the present invention can be used for various sensors according to the semiconductor characteristics of the semiconductor resin composite composition, and can be used as, for example, a pressure (strain) sensor, a temperature sensor, a humidity sensor, a sound sensor, and the like.
本発明の半導体センサの構成について、図3(a)及び図3(b)を用いて説明する。
図3(a)は、本発明の半導体センサの一例を模式的に示す図であり、図3(b)は、図3(a)に示す感知部60の拡大図である。
図3(a)に示すように、半導体センサ100は、半導体樹脂複合組成物3上に配置された主配線50と、主配線50中に格子状に配置された感知部60からなる。感知部60は、対向するくし形パターンの電極(くし形電極ともいう)61a及び61bからなる。図3(b)に示すように、主配線50と感知部60は、図示しない基板上に形成され、感知部60のくし形電極61a及び61bを覆うように、半導体樹脂複合組成物3が形成されている。
感知部60を構成するくし形電極61a、61bの間に配置された半導体樹脂複合組成物3が圧力(歪み)に対して抵抗値を変化させる特性を有している場合、半導体センサ100は、圧力センサとして機能する。また、半導体樹脂複合組成物3が温度に対して抵抗値を変化させる特性を有している場合、半導体センサ100は温度センサとして機能する。
The structure of the semiconductor sensor of the present invention will be described with reference to FIGS. 3 (a) and 3 (b).
FIG. 3A is a diagram schematically showing an example of the semiconductor sensor of the present invention, and FIG. 3B is an enlarged view of the sensing unit 60 shown in FIG.
As shown in FIG. 3A, the semiconductor sensor 100 includes a main wiring 50 disposed on the semiconductor resin composite composition 3 and a sensing unit 60 disposed in a lattice pattern in the main wiring 50. The sensing unit 60 includes opposing comb-shaped electrodes (also referred to as comb-shaped electrodes) 61a and 61b. As shown in FIG. 3B, the main wiring 50 and the sensing part 60 are formed on a substrate (not shown), and the semiconductor resin composite composition 3 is formed so as to cover the comb-shaped electrodes 61a and 61b of the sensing part 60. Has been.
When the semiconductor resin composite composition 3 disposed between the comb-shaped electrodes 61a and 61b constituting the sensing unit 60 has a characteristic of changing a resistance value with respect to pressure (strain), the semiconductor sensor 100 includes: Functions as a pressure sensor. Moreover, when the semiconductor resin composite composition 3 has a characteristic of changing the resistance value with respect to the temperature, the semiconductor sensor 100 functions as a temperature sensor.
本発明の半導体センサが電極を備える場合、電極を構成する材料は特に限定されないが、Cu、Ni、Ag、Au等の金属であってもよく、PEDOT/PSS等の導電性高分子であってもよい。 When the semiconductor sensor of the present invention includes an electrode, the material constituting the electrode is not particularly limited, but may be a metal such as Cu, Ni, Ag, Au, or a conductive polymer such as PEDOT / PSS. Also good.
なお、図3では厚さ方向に垂直な方向に対向する電極間に本発明の半導体樹脂複合組成物が配置されている半導体センサの例を説明したが、電極と半導体樹脂複合組成物との位置関係は図3に示すものに限定されない。本発明の半導体センサは、例えば、半導体樹脂複合組成物を含む層状物の両面に略同一形状の電極パターンが厚さ方向に配置されたものであってもよい。 In addition, although FIG. 3 demonstrated the example of the semiconductor sensor by which the semiconductor resin composite composition of this invention is arrange | positioned between the electrodes which oppose the direction perpendicular | vertical to thickness direction, the position of an electrode and a semiconductor resin composite composition is demonstrated. The relationship is not limited to that shown in FIG. In the semiconductor sensor of the present invention, for example, electrode patterns having substantially the same shape may be arranged in the thickness direction on both surfaces of a layered material containing a semiconductor resin composite composition.
[半導体組成物の製造方法]
続いて、本発明の半導体組成物の製造方法について説明する。
本発明の半導体組成物の製造方法は、本発明の半導体組成物を製造する方法であって、金属酸化物半導体と金属ナノ粒子とを混合して混合物を作製する混合物作製工程と、上記混合物を加熱する加熱工程及び/又は上記混合物を光焼成する光焼成工程と、を備えることを特徴とする。
[Method for producing semiconductor composition]
Then, the manufacturing method of the semiconductor composition of this invention is demonstrated.
The method for producing a semiconductor composition of the present invention is a method for producing the semiconductor composition of the present invention, comprising a mixture production step of producing a mixture by mixing a metal oxide semiconductor and metal nanoparticles, and the above mixture. A heating step of heating and / or a photo-baking step of photo-baking the mixture.
本発明の半導体組成物の製造方法では、金属酸化物半導体と金属ナノ粒子とを混合して混合物を作製した後、該混合物を加熱及び/又は光焼成する。金属酸化物半導体と金属ナノ粒子とを混合して得られる混合物中では、金属酸化物半導体の周囲に金属ナノ粒子が存在していると考えられる。そして、この混合物を加熱工程で加熱したり光焼成工程で光焼成することによって、金属酸化物半導体の周囲に存在する金属ナノ粒子が溶融、酸化して金属酸化物半導体同士を接合する連続部が形成されると考えられる。該連続部は金属ナノ粒子の酸化物である半導体性金属酸化物及び酸化していない金属ナノ粒子で構成されており、半導体性金属酸化物は半導体性を有するから、連続部における伝導は、金属ナノ粒子の酸化物である半導体性金属酸化物のバンド伝導又はホッピング伝導が支配的であると考えられる。そうすると、本発明の半導体組成物の製造方法により得られる半導体組成物は、本発明の半導体組成物であり、半導体としての電気特性が安定している。 In the method for producing a semiconductor composition of the present invention, a metal oxide semiconductor and metal nanoparticles are mixed to prepare a mixture, and then the mixture is heated and / or light baked. In the mixture obtained by mixing the metal oxide semiconductor and the metal nanoparticles, it is considered that the metal nanoparticles exist around the metal oxide semiconductor. Then, by heating this mixture in the heating process or by light baking in the light baking process, the metal nano particles existing around the metal oxide semiconductor are melted and oxidized, and a continuous part joining the metal oxide semiconductors is formed. It is thought that it is formed. The continuous part is composed of a semiconducting metal oxide which is an oxide of metal nanoparticles and non-oxidized metal nanoparticles, and the semiconducting metal oxide has semiconducting properties. The band conduction or hopping conduction of the semiconducting metal oxide, which is an oxide of nanoparticles, is considered to be dominant. If it does so, the semiconductor composition obtained by the manufacturing method of the semiconductor composition of this invention is the semiconductor composition of this invention, and the electrical property as a semiconductor is stable.
