WO2019207766A1 - Control device and control method - Google Patents

Control device and control method Download PDF

Info

Publication number
WO2019207766A1
WO2019207766A1 PCT/JP2018/017207 JP2018017207W WO2019207766A1 WO 2019207766 A1 WO2019207766 A1 WO 2019207766A1 JP 2018017207 W JP2018017207 W JP 2018017207W WO 2019207766 A1 WO2019207766 A1 WO 2019207766A1
Authority
WO
WIPO (PCT)
Prior art keywords
normal range
parameter
normal
control device
controlled device
Prior art date
Application number
PCT/JP2018/017207
Other languages
French (fr)
Japanese (ja)
Inventor
中川 慎二
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2018/017207 priority Critical patent/WO2019207766A1/en
Publication of WO2019207766A1 publication Critical patent/WO2019207766A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a control device and a control method.
  • Patent Literature 1 a feature information value extracted as a characteristic value from acquired information acquired as a value indicating the operating state of a device to be monitored is used to construct a learning parameter obtained in advance.
  • the first learning unit that updates the learning space by reconstructing the learning parameters of the learning space and the feature information value extracted from the acquired information before the update using the feature information value is performed.
  • a selection unit that causes a selection executor or a learning agent to select appropriate acquisition information as a feature information, and feature information extracted as a characteristic value from the acquisition information selected by the selection executor via the selection unit
  • An abnormality determination device comprising: a second learning unit that uses a value to reconfigure a learning parameter in a learning space before being updated by the first learning unit, thereby updating the learning space. Yes.
  • the abnormality determination device disclosed in Patent Literature 1 does not learn a parameter that is a target of abnormality detection according to an operation condition or an environmental condition of a device that is a monitoring target. Moreover, the parameter which becomes the object of abnormality detection is not changed or selected according to the operating condition or the environmental condition, and the disclosure or suggestion thereof is not made. As a result, in Patent Document 1, abnormality detection based on appropriate parameters according to the operating conditions and environmental conditions of the device to be monitored is not performed, and abnormality detection cannot be performed appropriately. In addition, it is not possible to reduce the calculation load of the abnormality determination device due to an increase in parameters for detecting abnormality.
  • the present invention appropriately performs abnormality detection by performing abnormality detection based on appropriate parameters according to the operating conditions and environmental conditions of the device to be monitored, and abnormality determination accompanying an increase in parameters for detecting abnormality.
  • the purpose is to reduce the calculation load of the apparatus.
  • a control device for controlling a controlled device, wherein the controlled device is within a normal range defined by a plurality of normal range defining parameters related to the control of the controlled device based on the operating state of the controlled device.
  • the normal operation determination unit that determines that the operation state of the controlled device is normal and the operation condition or environmental condition of the controlled device
  • a parameter learning unit that learns a normal range defining parameter that defines a normal range
  • a parameter changing unit that changes or selects a normal range defining parameter based on an operating condition or an environmental condition of the controlled device during operation of the controlled device It was set as the structure which has.
  • the normal range defining parameter that defines the predetermined range for determining whether or not the operation is normal is learned in advance, and the operation condition is set when the control device is in operation.
  • the target range is determined based on the normal range defining parameter appropriate to the operating condition or the environmental condition of the controlled device. Abnormality detection of the operating state of the control device can be performed appropriately, and the performance of abnormality detection can be improved. Further, since the normal range defining parameter necessary for abnormality detection is used, the amount of arithmetic processing of the control device can be optimized.
  • FIG. 1 is a block diagram illustrating a functional configuration of the control device 1 according to the embodiment.
  • control device 1 includes a parameter learning unit 2, a parameter change unit 3, and a normal operation determination unit 4.
  • the parameter learning unit 2 operates the controlled device based on the operating condition (hereinafter also referred to as driving condition) and the environmental condition of the controlled device controlled by the control device 1 (for example, the automatic driving vehicle 5 shown in FIG. 3).
  • the normal range defining parameter that defines the normal range (normal range) is learned, and the learned normal range defining parameter is transmitted to the parameter changing unit 3. An example of detailed processing in the parameter learning unit 2 will be described with reference to FIG.
  • the parameter changing unit 3 changes or selects a plurality of normal range defining parameters that define the normal range learned by the parameter learning unit 2, and transmits the normal range defining parameters after the change or selection to the normal operation determining unit 4.
  • An example of detailed processing in the parameter changing unit 3 will be described with reference to FIG.
  • the normal operation determining unit 4 operates when the controlled device operates when the parameter values related to the control of the controlled device are all included in the normal range defined by the normal range defining parameter changed or selected by the parameter changing unit 3. If the state is determined to be normal and at least some of the parameter values are not included, it is determined that the operating state of the controlled device is abnormal and an abnormal flag is output. An example of detailed processing in the normal operation determination unit 4 will be described with reference to FIG.
  • FIG. 2 is a block diagram illustrating a hardware configuration of the control device 1.
  • the control device 1 includes a storage device 11, a CPU (Central Processing Unit) 12, a ROM (Read Only Memory) 13, a RAM (Random Access Memory) 14, an input circuit 16, an input / output port 17, and an output circuit. 18. In each of these devices, information is transmitted / received via the data bus 15.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the input circuit 16 receives signals from various sensors provided in the controlled device (for example, the automatic driving vehicle 5 shown in FIG. 3). For example, when the control target of the control device 1 is the autonomous driving vehicle 5, the driving conditions (for example, vehicle speed, acceleration, etc.) of the autonomous driving vehicle 5 and the surrounding environmental conditions (for example, temperature, humidity, etc.) are various sensors. The signals detected by these various sensors are input to the input circuit 16 and processed. The input signal after being processed by the input circuit 16 is transmitted to the input / output port 17. The input signal transmitted to the input / output port 17 is stored in the RAM 14 or the storage device 11 via the data bus 15.
  • the driving conditions for example, vehicle speed, acceleration, etc.
  • the surrounding environmental conditions for example, temperature, humidity, etc.
  • the processing and functions described above are performed by the CPU 12 executing a control program stored in the ROM 13, but the control program may be stored in the storage device 11. Even in this way, the CPU 12 executes the control program stored in the storage device 11 so that the processing and functions described above are performed. At that time, the CPU 12 appropriately reads out the value stored in the RAM 14 or the storage device 11 and performs the calculation.
  • information (value) transmitted to the outside of the control device 1 is transmitted to the input / output port 17 via the data bus 15, and then the information transmitted to the input / output port 17 is output as an output signal. It is transmitted to the circuit 18.
  • the output signal transmitted to the output circuit 18 is transmitted to the outside as an external signal.
  • the signal to the outside refers to an abnormality flag that informs the abnormality of the operation state of the controlled device.
  • FIG. 3 is a block diagram when the control device is applied to an autonomous driving vehicle.
  • FIG. 4 is a block diagram illustrating a functional configuration of the parameter learning unit.
  • FIG. 5 is a block diagram illustrating a functional configuration of the parameter changing unit.
  • FIG. 6 is a block diagram illustrating a functional configuration of the normal operation determination unit.
  • the control device 1 is connected to an autonomous driving vehicle 5 that is a controlled device. From the autonomous driving vehicle 5, driving conditions (for example, vehicle speed, acceleration, etc.) and environmental conditions (for example, air temperature, Humidity) and parameters related to control for controlling the autonomous driving vehicle 5 (for example, target throttle opening, target fuel injection amount, target yaw rate, etc.) are transmitted to the control device 1.
  • driving conditions for example, vehicle speed, acceleration, etc.
  • environmental conditions for example, air temperature, Humidity
  • parameters related to control for controlling the autonomous driving vehicle 5 for example, target throttle opening, target fuel injection amount, target yaw rate, etc.
  • the parameter learning unit 2 of the control device 1 defines a normal range that defines the normal range of the operating state of the automatic driving vehicle 5 from the values of the driving condition and the environmental condition transmitted from the automatic driving vehicle 5.
  • a normal range defining parameter of a dimension in which the difference e between the maximum value and the minimum value of each dimension of the parameter is equal to or greater than a predetermined threshold K1 is extracted and stored in the storage device 11.
  • the dimension means the number of normal range defining parameters.
  • the operating conditions and the environmental conditions may be represented by numbers corresponding to the conditions. Although FIG. 4 illustrates the case where the operating conditions and the environmental conditions are three conditions A, B, and C, the number of operating conditions and environmental conditions is not limited to this.
  • ⁇ Parameter change part> As shown in FIG. 5, the parameter changing unit 3 learned by the parameter learning unit 2 in accordance with the driving conditions and environmental conditions (represented by numbers corresponding to the respective conditions) transmitted from the autonomous driving vehicle 5. Changing or selecting a predetermined normal range defining parameter from among a plurality of normal range defining parameters defining the normal range. For example, the parameter changing unit 3 selects normal range defining parameters ⁇ 1 and ⁇ 2 necessary for a predetermined operation of the controlled device from among a plurality of normal range defining parameters. Note that FIG. 5 illustrates the case where the operating conditions and the environmental conditions are three conditions A, B, and C, but the number of operating conditions and environmental conditions is not limited to this.
  • the normal operation determining unit 4 is within the normal range defined by the normal range defining parameters (in the embodiment, normal range defining parameters ⁇ 1 and ⁇ 2) changed or selected by the parameter changing unit 3. If all the parameter values related to the control transmitted from the automatic driving vehicle 5 are present, it is determined that the operation state of the automatic driving vehicle 5 is normal, and if at least some of the parameter values are not within the normal range, the automatic driving vehicle 5 is judged to be abnormal, and an abnormal flag is output.
  • the normal range is defined (learned) in advance by the upper limit value and the lower limit value of the normal range defining parameter relating to normal control.
  • the normal operation determination unit 4 performs the following processes (1) and (2). (1) If all parameter values relating to control are within the normal range defined by the normal range defining parameters ⁇ 1 and ⁇ 2, it is determined that the operation state of the automatic driving vehicle 5 is normal, and the value of the abnormality flag is set to 0. Set to (zero). (2) In other cases (at least, when there are no parameter values related to control within the normal range), the operation state of the autonomous driving vehicle 5 is determined to be abnormal, and the value of the abnormality flag is set to 1. To do. 6 illustrates the case where the normal range is defined in two dimensions of the normal range defining parameters ⁇ 1 and ⁇ 2, the normal range may be defined in N dimensions (for example, three dimensions or more). .
  • the control device 1 learns in advance the normal range defining parameter that defines the normal range based on at least the driving condition and the environmental condition of the autonomous driving vehicle 5 in the control of the autonomous driving vehicle 5. Change or select a plurality of normal range defining parameters that define the normal range based on operating conditions or environmental conditions, and all the parameters related to control are within the normal range defined by the changed or selected normal range defining parameters If it is included, it can be determined that the operation state of the autonomous driving vehicle 5 is normal.
  • the normal range is defined by an upper limit value and a lower limit value of normal range defining parameters relating to normal control.
  • the control device 1 can appropriately detect the abnormality of the operation state of the automatic driving vehicle 5 based only on the proper normal range defining parameter corresponding to the driving condition and the environmental condition of the automatic driving vehicle 5. The detection performance can be improved. Further, since the control device 1 uses only normal range defining parameters necessary for abnormality detection, it is possible to reduce the amount of arithmetic processing of the control device 1 and to optimize the calculation load.
  • the control device 1 that controls the autonomous driving vehicle 5 (controlled device), and the operation of the autonomous driving vehicle 5 is within a normal range defined by a plurality of normal range defining parameters related to the control of the autonomous driving vehicle 5.
  • a normal operation determination unit 4 that determines that the operation state of the automatic driving vehicle 5 is normal when all of the parameter values related to control transmitted from the automatic driving vehicle 5 based on the state are included; 5 based on the operation condition or environmental condition of the automatic driving vehicle 5 and the parameter learning unit 2 that learns the normal range defining parameter that defines the normal range based on the operation condition or environmental condition of the automatic driving vehicle 5
  • a parameter changing unit for changing or selecting the normal range defining parameter.
  • the control apparatus 1 can perform the abnormality detection of the operating state of the automatic driving vehicle 5 appropriately only based on the appropriate normal range prescription
  • the control device 1 uses only normal range defining parameters that contribute to abnormality detection in the driving conditions and environmental conditions of the autonomous driving vehicle 5, the amount of arithmetic processing of the control device 1 is reduced and the calculation load is optimized. Can be planned.
  • the normal operation determination unit 4 is configured to define the normal range defined by the normal range defining parameter by the upper limit value and the lower limit value of the normal range defining parameter.
  • the judgment whether the parameter regarding control of the automatic driving vehicle 5 is normal can be judged appropriately based on the normal range prescribed
  • the parameter learning unit 2 learns a normal range defining parameter of a dimension in which the difference e between the maximum value and the minimum value in each dimension of the normal range defining parameter value that defines the normal range is greater than or equal to a predetermined threshold K1.
  • the configuration
  • the parameter learning part 2 of the control apparatus 1 will learn (extract) the normal range prescription
  • the parameter learning unit 2 extracts only normal range defining parameters having a predetermined width (difference e) from a plurality of normal range defining parameters that appear in the control of the autonomous driving vehicle 5. Therefore, in the control of the autonomous driving vehicle 5, it is possible to extract only the normal range defining parameter having a high contribution of abnormality determination.
  • FIG. 7 is a block diagram illustrating a functional configuration of a normal operation determination unit 4A according to the second embodiment.
  • symbol is attached
  • the normal operation determination unit 4A determines a normal range defined by the normal range defining parameters as a plurality of normal range defining parameters ( ⁇ 1, ⁇ 2) related to control of the controlled device (for example, the autonomous driving vehicle 5). ) Define (learn) based on a function (approximation function) that approximates the distribution of values. Then, the normal operation determination unit 4A determines whether or not it is normal based on the following processes (1) and (2). (1) If all the parameter values relating to the control are on the approximate function defined by the normal range defining parameters ⁇ 1 and ⁇ 2 (within the normal range), it is determined that the operation state of the automatic driving vehicle 5 is normal and abnormal. Set the value of the flag to 0 (zero).
  • the operation state of the autonomous driving vehicle 5 is determined to be abnormal, and the value of the abnormality flag is set to 1.
  • the normal range may be a range having a range of ⁇ ⁇ with respect to the approximate function (see the dotted line in FIG. 6).
  • the normal range may be defined in N dimensions (for example, three or more dimensions). .
  • the control device 1 that controls the autonomous driving vehicle 5 learns in advance the normal range defining parameter that defines the normal range based on at least the driving conditions and environmental conditions of the autonomous driving vehicle 5. Change or select multiple normal range specification parameters that define the normal range based on operating conditions or environmental conditions, and all the parameters related to control are included in the normal range specified by the changed or selected normal range specification parameters If it is determined that the operation state of the autonomous driving vehicle 5 is normal, the normal range is defined based on an approximation function that approximates the distribution of the normal range defining parameter values. As a result, the control device 1 can appropriately detect the abnormality of the operation state of the automatic driving vehicle 5 based only on the proper normal range defining parameter corresponding to the driving condition and the environmental condition of the automatic driving vehicle 5. The detection performance can be improved. Further, since the control device 1 uses only normal range defining parameters necessary for abnormality detection, it is possible to reduce the amount of arithmetic processing of the control device 1 and to optimize the calculation load.
  • the normal operation determination unit 4A is configured to define the normal range defined by the normal range defining parameter based on a function that approximates the value of the normal range defining parameter.
  • FIG. 8 is a block diagram illustrating a functional configuration of a normal operation determination unit 4B according to the third embodiment.
  • symbol is attached
  • the normal operation determination unit 4B clusters the normal range defined by the normal range defining parameter, and clusters the distribution areas of a plurality of parameter values related to the control of the controlled device (for example, the autonomous driving vehicle 5) ( It defines (learns) based on the result of division. Then, the normal operation determination unit 4B determines whether it is normal based on the following processes (1) and (2). (1) If all the values of the parameters related to the control are within the normal range obtained by clustering the distribution ranges of the normal range defining parameters ⁇ 1 and ⁇ 2, the operation state of the automatic driving vehicle 5 is determined to be normal, and the value of the abnormality flag Is set to 0 (zero).
  • the operation state of the autonomous driving vehicle 5 is determined to be abnormal, and the value of the abnormality flag is set to 1.
  • the boundary of the normal range may be clarified using SVM (Support Vector Machine) or the like for each cluster.
  • SVM Serial Vector Machine
  • FIG. 8 the case where the normal range is defined in two dimensions of the normal range defining parameters ⁇ 1 and ⁇ 2 has been described as an example, but the normal range may be defined in N dimensions (for example, three or more dimensions). .
  • the control device 1 that controls the autonomous driving vehicle 5 learns in advance the normal range defining parameter that defines the normal range based on at least the driving conditions and environmental conditions of the autonomous driving vehicle 5. Change or select a plurality of normal range defining parameters that define the normal range based on operating conditions or environmental conditions, and all the parameters related to control are within the normal range defined by the changed or selected normal range defining parameters If it is included, it can be determined that the operation state of the autonomous driving vehicle 5 is normal, and the normal range is defined based on the result of clustering the distribution range of normal range defining parameter values.
  • the control device 1 can appropriately detect the abnormality of the operation state of the automatic driving vehicle 5 based only on the proper normal range defining parameter corresponding to the driving condition and the environmental condition of the automatic driving vehicle 5. The detection performance can be improved. Further, since the control device 1 uses only normal range defining parameters necessary for abnormality detection, it is possible to reduce the amount of arithmetic processing of the control device 1 and to optimize the calculation load.
  • the normal operation determining unit 4B is configured to define the normal range defined by the normal range defining parameter based on the result of clustering the values of the normal range defining parameter.
  • the normal range is set by clustering the distribution range of the normal range defining parameter, so that the normal range can be appropriately set without being affected by the distribution of the normal range defining parameter.
  • FIG. 9 is a block diagram illustrating a functional configuration of the parameter learning unit 2D according to the fourth embodiment.
  • symbol is attached
  • the parameter learning unit 2D performs a principal component analysis on the normal range defining parameter values related to normal control in the driving conditions and the environmental conditions transmitted from the autonomous driving vehicle 5, and performs the principal component analysis.
  • the storage device 11 may store a dimension parameter for which the eigenvalue obtained is equal to or greater than a predetermined threshold.
  • the control device that controls the autonomous driving vehicle 5 learns in advance the normal range defining parameter that defines the normal range based on at least the driving condition and the environmental condition of the autonomous driving vehicle 5, Change or select multiple normal range specification parameters that define the normal range based on operating conditions or environmental conditions, and all parameters related to control are included in the normal range specified by the changed or selected normal range specification parameters If so, it can be determined that the operating state of the autonomous driving vehicle 5 is normal.
  • the normal range is defined by the upper limit value and the lower limit value of the normal range defining parameter for control, or is defined based on an approximation function that approximates the distribution of the normal range defining parameter value for control, or the normal range for control.
  • normal range parameters that define the normal range are learned by performing a principal component analysis on the values of the normal range definition parameters related to normal control, and selecting a parameter whose eigenvalue obtained by the principal component analysis is a predetermined value or more. Use.
  • the control device can appropriately detect the abnormality of the operation state of the automatic driving vehicle 5 based only on the proper normal range defining parameter according to the driving condition and the environmental condition of the automatic driving vehicle 5. Performance can be improved. Further, since the control device uses only normal range defining parameters necessary for abnormality detection, it is possible to reduce the amount of arithmetic processing of the control device and optimize the calculation load.
  • (6) Configuration in which the parameter learning unit 2D learns a normal range defining parameter of a dimension in which an eigenvalue obtained as a result of performing principal component analysis on a normal range defining parameter value that defines a normal range is equal to or greater than a predetermined threshold. It was.
  • the parameter learning unit 2D can accurately extract a parameter having a large contribution to the control of the autonomous driving vehicle 5 as a normal range defining parameter by principal component analysis.
  • FIG. 10 is a block diagram illustrating a functional configuration of a parameter learning unit 2E according to the fifth embodiment.
  • symbol is attached
  • the parameter learning unit 2E performs the Lasso regression on the normal range regulation parameter value regarding the normal control in the driving condition and the environmental condition transmitted from the autonomous driving vehicle 5, and the result of performing the Lasso regression.
  • the remaining normal range defining parameters may be stored in the storage device 11.
  • the control device that controls the autonomous driving vehicle 5 learns the normal range parameter that defines the normal range based on at least the driving condition and the environmental condition of the autonomous driving vehicle 5 in advance. Change or select multiple normal range specification parameters that define the normal range based on conditions or environmental conditions, and all the parameters related to control are included in the normal range specified by the changed or selected normal range specification parameter If so, it can be determined that the operating state of the autonomous driving vehicle 5 is normal.
  • the normal range is defined by the upper limit value and the lower limit value of the normal range defining parameter for control, or is defined based on an approximation function that approximates the distribution of the normal range defining parameter value for control, or the normal range for control. It is defined based on the result of clustering the distribution region of the defined parameter value.
  • the learning of a predetermined range uses the normal range prescription parameter which remained as a result of performing Lasso regression.
  • the control device can appropriately detect the abnormality of the operation state of the automatic driving vehicle 5 based only on the proper normal range defining parameter according to the driving condition and the environmental condition of the automatic driving vehicle 5. Performance can be improved. Further, since the control device uses only normal range defining parameters necessary for abnormality detection, it is possible to reduce the amount of arithmetic processing of the control device and optimize the calculation load.
  • the parameter learning unit 2E is configured to learn the normal range defining parameters of the remaining dimensions as a result of performing the Lasso regression process on the normal range defining parameter values that define the normal range.
  • the parameter learning unit 2E can efficiently extract a parameter having a large contribution to the control of the autonomous driving vehicle 5 as a normal range defining parameter by the Lasso regression process.
  • FIG. 11 is a block diagram illustrating a functional configuration of a control device 1F according to the sixth embodiment.
  • FIG. 12 is a block diagram when the control device 1F according to the sixth embodiment is applied to an autonomous driving vehicle.
  • FIG. 13 is a block diagram illustrating a functional configuration of a parameter learning unit 2F according to the sixth embodiment.
  • FIG. 14 is a block diagram illustrating a functional configuration of a parameter changing unit 3F according to the sixth embodiment.
  • FIG. 15 is a block diagram illustrating a functional configuration of a normal operation determination unit 4F according to the sixth embodiment.
  • symbol is attached
  • the control device 1F includes a parameter learning unit 2F that learns a normal range of parameters related to control based on operating conditions and environmental conditions transmitted from the controlled device, and a plurality of normal states that define the normal range. It is determined that the operating state of the controlled device is normal when the range defining parameter, the parameter changing unit 3F for changing or selecting the normal range, and all the parameters related to the control transmitted from the controlled device are included in the normal range. And a normal operation determination unit 4F.
  • control device 1F is connected to an autonomous driving vehicle 5 that is a controlled device, and from the autonomous driving vehicle 5, movement conditions (for example, vehicle speed, acceleration, etc.) and environmental conditions (for example, air temperature, Humidity) and parameters related to control (for example, target throttle opening, target fuel injection amount, target yaw rate, etc.) are transmitted to the control device 1F.
  • movement conditions for example, vehicle speed, acceleration, etc.
  • environmental conditions for example, air temperature, Humidity
  • parameters related to control for example, target throttle opening, target fuel injection amount, target yaw rate, etc.
  • the parameter learning unit 2F determines whether or not the operation state of the automatic driving vehicle 5 is normal based on the driving conditions and environmental conditions transmitted from the automatic driving vehicle 5 that is the controlled device.
  • the normal ranges of the parameter values ( ⁇ 1, ⁇ 2 and ⁇ 1, ⁇ 2) are learned. Specifically, the following processes (1) and (2) are performed. (1) In the driving conditions and environmental conditions transmitted from the autonomous driving vehicle 5, the difference e between the maximum value and the minimum value of each dimension of the parameters ( ⁇ 1, ⁇ 2, and ⁇ 1, ⁇ 2) relating to normal control is predetermined.
  • a parameter having a dimension equal to or greater than the threshold value K1 is extracted and stored in the storage device 11.
  • the top of the normal space is defined by the upper limit value and the lower limit value of the normal range defining parameters ( ⁇ 1, ⁇ 2, and ⁇ 1, ⁇ 2) in the driving conditions and environmental conditions transmitted from the autonomous driving vehicle 5, and stored in the storage device 11.
  • the operating conditions and the environmental conditions may be represented by numbers corresponding to the conditions. Note that FIG. 12 illustrates the case of the three operating conditions and environmental conditions A, B, and C, but the number of operating conditions and environmental conditions is not limited thereto.
  • the parameter changing unit 3 is the normal learned by the parameter learning unit 2 in accordance with the driving conditions and environmental conditions (represented by numbers corresponding to the respective conditions) transmitted from the autonomous driving vehicle 5. Change or select a predetermined parameter from a plurality of normal range defining parameters that define the range. Specifically, the following processes (1) and (2) are performed. (1) Based on the driving conditions and environmental conditions transmitted from the autonomous driving vehicle 5, a plurality of normal range defining parameters that define the normal range are changed or selected. (2) Change or select a normal space according to the driving conditions and environmental conditions transmitted from the autonomous driving vehicle 5.
  • FIG. 14 although the case of three conditions, driving
  • the normal operation determining unit 4 has a parameter value related to control transmitted from the autonomous driving vehicle 5 within the normal range defined by the normal range defining parameter changed or selected by the parameter changing unit 3.
  • the normal range is changed or selected according to the driving condition and the environmental condition transmitted from the autonomous driving vehicle 5 together with the normal range defining parameter.
  • FIG. 15 illustrates the case where the normal range is defined in two dimensions of normal range defining parameters ⁇ 1 and ⁇ 2, ⁇ 1 and ⁇ 2, or ⁇ 1 and ⁇ 2, respectively.
  • the normal range may be defined as described above.
  • the control device 1F that controls the autonomous driving vehicle 5 learns in advance the normal range defining parameter that defines the normal range based on at least the driving conditions and environmental conditions of the autonomous driving vehicle 5.
  • the normal range is defined by an upper limit value and a lower limit value of parameters related to control.
  • the control device 1F can appropriately detect the abnormality of the operation state of the automatic driving vehicle 5 based only on the proper normal range defining parameter corresponding to the driving condition and the environmental condition of the automatic driving vehicle 5. The detection performance can be improved.
  • the control device 1F uses only normal range defining parameters necessary for abnormality detection, it is possible to reduce the amount of calculation processing of the control device 1F and optimize the calculation load.
  • the parameter changing unit 3F is configured to change or select a normal range for determining whether or not the operation state of the autonomous driving vehicle 5 is normal.
  • control apparatus 1F can change and select the normal range suitable for the control according to the driving condition and environmental condition of the autonomous driving vehicle 5, it will appropriately judge the abnormal state based on the driving condition and the environmental condition. can do.
  • FIG. 16 is a block diagram illustrating a functional configuration of a control device 1G according to the seventh embodiment.
  • the seventh embodiment is different from the above-described embodiment in that the controlled device controlled by the control device 1G is the robot 6.
  • symbol is attached
  • the control device 1G is connected to the robot 6, and the operating conditions (for example, the fulcrum positions of joints of the robot arms) transmitted from the robot 6 and the environmental conditions (for example, temperature, humidity, etc.) ) Is transmitted to the control device 1G.
  • the parameter learning unit 2G learns a normal range defining parameter that defines a normal range in which the operation state of the robot 6 is normal based on the operation condition and the environmental condition transmitted from the robot 6. Then, the parameter changing unit 3G changes or selects a plurality of normal range defining parameters learned by the parameter learning unit 2G according to the operating conditions and the environmental conditions.
  • the abnormality flag is set to 0 (zero), and at least some of the parameters relating to the control are not included, it is determined that the operation state of the robot 6 is abnormal, The abnormality flag is set to 1.
  • the control device 1G can detect the abnormality of the operation state of the robot 6 based only on the proper normal range defining parameter corresponding to the operation condition and the environmental condition of the robot 6, and the abnormality detection Performance can be improved. Further, since only the normal range defining parameters necessary for abnormality detection are used, the amount of calculation processing of the control device 1G can be reduced and the calculation load can be optimized.
  • FIG. 17 is a block diagram illustrating a functional configuration of a control device 1H according to the eighth embodiment.
  • the eighth embodiment is different from the above-described embodiment in that the controlled device controlled by the control device 1H is the flying object 7 (for example, an unmanned drone).
  • symbol is attached
  • the control device 1H is connected to the flying object 7, and the operating conditions (for example, the moving speed and acceleration of the flying object) and environmental conditions (for example, air temperature and humidity) transmitted from the flying object 7 are transmitted. , Wind speed, etc.) are transmitted to the control device 1H.
  • the parameter learning unit 2H learns a normal range defining parameter that defines a normal range in which the operating state of the flying object 7 is normal based on the driving conditions and environmental conditions transmitted from the flying object 7. Then, the parameter changing unit 3H changes or selects a plurality of normal range defining parameters learned by the parameter learning unit 2H according to the operating condition and the environmental condition.
  • the normal operation determining unit 4H 7 is determined to be normal, the abnormality flag is set to 0 (zero), and if at least some of the control parameters are not included, it is determined that the operational state of the flying object 7 is abnormal, The abnormality flag is set to 1.
  • control apparatus 1H can perform the abnormality detection of the operation
  • the present invention is not limited to the one having all the configurations of the above-described embodiment, and a part of the configuration of the above-described embodiment is replaced with the configuration of another embodiment.
  • the configuration of the above-described embodiment may be replaced with the configuration of another embodiment.
  • control device 11: storage device, 12: CPU, 13: ROM, 14: RAM, 15: data bus, 16: input circuit, 17: input / output port, 18: output circuit, 2: parameter learning unit, 3 : Parameter changing unit, 4: normal operation determining unit, 5: vehicle, 6: robot, 7: flying object

