WO2019208028A1 - Composition for resin molding and molded resin object obtained using same - Google Patents

Composition for resin molding and molded resin object obtained using same Download PDF

Info

Publication number
WO2019208028A1
WO2019208028A1 PCT/JP2019/011214 JP2019011214W WO2019208028A1 WO 2019208028 A1 WO2019208028 A1 WO 2019208028A1 JP 2019011214 W JP2019011214 W JP 2019011214W WO 2019208028 A1 WO2019208028 A1 WO 2019208028A1
Authority
WO
WIPO (PCT)
Prior art keywords
eucommia
resin molding
powder
molding composition
resin
Prior art date
Application number
PCT/JP2019/011214
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 伸昭
修司 藤岡
錦煌 庄
修司 小▲崎▼
慶久 中澤
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018227041A external-priority patent/JP2019194303A/en
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2019208028A1 publication Critical patent/WO2019208028A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/92Wood chips or wood fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L47/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L99/00Compositions of natural macromolecular compounds or of derivatives thereof not provided for in groups C08L89/00 - C08L97/00

Definitions

  • the present invention relates to a resin molding composition and a resin molded body using the same, and more particularly to a resin molding composition capable of providing a woody texture and a resin molded body using the same.
  • Wood is a material that human beings have used for various purposes since ancient times. Wood has excellent sensory properties due to its unique texture, and has appropriate acoustic characteristics. Depending on the type, it also has specific characteristics such as antibacterial properties. However, wood has poor thermoformability and requires processing by drilling or polishing.
  • plastics are excellent in processability and can easily be manufactured with various physical properties.
  • many plastics are unsustainable materials derived from finite fossil resources, and there is concern that they are poorly biodegradable and have a large environmental impact.
  • various processes are required to provide a plastic-like texture to plastic.
  • Wood plastics that combine the advantages of wood and plastic have been developed and marketed (see, for example, Patent Documents 1 and 2).
  • Wood plastic is a composite of wood powder and petroleum-based resin, and provides a texture like wood and can be easily thermoformed, which is a characteristic of plastic.
  • wood plastics have solved the fundamental problem of environmental burden in that they contain petroleum resin as a main component.
  • the development of sustainable materials with less environmental impact is desired.
  • the present invention has an object to solve the above-mentioned problems, and its object is to provide a sustainable resin molding composition having a texture like wood and excellent moldability and less environmental impact. It is providing a product and a resin molding using the same.
  • the present invention is a resin molding composition composed of eucommia powder.
  • the powder of eucommia contains particles obtained from at least one site selected from the group consisting of eucommia peel, bark, seed coat, root, and leaves.
  • the present invention is also a method for producing a resin molding composition, It is a method including a step of pulverizing a dried eucommia and obtaining a powder having an average particle diameter of 10 ⁇ m to 5000 ⁇ m.
  • the step of pulverizing the dried eucommia is performed at a temperature of 70 ° C. or lower.
  • the present invention is also a resin molding including the resin molding composition.
  • the present invention is also a method for producing a resin molded body, which includes a step of molding the resin molding composition under compression and shear conditions.
  • the present invention is also a resin molding composition containing a powder of eucommia,
  • the eucommia powder is composed of particles having an average particle size of 10 ⁇ m to 5000 ⁇ m, and the content of transpolyisoprene is 1% to 70% by weight based on the total weight. .
  • the resin molding composition of the present invention further contains at least one other polymer selected from the group consisting of vulcanized natural rubber, natural rubber, and polyolefin.
  • the resin molding composition of the present invention further contains carbon fiber.
  • the present invention is also a resin molding including the resin molding composition.
  • a unique texture such as wood and excellent moldability can be provided, and the use of petroleum-based resins can be avoided or reduced.
  • the first resin molding composition of the present invention is composed of eucommia powder.
  • Eucommia (Eucommia ulmoides O.) constituting the composition of the present invention is a woody persimmon that belongs to the family Eucommia. Eucommia contains trans polyisoprene.
  • Trans polyisoprene contained in Eucommia is a kind of diene thermoplastic elastomer.
  • the trans polyisoprene has a weight average molecular weight of, for example, 100,000 to 3,000,000, preferably 300,000 to 1,500,000, and has a high content of trans 1,4-bond units and a bond isomer unit. It is known that the content is low.
  • trans polyisoprene provides an excellent modification effect in the resin composition, and can impart excellent toughness to the resin molded body described later.
  • Trans polyisoprene is particularly abundantly contained in specific parts such as eucommia peel, bark, seed coat, root, and leaf.
  • the above-mentioned powder of eucommia contains particles obtained from any of eucommia peel, bark, seed coat, root, and leaves, and combinations thereof. preferable. More preferably, the powder of eucommia is composed of peel of persimmon.
  • the “powder body” used in the present specification is used as a term representing an aggregate of particles, and when the particles in the aggregate are adhered to each other, the adhesion of the particles in the aggregate In the absence of an independent term, and any combination thereof.
  • the terms “resin molding composition” and “woody resin molding composition” used in the present specification refer to a transformer in which the powder of eucommia contained in each composition is contained in, for example, eucommia. With polyisoprene, when the particles constituting the granular material adhere to each other, when there is no adhesion between the particles constituting the granular material and exist independently, and any combination thereof Is also included.
  • the powder of eucommia is obtained by pulverizing the above eucommia into a predetermined size.
  • the eucommia powder is preferably composed of particles having an average particle diameter of 10 ⁇ m to 5000 ⁇ m, more preferably 80 ⁇ m to 3000 ⁇ m. More specifically, the powder of eucommia in the present invention is composed of particles having various average particle diameter ranges that satisfy the above average particle diameter range, for example, by changing the pulverization scale of eucommia. May be.
  • the powder of eucommia may have a relatively large average particle size such as 500 ⁇ m to 5000 ⁇ m, 1000 ⁇ m to 3000 ⁇ m, for example.
  • the eucommia powder may have a relatively small average particle size, eg, 10 ⁇ m to 1000 ⁇ m, 80 ⁇ m to 300 ⁇ m.
  • the above-mentioned eucommia powder is known to those skilled in the art as dried and / or undried eucommia (preferably at least one portion selected from the group consisting of the above-mentioned pericarp, bark, seed coat, root, and leaf).
  • dried and / or undried eucommia preferably at least one portion selected from the group consisting of the above-mentioned pericarp, bark, seed coat, root, and leaf.
  • the eucommia when obtaining a eucommia powder having a smaller average particle diameter, the eucommia is pulverized in a temperature environment of, for example, 70 ° C. or less, preferably ⁇ 196 ° C. or more and 0 ° C. or less. It is preferable to avoid unnecessary heat being applied. Alternatively, or in addition, it is preferred that the eucommia be ground under conditions that avoid or reduce contact with oxygen as much as possible. This is because the trans polyisoprene contained in the eucommia is melted by heat, which may prevent the average particle size from being lowered. For this reason, it is preferable that the eucommia be pulverized (freeze pulverized) into a fine powder under cooling with liquid nitrogen, for example. Such freeze grinding can also use means known to those skilled in the art.
  • a high concentration of trans polyisoprene derived from the powder of eucommia for example, 5% to 25% by weight, preferably 10%, based on the weight of the entire composition. Contains from 25% to 25% by weight.
  • the composition is subjected to an appropriate temperature condition using molding means known to those skilled in the art (for example, a single screw extruder, a twin screw extruder, a segment mixer, etc.).
  • the trans polyisoprene By compressing under pressure and applying a shearing force, the trans polyisoprene functions as a binder component for other components (for example, woody components such as lignocellulose) contained in the powder of eucommia. . Thereby, a desired resin molding can be shape
  • other components for example, woody components such as lignocellulose
  • the second resin molding composition of the present invention contains a powder of eucommia.
  • the powder of eucommia contained in the second resin molding composition of the present invention is the same as the powder constituting the first resin molding composition, preferably 10 ⁇ m to 5000 ⁇ m, more preferably Is composed of particles having an average particle diameter of 80 ⁇ m to 3000 ⁇ m.
  • the eucommia powder may have a relatively large average particle size, eg, 500 ⁇ m to 5000 ⁇ m, 1000 ⁇ m to 3000 ⁇ m.
  • the eucommia powder may have a relatively small average particle size, eg, 10 ⁇ m to 1000 ⁇ m, 80 ⁇ m to 300 ⁇ m.
  • the second resin molding composition of the present invention contains trans polyisoprene in a content of 1% by weight to 70% by weight, preferably 3% by weight to 60% by weight, based on the weight of the entire composition.
  • the trans polyisoprene is not only contained in the above-mentioned powder of eucommia but also other than the above-mentioned powder, together with the powder of eucommia. May be added separately.
  • transpolyisoprene is contained not only in Eucommia ulmoides O., but also in plant bodies such as categorized balata (Mimusops balata) and gutta percanoki (Pallaquim gutta).
  • a granule derived from such a plant or trans polyisoprene extracted from the plant may be added separately as a biomass material.
  • the second resin molding composition of the present invention may also contain other polymers such as elastomers and thermoplastic resins.
  • other polymers include natural rubber (cis polyisoprene) and its vulcanizates (vulcanized natural rubber); polyethylene (eg, high density polyethylene (HDPE), medium density polyethylene (MDPE) and low density Polyethylene (LDPE), polyolefins such as polypropylene; polyvinyl chloride; polystyrene; polyvinyl acetate; polyurethane; acrylonitrile-butadiene-styrene (ABS) resin; acrylonitrile-styrene (AS) resin; polyacrylate, poly Acrylic resins such as methacrylate; polyamide, polyacetal; modified polyphenylene ether (modified PPE); polyester such as polyethylene terephthalate and polybutylene terephthalate; polyphenylene sulfide; Roechiren; polyimide; polyamide-imide; polylactic acid;
  • Vulcanized natural rubber, natural rubber and polyolefin, and combinations thereof are preferred.
  • the content of these other polymers is not particularly limited because it varies depending on the use of the resin molded body and the properties required for the molded body.
  • a content of preferably 5 wt% to 95 wt%, more preferably 10 wt% to 50 wt% can be set based on the total weight of the resin composition.
  • the second resin molding composition of the present invention may also contain carbon fibers, for example, for the purpose of enhancing bending characteristics.
  • carbon fibers include graphite-type carbon fibers, carbon-type carbon fibers, and combinations thereof.
  • the carbon fiber content is not particularly limited because it varies depending on the use of the resin molding and the characteristics required for the molding.
  • the carbon fiber content is preferably 15% by weight to 50% by weight, more preferably 20% by weight to 40% by weight, based on the total weight of the resin composition. % Content can be set.
  • the second resin molding composition of the present invention may also contain other additives.
  • additives include colorants, flame retardants, lubricants, light stabilizers, antioxidants, antistatic agents, and fillers and combinations thereof.
  • colorant examples include perylene dyes, coumarin dyes, thioindigo dyes, anthraquinone dyes, thioxanthone dyes, ferrocyanides such as bitumen, perinone dyes, quinoline dyes, quinacridone dyes, dioxazine dyes Organic colorants such as isoindolinone dyes and phthalocyanine dyes, carbon black, and combinations thereof.
  • flame retardants examples include brominated flame retardants such as tetrabromobisphenol A oligomers, monophosphate esters such as triphenyl phosphate and tricresyl phosphate, bisphenol A diphosphate, resorcin diphosphate, tetraxylenyl resorcin diphosphate Oligomer-type condensed phosphate esters, phosphorus-based flame retardants such as ammonium polyphosphate and red phosphorus, and various silicone-based flame retardants.
  • a metal salt of aromatic sulfonic acid or a metal salt of perfluoroalkanesulfonic acid may be contained.
  • lubricants include paraffin wax, n-butyl stearate, synthetic beeswax, natural beeswax, glycerin monoester, montanic acid wax, polyethylene wax, and pentaerythritol tetrastearate, and combinations thereof.
  • light stabilizers examples include benzotriazole light stabilizers (ultraviolet absorbers), benzophenone light stabilizers (ultraviolet absorbers), hindered amine light stabilizers, and combinations thereof.
  • antioxidants examples include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and combinations thereof.
  • antistatic agents examples include quaternary ammonium salt compounds, sulfonate compounds, alkyl phosphate compounds, and combinations thereof.
  • fillers include inorganic fillers, organic fillers, and combinations thereof.
  • inorganic fillers include fillers other than the above carbon fibers (for example, calcium carbonate, clay, silica, glass fibers, glass balls, glass flakes, talc, mica, and various whiskers, and combinations thereof) ).
  • the organic filler is obtained from a plant body other than the above eucommia, for example, rice husk powder, wood powder, okara, pulp, cotton fiber, hemp fiber, bamboo fiber, kenaf fiber, jute fiber, banana fiber, Examples include coconut fiber, other wood fibers, cellulose powder, fruit shell powder, chitin powder, chitosan powder, protein, and starch, and combinations thereof.
  • the content of these other additives is not particularly limited because it varies depending on the use of the resin molded body and the properties required for the molded body.
  • the appropriate content can be selected as appropriate.
  • the second resin molding composition of the present invention may contain another component other than the powder of eucommia.
  • the second resin molding composition of the present invention has the above-mentioned first resin molding composition of the present invention in addition to the characteristics (for example, toughness) of transpolyisoprene contained in the powder of eucommia. It may have new characteristics that are not found in any object.
  • the second resin molding composition of the present invention can provide an excellent woody texture (that is, wood texture) by containing the eucommia powder itself. It can also be used as a composition.
  • the first resin molding composition and the second resin molding composition of the present invention can be used for various applications by using molding means and molding methods known to those skilled in the art as substitutes for wood or conventional wood plastics. Therefore, it can be formed into a resin molded body.
  • a resin molded body is not particularly limited, but for example, a building material such as a pillar material, a handrail, a wall material, a window frame, and a waist wall; an automobile interior used as a decorative material for an instrument panel, etc.
  • Acoustic equipment such as speaker housings and components
  • Piano keyboards, woodwind instrument cylinders, musical instruments such as stringed instruments, top plates / pillars / pieces, percussion instruments
  • furniture materials such as chests, dressers, tables, chairs; Shoe materials such as soles; and the like.
  • Example 1 Production of vulcanized rubber plate (1)
  • the dried eucommia peel was cut or coarsely pulverized using a scissors, a threshing machine and a mill to obtain a coarsely pulverized product of several mm to 1 cm.
  • 4 g of coarsely pulverized material from which Eucommia seeds were removed and about 60 g of stainless steel balls were placed in a pulverizing jar of a mixer mill (Lecce Company; Cryomill).
  • the powder (E1) having an average particle diameter of 100 ⁇ m was obtained by pulverizing vigorously left and right at a frequency of 2 times for 3 minutes.
  • the obtained kneaded material was cut off from the roll and taken out, the roll interval was narrowed to 0.8 mm, and the kneaded material was rounded through a total of 6 times. Thereafter, the sample obtained by rolling was placed on a metal plate and allowed to cool to room temperature to obtain a sheet-like compounded rubber sample.
  • the compounded rubber sample obtained above was further charged into a lab plast mill (10C100 lab plast mill manufactured by Toyo Seiki Co., Ltd .; KF70V2 mixer) and kneaded for 1 minute at 20 rpm at a temperature of 90 ° C. to 100 ° C. Furthermore, kneading was continued for 4 minutes at a rotation speed of 50 rpm. Thereafter, the obtained sample was passed through an open roll machine ( ⁇ 6 ′′ ⁇ 14 ′′ L test roll machine manufactured by Toyo Seiki Seisakusho Co., Ltd.) twice to form a sheet, and then cooled to room temperature.
  • the sample obtained above was placed in a predetermined mold, and vulcanized at 140 ° C. for 16 minutes under a pressure of 15 MPa using a hot press machine (MP-WCH manufactured by Toyo Seiki Seisakusho Co., Ltd.). . Thereafter, water was cooled to 25 ° C. while maintaining the pressurized state to obtain a vulcanized rubber plate (EG1) having a thickness of 8 mm.
  • EG1 a vulcanized rubber plate having a thickness of 8 mm.
  • the obtained vulcanized rubber plate (EG1) had a woody texture due to eucommia.
  • Example 2 Production of vulcanized rubber plate (2) Except that the amount of added sulfur was changed to 5.5 g, a vulcanized rubber plate (EG2) having a thickness of 8 mm was obtained in the same manner as in Example 1. In addition, the obtained vulcanized rubber plate (EG2) had a woody texture caused by eucommia.
  • a disk-shaped test piece is prepared from each vulcanized rubber plate, and a 10N force is applied to the test piece by method A (no test piece rotation), and wear due to a wear distance of 20 m or 40 m. The amount was measured. The obtained results are shown in FIG.
  • the specific wear volumes of the vulcanized rubber plates (EG1) and (EG2) obtained in Examples 1 and 2 are all vulcanized rubber plates obtained in Comparative Example 1 and Comparative Example 2.
  • the values were lower than those of (CG1) and (CG2). From this, it can be seen that the molded product obtained by containing the powder of eucommia can provide better abrasion resistance than the molded product composed of natural rubber alone.
  • Example 3 Production of sheet-like molded body
  • the dried eucommia peel was cut or coarsely pulverized using a scissors, a threshing machine and a mill to obtain a coarsely pulverized product of several mm to 1 cm.
  • a powder (E2) was obtained.
  • the average particle size of the powder (E2) was 5000 ⁇ m.
  • the eucommia powder (E2) obtained above was put into a twin-screw extruder (HMT57 manufactured by Hitachi Zosen Corporation), and the screw speed was 30 rpm at an extrusion speed of 15 kg / hour to 30 kg / hour and an extrusion temperature of 150 ° C. Was extruded into a rod shape of ⁇ 35.
  • the obtained rod-shaped sample was allowed to cool to room temperature, and then subjected to press processing at 150 ° C. for 2 minutes at a press pressure of 20 MPa using a small press machine (MP-WCH manufactured by Toyo Seiki Seisakusyo Co., Ltd.).
  • a sheet-like molded body (ES1) of 115 mm ⁇ 2 mm was obtained.
  • the obtained sheet-like molded object (ES1) had the woody texture resulting from a eucommia.
  • the value of the loss tangent at 25 ° C. of the sheet-like molded body obtained in Example 3 was 0.058, and the value of silicone rubber was 0.067 (Department of Mechanical Engineering, Faculty of Science and Engineering, Keio University) Creativity exercises, 2015 report collection, “Difference in shock absorption capacity depending on the type of rubber”; http://www.mech.keio.ac.jp/ja/souzo/processeds2015/index.html), or ethylene-vinyl acetate
  • the copolymer (EVA) value was approximately 0.02 to 0.06 (Japan Rubber Association Journal, 2016, Vol. 89, No. 8, pp. 249-253).
  • Example 4 Production of press-molded body (1)
  • Open roll machine ⁇ 6 ” ⁇ 14” L test roll machine manufactured by Toyo Seiki Seisakusho Co., Ltd. And kneaded for 7 minutes at a roll temperature of 70 ° C. and a roll interval of 1.1 mm. After kneading, the obtained kneaded product was hot press-molded to obtain a press-molded body (EP1).
  • the obtained press-molded body (EP1) had a woody texture attributed to Eucommia.
  • Example 5 Production of press-molded body (2)
  • a press-molded body (EP2) was obtained in the same manner as in Example 4 except that 30 g of polypropylene (Prime Polypro manufactured by Prime Polymer Co., Ltd.) was used as a general-purpose resin instead of polyethylene.
  • the obtained press-molded body (EP2) had a woody texture attributed to Eucommia.
  • Test pieces are prepared from each press-molded body or polyethylene sheet, and in accordance with JIS Z2801, E. coli (Escherichia coli NBRC-3972) or Staphylococcus aureus NBRC-12732 is seeded on the surface of the test piece. Viable counts were measured at the start and 24 hours later. This measurement was performed three times for each test piece while changing the measurement location. Furthermore, each antibacterial activity value was also calculated according to the JIS Z2801. The obtained results are shown in Tables 1 and 2.
  • the press-molded bodies (EP1) and (EP2) obtained in Examples 4 and 5 were the same as the press-molded bodies (CP3) and (CP4) obtained in Comparative Examples 3 and 4.
  • the number of bacteria after 24 hours was extremely low for both E. coli and Staphylococcus aureus.
  • the antibacterial activity value of the press-molded bodies (EP1) and (EP2) obtained in Examples 4 and 5 is significantly higher than 2.0 considered to have an antibacterial effect in the antibacterial test. It can be seen that the press-molded bodies (EP1) and (EP2) obtained in Examples 4 and 5 had excellent antibacterial performance.
  • Example 6 Production of hard vulcanized rubber plate (1)
  • a granular material (E1) having an average particle diameter of 100 ⁇ m was obtained.
  • the obtained kneaded material was cut off from the roll and taken out, the roll interval was narrowed to 0.8 mm, and the kneaded material was rounded through a total of 6 times. Thereafter, the sample obtained by rolling was placed on a metal plate and allowed to cool to room temperature to obtain a sheet-like compounded rubber sample.
  • the compounded rubber sample obtained above was further charged into a lab plast mill (10C100 lab plast mill manufactured by Toyo Seiki Seisakusho; KF70V2 mixer) and kneaded at a temperature of 70 ° C. to 80 ° C. at 20 rpm for 0.5 minutes. Thereafter, kneading was continued for 1.5 minutes at a rotation speed of 30 rpm. Thereafter, the obtained sample was passed through an open roll machine ( ⁇ 6 ′′ ⁇ 14 ′′ L test roll machine manufactured by Toyo Seiki Seisakusho Co., Ltd.) twice to form a sheet, and then cooled to room temperature.
  • the sample obtained above was placed in a predetermined mold and vulcanized at 160 ° C. for 240 minutes under a pressure of 25 MPa using a hot press machine (MP-WCH manufactured by Toyo Seiki Seisakusyo Co., Ltd.). . Thereafter, water was cooled to 25 ° C. while maintaining the pressurized state to obtain a vulcanized rubber plate (EG6) having a thickness of 4 mm.
  • MP-WCH manufactured by Toyo Seiki Seisakusyo Co., Ltd.
  • the vulcanized rubber plate (EG6) was subjected to a bending test according to JIS K7171 using an EZ Graph universal testing machine manufactured by Shimadzu Corporation, and the bending elastic modulus was measured. The obtained results are shown in Table 3. In addition, the obtained vulcanized rubber plate (EG6) had a woody texture due to eucommia.
  • Example 7 Production of hard vulcanized rubber plate (2)
  • a vulcanized rubber plate (EG7) was obtained in the same manner as in Example 6 except that 100 g of natural rubber (SMR-CV60) was used instead of the synthetic transpolyisoprene.
  • the vulcanized rubber plate (EG7) was subjected to a bending test in the same manner as in Example 6 to measure the flexural modulus. The obtained results are shown in Table 3.
  • the obtained vulcanized rubber plate (EG7) had a woody texture due to eucommia.
  • Example 8 Production of hard vulcanized rubber plate (3)
  • a granular material (E1) having an average particle diameter of 100 ⁇ m was obtained.
  • a vulcanized rubber plate (EG8) was obtained in the same manner as in Example 6 except that the kneaded material thus obtained was used.
  • the vulcanized rubber plate (EG8) was subjected to a bending test in the same manner as in Example 6 to measure the flexural modulus.
  • the obtained results are shown in Table 3.
  • the obtained vulcanized rubber plate (EG8) had a woody texture due to eucommia.
  • Example 9 Production of hard vulcanized rubber plate (4)
  • a granular material (E1) having an average particle diameter of 100 ⁇ m was obtained.
  • a vulcanized rubber plate (EG9) was obtained in the same manner as in Example 6 except that the kneaded material thus obtained was used.
  • the vulcanized rubber plate (EG9) was subjected to a bending test in the same manner as in Example 6 to measure the flexural modulus.
  • the obtained results are shown in Table 3.
  • the obtained vulcanized rubber plate (EG9) had a woody texture caused by eucommia.
  • Example 10 Production of hard vulcanized rubber plate (5)
  • Example 10 Production of hard vulcanized rubber plate (5)
  • a granular material (E1) having an average particle diameter of 100 ⁇ m was obtained.
  • a vulcanized rubber plate (EG10) was obtained in the same manner as in Example 6 except that the kneaded material thus obtained was used.
  • the vulcanized rubber plate (EG10) was subjected to a bending test in the same manner as in Example 6 to measure the flexural modulus. The obtained results are shown in Table 3.
  • the obtained vulcanized rubber plate (EG10) had a woody texture caused by eucommia.
  • Example 11 Production of hard vulcanized rubber plate (6)
  • Example 11 Production of hard vulcanized rubber plate (6)
  • a granular material (E1) having an average particle diameter of 100 ⁇ m was obtained.
  • a vulcanized rubber plate (EG11) was obtained in the same manner as in Example 6 except that the kneaded material thus obtained was used.
  • the vulcanized rubber plate (EG11) was subjected to a bending test in the same manner as in Example 6 to measure the flexural modulus.
  • the obtained results are shown in Table 3.
  • the obtained vulcanized rubber plate (EG11) had a woody texture due to eucommia.
  • Example 12 Production of hard vulcanized rubber plate (7)
  • a granular material (E1) having an average particle diameter of 100 ⁇ m was obtained.
  • a vulcanized rubber plate (EG12) was obtained in the same manner as in Example 6 except that the kneaded material thus obtained was used.
  • the vulcanized rubber plate (EG12) was subjected to a bending test in the same manner as in Example 6 to measure the flexural modulus. The obtained results are shown in Table 3.
  • the obtained vulcanized rubber plate (EG12) had a woody texture caused by eucommia.
  • Example 13 Production of hard vulcanized rubber plate (8)
  • a granular material (E1) having an average particle diameter of 100 ⁇ m was obtained.
  • a vulcanized rubber plate (EG13) was obtained in the same manner as in Example 6 except that the kneaded material thus obtained was used.
  • the vulcanized rubber plate (EG13) was subjected to a bending test in the same manner as in Example 6 to measure the flexural modulus.
  • the obtained results are shown in Table 3.
  • the obtained vulcanized rubber plate (EG13) had a woody texture resulting from eucommia.
  • the vulcanized rubber plates (EG6) to (EG13) obtained in Examples 6 to 13 can increase the flexural modulus by containing carbon fibers.
  • the vulcanized rubber plates (EG12) and (EG13) obtained in No. 13 and No. 13 particularly excellent bending characteristics exceeding 10 GPa set as a baseline for evaluating the practicality of a predetermined industrial product as a hard material. It turns out that it was what had.
  • the resin molding composition of the present invention is useful in a wide range of fields such as, for example, the construction field, the shoemaking field, the automobile field, the electronic / acoustic field, the food field, and the pharmaceutical field.

