JP2014194727A - Rotary machine quality diagnostic system - Google Patents

Rotary machine quality diagnostic system Download PDF

Info

Publication number
JP2014194727A
JP2014194727A JP2013085215A JP2013085215A JP2014194727A JP 2014194727 A JP2014194727 A JP 2014194727A JP 2013085215 A JP2013085215 A JP 2013085215A JP 2013085215 A JP2013085215 A JP 2013085215A JP 2014194727 A JP2014194727 A JP 2014194727A
Authority
JP
Japan
Prior art keywords
rotating machine
feature
value
feature amount
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013085215A
Other languages
Japanese (ja)
Other versions
JP5643372B2 (en
Inventor
Hisae Nakamura
久栄 中村
Yukio Mizuno
幸男 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Toenec Corp
Original Assignee
Nagoya Institute of Technology NUC
Toenec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC, Toenec Corp filed Critical Nagoya Institute of Technology NUC
Priority to JP2013085215A priority Critical patent/JP5643372B2/en
Publication of JP2014194727A publication Critical patent/JP2014194727A/en
Application granted granted Critical
Publication of JP5643372B2 publication Critical patent/JP5643372B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a system capable of diagnosing the presence or absence of abnormality occurring in an operating rotary machine without stopping the rotary machine while a load is connected.SOLUTION: A rotary machine quality diagnostic system diagnoses quality of a rotary machine during operation by: measuring current flowing to each phase of a normal rotary machine that operates by being connected to a load, with respect to each of differently-sized loads; obtaining a feature quantity of each load; obtaining a basic line of a region where the feature quantities are distributed; defining a probability density function of an index to be used for determining the quality of the rotary machine, as a function of distance from the line; deciding a value of a standard deviation in the probability density function so that the index takes a specific value when the distance between the feature quantity and the line becomes a certain value; storing this value in a computer; obtaining the distance between a feature quantity obtained in diagnosing the rotary machine and the line when the feature quantity is obtained; using a value of the distance and the preliminarily-obtained value of the standard deviation to calculate a failure probability showing a determination index; and setting a threshold to the value.

Description

本発明は、負荷が接続された状態で稼働している電動機や発電機といった回転機で発生する異常の有無を診断する技術に関するものである。  The present invention relates to a technique for diagnosing the presence or absence of an abnormality that occurs in a rotating machine such as an electric motor or a generator operating with a load connected.

従来、例えば、回転機の巻線の異常を診断する場合には、インパルス試験を用いた技術が報告されている(非特許文献1参照)。  Conventionally, for example, in the case of diagnosing a winding abnormality of a rotating machine, a technique using an impulse test has been reported (see Non-Patent Document 1).

株式会社電子制御国際 インパルス巻線試験機DXW−01、05 取扱説明書  Electronic Control International Co., Ltd. Impulse Winding Tester DXW-01, 05 Instruction Manual

しかし、従来の手法(非特許文献1)は、回転機が停止した状態で診断する技術であり、実際に稼働中の回転機に対しては適用することができないという問題点があった。  However, the conventional method (Non-Patent Document 1) is a technique for diagnosing the rotating machine in a stopped state, and has a problem that it cannot be applied to an actually operating rotating machine.

本発明は、負荷が接続された状態で稼働している回転機で発生する異常の有無を、回転機を停止させることなく診断できるシステムの提供を目的とし、この目的の少なくとも一部を達成するために以下の手段を採った。
本発明の回転機の良否診断システムは、
負荷が接続されて稼働している正常な回転機の各相に流れる電流を様々な大きさの負荷毎に計測し、様々な大きさの負荷の場合に対して特徴量を求め、それらの特徴量が分布する領域を求め、その正常な回転機における特徴量の分布する領域の基準となる線(特徴量分布線)を求めて、該特徴量分布線からの距離の関数として回転機の良否判定に用いる指標(故障確率)の確率密度関数を定義し、特徴量と特徴量分布線との距離がある値になるときに、判定指標が特定の値を取るように、確率密度関数中の標準偏差の値を決定して、この値をコンピュータのメモリに記憶させておき、
回転機を診断する際に特徴量が得られると、その特徴量と前記特徴量分布線との距離を求め、この距離の値と予め求めておいた前記標準偏差の値を用いて、判定指標である故障確率を算出し、その値に閾値を設けるなどして、稼働時の回転機の良否を診断する
ことを要旨とする。
The present invention aims to provide a system capable of diagnosing the presence or absence of an abnormality occurring in a rotating machine operating with a load connected without stopping the rotating machine, and achieves at least a part of this object. The following measures were taken for this purpose.
The rotating machine quality diagnosis system of the present invention is:
The current flowing in each phase of a normal rotating machine operating with a load connected is measured for each load of various magnitudes, and feature quantities are obtained for various load magnitudes. The area in which the quantity is distributed is obtained, the reference line (feature quantity distribution line) of the area in which the feature quantity is distributed in the normal rotating machine is obtained, and the quality of the rotating machine is determined as a function of the distance from the feature quantity distribution line. Define the probability density function of the index used for judgment (failure probability), and when the distance between the feature quantity and the feature quantity distribution line becomes a certain value, the judgment index in the probability density function takes a specific value Determine the value of the standard deviation and store this value in your computer's memory,
When a feature amount is obtained when diagnosing a rotating machine, a distance between the feature amount and the feature amount distribution line is obtained, and a determination index is obtained by using the distance value and the standard deviation value obtained in advance. The gist is to diagnose the quality of the rotating machine during operation by calculating the failure probability and setting a threshold for the value.

稼働している回転機で発生する異常の有無を、負荷が接続された状態で、その負荷の大きさが様々に変化する場合でも、回転機を停止させることなく診断できるものとなる。  Whether or not there is an abnormality occurring in the rotating machine that is operating can be diagnosed without stopping the rotating machine even when the magnitude of the load changes variously with the load connected.