本発明の半導体組成物の製造方法において準備される混合物について、図4を用いて説明する。
図4は、本発明の半導体組成物の製造方法を構成する混合物を作製する工程で作製される混合物の一例を模式的に示す図である。
図4に示すように、混合物5は、金属酸化物半導体10と金属ナノ粒子13とを含んで構成されている。
この混合物5を加熱及び/又は光焼成することにより、金属ナノ粒子13が溶融・酸化反応を起こしながら金属酸化物半導体10の表面に吸着することにより、図1に示すような連続部11が形成される。
The mixture prepared in the manufacturing method of the semiconductor composition of this invention is demonstrated using FIG.
FIG. 4 is a diagram schematically showing an example of a mixture produced in the step of producing a mixture constituting the method for producing a semiconductor composition of the present invention.
As shown in FIG. 4, the mixture 5 includes a metal oxide semiconductor 10 and metal nanoparticles 13.
When the mixture 5 is heated and / or light-fired, the metal nanoparticles 13 are adsorbed on the surface of the metal oxide semiconductor 10 while causing a melting / oxidation reaction, thereby forming a continuous portion 11 as shown in FIG. Is done.
本発明の半導体組成物の製造方法では、加熱工程及び/又は光焼成工程における混合物の温度が、金属酸化物半導体の焼結温度よりも低いことが望ましい。
焼結温度とは、金属酸化物半導体粒子を構成する各化学種が表面自由エネルギーを下げるために移動する時の温度であり、通常は絶対温度で融点の90%以上の温度である。
一般的に、金属酸化物である金属酸化物半導体を焼結させるためには、まず金属酸化物表面に存在する酸素を除去する必要がある。このため、焼結の際には充分な熱エネルギーを加える必要があり、さらには、酸素を系中から除去するために還元剤や焼結助剤を添加したり、減圧下で加熱を行う必要があるため、加熱工程は煩雑なものである。
本発明の半導体組成物の製造方法では、金属ナノ粒子を溶融・酸化させることで、金属ナノ粒子を構成する金属と金属酸化物半導体の表面の酸素とを結合させるが、このときに必要な熱エネルギーは金属酸化物半導体を焼結させるために必要な熱エネルギーと比較して小さい。従って、混合物の温度が金属酸化物半導体の焼結温度よりも低い温度となるような条件で加熱工程及び/又は光焼成工程を行っても、金属ナノ粒子の溶融・酸化により金属酸化物半導体同士を連結する連続部を形成することができる。また、金属酸化物半導体を焼結させる必要がないため、還元剤や焼結助剤の添加、及び、減圧条件なども必要がない。以上より、本発明の半導体組成物の製造方法では、製造コストを抑制することができる。
In the method for producing a semiconductor composition of the present invention, it is desirable that the temperature of the mixture in the heating step and / or the light baking step is lower than the sintering temperature of the metal oxide semiconductor.
The sintering temperature is a temperature at which each chemical species constituting the metal oxide semiconductor particles moves to lower the surface free energy, and is usually a temperature that is 90% or more of the melting point in absolute temperature.
In general, in order to sinter a metal oxide semiconductor that is a metal oxide, it is necessary to first remove oxygen present on the surface of the metal oxide. For this reason, it is necessary to apply sufficient thermal energy during sintering, and it is also necessary to add a reducing agent or sintering aid to remove oxygen from the system, or to heat under reduced pressure. Therefore, the heating process is complicated.
In the method for producing a semiconductor composition of the present invention, the metal constituting the metal nanoparticle is bonded to oxygen on the surface of the metal oxide semiconductor by melting and oxidizing the metal nanoparticle. The energy is small compared to the thermal energy required to sinter the metal oxide semiconductor. Accordingly, even if the heating step and / or the light firing step are performed under such conditions that the temperature of the mixture is lower than the sintering temperature of the metal oxide semiconductor, the metal oxide semiconductors are melted and oxidized by the metal nanoparticles. The continuous part which connects can be formed. In addition, since it is not necessary to sinter the metal oxide semiconductor, there is no need for addition of a reducing agent or sintering aid, or a reduced pressure condition. As mentioned above, in the manufacturing method of the semiconductor composition of this invention, manufacturing cost can be suppressed.
本発明の半導体組成物の製造方法において、加熱工程における加熱温度は、金属酸化物半導体の焼結温度より100℃以上低いことが望ましく、200℃以上低いことがより望ましく、300℃以上低いことが更に望ましい。
金属酸化物半導体の焼結温度よりも低温で焼成することによって、製造に係るエネルギーを削減することができる。
In the method for producing a semiconductor composition of the present invention, the heating temperature in the heating step is desirably 100 ° C. or more lower than the sintering temperature of the metal oxide semiconductor, more desirably 200 ° C. or more, and desirably 300 ° C. or less. More desirable.