Abstract

The composition for resin molding of the present invention comprises powder particles of Eucommia ulmoides. This composition can be produced by, for example, pulverizing dry Eucommia ulmoides to obtain powder particles having an average particle diameter of 10-5,000 μm. The composition of the present invention is a sustainable material which can have a more reduced dependence on petroleum-based resins and is reduced in environmental burden.

Description

樹脂成形用組成物およびそれを用いた樹脂成形体Resin molding composition and resin molded body using the same
 本発明は、樹脂成形用組成物およびそれを用いた樹脂成形体に関し、より詳細には木質の風合いを提供することができる樹脂成形用組成物およびそれを用いた樹脂成形体に関する。 The present invention relates to a resin molding composition and a resin molded body using the same, and more particularly to a resin molding composition capable of providing a woody texture and a resin molded body using the same.
 木材は、人類が古来より種々の用途に使用してきた材料である。木材は、独特の風合いにより優れた官能性を付与するとともに、適度な音響特性を備え、その種類によっては抗菌性などの固有の特性も備えている。しかし、木材は熱成形性に乏しく、削孔や研磨による加工が必要とされる。 Timber is a material that human beings have used for various purposes since ancient times. Wood has excellent sensory properties due to its unique texture, and has appropriate acoustic characteristics. Depending on the type, it also has specific characteristics such as antibacterial properties. However, wood has poor thermoformability and requires processing by drilling or polishing.
 一方、プラスチックは加工性に優れ、様々な物性を備えたものを容易に製造することができる。しかし、プラスチックの多くは、有限な化石資源を源とするサステイナブルではない材料であり、生分解性に乏しくて環境負荷が大きいことが懸念されている。また、プラスチックに、木材のような風合いを提供するためには、様々な加工が必要とされている。 On the other hand, plastics are excellent in processability and can easily be manufactured with various physical properties. However, many plastics are unsustainable materials derived from finite fossil resources, and there is concern that they are poorly biodegradable and have a large environmental impact. In addition, various processes are required to provide a plastic-like texture to plastic.
 近年では、このような木材およびプラスチックの利点を合わせた、ウッドプラスチックが開発されかつ市販されている(例えば、特許文献1および2を参照)。ウッドプラスチックは木粉と石油系樹脂との複合体であり、木材のような風合いを提供するとともに、プラスチックの特徴である熱成形を容易に行うことができる。 In recent years, wood plastics that combine the advantages of wood and plastic have been developed and marketed (see, for example, Patent Documents 1 and 2). Wood plastic is a composite of wood powder and petroleum-based resin, and provides a texture like wood and can be easily thermoformed, which is a characteristic of plastic.
 しかし、こうしたウッドプラスチックは主成分として石油系樹脂を含有する点では、環境負荷の根本的な問題を解決したものとは言い難い。より環境負荷の少ないサステイナブルな材料の開発が所望されている。 However, it is difficult to say that these wood plastics have solved the fundamental problem of environmental burden in that they contain petroleum resin as a main component. The development of sustainable materials with less environmental impact is desired.
特開2001-002929号公報JP 2001-002929 A 特表2014-533311号公報JP-T-2014-533311
 本発明は、上記問題の解決を課題とするものであり、その目的とするところは、木材のような風合いと優れた成形性とを有し、かつより環境負荷の少ないサステイナブルな樹脂成形用組成物およびそれを用いた樹脂成形体を提供することにある。 The present invention has an object to solve the above-mentioned problems, and its object is to provide a sustainable resin molding composition having a texture like wood and excellent moldability and less environmental impact. It is providing a product and a resin molding using the same.
 本発明は、トチュウの粉粒体から構成されている、樹脂成形用組成物である。 DETAILED DESCRIPTION OF THE INVENTION The present invention is a resin molding composition composed of eucommia powder.
 1つの実施形態では、上記トチュウの粉粒体は、トチュウの果皮、樹皮、種皮、根、および葉からなる群から選択される少なくとも1つの部位から得られた粒子を含有する。 In one embodiment, the powder of eucommia contains particles obtained from at least one site selected from the group consisting of eucommia peel, bark, seed coat, root, and leaves.
 本発明はまた、樹脂成形用組成物の製造方法であって、
 トチュウの乾燥体を粉砕して、10μmから5000μmの平均粒子径を有する粉粒体を得る工程を包含する、方法である。
The present invention is also a method for producing a resin molding composition,
It is a method including a step of pulverizing a dried eucommia and obtaining a powder having an average particle diameter of 10 μm to 5000 μm.
 1つの実施形態では、上記トチュウの乾燥体を粉砕する工程は70℃以下の温度下で行われる。 In one embodiment, the step of pulverizing the dried eucommia is performed at a temperature of 70 ° C. or lower.
 本発明はまた、上記樹脂成形用組成物を含む、樹脂成形体である。 The present invention is also a resin molding including the resin molding composition.
 本発明はまた、上記樹脂成形用組成物を圧縮かつ剪断条件下で成形する工程を包含する、樹脂成形体の製造方法である。 The present invention is also a method for producing a resin molded body, which includes a step of molding the resin molding composition under compression and shear conditions.
 本発明はまた、トチュウの粉粒体を含有する樹脂成形用組成物であって、
 該トチュウの粉粒体が10μmから5000μmの平均粒子径を有する粒子で構成されており、そして
 トランスポリイソプレンの含有量が全体重量に対して1重量%から70重量%である、組成物である。
The present invention is also a resin molding composition containing a powder of eucommia,
The eucommia powder is composed of particles having an average particle size of 10 μm to 5000 μm, and the content of transpolyisoprene is 1% to 70% by weight based on the total weight. .
 1つの実施形態では、本発明の樹脂成形用組成物は、さらに、加硫天然ゴム、天然ゴムおよびポリオレフィンからなる群から選択される少なくとも1種の他のポリマーを含有する。 In one embodiment, the resin molding composition of the present invention further contains at least one other polymer selected from the group consisting of vulcanized natural rubber, natural rubber, and polyolefin.
 1つの実施形態では、本発明の樹脂成形用組成物は、さらに炭素繊維を含有する。 In one embodiment, the resin molding composition of the present invention further contains carbon fiber.
 本発明はまた、上記樹脂成形用組成物を含む、樹脂成形体である。 The present invention is also a resin molding including the resin molding composition.
 本発明によれば、木材のような独特の風合いと、優れた成形性とを提供し、かつ石油系樹脂の使用を回避または低減することができる。これにより、環境負荷の少ないサステイナブルな材料を提供することができるとともに、石油系樹脂への依存をより低減させることが可能である。 According to the present invention, a unique texture such as wood and excellent moldability can be provided, and the use of petroleum-based resins can be avoided or reduced. As a result, it is possible to provide a sustainable material with a small environmental load, and it is possible to further reduce dependence on petroleum-based resins.
実施例1および2、ならびに比較例1および2で得られた加硫ゴム板についての耐摩耗性試験の結果を示すグラフである。It is a graph which shows the result of the abrasion resistance test about the vulcanized rubber board obtained in Example 1 and 2 and Comparative Example 1 and 2. 実施例3で得られたシート状成形体の動的粘弾性試験結果を示すグラフである。6 is a graph showing the results of a dynamic viscoelasticity test of a sheet-like molded body obtained in Example 3.
 まず、本発明の第1の樹脂成形用組成物について詳述する。 First, the first resin molding composition of the present invention will be described in detail.
 本発明の第1の樹脂成形用組成物は、トチュウの粉粒体から構成されている。 The first resin molding composition of the present invention is composed of eucommia powder.
 本発明の組成物を構成するトチュウ(Eucommia ulmoides O.)は、トチュウ目トチュウ科に属する木本性の蕎木である。トチュウはトランスポリイソプレンを含有する。 Eucommia (Eucommia ulmoides O.) constituting the composition of the present invention is a woody persimmon that belongs to the family Eucommia. Eucommia contains trans polyisoprene.
 トチュウに含まれるトランスポリイソプレンは、ジエン系熱可塑性エラストマーの1種である。当該トランスポリイソプレンは、例えば10万~300万、好ましくは30万~150万の重量平均分子量を有し、その構造中に、トランス1,4-結合単位の含有率が高くかつ結合異性単位の含有率が低いことが知られている。さらに、トランスポリイソプレンは、樹脂組成物中において優れた改質効果を提供し、後述する樹脂成形体に対して優れた靭性を付与することができる。 Trans polyisoprene contained in Eucommia is a kind of diene thermoplastic elastomer. The trans polyisoprene has a weight average molecular weight of, for example, 100,000 to 3,000,000, preferably 300,000 to 1,500,000, and has a high content of trans 1,4-bond units and a bond isomer unit. It is known that the content is low. Furthermore, trans polyisoprene provides an excellent modification effect in the resin composition, and can impart excellent toughness to the resin molded body described later.
 トランスポリイソプレンは、トチュウの果皮、樹皮、種皮、根、および葉などの特定の部位に特に豊富に含有されている。このため、本発明の組成物において、上記トチュウの粉粒体は、トチュウの果皮、樹皮、種皮、根、および葉、ならびにそれらの組み合わせのいずれかから得られた粒子を含有していることが好ましい。上記トチュウの粉粒体は、トチュウの果皮から構成されていることがより好ましい。 Trans polyisoprene is particularly abundantly contained in specific parts such as eucommia peel, bark, seed coat, root, and leaf. For this reason, in the composition of the present invention, the above-mentioned powder of eucommia contains particles obtained from any of eucommia peel, bark, seed coat, root, and leaves, and combinations thereof. preferable. More preferably, the powder of eucommia is composed of peel of persimmon.
 ここで、本明細書中に用いられる「粉粒体」は、粒子の集合体を表す用語として用いられ、当該集合体における粒子同士が互いに付着している場合、当該集合体における粒子同士の付着がなく独立して存在している場合、およびそれらの組み合わせのいずれをも包含していう。この点において、本明細書中に用いられる用語「樹脂成形用組成物」および「木質様樹脂成形用組成物」は、各組成物に含まれるトチュウの粉粒体が、例えばトチュウに含まれるトランスポリイソプレンによって、当該粉粒体を構成する粒子同士が互いに付着している場合、当該粉粒体を構成する粒子同士の付着がなく独立して存在している場合、およびそれらの組み合わせのいずれをも包含していう。 Here, the “powder body” used in the present specification is used as a term representing an aggregate of particles, and when the particles in the aggregate are adhered to each other, the adhesion of the particles in the aggregate In the absence of an independent term, and any combination thereof. In this regard, the terms “resin molding composition” and “woody resin molding composition” used in the present specification refer to a transformer in which the powder of eucommia contained in each composition is contained in, for example, eucommia. With polyisoprene, when the particles constituting the granular material adhere to each other, when there is no adhesion between the particles constituting the granular material and exist independently, and any combination thereof Is also included.
 本発明において、トチュウの粉粒体は、上記トチュウを所定の大きさに粉砕したものである。トチュウの粉粒体は、好ましくは10μm~5000μm、より好ましくは80μm~3000μmの平均粒子径を有する粒子から構成されている。より詳細には、本発明におけるトチュウの粉粒体は、例えばトチュウの粉砕規模を変動させることによって、上記平均粒子径の範囲を満足する、様々な平均粒子径の範囲を有する粒子から構成されていてもよい。すなわち、本発明の1つの実施形態では、トチュウの粉粒体は、例えば、500μm~5000μm、1000μm~3000μmのような比較的大きい平均粒子径を有するものであってもよい。あるいは、本発明の他の実施形態では、トチュウの粉粒体は、例えば、10μm~1000μm、80μm~300μmのような比較的小さい平均粒子径を有するものであってもよい。 In the present invention, the powder of eucommia is obtained by pulverizing the above eucommia into a predetermined size. The eucommia powder is preferably composed of particles having an average particle diameter of 10 μm to 5000 μm, more preferably 80 μm to 3000 μm. More specifically, the powder of eucommia in the present invention is composed of particles having various average particle diameter ranges that satisfy the above average particle diameter range, for example, by changing the pulverization scale of eucommia. May be. That is, in one embodiment of the present invention, the powder of eucommia may have a relatively large average particle size such as 500 μm to 5000 μm, 1000 μm to 3000 μm, for example. Alternatively, in other embodiments of the present invention, the eucommia powder may have a relatively small average particle size, eg, 10 μm to 1000 μm, 80 μm to 300 μm.
 上記トチュウの粉粒体は、トチュウ(好ましくは、上記果皮、樹皮、種皮、根、および葉からなる群から選択される少なくとも1つの部位)の乾燥体および/または未乾燥体を当業者に公知の粉砕手段(例えば、ハンマーミル、ボールミル、カッターミル、ロッドミル、ローラーミル、およびジェットミル、ならびにそれらの組み合わせ)を用いて粉砕し、必要に応じて分級することによって得ることができる。本発明においてはトチュウの乾燥体を用いることが好ましい。 The above-mentioned eucommia powder is known to those skilled in the art as dried and / or undried eucommia (preferably at least one portion selected from the group consisting of the above-mentioned pericarp, bark, seed coat, root, and leaf). For example, a hammer mill, a ball mill, a cutter mill, a rod mill, a roller mill, and a jet mill, and combinations thereof, and may be classified as necessary. In the present invention, it is preferable to use a dried eucommia.