また、本発明の回転機の良否診断システムは、
負荷が接続されて稼働している正常な回転機の各相に流れる電流を様々な負荷毎に計測し、様々な大きさの負荷の場合に対して、回転機に流れる電流に含まれる特定の周波数成分の電流を周波数解析など行うことで抽出し、その特定周波数成分の電流から特徴量を求め、それらの特徴量が分布する領域を求め、その正常な回転機における特徴量の分布する領域の基準となる線(特徴量分布線)を求めて、該特徴量分布線からの距離の関数として回転機の良否判定に用いる指標(故障確率)の確率密度関数を定義し、特徴量と特徴量分布線との距離がある値になるときに、判定指標が特定の値を取るように、確率密度関数中の標準偏差の値を決定して、この値をコンピュータのメモリに記憶させておき、
回転機を診断する際に特徴量が得られると、その特徴量と前記特徴量分布線との距離を求め、この距離の値と予め求めておいた前記標準偏差の値を用いて、判定指標である故障確率を算出し、その値に閾値を設けるなどして、稼働時の回転機の良否を診断する
ことを要旨とする。
こうすれば、稼働している回転機で発生する異常の有無を、負荷が接続された状態で、その負荷の大きさが様々に変化する場合でも、回転機を停止させることなく診断できるシステムを容易に構築できるものとなる。
Moreover, the quality check system for the rotating machine of the present invention is:
The current flowing in each phase of a normal rotating machine operating with a load connected is measured for each of the various loads, and the specific current included in the rotating machine is measured for various loads. The frequency component current is extracted by performing frequency analysis and the like, the feature amount is obtained from the current of the specific frequency component, the region where the feature amount is distributed is obtained, and the region where the feature amount is distributed in the normal rotating machine A reference line (feature distribution line) is obtained, and a probability density function of an index (failure probability) used for determining the quality of a rotating machine is defined as a function of the distance from the feature distribution line. When the distance from the distribution line becomes a certain value, the standard deviation value in the probability density function is determined so that the determination index takes a specific value, and this value is stored in the memory of the computer,
When a feature amount is obtained when diagnosing a rotating machine, a distance between the feature amount and the feature amount distribution line is obtained, and a determination index is obtained by using the distance value and the standard deviation value obtained in advance. The gist is to diagnose the quality of the rotating machine during operation by calculating the failure probability and setting a threshold for the value.
In this way, there is a system that can diagnose the presence or absence of an abnormality that occurs in a rotating machine in operation without stopping the rotating machine even when the load changes in various ways with the load connected. It can be easily constructed.

また、本発明の回転機の良否診断システムにおいて、前記回転機正常時の特徴量の分布領域を1本の特徴量分布線で近似するのではなく、区間毎に分けて複数の線で近似して診断するものとすることもできる。
こうすれば、特徴量分布領域を1本の線で近似する場合よりも、より正確に分布領域を近似できるようになる。
In the rotating machine pass / fail diagnosis system of the present invention, the distribution area of the feature amount when the rotating machine is normal is not approximated by a single feature amount distribution line, but is approximated by a plurality of lines divided into sections. Can also be diagnosed.
In this way, the distribution area can be approximated more accurately than when the feature quantity distribution area is approximated by a single line.

また、本発明の回転機の良否診断システムにおいて、前記様々な大きさの負荷の場合に対して求められる特徴量の数として、100点以上求めておくものとすることもできる。
こうすれば、分布線を求めるときの誤差が少なくなる。
Further, in the rotating machine pass / fail diagnosis system of the present invention, it is also possible to obtain 100 or more feature quantities to be obtained for the loads of various sizes.
By doing so, the error in obtaining the distribution line is reduced.

また、本発明の回転機の良否診断システムにおいて、前記特徴量を抽出する際に、電流に含まれるノイズ成分を除去するためにフィルタを用いるものとすることもできる。
こうすれば、ノイズの影響を受けない特徴量を取り出すことができ、正しい値の特徴量を得ることができて、得られる特徴量分布線も正確な値が得られる。
Further, in the rotating machine pass / fail diagnosis system of the present invention, when extracting the feature amount, a filter may be used to remove a noise component included in the current.
In this way, it is possible to extract feature quantities that are not affected by noise, to obtain feature values with correct values, and to obtain accurate values for the obtained feature quantity distribution lines.

また、本発明の回転機の良否診断システムにおいて、前記特徴量を3次元空間で示し、その3次元空間分布をコンピュータ画面上で回転させる機能を持たせることで、様々な角度からの特徴量の分布領域を確認し、回転機器の正常時と異常時の特徴量の変化を視覚的に確認するように構成することもできる。
こうすれば、3次元空間に表示させた特徴量分布を回転し、分布の状態を様々な角度から見ることで、回転機器の正常時と異常時の特徴量の変化を視覚的に確認することができるようになる。
そして、後述するが、何本の特徴量分布線を用いて特徴量の分布を近似するのがよいかが分かるようになる。
In the rotating machine quality diagnosis system according to the present invention, the feature quantity is indicated in a three-dimensional space, and the function quantity from various angles can be obtained by providing a function of rotating the three-dimensional spatial distribution on a computer screen. It can also be configured to check the distribution region and visually check the change in the feature amount when the rotating device is normal and abnormal.
In this way, by rotating the feature distribution displayed in the three-dimensional space and viewing the state of the distribution from various angles, it is possible to visually check the change of the feature when the rotating device is normal and abnormal Will be able to.
As will be described later, the number of feature amount distribution lines can be used to understand how to approximate the feature amount distribution.

また、本発明の回転機の良否診断システムにおいて、前記正常な回転機における特徴量の分布する領域の基準となる線が、直線または曲線であるものとすることもできる。
こうすれば、最適な分布を選ぶことができる。
Moreover, in the quality determination system for a rotating machine according to the present invention, the reference line for the region in which the feature amount is distributed in the normal rotating machine may be a straight line or a curved line.
In this way, an optimal distribution can be selected.

本診断システムの全体的な流れを示すシステム概要図である。  It is a system outline figure showing the whole flow of this diagnostic system. 正常な電動機から得られる特徴量分布図である。  It is a feature-value distribution map obtained from a normal electric motor. 短絡発生時の電動機から得られる特徴量分布図である。  It is a feature-value distribution map obtained from the electric motor at the time of short circuit occurrence. 正常時の特徴量と特徴量分布線との距離dのヒストグラム図である。  It is a histogram figure of distance d of the feature-value at the time of normal, and a feature-value distribution line. 短絡時の特徴量と特徴量分布線との距離dのヒストグラム図である。  It is a histogram figure of distance d of the feature-value at the time of a short circuit, and a feature-value distribution line. 故障確率の確率密度関数を示す図である。  It is a figure which shows the probability density function of a failure probability. 一次関数の場合の確率密度関数を示す図である。  It is a figure which shows the probability density function in the case of a linear function. 指数関数の場合の確率密度関数を示す図である。  It is a figure which shows the probability density function in the case of an exponential function. 各相に流れる電流の正側の最大値を特徴量として抽出する説明図である。  It is explanatory drawing which extracts the maximum value of the positive side of the electric current which flows into each phase as a feature-value. 負荷を変動させたときにW相に流れる負荷電流の正側の最大値Iwmaxの変化を示す図である。  It is a figure which shows the change of the maximum value Iwmax of the positive side of the load current which flows into a W phase when changing load. 図10の負荷を変動させたときに算出される故障確率を示す図である。  It is a figure which shows the failure probability calculated when changing the load of FIG. 短絡を発生させた場合の負荷電流の正側の最大値Iwmaxの変化を示す図である。  It is a figure which shows the change of the maximum value Iwmax of the positive side of the load current at the time of generating a short circuit. 図12の負荷を変動させたときに算出される故障確率を示す図である。  It is a figure which shows the failure probability calculated when changing the load of FIG. 特徴量分布線の求め方の説明図である。  It is explanatory drawing of how to obtain | require a feature-value distribution line. 特徴量分布と特徴量分布線の図である。  It is a figure of feature-value distribution and a feature-value distribution line. 各特徴量と特徴量分布線との距離を示す図である。  It is a figure which shows the distance of each feature-value and a feature-value distribution line. ノイズ除去フィルタの効果を示す図である。  It is a figure which shows the effect of a noise removal filter. 多くの周波数成分が含まれる電流からの特徴量抽出を示す図である。  It is a figure which shows the feature-value extraction from the electric current containing many frequency components.