By firing at a temperature lower than the sintering temperature of the metal oxide semiconductor, energy for manufacturing can be reduced.
本発明の半導体組成物の製造方法において、光焼成工程は、非加熱工程であることが望ましい。
光焼成とは、対象物(混合物)に光(電磁波)を照射することによって化学反応を起こす方法である。光焼成によると、エネルギーを与える対象を選択できるため、対象物以外の材料にダメージを与えることなく加工することができる。そのため、混合物中に、一般的な焼成工程で用いることのできないような材料、例えば、通常の焼成工程では消失してしまう樹脂等を添加することができ、設計の自由度が高くなる。また、光焼成に係る時間は一般的にマイクロ秒からミリ秒程度であるため、連続部の形成に必要な時間が極めて短時間で済み、製造コストを抑制することができる。
なお、光焼成においては、混合物の発熱を伴う場合と発熱を伴わない場合とがある。例えば特定の材料に対して、マイクロ波を使った場合には、「熱」の形を経ることなくエネルギーを伝え、化学反応を起こすことができる。この場合には、混合物の発熱を伴わずに光焼成が行われる。混合物の加熱を伴わない場合を非加熱工程ともいう。
In the method for producing a semiconductor composition of the present invention, it is desirable that the light baking step is a non-heating step.
Light baking is a method of causing a chemical reaction by irradiating an object (mixture) with light (electromagnetic waves). According to light baking, since the object to which energy is given can be selected, it can be processed without damaging materials other than the object. Therefore, a material that cannot be used in a general baking process, such as a resin that disappears in a normal baking process, can be added to the mixture, which increases the degree of freedom in design. In addition, since the time for photo-baking is generally about microseconds to milliseconds, the time required for forming the continuous portion is very short, and the manufacturing cost can be suppressed.
In the light baking, there are cases where the mixture is exothermic and does not. For example, when microwaves are used for a specific material, energy can be transmitted and chemical reactions can occur without passing through the form of “heat”. In this case, light baking is performed without heat generation of the mixture. The case where the mixture is not heated is also referred to as a non-heating step.
光焼成に用いる光源は特に限定されないが、キセノンランプ等が挙げられる。
光源により照射されるエネルギー量は、特に限定されないが、1J/cm以上10J/cm以下であることが望ましい。
エネルギー量が1J/cm未満の場合には、金属ナノ粒子を溶融・酸化させるのに必要なエネルギーを充分に供給することができず、連続相が形成されないことがある。一方、エネルギー量が10J/cmを超える場合には、混合物に加わる面積あたりのエネルギーが大きくなりすぎて、金属ナノ粒子の蒸発等の副反応を起こすことがある。
Although the light source used for light baking is not specifically limited, A xenon lamp etc. are mentioned.
The amount of energy irradiated by the light source is not particularly limited, but is desirably 1 J / cm 2 or more and 10 J / cm 2 or less.
When the energy amount is less than 1 J / cm 2 , the energy necessary for melting and oxidizing the metal nanoparticles cannot be sufficiently supplied, and a continuous phase may not be formed. On the other hand, when the amount of energy exceeds 10 J / cm 2 , the energy per area applied to the mixture becomes too large and may cause side reactions such as evaporation of metal nanoparticles.
金属ナノ粒子の平均粒子径は特に限定されないが、5nm以上100nm以下であることが望ましい。
金属ナノ粒子の平均粒子径が5nm未満であると、加熱や光焼成によって金属ナノ粒子が溶融・酸化する際に連続部同士の接点が少なく、半導体組成物の電気特性が安定しないことがある。一方、金属ナノ粒子の平均粒子径が100nmを超える場合には、金属ナノ粒子のサイズが大きすぎて、金属酸化物半導体同士を連続部によって充分に連結させることができない場合がある。
Although the average particle diameter of a metal nanoparticle is not specifically limited, It is desirable that they are 5 nm or more and 100 nm or less.
When the average particle diameter of the metal nanoparticles is less than 5 nm, there are few contacts between the continuous portions when the metal nanoparticles are melted and oxidized by heating or light baking, and the electrical characteristics of the semiconductor composition may not be stable. On the other hand, when the average particle diameter of the metal nanoparticles exceeds 100 nm, the size of the metal nanoparticles is too large, and the metal oxide semiconductors may not be sufficiently connected by the continuous part.
金属ナノ粒子を構成する金属元素としては、特に限定されないが、標準酸化還元電位が-2.5V以上+0.8V以下の金属であることが望ましく、-2.0V以上+0.4V以下であることがより望ましい。
標準酸化還元電位が-2.5V未満の金属元素を金属ナノ粒子として採用した場合、金属ナノ粒子が大気中の水分及び酸素と反応しやすくなるため取り扱いが困難となる。一方、標準酸化還元電位が+0.8Vを超える場合には、焼成工程において酸化されにくく、酸化を進行させるために多量のエネルギーを投入する必要がある。また、加熱及び/又は光焼成された後の連続部に酸化されていない金属ナノ粒子が含まれやすくなる。酸化されていない金属ナノ粒子は連続部の電気伝導度を向上させるため、少量であれば含まれていることが望ましいが、金属ナノ粒子の量が多くなりすぎると、半導体組成物の電気特性に対する金属ナノ粒子の寄与が大きくなり、所望の半導体特性を得ることが難しくなる。
The metal element constituting the metal nanoparticle is not particularly limited, but is preferably a metal having a standard oxidation-reduction potential of −2.5 V to +0.8 V, preferably −2.0 V to +0.4 V. Is more desirable.