 さらに、平均粒子径がより小さいトチュウの粉粒体を得る場合には、トチュウの粉砕は、例えば、70℃以下、好ましくは-196℃以上0℃以下の温度環境下で行われ、当該トチュウに無用な熱が付与されることを回避して行うことが好ましい。あるいは、またはこれに加えて、このトチュウの粉砕は、可能な限り酸素との接触を回避または低減した条件下で行われることが好ましい。トチュウ内に含まれるトランスポリイソプレンが熱によって溶融することにより、平均粒子径の低下を妨げることがあるからである。このため、トチュウの粉砕は、例えば、液体窒素による冷却下で微粉末に粉砕(凍結粉砕)することが好ましい。このような凍結粉砕もまた当業者に公知の手段が使用され得る。 Further, when obtaining a eucommia powder having a smaller average particle diameter, the eucommia is pulverized in a temperature environment of, for example, 70 ° C. or less, preferably −196 ° C. or more and 0 ° C. or less. It is preferable to avoid unnecessary heat being applied. Alternatively, or in addition, it is preferred that the eucommia be ground under conditions that avoid or reduce contact with oxygen as much as possible. This is because the trans polyisoprene contained in the eucommia is melted by heat, which may prevent the average particle size from being lowered. For this reason, it is preferable that the eucommia be pulverized (freeze pulverized) into a fine powder under cooling with liquid nitrogen, for example. Such freeze grinding can also use means known to those skilled in the art.
 本発明の第1の樹脂成形用組成物では、上記トチュウの粉粒体に由来するトランスポリイソプレンを高濃度、例えば、組成物全体の重量を基準として5重量%~25重量%、好ましくは10重量%~25重量%含有する。このため、本発明の第1の樹脂成形用組成物では、当該組成物を当業者に公知の成形手段(例えば、一軸押出機、二軸押出機、セグメントミキサーなど)を用いて適度な温度条件の下で圧縮しかつ剪断力を付与することにより、トチュウの粉粒体に含まれる他の成分(例えば、リグノセルロース等の木質様成分)に対して、当該トランスポリイソプレンがバインダー成分として機能する。これにより、他の樹脂成分を添加することなく所望の樹脂成形体を成形することができる。 In the first resin molding composition of the present invention, a high concentration of trans polyisoprene derived from the powder of eucommia, for example, 5% to 25% by weight, preferably 10%, based on the weight of the entire composition. Contains from 25% to 25% by weight. For this reason, in the first resin molding composition of the present invention, the composition is subjected to an appropriate temperature condition using molding means known to those skilled in the art (for example, a single screw extruder, a twin screw extruder, a segment mixer, etc.). By compressing under pressure and applying a shearing force, the trans polyisoprene functions as a binder component for other components (for example, woody components such as lignocellulose) contained in the powder of eucommia. . Thereby, a desired resin molding can be shape | molded, without adding another resin component.
 次に、本発明の第2の樹脂成形用組成物について詳述する。 Next, the second resin molding composition of the present invention will be described in detail.
 本発明の第2の樹脂成形用組成物は、トチュウの粉粒体を含有する。 The second resin molding composition of the present invention contains a powder of eucommia.
 本発明の第2の樹脂成形用組成物に含有されるトチュウの粉粒体は、上記第1の樹脂成形用組成物を構成する粉粒体と同様であり、好ましくは10μm~5000μm、より好ましくは80μm~3000μmの平均粒子径を有する粒子から構成されている。本発明の1つの実施形態では、トチュウの粉粒体は、例えば、500μm~5000μm、1000μm~3000μmのような比較的大きい平均粒子径を有するものであってもよい。あるいは、本発明の他の実施形態では、トチュウの粉粒体は、例えば、10μm~1000μm、80μm~300μmのような比較的小さい平均粒子径を有するものであってもよい。 The powder of eucommia contained in the second resin molding composition of the present invention is the same as the powder constituting the first resin molding composition, preferably 10 μm to 5000 μm, more preferably Is composed of particles having an average particle diameter of 80 μm to 3000 μm. In one embodiment of the present invention, the eucommia powder may have a relatively large average particle size, eg, 500 μm to 5000 μm, 1000 μm to 3000 μm. Alternatively, in other embodiments of the present invention, the eucommia powder may have a relatively small average particle size, eg, 10 μm to 1000 μm, 80 μm to 300 μm.
 さらに、本発明の第2の樹脂成形用組成物は、組成物全体の重量を基準として1重量%~70重量%、好ましくは3重量%~60重量%の含有量でトランスポリイソプレンを含有する。ここで、本発明の第2の樹脂成形用組成物において、トランスポリイソプレンは、上記トチュウの粉粒体に含有されているものだけでなく、当該トチュウの粉粒体とともに、当該粉粒体以外から別途添加されたものであってもよい。 Furthermore, the second resin molding composition of the present invention contains trans polyisoprene in a content of 1% by weight to 70% by weight, preferably 3% by weight to 60% by weight, based on the weight of the entire composition. . Here, in the second resin molding composition of the present invention, the trans polyisoprene is not only contained in the above-mentioned powder of eucommia but also other than the above-mentioned powder, together with the powder of eucommia. May be added separately.
 例えば、トランスポリイソプレンは、トチュウ(Eucommia ulmoides O.)以外にも、アカテツ科のバラタ(Mimusops  balata)、グッタペルカノキ(Palaquim  gutta)などの植物体にも含有されている。本発明においては、このような植物体に由来する粉粒体や当該植物体から抽出されたトランスポリイソプレンが、バイオマス材料として別途添加されたものであってもよい。 For example, transpolyisoprene is contained not only in Eucommia ulmoides O., but also in plant bodies such as categorized balata (Mimusops balata) and gutta percanoki (Pallaquim gutta). In the present invention, a granule derived from such a plant or trans polyisoprene extracted from the plant may be added separately as a biomass material.
 本発明の第2の樹脂成形用組成物はまた、エラストマー、熱可塑性樹脂などの他のポリマーを含有していてもよい。このような他のポリマーの例としては、天然ゴム(シスポリイソプレン)およびその加硫物(加硫天然ゴム);ポリエチレン(例えば、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)および低密度ポリエチレン(LDPE)を包含する)、ポリプロピレンなどのポリオレフィン;ポリ塩化ビニル;ポリスチレン;ポリ酢酸ビニル;ポリウレタン;アクリロニトリル-ブタジエン-スチレン(ABS)樹脂;アクルロニトリル-スチレン(AS)樹脂;ポリアクリレート、ポリメタクリレートなどのアクリル樹脂;ポリアミド、ポリアセタール;変性ポリフェニレンエーテル(変性PPE);ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル;ポリフェニレンサルファイド;ポリテトラフルオロエチレン;ポリイミド;ポリアミドイミド;ポリ乳酸;ならびにそれらの組み合わせが挙げられる。加硫天然ゴム、天然ゴムおよびポリオレフィン、ならびにそれらの組み合わせが好ましい。あるいは、例えば、従来のゴム製材料と比較して耐摩耗性が高められた樹脂成形用組成物を提供することができるという点から、エラストマーを含有することが好ましい。あるいは、例えば、トチュウまたはトチュウの粉粒体自体が有する木質感を保持して、成形性に優れた木質様樹脂成形用組成物を提供することができるという点から、ポリオレフィンを含有することが好ましい。 The second resin molding composition of the present invention may also contain other polymers such as elastomers and thermoplastic resins. Examples of such other polymers include natural rubber (cis polyisoprene) and its vulcanizates (vulcanized natural rubber); polyethylene (eg, high density polyethylene (HDPE), medium density polyethylene (MDPE) and low density Polyethylene (LDPE), polyolefins such as polypropylene; polyvinyl chloride; polystyrene; polyvinyl acetate; polyurethane; acrylonitrile-butadiene-styrene (ABS) resin; acrylonitrile-styrene (AS) resin; polyacrylate, poly Acrylic resins such as methacrylate; polyamide, polyacetal; modified polyphenylene ether (modified PPE); polyester such as polyethylene terephthalate and polybutylene terephthalate; polyphenylene sulfide; Roechiren; polyimide; polyamide-imide; polylactic acid; and combinations thereof. Vulcanized natural rubber, natural rubber and polyolefin, and combinations thereof are preferred. Or it is preferable to contain an elastomer from the point that the composition for resin molding in which abrasion resistance was improved compared with the conventional rubber material, for example can be provided. Alternatively, for example, it is preferable to contain a polyolefin from the viewpoint that it is possible to provide a woody resin molding composition having excellent moldability while maintaining the wood texture of eucommia or eucommia powder itself. .
 本発明の第2の樹脂成形用組成物において、これら他のポリマーの含有量は、樹脂成形体の用途や当該成形体に要求される特性に応じて変動するため特に限定されないが、例えば成形性を向上させることができるという理由から、樹脂組成物の全体重量を基準として、好ましくは5重量%~95重量%、より好ましくは10重量%~50重量%の含有量が設定され得る。 In the second resin molding composition of the present invention, the content of these other polymers is not particularly limited because it varies depending on the use of the resin molded body and the properties required for the molded body. In view of the fact that the content of the resin composition can be improved, a content of preferably 5 wt% to 95 wt%, more preferably 10 wt% to 50 wt% can be set based on the total weight of the resin composition.
 本発明の第2の樹脂成形用組成物はまた、例えば曲げ特性を高める目的で、炭素繊維を含有していてもよい。炭素繊維の例としては、黒鉛型炭素繊維および炭素型炭素繊維、ならびにそれらの組み合わせが挙げられる。 The second resin molding composition of the present invention may also contain carbon fibers, for example, for the purpose of enhancing bending characteristics. Examples of carbon fibers include graphite-type carbon fibers, carbon-type carbon fibers, and combinations thereof.
 本発明の第2の樹脂成形用組成物において、炭素繊維の含有量は、樹脂成形体の用途や当該成形体に要求される特性に応じて変動するため特に限定されない。例えば曲げ特性をより向上させることができるという理由から、炭素繊維の含有量は、樹脂組成物の全体重量を基準として、好ましくは15重量%~50重量%、より好ましくは20重量%~40重量%の含有量が設定され得る。 In the second resin molding composition of the present invention, the carbon fiber content is not particularly limited because it varies depending on the use of the resin molding and the characteristics required for the molding. For example, because the bending properties can be further improved, the carbon fiber content is preferably 15% by weight to 50% by weight, more preferably 20% by weight to 40% by weight, based on the total weight of the resin composition. % Content can be set.
 本発明の第2の樹脂成形用組成物はまた、他の添加剤を含有していてもよい。このような他の添加剤の例としては、着色剤、難燃剤、滑剤、光安定剤、酸化防止剤、帯電防止剤、および充填剤ならびにこれらの組み合わせが挙げられる。 The second resin molding composition of the present invention may also contain other additives. Examples of such other additives include colorants, flame retardants, lubricants, light stabilizers, antioxidants, antistatic agents, and fillers and combinations thereof.
 着色剤としては、例えば、ペリレン系染料、クマリン系染料、チオインジゴ系染料、アンスラキノン系染料、チオキサントン系染料、紺青等のフェロシアン化物、ペリノン系染料、キノリン系染料、キナクリドン系染料、ジオキサジン系染料、イソインドリノン系染料、フタロシアニン系染料等の有機系色剤、およびカーボンブラック、ならびにこれらの組み合わせが挙げられる。 Examples of the colorant include perylene dyes, coumarin dyes, thioindigo dyes, anthraquinone dyes, thioxanthone dyes, ferrocyanides such as bitumen, perinone dyes, quinoline dyes, quinacridone dyes, dioxazine dyes Organic colorants such as isoindolinone dyes and phthalocyanine dyes, carbon black, and combinations thereof.
 難燃剤としては、例えば、テトラブロモビスフェノールAオリゴマーなどの臭素系難燃剤、トリフェニルホスフェート、トリクレジルホスフェートなどのモノリン酸エステル類、ビスフェノールAジホスフェート、レゾルシンジホスフェート、テトラキシレニルレゾルシンジホスフェートなどオリゴマータイプの縮合リン酸エステル類、ポリリン酸アンモニウムおよび赤燐などのリン系難燃剤、各種シリコーン系難燃剤が挙げられる。難燃性を一層向上させるために、芳香族スルホン酸の金属塩、パーフルオロアルカンスルホン酸の金属塩を含有させてもよい。 Examples of flame retardants include brominated flame retardants such as tetrabromobisphenol A oligomers, monophosphate esters such as triphenyl phosphate and tricresyl phosphate, bisphenol A diphosphate, resorcin diphosphate, tetraxylenyl resorcin diphosphate Oligomer-type condensed phosphate esters, phosphorus-based flame retardants such as ammonium polyphosphate and red phosphorus, and various silicone-based flame retardants. In order to further improve the flame retardancy, a metal salt of aromatic sulfonic acid or a metal salt of perfluoroalkanesulfonic acid may be contained.
 滑剤の例としては、パラフィンワックス、n-ブチルステアレート、合成蜜蝋、天然蜜蝋、グリセリンモノエステル、モンタン酸ワックス、ポリエチレンワックス、およびペンタエリスリトールテトラステアレート、ならびにこれらの組み合わせが挙げられる。 Examples of lubricants include paraffin wax, n-butyl stearate, synthetic beeswax, natural beeswax, glycerin monoester, montanic acid wax, polyethylene wax, and pentaerythritol tetrastearate, and combinations thereof.
 光安定剤の例としては、ベンゾトリアゾール系光安定剤(紫外線吸収剤)、ベンゾフェノン系光安定剤(紫外線吸収剤)、およびヒンダードアミン系光安定剤、ならびにそれらの組み合わせが挙げられる。 Examples of light stabilizers include benzotriazole light stabilizers (ultraviolet absorbers), benzophenone light stabilizers (ultraviolet absorbers), hindered amine light stabilizers, and combinations thereof.
 酸化防止剤の例としては、フェノール系酸化防止剤、リン系酸化防止剤、および硫黄系酸化防止剤、ならびにそれらの組み合わせが挙げられる。 Examples of antioxidants include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and combinations thereof.
 帯電防止剤の例としては、第4級アンモニウム塩系化合物、スルホン酸塩系化合物、およびアルキルホスフェート系化合物、ならびにそれらの組み合わせが挙げられる。 Examples of antistatic agents include quaternary ammonium salt compounds, sulfonate compounds, alkyl phosphate compounds, and combinations thereof.
 充填剤の例としては、無機系充填剤および有機系充填剤、ならびにそれらの組み合わせが挙げられる。無機系充填剤の例としては、上記炭素繊維以外の他の充填材(例えば、炭酸カルシウム、クレー、シリカ、ガラス繊維、ガラス球、ガラスフレーク、タルク、マイカ、および各種ウィスカー類、ならびにそれらの組み合わせ)が挙げられる。有機系充填剤は、上記トチュウ以外の植物体から得られるものであり、例えば、籾殻粉、木粉、おから、パルプ、綿繊維、麻繊維、竹繊維、ケナフ繊維、ジュート繊維、バナナ繊維、ココナツ繊維、その他の木材繊維、セルロース粉末、果実殻粉末、キチン粉末、キトサン粉末、タンパク質、および澱粉、ならびにそれらの組み合わせが挙げられる。 Examples of fillers include inorganic fillers, organic fillers, and combinations thereof. Examples of inorganic fillers include fillers other than the above carbon fibers (for example, calcium carbonate, clay, silica, glass fibers, glass balls, glass flakes, talc, mica, and various whiskers, and combinations thereof) ). The organic filler is obtained from a plant body other than the above eucommia, for example, rice husk powder, wood powder, okara, pulp, cotton fiber, hemp fiber, bamboo fiber, kenaf fiber, jute fiber, banana fiber, Examples include coconut fiber, other wood fibers, cellulose powder, fruit shell powder, chitin powder, chitosan powder, protein, and starch, and combinations thereof.