次に、本発明を実施するための形態を説明する。
本診断システムの全体的な流れを図1に示す。
本診断システムにおいて診断までの処理は、大きく二つのプロセスに分けることができる。一つが診断の前段階に相当する前処理プロセス(前処理工程)であり、もう一つが実際に故障確率を算出し、回転機内部の巻線で発生する短絡の有無を判定する診断プロセス(診断工程)である。
Next, the form for implementing this invention is demonstrated.
The overall flow of this diagnostic system is shown in FIG.
The processing up to diagnosis in this diagnosis system can be roughly divided into two processes. One is a pre-processing process (pre-processing step) corresponding to the previous stage of diagnosis, and the other is a diagnostic process (diagnosis) that actually calculates the failure probability and determines the presence or absence of a short circuit that occurs in the winding inside the rotating machine. Process).

1.前処理プロセス(前処理工程)
はじめの前処理プロセスでは、正常な回転機を稼働させた状態で特徴量、すなわち各相に流れる電流の正側の最大値を計測する。
その3次元の特徴量分布から特徴量分布線を導出する。そして、導出した特徴量分布線と各特徴量間の距離dを算出し、そのヒストグラムを求める。
そしてそのヒストグラムに基づいて、故障確率を決定する確率密度関数の標準偏差σを求めておき、これを記憶部に記憶させておく。
こうした状態で、次の診断プロセスへ移る。
1. Pretreatment process (pretreatment process)
In the first pretreatment process, the characteristic amount, that is, the maximum value on the positive side of the current flowing in each phase is measured with a normal rotating machine in operation.
A feature amount distribution line is derived from the three-dimensional feature amount distribution. Then, a distance d between the derived feature quantity distribution line and each feature quantity is calculated, and a histogram thereof is obtained.
Based on the histogram, a standard deviation σ of a probability density function for determining a failure probability is obtained and stored in the storage unit.
In this state, the process proceeds to the next diagnosis process.

2.診断プロセス(診断工程)
診断プロセスでは、回転機を稼働させた状態で特徴量、すなわち各相に流れる電流の正側の最大値を計測する。このときの特徴量を特徴量Fとする。
次に、特徴量Fと特徴量分布線との距離dを求める。ここで使用する特徴量分布線は、前処理プロセスで求めておいたものである。
いま、特徴量Fと特徴量分布線との距離dとしてd=dが得られたとする。このd=dと後述の(2)式を用いることで、故障確率Pを算出することができる。
2. Diagnosis process (diagnosis process)
In the diagnosis process, the characteristic amount, that is, the maximum value on the positive side of the current flowing in each phase is measured in a state where the rotating machine is operated. The feature amount of time and wherein the amount F d.
Next, a distance d between the feature amount Fd and the feature amount distribution line is obtained. The feature amount distribution line used here is obtained in the preprocessing process.
Now, it is assumed that d = d 1 is obtained as the distance d between the feature amount F d and the feature amount distribution line. The failure probability P can be calculated by using d = d 1 and the later-described equation (2).

こうして求めた故障確率の値に対して閾値などを設定することで、負荷が変動しながら稼働している回転機の固定子巻線が正常なのか、それとも短絡等の故障があるかの判定を統計的に行うことができる。  By setting a threshold value etc. for the value of the failure probability thus obtained, it is determined whether the stator winding of the rotating machine operating while the load fluctuates is normal or whether there is a failure such as a short circuit. Can be done statistically.

ここで、具体的な短絡診断方法の説明にあたり、回転機として、電動機を例にとって理論説明をする。そして、故障の例として、電動機内部の固定子巻線のコイルで短絡が発生した場合を考える。
いま、正常な電動機に電源を接続して稼働させる。また、この電動機には負荷が接続されている。この負荷の大きさが変化しながら稼働しているこの電動機の各相に流れる電流を同期して計測し、そこから特徴量を抽出する。
ここでは特徴量として、図9に示すように、各相電流波形が最低一周期分は含まれるような時間区間において、U相,V相,W相の各相に流れる電流の正側の最大値とすると、特徴量は(Iumax,Ivmax,Iwmax)となる。
負荷の大きさがある値のとき(例えば、負荷状態1とする)に得られる特徴量を特徴量F(Iumax 1,Ivmax 1,Iwmax 1)とする。
Here, in describing a specific short-circuit diagnosis method, a theoretical explanation will be given by taking an electric motor as an example of a rotating machine. As an example of the failure, consider a case where a short circuit occurs in the coil of the stator winding inside the electric motor.
Now, connect the power supply to a normal motor. A load is connected to the electric motor. The current flowing in each phase of the electric motor that is operating while changing the magnitude of the load is measured synchronously, and the feature value is extracted therefrom.
Here, as shown in FIG. 9, the maximum value on the positive side of the current flowing in each phase of the U phase, the V phase, and the W phase in a time interval in which each phase current waveform includes at least one cycle is included as a feature amount. If it is a value, the feature amount is (Iumax, Ivmax, Iwmax).
A feature amount obtained when the load has a certain value (for example, load state 1) is defined as a feature amount F 1 (Iumax 1, Ivmax 1, Iwmax 1).