When a metal element having a standard oxidation-reduction potential of less than −2.5 V is adopted as the metal nanoparticle, the metal nanoparticle is likely to react with moisture and oxygen in the atmosphere, making handling difficult. On the other hand, when the standard oxidation-reduction potential exceeds +0.8 V, it is difficult to oxidize in the firing step, and it is necessary to input a large amount of energy in order to advance the oxidation. Moreover, the metal nanoparticle which is not oxidized is easy to be contained in the continuous part after heating and / or photobaking. In order to improve the electrical conductivity of the continuous part, it is desirable that the non-oxidized metal nanoparticles are contained in a small amount. However, if the amount of the metal nanoparticles is too large, the electrical properties of the semiconductor composition may be reduced. The contribution of metal nanoparticles increases, making it difficult to obtain desired semiconductor characteristics.
本発明の半導体組成物の製造方法においては、光焼成工程が行われることが望ましい。
光焼成によると、エネルギーを与える対象を選択できるため、対象物以外の材料にダメージを与えることなく加工を行うことができる。
In the method for producing a semiconductor composition of the present invention, it is desirable that a light baking step is performed.
According to light baking, since the target to which energy is given can be selected, processing can be performed without damaging materials other than the target.
光焼成において照射される光の波長は特に限定されないが、ガンマ線、X線、菫外線、可視光線、赤外線、マイクロ波等を用いることができる。
照射したエネルギーにより直接化学反応を起こす、あるいは熱に変換されたのち熱反応を起こすことができる波長を、照射対象となる混合物の構成に応じて適宜選択することができる。
光を照射する光源は、単波長の光源(例えばレーザー光源)であってもよく、所定の発光スペクトルを有する光源(例えばランプ光源)であってもよい。また必要に応じて不要な波長の光を吸収するフィルターを設けてもよい。
Although the wavelength of the light irradiated in light baking is not specifically limited, A gamma ray, X-ray | X_line, an infrared ray, visible light, infrared rays, a microwave, etc. can be used.
The wavelength at which a chemical reaction can be directly caused by irradiated energy, or a heat reaction can be caused after conversion to heat can be appropriately selected according to the composition of the mixture to be irradiated.
The light source for irradiating light may be a single wavelength light source (for example, laser light source) or a light source (for example, lamp light source) having a predetermined emission spectrum. Moreover, you may provide the filter which absorbs the light of an unnecessary wavelength as needed.
また光焼成工程においては、光源が異なる複数の光を同時に照射してもよく、第1焼成工程で光源Aを照射し、続く第2焼成工程において光源Bを照射するなど、2段以上の焼成工程を有していてもよい。さらに、光焼成工程において別途加熱を行ってもよい。特に金属ナノ粒子が樹脂で覆われている場合には、樹脂のガラス転移点以上の温度で加熱することにより、樹脂が軟化して金属ナノ粒子の酸化を阻害しない。光焼成工程において別途加熱を行う場合、加熱工程と光焼成工程の両方を備えているといえる。 Further, in the light baking step, a plurality of light sources having different light sources may be irradiated simultaneously, the light source A is irradiated in the first baking step, and the light source B is irradiated in the subsequent second baking step. You may have a process. Furthermore, you may heat separately in a photo-baking process. In particular, when the metal nanoparticles are covered with a resin, heating the resin at a temperature equal to or higher than the glass transition point of the resin softens the resin and does not inhibit the oxidation of the metal nanoparticles. When heating is separately performed in the light baking step, it can be said that both the heating step and the light baking step are provided.
本発明の半導体組成物の製造方法では、金属酸化物半導体を構成する金属元素と、金属ナノ粒子を構成する金属元素とが同じであることが望ましい。
金属酸化物半導体を構成する金属元素と、金属ナノ粒子を構成する金属元素とが同じであると、金属酸化物半導体同士を連結する連続部と金属酸化物半導体との接触性が良好となり、半導体としての電気特性がより安定しやすくなる。
In the method for producing a semiconductor composition of the present invention, it is desirable that the metal element constituting the metal oxide semiconductor and the metal element constituting the metal nanoparticle are the same.
When the metal element composing the metal oxide semiconductor is the same as the metal element composing the metal nanoparticle, the contact between the metal oxide semiconductor and the continuous portion connecting the metal oxide semiconductors is improved, and the semiconductor As a result, it becomes easier to stabilize the electrical characteristics.
本発明の半導体組成物の製造方法では、加熱工程及び/又は光焼成工程における混合物の温度が、金属酸化物半導体の焼結温度よりも低いことが望ましい。
一般的に、金属である金属ナノ粒子の溶融開始温度や酸化開始温度は、酸化物である金属酸化物半導体の焼結温度よりも低いため、金属酸化物半導体の焼結温度よりも低い温度で金属ナノ粒子の溶融や酸化が開始されて本発明の半導体組成物が得られる。
すなわち、本発明の半導体組成物の製造方法では、金属酸化物半導体を焼結させる必要がないため、加熱工程及び/又は光焼成工程における混合物の温度を金属酸化物半導体の焼結温度よりも低い温度に設定したとしても、半導体組成物を製造することができ、製造コストの観点から優れる。
In the method for producing a semiconductor composition of the present invention, it is desirable that the temperature of the mixture in the heating step and / or the light baking step is lower than the sintering temperature of the metal oxide semiconductor.
In general, the melting start temperature and the oxidation start temperature of metal nanoparticles that are metals are lower than the sintering temperature of metal oxide semiconductors that are oxides, and therefore lower than the sintering temperature of metal oxide semiconductors. The melting and oxidation of the metal nanoparticles are started to obtain the semiconductor composition of the present invention.
That is, in the method for producing a semiconductor composition of the present invention, since it is not necessary to sinter the metal oxide semiconductor, the temperature of the mixture in the heating step and / or the light firing step is lower than the sintering temperature of the metal oxide semiconductor. Even if it sets to temperature, a semiconductor composition can be manufactured and it is excellent from a viewpoint of manufacturing cost.