 本発明の第2の樹脂成形用組成物において、これら他の添加剤の含有量は、樹脂成形体の用途や当該成形体に要求される特性に応じて変動するため特に限定されず、当業者によって適切な含有量が適宜選択され得る。 In the second resin molding composition of the present invention, the content of these other additives is not particularly limited because it varies depending on the use of the resin molded body and the properties required for the molded body. The appropriate content can be selected as appropriate.
 このように、本発明の第2の樹脂成形用組成物は、トチュウの粉粒体とは別の他の成分を含有していてもよい。その結果、本発明の第2の樹脂成形用組成物はトチュウの粉粒体に含まれているトランスポリイソプレンの特性(例えば、靭性)に加えて、上記本発明の第1の樹脂成形用組成物にはない新たな特性を有し得る。また、トチュウの粉粒体自体を含有していることにより、本発明の第2の樹脂成形用組成物は、優れた木質の風合い(すなわち、木質感)を提供し得る、木質様樹脂成形用組成物として使用することもできる。 Thus, the second resin molding composition of the present invention may contain another component other than the powder of eucommia. As a result, the second resin molding composition of the present invention has the above-mentioned first resin molding composition of the present invention in addition to the characteristics (for example, toughness) of transpolyisoprene contained in the powder of eucommia. It may have new characteristics that are not found in any object. In addition, the second resin molding composition of the present invention can provide an excellent woody texture (that is, wood texture) by containing the eucommia powder itself. It can also be used as a composition.
 本発明の第1の樹脂成形用組成物および第2の樹脂成形用組成物は、木材または従来のウッドプラスチックの代替材料として、当業者に公知の成形手段および成型方法を用いて種々の用途のための樹脂成形体に成形することができる。このような樹脂成形体としては、特に限定されないが、例えば、柱材、手摺、壁材、窓枠、腰壁などの建築用材料;インストルメンタルパネル等への化粧材として使用される自動車用内装部材;スピーカーの筺体や構成部品などの音響機器;ピアノ鍵盤、木管楽器の筒体、弦楽器の表板・柱・駒、打楽器などの楽器類;チェスト、ドレッサー、テーブル、イスなどの家具材料;アウトソールなどのシューズ材料;等が挙げられる。 The first resin molding composition and the second resin molding composition of the present invention can be used for various applications by using molding means and molding methods known to those skilled in the art as substitutes for wood or conventional wood plastics. Therefore, it can be formed into a resin molded body. Such a resin molded body is not particularly limited, but for example, a building material such as a pillar material, a handrail, a wall material, a window frame, and a waist wall; an automobile interior used as a decorative material for an instrument panel, etc. Members; Acoustic equipment such as speaker housings and components; Piano keyboards, woodwind instrument cylinders, musical instruments such as stringed instruments, top plates / pillars / pieces, percussion instruments; furniture materials such as chests, dressers, tables, chairs; Shoe materials such as soles; and the like.
 以下、実施例により本発明をより具体的に説明する。しかし、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
(実施例1:加硫ゴム板の作製(1))
 乾燥させたトチュウ果皮を、ハサミ、脱穀機およびミルを用いて裁断または粗く粉砕し、数mm~1cm程度の粗粉砕物を得た。その後、ミキサーミル(レッチェ社;クライオミル)の粉砕用ジャーに、トチュウの種子を取り除いた粗粉砕物4gと約60gのステンレス球1個を入れ、液体窒素で冷却しつつ粉砕ジャーを5回/秒の振動数で激しく左右に振る粉砕を3分間、2回行うことにより、100μmの平均粒子径を有する粉粒体(E1)を得た。
(Example 1: Production of vulcanized rubber plate (1))
The dried eucommia peel was cut or coarsely pulverized using a scissors, a threshing machine and a mill to obtain a coarsely pulverized product of several mm to 1 cm. Then, 4 g of coarsely pulverized material from which Eucommia seeds were removed and about 60 g of stainless steel balls were placed in a pulverizing jar of a mixer mill (Lecce Company; Cryomill). The powder (E1) having an average particle diameter of 100 μm was obtained by pulverizing vigorously left and right at a frequency of 2 times for 3 minutes.
 一方、天然ゴム(SMR-CV60)100gをオープンロール機(株式会社東洋精機製作所製φ6”×14”Lテストロール機)に仕込み、ロール温度70℃およびロール間隔1.1mmにて7分間素練した。素練後、このオープンロール機に、さらに硫黄4g、ステアリン酸1g、上記で得られたトチュウ粉粒体(E1)30g、酸化亜鉛5g、テトラメチルチウラムジスルフィド(TMTD;加硫促進剤)1.6g、およびジブチルヒドロキシトルエン(BHT;酸化防止剤)0.5gを順次添加し、目視にて略均一になったことが確認できるまで混練した。 On the other hand, 100 g of natural rubber (SMR-CV60) was charged into an open roll machine (φ6 ”× 14” L test roll machine manufactured by Toyo Seiki Co., Ltd.) and kneaded for 7 minutes at a roll temperature of 70 ° C. and a roll interval of 1.1 mm. did. After mastication, 4 g of sulfur, 1 g of stearic acid, 30 g of eucommia powder (E1) obtained above, 5 g of zinc oxide, tetramethylthiuram disulfide (TMTD; vulcanization accelerator) were added to this open roll machine. 6 g and 0.5 g of dibutylhydroxytoluene (BHT; antioxidant) were sequentially added, and kneaded until it was confirmed that it was substantially uniform visually.
 その後、得られた混練物をロールより切り落として取り出し、ロール間隔を0.8mmに狭め、当該混練物の丸め通しを合計6回行った。その後、丸め通しにより得られたサンプルを金属板上に配置して室温まで放冷し、シート状の配合ゴムサンプルを得た。 Then, the obtained kneaded material was cut off from the roll and taken out, the roll interval was narrowed to 0.8 mm, and the kneaded material was rounded through a total of 6 times. Thereafter, the sample obtained by rolling was placed on a metal plate and allowed to cool to room temperature to obtain a sheet-like compounded rubber sample.
 上記で得られた配合ゴムサンプルを、さらにラボプラストミル(株式会社東洋精機製作所製10C100型ラボプラストミル;KF70V2ミキサー)に仕込み、90℃~100℃の温度で20rpmにて1分間混練した後、さらに50rpmの回転数で4分間混練を継続した。その後、得られたサンプルをオープンロール機(株式会社東洋精機製作所製φ6”×14”Lテストロール機)に2回通してシート状にした後、室温まで冷却した。 The compounded rubber sample obtained above was further charged into a lab plast mill (10C100 lab plast mill manufactured by Toyo Seiki Co., Ltd .; KF70V2 mixer) and kneaded for 1 minute at 20 rpm at a temperature of 90 ° C. to 100 ° C. Furthermore, kneading was continued for 4 minutes at a rotation speed of 50 rpm. Thereafter, the obtained sample was passed through an open roll machine (φ6 ″ × 14 ″ L test roll machine manufactured by Toyo Seiki Seisakusho Co., Ltd.) twice to form a sheet, and then cooled to room temperature.
 次いで、上記で得られたサンプルを、所定の金型に配置し、ホットプレス機(株式会社東洋精機製作所製MP-WCH)により15MPaの圧力下で140℃にて16分間、加硫を行った。その後、加圧の状態を維持したまま25℃まで水冷し、厚さ8mmの加硫ゴム板(EG1)を得た。なお、得られた加硫ゴム板(EG1)は、トチュウに起因する木質の風合いを有するものであった。 Next, the sample obtained above was placed in a predetermined mold, and vulcanized at 140 ° C. for 16 minutes under a pressure of 15 MPa using a hot press machine (MP-WCH manufactured by Toyo Seiki Seisakusho Co., Ltd.). . Thereafter, water was cooled to 25 ° C. while maintaining the pressurized state to obtain a vulcanized rubber plate (EG1) having a thickness of 8 mm. In addition, the obtained vulcanized rubber plate (EG1) had a woody texture due to eucommia.
(実施例2:加硫ゴム板の作製(2))
 添加した硫黄の量を5.5gに変更したこと以外は、実施例1と同様にして、厚さ8mmの加硫ゴム板(EG2)を得た。なお、得られた加硫ゴム板(EG2)は、トチュウに起因する木質の風合いを有するものであった。
(Example 2: Production of vulcanized rubber plate (2))
Except that the amount of added sulfur was changed to 5.5 g, a vulcanized rubber plate (EG2) having a thickness of 8 mm was obtained in the same manner as in Example 1. In addition, the obtained vulcanized rubber plate (EG2) had a woody texture caused by eucommia.
(比較例1:加硫ゴム板の作製(3))
 実施例1で使用したトチュウ粉粒体(E1)の代わりに、同量(30g)の天然ゴム(SMR-CV60)をさらに添加したこと以外は、実施例1と同様にして、厚さ8mmの加硫ゴム板(CG1)を得た。
(Comparative Example 1: Production of vulcanized rubber plate (3))
In the same manner as in Example 1, except that the same amount (30 g) of natural rubber (SMR-CV60) was added in place of the Eucommia granular material (E1) used in Example 1, the thickness was 8 mm. A vulcanized rubber plate (CG1) was obtained.
(比較例2:加硫ゴム板の作製(4))
 実施例1で使用したトチュウ粉粒体(E1)の代わりに、同量(30g)の天然ゴム(SMR-CV60)をさらに添加し、かつ添加した硫黄の量を5.5gに変更したこと以外は、実施例1と同様にして、厚さ8mmの加硫ゴム板(CG2)を得た。
(Comparative Example 2: Production of vulcanized rubber plate (4))
Instead of the Eucommia granule (E1) used in Example 1, the same amount (30 g) of natural rubber (SMR-CV60) was further added, and the amount of added sulfur was changed to 5.5 g. Obtained a vulcanized rubber plate (CG2) having a thickness of 8 mm in the same manner as in Example 1.
(耐摩耗性試験)
 実施例1および2で得られた加硫ゴム板(EG1)および(EG2)、ならびに比較例1および比較例2で得られた加硫ゴム板(CG1)および(CG2)について、JIS K6264-2(加硫ゴム及び熱可塑性ゴム「耐摩耗性の求め方」第2部)に従って以下の耐摩耗性試験を行った。
(Abrasion resistance test)
Regarding the vulcanized rubber plates (EG1) and (EG2) obtained in Examples 1 and 2, and the vulcanized rubber plates (CG1) and (CG2) obtained in Comparative Examples 1 and 2, JIS K6264-2 The following wear resistance test was conducted according to (Vulcanized rubber and thermoplastic rubber "How to determine wear resistance" Part 2).
 JIS K6264-2に従って、各加硫ゴム板から円盤状の試験片を作製し、A法(試験片回転なし)により、試験片に10Nの力を付加して、20mもしくは40mの摩耗距離による摩耗量を測定した。得られた結果を図1に示す。 In accordance with JIS K6264-2, a disk-shaped test piece is prepared from each vulcanized rubber plate, and a 10N force is applied to the test piece by method A (no test piece rotation), and wear due to a wear distance of 20 m or 40 m. The amount was measured. The obtained results are shown in FIG.
 図1に示すように、実施例1および2で得られた加硫ゴム板(EG1)および(EG2)の比摩耗体積はいずれも、比較例1および比較例2で得られた加硫ゴム板(CG1)および(CG2)のものよりも低い値を示していた。このことから、トチュウの粉粒体を含有させることにより得られる成形体は、天然ゴム単独で構成される成形体よりも優れた耐摩耗性を提供することができるとわかる。 As shown in FIG. 1, the specific wear volumes of the vulcanized rubber plates (EG1) and (EG2) obtained in Examples 1 and 2 are all vulcanized rubber plates obtained in Comparative Example 1 and Comparative Example 2. The values were lower than those of (CG1) and (CG2). From this, it can be seen that the molded product obtained by containing the powder of eucommia can provide better abrasion resistance than the molded product composed of natural rubber alone.
(実施例3:シート状成形体の作製)
 乾燥させたトチュウ果皮を、ハサミ、脱穀機およびミルを用いて裁断または粗く粉砕し、数mm~1cm程度の粗粉砕物を得た。この粗粉砕物からトチュウの種子を取り除くことにより、粉粒体(E2)を得た。粉粒体(E2)の平均粒子径は5000μmであった。
(Example 3: Production of sheet-like molded body)
The dried eucommia peel was cut or coarsely pulverized using a scissors, a threshing machine and a mill to obtain a coarsely pulverized product of several mm to 1 cm. By removing eucommia seeds from the coarsely pulverized product, a powder (E2) was obtained. The average particle size of the powder (E2) was 5000 μm.
 上記で得られたトチュウの粉粒体(E2)を、二軸押出機(日立造船株式会社製HMT57)に投入し、押出速度15kg/時~30kg/時および押出温度150℃でスクリュ回転数30rpmにてφ35の棒状に押出成形した。得られた棒状サンプルを室温まで放冷した後、これを小型プレス機(株式会社東洋精機製作所製MP-WCH)によってプレス圧力20MPaで150℃にて2分間のプレス加工を行うことにより、115mm×115mm×2mmのシート状成形体(ES1)を得た。なお、得られたシート状成形体(ES1)は、トチュウに起因する木質の風合いを有するものであった。 The eucommia powder (E2) obtained above was put into a twin-screw extruder (HMT57 manufactured by Hitachi Zosen Corporation), and the screw speed was 30 rpm at an extrusion speed of 15 kg / hour to 30 kg / hour and an extrusion temperature of 150 ° C. Was extruded into a rod shape of φ35. The obtained rod-shaped sample was allowed to cool to room temperature, and then subjected to press processing at 150 ° C. for 2 minutes at a press pressure of 20 MPa using a small press machine (MP-WCH manufactured by Toyo Seiki Seisakusyo Co., Ltd.). A sheet-like molded body (ES1) of 115 mm × 2 mm was obtained. In addition, the obtained sheet-like molded object (ES1) had the woody texture resulting from a eucommia.
(動的粘弾性試験)
 実施例3で得られたシート状成形体(ES1)について、JIS K7244-4(プラスチック「動的機械特性の試験方法」第4部、引張振動-非共振法)に従って以下の動的粘弾性試験を行った。
(Dynamic viscoelasticity test)
The following dynamic viscoelasticity test was performed on the sheet-like molded body (ES1) obtained in Example 3 according to JIS K7244-4 (Plastic “Testing Method for Dynamic Mechanical Properties”, Part 4, Tensile Vibration—Non-Resonance Method). Went.
 JIS K7244-4に従って、上記シート状成形体(ES1)から、50mm×2.87mm×1.99mmの短冊状サンプルを作製した。このサンプルをTAINSTRUMENTS製粘弾性測定装置RSA-3により、クランプ間距離20mmで、昇温温度2℃/分および測定周波数10Hzの条件で動的粘弾性を測定した。得られた結果を図2に示す。 According to JIS K7244-4, a strip-shaped sample of 50 mm × 2.87 mm × 1.99 mm was produced from the sheet-like molded body (ES1). This sample was measured for dynamic viscoelasticity with a viscoelasticity measuring device RSA-3 manufactured by TAINSTRUMENTS at a distance of 20 mm between clamps at a temperature rising temperature of 2 ° C./min and a measurement frequency of 10 Hz. The obtained results are shown in FIG.