次に、負荷が別の大きさの値をとるとき(例えば、負荷状態2とする)に得られる特徴量を特徴量F(Iumax 2,Ivmax 2,Iwmax 2)とする。
これを様々な負荷状態に対して同様に求めていくと、多数(N点)の特徴量F(Iumax N,Ivmax N,Iwmax N)の点が得られる。
このようにして100点より多くの特徴量を求める。
特徴量分布線を求める際、多数の特徴量の点が必要となる。この多数の特徴量の点のうち、1点がノイズ等の影響で大きく外れた領域に分布する場合に、特徴量の点の数が多いと、特徴量分布線を求めるときにこの点の影響はあまり受けないが、特徴量の点の数が少ないと、この点の影響を大きく受けてしまう。このため、特徴量の分布領域を近似する特徴量分布線を正しく求めることができなくなる。以上のことから、100点以上の特徴量の点が必要となる。
今回、800点の特徴量を計測して、それらを3次元空間の特徴量分布に表示すると図2のようになる。
図2によると、負荷の大きさが様々に変化しているが、そのとき得られる特徴量は、ほぼ線状に分布していることがわかる。
Next, a feature amount obtained when the load takes another value (for example, load state 2) is defined as a feature amount F 2 (Iumax 2, Ivmax 2, Iwmax 2).
When this is similarly obtained for various load states, a large number (N points) of feature values F N (Iumax N, Ivmax N, Iwmax N) are obtained.
In this way, more feature quantities than 100 points are obtained.
When obtaining a feature quantity distribution line, a large number of feature quantity points are required. If one of the many feature points is distributed in a region that is greatly deviated due to the influence of noise, etc., if the number of feature points is large, the effect of this point will be affected when the feature amount distribution line is obtained. However, if the number of feature points is small, it is greatly affected by this point. For this reason, it is impossible to correctly obtain a feature amount distribution line that approximates a feature amount distribution region. From the above, 100 or more feature points are required.
This time, when 800 feature values are measured and displayed in a feature distribution in a three-dimensional space, the result is as shown in FIG.
According to FIG. 2, although the magnitude | size of load changes variously, it turns out that the feature-value obtained at that time is distributed substantially linearly.

次に、この電動機の内部固定子巻線において、その内部の隣同士のコイルが短絡した状態で、上記と同様に負荷の値を変化させながら電動機を稼働しつづけ、特徴量を求める。そして100点以上の特徴量を求める。
今回は800点の特徴量を求め、それらを図2に示す巻線正常時の特徴量分布と一緒に3次元空間にプロットし、これを新たに図3とする。
図3の結果より、電動機内部で短絡が発生した場合には、正常時に得られる特徴量と分布する領域が異なることから、この情報を電動機の良否診断に用いることが可能となる。
Next, in the internal stator winding of the electric motor, with the adjacent coils inside being short-circuited, the electric motor is continuously operated while changing the load value in the same manner as described above, and the feature amount is obtained. Then, feature values of 100 points or more are obtained.
This time, 800 feature values are obtained and plotted in a three-dimensional space together with the feature distribution when the windings are normal as shown in FIG. 2, and this is newly shown in FIG.
According to the result of FIG. 3, when a short circuit occurs inside the motor, the characteristic amount obtained in the normal state and the distribution area are different, so this information can be used for the diagnosis of the motor.

このように、負荷が接続されて稼働している回転機の各相に流れる電流を様々な大きさの負荷毎に計測した結果、回転機に流れる電流から得られる特徴量の分布がほぼ線状となる事実を発見し、また、正常時の電流分布領域と、短絡発生時の電流分布領域が異なることを発見したことに基づき、本発明を案出したのである。  In this way, as a result of measuring the current flowing through each phase of the rotating machine operating with the load connected for each load of various sizes, the distribution of the characteristic amount obtained from the current flowing through the rotating machine is almost linear. The present invention has been devised based on the fact that the current distribution region at the normal time and the current distribution region at the occurrence of a short circuit are different.

次に、短絡診断方法を実施するための前処理工程を具体的に説明する。
まず始めに、図2に示す正常電動機から得られる特徴量分布において、その分布を近似する線として直線を求める。この直線は、分布の真ん中を通るような直線とする。イメージ図を図14に示す。
Next, the pretreatment process for implementing the short-circuit diagnosis method will be specifically described.
First, in the feature quantity distribution obtained from the normal motor shown in FIG. 2, a straight line is obtained as a line approximating the distribution. This straight line is a straight line passing through the middle of the distribution. An image diagram is shown in FIG.

図2では、特徴量の値が小さな領域、すなわち電動機が無負荷に近い状態で稼働している場合には、他の負荷状態と比較して、特徴量の分布を近似する直線の傾きが若干異なっている。
そこで、図2の特徴量分布から1本の特徴量分布直線を求めるのではなく,Iwmaxの分布する範囲(ここでは6Aから14Aの間)を適当な間隔に区切り、各区間毎に特徴量分布直線を求めることにする。
こうすることで、例えば図15に示すように、特徴量の分布領域がカーブしている場合でも、数本の直線で分布を近似できるようになり、特徴量分布領域を1本の直線で近似する場合よりも、より正確に分布領域を近似できるようになる。こうして求めた数本の正常時の特徴量の分布直線を、便宜的に「特徴量分布直線」と呼ぶことにする。
In FIG. 2, when the value of the feature value is small, that is, when the motor is operating near no load, the slope of the straight line approximating the feature value distribution is slightly smaller than in other load states. Is different.
Therefore, instead of obtaining one feature amount distribution line from the feature amount distribution of FIG. 2, the range in which Iwmax is distributed (here, between 6A and 14A) is divided at appropriate intervals, and the feature amount distribution is divided for each section. Let's find a straight line.
By doing so, for example, as shown in FIG. 15, even when the distribution region of the feature amount is curved, the distribution can be approximated by several straight lines, and the feature amount distribution region can be approximated by one straight line. This makes it possible to approximate the distribution region more accurately than the case. The several normal distributions of feature quantities obtained in this way are referred to as “feature distribution lines” for convenience.

特徴量分布直線としては、例えば次のようにする。
ある一相、ここではW相に流れる電流Iwを基準とすると、Iwから得られる今回の特徴量Iwmaxの値は6Aから14Aの間を取るので、この区間を2A間隔に区切り、Iwmaxが6〜8Aのときの特徴量分布直線を直線1、8〜10Aのときの特徴量分布直線を直線2、10〜12Aのときの特徴量分布直線を直線3、12〜14Aのときの特徴量分布直線を直線4とする。
For example, the feature amount distribution line is as follows.
If the current Iw flowing in one phase, here the W phase, is used as a reference, the value of the current feature value Iwmax obtained from Iw is between 6A and 14A, so this interval is divided into 2A intervals, and Iwmax is 6 to Feature amount distribution line at 8A is straight line 1, Feature amount distribution line at 8-10A is straight line 2, Feature amount distribution line at 10-12A is straight line 3, Feature amount distribution line at 12-14A Is a straight line 4.

そして、Iwmaxの値に応じて、図16に示すように、各特徴量からそれに対応する特徴量分布直線に直角な垂線を下したときの距離dを求める。
例えば特徴量としてIwmaxの値が7.0Aであるものが与えられたとすると、そのときの特徴量分布直線としては前述した直線1を使い、この特徴量の点と直線1との距離dを求める。
Then, according to the value of Iwmax, as shown in FIG. 16, a distance d when a perpendicular perpendicular to the corresponding feature quantity distribution line is drawn from each feature quantity is obtained.
For example, if a feature value having an Iwmax value of 7.0 A is given, the above-described straight line 1 is used as the feature quantity distribution line at that time, and the distance d between the feature quantity point and the straight line 1 is obtained. .