[半導体樹脂複合組成物の製造方法]
続いて、本発明の半導体樹脂複合組成物の製造方法について説明する。
本発明の半導体樹脂複合組成物の製造方法は、本発明の半導体樹脂複合組成物を製造する方法であって、金属酸化物半導体と金属ナノ粒子と樹脂を混合して樹脂混合物を作製する工程と、上記樹脂混合物を加熱及び/又は光焼成する工程と、を備えることを特徴とする。
[Method for producing semiconductor resin composite composition]
Then, the manufacturing method of the semiconductor resin composite composition of this invention is demonstrated.
The method for producing a semiconductor resin composite composition of the present invention is a method for producing the semiconductor resin composite composition of the present invention, comprising a step of producing a resin mixture by mixing a metal oxide semiconductor, metal nanoparticles, and a resin. And a step of heating and / or light baking the resin mixture.
本発明の半導体樹脂複合組成物の製造方法では、金属酸化物半導体と金属ナノ粒子と樹脂を混合して樹脂混合物を作製した後、該樹脂混合物を加熱及び/又は光焼成する。金属酸化物半導体と金属ナノ粒子と樹脂とを混合して得られる樹脂混合物中では、金属酸化物半導体の周囲に金属ナノ粒子が存在した状態で樹脂中に分散していると考えられる。そして、この樹脂混合物を加熱及び/又は光焼成することによって、金属酸化物半導体の周囲に存在する金属ナノ粒子が溶融、酸化して金属酸化物半導体同士が接合する連続部が形成されると考えられる。該連続部は金属ナノ粒子の酸化物である半導体性金属酸化物及び酸化していない金属ナノ粒子で構成されており、半導体性金属酸化物は半導体性を有するから、連続部における伝導は、金属ナノ粒子の酸化物である半導体性金属酸化物のバンド伝導又はホッピング伝導が支配的であると考えられる。そうすると、本発明の半導体樹脂複合組成物の製造方法により得られる半導体樹脂複合組成物は、本発明の半導体樹脂複合組成物であり、半導体としての電気特性が安定しており、さらに半導体素子としての柔軟性及び伸縮性に優れる。 In the method for producing a semiconductor resin composite composition of the present invention, a metal oxide semiconductor, metal nanoparticles, and a resin are mixed to prepare a resin mixture, and then the resin mixture is heated and / or light baked. In a resin mixture obtained by mixing a metal oxide semiconductor, metal nanoparticles, and a resin, it is considered that the metal nanoparticles are dispersed in the resin in a state where the metal nanoparticles exist around the metal oxide semiconductor. Then, by heating and / or photo-baking this resin mixture, the metal nanoparticles present around the metal oxide semiconductor are melted and oxidized to form a continuous portion where the metal oxide semiconductors are joined together. It is done. The continuous part is composed of a semiconducting metal oxide which is an oxide of metal nanoparticles and non-oxidized metal nanoparticles, and the semiconducting metal oxide has semiconducting properties. The band conduction or hopping conduction of the semiconducting metal oxide, which is an oxide of nanoparticles, is considered to be dominant. Then, the semiconductor resin composite composition obtained by the method for producing a semiconductor resin composite composition of the present invention is the semiconductor resin composite composition of the present invention, and has stable electrical characteristics as a semiconductor, and further as a semiconductor element. Excellent flexibility and elasticity.
本発明の半導体樹脂複合組成物の製造方法に用いられる金属酸化物半導体及び金属ナノ粒子は、本発明の半導体組成物の製造方法で説明した金属酸化物半導体及び金属ナノ粒子を好ましく用いることができる。また、加熱工程及び光焼成工程における条件も同様である。 As the metal oxide semiconductor and metal nanoparticles used in the method for producing a semiconductor resin composite composition of the present invention, the metal oxide semiconductor and metal nanoparticles described in the method for producing a semiconductor composition of the present invention can be preferably used. . The conditions in the heating process and the light baking process are also the same.
本発明の半導体樹脂複合組成物の製造方法に用いられる樹脂としては、本発明の半導体樹脂複合組成物で説明した樹脂と同様のものを好適に用いることができる。 As resin used for the manufacturing method of the semiconductor resin composite composition of this invention, the thing similar to resin demonstrated with the semiconductor resin composite composition of this invention can be used suitably.
以下、本発明の半導体樹脂複合組成物及び半導体樹脂複合組成物の製造方法をより具体的に開示した実施例を示す。なお、本発明は、これらの実施例のみに限定されるものではない。 Hereinafter, the Example which disclosed more concretely the manufacturing method of the semiconductor resin composite composition and semiconductor resin composite composition of this invention is shown. In addition, this invention is not limited only to these Examples.
(実施例1)
[混合物を作製する工程]
金属酸化物半導体であるITO粒子[酸化インジウム粉末:酸化スズ粉末=9:1(重量比)であり、平均粒子径0.3μm]1.9gと、金属ナノ粒子である金属インジウム粒子(平均粒子径50nm)0.1gとをエタノール5mL中に添加し、1000rpmで10分間撹拌した。その後、ポリビニルブチラール樹脂(数平均分子量30000)0.63gを加え、さらに10分間撹拌してスラリー状の混合物を得た。蒸着により表面にくし形のAg電極(L/S=100μm/100μm)を形成したPET基板上に得られたスラリーをキャストし、一昼夜乾燥させることで混合物の乾燥体を得た。
[光焼成工程]
上記混合物の乾燥体に対して、キセノンランプ(放射波長:200~1000nm)を用いて4.6J/cmの強度の光を500マイクロ秒間照射して光焼成工程を行い、実施例1に係る半導体樹脂複合組成物を得た。
Example 1
[Process for producing a mixture]
1.9 g of ITO particles [indium oxide powder: tin oxide powder = 9: 1 (weight ratio), average particle diameter 0.3 μm], which are metal oxide semiconductors, and metal indium particles (average particles, metal nanoparticles) 0.1 g (diameter 50 nm) was added to 5 mL of ethanol and stirred at 1000 rpm for 10 minutes. Thereafter, 0.63 g of polyvinyl butyral resin (number average molecular weight 30000) was added, and the mixture was further stirred for 10 minutes to obtain a slurry-like mixture. A slurry obtained on a PET substrate on which a comb-shaped Ag electrode (L / S = 100 μm / 100 μm) was formed on the surface by vapor deposition was cast and dried for a whole day and night to obtain a dried body of the mixture.