 図2に示すように、実施例3で得られたシート状成形体の25℃における損失正接の値は0.058であり、シリコーンゴムの値0.067(慶應義塾大学理工学部機械工学科機械工学創造演習,2015年度報告集,「ゴムの種類による衝撃吸収能力の相違」;http://www.mech.keio.ac.jp/ja/souzou/proceedings2015/index.html)、またはエチレン-酢酸ビニル共重合体(EVA)の値0.02~0.06(日本ゴム協会誌,2016年,第89巻第8号,pp.249-253)と略同等であった。一方で、この値は、「材料」,日本材料学会,1992年,第41巻第461号,pp.164-169で報告されたキリの値0.8×10-2~1.1×10-2およびケヤキの値0.8×10-2~1.0×10-2などの木材の報告値を比較すると、より大きな数値を示しており、トチュウの粉粒体から構成されるシート状成形体は、粘性が高く音などの振動を吸収することができる材料であることがわかる。 As shown in FIG. 2, the value of the loss tangent at 25 ° C. of the sheet-like molded body obtained in Example 3 was 0.058, and the value of silicone rubber was 0.067 (Department of Mechanical Engineering, Faculty of Science and Engineering, Keio University) Creativity exercises, 2015 report collection, “Difference in shock absorption capacity depending on the type of rubber”; http://www.mech.keio.ac.jp/ja/souzo/processeds2015/index.html), or ethylene-vinyl acetate The copolymer (EVA) value was approximately 0.02 to 0.06 (Japan Rubber Association Journal, 2016, Vol. 89, No. 8, pp. 249-253). On the other hand, this value is shown in “Materials”, Japan Society for Materials Science, 1992, Vol. 41, No. 461, pp. Reported values for wood such as drilling values of 0.8 × 10 −2 to 1.1 × 10 −2 and zelkova values of 0.8 × 10 −2 to 1.0 × 10 −2 reported in 164-169 When comparing the above, a larger numerical value is shown, and it can be seen that the sheet-like molded body composed of the powder of eucommia is a material having high viscosity and capable of absorbing vibration such as sound.
(実施例4:プレス成形体の作製(1))
 実施例1で得られたトチュウ粉粒体(E1)20gおよび汎用樹脂としてポリエチレン(旭化成株式会社製サンテック-LD)20gをオープンロール機(株式会社東洋精機製作所製φ6”×14”Lテストロール機)に仕込み、ロール温度70℃およびロール間隔1.1mmにて7分間混練した。混練後、得られた混練物を熱プレス成型することにより、プレス成形体(EP1)を得た。なお、得られたプレス成形体(EP1)は、トチュウに起因する木質の風合いを有するものであった。
(Example 4: Production of press-molded body (1))
Open roll machine (φ6 ”× 14” L test roll machine manufactured by Toyo Seiki Seisakusho Co., Ltd. And kneaded for 7 minutes at a roll temperature of 70 ° C. and a roll interval of 1.1 mm. After kneading, the obtained kneaded product was hot press-molded to obtain a press-molded body (EP1). In addition, the obtained press-molded body (EP1) had a woody texture attributed to Eucommia.
(実施例5:プレス成形体の作製(2))
 汎用樹脂としてポリエチレンの代わりにポリプロピレン(株式会社プライムポリマー製プライムポリプロ)30gを用いたこと以外は、実施例4と同様にして、プレス成形体(EP2)を得た。なお、得られたプレス成形体(EP2)は、トチュウに起因する木質の風合いを有するものであった。
(Example 5: Production of press-molded body (2))
A press-molded body (EP2) was obtained in the same manner as in Example 4 except that 30 g of polypropylene (Prime Polypro manufactured by Prime Polymer Co., Ltd.) was used as a general-purpose resin instead of polyethylene. In addition, the obtained press-molded body (EP2) had a woody texture attributed to Eucommia.
(比較例3:プレス成形体の作製(3))
 実施例4で使用したトチュウ粉粒体(E1)の代わりに、同量(20g)のポリエチレン(旭化成株式会社製サンテック-LD)をさらに添加したこと以外は、実施例4と同様にして、プレス成形体(CP3)を得た。
(Comparative Example 3: Production of press-molded body (3))
In the same manner as in Example 4, except that the same amount (20 g) of polyethylene (Suntech-LD manufactured by Asahi Kasei Co., Ltd.) was further added instead of the Eucommia powder granules (E1) used in Example 4. A molded product (CP3) was obtained.
(比較例4:プレス成形体の作製(4))
 汎用樹脂としてポリエチレンの代わりにポリプロピレン(株式会社プライムポリマー製プライムポリプロ)30gを用い、かつ実施例4で使用したトチュウ粉粒体(E1)の代わりに、同量(20g)の同ポリプロピレンをさらに添加したこと以外は、実施例4と同様にして、プレス成形体(CP4)を得た。
(Comparative Example 4: Production of press-molded body (4))
30 g of polypropylene (Prime Polypro made by Prime Polymer Co., Ltd.) is used instead of polyethylene as a general-purpose resin, and the same amount (20 g) of the same polypropylene is further added in place of the eucommia powder (E1) used in Example 4. A press-molded body (CP4) was obtained in the same manner as in Example 4 except that.
(抗菌性試験)
 実施例4および5で得られたプレス成形体(EP1)および(EP2)、比較例3および4で得られたプレス成形体(CP3)および(CP4)について、JIS Z2801(「フィルム密着法」、抗菌加工製品・抗菌試験方法・抗菌効果)による以下の抗菌性試験を行った。
(Antimicrobial test)
About the press-molded bodies (EP1) and (EP2) obtained in Examples 4 and 5, and the press-molded bodies (CP3) and (CP4) obtained in Comparative Examples 3 and 4, JIS Z2801 (“film adhesion method”, The following antibacterial tests were conducted using antibacterial processed products, antibacterial test methods, and antibacterial effects.
 それぞれのプレス成形体またはポリエチレンシートから試験片を作製し、これらについて、JIS Z2801に従って、大腸菌(Escherichia coli NBRC-3972)もしくは黄色ブドウ球菌(Staphylococcus aureus NBRC-12732)を試験片表面に播種し、試験開始時および24時間後の生菌数を測定した。この測定を、各試験片について測定箇所を変えて3回行った。さらに、当該JIS Z2801に従ってそれぞれの抗菌活性値も算出した。得られた結果を表1および2に示す。 Test pieces are prepared from each press-molded body or polyethylene sheet, and in accordance with JIS Z2801, E. coli (Escherichia coli NBRC-3972) or Staphylococcus aureus NBRC-12732 is seeded on the surface of the test piece. Viable counts were measured at the start and 24 hours later. This measurement was performed three times for each test piece while changing the measurement location. Furthermore, each antibacterial activity value was also calculated according to the JIS Z2801. The obtained results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および2に示すように、実施例4および5で得られたプレス成形体(EP1)および(EP2)は、比較例3および4で得られたプレス成形体(CP3)および(CP4)と比較して、大腸菌および黄色ブドウ状球菌のいずれに対しても、24時間後の菌数が極めて低い値を示していたことがわかる。なお、実施例4および5で得られたプレス成形体(EP1)および(EP2)の抗菌活性値は当該抗菌性試験において抗菌性の効果があるとみなされる2.0を大幅に上回るものであり、実施例4および5で得られたプレス成形体(EP1)および(EP2)は優れた抗菌性能を有するものであったことがわかる。 As shown in Tables 1 and 2, the press-molded bodies (EP1) and (EP2) obtained in Examples 4 and 5 were the same as the press-molded bodies (CP3) and (CP4) obtained in Comparative Examples 3 and 4. In comparison, it can be seen that the number of bacteria after 24 hours was extremely low for both E. coli and Staphylococcus aureus. In addition, the antibacterial activity value of the press-molded bodies (EP1) and (EP2) obtained in Examples 4 and 5 is significantly higher than 2.0 considered to have an antibacterial effect in the antibacterial test. It can be seen that the press-molded bodies (EP1) and (EP2) obtained in Examples 4 and 5 had excellent antibacterial performance.
(実施例6:硬質加硫ゴム板の作製(1))
 実施例1と同様にして100μmの平均粒子径を有する粉粒体(E1)を得た。
(Example 6: Production of hard vulcanized rubber plate (1))
In the same manner as in Example 1, a granular material (E1) having an average particle diameter of 100 μm was obtained.
 一方、市販品の合成トランスポリイソプレン(Aldrich社製)100gをオープンロール機(株式会社東洋精機製作所製φ6”×14”Lテストロール機)に仕込み、ロール温度70℃およびロール間隔1.1mmにて7分間素練した。素練後、このオープンロール機に、さらに硫黄43.2g、ステアリン酸1.08g、上記で得られたトチュウ粉粒体(E1)40g、酸化亜鉛5.4g、テトラメチルチウラムジスルフィド(TMTD;加硫促進剤)1.73g、およびジブチルヒドロキシトルエン(BHT;酸化防止剤)0.54gを順次添加し、目視にて略均一になったことが確認できるまで混練した。 On the other hand, 100 g of a commercially available synthetic trans polyisoprene (manufactured by Aldrich) was charged into an open roll machine (φ6 ″ × 14 ″ L test roll machine manufactured by Toyo Seiki Seisakusyo Co., Ltd.), to a roll temperature of 70 ° C. and a roll interval of 1.1 mm. For 7 minutes. After mastication, 43.2 g of sulfur, 1.08 g of stearic acid, 40 g of eucommia powder (E1) obtained above, 5.4 g of zinc oxide, tetramethylthiuram disulfide (TMTD; Sulfur accelerator (1.73 g) and dibutylhydroxytoluene (BHT; antioxidant) (0.54 g) were sequentially added, and kneaded until it was confirmed that the mixture became substantially uniform visually.
 その後、得られた混練物をロールより切り落として取り出し、ロール間隔を0.8mmに狭め、当該混練物の丸め通しを合計6回行った。その後、丸め通しにより得られたサンプルを金属板上に配置して室温まで放冷し、シート状の配合ゴムサンプルを得た。 Then, the obtained kneaded material was cut off from the roll and taken out, the roll interval was narrowed to 0.8 mm, and the kneaded material was rounded through a total of 6 times. Thereafter, the sample obtained by rolling was placed on a metal plate and allowed to cool to room temperature to obtain a sheet-like compounded rubber sample.
 上記で得られた配合ゴムサンプルを、さらにラボプラストミル(株式会社東洋精機製作所製10C100型ラボプラストミル;KF70V2ミキサー)に仕込み、70℃~80℃の温度で20rpmにて0.5分間混練した後、さらに30rpmの回転数で1.5分間混練を継続した。その後、得られたサンプルをオープンロール機(株式会社東洋精機製作所製φ6”×14”Lテストロール機)に2回通してシート状にした後、室温まで冷却した。 The compounded rubber sample obtained above was further charged into a lab plast mill (10C100 lab plast mill manufactured by Toyo Seiki Seisakusho; KF70V2 mixer) and kneaded at a temperature of 70 ° C. to 80 ° C. at 20 rpm for 0.5 minutes. Thereafter, kneading was continued for 1.5 minutes at a rotation speed of 30 rpm. Thereafter, the obtained sample was passed through an open roll machine (φ6 ″ × 14 ″ L test roll machine manufactured by Toyo Seiki Seisakusho Co., Ltd.) twice to form a sheet, and then cooled to room temperature.
 次いで、上記で得られたサンプルを、所定の金型に配置し、ホットプレス機(株式会社東洋精機製作所製MP-WCH)により25MPaの圧力下で160℃にて240分間、加硫を行った。その後、加圧の状態を維持したまま25℃まで水冷し、厚さ4mmの加硫ゴム板(EG6)を得た。 Next, the sample obtained above was placed in a predetermined mold and vulcanized at 160 ° C. for 240 minutes under a pressure of 25 MPa using a hot press machine (MP-WCH manufactured by Toyo Seiki Seisakusyo Co., Ltd.). . Thereafter, water was cooled to 25 ° C. while maintaining the pressurized state to obtain a vulcanized rubber plate (EG6) having a thickness of 4 mm.
 この加硫ゴム板(EG6)について、株式会社島津製作所製EZ Graph万能試験機を用いて、JIS K7171による曲げ試験を行い、曲げ弾性率を測定した。得られた結果を表3に示す。なお、得られた加硫ゴム板(EG6)は、トチュウに起因する木質の風合いを有するものであった。 The vulcanized rubber plate (EG6) was subjected to a bending test according to JIS K7171 using an EZ Graph universal testing machine manufactured by Shimadzu Corporation, and the bending elastic modulus was measured. The obtained results are shown in Table 3. In addition, the obtained vulcanized rubber plate (EG6) had a woody texture due to eucommia.
(実施例7:硬質加硫ゴム板の作製(2))
 合成トランスポリイソプレンの代わりに天然ゴム(SMR-CV60)100gを用いたこと以外は、実施例6と同様にして加硫ゴム板(EG7)を得た。この加硫ゴム板(EG7)について、実施例6と同様にして曲げ試験を行い、曲げ弾性率を測定した。得られた結果を表3に示す。なお、得られた加硫ゴム板(EG7)は、トチュウに起因する木質の風合いを有するものであった。
(Example 7: Production of hard vulcanized rubber plate (2))
A vulcanized rubber plate (EG7) was obtained in the same manner as in Example 6 except that 100 g of natural rubber (SMR-CV60) was used instead of the synthetic transpolyisoprene. The vulcanized rubber plate (EG7) was subjected to a bending test in the same manner as in Example 6 to measure the flexural modulus. The obtained results are shown in Table 3. In addition, the obtained vulcanized rubber plate (EG7) had a woody texture due to eucommia.
(実施例8:硬質加硫ゴム板の作製(3))
 実施例1と同様にして100μmの平均粒子径を有する粉粒体(E1)を得た。
(Example 8: Production of hard vulcanized rubber plate (3))
In the same manner as in Example 1, a granular material (E1) having an average particle diameter of 100 μm was obtained.
 一方、天然ゴム(SMR-CV60)100gをオープンロール機(株式会社東洋精機製作所製φ6”×14”Lテストロール機)に仕込み、ロール温度70℃およびロール間隔1.1mmにて7分間素練した。素練後、このオープンロール機に、さらに硫黄43.6g、ステアリン酸1.09g、無水マレイン酸変性ポリブタジエン(CRAY CALLEY社製Ricon 131M20)1g、上記で得られたトチュウ粉粒体(E1)40g、炭素型炭素繊維(大阪ガスケミカル(株)製S-242)60g、酸化亜鉛5.45g、テトラメチルチウラムジスルフィド(TMTD;加硫促進剤)1.74g、およびジブチルヒドロキシトルエン(BHT;酸化防止剤)0.55gを順次添加し、目視にて略均一になったことが確認できるまで混練した。 On the other hand, 100 g of natural rubber (SMR-CV60) was charged into an open roll machine (φ6 ”× 14” L test roll machine manufactured by Toyo Seiki Co., Ltd.) and kneaded for 7 minutes at a roll temperature of 70 ° C. and a roll interval of 1.1 mm. did. After mastication, 43.6 g of sulfur, 1.09 g of stearic acid, 1 g of maleic anhydride-modified polybutadiene (CRON 131M20 manufactured by CRAY CALLEY), and 40 g of eucommia powder (E1) obtained above were added to this open roll machine. , 60 g of carbon-type carbon fiber (Osaka Gas Chemical Co., Ltd. S-242), 5.45 g of zinc oxide, 1.74 g of tetramethylthiuram disulfide (TMTD; vulcanization accelerator), and dibutylhydroxytoluene (BHT; antioxidant) Agent) 0.55 g was sequentially added, and kneaded until it was confirmed that it was substantially uniform visually.