Abstract

The present invention performs an abnormality detection on the basis of suitable parameters according to an operation condition or an environment condition of an apparatus, which is an object to be monitored, so as to suitably perform the abnormality detection on the apparatus and reduce a calculation load of a control device according to an increase in parameters for detecting the abnormality. A control device 1, which controls an automatic driving vehicle 5, is configured to have: a normal operation determination unit 4 which determines an operation state of the automatic driving vehicle 5 to be normal, when all parameter values relating to a control, which are transmitted from the automatic driving vehicle 5 on the basis of an operation state of the automatic driving vehicle 5, are included in a normal range that is regulated with a plurality of normal range regulation parameters relating to the control of the automatic driving vehicle 5; a parameter learning unit 2 which learns the normal range regulation parameters that regulate the normal range on the basis of the operation condition or the environmental condition of the automatic driving vehicle 5; and a parameter changing unit which changes or selects the normal range regulation parameters on the basis of the operation condition or the environment condition on operation of the automatic driving vehicle 5.

Description

制御装置および制御方法Control apparatus and control method
 本発明は、制御装置および制御方法に関する。 The present invention relates to a control device and a control method.
 特許文献1には、監視対象である機器の運転状態を示す値として取得された取得情報の中から特徴的な値として抽出される特徴情報値を用いて、予め求められた学習パラメータにより構築された学習空間の学習パラメータを再構築することで、その学習空間を更新する第1学習部と、前述した取得情報から抽出された特徴情報値について、当該特徴情報値を用いた更新が行われる前の学習空間からの逸脱の程度を示す検出値が、第1閾値以上であるか、又は当該第1閾値を超える場合、当該特徴情報値の抽出元となる取得情報の中から、学習に用いる情報として適切な取得情報を選択実行者または学習エージェントに選択させる選択部と、上記選択部を介して上記選択実行者が選択した取得情報の中から特徴的な値として抽出される特徴情報値を用いて、上記第1学習部による更新が行われる前の学習空間の学習パラメータを再構成することで、その学習空間を更新する第2学習部と、を備える異常判定装置が開示されている。 In Patent Literature 1, a feature information value extracted as a characteristic value from acquired information acquired as a value indicating the operating state of a device to be monitored is used to construct a learning parameter obtained in advance. The first learning unit that updates the learning space by reconstructing the learning parameters of the learning space and the feature information value extracted from the acquired information before the update using the feature information value is performed. If the detected value indicating the degree of deviation from the learning space is greater than or equal to the first threshold or exceeds the first threshold, information used for learning from the acquired information from which the feature information value is extracted A selection unit that causes a selection executor or a learning agent to select appropriate acquisition information as a feature information, and feature information extracted as a characteristic value from the acquisition information selected by the selection executor via the selection unit An abnormality determination device comprising: a second learning unit that uses a value to reconfigure a learning parameter in a learning space before being updated by the first learning unit, thereby updating the learning space. Yes.
特開2016-173682号公報Japanese Unexamined Patent Publication No. 2016-173682
 しかしながら、近年、監視対象である機器の高度化及び複雑化に伴って、当該機器の異常を検知するパラメータの数が増加しており、異常判定装置によるパラメータに基づく異常検知の計算量が膨大となってしまう。一方、特許文献1に開示されている異常判定装置では、監視対象である機器の動作条件又は環境条件に応じて異常検知の対象となるパラメータの学習を行っていない。また、動作条件又は環境条件に応じて異常検知の対象となるパラメータを変更又は選択しておらず、その開示や示唆もされていない。その結果、特許文献1のものは、監視対象である機器の動作条件や環境条件に応じた適切なパラメータに基づいた異常検知が行われず、異常検知を適切に行うことができない。また、異常を検知するパラメータの増加に伴う異常判定装置の計算負荷を低減することができない。 However, in recent years, with the sophistication and complexity of devices to be monitored, the number of parameters for detecting an abnormality of the device has increased, and the amount of calculation of abnormality detection based on the parameters by the abnormality determination device is enormous. turn into. On the other hand, the abnormality determination device disclosed in Patent Literature 1 does not learn a parameter that is a target of abnormality detection according to an operation condition or an environmental condition of a device that is a monitoring target. Moreover, the parameter which becomes the object of abnormality detection is not changed or selected according to the operating condition or the environmental condition, and the disclosure or suggestion thereof is not made. As a result, in Patent Document 1, abnormality detection based on appropriate parameters according to the operating conditions and environmental conditions of the device to be monitored is not performed, and abnormality detection cannot be performed appropriately. In addition, it is not possible to reduce the calculation load of the abnormality determination device due to an increase in parameters for detecting abnormality.
 したがって本発明は、監視対象である機器の運転条件や環境条件に応じた適切なパラメータに基づいて異常検知を行うことで異常検知を適切に行うと共に、異常を検知するパラメータの増加に伴う異常判定装置の計算負荷を低減することを目的とする。 Therefore, the present invention appropriately performs abnormality detection by performing abnormality detection based on appropriate parameters according to the operating conditions and environmental conditions of the device to be monitored, and abnormality determination accompanying an increase in parameters for detecting abnormality. The purpose is to reduce the calculation load of the apparatus.
 上記課題を解決するため、被制御装置を制御する制御装置であって、被制御装置の制御に関する複数の正常範囲規定パラメータで規定される正常範囲内に、被制御装置の動作状態に基づいて被制御装置から送信される制御に関するパラメータ値の全てが含まれている場合、被制御装置の動作状態は正常であると判断する正常動作判断部と、被制御装置の動作条件または環境条件に基づいて、正常範囲を規定する正常範囲規定パラメータを学習するパラメータ学習部と、被制御装置の動作時に、被制御装置の動作条件または環境条件に基づいて、正常範囲規定パラメータを変更または選択するパラメータ変更部と、を有する構成とした。 In order to solve the above-mentioned problem, a control device for controlling a controlled device, wherein the controlled device is within a normal range defined by a plurality of normal range defining parameters related to the control of the controlled device based on the operating state of the controlled device. When all of the parameter values related to control transmitted from the control device are included, based on the normal operation determination unit that determines that the operation state of the controlled device is normal and the operation condition or environmental condition of the controlled device A parameter learning unit that learns a normal range defining parameter that defines a normal range; and a parameter changing unit that changes or selects a normal range defining parameter based on an operating condition or an environmental condition of the controlled device during operation of the controlled device It was set as the structure which has.
 本発明によれば、被制御装置の動作条件又は環境条件に基づいて、正常動作か否かを判定するための所定範囲を規定する正常範囲規定パラメータを予め学習し、制御装置の稼働時に動作条件又は環境条件に基づいて正常動作か否かを判定するための正常範囲規定パラメータを変更又は選択するので、被制御装置の動作条件又は環境条件に応じた適切な正常範囲規定パラメータに基づいて、被制御装置の動作状態の異常検知を適切に行うことができ、異常検知の性能を向上させることができる。また、異常検知に必要な正常範囲規定パラメータを用いるので制御装置の演算処理の量を適正化することができる。 According to the present invention, based on the operation condition or the environmental condition of the controlled device, the normal range defining parameter that defines the predetermined range for determining whether or not the operation is normal is learned in advance, and the operation condition is set when the control device is in operation. Alternatively, since the normal range defining parameter for determining whether or not the normal operation is based on the environmental condition is changed or selected, the target range is determined based on the normal range defining parameter appropriate to the operating condition or the environmental condition of the controlled device. Abnormality detection of the operating state of the control device can be performed appropriately, and the performance of abnormality detection can be improved. Further, since the normal range defining parameter necessary for abnormality detection is used, the amount of arithmetic processing of the control device can be optimized.
本発明にかかる制御装置の機能構成を説明するブロック図である。It is a block diagram explaining the functional structure of the control apparatus concerning this invention. 制御装置のハードウェア構成を説明するブロック図である。It is a block diagram explaining the hardware constitutions of a control apparatus. 制御装置を自動運転車両の制御に適用した場合のブロック図である。It is a block diagram at the time of applying a control apparatus to control of an autonomous driving vehicle. パラメータ学習部の機能構成を説明するブロック図である。It is a block diagram explaining the function structure of a parameter learning part. パラメータ変更部の機能構成を説明するブロック図である。It is a block diagram explaining the function structure of a parameter change part. 正常動作判断部の機能構成を説明するブロック図である。It is a block diagram explaining the functional structure of a normal operation judgment part. 第2の実施の形態にかかる正常動作判断部の機能構成を説明するブロック図である。It is a block diagram explaining the functional structure of the normal operation | movement judgment part concerning 2nd Embodiment. 第3の実施の形態にかかる正常動作判断部の機能構成を説明するブロック図である。It is a block diagram explaining the functional structure of the normal operation judgment part concerning 3rd Embodiment. 第4の実施の形態にかかるパラメータ学習部の機能構成を説明するブロック図である。It is a block diagram explaining the functional structure of the parameter learning part concerning 4th Embodiment. 第5の実施の形態にかかるパラメータ学習部の機能構成を説明するブロック図である。It is a block diagram explaining the functional structure of the parameter learning part concerning 5th Embodiment. 第6の実施の形態にかかる制御装置の機能構成を説明するブロック図である。It is a block diagram explaining the functional structure of the control apparatus concerning 6th Embodiment. 第6の実施の形態にかかる制御装置を自動運転車両に適用した場合のブロック図である。It is a block diagram at the time of applying the control apparatus concerning 6th Embodiment to an autonomous driving vehicle. 第6の実施の形態にかかるパラメータ学習部の機能構成を説明するブロック図である。It is a block diagram explaining the functional structure of the parameter learning part concerning 6th Embodiment. 第6の実施の形態にかかるパラメータ変更部の機能構成を説明するブロック図である。It is a block diagram explaining the functional structure of the parameter change part concerning 6th Embodiment. 第6の実施の形態にかかる正常動作判断部の機能構成を説明するブロック図である。It is a block diagram explaining the functional structure of the normal operation | movement judgment part concerning 6th Embodiment. 第7の実施の形態にかかる制御装置をロボットの制御に適用した場合のブロック図である。It is a block diagram at the time of applying the control apparatus concerning a 7th embodiment to control of a robot. 第8の実施の形態にかかる制御装置を飛行体の制御に適用した場合のブロック図である。It is a block diagram at the time of applying the control apparatus concerning 8th Embodiment to control of a flying body.
 以下、本発明の実施形態について図面を用いて詳細に説明する。
[第1の実施の形態]
 初めに、本発明の第1の実施の形態にかかる制御装置1について説明する。
 図1は、実施の形態にかかる制御装置1の機能構成を説明するブロック図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
First, the control device 1 according to the first embodiment of the present invention will be described.
FIG. 1 is a block diagram illustrating a functional configuration of the control device 1 according to the embodiment.
<制御装置の機能構成>
 図1に示すように、制御装置1は、パラメータ学習部2と、パラメータ変更部3と、正常動作判断部4とを有して構成される。
<Functional configuration of control device>
As shown in FIG. 1, the control device 1 includes a parameter learning unit 2, a parameter change unit 3, and a normal operation determination unit 4.
 パラメータ学習部2は、制御装置1で制御する被制御装置(例えば、図3に示す自動運転車両5)の動作条件(以下、運転条件とも言う)及び環境条件に基づいて、被制御装置の動作が正常である範囲(正常範囲)を規定する正常範囲規定パラメータを学習し、学習した正常範囲規定パラメータをパラメータ変更部3に送信する。パラメータ学習部2での詳細な処理の一例は後述する図4で説明する。 The parameter learning unit 2 operates the controlled device based on the operating condition (hereinafter also referred to as driving condition) and the environmental condition of the controlled device controlled by the control device 1 (for example, the automatic driving vehicle 5 shown in FIG. 3). The normal range defining parameter that defines the normal range (normal range) is learned, and the learned normal range defining parameter is transmitted to the parameter changing unit 3. An example of detailed processing in the parameter learning unit 2 will be described with reference to FIG.
 パラメータ変更部3は、パラメータ学習部2で学習した正常範囲を規定する複数の正常範囲規定パラメータを変更又は選択し、変更又は選択した後の正常範囲規定パラメータを正常動作判断部4に送信する。パラメータ変更部3での詳細な処理の一例は後述する図5で説明する。 The parameter changing unit 3 changes or selects a plurality of normal range defining parameters that define the normal range learned by the parameter learning unit 2, and transmits the normal range defining parameters after the change or selection to the normal operation determining unit 4. An example of detailed processing in the parameter changing unit 3 will be described with reference to FIG.
 正常動作判断部4は、パラメータ変更部3で変更又は選択された正常範囲規定パラメータで規定される正常範囲内に被制御装置の制御に関するパラメータ値が全て含まれている場合、被制御装置の動作状態は正常であると判断し、少なくとも一部のパラメータ値が含まれていない場合、被制御装置の動作状態は異常であると判断し異常フラグを出力する。正常動作判断部4での詳細な処理の一例は後述する図6で説明する。 The normal operation determining unit 4 operates when the controlled device operates when the parameter values related to the control of the controlled device are all included in the normal range defined by the normal range defining parameter changed or selected by the parameter changing unit 3. If the state is determined to be normal and at least some of the parameter values are not included, it is determined that the operating state of the controlled device is abnormal and an abnormal flag is output. An example of detailed processing in the normal operation determination unit 4 will be described with reference to FIG.
<制御装置のハードウェア構成>
 前述した、制御装置1のパラメータ学習部2と、パラメータ変更部3と、正常動作判断部4の各機能は、後述するCPU12がROM13に記憶された制御プログラムを実行することで発揮される。次に制御装置1のハードウェア構成について説明する。
 図2は、制御装置1のハードウェア構成を説明するブロック図である。