このように、各特徴量と特徴量分布直線との距離dを新たな特徴量と見なす。
こうすることで、3次元の特徴量(Iumax,Ixmax,Iwmax)を1次元の特徴量dとすることができ、取り扱いが容易となる。
Thus, the distance d between each feature quantity and the feature quantity distribution line is regarded as a new feature quantity.
By doing so, the three-dimensional feature values (Iumax, Ixmax, Iwmax) can be set as the one-dimensional feature value d, and the handling becomes easy.

正常時ならびに短絡時の各特徴量の点と、上記で求めた特徴量分布直線との距離dのヒストグラムをそれぞれ図4と図5に示す。図4と図5の横軸は距離dを表し、縦軸は発生頻度、即ち発生件数を表す。
図3の特徴量分布では、巻線正常時と短絡時とで両者の特徴量の重なる領域が少ないことから、ヒストグラム上でも重なりが少なくなっている。
このヒストグラムから診断に必要なパラメータ(ここでは標準偏差σ)を算出する。
FIG. 4 and FIG. 5 show the histograms of the distance d between each feature point at normal time and short circuit and the feature amount distribution line obtained above. 4 and 5, the horizontal axis represents the distance d, and the vertical axis represents the occurrence frequency, that is, the number of occurrences.
In the feature amount distribution of FIG. 3, since there are few regions where the feature amounts overlap between the normal winding and the short circuit, the overlap is also reduced on the histogram.
A parameter (in this case, standard deviation σ) necessary for diagnosis is calculated from this histogram.

次に、短絡診断方法を実施するための診断工程を具体的に説明する。
今回は巻線の状態を評価する指標として、故障確率を指標として定義する。
この故障確率の確率密度関数f(d)を距離dの関数として、以下の正規分布の式で表すことにする。

Figure 2014194727
ここでσは標準偏差を表す。また、(1)式の確率密度関数において、平均は特徴量分布直線上に相当するd=0とする。さらに、距離dは常に正の値を取るため、ここでは一般的な正規分布の式を2倍した式を用いる。こうすることで、f(d)を距離d=0から∞まで積分した値が1となる。Next, a diagnostic process for carrying out the short-circuit diagnostic method will be specifically described.
This time, we define the failure probability as an index to evaluate the state of the winding.
The probability density function f (d) of this failure probability is expressed by the following normal distribution expression as a function of the distance d.
Figure 2014194727
Here, σ represents a standard deviation. In the probability density function of the equation (1), the average is d = 0 corresponding to the feature amount distribution line. Furthermore, since the distance d always takes a positive value, a formula obtained by doubling a general normal distribution formula is used here. By doing so, the value obtained by integrating f (d) from the distance d = 0 to ∞ is 1.

回転機を稼働させた状態で特徴量、すなわち各相に流れる電流の正側の最大値を計測する。そして、このときの特徴量を特徴量Fd(Iumax d,Ivmax d,Iwmax d)とする。この特徴量Fdと特徴量分布直線との距離dの値としてd=dが得られたとすると、このときの故障確率Pは、次式で計算することができる。

Figure 2014194727
The characteristic amount, that is, the maximum value on the positive side of the current flowing in each phase is measured in a state where the rotating machine is operated. The feature amount at this time is defined as a feature amount Fd (Iumax d, Ivmax d, Iwmax d). Assuming that d = d 1 is obtained as the value of the distance d between the feature quantity Fd and the feature quantity distribution line, the failure probability P at this time can be calculated by the following equation.
Figure 2014194727

この故障確率Pは、標準偏差σの決め方により様々な値を取る。
今回の電動機では、図4に示すように、巻線正常時の距離dの発生頻度がd=0.06のとき最大となる。そこで、d=0.06における故障確率が20%となるように、すなわちP=0.20となるように、標準偏差を定めることにする。
これは、特徴量分布直線との距離がd=0.06以下となる空間に特徴量が存在する確率が20%であることを意味する。
このように決定した標準偏差σは0.244となる。この値を保存しておく。
The failure probability P takes various values depending on how the standard deviation σ is determined.
In the present electric motor, as shown in FIG. 4, the maximum frequency is obtained when the distance d when the winding is normal is d = 0.06. Therefore, the standard deviation is determined so that the failure probability at d = 0.06 is 20%, that is, P = 0.20.
This means that the probability that a feature amount exists in a space where the distance from the feature amount distribution line is d = 0.06 or less is 20%.
The standard deviation σ determined in this way is 0.244. Save this value.

標準偏差σを0.244としたときの確率密度関数f(d)を図6に示す。
今回は、故障確率の確率密度関数f(d)として(1)式で表わされる式で表現したが、これを一次関数や指数関数の形として表わしてもよい。
例えば一次関数の場合は(3)式のようになる。ここでA、Bは正の定数である。
また、指数関数の場合は(4)式のような形となる。ここでA、Bは正の定数である。
距離dの値のときに故障確率Pの値をどのように定めるかによって、定数A、Bを決定することとなる。
FIG. 6 shows the probability density function f (d) when the standard deviation σ is 0.244.
This time, the probability density function f (d) of the failure probability is expressed by the expression expressed by the expression (1), but this may be expressed as a form of a linear function or an exponential function.
For example, in the case of a linear function, equation (3) is obtained. Here, A and B are positive constants.
In the case of an exponential function, the form is as in equation (4). Here, A and B are positive constants.
The constants A and B are determined depending on how the value of the failure probability P is determined at the distance d.

一次関数の場合の波形は図7のようになり、指数関数の場合は図8のようになる。
f(d)=−Ad+B ・・・(3)
f(d)=Aexp(−Bd) ・・・(4)
The waveform in the case of a linear function is as shown in FIG. 7, and in the case of an exponential function, it is as shown in FIG.
f (d) = − Ad + B (3)
f (d) = Aexp (−Bd) (4)

以下に、電動機内部固定子巻線で発生する短絡の有無を判定できていることを確認するため、診断結果について、実験データを交えて説明する。  Below, in order to confirm that the presence or absence of the short circuit which generate | occur | produces with an internal stator winding of an electric motor can be determined, a diagnostic result is demonstrated with experimental data.

まず、固定子巻線が正常状態にある電動機に対する診断を行う。
各相の電流計測は同期して30秒間隔で計測する。そして、1回の計測では、例えば図9に示すように、各相電流波形が最低一周期分は含まれるような時間区間において、各相の電流の正側の最大値を導出し、これを特徴量とする。そして電動機に接続されている負荷の大きさを任意に変えたときに得られる60点分のデータそれぞれに対して故障確率を算出し、評価する。
First, a diagnosis is performed on an electric motor in which the stator winding is in a normal state.
Current measurement for each phase is performed at 30-second intervals in synchronization. In one measurement, for example, as shown in FIG. 9, the maximum value on the positive side of the current of each phase is derived in a time interval in which each phase current waveform includes at least one cycle. The feature value. A failure probability is calculated and evaluated for each of 60 points of data obtained when the magnitude of the load connected to the motor is arbitrarily changed.