[Photo-baking process]
The dried body of the above mixture was irradiated with light having an intensity of 4.6 J / cm 2 for 500 microseconds using a xenon lamp (radiation wavelength: 200 to 1000 nm) for 500 microseconds. A semiconductor resin composite composition was obtained.
(実施例2~12)
金属酸化物半導体の種類及び添加量並びに金属ナノ粒子の種類及び添加量を表1に示すように変更したほかは、実施例1と同様の手順で実施例2~12に係る半導体樹脂複合組成物を得た。
(Examples 2 to 12)
The semiconductor resin composite compositions according to Examples 2 to 12 in the same procedure as in Example 1 except that the types and addition amounts of metal oxide semiconductors and the types and addition amounts of metal nanoparticles were changed as shown in Table 1. Got.
(比較例1~5)
金属酸化物半導体の種類及び添加量を表1に示すように変更し、金属ナノ粒子を添加しなかったほかは、実施例1と同様の手順で比較例1~5に係る半導体樹脂複合組成物を得た。
(Comparative Examples 1 to 5)
The semiconductor resin composite compositions according to Comparative Examples 1 to 5 were prepared in the same procedure as in Example 1 except that the type and addition amount of the metal oxide semiconductor were changed as shown in Table 1 and no metal nanoparticles were added. Got.
[SEMによる表面観察]
走査型電子顕微鏡を用いて実施例1に係る半導体樹脂複合組成物の表面を観察した。結果を図5(a)及び図5(b)に示す。
図5(a)は、実施例1に係る半導体樹脂複合組成物のSEM画像であり、図5(b)は、図5(a)に示すSEM画像のうち破線部で示す領域を拡大してコントラストを調整したものである。
図5(a)及び図5(b)に示すように、実施例1に係る半導体樹脂複合組成物では、金属酸化物半導体10(図5(b)において相対的に黒色の部分)同士が、網目状となった連続部11(図5(b)において相対的に灰色の部分や白色の部分)により互いに連結されて連続相が構成されていることが確認できる。また、図5(b)において符号(10、11)を付した領域の周囲にある白い部分は、撮像時の電子銃の照射角及びコントラスト調整の関係で白く見えるだけであり、実際には、金属酸化物半導体同士が連続部により互いに連結された構造がみられる。なお、樹脂については、加速電圧が高いためか、透過してしまい観測できなかった。
[Surface observation by SEM]
The surface of the semiconductor resin composite composition according to Example 1 was observed using a scanning electron microscope. The results are shown in FIGS. 5 (a) and 5 (b).
Fig.5 (a) is a SEM image of the semiconductor resin composite composition which concerns on Example 1, FIG.5 (b) expands the area | region shown with a broken line part among the SEM images shown to Fig.5 (a). The contrast is adjusted.
As shown in FIGS. 5A and 5B, in the semiconductor resin composite composition according to Example 1, the metal oxide semiconductors 10 (the relatively black portions in FIG. 5B) are It can be confirmed that the continuous phase is constituted by being connected to each other by the continuous portion 11 having a mesh shape (a relatively gray portion or a white portion in FIG. 5B). In addition, the white part around the area labeled (10, 11) in FIG. 5B only looks white due to the irradiation angle of the electron gun and contrast adjustment at the time of imaging. There is a structure in which metal oxide semiconductors are connected to each other by a continuous portion. The resin could not be observed because it was transmitted due to the high acceleration voltage.
[初期抵抗値及び抵抗変動率の測定]
PET基板上に形成された実施例1~12及び比較例1~5に係る半導体樹脂複合組成物を25℃に設定した恒温槽中に載置し、PET基板上に予め形成されているAg層を電極とし、二端子法で1時間、抵抗値を測定した。得られた測定値をグラフ上にプロットした後、多項式近似を行い、測定開始から5分後の算出値(R5min)を初期抵抗値とした。また、初期抵抗値と測定開始から60分後の算出値(R60min)との差を初期抵抗値で割った値[(R60min-R5min)/(R5min)×100]を抵抗変動率[%]として求めた。結果を表1に示す。
[Measurement of initial resistance and resistance fluctuation rate]
An Ag layer formed in advance on a PET substrate by placing the semiconductor resin composite compositions according to Examples 1 to 12 and Comparative Examples 1 to 5 formed on the PET substrate in a thermostatic bath set at 25 ° C. Was used as an electrode, and the resistance value was measured by the two-terminal method for 1 hour. After plotting the obtained measured values on a graph, polynomial approximation was performed, and the calculated value (R 5min ) 5 minutes after the start of measurement was used as the initial resistance value. Further, the resistance variation rate is obtained by dividing the difference between the initial resistance value and the calculated value 60 minutes after the start of measurement (R 60min ) by the initial resistance value [(R 60min −R 5min ) / (R 5min ) × 100]. Calculated as [%]. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
表1の結果より、実施例1~12に係る半導体樹脂複合組成物は、金属ナノ粒子を含まない比較例1~5よりもそれぞれ初期抵抗値が低下し、抵抗変動率が0%に近づいていることがわかった。
これは、比較例1~5に係る半導体樹脂複合組成物では、連続部となる金属ナノ粒子を含んでいないため、樹脂中の金属酸化物半導体同士が接続部によって互いに連結された連続相を形成することができず、金属酸化物半導体間のトンネル伝導による影響を無視できないことから、初期抵抗値が大きくなったと考えられる。また、トンネル伝導は金属酸化物半導体の表面近傍の状態、例えば、欠陥、ドーパントの分布、吸着官能基等による影響を受けてトラップ準位が安定しないため、抵抗変動率が大きいと考えられる。
これに対して、実施例1~12に係る半導体樹脂複合組成物では、金属ナノ粒子を含まない比較例1~5に係る半導体樹脂複合組成物と比較して初期抵抗値が低下していることから、金属ナノ粒子によって金属酸化物半導体同士が連結されて連続相が構成されていると考えられる。さらに、連続相が構成されているため金属酸化物半導体の表面近傍の状態による影響を受けることがなく、抵抗変動率が0%に近づいたものと推察される。
From the results of Table 1, the semiconductor resin composite compositions according to Examples 1 to 12 have lower initial resistance values than those of Comparative Examples 1 to 5 that do not contain metal nanoparticles, and the resistance variation rate approaches 0%. I found out.