<Hardware configuration of control device>
The above-described functions of the parameter learning unit 2, the parameter changing unit 3, and the normal operation determining unit 4 of the control device 1 are exhibited when the CPU 12 described later executes a control program stored in the ROM 13. Next, the hardware configuration of the control device 1 will be described.
FIG. 2 is a block diagram illustrating a hardware configuration of the control device 1.
 制御装置1は、記憶装置11と、CPU(Central Processing Unit)12と、ROM(Read Only Memory)13と、RAM(Random Access Memory)14と、入力回路16と、入出力ポート17と、出力回路18と、を有して構成されている。これらの各装置では、データバス15を介して情報の送受信が行われる。 The control device 1 includes a storage device 11, a CPU (Central Processing Unit) 12, a ROM (Read Only Memory) 13, a RAM (Random Access Memory) 14, an input circuit 16, an input / output port 17, and an output circuit. 18. In each of these devices, information is transmitted / received via the data bus 15.
 入力回路16には、被制御装置(例えば、図3に示す自動運転車両5)に設けられた各種センサからの信号等が入力される。例えば、制御装置1の制御対象が自動運転車両5である場合、自動運転車両5の運転条件(例えば、車両速度、加速度など)や周囲の環境条件(例えば、気温、湿度など)などが各種センサで検出され、この各種センサで検出された信号が入力回路16に入力されて処理される。入力回路16で処理された後の入力信号は、入出力ポート17に送信される。入出力ポート17に送信された入力信号は、データバス15を介してRAM14又は記憶装置11に記憶される。 The input circuit 16 receives signals from various sensors provided in the controlled device (for example, the automatic driving vehicle 5 shown in FIG. 3). For example, when the control target of the control device 1 is the autonomous driving vehicle 5, the driving conditions (for example, vehicle speed, acceleration, etc.) of the autonomous driving vehicle 5 and the surrounding environmental conditions (for example, temperature, humidity, etc.) are various sensors. The signals detected by these various sensors are input to the input circuit 16 and processed. The input signal after being processed by the input circuit 16 is transmitted to the input / output port 17. The input signal transmitted to the input / output port 17 is stored in the RAM 14 or the storage device 11 via the data bus 15.
 なお、前述した処理及び機能は、CPU12がROM13に記憶されている制御プログラムを実行することで行われるが、制御プログラムは記憶装置11に記憶されていてもよい。このようにしてもCPU12が記憶装置11に記憶された制御プログラムを実行することで、前述した処理及び機能が実施される。また、その際、CPU12は、RAM14又は記憶装置11に記憶された値を、適宜、読み出して演算を行う。 Note that the processing and functions described above are performed by the CPU 12 executing a control program stored in the ROM 13, but the control program may be stored in the storage device 11. Even in this way, the CPU 12 executes the control program stored in the storage device 11 so that the processing and functions described above are performed. At that time, the CPU 12 appropriately reads out the value stored in the RAM 14 or the storage device 11 and performs the calculation.
 CPU12による演算の結果、制御装置1の外部に送信する情報(値)は、データバス15を介して入出力ポート17に送信された後、入出力ポート17に送信された情報は出力信号として出力回路18に送信される。そして、出力回路18に送信された出力信号は、外部信号として外部に送信される。ここで、例えば、外部への信号とは被制御装置の動作状態の異常を知らせる異常フラグなどを指す。 As a result of the calculation by the CPU 12, information (value) transmitted to the outside of the control device 1 is transmitted to the input / output port 17 via the data bus 15, and then the information transmitted to the input / output port 17 is output as an output signal. It is transmitted to the circuit 18. The output signal transmitted to the output circuit 18 is transmitted to the outside as an external signal. Here, for example, the signal to the outside refers to an abnormality flag that informs the abnormality of the operation state of the controlled device.
<制御装置による自動運転車両の制御例>
 次に、制御装置1を自動運転車両5の制御装置に適用した場合を例示して説明する。
 図3は、制御装置を自動運転車両に適用した場合のブロック図である。
 図4は、パラメータ学習部の機能構成を説明するブロック図である。
 図5は、パラメータ変更部の機能構成を説明するブロック図である。
 図6は、正常動作判断部の機能構成を説明するブロック図である。
<Example of automatic driving vehicle control by control device>
Next, the case where the control device 1 is applied to the control device of the autonomous driving vehicle 5 will be described as an example.
FIG. 3 is a block diagram when the control device is applied to an autonomous driving vehicle.
FIG. 4 is a block diagram illustrating a functional configuration of the parameter learning unit.
FIG. 5 is a block diagram illustrating a functional configuration of the parameter changing unit.
FIG. 6 is a block diagram illustrating a functional configuration of the normal operation determination unit.
 図3に示すように、制御装置1は被制御装置である自動運転車両5に接続されており、自動運転車両5から運転条件(例えば、車両速度、加速度など)及び環境条件(例えば、気温、湿度など)や、自動運転車両5を制御するための制御に関するパラメータ(例えば、目標スロットル開度、目標燃料噴射量、目標ヨーレートなど)が制御装置1に対して送信される。 As shown in FIG. 3, the control device 1 is connected to an autonomous driving vehicle 5 that is a controlled device. From the autonomous driving vehicle 5, driving conditions (for example, vehicle speed, acceleration, etc.) and environmental conditions (for example, air temperature, Humidity) and parameters related to control for controlling the autonomous driving vehicle 5 (for example, target throttle opening, target fuel injection amount, target yaw rate, etc.) are transmitted to the control device 1.
<パラメータ学習部>
 図4に示すように、制御装置1のパラメータ学習部2は、自動運転車両5から送信された運転条件及び環境条件の値から、自動運転車両5の動作状態の正常範囲を規定する正常範囲規定パラメータの各次元の最大値と最小値との差eが所定の閾値K1以上となる次元の正常範囲規定パラメータを抽出して記憶装置11に記憶する。ここで、次元とは正常範囲規定パラメータの数を意味する。なお、運転条件及び環境条件は、各条件に応じた番号で表してもよい。なお、図4では、運転条件及び環境条件がA、B、Cの3つの条件の場合を例示して説明しているが、運転条件及び環境条件の条件数はこれに限られるものではない。
<Parameter learning unit>
As shown in FIG. 4, the parameter learning unit 2 of the control device 1 defines a normal range that defines the normal range of the operating state of the automatic driving vehicle 5 from the values of the driving condition and the environmental condition transmitted from the automatic driving vehicle 5. A normal range defining parameter of a dimension in which the difference e between the maximum value and the minimum value of each dimension of the parameter is equal to or greater than a predetermined threshold K1 is extracted and stored in the storage device 11. Here, the dimension means the number of normal range defining parameters. The operating conditions and the environmental conditions may be represented by numbers corresponding to the conditions. Although FIG. 4 illustrates the case where the operating conditions and the environmental conditions are three conditions A, B, and C, the number of operating conditions and environmental conditions is not limited to this.
<パラメータ変更部>
 図5に示すように、パラメータ変更部3は、自動運転車両5から送信された運転条件及び環境条件(各条件に応じた番号で表されている)に応じて、パラメータ学習部2で学習した正常範囲を規定する複数の正常範囲規定パラメータの内から所定の正常範囲規定パラメータに変更又は選択を行う。例えば、パラメータ変更部3は、複数の正常範囲規定パラメータの内から、被制御装置の所定の動作に必要な正常範囲規定パラメータα1とα2を選択する。なお、図5では、運転条件及び環境条件がA、B、Cの3つの条件の場合を例示して説明しているが、運転条件及び環境条件の条件数はこれに限られるものではない。
<Parameter change part>
As shown in FIG. 5, the parameter changing unit 3 learned by the parameter learning unit 2 in accordance with the driving conditions and environmental conditions (represented by numbers corresponding to the respective conditions) transmitted from the autonomous driving vehicle 5. Changing or selecting a predetermined normal range defining parameter from among a plurality of normal range defining parameters defining the normal range. For example, the parameter changing unit 3 selects normal range defining parameters α1 and α2 necessary for a predetermined operation of the controlled device from among a plurality of normal range defining parameters. Note that FIG. 5 illustrates the case where the operating conditions and the environmental conditions are three conditions A, B, and C, but the number of operating conditions and environmental conditions is not limited to this.
<正常動作判断部>
 図6に示すように、正常動作判断部4は、パラメータ変更部3で変更又は選択された正常範囲規定パラメータ(実施の形態では、正常範囲規定パラメータα1とα2)で規定される正常範囲内に、自動運転車両5から送信された制御に関するパラメータ値が全てある場合、自動運転車両5の動作状態は正常であると判断し、少なくとも一部のパラメータ値が正常範囲内にない場合、自動運転車両5の動作状態は異常であると判断し異常フラグを出力する。なお、正常範囲は、正常な制御に関する正常範囲規定パラメータの上限値と下限値で予め規定(学習)しておく。
<Normal operation determination unit>
As shown in FIG. 6, the normal operation determining unit 4 is within the normal range defined by the normal range defining parameters (in the embodiment, normal range defining parameters α1 and α2) changed or selected by the parameter changing unit 3. If all the parameter values related to the control transmitted from the automatic driving vehicle 5 are present, it is determined that the operation state of the automatic driving vehicle 5 is normal, and if at least some of the parameter values are not within the normal range, the automatic driving vehicle 5 is judged to be abnormal, and an abnormal flag is output. The normal range is defined (learned) in advance by the upper limit value and the lower limit value of the normal range defining parameter relating to normal control.
 具体的には、正常動作判断部4は、以下の(1)、(2)の処理を行う。
(1)正常範囲規定パラメータα1とα2で規定される正常範囲内に、制御に関するパラメータの値が全てある場合、自動運転車両5の動作状態は正常であると判断し、異常フラグの値を0(ゼロ)に設定する。
(2)それ以外の場合(少なくとも、正常範囲内に一部の制御に関するパラメータの値がない場合)、自動運転車両5の動作状態は異常であると判断し、異常フラグの値を1に設定する。
 なお、図6では、正常範囲規定パラメータα1とα2の2次元で正常範囲が規定される場合を例示して説明したが、N次元(例えば、3次元以上)で正常範囲が規定されてもよい。
Specifically, the normal operation determination unit 4 performs the following processes (1) and (2).
(1) If all parameter values relating to control are within the normal range defined by the normal range defining parameters α1 and α2, it is determined that the operation state of the automatic driving vehicle 5 is normal, and the value of the abnormality flag is set to 0. Set to (zero).
(2) In other cases (at least, when there are no parameter values related to control within the normal range), the operation state of the autonomous driving vehicle 5 is determined to be abnormal, and the value of the abnormality flag is set to 1. To do.
6 illustrates the case where the normal range is defined in two dimensions of the normal range defining parameters α1 and α2, the normal range may be defined in N dimensions (for example, three dimensions or more). .
 前述した実施形態によれば、制御装置1は、自動運転車両5の制御において、予め、少なくとも自動運転車両5の運転条件及び環境条件に基づいて、正常範囲を規定する正常範囲規定パラメータを学習し、運転条件又は環境条件に基づいて正常範囲を規定する複数の正常範囲規定パラメータを変更又は選択し、変更又は選択された正常範囲規定パラメータで規定される正常範囲内に、制御に関するパラメータの全てが含まれている場合、自動運転車両5の動作状態が正常であると判断することができる。なお、正常範囲は、正常な制御に関する正常範囲規定パラメータの上限値と下限値とで規定される。これにより、制御装置1は、自動運転車両5の運転条件及び環境条件に応じた適正な正常範囲規定パラメータのみに基づいて自動運転車両5の動作状態の異常検知を適切に行うことができ、異常検知の性能を向上させることができる。また、制御装置1は、異常検知に必要な正常範囲規定パラメータのみを用いるので、制御装置1の演算処理の量を低減し、計算負荷の適正化を図ることができる。 According to the above-described embodiment, the control device 1 learns in advance the normal range defining parameter that defines the normal range based on at least the driving condition and the environmental condition of the autonomous driving vehicle 5 in the control of the autonomous driving vehicle 5. Change or select a plurality of normal range defining parameters that define the normal range based on operating conditions or environmental conditions, and all the parameters related to control are within the normal range defined by the changed or selected normal range defining parameters If it is included, it can be determined that the operation state of the autonomous driving vehicle 5 is normal. The normal range is defined by an upper limit value and a lower limit value of normal range defining parameters relating to normal control. As a result, the control device 1 can appropriately detect the abnormality of the operation state of the automatic driving vehicle 5 based only on the proper normal range defining parameter corresponding to the driving condition and the environmental condition of the automatic driving vehicle 5. The detection performance can be improved. Further, since the control device 1 uses only normal range defining parameters necessary for abnormality detection, it is possible to reduce the amount of arithmetic processing of the control device 1 and to optimize the calculation load.
 以上説明した通り、実施の形態では、
(1)自動運転車両5(被制御装置)を制御する制御装置1であって、自動運転車両5の制御に関する複数の正常範囲規定パラメータで規定される正常範囲内に、自動運転車両5の動作状態に基づいて当該自動運転車両5から送信される制御に関するパラメータ値の全てが含まれている場合、自動運転車両5の動作状態は正常であると判断する正常動作判断部4と、自動運転車両5の動作条件または環境条件に基づいて、正常範囲を規定する正常範囲規定パラメータを学習するパラメータ学習部2と、自動運転車両5の動作時に、自動運転車両5の動作条件または環境条件に基づいて、正常範囲規定パラメータを変更または選択するパラメータ変更部と、を有する構成とした。
As described above, in the embodiment,
(1) The control device 1 that controls the autonomous driving vehicle 5 (controlled device), and the operation of the autonomous driving vehicle 5 is within a normal range defined by a plurality of normal range defining parameters related to the control of the autonomous driving vehicle 5. A normal operation determination unit 4 that determines that the operation state of the automatic driving vehicle 5 is normal when all of the parameter values related to control transmitted from the automatic driving vehicle 5 based on the state are included; 5 based on the operation condition or environmental condition of the automatic driving vehicle 5 and the parameter learning unit 2 that learns the normal range defining parameter that defines the normal range based on the operation condition or environmental condition of the automatic driving vehicle 5 And a parameter changing unit for changing or selecting the normal range defining parameter.
 このように構成すると、制御装置1は、自動運転車両5の運転条件及び環境条件に応じた適正な正常範囲規定パラメータのみに基づいて自動運転車両5の動作状態の異常検知を適切に行うことができ、異常検知の性能を向上させることができる。また、制御装置1は、自動運転車両5の運転条件及び環境条件における異常検知に寄与する正常範囲規定パラメータのみを用いるので、制御装置1の演算処理の量を低減し、計算負荷の適正化を図ることができる。 If comprised in this way, the control apparatus 1 can perform the abnormality detection of the operating state of the automatic driving vehicle 5 appropriately only based on the appropriate normal range prescription | regulation parameter according to the driving condition and environmental condition of the automatic driving vehicle 5. And the abnormality detection performance can be improved. In addition, since the control device 1 uses only normal range defining parameters that contribute to abnormality detection in the driving conditions and environmental conditions of the autonomous driving vehicle 5, the amount of arithmetic processing of the control device 1 is reduced and the calculation load is optimized. Can be planned.