負荷を変動させたときにW相に流れる負荷電流の正側の最大値Iwmaxと、このとき算出された故障確率の変化をそれぞれ図10と図11に示す。
図10の横軸はデータ数、縦軸は電流の正側の最大値Iwmaxである。また、図11の横軸はデータ数、縦軸はそのとき得られた特徴量に対して算出した故障確率である。
負荷の大きさにより特徴量Iwmaxも様々に変化し、得られる故障確率にも変動が見られるものの、その値は概ね低くなっている。そして、60点のデータに対する故障確率の平均は23.5%である。
10 and 11 show the maximum value Iwmax on the positive side of the load current flowing in the W phase when the load is varied, and the change in the failure probability calculated at this time, respectively.
In FIG. 10, the horizontal axis represents the number of data, and the vertical axis represents the maximum value Iwmax on the positive side of the current. Further, the horizontal axis in FIG. 11 is the number of data, and the vertical axis is the failure probability calculated for the feature amount obtained at that time.
The feature value Iwmax varies depending on the load, and the obtained failure probability varies, but the value is generally low. The average failure probability for 60 points of data is 23.5%.

次に、固定子巻線に短絡を発生させた場合で同様に評価する。
このときの負荷電流の正側の最大値と、そのとき算出された故障確率をそれぞれ図12と図13に示す。
固定子巻線で短絡が発生していると、得られる特徴量分布は正常時からずれて分布するため、距離dの値が大きくなり、結果的に故障確率が高い値で推移していることがわかる。この60点の特徴量に対する故障確率の平均は91.9%である。
以上の結果から、電動機に接続された負荷の大きさが様々に変化する場合でも、その負荷の大きさによらず、その電動機内部固定子巻線で発生する短絡の有無を判定できていることが確認できる。
Next, the same evaluation is performed when a short circuit is generated in the stator winding.
The maximum value on the positive side of the load current at this time and the failure probability calculated at that time are shown in FIGS. 12 and 13, respectively.
When a short circuit occurs in the stator winding, the obtained feature quantity distribution is shifted from the normal time, so that the value of the distance d increases, and as a result, the failure probability changes at a high value. I understand. The average failure probability for these 60 feature quantities is 91.9%.
From the above results, even when the size of the load connected to the motor changes variously, it is possible to determine the presence or absence of a short circuit occurring in the motor's internal stator winding, regardless of the size of the load. Can be confirmed.

今回は、各相に流れる電流の正側の最大値を特徴量とした。しかし、一般的に回転機に流れる電流にはノイズ成分が含まれる。そのため、電流からノイズ成分を除去しないと、得られる特徴量もノイズの影響を受けてしまい、図2や図3に示す特徴量の分布領域のばらつきが大きくなる。そこで回転機に流れる電流に含まれるノイズ成分を除去するために、ローパスフィルタLPFや移動平均フィルタを用いる。
図17に示すように、例えば60[Hz]の基本波成分の電流にノイズが重畳している場合でもローパスフィルタを用いることで、綺麗な基本波成分を取り出すことができ、ノイズの影響を受けない特徴量を取り出すことができる。
また、LPFのカットオフ周波数は電流の基本周波数成分の20倍以下とする。例えば、電流の基本波成分が60[Hz]であれば、カットオフ周波数は1200[Hz]以下とする。
このように余分なノイズ成分を除去することで、正しい値の特徴量を得ることができ、得られる特徴量分布直線も正確な値が得られるようになる。
This time, the maximum value on the positive side of the current flowing in each phase was used as the feature value. However, in general, a noise component is included in the current flowing through the rotating machine. Therefore, if the noise component is not removed from the current, the obtained feature amount is also affected by the noise, and the variation of the distribution region of the feature amount shown in FIGS. 2 and 3 becomes large. Therefore, a low-pass filter LPF and a moving average filter are used to remove noise components included in the current flowing through the rotating machine.
As shown in FIG. 17, for example, even when noise is superimposed on the current of the fundamental wave component of 60 [Hz], a clean fundamental wave component can be extracted by using a low-pass filter and affected by the noise. Features that are not available can be extracted.
The cut-off frequency of the LPF is 20 times or less of the fundamental frequency component of the current. For example, if the fundamental wave component of the current is 60 [Hz], the cutoff frequency is 1200 [Hz] or less.
By removing extra noise components in this way, it is possible to obtain a feature value having a correct value, and an accurate value can also be obtained from the obtained feature value distribution line.

なお、電流に様々な周波数成分が含まれる場合には、FFTなどの周波数解析を行うことで、各周波数成分を求めることができる。
図18に示すように、周波数解析することで、電流に含まれる各周波数成分を算出することができる。そして、特定の周波数成分(例えば60[Hz]など)に注目し、そのスペクトル強度S60を特徴量としてもよい。
また、前述したように特定周波数成分の電流における正側の最大値を特徴量としてもよい。
例えば、電流が様々な周波数成分を含む場合における、特定周波数成分を取り出す方法について、図18を用いて説明する。ここでは特定周波数成分として60Hzとする。
まず、様々な周波数成分を含む電流に対して、FFT(高速フーリエ変換)を行う。このとき、この電流に対する周波数スペクトルが得られる。
そして60Hzに相当するスペクトル成分の値だけ残し、それ以外のスペクトル成分をすべてゼロとする。
次に、60Hz成分のみを残した周波数スペクトルに対して、IFFT(逆高速フーリエ変換)を行う。こうすることで、60Hz成分の電流波形のみを抽出することができるようになる。こうして得られた特定周波数成分の電流における正側の最大値を特徴量としてもよい。
そしてこれらの周波数解析を三相すべての電流に対して行い、抽出した特徴量の分布を求めてもよい。
When various frequency components are included in the current, each frequency component can be obtained by performing frequency analysis such as FFT.
As shown in FIG. 18, each frequency component included in the current can be calculated by performing frequency analysis. Then, paying attention to a specific frequency component (for example, 60 [Hz]), the spectral intensity S 60 may be used as a feature amount.
Further, as described above, the maximum value on the positive side in the current of the specific frequency component may be used as the feature amount.
For example, a method of extracting a specific frequency component when the current includes various frequency components will be described with reference to FIG. Here, the specific frequency component is 60 Hz.
First, FFT (Fast Fourier Transform) is performed on a current including various frequency components. At this time, a frequency spectrum for this current is obtained.
Only the value of the spectral component corresponding to 60 Hz is left, and all other spectral components are set to zero.
Next, IFFT (Inverse Fast Fourier Transform) is performed on the frequency spectrum that leaves only the 60 Hz component. By doing so, only the current waveform of the 60 Hz component can be extracted. The maximum value on the positive side in the current of the specific frequency component thus obtained may be used as the feature amount.
Then, these frequency analyzes may be performed for all three-phase currents to obtain the distribution of the extracted feature values.