This is because the semiconductor resin composite compositions according to Comparative Examples 1 to 5 do not contain metal nanoparticles that are continuous parts, and thus form a continuous phase in which the metal oxide semiconductors in the resin are connected to each other by connection parts. It is considered that the initial resistance value has increased because the effect of tunnel conduction between metal oxide semiconductors cannot be ignored. Tunnel conduction is influenced by the state near the surface of the metal oxide semiconductor, for example, defects, dopant distribution, adsorbing functional groups, and the like, so that the trap level is not stable.
On the other hand, in the semiconductor resin composite compositions according to Examples 1 to 12, the initial resistance value is lower than that of the semiconductor resin composite compositions according to Comparative Examples 1 to 5 that do not contain metal nanoparticles. Therefore, it is considered that metal oxide semiconductors are connected to each other by metal nanoparticles to form a continuous phase. Further, since the continuous phase is formed, it is presumed that the resistance fluctuation rate approaches 0% without being affected by the state near the surface of the metal oxide semiconductor.
本発明の半導体組成物は、フレキシブル透明電極としての利用ができるほか、酸化物半導体の半導体特性を利用した、光センサ、ガスセンサ、圧力(歪み)センサ、温湿度センサ、音センサとしての応用が期待できる。 The semiconductor composition of the present invention can be used as a flexible transparent electrode, and is expected to be applied as an optical sensor, gas sensor, pressure (strain) sensor, temperature / humidity sensor, and sound sensor using the semiconductor characteristics of an oxide semiconductor. it can.
1       半導体組成物
3       半導体樹脂複合組成物
5       混合物
10      金属酸化物半導体
11      連続部
12      樹脂
13      金属ナノ粒子
50      主配線
60      感知部
61a、61b くし形電極
100     半導体センサ
DESCRIPTION OF SYMBOLS 1 Semiconductor composition 3 Semiconductor resin composite composition 5 Mixture 10 Metal oxide semiconductor 11 Continuous part 12 Resin 13 Metal nanoparticle 50 Main wiring 60 Sensing part 61a, 61b Comb electrode 100 Semiconductor sensor

Claims (9)

  1. 金属酸化物半導体を含む半導体組成物であって、
    前記金属酸化物半導体が、前記金属酸化物半導体とは異なる組成を有する半導体性金属酸化物を含む連続部により互いに連結されて連続相を構成していることを特徴とする半導体組成物。
    A semiconductor composition comprising a metal oxide semiconductor,
    A semiconductor composition, wherein the metal oxide semiconductor is connected to each other by a continuous portion containing a semiconductive metal oxide having a composition different from that of the metal oxide semiconductor to form a continuous phase.
  2. 前記連続部は、前記金属酸化物半導体を構成する金属元素を含む請求項1に記載の半導体組成物。 The semiconductor composition according to claim 1, wherein the continuous part includes a metal element constituting the metal oxide semiconductor.
  3. 請求項1又は2に記載の半導体組成物が樹脂中に配置されることを特徴とする半導体樹脂複合組成物。 A semiconductor resin composite composition, wherein the semiconductor composition according to claim 1 is disposed in a resin.
  4. 請求項3に記載の半導体樹脂複合組成物を含んでなることを特徴とする半導体センサ。 A semiconductor sensor comprising the semiconductor resin composite composition according to claim 3.
  5. 請求項1又は2に記載の半導体組成物を製造する方法であって、
    金属酸化物半導体と金属ナノ粒子とを混合して混合物を作製する混合物作製工程と、
    前記混合物を加熱する加熱工程及び/又は前記混合物を光焼成する光焼成工程と、を備えることを特徴とする半導体組成物の製造方法。
    A method for producing the semiconductor composition according to claim 1, comprising:
    A mixture preparation step of preparing a mixture by mixing a metal oxide semiconductor and metal nanoparticles;
    A method for producing a semiconductor composition, comprising: a heating step of heating the mixture and / or a photo-baking step of photo-baking the mixture.
  6. 前記光焼成工程は、非加熱工程である請求項5に記載の半導体組成物の製造方法。 The method for producing a semiconductor composition according to claim 5, wherein the light baking step is a non-heating step.
  7. 前記金属酸化物半導体を構成する金属元素と、前記金属ナノ粒子を構成する金属元素とが同じである請求項5又は6に記載の半導体組成物の製造方法。 The method for producing a semiconductor composition according to claim 5 or 6, wherein the metal element constituting the metal oxide semiconductor is the same as the metal element constituting the metal nanoparticle.