(2)また、正常動作判断部4は、正常範囲規定パラメータで規定される正常範囲を、正常範囲規定パラメータの上限値と下限値とで規定する構成とした。 (2) The normal operation determination unit 4 is configured to define the normal range defined by the normal range defining parameter by the upper limit value and the lower limit value of the normal range defining parameter.
 このように構成すると、自動運転車両5の制御に関するパラメータが正常か否かの判断を、正常範囲規定パラメータの上限値と下限値とで規定される正常範囲に基づいて適切に判断することができる。 If comprised in this way, the judgment whether the parameter regarding control of the automatic driving vehicle 5 is normal can be judged appropriately based on the normal range prescribed | regulated by the upper limit value and lower limit value of a normal range prescription | regulation parameter. .
(3)また、パラメータ学習部2は、正常範囲を規定する正常範囲規定パラメータ値の各次元における最大値と最小値との差eが所定の閾値K1以上の次元の正常範囲規定パラメータを学習する構成とした。 (3) Further, the parameter learning unit 2 learns a normal range defining parameter of a dimension in which the difference e between the maximum value and the minimum value in each dimension of the normal range defining parameter value that defines the normal range is greater than or equal to a predetermined threshold K1. The configuration.
 このように構成すると、制御装置1のパラメータ学習部2は、正常範囲規定パラメータの上限値と下限値の差eが閾値K1以上となる正常範囲規定パラメータを学習(抽出)する。これにより、パラメータ学習部2では、自動運転車両5の制御で現れた複数の正常範囲規定パラメータの中から所定の幅(差e)を有する正常範囲規定パラメータのみを抽出する。よって、自動運転車両5の制御において、異常判定の寄与度の高い正常範囲規定パラメータのみを抽出することができる。
<第2の実施の形態>
 次に、本発明の第2の実施の形態にかかる制御装置について説明する。
 図7は、第2の実施の形態にかかる正常動作判断部4Aの機能構成を説明するブロック図である。なお、第1の実施の形態にかかる制御装置1と同じ構成及び機能については同一の符号を付し必要に応じて説明する。
If comprised in this way, the parameter learning part 2 of the control apparatus 1 will learn (extract) the normal range prescription | regulation parameter from which the difference e of the upper limit of a normal range prescription | regulation parameter and a lower limit becomes more than threshold value K1. As a result, the parameter learning unit 2 extracts only normal range defining parameters having a predetermined width (difference e) from a plurality of normal range defining parameters that appear in the control of the autonomous driving vehicle 5. Therefore, in the control of the autonomous driving vehicle 5, it is possible to extract only the normal range defining parameter having a high contribution of abnormality determination.
<Second Embodiment>
Next, a control device according to a second embodiment of the present invention will be described.
FIG. 7 is a block diagram illustrating a functional configuration of a normal operation determination unit 4A according to the second embodiment. In addition, about the same structure and function as the control apparatus 1 concerning 1st Embodiment, the same code | symbol is attached | subjected and it demonstrates as needed.
 図7に示すように、正常動作判断部4Aは、正常範囲規定パラメータで規定される正常範囲を、被制御装置(例えば、自動運転車両5)の制御に関する複数の正常範囲規定パラメータ(α1、α2)値の分布を近似する関数(近似関数)に基づいて規定(学習)する。そして、正常動作判断部4Aは、以下の(1)、(2)の処理に基づいて正常か否かの判断を行う。
(1)正常範囲規定パラメータα1とα2で規定される近似関数上(正常範囲内)に、制御に関するパラメータの値が全てある場合、自動運転車両5の動作状態は正常であると判断し、異常フラグの値を0(ゼロ)に設定する。
(2)それ以外の場合(少なくとも、近似関数上に一部の制御に関するパラメータの値がない場合)、自動運転車両5の動作状態は異常であると判断し、異常フラグの値を1に設定する。
 なお、正常範囲は、近似関数に対して±αの幅を持たせた範囲を正常範囲としてもよい(図6の点線参照)。また、図7では、正常範囲規定パラメータα1とα2の2次元で正常範囲が規定される場合を例示して説明したが、N次元(例えば、3次元以上)で正常範囲が規定されてもよい。
As shown in FIG. 7, the normal operation determination unit 4A determines a normal range defined by the normal range defining parameters as a plurality of normal range defining parameters (α1, α2) related to control of the controlled device (for example, the autonomous driving vehicle 5). ) Define (learn) based on a function (approximation function) that approximates the distribution of values. Then, the normal operation determination unit 4A determines whether or not it is normal based on the following processes (1) and (2).
(1) If all the parameter values relating to the control are on the approximate function defined by the normal range defining parameters α1 and α2 (within the normal range), it is determined that the operation state of the automatic driving vehicle 5 is normal and abnormal. Set the value of the flag to 0 (zero).
(2) In other cases (at least, when there are no values of parameters related to control on the approximate function), the operation state of the autonomous driving vehicle 5 is determined to be abnormal, and the value of the abnormality flag is set to 1. To do.
Note that the normal range may be a range having a range of ± α with respect to the approximate function (see the dotted line in FIG. 6). In FIG. 7, the case where the normal range is defined in two dimensions of the normal range defining parameters α1 and α2 has been described as an example. However, the normal range may be defined in N dimensions (for example, three or more dimensions). .
 第2の実施形態によれば、自動運転車両5を制御する制御装置1は、予め、少なくとも自動運転車両5の運転条件及び環境条件に基づいて、正常範囲を規定する正常範囲規定パラメータを学習し、運転条件又は環境条件に基づいて正常範囲を規定する複数の正常範囲規定パラメータを変更又は選択し、変更又は選択された正常範囲規定パラメータで規定される正常範囲内に制御に関するパラメータの全てが含まれている場合、自動運転車両5の動作状態が正常であると判断することができ、正常範囲は、正常範囲規定パラメータ値の分布を近似する近似関数に基づいて規定される。これにより、制御装置1は、自動運転車両5の運転条件及び環境条件に応じた適正な正常範囲規定パラメータのみに基づいて自動運転車両5の動作状態の異常検知を適切に行うことができ、異常検知の性能を向上させることができる。また、制御装置1は、異常検知に必要な正常範囲規定パラメータのみを用いるので、制御装置1の演算処理の量を低減し、計算負荷の適正化を図ることができる。 According to the second embodiment, the control device 1 that controls the autonomous driving vehicle 5 learns in advance the normal range defining parameter that defines the normal range based on at least the driving conditions and environmental conditions of the autonomous driving vehicle 5. Change or select multiple normal range specification parameters that define the normal range based on operating conditions or environmental conditions, and all the parameters related to control are included in the normal range specified by the changed or selected normal range specification parameters If it is determined that the operation state of the autonomous driving vehicle 5 is normal, the normal range is defined based on an approximation function that approximates the distribution of the normal range defining parameter values. As a result, the control device 1 can appropriately detect the abnormality of the operation state of the automatic driving vehicle 5 based only on the proper normal range defining parameter corresponding to the driving condition and the environmental condition of the automatic driving vehicle 5. The detection performance can be improved. Further, since the control device 1 uses only normal range defining parameters necessary for abnormality detection, it is possible to reduce the amount of arithmetic processing of the control device 1 and to optimize the calculation load.
 以上説明した通り、第2の実施の形態では、
(4)正常動作判断部4Aは、正常範囲規定パラメータで規定される正常範囲を、正常範囲規定パラメータの値を近似する関数に基づいて規定する構成とした。
As explained above, in the second embodiment,
(4) The normal operation determination unit 4A is configured to define the normal range defined by the normal range defining parameter based on a function that approximates the value of the normal range defining parameter.
 このように構成すると、正常動作判断部4は、正常範囲を規定する簡単な近似関数に基づいて自動運転車両5の制御に関するパラメータが正常か否かの判断を適切に行うことができる。
<第3の実施の形態>
 次に、本発明の第3の実施の形態にかかる制御装置について説明する。
 図8は、第3の実施の形態にかかる正常動作判断部4Bの機能構成を説明するブロック図である。なお、第1の実施の形態にかかる制御装置1と同じ構成及び機能については同一の符号を付し必要に応じて説明する。
If comprised in this way, the normal operation | movement judgment part 4 can judge appropriately whether the parameter regarding control of the autonomous driving vehicle 5 is normal based on the simple approximate function which prescribes | regulates a normal range.
<Third Embodiment>
Next, a control device according to a third embodiment of the present invention will be described.
FIG. 8 is a block diagram illustrating a functional configuration of a normal operation determination unit 4B according to the third embodiment. In addition, about the same structure and function as the control apparatus 1 concerning 1st Embodiment, the same code | symbol is attached | subjected and it demonstrates as needed.
 図8に示すように、正常動作判断部4Bは、正常範囲規定パラメータで規定される正常範囲を、被制御装置(例えば、自動運転車両5)の制御に関する複数のパラメータ値の分布領域をクラスタリング(分割)した結果に基づいて規定(学習)する。そして、正常動作判断部4Bは、以下の(1)、(2)の処理に基づいて正常か否かの判断を行う。
(1)正常範囲規定パラメータα1とα2の分布領域をクラスタリングした正常範囲内に、制御に関するパラメータの値が全てある場合、自動運転車両5の動作状態は正常であると判断し、異常フラグの値を0(ゼロ)に設定する。
(2)それ以外の場合(少なくとも、クラスタリングした正常範囲内に一部の制御に関するパラメータの値がない場合)、自動運転車両5の動作状態は異常であると判断し、異常フラグの値を1に設定する。
 なお、正常範囲は、各クラスタに対してSVM(Support Vector Machine)などを用いて境界を明確にしてもよい。また、図8では、正常範囲規定パラメータα1とα2の2次元で正常範囲が規定される場合を例示して説明したが、N次元(例えば、3次元以上)で正常範囲が規定されてもよい。
As shown in FIG. 8, the normal operation determination unit 4B clusters the normal range defined by the normal range defining parameter, and clusters the distribution areas of a plurality of parameter values related to the control of the controlled device (for example, the autonomous driving vehicle 5) ( It defines (learns) based on the result of division. Then, the normal operation determination unit 4B determines whether it is normal based on the following processes (1) and (2).
(1) If all the values of the parameters related to the control are within the normal range obtained by clustering the distribution ranges of the normal range defining parameters α1 and α2, the operation state of the automatic driving vehicle 5 is determined to be normal, and the value of the abnormality flag Is set to 0 (zero).
(2) In other cases (at least, when there are no parameter values related to control within the clustered normal range), the operation state of the autonomous driving vehicle 5 is determined to be abnormal, and the value of the abnormality flag is set to 1. Set to.
Note that the boundary of the normal range may be clarified using SVM (Support Vector Machine) or the like for each cluster. In FIG. 8, the case where the normal range is defined in two dimensions of the normal range defining parameters α1 and α2 has been described as an example, but the normal range may be defined in N dimensions (for example, three or more dimensions). .
 第3の実施形態によれば、自動運転車両5を制御する制御装置1は、予め、少なくとも自動運転車両5の運転条件及び環境条件に基づいて、正常範囲を規定する正常範囲規定パラメータを学習し、運転条件又は環境条件に基づいて正常範囲を規定する複数の正常範囲規定パラメータを変更又は選択し、変更又は選択された正常範囲規定パラメータで規定される正常範囲内に、制御に関するパラメータの全てが含まれている場合、自動運転車両5の動作状態が正常であると判断することができ、正常範囲は、正常範囲規定パラメータ値の分布領域をクラスタリングした結果に基づいて規定される。これにより、制御装置1は、自動運転車両5の運転条件及び環境条件に応じた適正な正常範囲規定パラメータのみに基づいて自動運転車両5の動作状態の異常検知を適切に行うことができ、異常検知の性能を向上させることができる。また、制御装置1は、異常検知に必要な正常範囲規定パラメータのみを用いるので、制御装置1の演算処理の量を低減し、計算負荷の適正化を図ることができる。 According to the third embodiment, the control device 1 that controls the autonomous driving vehicle 5 learns in advance the normal range defining parameter that defines the normal range based on at least the driving conditions and environmental conditions of the autonomous driving vehicle 5. Change or select a plurality of normal range defining parameters that define the normal range based on operating conditions or environmental conditions, and all the parameters related to control are within the normal range defined by the changed or selected normal range defining parameters If it is included, it can be determined that the operation state of the autonomous driving vehicle 5 is normal, and the normal range is defined based on the result of clustering the distribution range of normal range defining parameter values. As a result, the control device 1 can appropriately detect the abnormality of the operation state of the automatic driving vehicle 5 based only on the proper normal range defining parameter corresponding to the driving condition and the environmental condition of the automatic driving vehicle 5. The detection performance can be improved. Further, since the control device 1 uses only normal range defining parameters necessary for abnormality detection, it is possible to reduce the amount of arithmetic processing of the control device 1 and to optimize the calculation load.
 以上説明した通り、第3の実施の形態では、
(5)正常動作判断部4Bは、正常範囲規定パラメータで規定される正常範囲を、正常範囲規定パラメータの値をクラスタリングした結果に基づいて規定する構成とした。
As explained above, in the third embodiment,
(5) The normal operation determining unit 4B is configured to define the normal range defined by the normal range defining parameter based on the result of clustering the values of the normal range defining parameter.
 このように構成すると、正常範囲は、正常範囲規定パラメータの分布領域のクラスタリングにより設定されるので、正常範囲規定パラメータの分布に影響されず正常範囲を適切に設定することができる。 With this configuration, the normal range is set by clustering the distribution range of the normal range defining parameter, so that the normal range can be appropriately set without being affected by the distribution of the normal range defining parameter.
<第4の実施の形態>
 次に、本発明の第4の実施の形態にかかる制御装置について説明する。
 図9は、第4の実施の形態にかかるパラメータ学習部2Dの機能構成を説明するブロック図である。なお、第1の実施の形態にかかる制御装置1と同じ構成及び機能については同一の符号を付し必要に応じて説明する。
<Fourth embodiment>
Next, a control device according to a fourth embodiment of the present invention will be described.
FIG. 9 is a block diagram illustrating a functional configuration of the parameter learning unit 2D according to the fourth embodiment. In addition, about the same structure and function as the control apparatus 1 concerning 1st Embodiment, the same code | symbol is attached | subjected and it demonstrates as needed.