今回の実施の形態では、故障の一例として電動機の固定子巻線における短絡を考えたが、それ以外にも、ベアリングの内輪や外輪、転動体などの損傷時、回転子での損傷の有無を診断の対象としてもよい。  In the present embodiment, a short circuit in the stator winding of the motor was considered as an example of the failure, but in addition to this, when the bearing inner ring, outer ring, rolling element, etc. are damaged, the presence or absence of damage in the rotor is checked. It may be a target of diagnosis.

なお、上記実施の形態では、正常な回転機における特徴量の分布する領域の基準を直線で例示しているが、直線に限らず曲線を用いることができる。  In the above-described embodiment, the reference of the region in which the feature amount is distributed in a normal rotating machine is illustrated by a straight line, but a curved line is not limited to a straight line.

Claims (7)

負荷が接続されて稼働している正常な回転機の各相に流れる電流を様々な大きさの負荷毎に計測し、様々な大きさの負荷の場合に対して特徴量を求め、それらの特徴量が分布する領域を求め、その正常な回転機における特徴量の分布する領域の基準となる線(特徴量分布線)を求めて、該特徴量分布線からの距離の関数として回転機の良否判定に用いる指標(故障確率)の確率密度関数を定義し、特徴量と特徴量分布線との距離がある値になるときに、判定指標が特定の値を取るように、確率密度関数中の標準偏差の値を決定して、この値をコンピュータのメモリに記憶させておき、
回転機を診断する際に特徴量が得られると、その特徴量と前記特徴量分布線との距離を求め、この距離の値と予め求めておいた前記標準偏差の値を用いて、判定指標である故障確率を算出し、その値に閾値を設けるなどして、稼働時の回転機の良否を診断する
ことを特徴とする回転機の良否診断システム。
The current flowing in each phase of a normal rotating machine operating with a load connected is measured for each load of various magnitudes, and feature quantities are obtained for various load magnitudes. The area in which the quantity is distributed is obtained, the reference line (feature quantity distribution line) of the area in which the feature quantity is distributed in the normal rotating machine is obtained, and the quality of the rotating machine is determined as a function of the distance from the feature quantity distribution line. Define the probability density function of the index used for judgment (failure probability), and when the distance between the feature quantity and the feature quantity distribution line becomes a certain value, the judgment index in the probability density function takes a specific value Determine the value of the standard deviation and store this value in your computer's memory,
When a feature amount is obtained when diagnosing a rotating machine, a distance between the feature amount and the feature amount distribution line is obtained, and a determination index is obtained by using the distance value and the standard deviation value obtained in advance. A rotating machine pass / fail diagnostic system characterized in that the failure probability of the rotating machine is calculated and a threshold value is provided to diagnose the failure of the rotating machine during operation.
負荷が接続されて稼働している正常な回転機の各相に流れる電流を様々な大きさの負荷毎に計測し、様々な大きさの負荷の場合に対して、回転機に流れる電流に含まれる特定の周波数成分の電流を周波数解析など行うことで抽出し、その特定周波数成分の電流から特徴量を求め、それらの特徴量が分布する領域を求め、その正常な回転機における特徴量の分布する領域の基準となる線(特徴量分布線)を求めて、該特徴量分布線からの距離の関数として回転機の良否判定に用いる指標(故障確率)の確率密度関数を定義し、特徴量と特徴量分布線との距離がある値になるときに、判定指標が特定の値を取るように、確率密度関数中の標準偏差の値を決定して、この値をコンピュータのメモリに記憶させておき、 回転機を診断する際に特徴量が得られると、その特徴量と前記特徴量分布線との距離を求め、この距離の値と予め求めておいた前記標準偏差の値を用いて、判定指標である故障確率を算出し、その値に閾値を設けるなどして、稼働時の回転機の良否を診断する
ことを特徴とする回転機の良否診断システム。
The current flowing in each phase of a normal rotating machine operating with a load connected is measured for each load of various sizes and included in the current flowing in the rotating machine for loads of various sizes. The current of the specific frequency component is extracted by performing frequency analysis, etc., the feature amount is obtained from the current of the specific frequency component, the region in which those feature amounts are distributed is obtained, and the distribution of the feature amount in the normal rotating machine A reference line (feature distribution line) for a region to be determined, and a probability density function of an index (failure probability) used to determine the quality of a rotating machine as a function of the distance from the feature distribution line is defined The standard deviation value in the probability density function is determined so that the judgment index takes a specific value when the distance between and the feature amount distribution line becomes a certain value, and this value is stored in the memory of the computer. When the diagnosis of the rotating machine, When obtained, the distance between the feature quantity and the feature quantity distribution line is obtained, and the failure probability as the determination index is calculated using the distance value and the standard deviation value obtained in advance. A rotating machine pass / fail diagnostic system characterized by diagnosing the quality of a rotating machine during operation, for example, by setting a threshold value.
前記回転機正常時の特徴量の分布領域を1本の特徴量分布線で近似するのではなく、区間毎に分けて複数の線で近似して診断することを特徴とする請求項1または請求項2に記載の回転機の良否診断システム。  2. The diagnosis is performed by approximating the distribution area of the feature quantity when the rotating machine is normal with a plurality of lines instead of approximating with one feature quantity distribution line. Item 3. A diagnostic system for rotating machines according to item 2. 前記様々な大きさの負荷の場合に対して求められる特徴量の数として、100点以上求めておくことを特徴とする請求項1ないし請求項3いずれか記載の回転機の良否診断システム。  The system for diagnosing pass / fail of a rotating machine according to any one of claims 1 to 3, wherein 100 or more feature quantities are obtained as the number of feature quantities obtained for the loads of various sizes. 前記特徴量を抽出する際に、電流に含まれるノイズ成分を除去するためにフィルタを用いることを特徴とする請求項1ないし請求項4いずれか記載の回転機の良否診断システム。  The system for diagnosing pass / fail of a rotating machine according to any one of claims 1 to 4, wherein a filter is used to remove a noise component included in the current when extracting the feature amount. 前記特徴量を3次元空間で示し、その3次元空間分布をコンピュータ画面上で回転させる機能を持たせることで、様々な角度からの特徴量の分布領域を確認し、回転機器の正常時と異常時の特徴量の変化を視覚的に確認するように構成したことを特徴とする請求項1ないし請求項5いずれか記載の回転機の良否診断システム。  By displaying the feature amount in a three-dimensional space and having the function of rotating the three-dimensional space distribution on the computer screen, the distribution region of the feature amount from various angles can be confirmed, and the rotating device can be operated normally and abnormally. The system for diagnosing pass / fail of a rotating machine according to any one of claims 1 to 5, characterized in that a change in a feature amount with time is visually confirmed. 前記正常な回転機における特徴量の分布する領域の基準となる線が、直線または曲線であることを特徴とする請求項1ないし請求項6いずれか記載の回転機の良否診断システム。  The system for diagnosing pass / fail of a rotating machine according to any one of claims 1 to 6, wherein a line serving as a reference of a region in which the feature amount is distributed in the normal rotating machine is a straight line or a curved line.
JP2013085215A 2013-03-28 2013-03-28 Rotating machine pass / fail diagnosis system Active JP5643372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013085215A JP5643372B2 (en) 2013-03-28 2013-03-28 Rotating machine pass / fail diagnosis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013085215A JP5643372B2 (en) 2013-03-28 2013-03-28 Rotating machine pass / fail diagnosis system