  8. 前記加熱工程及び/又は前記光焼成工程における前記混合物の温度は、前記金属酸化物半導体の焼結温度よりも低い請求項5~7のいずれかに記載の半導体組成物の製造方法。 The method for producing a semiconductor composition according to any one of claims 5 to 7, wherein a temperature of the mixture in the heating step and / or the light baking step is lower than a sintering temperature of the metal oxide semiconductor.
  9. 請求項3に記載の半導体樹脂複合組成物を製造する方法であって、
    金属酸化物半導体と金属ナノ粒子と樹脂を混合して樹脂混合物を作製する工程と、
    前記樹脂混合物を加熱及び/又は光焼成する工程と、を備えることを特徴とする半導体樹脂複合組成物の製造方法。
    A method for producing the semiconductor resin composite composition according to claim 3, comprising:
    A step of mixing a metal oxide semiconductor, metal nanoparticles and a resin to produce a resin mixture;
    And a step of heating and / or light baking the resin mixture. A method for producing a semiconductor resin composite composition, comprising:
PCT/JP2019/016279 2018-04-25 2019-04-16 Semiconductor composition, semiconductor resin composite composition, semiconductor sensor, method of producing semiconductor composition, and method of producing semiconductor resin composite composition WO2019208324A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020516253A JP6977874B2 (en) 2018-04-25 2019-04-16 Semiconductor composition, semiconductor resin composite composition, semiconductor sensor, method for manufacturing a semiconductor composition, and method for manufacturing a semiconductor resin composite composition.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-084148 2018-04-25
JP2018084148 2018-04-25

Publications (1)

Publication Number Publication Date
WO2019208324A1 true WO2019208324A1 (en) 2019-10-31

Family

ID=68294009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016279 WO2019208324A1 (en) 2018-04-25 2019-04-16 Semiconductor composition, semiconductor resin composite composition, semiconductor sensor, method of producing semiconductor composition, and method of producing semiconductor resin composite composition

Country Status (2)

Country Link
JP (1) JP6977874B2 (en)
WO (1) WO2019208324A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240722A (en) * 1998-02-25 1999-09-07 Mitsuboshi Belting Ltd Complex semiconductor composition and its production
JP2010118407A (en) * 2008-11-11 2010-05-27 Idemitsu Kosan Co Ltd Thin-film transistor having etching resistance, and production method thereof
JP2012004030A (en) * 2010-06-18 2012-01-05 Sekisui Chem Co Ltd Dispersion composition for metal oxide semiconductor film formation, and metal oxide semiconductor film manufacturing method
JP2015130354A (en) * 2007-09-13 2015-07-16 株式会社半導体エネルギー研究所 Semiconductor device
JP2016134605A (en) * 2015-01-22 2016-07-25 株式会社東芝 Composite resin and electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11240722A (en) * 1998-02-25 1999-09-07 Mitsuboshi Belting Ltd Complex semiconductor composition and its production
JP2015130354A (en) * 2007-09-13 2015-07-16 株式会社半導体エネルギー研究所 Semiconductor device
JP2010118407A (en) * 2008-11-11 2010-05-27 Idemitsu Kosan Co Ltd Thin-film transistor having etching resistance, and production method thereof
JP2012004030A (en) * 2010-06-18 2012-01-05 Sekisui Chem Co Ltd Dispersion composition for metal oxide semiconductor film formation, and metal oxide semiconductor film manufacturing method
JP2016134605A (en) * 2015-01-22 2016-07-25 株式会社東芝 Composite resin and electronic device

Also Published As

Publication number Publication date
JPWO2019208324A1 (en) 2020-12-17
JP6977874B2 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
Zhu et al. Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires
EP2785158A1 (en) Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating
KR101193286B1 (en) Electroconductive paste, fabricating method the same and electrode using the same
JP3787032B2 (en) Metallic nickel powder
JP2013073748A (en) Transparent electrode laminate and method for manufacturing the same
CN107112073B (en) Flexible conductive film and method for manufacturing same
JP4762582B2 (en) Reduction / mutual fusion method of high-frequency electromagnetic wave irradiation such as metal oxide particles with sintering aid added, and various electronic parts using the same and firing materials such as metal oxide particles
JP5070524B2 (en) Production method of conductive film
KR20160118007A (en) Conductive complex and method of manufacturing the same and electronic device including the conductive complex
Wang et al. Role of Nickel Nanoparticles in High‐Performance TiO2/Ni/Carbon Nanohybrid Lithium/Sodium‐Ion Battery Anodes
KR20170068378A (en) Heat element including nano-material filler
Yan et al. Electrically sintered silver nanowire networks for use as transparent electrodes and heaters
WO2019208324A1 (en) Semiconductor composition, semiconductor resin composite composition, semiconductor sensor, method of producing semiconductor composition, and method of producing semiconductor resin composite composition
JP6656869B2 (en) Method for producing copper nanoparticles
JP4867130B2 (en) Insulated ultrafine powder, method for producing the same, and high dielectric constant resin composite material using the same
JP5070808B2 (en) Composition for forming electrode of solar cell, method for forming the electrode, and solar cell using the electrode obtained by the forming method
JP5435063B2 (en) Method for producing composition for forming electrode of solar cell and method for forming the electrode
CN106575537A (en) Solar cells with copper electrodes
JP2016225438A (en) Element and manufacturing method of the same
KR102567991B1 (en) Heating element, manufacturing method thereof, composition for forming heating element, and heating apparatus
JPH0316954A (en) Oxide sintered product and preparation and use thereof
JP3058278B2 (en) Oxide sintered body and its use
Lee et al. Fabrication and characterization of perovskite solar cells with ZnGa2O4 mixed TiO2 photoelectrode
JP2003249132A5 (en)
JP5517816B2 (en) Ceramic body with conductive layer, and joined body of ceramic and metal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516253

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791651

Country of ref document: EP

Kind code of ref document: A1