 図9に示すように、パラメータ学習部2Dは、自動運転車両5から送信された運転条件及び環境条件における正常な制御に関する正常範囲規定パラメータ値に対して主成分分析を行い、主成分分析を行った結果として得られた固有値が所定の閾値以上となる次元のパラメータを記憶装置11に記憶してもよい。 As shown in FIG. 9, the parameter learning unit 2D performs a principal component analysis on the normal range defining parameter values related to normal control in the driving conditions and the environmental conditions transmitted from the autonomous driving vehicle 5, and performs the principal component analysis. As a result, the storage device 11 may store a dimension parameter for which the eigenvalue obtained is equal to or greater than a predetermined threshold.
 第4の実施形態によれば、自動運転車両5を制御する制御装置は、予め、少なくとも自動運転車両5の運転条件及び環境条件に基づいて、正常範囲を規定する正常範囲規定パラメータを学習し、運転条件又は環境条件に基づいて正常範囲を規定する複数の正常範囲規定パラメータを変更又は選択し、変更又は選択された正常範囲規定パラメータで規定される正常範囲内に制御に関するパラメータの全てが含まれている場合、自動運転車両5の動作状態が正常であると判断することがでる。なお正常範囲は、制御に関する正常範囲規定パラメータの上限値と下限値とで規定され、又は、制御に関する正常範囲規定パラメータ値の分布を近似する近似関数に基づいて規定され、又は、制御に関する正常範囲規定パラメータ値の分布領域をクラスタリングした結果に基づいて規定される。また、正常範囲を規定する正常範囲パラメータの学習は、正常な制御に関する正常範囲規定パラメータの値に対して主成分分析を行い、主成分分析により得られた固有値が所定値以上の次元のパラメータを用いる。これにより、制御装置は、自動運転車両5の運転条件及び環境条件に応じた適正な正常範囲規定パラメータのみに基づいて自動運転車両5の動作状態の異常検知を適切に行うことができ、異常検知の性能を向上させることができる。また、制御装置は、異常検知に必要な正常範囲規定パラメータのみを用いるので、制御装置の演算処理の量を低減し、計算負荷の適正化を図ることができる。 According to the fourth embodiment, the control device that controls the autonomous driving vehicle 5 learns in advance the normal range defining parameter that defines the normal range based on at least the driving condition and the environmental condition of the autonomous driving vehicle 5, Change or select multiple normal range specification parameters that define the normal range based on operating conditions or environmental conditions, and all parameters related to control are included in the normal range specified by the changed or selected normal range specification parameters If so, it can be determined that the operating state of the autonomous driving vehicle 5 is normal. The normal range is defined by the upper limit value and the lower limit value of the normal range defining parameter for control, or is defined based on an approximation function that approximates the distribution of the normal range defining parameter value for control, or the normal range for control. It is defined based on the result of clustering the distribution region of the defined parameter value. In addition, normal range parameters that define the normal range are learned by performing a principal component analysis on the values of the normal range definition parameters related to normal control, and selecting a parameter whose eigenvalue obtained by the principal component analysis is a predetermined value or more. Use. Thereby, the control device can appropriately detect the abnormality of the operation state of the automatic driving vehicle 5 based only on the proper normal range defining parameter according to the driving condition and the environmental condition of the automatic driving vehicle 5. Performance can be improved. Further, since the control device uses only normal range defining parameters necessary for abnormality detection, it is possible to reduce the amount of arithmetic processing of the control device and optimize the calculation load.
 以上の通り、第4の実施の形態では、
(6)パラメータ学習部2Dは、正常範囲を規定する正常範囲規定パラメータ値に対して主成分分析を行った結果得られた固有値が所定の閾値以上となる次元の正常範囲規定パラメータを学習する構成とした。
As described above, in the fourth embodiment,
(6) Configuration in which the parameter learning unit 2D learns a normal range defining parameter of a dimension in which an eigenvalue obtained as a result of performing principal component analysis on a normal range defining parameter value that defines a normal range is equal to or greater than a predetermined threshold. It was.
 このように構成すると、パラメータ学習部2Dは、主成分分析により自動運転車両5の制御への寄与度の大きなパラメータを正常範囲規定パラメータとして精度よく抽出することができる。 With this configuration, the parameter learning unit 2D can accurately extract a parameter having a large contribution to the control of the autonomous driving vehicle 5 as a normal range defining parameter by principal component analysis.
<第5の実施の形態>
 次に、本発明の第5の実施の形態にかかる制御装置について説明する。
 図10は、第5の実施の形態にかかるパラメータ学習部2Eの機能構成を説明するブロック図である。なお、第1の実施の形態にかかる制御装置1と同じ構成及び機能については同一の符号を付し必要に応じて説明する。
<Fifth embodiment>
Next, a control device according to a fifth embodiment of the present invention will be described.
FIG. 10 is a block diagram illustrating a functional configuration of a parameter learning unit 2E according to the fifth embodiment. In addition, about the same structure and function as the control apparatus 1 concerning 1st Embodiment, the same code | symbol is attached | subjected and it demonstrates as needed.
 図10に示すように、パラメータ学習部2Eは、自動運転車両5から送信された運転条件及び環境条件における正常な制御に関する正常範囲規定パラメータ値に対してLasso回帰を行い、Lasso回帰を行った結果、残った正常範囲規定パラメータを記憶装置11に記憶してもよい。 As shown in FIG. 10, the parameter learning unit 2E performs the Lasso regression on the normal range regulation parameter value regarding the normal control in the driving condition and the environmental condition transmitted from the autonomous driving vehicle 5, and the result of performing the Lasso regression. The remaining normal range defining parameters may be stored in the storage device 11.
 第5の実施形態によれば、自動運転車両5を制御する制御装置は、予め、少なくとも自動運転車両5の運転条件及び環境条件に基づいて、正常範囲を規定する正常範囲パラメータを学習し、運転条件又は環境条件に基づいて正常範囲を規定する複数の正常範囲規定パラメータを変更又は選択し、変更又は選択された正常範囲規定パラメータで規定される正常範囲内に制御に関するパラメータの全てが含まれている場合、自動運転車両5の動作状態が正常であると判断することがでる。なお正常範囲は、制御に関する正常範囲規定パラメータの上限値と下限値とで規定され、又は、制御に関する正常範囲規定パラメータ値の分布を近似する近似関数に基づいて規定され、又は、制御に関する正常範囲規定パラメータ値の分布領域をクラスタリングした結果に基づいて規定される。また、所定範囲の学習は、Lasso回帰を行った結果、残った正常範囲規定パラメータを用いる。これにより、制御装置は、自動運転車両5の運転条件及び環境条件に応じた適正な正常範囲規定パラメータのみに基づいて自動運転車両5の動作状態の異常検知を適切に行うことができ、異常検知の性能を向上させることができる。また、制御装置は、異常検知に必要な正常範囲規定パラメータのみを用いるので、制御装置の演算処理の量を低減し、計算負荷の適正化を図ることができる。 According to the fifth embodiment, the control device that controls the autonomous driving vehicle 5 learns the normal range parameter that defines the normal range based on at least the driving condition and the environmental condition of the autonomous driving vehicle 5 in advance. Change or select multiple normal range specification parameters that define the normal range based on conditions or environmental conditions, and all the parameters related to control are included in the normal range specified by the changed or selected normal range specification parameter If so, it can be determined that the operating state of the autonomous driving vehicle 5 is normal. The normal range is defined by the upper limit value and the lower limit value of the normal range defining parameter for control, or is defined based on an approximation function that approximates the distribution of the normal range defining parameter value for control, or the normal range for control. It is defined based on the result of clustering the distribution region of the defined parameter value. Moreover, the learning of a predetermined range uses the normal range prescription parameter which remained as a result of performing Lasso regression. Thereby, the control device can appropriately detect the abnormality of the operation state of the automatic driving vehicle 5 based only on the proper normal range defining parameter according to the driving condition and the environmental condition of the automatic driving vehicle 5. Performance can be improved. Further, since the control device uses only normal range defining parameters necessary for abnormality detection, it is possible to reduce the amount of arithmetic processing of the control device and optimize the calculation load.
 以上説明した通り、第5の実施の形態では、
(7)パラメータ学習部2Eは、正常範囲を規定する正常範囲規定パラメータ値に対してLasso回帰処理を行った結果、残った次元の正常範囲規定パラメータを学習する構成とした。
As explained above, in the fifth embodiment,
(7) The parameter learning unit 2E is configured to learn the normal range defining parameters of the remaining dimensions as a result of performing the Lasso regression process on the normal range defining parameter values that define the normal range.
 このように構成すると、パラメータ学習部2Eは、Lasso回帰処理により自動運転車両5の制御への寄与度の大きなパラメータを正常範囲規定パラメータとして効率よく抽出することができる。 With this configuration, the parameter learning unit 2E can efficiently extract a parameter having a large contribution to the control of the autonomous driving vehicle 5 as a normal range defining parameter by the Lasso regression process.
<第6の実施の形態>
 次に、本発明の第6の実施の形態にかかる制御装置について説明する。
 図11は、第6の実施の形態にかかる制御装置1Fの機能構成を説明するブロック図である。
 図12は、第6の実施の形態にかかる制御装置1Fを自動運転車両に適用した場合のブロック図である。
 図13は、第6の実施の形態にかかるパラメータ学習部2Fの機能構成を説明するブロック図である。
 図14は、第6の実施の形態にかかるパラメータ変更部3Fの機能構成を説明するブロック図である。
 図15は、第6の実施の形態にかかる正常動作判断部4Fの機能構成を説明するブロック図である。
 なお、第1の実施の形態にかかる制御装置1と同じ構成及び機能については同一の符号を付し必要に応じて説明する。
<Sixth Embodiment>
Next, a control device according to a sixth embodiment of the present invention will be described.
FIG. 11 is a block diagram illustrating a functional configuration of a control device 1F according to the sixth embodiment.
FIG. 12 is a block diagram when the control device 1F according to the sixth embodiment is applied to an autonomous driving vehicle.
FIG. 13 is a block diagram illustrating a functional configuration of a parameter learning unit 2F according to the sixth embodiment.
FIG. 14 is a block diagram illustrating a functional configuration of a parameter changing unit 3F according to the sixth embodiment.
FIG. 15 is a block diagram illustrating a functional configuration of a normal operation determination unit 4F according to the sixth embodiment.
In addition, about the same structure and function as the control apparatus 1 concerning 1st Embodiment, the same code | symbol is attached | subjected and it demonstrates as needed.
 図11に示すように、制御装置1Fは、被制御装置から送信された運転条件及び環境条件に基づいて制御に関するパラメータの正常範囲を学習するパラメータ学習部2Fと、正常範囲を規定する複数の正常範囲規定パラメータと、正常範囲を変更又は選択するパラメータ変更部3Fと、正常範囲内に被制御装置から送信された制御に関するパラメータが全て含まれる場合に被制御装置の動作状態は正常であると判断する正常動作判断部4Fとを有して構成されている。 As illustrated in FIG. 11, the control device 1F includes a parameter learning unit 2F that learns a normal range of parameters related to control based on operating conditions and environmental conditions transmitted from the controlled device, and a plurality of normal states that define the normal range. It is determined that the operating state of the controlled device is normal when the range defining parameter, the parameter changing unit 3F for changing or selecting the normal range, and all the parameters related to the control transmitted from the controlled device are included in the normal range. And a normal operation determination unit 4F.
 図12に示すように、制御装置1Fは被制御装置である自動運転車両5に接続されており、自動運転車両5から運動条件(例えば、車両速度、加速度など)及び環境条件(例えば、気温、湿度など)、制御に関するパラメータ(例えば、目標スロットル開度、目標燃料噴射量、目標ヨーレートなど)が制御装置1Fに送信される。 As shown in FIG. 12, the control device 1F is connected to an autonomous driving vehicle 5 that is a controlled device, and from the autonomous driving vehicle 5, movement conditions (for example, vehicle speed, acceleration, etc.) and environmental conditions (for example, air temperature, Humidity) and parameters related to control (for example, target throttle opening, target fuel injection amount, target yaw rate, etc.) are transmitted to the control device 1F.
<パラメータ学習部>
 図13に示すように、パラメータ学習部2Fは、被制御装置である自動運転車両5から送信された運転条件及び環境条件に基づいて自動運転車両5の動作状態が正常か否かを判断するためのパラメータ値(α1、α2及びβ1、β2)の正常範囲を学習する。具体的には、以下の(1)、(2)の処理を行う。
(1)自動運転車両5から送信された運転条件及び環境条件において、正常な制御に関するパラメータ(α1、α2及びβ1、β2)の値の各次元の最大値と最小値との差eが所定の閾値K1以上となる次元のパラメータを抽出して記憶装置11に記憶する。
(2)自動運転車両5から送信された運転条件及び環境条件における正常範囲規定パラメータ(α1、α2及びβ1、β2)の上限値と下限値とで正常空間の頂点を規定し、記憶装置11に記憶する。
 なお、運転条件及び環境条件は、各条件に応じた番号で表してもよい。なお、図12では、運転条件及び環境条件A、B、Cの3条件の場合を例示して説明しているが、運転条件及び環境条件の条件数はこれに限られるものではない。
<Parameter learning unit>
As shown in FIG. 13, the parameter learning unit 2F determines whether or not the operation state of the automatic driving vehicle 5 is normal based on the driving conditions and environmental conditions transmitted from the automatic driving vehicle 5 that is the controlled device. The normal ranges of the parameter values (α1, α2 and β1, β2) are learned. Specifically, the following processes (1) and (2) are performed.
(1) In the driving conditions and environmental conditions transmitted from the autonomous driving vehicle 5, the difference e between the maximum value and the minimum value of each dimension of the parameters (α1, α2, and β1, β2) relating to normal control is predetermined. A parameter having a dimension equal to or greater than the threshold value K1 is extracted and stored in the storage device 11.
(2) The top of the normal space is defined by the upper limit value and the lower limit value of the normal range defining parameters (α1, α2, and β1, β2) in the driving conditions and environmental conditions transmitted from the autonomous driving vehicle 5, and stored in the storage device 11. Remember.
The operating conditions and the environmental conditions may be represented by numbers corresponding to the conditions. Note that FIG. 12 illustrates the case of the three operating conditions and environmental conditions A, B, and C, but the number of operating conditions and environmental conditions is not limited thereto.
<パラメータ変更部>
 図14に示すように、パラメータ変更部3は、自動運転車両5から送信された運転条件及び環境条件(各条件に応じた番号で表されている)応じて、パラメータ学習部2で学習した正常範囲を規定する複数の正常範囲規定パラメータの内から所定のパラメータに変更又は選択を行う。具体的には、以下の(1)、(2)の処理を行う。
(1)自動運転車両5から送信された運転条件及び環境条件に基づいて、正常範囲を規定する複数の正常範囲規定パラメータを変更又は選択する。
(2)自動運転車両5から送信された運転条件及び環境条件に応じた正常空間に変更又は選択する。
 なお、図14では、運転条件及び環境条件A、B、Cの3条件の場合を例示して説明しているが、運転条件及び環境条件の条件数はこれに限られるものではない。
<Parameter change part>
As shown in FIG. 14, the parameter changing unit 3 is the normal learned by the parameter learning unit 2 in accordance with the driving conditions and environmental conditions (represented by numbers corresponding to the respective conditions) transmitted from the autonomous driving vehicle 5. Change or select a predetermined parameter from a plurality of normal range defining parameters that define the range. Specifically, the following processes (1) and (2) are performed.