Publications (2)

Publication Number Publication Date
JP2014194727A true JP2014194727A (en) 2014-10-09
JP5643372B2 JP5643372B2 (en) 2014-12-17

Family

ID=51839919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085215A Active JP5643372B2 (en) 2013-03-28 2013-03-28 Rotating machine pass / fail diagnosis system

Country Status (1)

Country Link
JP (1) JP5643372B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223821A (en) * 2015-05-28 2016-12-28 株式会社日立パワーソリューションズ Diagnostic device of electrical apparatus, diagnostic system of electrical apparatus, diagnostic method of electrical apparatus, and program
JP2018117431A (en) * 2017-01-17 2018-07-26 株式会社トーエネック Short-circuit diagnosis device for rotating machine and short-circuit diagnosis method for rotating machine
CN108919041A (en) * 2018-05-15 2018-11-30 贵州电网有限责任公司 A kind of transformer winding state on-line monitoring method based on clustering
WO2019207766A1 (en) * 2018-04-27 2019-10-31 株式会社日立製作所 Control device and control method
WO2020213265A1 (en) * 2019-04-18 2020-10-22 株式会社日立産機システム Monitoring device and monitoring method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954613A (en) * 1995-08-11 1997-02-25 Toshiba Corp Plant facility monitor device
JP2003302421A (en) * 2002-04-11 2003-10-24 Nissan Motor Co Ltd Diagnostic device for revolution sensor
JP2005207644A (en) * 2004-01-21 2005-08-04 Mitsubishi Electric Corp Apparatus diagnosing device, refrigeration cycle device, fluid circuit diagnosing method, apparatus monitoring system and refrigeration cycle monitoring system
JP2010092355A (en) * 2008-10-09 2010-04-22 Hitachi Ltd Abnormality detection method and system
JP2010185861A (en) * 2009-02-12 2010-08-26 Toenec Corp System for diagnosing quality of electric installation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0954613A (en) * 1995-08-11 1997-02-25 Toshiba Corp Plant facility monitor device
JP2003302421A (en) * 2002-04-11 2003-10-24 Nissan Motor Co Ltd Diagnostic device for revolution sensor
JP2005207644A (en) * 2004-01-21 2005-08-04 Mitsubishi Electric Corp Apparatus diagnosing device, refrigeration cycle device, fluid circuit diagnosing method, apparatus monitoring system and refrigeration cycle monitoring system
JP2010092355A (en) * 2008-10-09 2010-04-22 Hitachi Ltd Abnormality detection method and system
JP2010185861A (en) * 2009-02-12 2010-08-26 Toenec Corp System for diagnosing quality of electric installation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016223821A (en) * 2015-05-28 2016-12-28 株式会社日立パワーソリューションズ Diagnostic device of electrical apparatus, diagnostic system of electrical apparatus, diagnostic method of electrical apparatus, and program
JP2018117431A (en) * 2017-01-17 2018-07-26 株式会社トーエネック Short-circuit diagnosis device for rotating machine and short-circuit diagnosis method for rotating machine
WO2019207766A1 (en) * 2018-04-27 2019-10-31 株式会社日立製作所 Control device and control method
CN108919041A (en) * 2018-05-15 2018-11-30 贵州电网有限责任公司 A kind of transformer winding state on-line monitoring method based on clustering
WO2020213265A1 (en) * 2019-04-18 2020-10-22 株式会社日立産機システム Monitoring device and monitoring method
JP2020178454A (en) * 2019-04-18 2020-10-29 株式会社日立産機システム Monitoring device and monitoring method
TWI759720B (en) * 2019-04-18 2022-04-01 日商日立產機系統股份有限公司 Monitoring device, monitoring method, servo amplifier, industrial controller, and machine tool
JP7194069B2 (en) 2019-04-18 2022-12-21 株式会社日立産機システム Monitoring device and monitoring method

Also Published As

Publication number Publication date
JP5643372B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
US10267860B2 (en) Fault detection in induction machines
EP2728367B1 (en) A method for detecting a fault condition in an electrical machine
JP5643372B2 (en) Rotating machine pass / fail diagnosis system
EP2725370B1 (en) A method for the diagnostics of electromechanical system based on impedance analysis
Climente-Alarcon et al. Application of the Wigner–Ville distribution for the detection of rotor asymmetries and eccentricity through high-order harmonics
US10393621B2 (en) Method for assessing the condition of rotating machinery connected to an electric motor
JP6945371B2 (en) Diagnostic equipment for rotating machine systems, power converters, rotating machine systems, and diagnostic methods for rotating machine systems.
CN113748326B (en) Method for estimating bearing fault severity for induction motor
EP2149980B1 (en) Stray flux processing method and system
EP3054307A1 (en) Stator fault detection and diagnosis
JP6420885B1 (en) Method for removing electromagnetic vibration component, diagnostic method for rotating machine, and diagnostic device for rotating machine
JP6821495B2 (en) Partial discharge measurement system and partial discharge measurement method
Pilloni et al. Fault detection in induction motors
JP6646416B2 (en) Rotating machine short circuit diagnosis apparatus and rotating machine short circuit diagnosis method
JP6867812B2 (en) Rotating machine short circuit diagnostic device and rotating machine short circuit diagnostic method
JP5985158B2 (en) Electrical equipment quality diagnosis system
Ramirez-Niño et al. Monitoring network for online diagnosis of power generators
KR20230166897A (en) Apparatus and method for diagnosing fault of battery cell
US20190265299A1 (en) Monitoring And Fault Diagnosis Of Electric Machines
CN114441962A (en) Method and system for diagnosing internal fault of stator and rotor windings of electrically excited synchronous motor
Climente-Alarcon et al. Automation of the startup transient analysis of induction motors using a predictive stage
Negrea Fault Diagnostics of Electrical AC Machine
TW202121160A (en) Sound-based equipment surveillance method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141030

R150 Certificate of patent or registration of utility model

Ref document number: 5643372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250