 このようにして得られた混練物を用いたこと以外は、実施例6と同様にして加硫ゴム板(EG8)を得た。この加硫ゴム板(EG8)について、実施例6と同様にして曲げ試験を行い、曲げ弾性率を測定した。得られた結果を表3に示す。なお、得られた加硫ゴム板(EG8)は、トチュウに起因する木質の風合いを有するものであった。 A vulcanized rubber plate (EG8) was obtained in the same manner as in Example 6 except that the kneaded material thus obtained was used. The vulcanized rubber plate (EG8) was subjected to a bending test in the same manner as in Example 6 to measure the flexural modulus. The obtained results are shown in Table 3. In addition, the obtained vulcanized rubber plate (EG8) had a woody texture due to eucommia.
(実施例9:硬質加硫ゴム板の作製(4))
 実施例1と同様にして100μmの平均粒子径を有する粉粒体(E1)を得た。
(Example 9: Production of hard vulcanized rubber plate (4))
In the same manner as in Example 1, a granular material (E1) having an average particle diameter of 100 μm was obtained.
 一方、天然ゴム(SMR-CV60)100gをオープンロール機(株式会社東洋精機製作所製φ6”×14”Lテストロール機)に仕込み、ロール温度70℃およびロール間隔1.1mmにて7分間素練した。素練後、このオープンロール機に、さらに硫黄46.80g、ステアリン酸1.17g、無水マレイン酸変性ポリブタジエン(CRAY CALLEY社製Ricon 131M20)1g、上記で得られたトチュウ粉粒体(E1)80g、炭素型炭素繊維(大阪ガスケミカル(株)製S-242)60g、酸化亜鉛5.85g、テトラメチルチウラムジスルフィド(TMTD;加硫促進剤)1.87g、およびジブチルヒドロキシトルエン(BHT;酸化防止剤)0.59gを順次添加し、目視にて略均一になったことが確認できるまで混練した。 On the other hand, 100 g of natural rubber (SMR-CV60) was charged into an open roll machine (φ6 ”× 14” L test roll machine manufactured by Toyo Seiki Co., Ltd.) and kneaded for 7 minutes at a roll temperature of 70 ° C. and a roll interval of 1.1 mm. did. After mastication, 46.80 g of sulfur, 1.17 g of stearic acid, 1 g of maleic anhydride-modified polybutadiene (CRICON 131M20 manufactured by CRAY CALLEY), 80 g of eucommia powder obtained above (E1) , 60 g of carbon-type carbon fiber (Osaka Gas Chemical Co., Ltd. S-242), 5.85 g of zinc oxide, 1.87 g of tetramethylthiuram disulfide (TMTD; vulcanization accelerator), and dibutylhydroxytoluene (BHT; antioxidant) Agent) 0.59 g was sequentially added, and kneaded until it was confirmed that it was substantially uniform visually.
 このようにして得られた混練物を用いたこと以外は、実施例6と同様にして加硫ゴム板(EG9)を得た。この加硫ゴム板(EG9)について、実施例6と同様にして曲げ試験を行い、曲げ弾性率を測定した。得られた結果を表3に示す。なお、得られた加硫ゴム板(EG9)は、トチュウに起因する木質の風合いを有するものであった。 A vulcanized rubber plate (EG9) was obtained in the same manner as in Example 6 except that the kneaded material thus obtained was used. The vulcanized rubber plate (EG9) was subjected to a bending test in the same manner as in Example 6 to measure the flexural modulus. The obtained results are shown in Table 3. In addition, the obtained vulcanized rubber plate (EG9) had a woody texture caused by eucommia.
(実施例10:硬質加硫ゴム板の作製(5))
 実施例1と同様にして100μmの平均粒子径を有する粉粒体(E1)を得た。
(Example 10: Production of hard vulcanized rubber plate (5))
In the same manner as in Example 1, a granular material (E1) having an average particle diameter of 100 μm was obtained.
 一方、天然ゴム(SMR-CV60)100gをオープンロール機(株式会社東洋精機製作所製φ6”×14”Lテストロール機)に仕込み、ロール温度70℃およびロール間隔1.1mmにて7分間素練した。素練後、このオープンロール機に、さらに硫黄46.80g、ステアリン酸1.17g、無水マレイン酸変性ポリブタジエン(CRAY CALLEY社製Ricon 131M20)1g、上記で得られたトチュウ粉粒体(E1)80g、黒鉛型炭素繊維(三菱ケミカル(株)製K223HE)60g、酸化亜鉛5.85g、テトラメチルチウラムジスルフィド(TMTD;加硫促進剤)1.87g、およびジブチルヒドロキシトルエン(BHT;酸化防止剤)0.59gを順次添加し、目視にて略均一になったことが確認できるまで混練した。 On the other hand, 100 g of natural rubber (SMR-CV60) was charged into an open roll machine (φ6 ”× 14” L test roll machine manufactured by Toyo Seiki Co., Ltd.) and kneaded for 7 minutes at a roll temperature of 70 ° C. and a roll interval of 1.1 mm. did. After mastication, 46.80 g of sulfur, 1.17 g of stearic acid, 1 g of maleic anhydride-modified polybutadiene (CRICON 131M20 manufactured by CRAY CALLEY), 80 g of eucommia powder obtained above (E1) , 60 g of graphite type carbon fiber (K223HE manufactured by Mitsubishi Chemical Corp.), 5.85 g of zinc oxide, 1.87 g of tetramethylthiuram disulfide (TMTD; vulcanization accelerator), and dibutylhydroxytoluene (BHT; antioxidant) 0 .59 g was sequentially added, and kneaded until it was confirmed that it was substantially uniform visually.
 このようにして得られた混練物を用いたこと以外は、実施例6と同様にして加硫ゴム板(EG10)を得た。この加硫ゴム板(EG10)について、実施例6と同様にして曲げ試験を行い、曲げ弾性率を測定した。得られた結果を表3に示す。なお、得られた加硫ゴム板(EG10)は、トチュウに起因する木質の風合いを有するものであった。 A vulcanized rubber plate (EG10) was obtained in the same manner as in Example 6 except that the kneaded material thus obtained was used. The vulcanized rubber plate (EG10) was subjected to a bending test in the same manner as in Example 6 to measure the flexural modulus. The obtained results are shown in Table 3. The obtained vulcanized rubber plate (EG10) had a woody texture caused by eucommia.
(実施例11:硬質加硫ゴム板の作製(6))
 実施例1と同様にして100μmの平均粒子径を有する粉粒体(E1)を得た。
(Example 11: Production of hard vulcanized rubber plate (6))
In the same manner as in Example 1, a granular material (E1) having an average particle diameter of 100 μm was obtained.
 一方、天然ゴム(SMR-CV60)100gをオープンロール機(株式会社東洋精機製作所製φ6”×14”Lテストロール機)に仕込み、ロール温度70℃およびロール間隔1.1mmにて7分間素練した。素練後、このオープンロール機に、さらに硫黄48.40g、ステアリン酸1.21g、無水マレイン酸変性ポリブタジエン(CRAY CALLEY社製Ricon 131M20)1g、上記で得られたトチュウ粉粒体(E1)100g、黒鉛型炭素繊維(三菱ケミカル(株)製K223HE)100g、酸化亜鉛6.05g、テトラメチルチウラムジスルフィド(TMTD;加硫促進剤)1.94g、およびジブチルヒドロキシトルエン(BHT;酸化防止剤)0.61gを順次添加し、目視にて略均一になったことが確認できるまで混練した。 On the other hand, 100 g of natural rubber (SMR-CV60) was charged into an open roll machine (φ6 ”× 14” L test roll machine manufactured by Toyo Seiki Co., Ltd.) and kneaded for 7 minutes at a roll temperature of 70 ° C. and a roll interval of 1.1 mm. did. After mastication, this open roll machine was further charged with 48.40 g of sulfur, 1.21 g of stearic acid, 1 g of maleic anhydride-modified polybutadiene (CRICON 131M20 manufactured by CALLEY), and 100 g of eucommia powder (E1) obtained above. , 100 g of graphite-type carbon fiber (K223HE manufactured by Mitsubishi Chemical Corporation), 6.05 g of zinc oxide, 1.94 g of tetramethylthiuram disulfide (TMTD; vulcanization accelerator), and dibutylhydroxytoluene (BHT; antioxidant) 0 .61 g was sequentially added, and kneaded until it was confirmed that it was substantially uniform visually.
 このようにして得られた混練物を用いたこと以外は、実施例6と同様にして加硫ゴム板(EG11)を得た。この加硫ゴム板(EG11)について、実施例6と同様にして曲げ試験を行い、曲げ弾性率を測定した。得られた結果を表3に示す。なお、得られた加硫ゴム板(EG11)は、トチュウに起因する木質の風合いを有するものであった。 A vulcanized rubber plate (EG11) was obtained in the same manner as in Example 6 except that the kneaded material thus obtained was used. The vulcanized rubber plate (EG11) was subjected to a bending test in the same manner as in Example 6 to measure the flexural modulus. The obtained results are shown in Table 3. In addition, the obtained vulcanized rubber plate (EG11) had a woody texture due to eucommia.
(実施例12:硬質加硫ゴム板の作製(7))
 実施例1と同様にして100μmの平均粒子径を有する粉粒体(E1)を得た。
(Example 12: Production of hard vulcanized rubber plate (7))
In the same manner as in Example 1, a granular material (E1) having an average particle diameter of 100 μm was obtained.
 一方、天然ゴム(SMR-CV60)100gをオープンロール機(株式会社東洋精機製作所製φ6”×14”Lテストロール機)に仕込み、ロール温度70℃およびロール間隔1.1mmにて7分間素練した。素練後、このオープンロール機に、さらに硫黄48.40g、ステアリン酸1.21g、無水マレイン酸変性ポリブタジエン(CRAY CALLEY社製Ricon 131M20)1g、上記で得られたトチュウ粉粒体(E1)100g、黒鉛型炭素繊維(三菱ケミカル(株)製K223HE)150g、酸化亜鉛6.05g、テトラメチルチウラムジスルフィド(TMTD;加硫促進剤)1.94g、およびジブチルヒドロキシトルエン(BHT;酸化防止剤)0.61gを順次添加し、目視にて略均一になったことが確認できるまで混練した。 On the other hand, 100 g of natural rubber (SMR-CV60) was charged into an open roll machine (φ6 ”× 14” L test roll machine manufactured by Toyo Seiki Co., Ltd.) and kneaded for 7 minutes at a roll temperature of 70 ° C. and a roll interval of 1.1 mm. did. After mastication, this open roll machine was further charged with 48.40 g of sulfur, 1.21 g of stearic acid, 1 g of maleic anhydride-modified polybutadiene (CRICON 131M20 manufactured by CALLEY), and 100 g of eucommia powder (E1) obtained above. , 150 g of graphite type carbon fiber (K223HE manufactured by Mitsubishi Chemical Corporation), 6.05 g of zinc oxide, 1.94 g of tetramethylthiuram disulfide (TMTD; vulcanization accelerator), and dibutylhydroxytoluene (BHT; antioxidant) 0 .61 g was sequentially added, and kneaded until it was confirmed that it was substantially uniform visually.
 このようにして得られた混練物を用いたこと以外は、実施例6と同様にして加硫ゴム板(EG12)を得た。この加硫ゴム板(EG12)について、実施例6と同様にして曲げ試験を行い、曲げ弾性率を測定した。得られた結果を表3に示す。なお、得られた加硫ゴム板(EG12)は、トチュウに起因する木質の風合いを有するものであった。 A vulcanized rubber plate (EG12) was obtained in the same manner as in Example 6 except that the kneaded material thus obtained was used. The vulcanized rubber plate (EG12) was subjected to a bending test in the same manner as in Example 6 to measure the flexural modulus. The obtained results are shown in Table 3. The obtained vulcanized rubber plate (EG12) had a woody texture caused by eucommia.
(実施例13:硬質加硫ゴム板の作製(8))
 実施例1と同様にして100μmの平均粒子径を有する粉粒体(E1)を得た。
(Example 13: Production of hard vulcanized rubber plate (8))
In the same manner as in Example 1, a granular material (E1) having an average particle diameter of 100 μm was obtained.
 一方、天然ゴム(SMR-CV60)100gをオープンロール機(株式会社東洋精機製作所製φ6”×14”Lテストロール機)に仕込み、ロール温度70℃およびロール間隔1.1mmにて7分間素練した。素練後、このオープンロール機に、さらに硫黄48.40g、ステアリン酸1.21g、無水マレイン酸変性ポリブタジエン(CRAY CALLEY社製Ricon 131M20)1g、上記で得られたトチュウ粉粒体(E1)100g、黒鉛型炭素繊維(三菱ケミカル(株)製K223HM)150g、酸化亜鉛6.05g、テトラメチルチウラムジスルフィド(TMTD;加硫促進剤)1.94g、およびジブチルヒドロキシトルエン(BHT;酸化防止剤)0.61gを順次添加し、目視にて略均一になったことが確認できるまで混練した。 On the other hand, 100 g of natural rubber (SMR-CV60) was charged into an open roll machine (φ6 ”× 14” L test roll machine manufactured by Toyo Seiki Co., Ltd.) and kneaded for 7 minutes at a roll temperature of 70 ° C. and a roll interval of 1.1 mm. did. After mastication, this open roll machine was further charged with 48.40 g of sulfur, 1.21 g of stearic acid, 1 g of maleic anhydride-modified polybutadiene (CRICON 131M20 manufactured by CALLEY), and 100 g of eucommia powder (E1) obtained above. , 150 g of graphite type carbon fiber (K223HM manufactured by Mitsubishi Chemical Corporation), 6.05 g of zinc oxide, 1.94 g of tetramethylthiuram disulfide (TMTD; vulcanization accelerator), and dibutylhydroxytoluene (BHT; antioxidant) 0 .61 g was sequentially added, and kneaded until it was confirmed that it was substantially uniform visually.
 このようにして得られた混練物を用いたこと以外は、実施例6と同様にして加硫ゴム板(EG13)を得た。この加硫ゴム板(EG13)について、実施例6と同様にして曲げ試験を行い、曲げ弾性率を測定した。得られた結果を表3に示す。なお、得られた加硫ゴム板(EG13)は、トチュウに起因する木質の風合いを有するものであった。 A vulcanized rubber plate (EG13) was obtained in the same manner as in Example 6 except that the kneaded material thus obtained was used. The vulcanized rubber plate (EG13) was subjected to a bending test in the same manner as in Example 6 to measure the flexural modulus. The obtained results are shown in Table 3. In addition, the obtained vulcanized rubber plate (EG13) had a woody texture resulting from eucommia.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例6~13で得られた加硫ゴム板(EG6)~(EG13)は、炭素繊維を含有させることにより曲げ弾性率を高めることができ、特に、実施例12および13で得られた加硫ゴム板(EG12)および(EG13)では、硬質材料として所定の工業製品における実用性を評価するためのベースラインに設定されている10GPaを越える、特に優れた曲げ特性を有するものであったことがわかる。 As shown in Table 3, the vulcanized rubber plates (EG6) to (EG13) obtained in Examples 6 to 13 can increase the flexural modulus by containing carbon fibers. In the vulcanized rubber plates (EG12) and (EG13) obtained in No. 13 and No. 13, particularly excellent bending characteristics exceeding 10 GPa set as a baseline for evaluating the practicality of a predetermined industrial product as a hard material. It turns out that it was what had.
 本発明によれば、木材のような独特の風合いと優れた成形性とを提供し、かつ石油系樹脂の使用を回避または低減することができる樹脂成形体を得ることができる。このため、本発明の樹脂成形用組成物は、例えば、建築分野、製靴分野、自動車分野、電子・音響分野、食品分野、医薬品分野などの幅広い分野において有用である。 According to the present invention, it is possible to obtain a resin molded body that provides a unique texture like wood and excellent moldability, and that can avoid or reduce the use of petroleum-based resins. For this reason, the resin molding composition of the present invention is useful in a wide range of fields such as, for example, the construction field, the shoemaking field, the automobile field, the electronic / acoustic field, the food field, and the pharmaceutical field.