(1) Based on the driving conditions and environmental conditions transmitted from the autonomous driving vehicle 5, a plurality of normal range defining parameters that define the normal range are changed or selected.
(2) Change or select a normal space according to the driving conditions and environmental conditions transmitted from the autonomous driving vehicle 5.
In addition, in FIG. 14, although the case of three conditions, driving | running conditions and environmental conditions A, B, and C is illustrated and demonstrated, the conditions number of driving | running conditions and environmental conditions is not restricted to this.
<正常動作判断部>
 図15に示すように、正常動作判断部4は、パラメータ変更部3で変更又は選択された正常範囲規定パラメータで規定される正常範囲内に、自動運転車両5から送信された制御に関するパラメータ値が全てある場合、自動運転車両5の動作状態は正常であると判断し、少なくとも一部のパラメータ値が正常範囲内にない場合、自動運転車両5の動作状態は異常であると判断する。具体的には、以下の(1)~(3)の処理を行う。
(1)正常範囲は、正常範囲規定パラメータと共に、自動運転車両5から送信された運転条件及び環境条件に応じて変更又は選択される。
(2)正常範囲規定パラメータで規定される正常範囲内に、制御に関するパラメータの値が全てある場合、自動運転車両5の動作状態は正常であると判断し、異常フラグの値を0(ゼロ)に設定する。
(3)それ以外の場合(少なくとも、正常範囲内に一部の制御に関するパラメータの値がない場合)、自動運転車両5の動作状態は異常であると判断し、異常フラグの値を1に設定する。
 なお、図15では、正常範囲規定パラメータα1とα2、又はβ1とβ2、又はθ1とθ2の各々2次元で正常範囲が規定される場合を例示して説明したが、N次元(例えば、3次元以上)で正常範囲が規定されてもよい。
<Normal operation determination unit>
As shown in FIG. 15, the normal operation determining unit 4 has a parameter value related to control transmitted from the autonomous driving vehicle 5 within the normal range defined by the normal range defining parameter changed or selected by the parameter changing unit 3. When all are present, it is determined that the operation state of the automatic driving vehicle 5 is normal, and when at least some of the parameter values are not within the normal range, it is determined that the operation state of the automatic driving vehicle 5 is abnormal. Specifically, the following processes (1) to (3) are performed.
(1) The normal range is changed or selected according to the driving condition and the environmental condition transmitted from the autonomous driving vehicle 5 together with the normal range defining parameter.
(2) When all the values of the parameters relating to the control are within the normal range defined by the normal range defining parameter, it is determined that the operation state of the automatic driving vehicle 5 is normal, and the value of the abnormality flag is set to 0 (zero). Set to.
(3) In other cases (at least, when there are no parameter values related to control within the normal range), the operation state of the autonomous driving vehicle 5 is determined to be abnormal, and the value of the abnormality flag is set to 1. To do.
FIG. 15 illustrates the case where the normal range is defined in two dimensions of normal range defining parameters α1 and α2, β1 and β2, or θ1 and θ2, respectively. The normal range may be defined as described above.
 第6の実施形態によれば、自動運転車両5を制御する制御装置1Fは、予め、少なくとも自動運転車両5の運転条件及び環境条件に基づいて、正常範囲を規定する正常範囲規定パラメータを学習し、運転条件又は環境条件に基づいて正常範囲を規定する複数の正常範囲規定パラメータと正常範囲を変更又は選択し、変更又は選択された正常範囲内に制御に関するパラメータの全てが含まれている場合、自動運転車両5の動作状態が正常であると判断することがでる。なお正常範囲は、制御に関するパラメータの上限値と下限値とで規定される。これにより、制御装置1Fは、自動運転車両5の運転条件及び環境条件に応じた適正な正常範囲規定パラメータのみに基づいて自動運転車両5の動作状態の異常検知を適切に行うことができ、異常検知の性能を向上させることができる。また、制御装置1Fは、異常検知に必要な正常範囲規定パラメータのみを用いるので、制御装置1Fの演算処理の量を低減し、計算負荷の適正化を図ることができる。 According to the sixth embodiment, the control device 1F that controls the autonomous driving vehicle 5 learns in advance the normal range defining parameter that defines the normal range based on at least the driving conditions and environmental conditions of the autonomous driving vehicle 5. When the normal range is changed or selected and a normal range is defined based on operating conditions or environmental conditions, and all parameters related to control are included in the changed or selected normal range, It can be determined that the operating state of the autonomous driving vehicle 5 is normal. The normal range is defined by an upper limit value and a lower limit value of parameters related to control. Thereby, the control device 1F can appropriately detect the abnormality of the operation state of the automatic driving vehicle 5 based only on the proper normal range defining parameter corresponding to the driving condition and the environmental condition of the automatic driving vehicle 5. The detection performance can be improved. In addition, since the control device 1F uses only normal range defining parameters necessary for abnormality detection, it is possible to reduce the amount of calculation processing of the control device 1F and optimize the calculation load.
 以上説明した通り、第6の実施の形態では、 As explained above, in the sixth embodiment,
(8)また、パラメータ変更部3Fは、自動運転車両5の動作状態が正常であるか否かを判断するための正常範囲を変更または選択する構成とした。 (8) The parameter changing unit 3F is configured to change or select a normal range for determining whether or not the operation state of the autonomous driving vehicle 5 is normal.
 このように構成すると、制御装置1Fは、自動運転車両5の運転条件及び環境条件に応じた制御に適切な正常範囲を変更及び選択できるので、運転条件及び環境条件に基づく異常状態を適切に判断することができる。 If comprised in this way, since the control apparatus 1F can change and select the normal range suitable for the control according to the driving condition and environmental condition of the autonomous driving vehicle 5, it will appropriately judge the abnormal state based on the driving condition and the environmental condition. can do.
<第7の実施の形態>
 次に、本発明の第7の実施の形態にかかる制御装置について説明する。
 図16は、第7の実施の形態にかかる制御装置1Gの機能構成を説明するブロック図である。第7の実施の形態では、制御装置1Gに制御される被制御装置がロボット6である点が前述した実施の形態と異なる。なお、第1の実施の形態にかかる制御装置1と同じ構成及び機能については同一の符号を付し必要に応じて説明する。
<Seventh embodiment>
Next, a control device according to a seventh embodiment of the present invention will be described.
FIG. 16 is a block diagram illustrating a functional configuration of a control device 1G according to the seventh embodiment. The seventh embodiment is different from the above-described embodiment in that the controlled device controlled by the control device 1G is the robot 6. In addition, about the same structure and function as the control apparatus 1 concerning 1st Embodiment, the same code | symbol is attached | subjected and it demonstrates as needed.
 図16に示すように、制御装置1Gはロボット6に接続されており、ロボット6から送信された運転条件(例えば、各ロボットアームの関節の支点位置など)及び環境条件(例えば、気温、湿度など)が制御装置1Gに送信される。パラメータ学習部2Gは、ロボット6から送信された運転条件及び環境条件に基づいてロボット6の動作状態が正常となる正常範囲を規定する正常範囲規定パラメータを学習する。そして、パラメータ変更部3Gは、運転条件及び環境条件に応じて、パラメータ学習部2Gにより学習された複数の正常範囲規定パラメータの変更又は選択を行う。そして、正常動作判断部4Gは、パラメータ変更部3Gで変更又は選択された正常範囲規定パラメータで規定される正常範囲内に、ロボット6から送信された制御に関するパラメータの全てが含まれている場合、ロボット6の動作状態が正常であると判断し、異常フラグを0(ゼロ)に設定し、制御に関するパラメータの少なくとも一部が含めれていない場合、ロボット6の動作状態が異常であると判断し、異常フラグを1に設定する構成とした。 As shown in FIG. 16, the control device 1G is connected to the robot 6, and the operating conditions (for example, the fulcrum positions of joints of the robot arms) transmitted from the robot 6 and the environmental conditions (for example, temperature, humidity, etc.) ) Is transmitted to the control device 1G. The parameter learning unit 2G learns a normal range defining parameter that defines a normal range in which the operation state of the robot 6 is normal based on the operation condition and the environmental condition transmitted from the robot 6. Then, the parameter changing unit 3G changes or selects a plurality of normal range defining parameters learned by the parameter learning unit 2G according to the operating conditions and the environmental conditions. When the normal operation determining unit 4G includes all of the parameters related to the control transmitted from the robot 6 within the normal range defined by the normal range defining parameter changed or selected by the parameter changing unit 3G, If it is determined that the operation state of the robot 6 is normal, the abnormality flag is set to 0 (zero), and at least some of the parameters relating to the control are not included, it is determined that the operation state of the robot 6 is abnormal, The abnormality flag is set to 1.
 このように構成すると、制御装置1Gは、ロボット6の運転条件及び環境条件に応じた適正な正常範囲規定パラメータのみに基づいて、ロボット6の動作状態の異常検知を行うことができ、異常検知の性能を向上させることができる。また、異常検知に必要な正常範囲規定パラメータのみを用いるので、制御装置1Gの演算処理の量を低減し、計算負荷を適正化することができる。 With this configuration, the control device 1G can detect the abnormality of the operation state of the robot 6 based only on the proper normal range defining parameter corresponding to the operation condition and the environmental condition of the robot 6, and the abnormality detection Performance can be improved. Further, since only the normal range defining parameters necessary for abnormality detection are used, the amount of calculation processing of the control device 1G can be reduced and the calculation load can be optimized.
<第8の実施の形態>
 次に、本発明の第8の実施の形態にかかる制御装置について説明する。
 図17は、第8の実施の形態にかかる制御装置1Hの機能構成を説明するブロック図である。第8の実施の形態では、制御装置1Hに制御される被制御装置が飛行体7(例えば、無人のドローン)である点が前述した実施の形態と異なる。なお、第1の実施の形態にかかる制御装置1と同じ構成及び機能については同一の符号を付し必要に応じて説明する。
<Eighth Embodiment>
Next, a control device according to an eighth embodiment of the present invention will be described.
FIG. 17 is a block diagram illustrating a functional configuration of a control device 1H according to the eighth embodiment. The eighth embodiment is different from the above-described embodiment in that the controlled device controlled by the control device 1H is the flying object 7 (for example, an unmanned drone). In addition, about the same structure and function as the control apparatus 1 concerning 1st Embodiment, the same code | symbol is attached | subjected and it demonstrates as needed.
 図17に示すように、制御装置1Hは飛行体7に接続されており、飛行体7から送信された運転条件(例えば、飛行体の移動速度、加速度など)及び環境条件(例えば、気温、湿度、風速など)が制御装置1Hに送信される。パラメータ学習部2Hは、飛行体7から送信された運転条件及び環境条件に基づいて飛行体7の動作状態が正常となる正常範囲を規定する正常範囲規定パラメータを学習する。そして、パラメータ変更部3Hは、運転条件及び環境条件に応じて、パラメータ学習部2Hにより学習された複数の正常範囲規定パラメータの変更又は選択を行う。そして、正常動作判断部4Hは、パラメータ変更部3Hで変更又は選択された正常範囲規定パラメータの正常範囲内に、飛行体7から送信された制御に関するパラメータの全てが含まれている場合、飛行体7の動作状態が正常であると判断し、異常フラグを0(ゼロ)に設定し、制御に関するパラメータの少なくとも一部が含めれていない場合、飛行体7の動作状態が異常であると判断し、異常フラグを1に設定する構成とした。 As shown in FIG. 17, the control device 1H is connected to the flying object 7, and the operating conditions (for example, the moving speed and acceleration of the flying object) and environmental conditions (for example, air temperature and humidity) transmitted from the flying object 7 are transmitted. , Wind speed, etc.) are transmitted to the control device 1H. The parameter learning unit 2H learns a normal range defining parameter that defines a normal range in which the operating state of the flying object 7 is normal based on the driving conditions and environmental conditions transmitted from the flying object 7. Then, the parameter changing unit 3H changes or selects a plurality of normal range defining parameters learned by the parameter learning unit 2H according to the operating condition and the environmental condition. When the normal range of the normal range regulation parameter changed or selected by the parameter changing unit 3H includes all the parameters related to the control transmitted from the flying object 7, the normal operation determining unit 4H 7 is determined to be normal, the abnormality flag is set to 0 (zero), and if at least some of the control parameters are not included, it is determined that the operational state of the flying object 7 is abnormal, The abnormality flag is set to 1.
 このように構成すると、制御装置1Hは、飛行体7の運転条件及び環境条件に応じた適正な正常範囲規定パラメータのみに基づいて、飛行体7の動作の異常検知を行うことができ、異常検知の性能を向上させることができる。また、異常検知に必要な正常範囲規定パラメータのみを用いるので、制御装置1Hの演算処理の量を低減し、計算負荷を適正化することができる。 If comprised in this way, the control apparatus 1H can perform the abnormality detection of the operation | movement of the flying body 7 only based on the appropriate normal range prescription | regulation parameter according to the driving | running condition and the environmental condition of the flying body 7, and abnormality detection Performance can be improved. Moreover, since only the normal range defining parameters necessary for abnormality detection are used, the amount of calculation processing of the control device 1H can be reduced and the calculation load can be optimized.
 以上、本発明の実施の形態の一例を説明したが、本発明は、前述した実施の形態を全て組み合わせてもよく、何れか2つ以上の実施の形態を任意に組み合わせても好適である。 In the above, an example of the embodiment of the present invention has been described. However, the present invention may combine all of the above-described embodiments, and may arbitrarily combine any two or more embodiments.
 また、本発明は、前述した実施の形態の全ての構成を備えているものに限定されるものではなく、前述した実施の形態の構成の一部を、他の実施の形態の構成に置き換えてもよく、また、前述した実施の形態の構成を、他の実施の形態の構成に置き換えてもよい。 Further, the present invention is not limited to the one having all the configurations of the above-described embodiment, and a part of the configuration of the above-described embodiment is replaced with the configuration of another embodiment. In addition, the configuration of the above-described embodiment may be replaced with the configuration of another embodiment.
 また、前述した実施の形態の一部の構成について、他の実施の形態の構成に追加、削除、置換をしてもよい。 Further, a part of the configuration of the above-described embodiment may be added to, deleted from, or replaced with the configuration of another embodiment.
 1:制御装置、11:記憶装置、12:CPU、13:ROM、14:RAM、15:データバス、16:入力回路、17:入出力ポート、18:出力回路、2:パラメータ学習部、3:パラメータ変更部、4:正常動作判断部、5:車両、6:ロボット、7:飛行体 1: control device, 11: storage device, 12: CPU, 13: ROM, 14: RAM, 15: data bus, 16: input circuit, 17: input / output port, 18: output circuit, 2: parameter learning unit, 3 : Parameter changing unit, 4: normal operation determining unit, 5: vehicle, 6: robot, 7: flying object

