WO2019207925A1 - Additive for rubbers, uncrosslinked rubber composition, crosslinked rubber and tire - Google Patents

Additive for rubbers, uncrosslinked rubber composition, crosslinked rubber and tire Download PDF

Info

Publication number
WO2019207925A1
WO2019207925A1 PCT/JP2019/006128 JP2019006128W WO2019207925A1 WO 2019207925 A1 WO2019207925 A1 WO 2019207925A1 JP 2019006128 W JP2019006128 W JP 2019006128W WO 2019207925 A1 WO2019207925 A1 WO 2019207925A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
petroleum resin
compound
unsaturated hydrocarbon
hydrogenated petroleum
Prior art date
Application number
PCT/JP2019/006128
Other languages
French (fr)
Japanese (ja)
Inventor
陽一 秋山
秀人 小出
Original Assignee
Jxtgエネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jxtgエネルギー株式会社 filed Critical Jxtgエネルギー株式会社
Priority to JP2020516061A priority Critical patent/JP7317807B2/en
Publication of WO2019207925A1 publication Critical patent/WO2019207925A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber additive, an uncrosslinked rubber composition, a crosslinked rubber, and a tire.
  • Patent Document 1 discloses a tire tread composition containing at least one elastomer and a specific hydrocarbon polymer additive based on dicyclopentadiene, cyclopentadiene, and methylcyclopentadiene.
  • tires are strongly required to have good rolling resistance characteristics from the viewpoint of improving fuel efficiency.
  • tires are strongly required to have excellent wet grip performance from the viewpoint of safety.
  • it is difficult to achieve both good rolling resistance characteristics and excellent wet grip performance.
  • An object of the present invention is to provide an additive for rubber that can impart good rolling resistance characteristics and excellent wet grip performance. Another object of the present invention is to provide an uncrosslinked rubber composition containing the rubber additive, a crosslinked rubber obtained by crosslinking the uncrosslinked rubber composition, and a tire containing the crosslinked rubber in a tread portion. To do.
  • One aspect of the present invention includes a hydrogenated petroleum resin that is a hydrogenated product of an unsaturated hydrocarbon polymer, the unsaturated hydrocarbon having an aromatic compound having an aromatic ring and an alicyclic ring having a five-membered ring.
  • the aromatic compound contains an indene compound having an indene skeleton, and the content of the indene compound is 15 to 60% by mass based on the total amount of unsaturated hydrocarbons. It relates to an additive for rubber.
  • the alicyclic compound may contain a DCPD compound having a dicyclopentadiene skeleton.
  • the content of the alicyclic compound may be 40 to 85% by mass based on the total amount of unsaturated hydrocarbons.
  • the proportion of the indene compound in the aromatic compound may be 50% by mass or more.
  • the aromatic content in the hydrogenated petroleum resin may be 0.3-30%.
  • the softening point of the hydrogenated petroleum resin may be 80 to 150 ° C.
  • the weight average molecular weight of the hydrogenated petroleum resin may be 200 to 1000.
  • Another aspect of the present invention relates to an uncrosslinked rubber composition containing a rubber component, the rubber additive, and a crosslinking agent.
  • Still another aspect of the present invention relates to a crosslinked rubber obtained by crosslinking the uncrosslinked rubber composition.
  • Still another aspect of the present invention relates to a tire containing the above-described crosslinked rubber in a tread portion.
  • an additive for rubber that can impart good rolling resistance characteristics and excellent wet grip performance.
  • the present invention also provides an uncrosslinked rubber composition containing the rubber additive, a crosslinked rubber obtained by crosslinking the uncrosslinked rubber composition, and a tire containing the crosslinked rubber in the tread portion.
  • the rubber additive according to the present embodiment includes a hydrogenated petroleum resin that is a hydrogenated product of an unsaturated hydrocarbon polymer.
  • the unsaturated hydrocarbon contains an aromatic compound having an aromatic ring and an alicyclic compound having a five-membered ring, and the aromatic compound has an indene structure having an indene skeleton. Contains compounds. Further, the content of the indene compound in the unsaturated hydrocarbon is 15 to 60% by mass based on the total amount of the unsaturated hydrocarbon.
  • Such an additive for rubber can impart good rolling resistance characteristics and excellent wet grip performance to the rubber material.
  • the rolling resistance characteristics are better as the loss coefficient (tan ⁇ ) measured at a frequency of 10 to 100 Hz and around 60 ° C. in the dynamic viscoelasticity test of the rubber material is smaller.
  • the wet grip performance it is known that the wet grip performance is better as the loss factor (tan ⁇ ) measured at a frequency of 10 to 100 Hz and near 0 ° C. is larger in the dynamic viscoelasticity test of rubber material .
  • Rolling resistance characteristics and wet grip performance are both characteristics related to the hysteresis loss of rubber materials.
  • increasing the hysteresis loss increases the gripping force and improves the braking performance, but also increases the rolling resistance, resulting in deterioration of fuel consumption.
  • the grip performance and the rolling resistance characteristic are in a contradictory relationship, it is difficult to simultaneously satisfy the good rolling resistance characteristic and the excellent wet grip performance.
  • the rubber additive according to the present embodiment is added to the rubber material to maintain a low loss factor (tan ⁇ ) at a high temperature (for example, 60 ° C.) in a dynamic viscoelasticity test, while at a low temperature (for example, 0 ° C.) Since the loss coefficient (tan ⁇ ) can be increased, good rolling resistance characteristics and excellent wet grip performance can be imparted to the rubber material.
  • the inventors consider the mechanism that achieves the above effect as follows.
  • the peak of the loss factor (tan ⁇ ) of the rubber component is in a temperature range lower than 0 ° C.
  • the softening point of petroleum resin (or hydrogenated petroleum resin) is usually higher than the glass transition temperature (Tg) of the rubber component.
  • Tg glass transition temperature
  • a general petroleum resin has a problem that a loss coefficient (tan ⁇ ) near 60 ° C. increases due to peak shift, and rolling resistance increases.
  • the hydrogenated petroleum resin according to the present embodiment has a rigid condensed ring skeleton derived from an indene compound, a high softening point can be obtained even with a low molecular weight. For this reason, in this embodiment, wet grip performance can be improved efficiently by hydrogenated petroleum resin with a small molecular weight. That is, the hydrogenated petroleum resin according to the present embodiment can improve wet grip performance with a smaller molecular weight than a general petroleum resin.
  • the hydrogenated petroleum resin since the molecular weight of the hydrogenated petroleum resin is small, the hydrogenated petroleum resin easily enters between the rubber component molecules, and the compatibility between the rubber component and the hydrogenated petroleum resin is improved. By improving the compatibility, the peak of the loss factor (tan ⁇ ) becomes sharper, and it is considered that the loss factor (tan ⁇ ) near 60 ° C. can be kept low.
  • Hydrogenated petroleum resin is a hydrogenated product of unsaturated hydrocarbon polymer (petroleum resin).
  • the hydrogenated petroleum resin may be a partially hydrogenated product or a completely hydrogenated product of the petroleum resin, but is preferably a partially hydrogenated product.
  • the unsaturated hydrocarbon includes an aromatic compound having an aromatic ring and an alicyclic compound having a five-membered ring. Both the aromatic compound and the alicyclic compound have a polymerizable carbon-carbon double bond and can be copolymerized with each other.
  • the unsaturated hydrocarbon may include, for example, a C5 fraction and a C9 fraction collected from petroleum-derived raw material oil through thermal decomposition or the like.
  • Petroleum-derived C5 fraction mainly contains the alicyclic compound
  • petroleum-derived C9 fraction mainly contains the aromatic compound.
  • the unsaturated hydrocarbon contains an indene compound having an indene skeleton as an aromatic compound.
  • the indene skeleton refers to a carbon skeleton of indene (C 9 H 8 ).
  • the indene compound introduces a rigid condensed ring skeleton into the hydrogenated petroleum resin, and the softening point of the hydrogenated petroleum resin is increased.
  • examples of indene compounds include indene and methylindene.
  • the content of the indene compound in the unsaturated hydrocarbon is 15% by mass or more based on the total amount of the unsaturated hydrocarbon. Thereby, a hydrogenated petroleum resin having a low molecular weight and a high softening point is obtained.
  • the content of the indene compound is preferably 20% by mass or more, and more preferably 30% by mass or more from the viewpoint of obtaining a lower molecular weight and a higher softening point.
  • the content of the indene compound in the unsaturated hydrocarbon is 60% by mass or less based on the total amount of the unsaturated hydrocarbon. If the indene compound exceeds 60% by mass, the unsaturated hydrocarbon tends to be difficult to polymerize.
  • the content of the indene compound is preferably 58% by mass or less and more preferably 56% by mass or less from the viewpoint of easily obtaining a polymer having a sufficient molecular weight.
  • the ratio of the indene compound in the aromatic compound may be, for example, 50% by mass or more, preferably 60% by mass or more, and more preferably 70% by mass or more.
  • the proportion of the indene compound in the aromatic compound may be 100% by mass.
  • the aromatic compound may further contain a compound other than the indene compound.
  • a compound is not particularly limited, and examples thereof include a styrene compound having a styrene skeleton.
  • examples of the styrene compound include styrene and methylstyrene.
  • the alicyclic compound is a compound having a five-membered ring and not having an aromatic ring.
  • Examples of the alicyclic compound include DCPD compounds having a dicyclopentadiene skeleton, CPD compounds having a cyclopentadiene skeleton, and the like.
  • the dicyclopentadiene skeleton refers to the carbon skeleton of dicyclopentadiene.
  • the cyclopentadiene skeleton refers to a carbon skeleton possessed by cyclopentadiene.
  • the unsaturated hydrocarbon preferably has a DCPD compound as the alicyclic compound.
  • DCPD compound examples include dicyclopentadiene and methyldicyclopentadiene.
  • CPD compounds include cyclopentadiene and methylcyclopentadiene.
  • the proportion of the DCPD compound in the alicyclic compound may be, for example, 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, and may be 100% by mass.
  • the content of the alicyclic compound in the unsaturated hydrocarbon may be, for example, 40% by mass or more, preferably 42% by mass or more, more preferably 44% by mass or more, based on the total amount of unsaturated hydrocarbons. . Thereby, the polymerization reaction tends to proceed, and the target polymer tends to be easily obtained.
  • the content of the alicyclic compound in the unsaturated hydrocarbon may be, for example, 85% by mass or less, preferably 80% by mass or less, more preferably 70% by mass or less, based on the total amount of unsaturated hydrocarbons. It is. Thereby, since the aromatic content is relatively increased, a hydrogenated petroleum resin having high compatibility with the rubber component tends to be easily obtained.
  • the ratio C 1 / C 2 (mass ratio) between the content C 1 of the aromatic compound and the content C 2 of the alicyclic compound is preferably 0.25 or more, More preferably, it is 0.43 or more. Thereby, since the aromatic content is relatively increased, a hydrogenated petroleum resin having high compatibility with the rubber component tends to be easily obtained.
  • the ratio C 1 / C 2 is preferably 1.38 or less, more preferably 1.27 or less. Thereby, the polymerization reaction tends to proceed, and the target polymer tends to be easily obtained.
  • the unsaturated hydrocarbon may further contain components other than the aromatic compound and the alicyclic compound.
  • components other than the aromatic compound and the alicyclic compound include aliphatic compounds having no cyclic structure, alicyclic compounds having no 5-membered ring, and heterocyclic compounds having a heterocyclic ring. It is done.
  • examples of the aliphatic compound include piperylene and isoprene.
  • Examples of the heterocyclic compound include coumarone.
  • the content of other components is preferably 5% by mass or less, more preferably 1% by mass or less, and may be 0% by mass based on the total amount of unsaturated hydrocarbons.
  • An unsaturated hydrocarbon polymer (hereinafter also referred to as petroleum resin) is a polymer having a first structural unit derived from the alicyclic compound and a second structural unit derived from the aromatic compound. Can do.
  • the content of the first structural unit in the petroleum resin corresponds to the content of the alicyclic compound in the unsaturated hydrocarbon
  • the content of the second structural unit in the petroleum resin is the fragrance in the unsaturated hydrocarbon. This corresponds to the content of the group compound. Since the petroleum resin has a structural unit derived from an indene compound, the hydrogenated product can achieve both a high softening point and a low molecular weight.
  • Petroleum resin can be obtained by polymerization of unsaturated hydrocarbons.
  • the method for polymerizing the unsaturated hydrocarbon is not particularly limited, and can be appropriately selected from known polymerization methods.
  • the petroleum resin may be obtained by thermal polymerization of unsaturated hydrocarbons.
  • the method of thermal polymerization is not particularly limited, and may be carried out, for example, by heating a raw material composition containing an unsaturated hydrocarbon to a predetermined reaction temperature.
  • the reaction temperature of the thermal polymerization is not particularly limited, and may be, for example, 250 ° C. or higher, preferably 260 ° C. or higher, more preferably 270 ° C. or higher. Moreover, the reaction temperature of thermal polymerization may be 300 degrees C or less, for example, Preferably it is 290 degrees C or less, More preferably, it is 280 degrees C or less.
  • the reaction time of the thermal polymerization (time for maintaining the reaction system at the above reaction temperature) is not particularly limited, and may be, for example, 30 to 180 minutes, preferably 60 to 120 minutes.
  • the raw material composition used for thermal polymerization may further contain components other than unsaturated hydrocarbons.
  • petroleum-derived C5 fraction and C9 fraction further contain non-polymerizable hydrocarbons that do not have a polymerizable group and do not participate in thermal polymerization in addition to the above-described aromatic compound and alicyclic compound.
  • the raw material composition used for thermal polymerization may further contain such a non-polymerizable hydrocarbon.
  • non-polymerizable hydrocarbons include saturated hydrocarbons (alkanes, cycloalkanes, etc.), aromatic hydrocarbons (benzene, toluene, etc.) and the like.
  • the raw material composition contains a component other than the unsaturated hydrocarbon, it can be removed, for example, by lightly removing (distilling) the unsaturated hydrocarbon after thermal polymerization.
  • Hydrogenated petroleum resin is a hydrogenated product of petroleum resin.
  • the hydrogenated petroleum resin may be a partially hydrogenated product or a completely hydrogenated product of the petroleum resin, but is preferably a partially hydrogenated product. That is, the hydrogenated petroleum resin may be a hydrogenated part or all of the aromatic ring of the petroleum resin, or may be a hydrogenated part of the aromatic ring of the petroleum resin.
  • the aromatic content in the hydrogenated petroleum resin may be, for example, 30% or less, and preferably 20% or less.
  • the lower limit of the aromatic content in the hydrogenated petroleum resin is not particularly limited, but may be, for example, 0.3% or more, preferably 3% or more, more preferably 5% or more, and particularly preferably 8% or more.
  • the aromatic content in the hydrogenated petroleum resin is the number of hydrogens bonded to the aromatic ring (M 1 ) with respect to the total number of hydrogens in the hydrogenated petroleum resin (M 1 ) using 1 H-NMR.
  • M 2 ) ratio (M 2 / M 1 ) is measured, and the ratio (M 2 / M 1 ) is expressed as a percentage.
  • the softening point of the hydrogenated petroleum resin may be, for example, 80 ° C. or higher, preferably 90 ° C. or higher, and more preferably 100 ° C. or higher. Since the hydrogenated petroleum resin has a high softening point, the effect of improving wet grip performance is more remarkably exhibited.
  • the upper limit of the softening point of the hydrogenated petroleum resin is not particularly limited, but may be, for example, 150 ° C. or less, preferably 130 ° C. or less, and more preferably 120 ° C. or less. Such softening point tends to improve workability.
  • the softening point of hydrogenated petroleum resin shows the value measured by the method based on ASTM D6090 using DP70 of METTLER TOLEDO.
  • the weight average molecular weight of the hydrogenated petroleum resin may be, for example, 1000 or less, preferably 700 or less, and more preferably 600 or less. Thereby, the compatibility of the hydrogenated petroleum resin with respect to the rubber component is further improved, and the loss coefficient (tan ⁇ ) near 60 ° C. can be further reduced.
  • the minimum of the weight average molecular weight of hydrogenated petroleum resin is not specifically limited, For example, it may be 200 or more, it is preferable that it is 300 or more, and it is more preferable that it is 350 or more.
  • the weight average molecular weight of hydrogenated petroleum resin is measured by GPC (gel permeation chromatography) and indicates a value converted to standard polystyrene.
  • Hydrogenated petroleum resin can be obtained by hydrogenating an unsaturated hydrocarbon polymer (petroleum resin).
  • a method for hydrogenating a petroleum resin to obtain a hydrogenated product is not particularly limited, and a known method can be used.
  • hydrogenation can be performed by circulating a petroleum resin through a reactor filled with a hydrogenation catalyst and bringing the hydrogenation catalyst and the petroleum resin into contact with each other in the presence of hydrogen.
  • the hydrogenation catalyst is not particularly limited, and may be, for example, a nickel catalyst, a palladium catalyst, a platinum catalyst, or the like.
  • the conditions for the hydrogenation reaction can be appropriately changed according to the desired aromatic content of the hydrogenated petroleum resin.
  • the hydrogen pressure in the hydrogenation reaction may be, for example, 5 MPa or more, and is preferably 10 MPa or more.
  • the hydrogen pressure in the hydrogenation reaction may be, for example, 30 MPa or less, and preferably 20 MPa or less.
  • the reaction temperature in the hydrogenation reaction may be, for example, 200 ° C. or higher, and is preferably 230 ° C. or higher.
  • the reaction temperature in the hydrogenation reaction may be, for example, 310 ° C. or less, and preferably 300 ° C. or less.
  • Petroleum resin may be dissolved in a solvent and distributed to the reactor.
  • the solvent may be any solvent that can dissolve the petroleum resin and does not adversely affect the hydrogenation.
  • As the solvent for example, kerosene, methylcyclohexane or the like can be used.
  • a solvent may be used individually by 1 type and may be used in combination of 2 or more type.
  • the uncrosslinked rubber composition according to the present embodiment contains a rubber component, the above-described rubber additive, and a crosslinking agent. According to the crosslinked rubber obtained by crosslinking the uncrosslinked rubber composition, for example, when used in a tread portion of a tire, good rolling resistance characteristics and excellent wet grip performance can be exhibited.
  • the rubber component is not particularly limited.
  • natural rubber NR
  • butadiene rubber BR
  • nitrile rubber silicone rubber
  • isoprene rubber IR
  • styrene-butadiene rubber SBR
  • isoprene-butadiene rubber styrene -Isoprene-butadiene rubber
  • ethylene-propylene-diene rubber halogenated butyl rubber, halogenated isoprene rubber, halogenated isobutylene copolymer, chloroprene rubber (CR), butyl rubber and halogenated isobutylene-p-methylstyrene rubber.
  • BR butadiene rubber
  • SBR styrene-butadiene rubber
  • natural rubber is preferable from the viewpoints of strength, processability, price, and the like.
  • a rubber component may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the glass transition temperature (Tg) of the rubber component may be, for example, 0 ° C. or lower, preferably ⁇ 20 ° C. or lower. Further, the glass transition temperature (Tg) of the rubber component may be, for example, ⁇ 120 ° C. or higher, preferably ⁇ 100 ° C. or higher. In addition, in this specification, the glass transition temperature of a rubber component refers to the value measured by DSC (Differential scanning calorimetry).
  • crosslinking agent those usually used for crosslinking of rubber can be used without particular limitation, and can be appropriately selected depending on the rubber component.
  • examples of the crosslinking agent include sulfur crosslinking agents such as sulfur, morpholine disulfide, and alkylphenol disulfide; cyclohexanone peroxide, methyl acetoacetate peroxide, tert-butyl peroxyisobutyrate, tert-butyl peroxybenzoate, benzoyl peroxide, And organic peroxide crosslinking agents such as lauroyl peroxide, dicumyl peroxide, ditert-butyl peroxide, and 1,3-bis (tert-butylperoxyisopropyl) benzene.
  • a crosslinking agent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the content of the cross-linking agent is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the rubber component. More preferably.
  • the uncrosslinked rubber composition according to this embodiment may further contain various reinforcing agents, fillers, rubber extending oils, softeners and the like used in the field of rubber industry. Each component may be used alone or in combination of two or more.
  • Reinforcing agents include carbon black and silica.
  • Carbon black is suitable for use as a reinforcing agent because it provides effects such as improved wear resistance and rolling resistance characteristics of crosslinked rubber and prevention of cracking and cracking by ultraviolet rays (ultraviolet ray deterioration prevention).
  • the type of carbon black is not particularly limited, and conventionally known carbon blacks such as furnace black, acetylene black, thermal black, channel black, and graphite can be used.
  • the physical characteristics of carbon black such as particle size, pore volume, specific surface area and the like are not particularly limited, and various carbon blacks conventionally used in the rubber industry, such as SAF, ISAF, HAF, FEF, GPF, SRF (both abbreviations for carbon black classified according to ASTM standard D-1765-82a) can be used as appropriate.
  • various carbon blacks conventionally used in the rubber industry such as SAF, ISAF, HAF, FEF, GPF, SRF (both abbreviations for carbon black classified according to ASTM standard D-1765-82a) can be used as appropriate.
  • the content thereof is preferably 5 to 80 parts by mass and more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the rubber component. Further, it can be 30 to 80 parts by mass, or 40 to 60 parts by mass. With such a blending amount, the effect as a reinforcing agent can be favorably obtained in a crosslinked rubber obtained by crosslinking an uncrosslinked rubber composition.
  • silica those conventionally used as reinforcing agents for rubber can be used without particular limitation.
  • examples of silica include dry method white carbon, wet method white carbon, synthetic silicate white carbon, colloidal silica, and precipitated silica.
  • the specific surface area of silica is not particularly limited, but usually a silica having a surface area of 40 to 600 m 2 / g, preferably 70 to 300 m 2 / g, and a primary particle diameter of 10 to 1000 nm should be used. Can do.
  • the blending amount is preferably 0.1 to 150 parts by weight, more preferably 10 to 100 parts by weight, and more preferably 30 to 100 parts by weight with respect to 100 parts by weight of the rubber component. More preferably it is.
  • a silane coupling agent may be blended with the uncrosslinked rubber composition.
  • the silane coupling agent include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxy-ethoxy) silane, ⁇ - (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, and 3-chloropropyltrimethoxy.
  • Silane 3-chloropropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, bis (3- (triethoxysilyl) propyl) tetrasulfide, bis (3- (triethoxysilyl) propyl ) Disulfide and the like. These may be used alone or in combination of two or more.
  • the addition amount of the silane coupling agent can be appropriately changed depending on the desired blending amount of silica, but is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the rubber component.
  • mineral powders such as clay and talc
  • carbonates such as magnesium carbonate and calcium carbonate
  • alumina hydrates such as aluminum hydroxide; and the like can be used.
  • the rubber extending oil conventionally used aromatic oil, naphthenic oil, paraffinic oil, etc. can be used.
  • the blending amount of the rubber extending oil is preferably 0 to 100 parts by mass with respect to 100 parts by mass of the rubber component.
  • Softeners include plant oil softeners such as tall oil, linoleic acid, oleic acid, and abithenoic acid, pine tar, rapeseed oil, cottonseed oil, peanut oil, castor oil, palm oil, and fuctis, paraffinic oil, and naphthenic oil. , Aromatic oils, phthalic acid derivatives such as dibutyl phthalate, and the like.
  • the blending amount of the softening agent is preferably 0 to 50 parts by mass with respect to 100 parts by mass of the rubber component.
  • the uncrosslinked rubber composition according to this embodiment includes various additives used in the field of rubber industry, such as anti-aging agents, sulfur, crosslinking agents, vulcanization accelerators, vulcanization aids, and vulcanization retarders. 1 type, or 2 or more types, such as a chelating agent, a process oil, and a plasticizer, may be further contained as needed.
  • the amount of these additives is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component.
  • the vulcanization accelerator and the vulcanization aid are not particularly limited, and can be appropriately selected and used depending on the rubber component and the crosslinking agent contained in the rubber composition. “Vulcanization” refers to crosslinking via at least one sulfur atom.
  • vulcanization accelerator examples include thiuram accelerators such as tetramethylthiuram monosulfide, tetramethylthiuram disulfide and tetraethylthiuram disulfide; thiazole accelerators such as 2-mercaptobenzothiazole and dibenzothiazyl disulfide; N-cyclohexyl Sulfenamide accelerators such as -2-benzothiazylsulfenamide and N-oxydiethylene-2-benzothiazolylsulfenamide; guanidine accelerators such as diphenylguanidine and diortolylguanidine; n-butyraldehyde -Aldehyde-amine accelerators such as aniline condensates and butyraldehyde-monobutylamine condensates; aldehyde-ammonia accelerators such as hexamethylenetetramine; thioureas such as thiocarbanilide
  • the blending amount of the vulcanization accelerator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component.
  • Vulcanization aids include metal oxides such as zinc oxide (zinc white) and magnesium oxide; metal hydroxides such as calcium hydroxide; metal carbonates such as zinc carbonate and basic zinc carbonate; stearic acid and oleic acid Aliphatic acid salts such as zinc stearate and magnesium stearate; amines such as di-n-butylamine and dicyclohexylamine; ethylene dimethacrylate, diallyl phthalate, N, Nm-phenylene dimaleimide, triallyl isocyanurate And trimethylolpropane trimethacrylate.
  • metal oxides such as zinc oxide (zinc white) and magnesium oxide
  • metal hydroxides such as calcium hydroxide
  • metal carbonates such as zinc carbonate and basic zinc carbonate
  • stearic acid and oleic acid Aliphatic acid salts such as zinc stearate and magnesium stearate
  • amines such as di-n-butylamine and dicyclohexylamine
  • the compounding amount of the vulcanization aid is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component.
  • the uncrosslinked rubber composition according to this embodiment can be produced by applying a method generally used as a method for producing an uncrosslinked rubber composition. For example, it can manufacture by mixing each component mentioned above using kneading machines, such as a Brabender, a Banbury mixer, and a roll mixer.
  • kneading machines such as a Brabender, a Banbury mixer, and a roll mixer.
  • the crosslinked rubber according to this embodiment is formed by crosslinking the above-described uncrosslinked rubber composition.
  • Such a crosslinked rubber is useful as a rubber material for tires, for example.
  • the crosslinked rubber according to this embodiment is used in a tread portion of a tire, good rolling resistance characteristics and excellent wet grip performance can be exhibited.
  • the crosslinked rubber according to the present embodiment can be produced by using the above-mentioned uncrosslinked rubber composition by a method similar to the method usually used as a rubber crosslinking method.
  • a crosslinked rubber having a structure in which the rubber component is crosslinked by molding into a desired shape can be obtained.
  • the crosslinked rubber according to this embodiment can be suitably used for various applications.
  • it can be suitably used for applications such as tires, adhesives, films, medical tapes, paints, inks, asphalt binders, cloths, waterproofing agents, printer resins, etc. ) Particularly preferably.
  • the tire according to this embodiment contains the above-described crosslinked rubber.
  • the tire according to the present embodiment preferably contains the above-described crosslinked rubber in the tread portion. Such a tire can remarkably exhibit good rolling resistance characteristics and excellent wet grip performance.
  • the tire according to the present embodiment may have the same configuration as a conventionally known tire except that the above-described crosslinked rubber is applied to at least a part thereof.
  • the present invention may be a method of imparting good rolling resistance characteristics and excellent wet grip performance to a rubber material by adding the above-mentioned rubber additive to a rubber component used in a tire. .
  • the rolling resistance characteristics have decreased with the improvement of wet grip performance.
  • it is possible to impart good rolling resistance characteristics and excellent wet grip performance to the rubber material.
  • Example 1 ⁇ Preparation of uncrosslinked rubber composition> The components shown in Table 2 were prepared and kneaded at a mass ratio shown in Table 2 to obtain an uncrosslinked rubber composition.
  • hydrogenated petroleum resin 1 was used, in Example 2, hydrogenated petroleum resin 2 was used, in Example 3, hydrogenated petroleum resin 3 was used, and in Comparative Example 1, hydrogenated petroleum resin 6 was used.
  • a lab plast mill manufactured by Toyo Seiki Co., Ltd.
  • a roll machine manufactured by KNEEADER MACHINERY Co., Ltd.
  • SBR Buna FX3234A-2HM (trade name), manufactured by LANXESS, styrene-butadiene rubber.
  • Buna FX3234A-2HM is an oil-extended product.
  • the SBR value in Table 2 indicates the amount of net SBR contained in Buna FX3234A-2HM, and the oil value in Table 2 indicates Buna FX3234A- The compounding quantity of the net oil contained in 2HM is shown.
  • BR UBEPOL BR150L (trade name), manufactured by Ube Industries, butadiene rubber [filler]
  • Silica ULTRASIL VN3 (trade name), manufactured by Evonik [Silane coupling agent] Si75: trade name, manufactured by Evonik [vulcanization accelerator]
  • Noxeller D Brand name, Nouchira CZ manufactured by Ouchi Shinsei Chemical Industry Co., Ltd .: Product name, Zinc oxide manufactured by Ouchi Shinsei Chemical Industries Co., Ltd .: Staxic acid manufactured by Hux Itec Corp .: NOF Corporation [Anti-aging agent] NOCRACK 6C: Trade name, manufactured by Ouchi Shinsei Chemical Co., Ltd. Sunnock: Product name, manufactured by Ouchi Co., Ltd. [vulcanizing agent] Sulfur: HK200-5 (trade name), manufactured by Hosoi Chemical Co., Ltd.
  • the uncrosslinked rubber composition obtained by kneading was thermoformed with a press (manufactured by Dumbbell) to produce a sheet-like crosslinked rubber.
  • the thermoforming conditions were 160 ° C. and 20 minutes, and the thermoforming was performed so that the thickness of the sheet was 2 mm.
  • ⁇ Measurement of viscoelasticity> A sample was punched out from the produced sheet-like crosslinked rubber in a size of 2 mm in thickness, 5 mm in width, and 50 mm in length. Next, viscoelasticity measurement was performed using the punched sample. The viscoelasticity was measured under the tension mode while increasing the temperature at a frequency of 10 Hz, a strain of 0.1%, and a temperature range of ⁇ 80 ° C. to 80 ° C. at 2 ° C./min.
  • the apparatus used is a DMA + 1000 manufactured by Metraviv.
  • the frequency is 10 Hz.
  • the wet grip performance correlates with the tan ⁇ value at 10 Hz and 0 ° C. when the viscoelastic time-temperature conversion law is used. It is known that the grip property is good.
  • the rolling resistance correlates with the tan ⁇ value at 10 Hz and 60 ° C., and it is known that the smaller the numerical value, the better the rolling resistance characteristic.
  • Table 3 the tan ⁇ value at 0 ° C. in Table 3 (relative value to Comparative Example 1) indicates that the larger this value, the better the wet grip property.
  • the tan ⁇ value at 60 ° C. in Table 3 indicates that the larger this value, the better the rolling resistance characteristic.
  • Example 4 (Examples 4 to 6 and Comparative Example 2) ⁇ Preparation of uncrosslinked rubber composition>
  • hydrogenated petroleum resin 4 is used in Example 4
  • hydrogenated petroleum resin 5 is used in Example 5
  • hydrogenated petroleum resin 3 is used in Example 6, and Comparative Example 2 is used.
  • An uncrosslinked rubber composition was obtained in the same manner as in Example 1 except that hydrogenated petroleum resin 6 was used and the following was used as SBR.
  • SBR SBR: NS522 (trade name), manufactured by Nippon Zeon Co., Ltd., styrene-butadiene rubber.
  • NS522 is an oil exhibition
  • the value of SBR in Table 2 indicates the amount of net SBR included in NS522
  • the value of oil in Table 2 indicates the amount of net oil included in NS522. Indicates the amount.

Abstract

An additive for rubbers, which contains a hydrogenated petroleum resin that is a hydrogenated product of a polymer of an unsaturated hydrocarbon, and which is configured such that: the unsaturated hydrocarbon contains an aromatic compound having an aromatic ring and an alicyclic compound having a five-membered ring; the aromatic compound contains an indene compound having an indene skeleton; and the content of the indene compound is 15-60% by mass based on the total amount of the unsaturated hydrocarbon.

Description

ゴム用添加剤、未架橋ゴム組成物、架橋ゴム及びタイヤAdditive for rubber, uncrosslinked rubber composition, crosslinked rubber and tire
 本発明は、ゴム用添加剤、未架橋ゴム組成物、架橋ゴム及びタイヤに関する。 The present invention relates to a rubber additive, an uncrosslinked rubber composition, a crosslinked rubber, and a tire.
 従来から、ゴム材料に様々な特性を付与するため、ゴム用添加剤が用いられている。例えば、特許文献1には、少なくとも一種のエラストマー、並びにジシクロペンタジエン、シクロペンタジエン、及びメチルシクロペンタジエンベースの特定の炭化水素ポリマー添加剤を含むタイヤトレッド用組成物が開示されている。 Conventionally, rubber additives have been used to impart various characteristics to rubber materials. For example, Patent Document 1 discloses a tire tread composition containing at least one elastomer and a specific hydrocarbon polymer additive based on dicyclopentadiene, cyclopentadiene, and methylcyclopentadiene.
特表2015-523430号公報Special table 2015-523430 gazette
 近年、タイヤには、燃費性能の向上の観点から、良好な転がり抵抗特性が強く求められている。一方で、タイヤには、安全性の観点から、優れたウェットグリップ性能が強く求められている。しかし、良好な転がり抵抗特性と優れたウェットグリップ性能とを両立することは、難しい。 In recent years, tires are strongly required to have good rolling resistance characteristics from the viewpoint of improving fuel efficiency. On the other hand, tires are strongly required to have excellent wet grip performance from the viewpoint of safety. However, it is difficult to achieve both good rolling resistance characteristics and excellent wet grip performance.
 本発明は、良好な転がり抵抗特性及び優れたウェットグリップ性能を付与しうるゴム用添加剤を提供することを目的とする。また、本発明は、上記ゴム用添加剤を含む未架橋ゴム組成物、該未架橋ゴム組成物を架橋してなる架橋ゴム及びトレッド部に該架橋ゴムを含有するタイヤを提供することを目的とする。 An object of the present invention is to provide an additive for rubber that can impart good rolling resistance characteristics and excellent wet grip performance. Another object of the present invention is to provide an uncrosslinked rubber composition containing the rubber additive, a crosslinked rubber obtained by crosslinking the uncrosslinked rubber composition, and a tire containing the crosslinked rubber in a tread portion. To do.
 本発明の一側面は、不飽和炭化水素の重合体の水添物である水添石油樹脂を含み、不飽和炭化水素が、芳香環を有する芳香族系化合物と、五員環を有する脂環式化合物と、を含有し、芳香族系化合物が、インデン骨格を有するインデン系化合物を含有し、インデン系化合物の含有量が、不飽和炭化水素の全量基準で、15~60質量%である、ゴム用添加剤に関する。 One aspect of the present invention includes a hydrogenated petroleum resin that is a hydrogenated product of an unsaturated hydrocarbon polymer, the unsaturated hydrocarbon having an aromatic compound having an aromatic ring and an alicyclic ring having a five-membered ring. The aromatic compound contains an indene compound having an indene skeleton, and the content of the indene compound is 15 to 60% by mass based on the total amount of unsaturated hydrocarbons. It relates to an additive for rubber.
 一態様において、脂環式化合物は、ジシクロペンタジエン骨格を有するDCPD系化合物を含有してよい。 In one embodiment, the alicyclic compound may contain a DCPD compound having a dicyclopentadiene skeleton.
 一態様において、脂環式化合物の含有量は、不飽和炭化水素の全量基準で、40~85質量%であってよい。 In one embodiment, the content of the alicyclic compound may be 40 to 85% by mass based on the total amount of unsaturated hydrocarbons.
 一態様において、芳香族系化合物に占めるインデン系化合物の割合は、50質量%以上であってよい。 In one embodiment, the proportion of the indene compound in the aromatic compound may be 50% by mass or more.
 一態様において、水添石油樹脂における芳香族含量は、0.3~30%であってよい。 In one embodiment, the aromatic content in the hydrogenated petroleum resin may be 0.3-30%.
 一態様において、水添石油樹脂の軟化点は、80~150℃であってよい。 In one embodiment, the softening point of the hydrogenated petroleum resin may be 80 to 150 ° C.
 一態様において、水添石油樹脂の重量平均分子量は、200~1000であってよい。 In one embodiment, the weight average molecular weight of the hydrogenated petroleum resin may be 200 to 1000.
 本発明の他の一側面は、ゴム成分と、上記ゴム用添加剤と、架橋剤とを含有する、未架橋ゴム組成物に関する。 Another aspect of the present invention relates to an uncrosslinked rubber composition containing a rubber component, the rubber additive, and a crosslinking agent.
 本発明の更に他の一側面は、上記未架橋ゴム組成物を架橋してなる、架橋ゴムに関する。 Still another aspect of the present invention relates to a crosslinked rubber obtained by crosslinking the uncrosslinked rubber composition.
 本発明の更に他の一側面は、トレッド部に上記架橋ゴムを含有する、タイヤに関する。 Still another aspect of the present invention relates to a tire containing the above-described crosslinked rubber in a tread portion.
 本発明によれば、良好な転がり抵抗特性及び優れたウェットグリップ性能を付与しうるゴム用添加剤が提供される。また、本発明によれば、上記ゴム用添加剤を含む未架橋ゴム組成物、該未架橋ゴム組成物を架橋してなる架橋ゴム及びトレッド部に該架橋ゴムを含有するタイヤが提供される。 According to the present invention, there is provided an additive for rubber that can impart good rolling resistance characteristics and excellent wet grip performance. The present invention also provides an uncrosslinked rubber composition containing the rubber additive, a crosslinked rubber obtained by crosslinking the uncrosslinked rubber composition, and a tire containing the crosslinked rubber in the tread portion.
 以下、本発明の好適な一実施形態について説明する。 Hereinafter, a preferred embodiment of the present invention will be described.
<ゴム用添加剤>
 本実施形態に係るゴム用添加剤は、不飽和炭化水素の重合体の水添物である水添石油樹脂を含む。また、本実施形態において、不飽和炭化水素は、芳香環を有する芳香族系化合物と、五員環を有する脂環式化合物と、を含有し、芳香族系化合物は、インデン骨格を有するインデン系化合物を含有する。更に、不飽和炭化水素中のインデン系化合物の含有量は、不飽和炭化水素の全量基準で、15~60質量%である。
<Additive for rubber>
The rubber additive according to the present embodiment includes a hydrogenated petroleum resin that is a hydrogenated product of an unsaturated hydrocarbon polymer. In the present embodiment, the unsaturated hydrocarbon contains an aromatic compound having an aromatic ring and an alicyclic compound having a five-membered ring, and the aromatic compound has an indene structure having an indene skeleton. Contains compounds. Further, the content of the indene compound in the unsaturated hydrocarbon is 15 to 60% by mass based on the total amount of the unsaturated hydrocarbon.
 このようなゴム用添加剤は、ゴム材料に対して良好な転がり抵抗特性及び優れたウェットグリップ性能を付与しうる。 Such an additive for rubber can impart good rolling resistance characteristics and excellent wet grip performance to the rubber material.
 転がり抵抗特性に関しては、ゴム材料の動的粘弾性試験により周波数10~100Hz、60℃付近で測定される損失係数(tanδ)が小さいほど転がり抵抗特性が良好であることが知られている。一方、ウェットグリップ性能に関しては、ゴム材料の動的粘弾性試験により周波数10~100Hz、0℃付近で測定される損失係数(tanδ)が大きいほどウェットグリップ性能が優れていることが知られている。 Regarding the rolling resistance characteristics, it is known that the rolling resistance characteristics are better as the loss coefficient (tan δ) measured at a frequency of 10 to 100 Hz and around 60 ° C. in the dynamic viscoelasticity test of the rubber material is smaller. On the other hand, with regard to wet grip performance, it is known that the wet grip performance is better as the loss factor (tan δ) measured at a frequency of 10 to 100 Hz and near 0 ° C. is larger in the dynamic viscoelasticity test of rubber material .
 転がり抵抗特性及びウェットグリップ性能は、いずれもゴム材料のヒステリシスロスに関する特性である。一般にヒステリシスロスを大きくすると、グリップ力は高くなり制動性能が向上するが、転がり抵抗も大きくなり燃費の悪化をもたらす。このように、グリップ性能と転がり抵抗特性は相反する関係にあるため、良好な転がり抵抗特性及び優れたウェットグリップ性能を同時に満足することは難しい。 Rolling resistance characteristics and wet grip performance are both characteristics related to the hysteresis loss of rubber materials. In general, increasing the hysteresis loss increases the gripping force and improves the braking performance, but also increases the rolling resistance, resulting in deterioration of fuel consumption. As described above, since the grip performance and the rolling resistance characteristic are in a contradictory relationship, it is difficult to simultaneously satisfy the good rolling resistance characteristic and the excellent wet grip performance.
 本実施形態に係るゴム用添加剤は、ゴム材料に添加することで、動的粘弾性試験における高温(例えば60℃)での損失係数(tanδ)を低く維持しつつ、低温(例えば0℃)での損失係数(tanδ)を大きくすることができるため、ゴム材料に対して良好な転がり抵抗特性及び優れたウェットグリップ性能を付与することができる。 The rubber additive according to the present embodiment is added to the rubber material to maintain a low loss factor (tan δ) at a high temperature (for example, 60 ° C.) in a dynamic viscoelasticity test, while at a low temperature (for example, 0 ° C.) Since the loss coefficient (tan δ) can be increased, good rolling resistance characteristics and excellent wet grip performance can be imparted to the rubber material.
 発明者らは、上述の効果が奏されるメカニズムについて、以下のように考えている。一般的に、ゴム成分の損失係数(tanδ)のピークは0℃より低い温度域にある。そして、石油樹脂(又は水添石油樹脂)の軟化点は、通常、ゴム成分のガラス転移温度(Tg)より高いことが知られている。このため、石油樹脂(又は水添石油樹脂)をゴム材料に添加することで、損失係数(tanδ)のピークを高温側にシフトさせ、0℃付近での損失係数(tanδ)を大きくすることができる。しかし、一般的な石油樹脂では、ピークシフトによって60℃付近の損失係数(tanδ)も大きくなり、転がり抵抗が増大するという課題があった。 The inventors consider the mechanism that achieves the above effect as follows. In general, the peak of the loss factor (tan δ) of the rubber component is in a temperature range lower than 0 ° C. And it is known that the softening point of petroleum resin (or hydrogenated petroleum resin) is usually higher than the glass transition temperature (Tg) of the rubber component. For this reason, by adding petroleum resin (or hydrogenated petroleum resin) to the rubber material, the peak of the loss factor (tan δ) can be shifted to the high temperature side, and the loss factor (tan δ) near 0 ° C. can be increased. it can. However, a general petroleum resin has a problem that a loss coefficient (tan δ) near 60 ° C. increases due to peak shift, and rolling resistance increases.
 ここで、一般的な石油樹脂では、その軟化点を高くしてウェットグリップ性能の向上効果を高めるためには、分子量を大きくする必要がある。これに対して、本実施形態に係る水添石油樹脂は、インデン系化合物に由来する剛直な縮合環骨格を有しているため、低分子量であっても高い軟化点を得ることができる。このため、本実施形態では、分子量の小さい水添石油樹脂によって、ウェットグリップ性能を効率良く向上させることができる。すなわち、本実施形態に係る水添石油樹脂は、一般的な石油樹脂と比較して、より小さい分子量でウェットグリップ性能の向上を図ることができる。 Here, in general petroleum resins, it is necessary to increase the molecular weight in order to increase the softening point and enhance the effect of improving wet grip performance. On the other hand, since the hydrogenated petroleum resin according to the present embodiment has a rigid condensed ring skeleton derived from an indene compound, a high softening point can be obtained even with a low molecular weight. For this reason, in this embodiment, wet grip performance can be improved efficiently by hydrogenated petroleum resin with a small molecular weight. That is, the hydrogenated petroleum resin according to the present embodiment can improve wet grip performance with a smaller molecular weight than a general petroleum resin.
 そして、本実施形態では、水添石油樹脂の分子量が小さいことで水添石油樹脂がゴム成分の分子間に入り込みやすくなり、ゴム成分と水添石油樹脂との相溶性が向上する。相溶性の向上によって、損失係数(tanδ)のピークがよりシャープなピークとなり、60℃付近の損失係数(tanδ)を低く抑えることができると考えられる。 In this embodiment, since the molecular weight of the hydrogenated petroleum resin is small, the hydrogenated petroleum resin easily enters between the rubber component molecules, and the compatibility between the rubber component and the hydrogenated petroleum resin is improved. By improving the compatibility, the peak of the loss factor (tan δ) becomes sharper, and it is considered that the loss factor (tan δ) near 60 ° C. can be kept low.
 以下、本実施形態に係るゴム用添加剤について詳細に説明する。 Hereinafter, the rubber additive according to the present embodiment will be described in detail.
 水添石油樹脂は、不飽和炭化水素の重合体(石油樹脂)の水添物である。水添石油樹脂は、石油樹脂の部分水添物であっても完全水添物であってもよいが、部分水添物であることが好ましい。 Hydrogenated petroleum resin is a hydrogenated product of unsaturated hydrocarbon polymer (petroleum resin). The hydrogenated petroleum resin may be a partially hydrogenated product or a completely hydrogenated product of the petroleum resin, but is preferably a partially hydrogenated product.
 不飽和炭化水素には、芳香環を有する芳香族系化合物と、五員環を有する脂環式化合物とが含まれる。上記芳香族系化合物及び上記脂環式化合物は、いずれも重合性基である炭素-炭素二重結合を有し、互いに共重合可能な化合物である。 The unsaturated hydrocarbon includes an aromatic compound having an aromatic ring and an alicyclic compound having a five-membered ring. Both the aromatic compound and the alicyclic compound have a polymerizable carbon-carbon double bond and can be copolymerized with each other.
 不飽和炭化水素は、例えば、石油由来の原料油から熱分解等を経て採取されるC5留分及びC9留分を含むものであってよい。石油由来のC5留分は主として上記脂環式化合物を含み、石油由来のC9留分は主として上記芳香族系化合物を含む。 The unsaturated hydrocarbon may include, for example, a C5 fraction and a C9 fraction collected from petroleum-derived raw material oil through thermal decomposition or the like. Petroleum-derived C5 fraction mainly contains the alicyclic compound, and petroleum-derived C9 fraction mainly contains the aromatic compound.
 本実施形態において、不飽和炭化水素は、芳香族系化合物としてインデン骨格を有するインデン系化合物を含有する。ここで、インデン骨格とは、インデン(C)が有する炭素骨格を示す。インデン系化合物によって、水添石油樹脂に剛直な縮合環骨格が導入され、水添石油樹脂の軟化点が高くなる。インデン系化合物としては、例えば、インデン、メチルインデン等が挙げられる。 In the present embodiment, the unsaturated hydrocarbon contains an indene compound having an indene skeleton as an aromatic compound. Here, the indene skeleton refers to a carbon skeleton of indene (C 9 H 8 ). The indene compound introduces a rigid condensed ring skeleton into the hydrogenated petroleum resin, and the softening point of the hydrogenated petroleum resin is increased. Examples of indene compounds include indene and methylindene.
 不飽和炭化水素におけるインデン系化合物の含有量は、不飽和炭化水素の全量基準で、15質量%以上である。これにより、低分子量かつ高い軟化点の水添石油樹脂が得られる。インデン系化合物の含有量は、より低分子量かつより高い軟化点が得られる観点から、20質量%以上であることが好ましく、30質量%以上であることがより好ましい。 The content of the indene compound in the unsaturated hydrocarbon is 15% by mass or more based on the total amount of the unsaturated hydrocarbon. Thereby, a hydrogenated petroleum resin having a low molecular weight and a high softening point is obtained. The content of the indene compound is preferably 20% by mass or more, and more preferably 30% by mass or more from the viewpoint of obtaining a lower molecular weight and a higher softening point.
 また、不飽和炭化水素におけるインデン系化合物の含有量は、不飽和炭化水素の全量基準で、60質量%以下である。インデン系化合物が60質量%を超えると、不飽和炭化水素が重合しにくくなる傾向がある。インデン系化合物の含有量は、十分な分子量の重合体が得られやすくなる観点からは、58質量%以下であることが好ましく、56質量%以下であることがより好ましい。 Further, the content of the indene compound in the unsaturated hydrocarbon is 60% by mass or less based on the total amount of the unsaturated hydrocarbon. If the indene compound exceeds 60% by mass, the unsaturated hydrocarbon tends to be difficult to polymerize. The content of the indene compound is preferably 58% by mass or less and more preferably 56% by mass or less from the viewpoint of easily obtaining a polymer having a sufficient molecular weight.
 上記芳香族系化合物に占めるインデン系化合物の割合は、例えば50質量%以上であってよく、60質量%以上であることが好ましく、70質量%以上であることがより好ましい。また、上記芳香族系化合物に占めるインデン系化合物の割合は、100質量%であってもよい。 The ratio of the indene compound in the aromatic compound may be, for example, 50% by mass or more, preferably 60% by mass or more, and more preferably 70% by mass or more. The proportion of the indene compound in the aromatic compound may be 100% by mass.
 上記芳香族系化合物は、インデン系化合物以外の化合物を更に含んでいてもよい。このような化合物としては、特に制限されないが、例えば、スチレン骨格を有するスチレン系化合物等が挙げられる。スチレン系化合物としては、例えば、スチレン、メチルスチレン等が挙げられる。 The aromatic compound may further contain a compound other than the indene compound. Such a compound is not particularly limited, and examples thereof include a styrene compound having a styrene skeleton. Examples of the styrene compound include styrene and methylstyrene.
 上記脂環式化合物は、五員環を有し、芳香環を有しない化合物である。上記脂環式化合物としては、例えば、ジシクロペンタジエン骨格を有するDCPD系化合物、シクロペンタジエン骨格を有するCPD系化合物等が挙げられる。ここで、ジシクロペンタジエン骨格とは、ジシクロペンタジエンの有する炭素骨格を示す。シクロペンタジエン骨格とは、シクロペンタジエンの有する炭素骨格を示す。 The alicyclic compound is a compound having a five-membered ring and not having an aromatic ring. Examples of the alicyclic compound include DCPD compounds having a dicyclopentadiene skeleton, CPD compounds having a cyclopentadiene skeleton, and the like. Here, the dicyclopentadiene skeleton refers to the carbon skeleton of dicyclopentadiene. The cyclopentadiene skeleton refers to a carbon skeleton possessed by cyclopentadiene.
 不飽和炭化水素は、上記脂環式化合物としてDCPD系化合物を有することが好ましい。DCPD系化合物としては、例えば、ジシクロペンタジエン、メチルジシクロペンタジエン等が挙げられる。 The unsaturated hydrocarbon preferably has a DCPD compound as the alicyclic compound. Examples of the DCPD compound include dicyclopentadiene and methyldicyclopentadiene.
 CPD系化合物としては、例えば、シクロペンタジエン、メチルシクロペンタジエン等が挙げられる。 Examples of CPD compounds include cyclopentadiene and methylcyclopentadiene.
 上記脂環式化合物に占めるDCPD系化合物の割合は、例えば50質量%以上であってよく、好ましくは60質量%以上、より好ましくは70質量%以上であり、100質量%であってもよい。 The proportion of the DCPD compound in the alicyclic compound may be, for example, 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, and may be 100% by mass.
 不飽和炭化水素における上記脂環式化合物の含有量は、不飽和炭化水素の全量基準で、例えば40質量%以上であってよく、好ましくは42質量%以上、より好ましくは44質量%以上である。これにより、重合反応が進行しやすくなり、目的の重合体が得られやすくなる傾向がある。また、不飽和炭化水素における上記脂環式化合物の含有量は、不飽和炭化水素の全量基準で、例えば85質量%以下であってよく、好ましくは80質量%以下、より好ましくは70質量%以下である。これにより、相対的に芳香族含量が増えるため、ゴム成分に対する相溶性の高い水添石油樹脂が得られやすくなる傾向がある。 The content of the alicyclic compound in the unsaturated hydrocarbon may be, for example, 40% by mass or more, preferably 42% by mass or more, more preferably 44% by mass or more, based on the total amount of unsaturated hydrocarbons. . Thereby, the polymerization reaction tends to proceed, and the target polymer tends to be easily obtained. The content of the alicyclic compound in the unsaturated hydrocarbon may be, for example, 85% by mass or less, preferably 80% by mass or less, more preferably 70% by mass or less, based on the total amount of unsaturated hydrocarbons. It is. Thereby, since the aromatic content is relatively increased, a hydrogenated petroleum resin having high compatibility with the rubber component tends to be easily obtained.
 不飽和炭化水素において、上記芳香族系化合物の含有量Cと上記脂環式化合物の含有量Cとの比C/C(質量比)は、好ましくは0.25以上であり、より好ましくは0.43以上である。これにより、相対的に芳香族含量が増えるため、ゴム成分に対する相溶性の高い水添石油樹脂が得られやすくなる傾向がある。また、比C/Cは、好ましくは1.38以下であり、より好ましくは1.27以下である。これにより、重合反応が進行しやすくなり、目的の重合体が得られやすくなる傾向がある。 In the unsaturated hydrocarbon, the ratio C 1 / C 2 (mass ratio) between the content C 1 of the aromatic compound and the content C 2 of the alicyclic compound is preferably 0.25 or more, More preferably, it is 0.43 or more. Thereby, since the aromatic content is relatively increased, a hydrogenated petroleum resin having high compatibility with the rubber component tends to be easily obtained. The ratio C 1 / C 2 is preferably 1.38 or less, more preferably 1.27 or less. Thereby, the polymerization reaction tends to proceed, and the target polymer tends to be easily obtained.
 不飽和炭化水素は、上記芳香族系化合物及び上記脂環式化合物以外の他の成分を更に含んでいてもよい。上記芳香族系化合物及び上記脂環式化合物以外の他の成分としては、環状構造を有しない脂肪族化合物、5員環を有しない脂環式化合物、複素環を有する複素環式化合物等が挙げられる。上記脂肪族化合物としては、例えば、ピペリレン、イソプレン等が挙げられる。上記複素環式化合物としては、クマロン等が挙げられる。他の成分の含有量は、不飽和炭化水素の全量基準で5質量%以下であることが好ましく、1質量%以下であることがより好ましく、0質量%であってもよい。 The unsaturated hydrocarbon may further contain components other than the aromatic compound and the alicyclic compound. Examples of components other than the aromatic compound and the alicyclic compound include aliphatic compounds having no cyclic structure, alicyclic compounds having no 5-membered ring, and heterocyclic compounds having a heterocyclic ring. It is done. Examples of the aliphatic compound include piperylene and isoprene. Examples of the heterocyclic compound include coumarone. The content of other components is preferably 5% by mass or less, more preferably 1% by mass or less, and may be 0% by mass based on the total amount of unsaturated hydrocarbons.
 不飽和炭化水素の重合体(以下、石油樹脂ともいう)は、上記脂環式化合物由来の第一の構造単位と、上記芳香族系化合物由来の第二の構造単位とを有する重合体ということができる。石油樹脂における第一の構造単位の含有量は、不飽和炭化水素における上記脂環式化合物の含有量に相当し、石油樹脂における第二の構造単位の含有量は、不飽和炭化水素における上記芳香族系化合物の含有量に相当する。石油樹脂は、インデン系化合物に由来する構造単位を有しているため、その水添物において、高い軟化点と低分子量とを両立できる。 An unsaturated hydrocarbon polymer (hereinafter also referred to as petroleum resin) is a polymer having a first structural unit derived from the alicyclic compound and a second structural unit derived from the aromatic compound. Can do. The content of the first structural unit in the petroleum resin corresponds to the content of the alicyclic compound in the unsaturated hydrocarbon, and the content of the second structural unit in the petroleum resin is the fragrance in the unsaturated hydrocarbon. This corresponds to the content of the group compound. Since the petroleum resin has a structural unit derived from an indene compound, the hydrogenated product can achieve both a high softening point and a low molecular weight.
 石油樹脂は、不飽和炭化水素の重合により得ることができる。不飽和炭化水素を重合方法は特に限定されず、公知の重合方法から適宜選択することができる。 Petroleum resin can be obtained by polymerization of unsaturated hydrocarbons. The method for polymerizing the unsaturated hydrocarbon is not particularly limited, and can be appropriately selected from known polymerization methods.
 好適な一態様において、石油樹脂は、不飽和炭化水素の熱重合により得られたものであってよい。熱重合の方法は特に限定されず、例えば、不飽和炭化水素を含む原料組成物を所定の反応温度に加熱することで実施してよい。 In a preferred embodiment, the petroleum resin may be obtained by thermal polymerization of unsaturated hydrocarbons. The method of thermal polymerization is not particularly limited, and may be carried out, for example, by heating a raw material composition containing an unsaturated hydrocarbon to a predetermined reaction temperature.
 熱重合の反応温度は特に限定されず、例えば250℃以上であってよく、好ましくは260℃以上、より好ましくは270℃以上である。また、熱重合の反応温度は、例えば300℃以下であってよく、好ましくは290℃以下、より好ましくは280℃以下である。 The reaction temperature of the thermal polymerization is not particularly limited, and may be, for example, 250 ° C. or higher, preferably 260 ° C. or higher, more preferably 270 ° C. or higher. Moreover, the reaction temperature of thermal polymerization may be 300 degrees C or less, for example, Preferably it is 290 degrees C or less, More preferably, it is 280 degrees C or less.
 熱重合の反応時間(反応系を上記反応温度に維持する時間)は特に限定されず、例えば30~180分であってよく、好ましくは60~120分である。 The reaction time of the thermal polymerization (time for maintaining the reaction system at the above reaction temperature) is not particularly limited, and may be, for example, 30 to 180 minutes, preferably 60 to 120 minutes.
 熱重合に用いられる原料組成物は、不飽和炭化水素以外の成分を更に含有していてもよい。例えば、石油由来のC5留分及びC9留分は、上述の芳香族系化合物及び脂環式化合物以外に、重合性基を有さず、熱重合に関与しない非重合性炭化水素を更に含有する場合がある。熱重合に用いられる原料組成物は、このような非重合性炭化水素を更に含有していてもよい。非重合性炭化水素としては、例えば、飽和炭化水素(アルカン、シクロアルカン等)、芳香族炭化水素(ベンゼン、トルエン等)等が挙げられる。 The raw material composition used for thermal polymerization may further contain components other than unsaturated hydrocarbons. For example, petroleum-derived C5 fraction and C9 fraction further contain non-polymerizable hydrocarbons that do not have a polymerizable group and do not participate in thermal polymerization in addition to the above-described aromatic compound and alicyclic compound. There is a case. The raw material composition used for thermal polymerization may further contain such a non-polymerizable hydrocarbon. Examples of non-polymerizable hydrocarbons include saturated hydrocarbons (alkanes, cycloalkanes, etc.), aromatic hydrocarbons (benzene, toluene, etc.) and the like.
 原料組成物に、不飽和炭化水素以外の成分が含まれる場合には、例えば、不飽和炭化水素を熱重合させた後に軽質分除去(蒸留)を行うことで、これを除去することができる。 When the raw material composition contains a component other than the unsaturated hydrocarbon, it can be removed, for example, by lightly removing (distilling) the unsaturated hydrocarbon after thermal polymerization.
 水添石油樹脂は、石油樹脂の水添物である。上述のとおり、水添石油樹脂は、石油樹脂の部分水添物であっても完全水添物であってもよいが、部分水添物であることが好ましい。すなわち、水添石油樹脂は、石油樹脂が有する芳香環の一部又は全部が水添されたものであってよく、石油樹脂が有する芳香環の一部が水添されたものであってよい。 Hydrogenated petroleum resin is a hydrogenated product of petroleum resin. As described above, the hydrogenated petroleum resin may be a partially hydrogenated product or a completely hydrogenated product of the petroleum resin, but is preferably a partially hydrogenated product. That is, the hydrogenated petroleum resin may be a hydrogenated part or all of the aromatic ring of the petroleum resin, or may be a hydrogenated part of the aromatic ring of the petroleum resin.
 水添石油樹脂における芳香族含量は、例えば30%以下であってよく、好ましくは20%以下である。 The aromatic content in the hydrogenated petroleum resin may be, for example, 30% or less, and preferably 20% or less.
 水添石油樹脂における芳香族含量の下限は特に限定されないが、例えば0.3%以上であってよく、好ましくは3%以上、より好ましくは5%以上、特に好ましくは8%以上である。これにより、水添石油樹脂のゴム成分との相溶性が一層向上し、発明の効果がより顕著に得られる傾向がある。 The lower limit of the aromatic content in the hydrogenated petroleum resin is not particularly limited, but may be, for example, 0.3% or more, preferably 3% or more, more preferably 5% or more, and particularly preferably 8% or more. Thereby, compatibility with the rubber component of hydrogenated petroleum resin improves further, and there exists a tendency for the effect of invention to be acquired more notably.
 なお、本明細書中、水添石油樹脂における芳香族含量は、H-NMRを用いて、水添石油樹脂における全ての水素の数(M)に対する、芳香環に結合する水素の数(M)の比(M/M)を測定し、当該比(M/M)を百分率で表したものである。 In this specification, the aromatic content in the hydrogenated petroleum resin is the number of hydrogens bonded to the aromatic ring (M 1 ) with respect to the total number of hydrogens in the hydrogenated petroleum resin (M 1 ) using 1 H-NMR. M 2 ) ratio (M 2 / M 1 ) is measured, and the ratio (M 2 / M 1 ) is expressed as a percentage.
 水添石油樹脂の軟化点は、例えば80℃以上であってよく、90℃以上であることが好ましく、100℃以上であることがより好ましい。水添石油樹脂が高い軟化点を有することで、ウェットグリップ性能の向上効果がより顕著に奏される。水添石油樹脂の軟化点の上限は特に限定されないが、例えば150℃以下であってよく、130℃以下であることが好ましく、120℃以下であることがより好ましい。このような軟化点であると加工性が良くなるという傾向がある。 The softening point of the hydrogenated petroleum resin may be, for example, 80 ° C. or higher, preferably 90 ° C. or higher, and more preferably 100 ° C. or higher. Since the hydrogenated petroleum resin has a high softening point, the effect of improving wet grip performance is more remarkably exhibited. The upper limit of the softening point of the hydrogenated petroleum resin is not particularly limited, but may be, for example, 150 ° C. or less, preferably 130 ° C. or less, and more preferably 120 ° C. or less. Such softening point tends to improve workability.
 なお、水添石油樹脂の軟化点は、メトラートレド社のDP70を使用して、ASTM D6090に準拠した方法により測定される値を示す。 In addition, the softening point of hydrogenated petroleum resin shows the value measured by the method based on ASTM D6090 using DP70 of METTLER TOLEDO.
 水添石油樹脂の重量平均分子量は、例えば1000以下であってよく、700以下であることが好ましく、600以下であることがより好ましい。これにより、ゴム成分に対する水添石油樹脂の相溶性が一層向上し、60℃付近の損失係数(tanδ)を一層低く抑えることができる。水添石油樹脂の重量平均分子量の下限は特に限定されないが、例えば200以上であってよく、300以上であることが好ましく、350以上であることがより好ましい。 The weight average molecular weight of the hydrogenated petroleum resin may be, for example, 1000 or less, preferably 700 or less, and more preferably 600 or less. Thereby, the compatibility of the hydrogenated petroleum resin with respect to the rubber component is further improved, and the loss coefficient (tan δ) near 60 ° C. can be further reduced. Although the minimum of the weight average molecular weight of hydrogenated petroleum resin is not specifically limited, For example, it may be 200 or more, it is preferable that it is 300 or more, and it is more preferable that it is 350 or more.
 なお、水添石油樹脂の重量平均分子量は、GPC(ゲル浸透クロマトグラフィー)により測定され、標準ポリスチレン換算した値を示す。 In addition, the weight average molecular weight of hydrogenated petroleum resin is measured by GPC (gel permeation chromatography) and indicates a value converted to standard polystyrene.
 水添石油樹脂は、不飽和炭化水素の重合体(石油樹脂)を水添して得ることができる。石油樹脂を水添し、水添物を得る方法は特に制限されず、公知の方法を用いることができる。例えば、水素化触媒の充填されたリアクターに石油樹脂を流通させ、水素の存在下で水素化触媒と石油樹脂とを接触させることで、水添を行うことができる。 Hydrogenated petroleum resin can be obtained by hydrogenating an unsaturated hydrocarbon polymer (petroleum resin). A method for hydrogenating a petroleum resin to obtain a hydrogenated product is not particularly limited, and a known method can be used. For example, hydrogenation can be performed by circulating a petroleum resin through a reactor filled with a hydrogenation catalyst and bringing the hydrogenation catalyst and the petroleum resin into contact with each other in the presence of hydrogen.
 水素化触媒は特に限定されず、例えば、ニッケル系触媒、パラジウム系触媒、プラチナ系触媒等であってよい。 The hydrogenation catalyst is not particularly limited, and may be, for example, a nickel catalyst, a palladium catalyst, a platinum catalyst, or the like.
 水添反応の条件は、水添石油樹脂の所望の芳香族含量等に応じて適宜変更することができる。水添反応における水素圧は、例えば5MPa以上であってよく、10MPa以上であることが好ましい。また、水添反応における水素圧は、例えば30MPa以下であってよく、20MPa以下であることが好ましい。水添反応における反応温度は、例えば200℃以上であってよく、230℃以上であることが好ましい。また、水添反応における反応温度は、例えば310℃以下であってよく、300℃以下であることが好ましい。 The conditions for the hydrogenation reaction can be appropriately changed according to the desired aromatic content of the hydrogenated petroleum resin. The hydrogen pressure in the hydrogenation reaction may be, for example, 5 MPa or more, and is preferably 10 MPa or more. The hydrogen pressure in the hydrogenation reaction may be, for example, 30 MPa or less, and preferably 20 MPa or less. The reaction temperature in the hydrogenation reaction may be, for example, 200 ° C. or higher, and is preferably 230 ° C. or higher. In addition, the reaction temperature in the hydrogenation reaction may be, for example, 310 ° C. or less, and preferably 300 ° C. or less.
 石油樹脂は、溶媒に溶解してリアクターに流通させてよい。溶媒は、石油樹脂を溶解可能であり、且つ、水添に悪影響を及ぼさない溶媒であればよい。溶媒としては、例えば、ケロシン、メチルシクロヘキサン等を用いることができる。溶媒は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 Petroleum resin may be dissolved in a solvent and distributed to the reactor. The solvent may be any solvent that can dissolve the petroleum resin and does not adversely affect the hydrogenation. As the solvent, for example, kerosene, methylcyclohexane or the like can be used. A solvent may be used individually by 1 type and may be used in combination of 2 or more type.
<未架橋ゴム組成物>
 本実施形態に係る未架橋ゴム組成物は、ゴム成分と、上述したゴム用添加剤と、架橋剤とを含有する。上記未架橋ゴム組成物を架橋して得られる架橋ゴムによれば、例えば、タイヤのトレッド部に用いた場合に、良好な転がり抵抗特性及び優れたウェットグリップ性能を発現することができる。
<Uncrosslinked rubber composition>
The uncrosslinked rubber composition according to the present embodiment contains a rubber component, the above-described rubber additive, and a crosslinking agent. According to the crosslinked rubber obtained by crosslinking the uncrosslinked rubber composition, for example, when used in a tread portion of a tire, good rolling resistance characteristics and excellent wet grip performance can be exhibited.
 ゴム成分としては、特に制限されないが、例えば、天然ゴム(NR)、ブタジエンゴム(BR)、ニトリルゴム、シリコーンゴム、イソプレンゴム(IR)、スチレン-ブタジエンゴム(SBR)、イソプレン-ブタジエンゴム、スチレン-イソプレン-ブタジエンゴム、エチレン-プロピレン-ジエンゴム、ハロゲン化ブチルゴム、ハロゲン化イソプレンゴム、ハロゲン化イソブチレンコポリマー、クロロプレンゴム(CR)、ブチルゴム及びハロゲン化イソブチレン-p-メチルスチレンゴム等が挙げられる。これらのうち、強度、加工性、価格等の観点から、ブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、天然ゴムが好ましい。ゴム成分は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The rubber component is not particularly limited. For example, natural rubber (NR), butadiene rubber (BR), nitrile rubber, silicone rubber, isoprene rubber (IR), styrene-butadiene rubber (SBR), isoprene-butadiene rubber, styrene -Isoprene-butadiene rubber, ethylene-propylene-diene rubber, halogenated butyl rubber, halogenated isoprene rubber, halogenated isobutylene copolymer, chloroprene rubber (CR), butyl rubber and halogenated isobutylene-p-methylstyrene rubber. Of these, butadiene rubber (BR), styrene-butadiene rubber (SBR), and natural rubber are preferable from the viewpoints of strength, processability, price, and the like. A rubber component may be used individually by 1 type, and may be used in combination of 2 or more type.
 ゴム成分のガラス転移温度(Tg)は、例えば0℃以下であってよく、好ましくは-20℃以下である。また、ゴム成分のガラス転移温度(Tg)は、例えば-120℃以上であってよく、好ましくは-100℃以上である。なお、本明細書中、ゴム成分のガラス転移温度は、DSC(Differential scanning calorimetry:示差走査熱量計)よって測定される値を指す。 The glass transition temperature (Tg) of the rubber component may be, for example, 0 ° C. or lower, preferably −20 ° C. or lower. Further, the glass transition temperature (Tg) of the rubber component may be, for example, −120 ° C. or higher, preferably −100 ° C. or higher. In addition, in this specification, the glass transition temperature of a rubber component refers to the value measured by DSC (Differential scanning calorimetry).
 架橋剤としては、ゴムの架橋に通常用いられるものを特に制限なく使用することができ、ゴム成分に応じて適宜選択することができる。架橋剤としては、例えば、硫黄、モルホリンジスルフィド、アルキルフェノールジスルフィド等の硫黄架橋剤;シクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、tert-ブチルパーオキシイソブチレート、tert-ブチルパーオキシベンゾエート、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、ジクミルパーオキサイド、ジtert-ブチルパーオキサイド、1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン等の有機過酸化物架橋剤、等が挙げられる。架橋剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 As the crosslinking agent, those usually used for crosslinking of rubber can be used without particular limitation, and can be appropriately selected depending on the rubber component. Examples of the crosslinking agent include sulfur crosslinking agents such as sulfur, morpholine disulfide, and alkylphenol disulfide; cyclohexanone peroxide, methyl acetoacetate peroxide, tert-butyl peroxyisobutyrate, tert-butyl peroxybenzoate, benzoyl peroxide, And organic peroxide crosslinking agents such as lauroyl peroxide, dicumyl peroxide, ditert-butyl peroxide, and 1,3-bis (tert-butylperoxyisopropyl) benzene. A crosslinking agent may be used individually by 1 type, and may be used in combination of 2 or more type.
 架橋剤の含有量は、ゴム成分100質量部に対して、0.1~5質量部であることが好ましく、0.5~3質量部であることがより好ましく、1~2質量部であることが更に好ましい。 The content of the cross-linking agent is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass with respect to 100 parts by mass of the rubber component. More preferably.
 本実施形態に係る未架橋ゴム組成物は、ゴム工業の分野で使用される種々の補強剤、充填剤、ゴム伸展油、軟化剤等を更に含有していてもよい。それぞれの成分は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The uncrosslinked rubber composition according to this embodiment may further contain various reinforcing agents, fillers, rubber extending oils, softeners and the like used in the field of rubber industry. Each component may be used alone or in combination of two or more.
 補強剤としては、カーボンブラック、シリカ等が挙げられる。 Reinforcing agents include carbon black and silica.
 カーボンブラックは、架橋ゴムの耐摩耗性及び転がり抵抗特性の向上、紫外線による亀裂やひび割れの防止(紫外線劣化防止)、等の効果が得られるため、補強剤として好適に用いられる。カーボンブラックの種類は特に限定されるものではなく、従来公知のカーボンブラック、例えば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイト等のカーボンブラックを使用することができる。 Carbon black is suitable for use as a reinforcing agent because it provides effects such as improved wear resistance and rolling resistance characteristics of crosslinked rubber and prevention of cracking and cracking by ultraviolet rays (ultraviolet ray deterioration prevention). The type of carbon black is not particularly limited, and conventionally known carbon blacks such as furnace black, acetylene black, thermal black, channel black, and graphite can be used.
 また、カーボンブラックの粒径、細孔容積、比表面積等の物理的特性は特に限定されず、従来ゴム工業で使用されている各種のカーボンブラック、例えば、SAF、ISAF、HAF、FEF、GPF、SRF(いずれも、米国のASTM規格D-1765-82aで分類されたカーボンブラックの略称)等を適宜使用することができる。 The physical characteristics of carbon black such as particle size, pore volume, specific surface area and the like are not particularly limited, and various carbon blacks conventionally used in the rubber industry, such as SAF, ISAF, HAF, FEF, GPF, SRF (both abbreviations for carbon black classified according to ASTM standard D-1765-82a) can be used as appropriate.
 カーボンブラックを用いる場合、その含有量は、ゴム成分100質量部に対して、5~80質量部であることが好ましく、10~60質量部であることがより好ましい。また、30~80質量部とすることもでき、40~60質量部とすることもできる。このような配合量であると、未架橋ゴム組成物を架橋して得られる架橋ゴムにおいて、補強剤としての効果を良好に得ることができる。 When carbon black is used, the content thereof is preferably 5 to 80 parts by mass and more preferably 10 to 60 parts by mass with respect to 100 parts by mass of the rubber component. Further, it can be 30 to 80 parts by mass, or 40 to 60 parts by mass. With such a blending amount, the effect as a reinforcing agent can be favorably obtained in a crosslinked rubber obtained by crosslinking an uncrosslinked rubber composition.
 シリカとしては、従来よりゴム用補強剤として使用されているものを特に制限なく使用できる。シリカとしては、乾式法ホワイトカーボン、湿式法ホワイトカーボン、合成ケイ酸塩系ホワイトカーボン、コロイダルシリカ、沈降シリカ等が挙げられる。シリカの比表面積は特に制限はないが、通常、40~600m/gの範囲、好ましくは70~300m/gのものを用いることができ、一次粒子径は10~1000nmのものを用いることができる。 As silica, those conventionally used as reinforcing agents for rubber can be used without particular limitation. Examples of silica include dry method white carbon, wet method white carbon, synthetic silicate white carbon, colloidal silica, and precipitated silica. The specific surface area of silica is not particularly limited, but usually a silica having a surface area of 40 to 600 m 2 / g, preferably 70 to 300 m 2 / g, and a primary particle diameter of 10 to 1000 nm should be used. Can do.
 シリカを用いる場合、その配合量は、ゴム成分100質量部に対して、0.1~150質量部であることが好ましく、10~100質量部であることがより好ましく、30~100質量部であることが更に好ましい。 When silica is used, the blending amount is preferably 0.1 to 150 parts by weight, more preferably 10 to 100 parts by weight, and more preferably 30 to 100 parts by weight with respect to 100 parts by weight of the rubber component. More preferably it is.
 また、シリカを配合させる目的で、未架橋ゴム組成物にシランカップリング剤を配合してもよい。シランカップリング剤としては、例えば、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシ-エトキシ)シラン、β-(3,4-エポキシシクロヘキシル)-エチルトリメトキシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、ビス(3-(トリエトキシシリル)プロピル)ジスルフィドなどが挙げられる。これらは単独でも用いても、二種以上を組み合わせて用いてもよい。 Further, for the purpose of blending silica, a silane coupling agent may be blended with the uncrosslinked rubber composition. Examples of the silane coupling agent include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxy-ethoxy) silane, β- (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, and 3-chloropropyltrimethoxy. Silane, 3-chloropropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, bis (3- (triethoxysilyl) propyl) tetrasulfide, bis (3- (triethoxysilyl) propyl ) Disulfide and the like. These may be used alone or in combination of two or more.
 シランカップリング剤の添加量は、所望するシリカの配合量によって適宜変更できるが、ゴム成分100質量部に対して、0.1~20質量部であることが好ましい。 The addition amount of the silane coupling agent can be appropriately changed depending on the desired blending amount of silica, but is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of the rubber component.
 充填剤としては、クレー、タルク等の鉱物の粉末類;炭酸マグネシウム、炭酸カルシウム等の炭酸塩類;水酸化アルミニウム等のアルミナ水和物;などを用いることができる。 As the filler, mineral powders such as clay and talc; carbonates such as magnesium carbonate and calcium carbonate; alumina hydrates such as aluminum hydroxide; and the like can be used.
 ゴム伸展油としては、従来から使用されているアロマ系オイル、ナフテン系オイル、パラフィン系オイルなどを用いることができる。ゴム伸展油の配合量は、ゴム成分100質量部に対して、0~100質量部であることが好ましい。 As the rubber extending oil, conventionally used aromatic oil, naphthenic oil, paraffinic oil, etc. can be used. The blending amount of the rubber extending oil is preferably 0 to 100 parts by mass with respect to 100 parts by mass of the rubber component.
 軟化剤としては、リノール酸、オレイン酸、アビチエン酸を主とするトール油、パインタール、菜種油、綿実油、落花生油、ひまし油、パーム油、フアクチス等の植物系軟化剤、パラフィン系油、ナフテン系油、芳香族系油、ジブチルフタレート等のフタル酸誘導体、等が挙げられる。軟化剤の配合量は、ゴム成分100質量部に対して、0~50質量部であることが好ましい。 Softeners include plant oil softeners such as tall oil, linoleic acid, oleic acid, and abithenoic acid, pine tar, rapeseed oil, cottonseed oil, peanut oil, castor oil, palm oil, and fuctis, paraffinic oil, and naphthenic oil. , Aromatic oils, phthalic acid derivatives such as dibutyl phthalate, and the like. The blending amount of the softening agent is preferably 0 to 50 parts by mass with respect to 100 parts by mass of the rubber component.
 本実施形態に係る未架橋ゴム組成物は、ゴム工業の分野で使用される種々の添加剤、例えば、老化防止剤、イオウ、架橋剤、加硫促進剤、加硫助剤、加硫遅延剤、しゃっ解剤、プロセス油、可塑剤等の一種又は二種以上を、必要に応じて更に含有していてもよい。これらの添加剤の配合量は、ゴム成分100質量部に対して、0.1~10質量部であることが好ましい。 The uncrosslinked rubber composition according to this embodiment includes various additives used in the field of rubber industry, such as anti-aging agents, sulfur, crosslinking agents, vulcanization accelerators, vulcanization aids, and vulcanization retarders. 1 type, or 2 or more types, such as a chelating agent, a process oil, and a plasticizer, may be further contained as needed. The amount of these additives is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component.
 加硫促進剤や加硫助剤としては特に限定されず、ゴム組成物が含有するゴム成分、架橋剤に応じて、適宜選択して使用することができる。なお、「加硫」とは硫黄原子を少なくとも一つ介する架橋を示す。 The vulcanization accelerator and the vulcanization aid are not particularly limited, and can be appropriately selected and used depending on the rubber component and the crosslinking agent contained in the rubber composition. “Vulcanization” refers to crosslinking via at least one sulfur atom.
 加硫促進剤としては、例えば、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィドなどのチウラム系促進剤;2-メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィドなどのチアゾール系促進剤;N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミドなどのスルフェンアミド系促進剤;ジフェニルグアニジン、ジオルトトリルグアニジンなどのグアニジン系促進剤;n-ブチルアルデヒド-アニリン縮合品、ブチルアルデヒド-モノブチルアミン縮合品などのアルデヒド-アミン系促進剤;ヘキサメチレンテトラミンなどのアルデヒド-アンモニア系促進剤;チオカルバニリドなどのチオ尿素系促進剤、などが挙げられる。 Examples of the vulcanization accelerator include thiuram accelerators such as tetramethylthiuram monosulfide, tetramethylthiuram disulfide and tetraethylthiuram disulfide; thiazole accelerators such as 2-mercaptobenzothiazole and dibenzothiazyl disulfide; N-cyclohexyl Sulfenamide accelerators such as -2-benzothiazylsulfenamide and N-oxydiethylene-2-benzothiazolylsulfenamide; guanidine accelerators such as diphenylguanidine and diortolylguanidine; n-butyraldehyde -Aldehyde-amine accelerators such as aniline condensates and butyraldehyde-monobutylamine condensates; aldehyde-ammonia accelerators such as hexamethylenetetramine; thioureas such as thiocarbanilide Susumuzai, and the like.
 これらの加硫促進剤を配合する場合は、1種類を単独で使用してもよく、二種以上を組み合わせて使用してもよい。加硫促進剤の配合量は、ゴム成分100質量部に対して0.1~10質量部であることが好ましい。 When blending these vulcanization accelerators, one kind may be used alone, or two or more kinds may be used in combination. The blending amount of the vulcanization accelerator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component.
 加硫助剤としては酸化亜鉛(亜鉛華)、酸化マグネシウムなどの金属酸化物;水酸化カルシウムなどの金属水酸化物;炭酸亜鉛、塩基性炭酸亜鉛などの金属炭酸塩;ステアリン酸、オレイン酸などの脂肪酸;ステアリン酸亜鉛、ステアリン酸マグネシウムなどの脂肪族金属塩;ジn-ブチルアミン、ジシクロヘキシルアミンなどのアミン類;エチレンジメタクリレート、ジアリルフタレート、N,N-m-フェニレンジマレイミド、トリアリルイソシアヌレート、トリメチロールプロパントリメタクリレートなどが挙げられる。 Vulcanization aids include metal oxides such as zinc oxide (zinc white) and magnesium oxide; metal hydroxides such as calcium hydroxide; metal carbonates such as zinc carbonate and basic zinc carbonate; stearic acid and oleic acid Aliphatic acid salts such as zinc stearate and magnesium stearate; amines such as di-n-butylamine and dicyclohexylamine; ethylene dimethacrylate, diallyl phthalate, N, Nm-phenylene dimaleimide, triallyl isocyanurate And trimethylolpropane trimethacrylate.
 これらの加硫助剤を配合する場合は、1種類を単独で使用してもよく、二種以上を組み合わせて使用してもよい。加硫助剤の配合量は、ゴム成分100質量部に対して、0.1~10質量部であることが好ましい。 When these vulcanization aids are blended, one kind may be used alone, or two or more kinds may be used in combination. The compounding amount of the vulcanization aid is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the rubber component.
 本実施形態に係る未架橋ゴム組成物は、一般に未架橋ゴム組成物の製造方法として用いられる方法を適用することにより製造することができる。例えば、上述した各成分を、ブラベンダー、バンバリーミキサー、ロールミキサー等の混練機を用いて混合すること等により製造できる。 The uncrosslinked rubber composition according to this embodiment can be produced by applying a method generally used as a method for producing an uncrosslinked rubber composition. For example, it can manufacture by mixing each component mentioned above using kneading machines, such as a Brabender, a Banbury mixer, and a roll mixer.
<架橋ゴム>
 本実施形態に係る架橋ゴムは、上述した未架橋ゴム組成物を架橋してなる。このような架橋ゴムは、例えば、タイヤ用ゴム材料として有用である。具体的には、例えば、本実施形態に係る架橋ゴムをタイヤのトレッド部に用いると、良好な転がり抵抗特性及び優れたウェットグリップ性能を発現することができる。
<Crosslinked rubber>
The crosslinked rubber according to this embodiment is formed by crosslinking the above-described uncrosslinked rubber composition. Such a crosslinked rubber is useful as a rubber material for tires, for example. Specifically, for example, when the crosslinked rubber according to this embodiment is used in a tread portion of a tire, good rolling resistance characteristics and excellent wet grip performance can be exhibited.
 本実施形態に係る架橋ゴムは、上記未架橋ゴム組成物を用いて、通常ゴムの架橋方法として用いられる方法と同様の方法により製造することができる。例えば、上記未架橋ゴム組成物を加熱成形することにより、所望の形状に成形し、ゴム成分が架橋した構造を有する架橋ゴムを得ることができる。 The crosslinked rubber according to the present embodiment can be produced by using the above-mentioned uncrosslinked rubber composition by a method similar to the method usually used as a rubber crosslinking method. For example, by crosslinking the uncrosslinked rubber composition, a crosslinked rubber having a structure in which the rubber component is crosslinked by molding into a desired shape can be obtained.
 本実施形態に係る架橋ゴムは、種々の用途に好適に用いることができる。例えば、タイヤ、接着剤、フィルム、医療用テープ、塗料、インキ、アスファルトバインダー、布、防水剤、プリンター樹脂等の用途に好適に使用することができ、タイヤ用途(特に、タイヤトレッド部への適用)に特に好適に用いることができる。 The crosslinked rubber according to this embodiment can be suitably used for various applications. For example, it can be suitably used for applications such as tires, adhesives, films, medical tapes, paints, inks, asphalt binders, cloths, waterproofing agents, printer resins, etc. ) Particularly preferably.
<タイヤ>
 本実施形態に係るタイヤは、上述した架橋ゴムを含有する。
<Tire>
The tire according to this embodiment contains the above-described crosslinked rubber.
 本実施形態に係るタイヤは、トレッド部に上述した架橋ゴムを含有することが好ましい。このようなタイヤは、良好な転がり抵抗特性及び優れたウェットグリップ性能を、顕著に発現することができる。 The tire according to the present embodiment preferably contains the above-described crosslinked rubber in the tread portion. Such a tire can remarkably exhibit good rolling resistance characteristics and excellent wet grip performance.
 本実施形態に係るタイヤは、その少なくとも一部に上述の架橋ゴムを適用すること以外は、従来公知のタイヤと同様の構成であってよい。 The tire according to the present embodiment may have the same configuration as a conventionally known tire except that the above-described crosslinked rubber is applied to at least a part thereof.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。例えば、本発明は、タイヤに使用されるゴム成分に、上述したゴム用添加剤を添加することにより、ゴム材料に良好な転がり抵抗特性及び優れたウェットグリップ性能を付与する方法であってもよい。この場合、従来のゴム材料の改良方法では、良好な転がり抵抗特性と優れたウェットグリップ性能とを両立することが困難であったが、ウェットグリップ性の向上に伴って転がり抵抗特性が低下していたところ、本発明の方法によれば、ゴム材料に良好な転がり抵抗特性及び優れたウェットグリップ性能を付与することができる。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment. For example, the present invention may be a method of imparting good rolling resistance characteristics and excellent wet grip performance to a rubber material by adding the above-mentioned rubber additive to a rubber component used in a tire. . In this case, it has been difficult to achieve both good rolling resistance characteristics and excellent wet grip performance with the conventional rubber material improvement methods, but the rolling resistance characteristics have decreased with the improvement of wet grip performance. However, according to the method of the present invention, it is possible to impart good rolling resistance characteristics and excellent wet grip performance to the rubber material.
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples.
(水添石油樹脂1)
 <不飽和炭化水素の重合体の合成>
 表1に示す成分を準備し、表1に示す質量比で混合し、混合溶液を得た。次いで、得られた混合溶液を熱重合装置(東洋高圧社製)に投入した。次いで、混合溶液を昇温速度5℃/分の条件で276℃まで昇温させ、120分間維持した。その後、冷却水を流し、急冷させ、熱重合樹脂溶液を得た。次いで、熱重合樹脂溶液に対して、軽質分除去(蒸留)を行い、未反応物及び低重合度の成分を除去することで、軟化点が85℃の重合体を得た。
(Hydrogenated petroleum resin 1)
<Synthesis of unsaturated hydrocarbon polymer>
The components shown in Table 1 were prepared and mixed at a mass ratio shown in Table 1 to obtain a mixed solution. Subsequently, the obtained mixed solution was put into a thermal polymerization apparatus (manufactured by Toyo Koatsu Co., Ltd.). Next, the mixed solution was heated to 276 ° C. under a temperature rising rate of 5 ° C./min and maintained for 120 minutes. Then, cooling water was poured and quenched to obtain a thermal polymerization resin solution. Next, the light polymer was removed (distilled) from the thermal polymerization resin solution to remove unreacted substances and components having a low polymerization degree, thereby obtaining a polymer having a softening point of 85 ° C.
 <不飽和炭化水素の重合体の水添>
 得られた不飽和炭化水素の重合体をケロシンに、30質量%濃度となるように調整して溶融させた。得られた溶液をニッケル系触媒が充填された水添リアクターに投入し、同時に水素を流通させ、圧力18MPa、温度280℃の条件で不飽和炭化水素の重合体の水素添加を行い、不飽和炭化水素の重合体の水添物を含む溶液を得た。得られた不飽和炭化水素の重合体の水添物を含む溶液に対して軽質分除去(蒸留)を行い、溶液中のケロシンを除去し、水添石油樹脂1を得た。
<Hydrogenation of unsaturated hydrocarbon polymer>
The obtained unsaturated hydrocarbon polymer was melted in kerosene so as to have a concentration of 30% by mass. The obtained solution is put into a hydrogenation reactor filled with a nickel-based catalyst, and hydrogen is circulated at the same time, and the unsaturated hydrocarbon polymer is hydrogenated under conditions of a pressure of 18 MPa and a temperature of 280 ° C. A solution containing hydrogenated hydrogenated polymer was obtained. Light weight removal (distillation) was performed on the resulting solution containing the hydrogenated product of the unsaturated hydrocarbon polymer to remove kerosene in the solution, whereby hydrogenated petroleum resin 1 was obtained.
 <水添石油樹脂の物性評価>
[軟化点の測定]
 得られた水添石油樹脂サンプルの軟化点を測定した。軟化点は、メトラートレド社のDP70を使用して、ASTM D6090に準拠した方法により測定した。結果を表1に示した。
<Evaluation of physical properties of hydrogenated petroleum resin>
[Measurement of softening point]
The softening point of the obtained hydrogenated petroleum resin sample was measured. The softening point was measured by a method based on ASTM D6090 using a Mettler Toledo DP70. The results are shown in Table 1.
[芳香族含量の測定]
 得られた水添石油樹脂サンプルの芳香族含量を測定した。芳香族含量は、水添石油樹脂における全ての水素の数(M)に対する、芳香環に結合する水素の数(M)の比(M/M)を測定し、当該比(M/M)を百分率に換算して求めた。結果を表1に示した。
[Measurement of aromatic content]
The aromatic content of the obtained hydrogenated petroleum resin sample was measured. The aromatic content is determined by measuring the ratio (M 2 / M 1 ) of the number of hydrogens bonded to the aromatic ring (M 2 ) to the number of all hydrogens (M 1 ) in the hydrogenated petroleum resin, and the ratio (M 2 2 / M 1 ) was calculated as a percentage. The results are shown in Table 1.
[重量平均分子量の測定]
 得られた水添石油樹脂サンプルの重量平均分子量を測定した。重量平均分子量は、GPC(ゲル浸透クロマトグラフィー)により測定し、標準ポリスチレン換算した値とした。結果を表1に示した。
[Measurement of weight average molecular weight]
The weight average molecular weight of the obtained hydrogenated petroleum resin sample was measured. The weight average molecular weight was measured by GPC (gel permeation chromatography) and was a value converted to standard polystyrene. The results are shown in Table 1.
(水添石油樹脂2及び5)
 <不飽和炭化水素の重合体の合成>
 原料成分を表1に示すとおりに変更したこと以外は、水添石油樹脂1と同様にして不飽和炭化水素の重合体を得た。
(Hydrogenated petroleum resins 2 and 5)
<Synthesis of unsaturated hydrocarbon polymer>
An unsaturated hydrocarbon polymer was obtained in the same manner as the hydrogenated petroleum resin 1 except that the raw material components were changed as shown in Table 1.
 <不飽和炭化水素の重合体の水添>
 不飽和炭化水素の重合体の水素添加の温度を240℃としたこと以外は、水添石油樹脂1と同様の方法で不飽和炭化水素の重合体の水添を行い、水添石油樹脂を得た。得られた水添石油樹脂の物性評価を、水添石油樹脂1と同様に行った。結果を表1に示した。
<Hydrogenation of unsaturated hydrocarbon polymer>
The unsaturated hydrocarbon polymer was hydrogenated in the same manner as the hydrogenated petroleum resin 1 except that the hydrogenation temperature of the unsaturated hydrocarbon polymer was 240 ° C. to obtain a hydrogenated petroleum resin. It was. The physical properties of the obtained hydrogenated petroleum resin were evaluated in the same manner as the hydrogenated petroleum resin 1. The results are shown in Table 1.
(水添石油樹脂3、4及び6)
 <不飽和炭化水素の重合体の合成>
 原料成分を表1に示すとおりに変更したこと以外は、水添石油樹脂1と同様の方法で不飽和炭化水素の重合体を得た。
(Hydrogenated petroleum resins 3, 4 and 6)
<Synthesis of unsaturated hydrocarbon polymer>
An unsaturated hydrocarbon polymer was obtained in the same manner as the hydrogenated petroleum resin 1 except that the raw material components were changed as shown in Table 1.
 <不飽和炭化水素の重合体の水添>
 水添石油樹脂1と同様の方法で不飽和炭化水素の重合体の水添を行い、水添石油樹脂を得た。得られた水添石油樹脂の物性評価を、水添石油樹脂1と同様に行った。結果を表1に示した。
<Hydrogenation of unsaturated hydrocarbon polymer>
The unsaturated hydrocarbon polymer was hydrogenated in the same manner as hydrogenated petroleum resin 1 to obtain a hydrogenated petroleum resin. The physical properties of the obtained hydrogenated petroleum resin were evaluated in the same manner as the hydrogenated petroleum resin 1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例1~3及び比較例1)
<未架橋ゴム組成物の作製>
 表2に示す成分を準備し、表2に示す質量比で混練し、未架橋ゴム組成物を得た。実施例1では、水添石油樹脂1を用い、実施例2では、水添石油樹脂2を用い、実施例3では、水添石油樹脂3を用い、比較例1では、水添石油樹脂6を用いた。混練には、ラボプラストミル(東洋精機社製)及びロール機(KNEADER MACHINERY社製)を使用し、混練の条件は、開始温度130℃、回転速度50rpm、混練時間9分とした。
(Examples 1 to 3 and Comparative Example 1)
<Preparation of uncrosslinked rubber composition>
The components shown in Table 2 were prepared and kneaded at a mass ratio shown in Table 2 to obtain an uncrosslinked rubber composition. In Example 1, hydrogenated petroleum resin 1 was used, in Example 2, hydrogenated petroleum resin 2 was used, in Example 3, hydrogenated petroleum resin 3 was used, and in Comparative Example 1, hydrogenated petroleum resin 6 was used. Using. For kneading, a lab plast mill (manufactured by Toyo Seiki Co., Ltd.) and a roll machine (manufactured by KNEEADER MACHINERY Co., Ltd.) were used.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2中の成分の詳細は下記のとおりである。
[ゴム成分]
SBR:Buna FX3234A-2HM(商品名)、LANXESS社製、スチレン-ブタジエンゴム。なお、Buna FX3234A-2HMは、油展品であり、表2中のSBRの値は、Buna FX3234A-2HMに含まれる正味のSBRの配合量を示し、表2中のオイルの値は、Buna FX3234A-2HMに含まれる正味のオイルの配合量を示す。
BR:UBEPOL BR150L(商品名)、宇部興産社製、ブタジエンゴム
[充填材]
シリカ:ULTRASIL VN3(商品名)、エボニック社製
[シランカップリング剤]
Si75:商品名、エボニック社製
[加硫促進剤]
ノクセラーD:商品名、大内新興化学工業社製
ノクセラーCZ:商品名、大内新興化学工業社製
酸化亜鉛:ハクスイテック社製
ステアリン酸:日油社製
[老化防止剤]
ノクラック6C:商品名、大内新興化学工業社製
サンノック:商品名、大内社製
[加硫剤]
硫黄:HK200-5(商品名)、細井化学工業社製
Details of the components in Table 2 are as follows.
[Rubber component]
SBR: Buna FX3234A-2HM (trade name), manufactured by LANXESS, styrene-butadiene rubber. Buna FX3234A-2HM is an oil-extended product. The SBR value in Table 2 indicates the amount of net SBR contained in Buna FX3234A-2HM, and the oil value in Table 2 indicates Buna FX3234A- The compounding quantity of the net oil contained in 2HM is shown.
BR: UBEPOL BR150L (trade name), manufactured by Ube Industries, butadiene rubber [filler]
Silica: ULTRASIL VN3 (trade name), manufactured by Evonik [Silane coupling agent]
Si75: trade name, manufactured by Evonik [vulcanization accelerator]
Noxeller D: Brand name, Nouchira CZ manufactured by Ouchi Shinsei Chemical Industry Co., Ltd .: Product name, Zinc oxide manufactured by Ouchi Shinsei Chemical Industries Co., Ltd .: Staxic acid manufactured by Hux Itec Corp .: NOF Corporation [Anti-aging agent]
NOCRACK 6C: Trade name, manufactured by Ouchi Shinsei Chemical Co., Ltd. Sunnock: Product name, manufactured by Ouchi Co., Ltd. [vulcanizing agent]
Sulfur: HK200-5 (trade name), manufactured by Hosoi Chemical Co., Ltd.
<架橋ゴムの作製>
 混練で得られた未架橋ゴム組成物を、プレス機(ダンベル社製)により加熱成形し、シート状の架橋ゴムを作製した。加熱成形の条件は、160℃、20分とし、シートの厚みが2mmとなるよう、加熱成形した。
<Production of crosslinked rubber>
The uncrosslinked rubber composition obtained by kneading was thermoformed with a press (manufactured by Dumbbell) to produce a sheet-like crosslinked rubber. The thermoforming conditions were 160 ° C. and 20 minutes, and the thermoforming was performed so that the thickness of the sheet was 2 mm.
<粘弾性測定>
 作製したシート状の架橋ゴムから厚さ2mm×幅5mm×長さ50mmの大きさで、サンプルを打ち抜いた。次いで、打ち抜いたサンプルを用いて、粘弾性測定を行った。粘弾性測定の条件は、周波数10Hz、歪み0.1%、-80℃~80℃の温度範囲を2℃/分で昇温させながら、引っ張りモードで測定を行った。用いた装置は、Metravib社製DMA+1000である。
<Measurement of viscoelasticity>
A sample was punched out from the produced sheet-like crosslinked rubber in a size of 2 mm in thickness, 5 mm in width, and 50 mm in length. Next, viscoelasticity measurement was performed using the punched sample. The viscoelasticity was measured under the tension mode while increasing the temperature at a frequency of 10 Hz, a strain of 0.1%, and a temperature range of −80 ° C. to 80 ° C. at 2 ° C./min. The apparatus used is a DMA + 1000 manufactured by Metraviv.
 ここで周波数は10Hzであるが、これはウェットグリップ性能が、粘弾性の時間温度換算則を利用すると、10Hz、0℃におけるtanδ値と相関しているためであり、この数値が大きいほど、ウェットグリップ性が良好であることが知られている。また、転がり抵抗は、同様にして、10Hz、60℃におけるtanδ値と相関しており、その数値が小さいほど、転がり抵抗特性が良好であることが知られている。結果を表3に示した。なお、表3の0℃におけるtanδ値(比較例1に対する相対値)は、この数値が大きいほど、ウェットグリップ性が良好であることを示す。表3の60℃におけるtanδ値(比較例1に対する相対値)は、この数値が大きいほど、転がり抵抗特性が良好であることを示す。 Here, the frequency is 10 Hz. This is because the wet grip performance correlates with the tan δ value at 10 Hz and 0 ° C. when the viscoelastic time-temperature conversion law is used. It is known that the grip property is good. Similarly, the rolling resistance correlates with the tan δ value at 10 Hz and 60 ° C., and it is known that the smaller the numerical value, the better the rolling resistance characteristic. The results are shown in Table 3. In addition, the tan δ value at 0 ° C. in Table 3 (relative value to Comparative Example 1) indicates that the larger this value, the better the wet grip property. The tan δ value at 60 ° C. in Table 3 (relative value with respect to Comparative Example 1) indicates that the larger this value, the better the rolling resistance characteristic.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(実施例4~6及び比較例2)
<未架橋ゴム組成物の作製>
 水添石油樹脂として、実施例4では、水添石油樹脂4を用い、実施例5では、水添石油樹脂5を用い、実施例6では、水添石油樹脂3を用い、比較例2では、水添石油樹脂6を用い、SBRとして以下のものを用いたこと以外は、実施例1と同様にして未架橋ゴム組成物を得た。
(Examples 4 to 6 and Comparative Example 2)
<Preparation of uncrosslinked rubber composition>
As the hydrogenated petroleum resin, hydrogenated petroleum resin 4 is used in Example 4, hydrogenated petroleum resin 5 is used in Example 5, hydrogenated petroleum resin 3 is used in Example 6, and Comparative Example 2 is used. An uncrosslinked rubber composition was obtained in the same manner as in Example 1 except that hydrogenated petroleum resin 6 was used and the following was used as SBR.
SBR:NS522(商品名)、日本ゼオン社製、スチレン-ブタジエンゴム。なお、NS522は、油展品であり、表2中のSBRの値は、NS522に含まれる正味のSBRの配合量を示し、表2中のオイルの値は、NS522に含まれる正味のオイルの配合量を示す。 SBR: NS522 (trade name), manufactured by Nippon Zeon Co., Ltd., styrene-butadiene rubber. In addition, NS522 is an oil exhibition, the value of SBR in Table 2 indicates the amount of net SBR included in NS522, and the value of oil in Table 2 indicates the amount of net oil included in NS522. Indicates the amount.
<架橋ゴムの作製>
 実施例1と同様にしてシート状の架橋ゴムを作製し、粘弾性測定を行った。結果は表4に示した。なお、表4の0℃におけるtanδ値(比較例2に対する相対値)は、この数値が大きいほど、ウェットグリップ性が良好であることを示す。表4の60℃におけるtanδ値(比較例2に対する相対値)は、この数値が大きいほど、転がり抵抗特性が良好であることを示す。
<Production of crosslinked rubber>
In the same manner as in Example 1, a sheet-like crosslinked rubber was produced and viscoelasticity measurement was performed. The results are shown in Table 4. In addition, the tan δ value at 0 ° C. in Table 4 (relative value with respect to Comparative Example 2) indicates that the larger this value, the better the wet grip property. The tan δ value at 60 ° C. in Table 4 (relative value to Comparative Example 2) indicates that the larger this value, the better the rolling resistance characteristic.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (10)

  1.  不飽和炭化水素の重合体の水添物である水添石油樹脂を含み、
     前記不飽和炭化水素が、芳香環を有する芳香族系化合物と、五員環を有する脂環式化合物と、を含有し、
     前記芳香族系化合物が、インデン骨格を有するインデン系化合物を含有し、
     前記インデン系化合物の含有量が、前記不飽和炭化水素の全量基準で、15~60質量%である、ゴム用添加剤。
    A hydrogenated petroleum resin that is a hydrogenated product of an unsaturated hydrocarbon polymer,
    The unsaturated hydrocarbon contains an aromatic compound having an aromatic ring and an alicyclic compound having a five-membered ring,
    The aromatic compound contains an indene compound having an indene skeleton,
    An additive for rubber, wherein the content of the indene compound is 15 to 60% by mass based on the total amount of the unsaturated hydrocarbon.
  2.  前記脂環式化合物が、ジシクロペンタジエン骨格を有するDCPD系化合物を含有する、請求項1に記載のゴム用添加剤。 The rubber additive according to claim 1, wherein the alicyclic compound contains a DCPD compound having a dicyclopentadiene skeleton.
  3.  前記脂環式化合物の含有量が、前記不飽和炭化水素の全量基準で、40~85質量%である、請求項1又は2に記載のゴム用添加剤。 The rubber additive according to claim 1 or 2, wherein the content of the alicyclic compound is 40 to 85% by mass based on the total amount of the unsaturated hydrocarbon.
  4.  前記芳香族系化合物に占める前記インデン系化合物の割合が、50質量%以上である、請求項1~3のいずれか一項に記載のゴム用添加剤。 The rubber additive according to any one of claims 1 to 3, wherein a ratio of the indene compound in the aromatic compound is 50 mass% or more.
  5.  前記水添石油樹脂における芳香族含量が0.3~30%である、請求項1~4のいずれか一項に記載のゴム用添加剤。 The rubber additive according to any one of claims 1 to 4, wherein the aromatic content in the hydrogenated petroleum resin is 0.3 to 30%.
  6.  前記水添石油樹脂の軟化点が、80~150℃である、請求項1~5のいずれか一項に記載のゴム用添加剤。 The rubber additive according to any one of claims 1 to 5, wherein a softening point of the hydrogenated petroleum resin is 80 to 150 ° C.
  7.  前記水添石油樹脂の重量平均分子量が、200~1000である、請求項1~6のいずれか一項に記載のゴム用添加剤。 The rubber additive according to any one of claims 1 to 6, wherein the hydrogenated petroleum resin has a weight average molecular weight of 200 to 1,000.
  8.  ゴム成分と、請求項1~7のいずれか一項に記載のゴム用添加剤と、架橋剤とを含有する、未架橋ゴム組成物。 An uncrosslinked rubber composition comprising a rubber component, the rubber additive according to any one of claims 1 to 7, and a crosslinking agent.
  9.  請求項8に記載の未架橋ゴム組成物を架橋してなる、架橋ゴム。 A crosslinked rubber obtained by crosslinking the uncrosslinked rubber composition according to claim 8.
  10.  トレッド部に請求項9に記載の架橋ゴムを含有する、タイヤ。 A tire containing the crosslinked rubber according to claim 9 in a tread portion.
PCT/JP2019/006128 2018-04-24 2019-02-19 Additive for rubbers, uncrosslinked rubber composition, crosslinked rubber and tire WO2019207925A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020516061A JP7317807B2 (en) 2018-04-24 2019-02-19 Rubber additive, uncrosslinked rubber composition, crosslinked rubber and tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018082922 2018-04-24
JP2018-082922 2018-04-24

Publications (1)

Publication Number Publication Date
WO2019207925A1 true WO2019207925A1 (en) 2019-10-31

Family

ID=68294462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006128 WO2019207925A1 (en) 2018-04-24 2019-02-19 Additive for rubbers, uncrosslinked rubber composition, crosslinked rubber and tire

Country Status (3)

Country Link
JP (1) JP7317807B2 (en)
TW (1) TW201945425A (en)
WO (1) WO2019207925A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022550081A (en) * 2019-12-17 2022-11-30 コーロン インダストリーズ インク Hydrogenated petroleum resin and rubber composition containing the same
JP7380121B2 (en) 2019-11-19 2023-11-15 東ソー株式会社 rubber composition
JP7397291B2 (en) 2019-10-11 2023-12-13 横浜ゴム株式会社 Rubber composition for tires and pneumatic tires using the same
JP7397658B2 (en) 2019-12-19 2023-12-13 株式会社ブリヂストン tire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073926A (en) * 1973-10-23 1975-06-18
JPS59164312A (en) * 1983-03-10 1984-09-17 Mitsui Petrochem Ind Ltd Dihydrodicyclopentadiene copolymer and its production and use
JPH05194629A (en) * 1992-01-17 1993-08-03 Toonetsukusu Kk Hydrogenated petroleum resin
WO2017195392A1 (en) * 2016-05-11 2017-11-16 住友ゴム工業株式会社 Winter tire
JP2018131516A (en) * 2017-02-14 2018-08-23 東ソー株式会社 Rubber composition for tire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015601A (en) 2003-06-25 2005-01-20 Nippon Petrochemicals Co Ltd Hydrocarbon resin and rubber composition containing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5073926A (en) * 1973-10-23 1975-06-18
JPS59164312A (en) * 1983-03-10 1984-09-17 Mitsui Petrochem Ind Ltd Dihydrodicyclopentadiene copolymer and its production and use
JPH05194629A (en) * 1992-01-17 1993-08-03 Toonetsukusu Kk Hydrogenated petroleum resin
WO2017195392A1 (en) * 2016-05-11 2017-11-16 住友ゴム工業株式会社 Winter tire
JP2018131516A (en) * 2017-02-14 2018-08-23 東ソー株式会社 Rubber composition for tire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSUCHIYA, SHOZO ET AL.: "Dicyclopentadiene Resin (Part 5) Hydrogenation of Copolymer Resins", J. JAPAN PETROL. INST., vol. 27, no. 4, 1984, pages 290 - 295 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7397291B2 (en) 2019-10-11 2023-12-13 横浜ゴム株式会社 Rubber composition for tires and pneumatic tires using the same
JP7380121B2 (en) 2019-11-19 2023-11-15 東ソー株式会社 rubber composition
JP2022550081A (en) * 2019-12-17 2022-11-30 コーロン インダストリーズ インク Hydrogenated petroleum resin and rubber composition containing the same
EP4001330A4 (en) * 2019-12-17 2023-08-09 Kolon Industries, Inc. Hydrogenated petroleum resin and rubber composition comprising same
JP7436642B2 (en) 2019-12-17 2024-02-21 コーロン インダストリーズ インク Method for producing hydrogenated petroleum resin and rubber composition containing the same
JP7397658B2 (en) 2019-12-19 2023-12-13 株式会社ブリヂストン tire

Also Published As

Publication number Publication date
JP7317807B2 (en) 2023-07-31
JPWO2019207925A1 (en) 2021-04-30
TW201945425A (en) 2019-12-01

Similar Documents

Publication Publication Date Title
JP7317807B2 (en) Rubber additive, uncrosslinked rubber composition, crosslinked rubber and tire
JP3606860B2 (en) Rubber composition and rubber cross-linked product
WO2021033747A1 (en) Sulfur-containing unsaturated hydrocarbon polymer, method for manufacturing same, additive for rubber, rubber composition, and tire
TWI824674B (en) Rubber composition, manufacturing method and tire product
CN114341212B (en) Hydrogenated petroleum resin and rubber composition containing the same
JPWO2017077714A1 (en) Rubber composition and tire
JP5309529B2 (en) Rubber composition
KR101995924B1 (en) Rubber Composition for Tire Tread
KR102477254B1 (en) Rubber composition
JP2020132822A (en) Rubber composition containing silane compound and petroleum resin
WO2014112654A1 (en) Rubber composition
JP6711076B2 (en) Polybutadiene rubber, method for producing the same, and rubber composition using the same
JP2015143310A (en) Rubber composition and pneumatic tire using the same
WO2014104381A1 (en) Rubber composition
JP7293892B2 (en) rubber composition
JP2023535700A (en) Resin composition, method for producing the same, and rubber composition containing the same
JP6828737B2 (en) Silane-modified hydrocarbon resin and elastomer composition for tires
JP2022554204A (en) Resin composition and its manufacturing method
JP2021054992A (en) Rubber composition for tires, and pneumatic tire
TWI825755B (en) Petroleum resins, additives for rubber, uncrosslinked rubber compositions and crosslinked rubber
JP2020026467A (en) Vulcanizate
WO2022080264A1 (en) Hydrogenated petroleum resin, rubber additive, uncrosslinked rubber composition, crosslinked rubber, and tire
JP6710934B2 (en) Rubber composition for tires
WO2021079844A1 (en) Rubber composition, and rubber crosslinked product and pneumatic tire using said rubber composition
JP2016006133A (en) Rubber composition for fiber coating and pneumatic tire using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791732

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516061

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791732

Country of ref document: EP

Kind code of ref document: A1