Claims (10)

  1.  トチュウの粉粒体から構成されている、樹脂成形用組成物。 樹脂 A resin molding composition composed of powdered eucommia.
  2.  前記トチュウの粉粒体が、トチュウの果皮、樹皮、種皮、根、および葉からなる群から選択される少なくとも1つの部位から得られた粒子を含有する、請求項1に記載の樹脂成形用組成物。 The composition for resin molding according to claim 1, wherein the powder of eucommia contains particles obtained from at least one site selected from the group consisting of eucommia peel, bark, seed coat, root, and leaves. object.
  3.  樹脂成形用組成物の製造方法であって、
     トチュウの乾燥体を粉砕して、10μmから5000μmの平均粒子径を有する粉粒体を得る工程を包含する、方法。
    A method for producing a resin molding composition,
    A method comprising pulverizing a dried eucommia and obtaining a powder having an average particle size of 10 μm to 5000 μm.
  4.  前記トチュウの乾燥体を粉砕する工程が70℃以下の温度下で行われる、請求項3に記載の方法。 The method according to claim 3, wherein the step of pulverizing the dried eucommia is performed at a temperature of 70 ° C. or less.
  5.  請求項1または2に記載の樹脂成形用組成物を含む、樹脂成形体。 A resin molded body comprising the resin molding composition according to claim 1 or 2.
  6.  請求項1または2に記載の樹脂成形用組成物を圧縮かつ剪断条件下で成形する工程を包含する、樹脂成形体の製造方法。 A method for producing a resin molded body, comprising a step of molding the resin molding composition according to claim 1 or 2 under compression and shear conditions.
  7.  トチュウの粉粒体を含有する樹脂成形用組成物であって、
     該トチュウの粉粒体が10μmから5000μmの平均粒子径を有する粒子で構成されており、そして
     トランスポリイソプレンの含有量が全体重量に対して1重量%から70重量%である、組成物。
    A composition for resin molding containing a powder of eucommia,
    A composition wherein the eucommia powder is composed of particles having an average particle size of 10 μm to 5000 μm, and the content of transpolyisoprene is 1% to 70% by weight relative to the total weight.
  8.  さらに、加硫天然ゴム、天然ゴムおよびポリオレフィンからなる群から選択される少なくとも1種の他のポリマーを含有する、請求項7に記載の樹脂成形用組成物。 The resin molding composition according to claim 7, further comprising at least one other polymer selected from the group consisting of vulcanized natural rubber, natural rubber and polyolefin.
  9.  さらに炭素繊維を含有する、請求項7または8に記載の樹脂成形用組成物。 The resin molding composition according to claim 7 or 8, further comprising carbon fiber.
  10.  請求項7から9のいずれかに記載の樹脂成形用組成物を含む、樹脂成形体。 A resin molded body comprising the resin molding composition according to any one of claims 7 to 9.
PCT/JP2019/011214 2018-04-27 2019-03-18 Composition for resin molding and molded resin object obtained using same WO2019208028A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018087737 2018-04-27
JP2018-087737 2018-04-27
JP2018-227041 2018-12-04
JP2018227041A JP2019194303A (en) 2018-04-27 2018-12-04 Composition for molding resin, and resin molded body using the same

Publications (1)

Publication Number Publication Date
WO2019208028A1 true WO2019208028A1 (en) 2019-10-31

Family

ID=68293555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011214 WO2019208028A1 (en) 2018-04-27 2019-03-18 Composition for resin molding and molded resin object obtained using same

Country Status (1)

Country Link
WO (1) WO2019208028A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286889A (en) * 2021-05-03 2022-11-04 肖克有限公司 Curable casting compound, molded body produced therefrom and method for producing a molded body

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227900A (en) * 1992-02-18 1993-09-07 Takashi Kawahara Production of eucommia uimoides oliv powder
JPH08183A (en) * 1994-06-21 1996-01-09 San Mekusu:Kk Feed additive composed of twig of 'tochu'
JP2004189953A (en) * 2002-12-13 2004-07-08 Hitachi Zosen Corp Extraction of chinese gutta percha rubber
JP2005512915A (en) * 2001-12-27 2005-05-12 リー、サン−イル Oxygen tailoring of polyethylene resin
JP2006056862A (en) * 2004-08-24 2006-03-02 Kobayashi Pharmaceut Co Ltd Deodorizer containing polyisoprene
JP2006131807A (en) * 2004-11-08 2006-05-25 Nitta Ind Corp Modified latex, and product containing hydrogenated natural polyisoprenoid or its modification
JP2009221306A (en) * 2008-03-14 2009-10-01 Hitachi Zosen Corp Biopolymer originating in eucommia ulmoides
CN102492188A (en) * 2011-12-13 2012-06-13 沈阳化工大学 Preparation method of composite material of eucommia ulmoides rubber and lignin
WO2014192388A1 (en) * 2013-05-28 2014-12-04 日立造船株式会社 Antibacterial composition and method for producing same
JP2014231552A (en) * 2013-05-28 2014-12-11 帝人株式会社 Antibacterial polylactic acid resin composition
WO2015045940A1 (en) * 2013-09-30 2015-04-02 日立造船株式会社 Shape memory resin composition
WO2017047191A1 (en) * 2015-09-17 2017-03-23 日立造船株式会社 Polyisoprene production method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227900A (en) * 1992-02-18 1993-09-07 Takashi Kawahara Production of eucommia uimoides oliv powder
JPH08183A (en) * 1994-06-21 1996-01-09 San Mekusu:Kk Feed additive composed of twig of 'tochu'
JP2005512915A (en) * 2001-12-27 2005-05-12 リー、サン−イル Oxygen tailoring of polyethylene resin
JP2004189953A (en) * 2002-12-13 2004-07-08 Hitachi Zosen Corp Extraction of chinese gutta percha rubber
JP2006056862A (en) * 2004-08-24 2006-03-02 Kobayashi Pharmaceut Co Ltd Deodorizer containing polyisoprene
JP2006131807A (en) * 2004-11-08 2006-05-25 Nitta Ind Corp Modified latex, and product containing hydrogenated natural polyisoprenoid or its modification
JP2009221306A (en) * 2008-03-14 2009-10-01 Hitachi Zosen Corp Biopolymer originating in eucommia ulmoides
CN102492188A (en) * 2011-12-13 2012-06-13 沈阳化工大学 Preparation method of composite material of eucommia ulmoides rubber and lignin
WO2014192388A1 (en) * 2013-05-28 2014-12-04 日立造船株式会社 Antibacterial composition and method for producing same
JP2014231490A (en) * 2013-05-28 2014-12-11 日立造船株式会社 Antibacterial composition and method for producing the same
JP2014231552A (en) * 2013-05-28 2014-12-11 帝人株式会社 Antibacterial polylactic acid resin composition
WO2015045940A1 (en) * 2013-09-30 2015-04-02 日立造船株式会社 Shape memory resin composition
WO2017047191A1 (en) * 2015-09-17 2017-03-23 日立造船株式会社 Polyisoprene production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115286889A (en) * 2021-05-03 2022-11-04 肖克有限公司 Curable casting compound, molded body produced therefrom and method for producing a molded body
JP2022172440A (en) * 2021-05-03 2022-11-16 ショック ゲーエムベーハー Thermosetting casting compound, moulded article made from the same, and method for producing moulded article

Similar Documents

Publication Publication Date Title
Khalil et al. Oil palm biomass fibres and recent advancement in oil palm biomass fibres based hybrid biocomposites
Jordá-Vilaplana et al. Development and characterization of a new natural fiber reinforced thermoplastic (NFRP) with Cortaderia selloana (Pampa grass) short fibers
Attharangsan et al. Carbon black (CB)/rice husk powder (RHP) hybrid filler-filled natural rubber composites: effect of CB/RHP ratio on property of the composites
US20150252187A1 (en) Multifunctional environmentally protective polyurethane composite material and method of making the same
MX2007006599A (en) Wood fiber plastic composites.
Nurshamila et al. The effects of rattan filler loadings on properties of rattan powder-filled polypropylene composites
Effah et al. Mechanical properties of wood-plastic composites made from various wood species with different compatibilisers
JP2019194303A (en) Composition for molding resin, and resin molded body using the same
Bahari et al. Thermal stability of processed PVC/bamboo blends: effect of compounding procedures
Attharangsan et al. The effect of rice husk powder on standard Malaysian natural rubber grade L (SMR L) and epoxidized natural rubber (ENR 50) composites
Lenz et al. Multiple reprocessing cycles of corn starch-based biocomposites reinforced with Curauá fiber
WO2019208028A1 (en) Composition for resin molding and molded resin object obtained using same
Singha et al. Processing, characterization and application of natural rubber based environmentally friendly polymer composites
WO2008103329A3 (en) Elastomer and vulcanizate compositions having desirable high temperature properties
Barczewski et al. Mechanical properties, microstructure and surface quality of polypropylene green composites as a function of sunflower husk waste filler particle size and content
CN111484669A (en) Low-odor and low-VOC polypropylene composite material and preparation method thereof
CN109337267A (en) A kind of high-performance starch plastic composite
CN101210106A (en) Low odor low total carbon emanation PC/ABS alloy and preparing method thereof
Ab Ghani et al. The effects of antioxidants content on mechanical properties and water absorption behaviour of biocomposites prepared by single screw extrusion process
Ismail The effects of filler loading and a silane coupling agent on the dynamic properties and swelling behaviour of bamboo filled natural rubber compounds
KR102268495B1 (en) Reclycled resin composition having excellent mechanical property and water-proof and, article produced thererom
WO2016103788A1 (en) Polylactic acid resin composition
KR101592669B1 (en) Natural- friendly Compositions
JP7213459B2 (en) resin composition
Vishnu et al. Strategies to improve the mechanical performance of elastomers using ternary blends: A review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792368

Country of ref document: EP

Kind code of ref document: A1