Claims (12)

  1.  被制御装置を制御する制御装置であって、
     前記被制御装置の制御に関する複数の正常範囲規定パラメータで規定される正常範囲内に、前記被制御装置の動作状態に基づいて当該被制御装置から送信される制御に関するパラメータ値の全てが含まれている場合、前記被制御装置の動作状態は正常であると判断する正常動作判断部と、
     前記被制御装置の動作条件または環境条件に基づいて、前記正常範囲を規定する前記正常範囲規定パラメータを学習するパラメータ学習部と、
     前記被制御装置の動作時に、前記被制御装置の動作条件または環境条件に基づいて、前記正常範囲規定パラメータを変更または選択するパラメータ変更部と、を有する制御装置。
    A control device for controlling a controlled device,
    All of the parameter values related to the control transmitted from the controlled device based on the operation state of the controlled device are included in the normal range defined by the plurality of normal range defining parameters related to the control of the controlled device. A normal operation determining unit that determines that the operating state of the controlled device is normal;
    A parameter learning unit that learns the normal range defining parameter that defines the normal range based on an operating condition or an environmental condition of the controlled device;
    A control device comprising: a parameter changing unit that changes or selects the normal range defining parameter based on an operating condition or an environmental condition of the controlled device during operation of the controlled device.
  2.  前記正常動作判断部は、前記正常範囲規定パラメータで規定される前記正常範囲を、前記正常範囲規定パラメータの上限値と下限値とで規定する請求項1に記載の制御装置。 2. The control device according to claim 1, wherein the normal operation determining unit defines the normal range defined by the normal range defining parameter by an upper limit value and a lower limit value of the normal range defining parameter.
  3.  前記正常動作判断部は、前記正常範囲規定パラメータで規定される前記正常範囲を、前記正常範囲規定パラメータの値を近似する関数に基づいて規定する請求項1に記載の制御装置。 2. The control device according to claim 1, wherein the normal operation determining unit defines the normal range defined by the normal range defining parameter based on a function approximating a value of the normal range defining parameter.
  4.  前記正常動作判断部は、前記正常範囲規定パラメータで規定される前記正常範囲を、前記正常範囲規定パラメータの値をクラスタリングした結果に基づいて規定する請求項1に記載の制御装置。 The control device according to claim 1, wherein the normal operation determining unit defines the normal range defined by the normal range defining parameter based on a result of clustering values of the normal range defining parameter.
  5.  前記パラメータ学習部は、前記正常範囲を規定する前記正常範囲規定パラメータ値の各次元における最大値と最小値との差が所定の閾値以上の次元の前記正常範囲規定パラメータを学習する請求項1に記載の制御装置。 The parameter learning unit learns the normal range defining parameter of a dimension in which a difference between a maximum value and a minimum value in each dimension of the normal range defining parameter value that defines the normal range is a predetermined threshold value or more. The control device described.
  6.  前記パラメータ学習部は、前記正常範囲を規定する前記正常範囲規定パラメータ値に対して主成分分析を行った結果得られた固有値が所定の閾値以上となる次元の正常範囲規定パラメータを学習する請求項1に記載の制御装置。 The parameter learning unit learns a normal range defining parameter having a dimension in which an eigenvalue obtained as a result of performing a principal component analysis on the normal range defining parameter value defining the normal range is a predetermined threshold or more. The control device according to 1.
  7.  前記パラメータ学習部は、前記正常範囲を規定する前記正常範囲規定パラメータ値に対してLasso回帰処理を行った結果、残った次元の正常範囲規定パラメータを学習する請求項1に記載の制御装置。 The control device according to claim 1, wherein the parameter learning unit learns a normal range defining parameter of a dimension remaining as a result of performing a Lasso regression process on the normal range defining parameter value that defines the normal range.
  8.  前記パラメータ変更部は、前記被制御装置の動作状態が正常であるか否かを判断するための前記正常範囲を変更または選択する請求項1に記載の制御装置。 The control device according to claim 1, wherein the parameter changing unit changes or selects the normal range for determining whether or not the operation state of the controlled device is normal.
  9.  前記被制御装置は自動運転車両であり、
     前記制御装置は前記自動運転車両を制御する請求項1に記載の制御装置。
    The controlled device is an autonomous driving vehicle,
    The control device according to claim 1, wherein the control device controls the autonomous driving vehicle.
  10.  前記被制御装置はロボットであり、
     前記制御装置は前記ロボットを制御する請求項1に記載の制御装置。
    The controlled device is a robot;
    The control device according to claim 1, wherein the control device controls the robot.
  11.  前記被制御装置は飛行体であり、
     前記制御装置は前記飛行体を制御する請求項1に記載の制御装置。
    The controlled device is a flying object;
    The control device according to claim 1, wherein the control device controls the flying object.
  12.  被制御装置を制御する制御方法であって、
     前記被制御装置の制御に関する複数の正常範囲規定パラメータで規定される正常範囲内に、前記被制御装置の動作状態に基づいて当該被制御装置から送信される制御に関するパラメータ値の全てが含まれている場合、前記被制御装置の動作状態は正常であると判断する正常動作判断ステップと、
     前記被制御装置の動作条件または環境条件に基づいて、前記正常範囲を規定する前記正常範囲規定パラメータを学習するパラメータ学習ステップと、
     前記被制御装置の動作時に、前記被制御装置の動作条件または環境条件に基づいて、前記正常範囲規定パラメータを変更または選択するパラメータ変更ステップと、を有する制御方法。
    A control method for controlling a controlled device, comprising:
    All of the parameter values related to the control transmitted from the controlled device based on the operation state of the controlled device are included in the normal range defined by the plurality of normal range defining parameters related to the control of the controlled device. A normal operation determining step for determining that the operating state of the controlled device is normal;
    A parameter learning step for learning the normal range defining parameter for defining the normal range based on an operating condition or an environmental condition of the controlled device;
    And a parameter changing step of changing or selecting the normal range defining parameter based on an operating condition or an environmental condition of the controlled device during operation of the controlled device.
PCT/JP2018/017207 2018-04-27 2018-04-27 Control device and control method WO2019207766A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017207 WO2019207766A1 (en) 2018-04-27 2018-04-27 Control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017207 WO2019207766A1 (en) 2018-04-27 2018-04-27 Control device and control method

Publications (1)

Publication Number Publication Date
WO2019207766A1 true WO2019207766A1 (en) 2019-10-31

Family

ID=68295157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017207 WO2019207766A1 (en) 2018-04-27 2018-04-27 Control device and control method

Country Status (1)

Country Link
WO (1) WO2019207766A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112711260A (en) * 2020-12-29 2021-04-27 清华大学苏州汽车研究院(相城) Expected function safety test evaluation method for error/omission recognition of automatic driving vehicle
WO2024048196A1 (en) * 2022-08-29 2024-03-07 日本化薬株式会社 Flying body and method for controlling flying body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194727A (en) * 2013-03-28 2014-10-09 Toenec Corp Rotary machine quality diagnostic system
JP2015162140A (en) * 2014-02-28 2015-09-07 株式会社日立製作所 Diagnostic system of plant and control device
JP2017109650A (en) * 2015-12-17 2017-06-22 株式会社東芝 Abnormality diagnostic device and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194727A (en) * 2013-03-28 2014-10-09 Toenec Corp Rotary machine quality diagnostic system
JP2015162140A (en) * 2014-02-28 2015-09-07 株式会社日立製作所 Diagnostic system of plant and control device
JP2017109650A (en) * 2015-12-17 2017-06-22 株式会社東芝 Abnormality diagnostic device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112711260A (en) * 2020-12-29 2021-04-27 清华大学苏州汽车研究院(相城) Expected function safety test evaluation method for error/omission recognition of automatic driving vehicle
CN112711260B (en) * 2020-12-29 2022-02-11 清华大学苏州汽车研究院(相城) Expected function safety test evaluation method for error/omission recognition of automatic driving vehicle
WO2024048196A1 (en) * 2022-08-29 2024-03-07 日本化薬株式会社 Flying body and method for controlling flying body

Similar Documents

Publication Publication Date Title
US20200026246A1 (en) Control device and control system
US7177743B2 (en) Vehicle control system having an adaptive controller
CN109693354B (en) State determination device
US11092965B2 (en) Method and device for driving dynamics control for a transportation vehicle
US20180307231A1 (en) Intelligent electronic speed controller (iesc)
WO2019207766A1 (en) Control device and control method
US8521341B2 (en) Methods and systems for fault determination for aircraft
JP6323157B2 (en) Diagnostic data extraction device, vehicle diagnostic device
JP2012198144A (en) Device and method for analyzing vehicle data, and fault diagnostic device
US20200249637A1 (en) Ensemble control system, ensemble control method, and ensemble control program
EP3570219A1 (en) Control system, learning data creation apparatus, learning apparatus, and judgment apparatus
CN107077131B (en) System for establishing a control data set for a robot
WO2017040744A1 (en) Behavior trainable adaptive cruise control
CN112292642A (en) Control device for controlling a technical system and method for configuring a control device
CN112041213A (en) Operating method for an autonomously operable device and autonomously operable device
JP7050083B2 (en) Control device
EP3825928A2 (en) Additional learning device, additional learning method, and additional learning program
von Birgelen et al. Using self-organizing maps to learn hybrid timed automata in absence of discrete events
CN115114015A (en) Distributed system and diagnostic method
WO2019207767A1 (en) Control device and control method
US5655056A (en) Fuzzy controller group control system
CA2025438A1 (en) Automatic control of a discrete system with redundancy management and prioritized conflict resolution
US20220024474A1 (en) Computer-implemented method for machine learning for operating a vehicle component, and method for operating a vehicle component
US20220402121A1 (en) Control and monitoring of a machine arrangement
JP6463567B1 (en) Control planning apparatus, robot group system, and control planning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP