WO2019207767A1 - Control device and control method - Google Patents

Control device and control method Download PDF

Info

Publication number
WO2019207767A1
WO2019207767A1 PCT/JP2018/017208 JP2018017208W WO2019207767A1 WO 2019207767 A1 WO2019207767 A1 WO 2019207767A1 JP 2018017208 W JP2018017208 W JP 2018017208W WO 2019207767 A1 WO2019207767 A1 WO 2019207767A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter value
parameter
divided
division
range
Prior art date
Application number
PCT/JP2018/017208
Other languages
French (fr)
Japanese (ja)
Inventor
中川 慎二
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2018/017208 priority Critical patent/WO2019207767A1/en
Publication of WO2019207767A1 publication Critical patent/WO2019207767A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B9/00Safety arrangements
    • G05B9/02Safety arrangements electric

Definitions

  • the present invention relates to a control device and a control method.
  • the health status data of a series of subjects given in the form of a bug of word is clustered as a collection of individual data for each subject and age, and the results of the clustering are as follows.
  • a first clustering unit that calculates transition probabilities between the clusters, and network clustering on the clusters corresponding to the transition probabilities calculated by the first clustering unit, thereby obtaining each cluster as a community and the result of this clustering
  • a second clustering unit that calculates a transition probability between each cluster of the first clustering unit, the cluster and the transition probability output from the first clustering unit, and the cluster and the transition probability output from the second clustering unit, respectively.
  • Prediction model construction device that outputs as a model It has been disclosed.
  • Patent Document 1 does not disclose any countermeasures or countermeasures when a sudden abnormality occurs in the parameter output by the control device.
  • the present invention can properly normalize the abnormal state of the control device by correcting the abnormal parameter based on the past normal parameter even when a sudden abnormality occurs in the parameter output by the control device.
  • An object is to provide a control device.
  • a parameter dividing unit that divides a distribution area of parameter values calculated for controlling the controlled device into a plurality of divided ranges, and a plurality of divided ranges divided by the parameter dividing unit
  • the transition frequency calculation unit that calculates the transition frequency between the divided ranges in which the values have changed, and the first parameter value calculated to control the controlled device are included in any of the divided ranges divided by the parameter dividing unit.
  • the transition calculated by the transition frequency calculation unit when the second parameter value calculated after the first parameter value is not included in any of the division ranges divided by the parameter division unit Based on the frequency, the second parameter value is corrected to a value in the second divided range having the highest transition frequency from the first divided range including the first parameter value.
  • a parameter correction unit that was configured to have.
  • the abnormal state of the control device is properly normalized by correcting the abnormal parameter based on the past normal parameter. can do.
  • FIG. 1 is a block diagram illustrating a functional configuration of the control device 1 according to the embodiment.
  • control device 1 includes a parameter dividing unit 2, a transition frequency calculating unit 3, and a parameter correcting unit 4.
  • the parameter dividing unit 2 divides the distribution range V (see FIG. 6) of the past parameter value A for controlling the controlled device (for example, an autonomous driving vehicle) into a predetermined range, which is a divided range 1 to 4 (FIG. 8). Is calculated and stored in the storage device 11 (see FIG. 2).
  • the transition frequency calculation unit 3 calculates the transition frequency between the divided ranges based on the divided ranges 1 to 4 calculated by the parameter dividing unit 2 and the parameter value A related to control, and stores the calculated frequency in the storage device 11 (see FIG. 2). To do.
  • the parameter correction unit 4 corrects the parameter value Ax after correction based on the division ranges 1 to 4 calculated by the parameter division unit 2, the transition frequency calculated by the transition frequency calculation unit 3, and the parameter value A related to control. Is calculated. A method for calculating the corrected parameter value Ax by the parameter correction unit 4 will be described later.
  • FIG. 2 is a block diagram illustrating a hardware configuration of the control device 1.
  • the control device 1 includes a storage device 11, a CPU (Central Processing Unit) 12, a ROM (Read Only Memory) 13, a RAM (Random Access Memory) 14, an input circuit 16, an input / output port 17, and an output circuit. 18. In each of these devices, information is transmitted / received via the data bus 15.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the input circuit 16 receives signals from various sensors provided in the controlled device (for example, the automatic driving vehicle 5 shown in FIG. 3). For example, when the control target of the control device 1 is the autonomous driving vehicle 5, the driving conditions of the autonomous driving vehicle 5 and the surrounding environmental conditions are detected by various sensors, and signals detected by the various sensors are input to the input circuit 16. Input and processed. The input signal after being processed by the input circuit 16 is transmitted to the input / output port 17. The input signal transmitted to the input / output port 17 is stored in the RAM 14 or the storage device 11 via the data bus 15.
  • the processing and functions described above are performed by the CPU 12 executing a control program stored in the ROM 13, but the control program may be stored in the storage device 11. Even in this way, the CPU 12 executes the control program stored in the storage device 11 so that the processing and functions described above are performed. At that time, the CPU 12 appropriately reads out the value stored in the RAM 14 or the storage device 11 and performs the calculation.
  • information (value) transmitted to the outside of the control device 1 is transmitted to the input / output port 17 via the data bus 15, and then the information transmitted to the input / output port 17 is output as an output signal. It is transmitted to the circuit 18.
  • the output signal transmitted to the output circuit 18 is transmitted to the outside as an external signal.
  • the signal to the outside indicates an actuator signal or the like for causing the control target to perform a desired movement.
  • FIG. 3 is a block diagram when the control device 1 is applied to the autonomous driving vehicle 5.
  • FIG. 4 is a block diagram illustrating a functional configuration of the parameter dividing unit 2.
  • FIG. 5 is a block diagram illustrating functions of the first division processing unit 21.
  • FIG. 6 is a diagram for explaining an example of the result of clustering the parameter values, where the horizontal axis indicates the engine speed of the automatic driving vehicle 5 and the vertical axis indicates the engine torque of the automatic driving vehicle 5.
  • FIG. 7 is a block diagram illustrating functions of the second division processing unit 22.
  • FIG. 8 is a diagram for explaining an example of setting the division range of the distribution of parameter values, where the horizontal axis indicates the engine speed of the automatic driving vehicle 5 and the vertical axis indicates the engine torque of the automatic driving vehicle 5.
  • the control device 1 (parameter correction unit 4) is connected to an ECU (Electronic Control Unit: not shown) of the autonomous driving vehicle 5 and the like, and the autonomous driving vehicle 5 is used as the corrected parameter value Ax.
  • the amount of operation for controlling is calculated.
  • the operation amount for controlling the autonomous driving vehicle 5 is, for example, a target speed, a target rotational speed of the engine, or the like.
  • the control apparatus 1 may be provided integrally with ECU (not shown) of the autonomous driving vehicle 5, and may be performed by CPU (not shown) of ECU.
  • the parameter dividing unit 2 of the control device 1 described above is a first division processing unit that obtains the result of dividing the parameter value A from the distribution of the parameter value A related to the control of the autonomous driving vehicle 5 that is the controlled device. 21 and a second division processing unit 22 for determining the division ranges 1 to 4 from the division result of the parameter value A by the first division processing unit.
  • the parameter value A related to the control when the controlled device is the autonomous driving vehicle 5 a case where the value is a value indicating the relationship between the engine speed and the engine torque will be described.
  • the first division processing unit 21 clusters the parameter values A (vectors) related to the control of the autonomous driving vehicle 5 that is the controlled device using machine learning (for example, k-means method). Then, the first division processing unit 21 outputs the division result of the parameter value A obtained by the k-means method to the second division processing unit 22.
  • the analysis result of the parameter value A indicates the cluster number (see FIG. 6) to which the parameter value after division by the k-means method belongs.
  • the division information may be an average value (center vector) of parameter values belonging to each cluster.
  • the first division processing unit 21 performs a clustering process on the distribution area V of the parameter value A (two-dimensional vector) related to the control of the autonomous driving vehicle 5 with the number of clusters of 4 by the k-means method.
  • the first division processing unit 21 uses a distribution region V of the parameter value A related to vehicle control as a cluster 1 with an engine speed of about 2000 rpm (Revolutions Per Minute) or less, a cluster 2 with about 2000-3500 rpm, Clustering is performed with cluster number 4 of cluster 3 of about 3500 to 5000 rpm and cluster 4 of about 5000 rpm or more.
  • the second division processing unit 22 uses the division result of the parameter value A related to the control calculated by the first division processing unit 21 to divide the divided range for each distribution of the parameter value A divided. And outputs the result to the transition frequency calculation unit 3 as a divided range. Specifically, as shown in FIG. 7, the second division processing unit 22 performs the following processes (1) and (2). (1) The minimum value of each dimension of the parameter value A belonging to each of the clusters 1 to 4 divided by the first division processing unit 21 is set as the lower limit value of each dimension of the range corresponding to each cluster. (2) The maximum value of each dimension of the parameter value A belonging to each of the clusters 1 to 4 is set as the upper limit value of each dimension in the range corresponding to each cluster. As shown in FIG.
  • the engine speed is about 2000 rpm (Revolutions Per) based on the division result of the distribution of the parameter value A related to control by the processes (1) and (2) by the second division processing unit 22 described above.
  • the cluster 1 below is set to the division range 1
  • the cluster 2 of about 2000 to 3500 rpm is set to the division range 2
  • the cluster 3 of about 3500 to 5000 rpm is set to the division range 3
  • the cluster 4 of about 5000 rpm or more is set. Is set to the division range 4.
  • the above-described division range of the distribution region V of the parameter value A indicates a range defined by the lower limit value and the upper limit value of each dimension of the division range corresponding to each divided cluster.
  • the division range is a range defined by the lower limit value and the upper limit value of each dimension of the range corresponding to each cluster.
  • a machine using a supervised learning model such as SVM (Support Vector Machine).
  • the division range of the parameter value A may be set based on the learning result by learning.
  • the information on the division ranges 1 to 4 set by the parameter division unit 2 and the parameter value A related to the control of the autonomous driving vehicle 5 are output to the transition frequency calculation unit 3, and the transition frequency calculation unit 3
  • the transition frequency between the divided ranges is calculated from the information of the divided ranges 1 to 4 set by the dividing unit 2 and the parameter value A related to the control, and stored in the storage device 11.
  • FIG. 9 is a block diagram illustrating a functional configuration of the transition frequency calculation unit 3.
  • the transition frequency calculation unit 3 determines the division range N corresponding to the cluster to which the parameter value K + 1 belongs.
  • the division range N + 1 corresponding to the cluster to which the parameter value K + 1 belongs is obtained, and the movement occurrence frequency from the division range N to the division range N + 1 is calculated.
  • the occurrence frequency of movement from the range 1 to the division range 4, the occurrence frequency of movement from the division range 2 to the division frequency 1, and the occurrence frequency of movement (no movement) from the division range 4 to the division range 4 are calculated.
  • a method that is easy to calculate such as dividing the number of times of movement from the divided range N to the divided range N + 1 by the number of parameter value updates, can be selected as appropriate.
  • the transition frequency calculation unit 3 calculates the movement pattern of the parameter values K and K + 1 and the transition frequency thereof using the information of the cluster to which the parameter value K and the parameter value K + 1 belong instead of the divided range N and the divided range N + 1. You may do it.
  • FIG. 10 is a graph showing an example of the result of calculating the transition frequency between the divided ranges. As shown in FIG. 10, the transition frequencies between the divided ranges described above are calculated, and the respective transition frequencies are shown in a graph. In the embodiment, the transition frequency moving from the divided range 1 to the divided range 4 is high. It is shown. The calculation result of the transition frequency between the divided ranges calculated by the transition frequency calculation unit 3 and the parameter value A related to the control of the autonomous driving vehicle 5 are output to the parameter correction unit 4.
  • FIG. 11 is a block diagram illustrating a functional configuration of the parameter correction unit 4.
  • the parameter correction unit 4 includes the division ranges 1 to 4 of the distribution region V of the parameter value A obtained by the parameter division unit 2, the transition frequency between the division ranges obtained by the transition frequency calculation unit 3, and The corrected parameter value Ax is calculated from the control parameter value A.
  • the parameter correction unit 4 sets the newly calculated control parameter value A1 (first parameter value) to the divided range 1 to the distribution range V of the parameter value A calculated by the parameter dividing unit 2. If the parameter value A2 (second parameter value) calculated next is not included in any of the divided ranges 1 to 4, it is calculated by the transition frequency calculation unit 3.
  • the divided range 4 (second divided range) having the highest transition frequency from the divided range 1 (first divided range) including the parameter value A1 with reference to the transition frequency (for example, the transition frequency shown in FIG. 10).
  • the parameter value A2 is corrected to the boundary point A2a of the division range 4 that is closest to the parameter value A2.
  • the control device 1 determines the range of the distribution region V of the past parameter value A related to the control of the autonomous driving vehicle 5 based on the parameter value A during operation of the autonomous driving vehicle 5 that is the controlled device. It is divided into a plurality of divided ranges 1 to 4, and based on the parameter value A, the frequency of transition of the divided ranges divided by the parameter value A is calculated and stored, and newly calculated when the autonomous driving vehicle 5 is operated.
  • the parameter value A1 is included in any of the divided ranges 1 to 4 and the parameter value A2 calculated next is not included in any of the divided ranges, the parameter value A1 is based on the transition frequency.
  • the parameter value is corrected to the divided range 4 having the highest transition frequency from the divided range 1 including.
  • the control device 1 divides the parameter value A into a plurality of ranges based on the result of clustering. Further, the frequency of occurrence of the pattern in which the parameter value A has changed from the division range to which the parameter value A belongs last time to the division range to which the parameter value A belongs is stored. Further, the parameter A2 is corrected to the boundary point A2a of the division range 4 that is closest to the abnormal parameter value A2. Therefore, when an abnormality in the control parameter value of the control device 1 is detected, the abnormality parameter value A2 is corrected to a control range in which the previous normal parameter value A1 has the highest probability of transition. By correcting to A2a, it is possible to normalize the abnormality of the control device 1 with a high probability, and it is possible to safely control the autonomous driving vehicle.
  • the transition frequency calculation unit 3 that calculates the transition frequency between the divided ranges in which the parameter value A has changed, and the parameter value A1 that is calculated to control the autonomous driving vehicle 5 (first 1 parameter value) is included in any of the division ranges 1 to 4 divided by the parameter division unit 2, and the parameter value A2 (second parameter value) calculated after the parameter value A1 is the parameter
  • the first parameter value A1 is included based on the transition frequency calculated by the transition frequency calculating unit 3.
  • Split range e.g., division areas 1 highest second split range transition frequency from (e.g., split range 4) a parameter correction unit 4 corrects the parameter value A2 to a value within, and configured
  • the abnormal parameter value A2 is corrected to a control range where the probability that the previous normal parameter value A1 transitions is highest. Therefore, when a sudden abnormality occurs, it is possible to normalize the abnormal state of the control device with a high probability by correcting it to the most plausible value, and the autonomous driving vehicle 5 can be controlled safely.
  • the parameter dividing unit 2 is configured to divide the parameter value distribution area calculated for controlling the autonomous driving vehicle 5 into a plurality of divided ranges by clustering.
  • the parameter dividing unit 2 can appropriately divide the parameter value distribution region by clustering processing using a computer.
  • the transition frequency calculation part 3 represents the transition frequency (occurrence frequency) of the pattern in which the parameter value calculated in order to control the autonomous driving vehicle 5 represents within the division
  • the transition frequency calculation unit 3 can appropriately calculate the transition frequency of the parameter value as a representative value within the divided range including the parameter value.
  • the transition frequency calculation unit 3 calculates the occurrence frequency of the pattern in which the parameter value calculated for controlling the autonomous driving vehicle 5 has changed from the divided range 1 belonging to the past to the divided range 4 belonging to this time. It was set as the structure to do.
  • the transition frequency calculation unit 3 can appropriately calculate the transition frequency based on the previous transition between the previous parameter value and the current parameter value.
  • the parameter correction unit 4 converts the second parameter value A2 not included in any of the division ranges 1 to 4 into the first division range (for example, the division range) including the first parameter value A1.
  • the configuration is such that the value is corrected to any value within the second divided range (for example, divided range 4) having the highest transition frequency from range 1).
  • the parameter correction unit 4 sets the abnormal parameter value A2 that is not included in any of the divided ranges 1 to 4 from the divided range 1 that includes the normal parameter value A1 immediately before the parameter value A2. Since the correction is made to any value in the divided range 4 having a high transition frequency, the abnormal parameter value A2 can be corrected to the most likely normal parameter value.
  • the parameter correction unit 4 sets the parameter value A2 that is not included in any of the divided ranges 1 to 4 to the transition frequency from the divided range 1 that includes the normal parameter value A1 in the past in the straight line. It was set as the structure corrected to the boundary value of the high division range 4.
  • the parameter correction unit 4 corrects the parameter value A2a as close as possible to the parameter value A2 because the parameter correction unit 4 corrects the parameter value A2 to the parameter value closest to the parameter A2 in the divided range 4 including the normal parameter A1. It can be corrected. Therefore, since the control device 1 corrects the abnormal parameter value A2 to be close to the abnormal parameter value A2 and to the normal parameter value A2a as compared with the case where the abnormal parameter value A2 is corrected to a completely different value, the automatic operation after the parameter value correction is performed. The vehicle 5 can be controlled smoothly.
  • FIG. 12 is a block diagram illustrating a functional configuration of a parameter correction unit 4A according to the second embodiment.
  • symbol is attached
  • the parameter correction unit 4A of the control device is any one in which the parameter value A1 related to the control of the newly calculated controlled device (for example, the autonomous driving vehicle 5) is divided by the parameter dividing unit 2.
  • the transition frequency calculated by the transition frequency calculation unit 3 for example, Referring to (transition frequency shown in FIG. 10)
  • the division range having the highest transition frequency from the division ranges 1 to 4 including the previously calculated parameter value A1 is included in the division range having the highest transition frequency.
  • the parameter value A2 is corrected to the past actual parameter value A2a closest to the parameter value A2.
  • the parameter correction unit 4A includes the newly calculated parameter value A1 in the divided range 1, and the next calculated parameter value A2 is not included in any of the divided ranges 1 to 4.
  • the transition frequency transition frequency shown in FIG. 10
  • the transition frequency calculation unit 3 in the divided range 4 having the highest transition frequency from the divided range 1 including the parameter A1, this divided range 4
  • the parameter value A2 is corrected to the past actual parameter value A2a that is closest to the parameter value A2 among the past parameter values A included in.
  • the control device 1 distributes the past parameter value A related to the control of the autonomous driving vehicle 5 based on the parameter value A during the operation of the autonomous driving vehicle 5 that is the controlled device. Is divided into a plurality of divided ranges 1 to 4, and based on the parameter value A, the frequency of transition of the plurality of divided ranges divided by the parameter value A is calculated and stored. When the calculated parameter value A1 is included in any of the divided ranges 1 to 4 and the next calculated parameter value A2 is not included in any of the divided ranges, based on the transition frequency The parameter value is corrected to the divided range 4 having the highest transition frequency from the divided range 1 including the parameter value A1.
  • the control device 1 divides the parameter value A into a plurality of ranges based on the result of clustering. Further, the frequency of occurrence of the pattern in which the parameter value A has changed from the division range to which the parameter value A belongs last time to the division range to which the parameter value A belongs is stored. Further, the parameter value A2 is corrected to the parameter value A2a closest to the abnormal parameter value A2 among the past parameter values A belonging to the division range 4. Therefore, when an abnormality in the control parameter value of the control device 1 is detected, the abnormality parameter value A2 is corrected to a control range in which the previous normal parameter value A1 has the highest probability of transition. By correcting to A2a, it is possible to normalize the abnormality of the control device 1 with a high probability, and it is possible to safely control the autonomous driving vehicle.
  • the parameter correction unit 4 converts the parameter value A2 not included in any of the division ranges 1 to 4 into the second in the division range 4 having the highest transition frequency from the division range 1 including the parameter value A1.
  • the parameter value is corrected to the closest past parameter value A2a.
  • FIG. 13 is a block diagram illustrating a functional configuration of a parameter correction unit 4B according to the third embodiment.
  • symbol is attached
  • the parameter correction unit 4B of the control device is any of the parameter values A1 related to the control of the newly calculated controlled device (for example, the autonomous driving vehicle 5) divided by the parameter dividing unit 2.
  • the transition frequency calculated by the transition frequency calculation unit 3 for example, Referring to (transition frequency shown in FIG. 10)
  • the division range having the highest transition frequency from the division ranges 1 to 4 including the previously calculated parameter value A1 is included in the division range having the highest transition frequency.
  • the parameter value A2 is corrected to the representative vector of the past parameter values.
  • the representative vector of the parameter value A included in the predetermined divided range is a center vector of the distribution of past actual parameter values included in the predetermined divided range, and the past actual parameter included in the divided range. The average value of the distribution of value A.
  • the parameter correction unit 4B includes the newly calculated parameter value A1 in the divided range 1 and the next calculated parameter value A2 in any of the divided ranges 1 to 4. If there is not, in the divided range 4 having the highest transition frequency from the divided range 1 including the parameter A1 with reference to the transition frequency calculated by the transition frequency calculating unit 3 (the transition frequency shown in FIG. 10), this divided range 4, the parameter value A2 is corrected to the representative vector A2a that is the average value of the distribution of the actual parameter value A in the past.
  • the control device 1 distributes the past parameter value A distribution region V related to the control of the autonomous driving vehicle 5 based on the parameter value A during operation of the autonomous driving vehicle 5 that is the controlled device. Is divided into a plurality of divided ranges 1 to 4, and based on the parameter value A, the frequency of transition of the plurality of divided ranges divided by the parameter value A is calculated and stored. When the calculated parameter value A1 is included in any of the divided ranges 1 to 4 and the next calculated parameter value A2 is not included in any of the divided ranges, based on the transition frequency The parameter value is corrected to the divided range 4 having the highest transition frequency from the divided range 1 including the parameter value A1.
  • the control device 1 divides the parameter value A into a plurality of ranges based on the result of clustering. Further, the frequency of occurrence of the pattern in which the parameter value A has changed from the division range to which the parameter value A belongs last time to the division range to which the parameter value A belongs is stored. Also, the parameter A2 is corrected to the representative vector (center vector) A2a of the experienced parameter value A belonging to the division range 4. Therefore, when an abnormality in the control parameter value of the control device 1 is detected, the abnormality parameter value A2 is corrected to a control range in which the previous normal parameter value A1 has the highest probability of transition. By correcting to A2a, it is possible to normalize the abnormality of the control device 1 with a high probability, and it is possible to safely control the autonomous driving vehicle.
  • the parameter correction unit 4 converts the parameter value A2 not included in any of the divided ranges 1 to 4 into the parameter value in the divided range 4 having the highest transition frequency from the divided range 1 including the parameter value A1. It was set as the structure correct
  • the parameter correction unit 4 converts the abnormal parameter value A2 that is not included in any of the division ranges 1 to 4 into the division that has the highest transition frequency from the division range 1 that includes the normal parameter value A1. Since it is corrected to the representative value (average value) of the parameter value A2a in the range 4, it can be corrected to a more appropriate normal parameter value A2a.
  • FIG. 14 is a block diagram illustrating a functional configuration of the control device 1 according to the fourth embodiment.
  • the fourth embodiment is different from the above-described embodiment in that the controlled device controlled by the control device 1 is a robot 6.
  • symbol is attached
  • the control device 1 is connected to the robot 6, and the newly calculated parameter value A1 related to the control of the robot 6 is divided into any one of the divided ranges 1 divided by the parameter dividing unit 2 described above.
  • the parameter correction unit 4 makes a transition from the divided range including the parameter value A1.
  • the parameter value A2 is corrected to the boundary point A2a of the division range closest to the parameter value A2.
  • the parameter correction unit 4A sets the parameter value A2a closest to the parameter value A2 among the past parameter values included in the division range in the division range having the highest transition frequency from the division range including the parameter value A1.
  • the parameter value A2 is corrected.
  • the parameter correction unit 4B sets the parameter value at the point A2a of the representative vector (center vector) of the past parameter value included in the divided range in the divided range having the highest transition frequency from the divided range including the parameter value A1. Correct A2
  • control device 1 by applying the control device 1 to the control of the robot 6, even if a sudden abnormality occurs in the control parameter of the robot 6, the control parameter is appropriately corrected to prevent malfunction of the robot 6. And can be controlled safely. Further, it is possible to suitably prevent the production line from being stopped due to a malfunction of the robot 6.
  • FIG. 15 is a block diagram illustrating a functional configuration of the control device 1 according to the fifth embodiment.
  • the fifth embodiment differs from the above-described embodiment in that the controlled device controlled by the control device 1 is a drone 7.
  • symbol is attached
  • the control device 1 is connected to the drone 7, and the newly calculated parameter value A1 related to the control of the drone 7 is any one of the division ranges 1 divided by the parameter division unit 2 described above.
  • the parameter correction unit 4 makes a transition from the divided range including the parameter value A1.
  • the parameter value A2 is corrected to the boundary point A2a of the division range closest to the parameter value A2.
  • the parameter correction unit 4A sets the parameter value A2a closest to the parameter value A2 among the past parameter values included in the division range in the division range having the highest transition frequency from the division range including the parameter value A1.
  • the parameter value A2 is corrected.
  • the parameter correction unit 4B sets the parameter value at the point A2a of the representative vector (center vector) of the past parameter value included in the divided range in the divided range having the highest transition frequency from the divided range including the parameter value A1. Correct A2
  • control device 1 By applying the control device 1 to the control of the drone 7, even if a sudden abnormality occurs in the control parameter of the drone 7, the control parameter can be appropriately corrected, and the drone 7 malfunctions. It is possible to prevent the danger of a fall caused by, and to control it safely.
  • the present invention is not limited to the one having all the configurations of the above-described embodiment, and a part of the configuration of the above-described embodiment is replaced with the configuration of another embodiment.
  • the configuration of the above-described embodiment may be replaced with the configuration of another embodiment.
  • control device 11: storage device, 12: CPU, 13: ROM, 14: RAM, 15: data bus, 16: input circuit, 17: input / output port, 18: output circuit, 2: parameter dividing unit, 21 : First division processing unit, 22: second division processing unit, 3: transition frequency calculation unit, 4: parameter correction unit, 5: vehicle, 6: robot, 7: drone

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

The present invention can suitably normalize an abnormality of a control device by correcting an abnormal parameter on the basis of a past normal parameter, even when an accidental abnormality occurs in the parameter. The present invention is configured to have: a parameter division unit 2 which divides a distribution area of parameter values, which are calculated to control a vehicle 5, into a plurality of division ranges 1-4; a transition frequency calculation unit 3 which calculates a transition frequency between division ranges from and to which the parameter value is transitioned among the divided division ranges 1-4; and a parameter correction unit 4 which, when a parameter value A1 calculated to control the vehicle 5 is included in any of the division ranges 1-4 and a parameter A2, which is calculated after the parameter A1, is not included in any of the division ranges 1-4, corrects, on the basis of the transition frequency, the parameter value A2 to a value within the division range 4 to which a transition frequency from the division range 1, in which the parameter value A1 is included, is the highest.

Description

制御装置および制御方法Control apparatus and control method
 本発明は、制御装置および制御方法に関する。 The present invention relates to a control device and a control method.
 特許文献1には、バグオブワードの形式で与えられた一連の対象者の一連の年代における健康状態データを、対象者及び年代ごとの個別データの集まりとしてクラスタリングを行うと共に、当該クラスタリングした結果の各クラスタ間の遷移確率を算出する第1クラスタリング部と、第1クラスタリング部で算出した遷移確率と対応づいたクラスタに関してネットワーククラスタリングを行うことで、コミュニティとしての各クラスタを求めると共に、このクラスタリングの結果の各クラスタ間の遷移確率を算出する第2クラスタリング部と、を備え、第1クラスタリング部の出力したクラスタ及び遷移確率と第2クラスタリング部の出力したクラスタ及び遷移確率と、をそれぞれ健康状態推移のモデルとして出力する予測モデル構築装置が開示されている。 In Patent Literature 1, the health status data of a series of subjects given in the form of a bug of word is clustered as a collection of individual data for each subject and age, and the results of the clustering are as follows. A first clustering unit that calculates transition probabilities between the clusters, and network clustering on the clusters corresponding to the transition probabilities calculated by the first clustering unit, thereby obtaining each cluster as a community and the result of this clustering A second clustering unit that calculates a transition probability between each cluster of the first clustering unit, the cluster and the transition probability output from the first clustering unit, and the cluster and the transition probability output from the second clustering unit, respectively. Prediction model construction device that outputs as a model It has been disclosed.
特開2016-173728号公報JP 2016-173728 A
 しかしながら、この種の制御装置では、当該制御装置が出力したパラメータに突発的な異常が発生した場合、異常なパラメータに基づいてその後の処理が行われてしまうという問題がある。特許文献1に開示されているものは、制御装置が出力したパラメータに突発的な異常が発生した場合の対策や対応方法については何ら開示されていない。 However, in this type of control device, when a sudden abnormality occurs in the parameter output from the control device, there is a problem that the subsequent processing is performed based on the abnormal parameter. What is disclosed in Patent Document 1 does not disclose any countermeasures or countermeasures when a sudden abnormality occurs in the parameter output by the control device.
 したがって本発明は、制御装置が出力したパラメータに突発的な異常が発生した場合でも、異常なパラメータを過去の正常なパラメータに基づいて補正することで、制御装置の異常状態を適切に正常化できる制御装置を提供することを目的とする。 Therefore, the present invention can properly normalize the abnormal state of the control device by correcting the abnormal parameter based on the past normal parameter even when a sudden abnormality occurs in the parameter output by the control device. An object is to provide a control device.
 上記課題を解決するため、被制御装置を制御するために演算されたパラメータ値の分布領域を複数の分割範囲に分割するパラメータ分割部と、パラメータ分割部により分割された複数の分割範囲において、パラメータ値が遷移した分割範囲間の遷移頻度を演算する遷移頻度算出部と、被制御装置を制御するために演算された第1のパラメータ値が、パラメータ分割部により分割された何れかの分割範囲に含まれており、第1のパラメータ値の後に演算された第2のパラメータ値が、パラメータ分割部により分割された何れの分割範囲にも含まれていない場合、遷移頻度算出部により算出された遷移頻度に基づいて、第1のパラメータ値が含まれる第1の分割範囲からの遷移頻度が最も高い第2の分割範囲内の値に第2のパラメータ値を補正するパラメータ補正部と、を有する構成とした。 In order to solve the above problem, a parameter dividing unit that divides a distribution area of parameter values calculated for controlling the controlled device into a plurality of divided ranges, and a plurality of divided ranges divided by the parameter dividing unit, The transition frequency calculation unit that calculates the transition frequency between the divided ranges in which the values have changed, and the first parameter value calculated to control the controlled device are included in any of the divided ranges divided by the parameter dividing unit. The transition calculated by the transition frequency calculation unit when the second parameter value calculated after the first parameter value is not included in any of the division ranges divided by the parameter division unit Based on the frequency, the second parameter value is corrected to a value in the second divided range having the highest transition frequency from the first divided range including the first parameter value. A parameter correction unit that was configured to have.
 本発明によれば、制御装置が出力したパラメータに突発的な異常が発生した場合でも、異常なパラメータを過去の正常なパラメータに基づいて補正することで、制御装置の異常状態を適切に正常化することができる。 According to the present invention, even when a sudden abnormality occurs in the parameter output by the control device, the abnormal state of the control device is properly normalized by correcting the abnormal parameter based on the past normal parameter. can do.
本発明にかかる制御装置の機能構成を説明するブロック図である。It is a block diagram explaining the functional structure of the control apparatus concerning this invention. 制御装置のハードウェア構成を説明するブロック図である。It is a block diagram explaining the hardware constitutions of a control apparatus. 制御装置を自動運転車両に適用した場合のブロック図である。It is a block diagram at the time of applying a control apparatus to an autonomous driving vehicle. パラメータ分割部の機能構成を説明するブロック図である。It is a block diagram explaining the function structure of a parameter division part. 第1分割処理部の機能を説明するブロック図である。It is a block diagram explaining the function of a 1st division | segmentation process part. パラメータ値をクラスタリングした結果の一例を説明する図である。It is a figure explaining an example of the result of clustering the parameter value. 第2分割処理部の機能を説明するブロック図である。It is a block diagram explaining the function of a 2nd division | segmentation process part. パラメータ値の分布の分割範囲の設定の一例を説明する図である。It is a figure explaining an example of the setting of the division range of parameter value distribution. 遷移頻度算出部の機能構成を説明するブロック図である。It is a block diagram explaining the function structure of a transition frequency calculation part. 分割範囲間の遷移頻度を演算した結果の一例を表したグラフである。It is a graph showing an example of the result of calculating the transition frequency between division ranges. パラメータ補正部の機能構成を説明するブロック図である。It is a block diagram explaining the functional structure of a parameter correction | amendment part. 第2の実施の形態にかかるパラメータ補正部の機能構成を説明するブロック図である。It is a block diagram explaining the functional structure of the parameter correction | amendment part concerning 2nd Embodiment. 第3の実施形態にかかるパラメータ補正部の機能構成を説明するブロック図である。It is a block diagram explaining the functional structure of the parameter correction part concerning 3rd Embodiment. 第4の実施形態にかかる制御装置の機能構成を説明するブロック図である。It is a block diagram explaining the functional structure of the control apparatus concerning 4th Embodiment. 第5の実施形態にかかる制御装置の機能構成を説明するブロック図である。It is a block diagram explaining the functional structure of the control apparatus concerning 5th Embodiment.
 以下、本発明の実施形態について図面を用いて詳細に説明する。
[第1の実施の形態]
 初めに、本発明の第1の実施の形態にかかる制御装置1について説明する。
 図1は、実施の形態にかかる制御装置1の機能構成を説明するブロック図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First Embodiment]
First, the control device 1 according to the first embodiment of the present invention will be described.
FIG. 1 is a block diagram illustrating a functional configuration of the control device 1 according to the embodiment.
<制御装置の機能構成>
 図1に示すように、制御装置1は、パラメータ分割部2と、遷移頻度算出部3と、パラメータ補正部4とを有して構成される。
<Functional configuration of control device>
As shown in FIG. 1, the control device 1 includes a parameter dividing unit 2, a transition frequency calculating unit 3, and a parameter correcting unit 4.
 パラメータ分割部2は、被制御装置(例えば、自動運転車両)を制御するための過去のパラメータ値Aの分布領域V(図6参照)を所定の範囲で分割した分割範囲1~4(図8参照)を演算して記憶装置11(図2参照)に記憶する。 The parameter dividing unit 2 divides the distribution range V (see FIG. 6) of the past parameter value A for controlling the controlled device (for example, an autonomous driving vehicle) into a predetermined range, which is a divided range 1 to 4 (FIG. 8). Is calculated and stored in the storage device 11 (see FIG. 2).
 遷移頻度算出部3は、パラメータ分割部2で演算された分割範囲1~4と制御に関するパラメータ値Aとに基づいて分割範囲間の遷移頻度を算出して記憶装置11(図2参照)に記憶する。 The transition frequency calculation unit 3 calculates the transition frequency between the divided ranges based on the divided ranges 1 to 4 calculated by the parameter dividing unit 2 and the parameter value A related to control, and stores the calculated frequency in the storage device 11 (see FIG. 2). To do.
 パラメータ補正部4は、パラメータ分割部2で演算された分割範囲1~4と、遷移頻度算出部3で算出された遷移頻度と、制御に関するパラメータ値Aとに基づいて、補正後のパラメータ値Axを算出する。パラメータ補正部4による補正後のパラメータ値Axの算出方法は後述する。 The parameter correction unit 4 corrects the parameter value Ax after correction based on the division ranges 1 to 4 calculated by the parameter division unit 2, the transition frequency calculated by the transition frequency calculation unit 3, and the parameter value A related to control. Is calculated. A method for calculating the corrected parameter value Ax by the parameter correction unit 4 will be described later.
<制御装置のハードウェア構成>
 前述した、制御装置1のパラメータ分割部2と、遷移頻度算出部3と、パラメータ補正部4の各機能は、後述するCPU12がROM13に記憶された制御プログラムを実行することで発揮される。次に制御装置1のハードウェア構成について説明する。
 図2は、制御装置1のハードウェア構成を説明するブロック図である。
<Hardware configuration of control device>
Each function of the parameter dividing unit 2, the transition frequency calculating unit 3, and the parameter correcting unit 4 of the control device 1 described above is exhibited when the CPU 12 described later executes a control program stored in the ROM 13. Next, the hardware configuration of the control device 1 will be described.
FIG. 2 is a block diagram illustrating a hardware configuration of the control device 1.
 制御装置1は、記憶装置11と、CPU(Central Processing Unit)12と、ROM(Read Only Memory)13と、RAM(Random Access Memory)14と、入力回路16と、入出力ポート17と、出力回路18と、を有して構成されている。これらの各装置では、データバス15を介して情報の送受信が行われる。 The control device 1 includes a storage device 11, a CPU (Central Processing Unit) 12, a ROM (Read Only Memory) 13, a RAM (Random Access Memory) 14, an input circuit 16, an input / output port 17, and an output circuit. 18. In each of these devices, information is transmitted / received via the data bus 15.
 入力回路16には、被制御装置(例えば、図3に示す自動運転車両5)に設けられた各種センサからの信号等が入力される。例えば、制御装置1の制御対象が自動運転車両5である場合、自動運転車両5の運転条件や周囲の環境条件などが各種センサで検出され、この各種センサで検出された信号が入力回路16に入力されて処理される。入力回路16で処理された後の入力信号は、入出力ポート17に送信される。入出力ポート17に送信された入力信号は、データバス15を介してRAM14又は記憶装置11に記憶される。 The input circuit 16 receives signals from various sensors provided in the controlled device (for example, the automatic driving vehicle 5 shown in FIG. 3). For example, when the control target of the control device 1 is the autonomous driving vehicle 5, the driving conditions of the autonomous driving vehicle 5 and the surrounding environmental conditions are detected by various sensors, and signals detected by the various sensors are input to the input circuit 16. Input and processed. The input signal after being processed by the input circuit 16 is transmitted to the input / output port 17. The input signal transmitted to the input / output port 17 is stored in the RAM 14 or the storage device 11 via the data bus 15.
 なお、前述した処理及び機能は、CPU12がROM13に記憶されている制御プログラムを実行することで行われるが、制御プログラムは記憶装置11に記憶されていてもよい。このようにしてもCPU12が記憶装置11に記憶された制御プログラムを実行することで、前述した処理及び機能が実施される。また、その際、CPU12は、RAM14又は記憶装置11に記憶された値を、適宜、読み出して演算を行う。 Note that the processing and functions described above are performed by the CPU 12 executing a control program stored in the ROM 13, but the control program may be stored in the storage device 11. Even in this way, the CPU 12 executes the control program stored in the storage device 11 so that the processing and functions described above are performed. At that time, the CPU 12 appropriately reads out the value stored in the RAM 14 or the storage device 11 and performs the calculation.
 CPU12による演算の結果、制御装置1の外部に送信する情報(値)は、データバス15を介して入出力ポート17に送信された後、入出力ポート17に送信された情報は出力信号として出力回路18に送信される。そして、出力回路18に送信された出力信号は、外部信号として外部に送信される。ここで、例えば、外部への信号とは制御対象に所望の動きをさせるためのアクチュエータ信号などを指す。 As a result of the calculation by the CPU 12, information (value) transmitted to the outside of the control device 1 is transmitted to the input / output port 17 via the data bus 15, and then the information transmitted to the input / output port 17 is output as an output signal. It is transmitted to the circuit 18. The output signal transmitted to the output circuit 18 is transmitted to the outside as an external signal. Here, for example, the signal to the outside indicates an actuator signal or the like for causing the control target to perform a desired movement.
<制御装置による自動運転車両の制御例>
 次に、制御装置1を自動運転車両5の制御装置に適用した場合を例示して説明する。
 図3は、制御装置1を自動運転車両5に適用した場合のブロック図である。
 図4は、パラメータ分割部2の機能構成を説明するブロック図である。
 図5は、第1分割処理部21の機能を説明するブロック図である。
 図6は、パラメータ値をクラスタリングした結果の一例を説明する図であり、横軸に自動運転車両5のエンジン回転数、縦軸に自動運転車両5のエンジントルクを示している。
 図7は、第2分割処理部22の機能を説明するブロック図である。
 図8は、ラメータ値の分布の分割範囲の設定の一例を説明する図であり、横軸に自動運転車両5のエンジン回転数、縦軸に自動運転車両5のエンジントルクを示している。
<Example of automatic driving vehicle control by control device>
Next, the case where the control device 1 is applied to the control device of the autonomous driving vehicle 5 will be described as an example.
FIG. 3 is a block diagram when the control device 1 is applied to the autonomous driving vehicle 5.
FIG. 4 is a block diagram illustrating a functional configuration of the parameter dividing unit 2.
FIG. 5 is a block diagram illustrating functions of the first division processing unit 21.
FIG. 6 is a diagram for explaining an example of the result of clustering the parameter values, where the horizontal axis indicates the engine speed of the automatic driving vehicle 5 and the vertical axis indicates the engine torque of the automatic driving vehicle 5.
FIG. 7 is a block diagram illustrating functions of the second division processing unit 22.
FIG. 8 is a diagram for explaining an example of setting the division range of the distribution of parameter values, where the horizontal axis indicates the engine speed of the automatic driving vehicle 5 and the vertical axis indicates the engine torque of the automatic driving vehicle 5.
 図3に示すように、制御装置1(パラメータ補正部4)は自動運転車両5のECU(Electronic Control Unit:図示せず)などに接続されており、補正後のパラメータ値Axとして自動運転車両5を制御するための操作量が演算される。ここで自動運転車両5を制御するための操作量は、例えば、目標速度、エンジンの目標回転速度などである。なお、制御装置1は自動運転車両5のECU(図示せず)一体的に設けられていてもよく、ECUのCPU(図示せず)により実行されてもよい。 As shown in FIG. 3, the control device 1 (parameter correction unit 4) is connected to an ECU (Electronic Control Unit: not shown) of the autonomous driving vehicle 5 and the like, and the autonomous driving vehicle 5 is used as the corrected parameter value Ax. The amount of operation for controlling is calculated. Here, the operation amount for controlling the autonomous driving vehicle 5 is, for example, a target speed, a target rotational speed of the engine, or the like. In addition, the control apparatus 1 may be provided integrally with ECU (not shown) of the autonomous driving vehicle 5, and may be performed by CPU (not shown) of ECU.
 図4に示すように、前述した制御装置1のパラメータ分割部2は、被制御装置である自動運転車両5の制御に関するパラメータ値Aの分布からパラメータ値Aの分割結果を求める第1分割処理部21と、第1分割処理部によるパラメータ値Aの分割結果から分割範囲1~4を決定する第2分割処理部22と、を有して構成されている。ここで、被制御装置が自動運転車両5である場合の制御に関するパラメータ値Aの一例として、エンジン回転数とエンジントルクとの関係を示す値である場合を説明する。 As shown in FIG. 4, the parameter dividing unit 2 of the control device 1 described above is a first division processing unit that obtains the result of dividing the parameter value A from the distribution of the parameter value A related to the control of the autonomous driving vehicle 5 that is the controlled device. 21 and a second division processing unit 22 for determining the division ranges 1 to 4 from the division result of the parameter value A by the first division processing unit. Here, as an example of the parameter value A related to the control when the controlled device is the autonomous driving vehicle 5, a case where the value is a value indicating the relationship between the engine speed and the engine torque will be described.
 図5に示すように、第1分割処理部21は、被制御装置である自動運転車両5の制御に関するパラメータ値A(ベクトル)を機械学習(例えば、k-means法)を用いてクラスタリングする。そして、第1分割処理部21は、k-means法により得られたパラメータ値Aの分割結果を第2分割処理部22に出力する。ここでパラメータ値Aの分析結果とは、k-means法によって分割された後のパラメータ値が属するクラスタ番号(図6参照)を指す。なお、分割情報は、各クラスタに属するパラメータ値の平均値(中心ベクトル)であってもよい。 As shown in FIG. 5, the first division processing unit 21 clusters the parameter values A (vectors) related to the control of the autonomous driving vehicle 5 that is the controlled device using machine learning (for example, k-means method). Then, the first division processing unit 21 outputs the division result of the parameter value A obtained by the k-means method to the second division processing unit 22. Here, the analysis result of the parameter value A indicates the cluster number (see FIG. 6) to which the parameter value after division by the k-means method belongs. The division information may be an average value (center vector) of parameter values belonging to each cluster.
 図6に示すように、第1分割処理部21は、自動運転車両5の制御に関するパラメータ値A(2次元ベクトル)の分布領域Vをk-means法によりクラスタ数4でクラスタリング処理を行う。実施の形態では、第1分割処理部21は、車両の制御に関するパラメータ値Aの分布領域Vを、エンジン回転数が約2000rpm(Revolutions Per Minute)以下のクラスタ1、約2000~3500rpmのクラスタ2、約3500~5000rpmのクラスタ3、約5000rpm以上のクラスタ4のクラスタ数4でクラスタリングを行う。 As shown in FIG. 6, the first division processing unit 21 performs a clustering process on the distribution area V of the parameter value A (two-dimensional vector) related to the control of the autonomous driving vehicle 5 with the number of clusters of 4 by the k-means method. In the embodiment, the first division processing unit 21 uses a distribution region V of the parameter value A related to vehicle control as a cluster 1 with an engine speed of about 2000 rpm (Revolutions Per Minute) or less, a cluster 2 with about 2000-3500 rpm, Clustering is performed with cluster number 4 of cluster 3 of about 3500 to 5000 rpm and cluster 4 of about 5000 rpm or more.
 次に、図4に戻って、第2分割処理部22は、第1分割処理部21で演算した制御に関するパラメータ値Aの分割結果を用いて、分割されたパラメータ値Aの分布ごとに分割範囲を設定し、その結果を分割範囲として遷移頻度算出部3に出力する。具体的には、図7に示すように、第2分割処理部22は下記(1)、(2)の処理を行う。
(1)第1分割処理部21で分割された各クラスタ1~4に属するパラメータ値Aの各次元の最小値を各クラスタに対応する範囲の各次元の下限値として設定する。
(2)各クラスタ1~4に属するパラメータ値Aの各次元の最大値を各クラスタに対応する範囲の各次元の上限値として設定する。
 図8に示すように、上記した第2分割処理部22による(1)及び(2)の処理により、制御に関するパラメータ値Aの分布の分割結果に基づいて、エンジン回転数が約2000rpm(Revolutions Per Minute)以下のクラスタ1が分割範囲1に設定され、約2000~3500rpmのクラスタ2が分割範囲2に設定され、約3500~5000rpmのクラスタ3が分割範囲3に設定され、約5000rpm以上のクラスタ4が分割範囲4に設定される。
Next, referring back to FIG. 4, the second division processing unit 22 uses the division result of the parameter value A related to the control calculated by the first division processing unit 21 to divide the divided range for each distribution of the parameter value A divided. And outputs the result to the transition frequency calculation unit 3 as a divided range. Specifically, as shown in FIG. 7, the second division processing unit 22 performs the following processes (1) and (2).
(1) The minimum value of each dimension of the parameter value A belonging to each of the clusters 1 to 4 divided by the first division processing unit 21 is set as the lower limit value of each dimension of the range corresponding to each cluster.
(2) The maximum value of each dimension of the parameter value A belonging to each of the clusters 1 to 4 is set as the upper limit value of each dimension in the range corresponding to each cluster.
As shown in FIG. 8, the engine speed is about 2000 rpm (Revolutions Per) based on the division result of the distribution of the parameter value A related to control by the processes (1) and (2) by the second division processing unit 22 described above. (Minute) The cluster 1 below is set to the division range 1, the cluster 2 of about 2000 to 3500 rpm is set to the division range 2, the cluster 3 of about 3500 to 5000 rpm is set to the division range 3, and the cluster 4 of about 5000 rpm or more is set. Is set to the division range 4.
 ここで、前述したパラメータ値Aの分布領域Vの分割範囲とは、分割された各クラスタに対応する分割範囲の各次元の下限値と上限値で規定される範囲を指す。なお、本実施形態では、分割範囲を各クラスタに対応する範囲の各次元の下限値と上限値で規定される範囲としたが、SVM(Support Vector Machine)などの教師あり学習モデルを用いた機械学習により学習した結果に基づいて、パラメータ値Aの分割範囲を設定してもよい。 Here, the above-described division range of the distribution region V of the parameter value A indicates a range defined by the lower limit value and the upper limit value of each dimension of the division range corresponding to each divided cluster. In this embodiment, the division range is a range defined by the lower limit value and the upper limit value of each dimension of the range corresponding to each cluster. However, a machine using a supervised learning model such as SVM (Support Vector Machine). The division range of the parameter value A may be set based on the learning result by learning.
 前述したようにパラメータ分割部2で設定された分割範囲1~4の情報と、自動運転車両5の制御に関するパラメータ値Aは、遷移頻度算出部3に出力され、遷移頻度算出部3では、パラメータ分割部2で設定された分割範囲1~4の情報と制御に関するパラメータ値Aとから分割範囲間の遷移頻度を算出して記憶装置11に記憶する。 As described above, the information on the division ranges 1 to 4 set by the parameter division unit 2 and the parameter value A related to the control of the autonomous driving vehicle 5 are output to the transition frequency calculation unit 3, and the transition frequency calculation unit 3 The transition frequency between the divided ranges is calculated from the information of the divided ranges 1 to 4 set by the dividing unit 2 and the parameter value A related to the control, and stored in the storage device 11.
 図9は、遷移頻度算出部3の機能構成を説明するブロック図である。図9に示すように、遷移頻度算出部3は、自動運転車両5の制御に関するパラメータ値がパラメータ値Kからパラメータ値K+1に更新された場合、パラメータ値K+1が属するクラスタに対応する分割範囲Nとパラメータ値K+1が属するクラスタに対応する分割範囲N+1を求め、分割範囲Nから分割範囲N+1への移動発生頻度を演算する。例えば、パラメータ値が分割範囲1から分割範囲1へ移動(移動がない)した発生頻度、分割範囲1から分割範囲2へ移動した発生頻度、分割範囲1から分割範囲3へ移動した発生頻度、分割範囲1から分割範囲4へ移動した発生頻度、分割範囲2から分割頻度1へ移動した発生頻度、分割範囲4から分割範囲4へ移動(移動がない)した発生頻度を演算する。なお、遷移頻度算出部3による遷移頻度の算出は、分割範囲Nから分割範囲N+1への移動発生回数ををパラメータ値の更新回数で割るなど、計算しやすい方法を適宜選択することができる。また、遷移頻度算出部3は、分割範囲N及び分割範囲N+1の代わりに当該パラメータ値K、パラメータ値K+1が属するクラスタの情報を用いてパラメータ値K、K+1の移動パターン及びその遷移頻度を算出するようにしてもよい。 FIG. 9 is a block diagram illustrating a functional configuration of the transition frequency calculation unit 3. As shown in FIG. 9, when the parameter value related to the control of the autonomous driving vehicle 5 is updated from the parameter value K to the parameter value K + 1, the transition frequency calculation unit 3 determines the division range N corresponding to the cluster to which the parameter value K + 1 belongs. The division range N + 1 corresponding to the cluster to which the parameter value K + 1 belongs is obtained, and the movement occurrence frequency from the division range N to the division range N + 1 is calculated. For example, the occurrence frequency when the parameter value has moved from division range 1 to division range 1 (no movement), the occurrence frequency when movement from division range 1 to division range 2, the occurrence frequency when movement from division range 1 to division range 3, The occurrence frequency of movement from the range 1 to the division range 4, the occurrence frequency of movement from the division range 2 to the division frequency 1, and the occurrence frequency of movement (no movement) from the division range 4 to the division range 4 are calculated. For the calculation of the transition frequency by the transition frequency calculation unit 3, a method that is easy to calculate, such as dividing the number of times of movement from the divided range N to the divided range N + 1 by the number of parameter value updates, can be selected as appropriate. Further, the transition frequency calculation unit 3 calculates the movement pattern of the parameter values K and K + 1 and the transition frequency thereof using the information of the cluster to which the parameter value K and the parameter value K + 1 belong instead of the divided range N and the divided range N + 1. You may do it.
 図10は、分割範囲間の遷移頻度を演算した結果の一例を表したグラフである。図10に示すように、前述した分割範囲間の遷移頻度が演算され、それぞれの遷移頻度がグラフで示されており、実施形態では分割範囲1から分割範囲4へ移動する遷移頻度が高いことが示されている。遷移頻度算出部3で算出された分割範囲間の遷移頻度の演算結果と、自動運転車両5の制御に関するパラメータ値Aとはパラメータ補正部4に出力される。 FIG. 10 is a graph showing an example of the result of calculating the transition frequency between the divided ranges. As shown in FIG. 10, the transition frequencies between the divided ranges described above are calculated, and the respective transition frequencies are shown in a graph. In the embodiment, the transition frequency moving from the divided range 1 to the divided range 4 is high. It is shown. The calculation result of the transition frequency between the divided ranges calculated by the transition frequency calculation unit 3 and the parameter value A related to the control of the autonomous driving vehicle 5 are output to the parameter correction unit 4.
 図11は、パラメータ補正部4の機能構成を説明するブロック図である。
 図11に示すように、パラメータ補正部4は、パラメータ分割部2で求めたパラメータ値Aの分布領域Vの分割範囲1~4と、遷移頻度算出部3で求めた分割範囲間の遷移頻度と、制御のパラメータ値Aとから、補正後パラメータ値Axを算出する。具体的には、パラメータ補正部4は、新たに演算された制御のパラメータ値A1(第1のパラメータ値)が、パラメータ分割部2で演算されたパラメータ値Aの分布領域Vの分割範囲1~4の何れかに含まれており、次に演算されたパラメータ値A2(第2のパラメータ値)が分割範囲1~4の何れにも含まれていない場合、遷移頻度算出部3で算出された遷移頻度(例えば、図10に示す遷移頻度)を参照してパラメータ値A1が含まれる分割範囲1(第1の分割範囲)からの遷移頻度が最も高い分割範囲4(第2の分割範囲)において、パラメータ値A2から最も近い分割範囲4の境界点A2aにパラメータ値A2を補正する。
FIG. 11 is a block diagram illustrating a functional configuration of the parameter correction unit 4.
As shown in FIG. 11, the parameter correction unit 4 includes the division ranges 1 to 4 of the distribution region V of the parameter value A obtained by the parameter division unit 2, the transition frequency between the division ranges obtained by the transition frequency calculation unit 3, and The corrected parameter value Ax is calculated from the control parameter value A. Specifically, the parameter correction unit 4 sets the newly calculated control parameter value A1 (first parameter value) to the divided range 1 to the distribution range V of the parameter value A calculated by the parameter dividing unit 2. If the parameter value A2 (second parameter value) calculated next is not included in any of the divided ranges 1 to 4, it is calculated by the transition frequency calculation unit 3. In the divided range 4 (second divided range) having the highest transition frequency from the divided range 1 (first divided range) including the parameter value A1 with reference to the transition frequency (for example, the transition frequency shown in FIG. 10). The parameter value A2 is corrected to the boundary point A2a of the division range 4 that is closest to the parameter value A2.
 前述した実施形態では、制御装置1は、被制御装置である自動運転車両5の動作時のパラメータ値Aに基づいて、自動運転車両5の制御に関する過去のパラメータ値Aの分布領域Vの範囲を複数の分割範囲1~4に分割し、パラメータ値Aに基づいて当該パラメータ値Aが分割した複数の分割範囲を遷移した頻度を演算及び記憶し、自動運転車両5の動作時に新たに演算されたパラメータ値A1が何れかの分割範囲1~4に含まれていて、かつ、次に演算されたパラメータ値A2が、何れの分割範囲にも含まれていない場合、遷移頻度に基づいてパラメータ値A1が含まれる分割範囲1からの遷移頻度が最も高い分割範囲4にパラメータ値を補正する。
 特に、制御装置1では、パラメータ値Aをクラスタリングした結果に基づいて複数の範囲に分割する。また、パラメータ値Aが前回属した分割の範囲から今回所属した分割の範囲に遷移したパターンの発生頻度を記憶する。また、異常なパラメータ値A2から最も近い分割範囲4の境界点A2aにパラメータA2を補正する。
 したがって、制御装置1の制御パラメータ値の異常を検知した場合、直前の正常なパラメータ値A1が遷移する確率が最も高い制御範囲に異常パラメータ値A2を補正するので、異常発生時に最も適切なパラメータ値A2aに補正することで、制御装置1の異常を高い確率で正常化することが可能となり、自動運転車を安全に制御することが可能となる。
In the above-described embodiment, the control device 1 determines the range of the distribution region V of the past parameter value A related to the control of the autonomous driving vehicle 5 based on the parameter value A during operation of the autonomous driving vehicle 5 that is the controlled device. It is divided into a plurality of divided ranges 1 to 4, and based on the parameter value A, the frequency of transition of the divided ranges divided by the parameter value A is calculated and stored, and newly calculated when the autonomous driving vehicle 5 is operated. When the parameter value A1 is included in any of the divided ranges 1 to 4 and the parameter value A2 calculated next is not included in any of the divided ranges, the parameter value A1 is based on the transition frequency. The parameter value is corrected to the divided range 4 having the highest transition frequency from the divided range 1 including.
In particular, the control device 1 divides the parameter value A into a plurality of ranges based on the result of clustering. Further, the frequency of occurrence of the pattern in which the parameter value A has changed from the division range to which the parameter value A belongs last time to the division range to which the parameter value A belongs is stored. Further, the parameter A2 is corrected to the boundary point A2a of the division range 4 that is closest to the abnormal parameter value A2.
Therefore, when an abnormality in the control parameter value of the control device 1 is detected, the abnormality parameter value A2 is corrected to a control range in which the previous normal parameter value A1 has the highest probability of transition. By correcting to A2a, it is possible to normalize the abnormality of the control device 1 with a high probability, and it is possible to safely control the autonomous driving vehicle.
 以上説明した通り、第1の実施の形態では、
(1)自動運転車両5(被制御装置)を制御するために演算されたパラメータ値Aの分布領域Vを複数の分割範囲1~4に分割するパラメータ分割部2と、パラメータ分割部2により分割された複数の分割範囲1~4において、パラメータ値Aが遷移した分割範囲間の遷移頻度を演算する遷移頻度算出部3と、自動運転車両5を制御するために演算されたパラメータ値A1(第1のパラメータ値)が、パラメータ分割部2により分割された何れかの分割範囲1~4に含まれており、パラメータ値A1の後に演算されたパラメータ値A2(第2のパラメータ値)が、パラメータ分割部2により分割された何れの分割範囲1~4にも含まれていない場合、遷移頻度算出部3により算出された遷移頻度に基づいて、パラメータ値A1が含まれる第1の分割範囲(例えば、分割範囲1)からの遷移頻度が最も高い第2の分割範囲(例えば、分割範囲4)内の値にパラメータ値A2を補正するパラメータ補正部4と、を有する構成とした。
As explained above, in the first embodiment,
(1) The parameter dividing unit 2 that divides the distribution region V of the parameter value A calculated for controlling the autonomous driving vehicle 5 (controlled device) into a plurality of divided ranges 1 to 4 and the parameter dividing unit 2 In the plurality of divided ranges 1 to 4, the transition frequency calculation unit 3 that calculates the transition frequency between the divided ranges in which the parameter value A has changed, and the parameter value A1 that is calculated to control the autonomous driving vehicle 5 (first 1 parameter value) is included in any of the division ranges 1 to 4 divided by the parameter division unit 2, and the parameter value A2 (second parameter value) calculated after the parameter value A1 is the parameter In the case where it is not included in any of the division ranges 1 to 4 divided by the dividing unit 2, the first parameter value A1 is included based on the transition frequency calculated by the transition frequency calculating unit 3. Split range (e.g., division areas 1) highest second split range transition frequency from (e.g., split range 4) a parameter correction unit 4 corrects the parameter value A2 to a value within, and configured to have.
 このように構成すると、制御装置1によりパラメータ値A2の異常を検知した場合、直前の正常なパラメータ値A1が遷移する確率が最も高い制御範囲に異常なパラメータ値A2を補正する。よって、突発的な異常が発生した場合、最ももっともらしい値に補正することで、制御装置の異常状態を高い確率で正常化することが可能となり、自動運転車両5を安全に制御することができる。 With this configuration, when the control device 1 detects an abnormality in the parameter value A2, the abnormal parameter value A2 is corrected to a control range where the probability that the previous normal parameter value A1 transitions is highest. Therefore, when a sudden abnormality occurs, it is possible to normalize the abnormal state of the control device with a high probability by correcting it to the most plausible value, and the autonomous driving vehicle 5 can be controlled safely. .
(2)また、パラメータ分割部2は、自動運転車両5を制御するために演算されたパラメータ値の分布領域をクラスタリングにより複数の分割範囲に分割する構成とした。 (2) Further, the parameter dividing unit 2 is configured to divide the parameter value distribution area calculated for controlling the autonomous driving vehicle 5 into a plurality of divided ranges by clustering.
 このように構成すると、パラメータ分割部2は、コンピュータを用いたクラスタリング処理によりパラメータ値の分布領域を適切に分割することができる。 With this configuration, the parameter dividing unit 2 can appropriately divide the parameter value distribution region by clustering processing using a computer.
(3)また、遷移頻度算出部3は、自動運転車両5を制御するために演算されたパラメータ値が遷移したパターンの遷移頻度(発生頻度)をパラメータ値が含まれる分割範囲内で代表して算出する構成とした(図10参照)。 (3) Moreover, the transition frequency calculation part 3 represents the transition frequency (occurrence frequency) of the pattern in which the parameter value calculated in order to control the autonomous driving vehicle 5 represents within the division | segmentation range where a parameter value is included. It was set as the structure to calculate (refer FIG. 10).
 このように構成すると、遷移頻度算出部3は、パラメータ値の遷移頻度を、当該パラメータ値が含まれる分割範囲内での代表値として適切に算出することができる。 With this configuration, the transition frequency calculation unit 3 can appropriately calculate the transition frequency of the parameter value as a representative value within the divided range including the parameter value.
(4)また、遷移頻度算出部3は、自動運転車両5を制御するために演算されたパラメータ値が、過去に属する分割範囲1から、今回属する分割範囲4に遷移したパターンの発生頻度を算出する構成とした。 (4) Further, the transition frequency calculation unit 3 calculates the occurrence frequency of the pattern in which the parameter value calculated for controlling the autonomous driving vehicle 5 has changed from the divided range 1 belonging to the past to the divided range 4 belonging to this time. It was set as the structure to do.
 このように構成すると、遷移頻度算出部3は、直前の過去のパラメータ値と今回のパラメータ値の遷移に基づいて、遷移頻度を適切に算出することができる。 With this configuration, the transition frequency calculation unit 3 can appropriately calculate the transition frequency based on the previous transition between the previous parameter value and the current parameter value.
(5)また、パラメータ補正部4は、何れの分割範囲1~4にも含まれていない第2のパラメータ値A2を、第1のパラメータ値A1が含まれる第1の分割範囲(例えば、分割範囲1)からの遷移頻度が最も高い第2の分割範囲内(例えば、分割範囲4)の何れかの値に補正する構成とした。 (5) In addition, the parameter correction unit 4 converts the second parameter value A2 not included in any of the division ranges 1 to 4 into the first division range (for example, the division range) including the first parameter value A1. The configuration is such that the value is corrected to any value within the second divided range (for example, divided range 4) having the highest transition frequency from range 1).
 このように構成すると、パラメータ補正部4は、何れの分割範囲1~4にも含まれない異常なパラメータ値A2を、パラメータ値A2の直前の正常なパラメータ値A1が含まれる分割範囲1から最も遷移頻度の高い分割範囲4の何れかの値に補正するので、異常なパラメータ値A2を最ももっともらしい正常なパラメータ値に補正することができる。 With this configuration, the parameter correction unit 4 sets the abnormal parameter value A2 that is not included in any of the divided ranges 1 to 4 from the divided range 1 that includes the normal parameter value A1 immediately before the parameter value A2. Since the correction is made to any value in the divided range 4 having a high transition frequency, the abnormal parameter value A2 can be corrected to the most likely normal parameter value.
(6)また、パラメータ補正部4は、何れの分割範囲1~4にも含まれていないパラメータ値A2を、直線の過去の正常なパラメータ値A1が含まれる分割範囲1からの遷移頻度が最も高い分割範囲4の境界値に補正する構成とした。 (6) The parameter correction unit 4 sets the parameter value A2 that is not included in any of the divided ranges 1 to 4 to the transition frequency from the divided range 1 that includes the normal parameter value A1 in the past in the straight line. It was set as the structure corrected to the boundary value of the high division range 4.
 このように構成すると、パラメータ補正部4は、正常なパラメータA1が含まれる分割範囲4であって、異常なパラメータA2から最も近いパラメータ値に補正するので、パラメータ値A2に出来るだけ近い値A2aに補正することができる。よって、制御装置1は、異常なパラメータ値A2が全く異なる値に補正される場合に比べ、異常なパラメータ値A2に近く、かつ正常なパラメータ値A2aに補正するので、パラメータ値補正後の自動運転車両5の制御をスムーズに行うことができる。 With this configuration, the parameter correction unit 4 corrects the parameter value A2a as close as possible to the parameter value A2 because the parameter correction unit 4 corrects the parameter value A2 to the parameter value closest to the parameter A2 in the divided range 4 including the normal parameter A1. It can be corrected. Therefore, since the control device 1 corrects the abnormal parameter value A2 to be close to the abnormal parameter value A2 and to the normal parameter value A2a as compared with the case where the abnormal parameter value A2 is corrected to a completely different value, the automatic operation after the parameter value correction is performed. The vehicle 5 can be controlled smoothly.
<第2の実施の形態>
 次に、本発明の第2の実施の形態にかかる制御装置について説明する。
 図12は、第2の実施の形態にかかるパラメータ補正部4Aの機能構成を説明するブロック図である。なお、第1の実施の形態にかかる制御装置1と同じ構成及び機能については同一の符号を付し必要に応じて説明する。
<Second Embodiment>
Next, a control device according to a second embodiment of the present invention will be described.
FIG. 12 is a block diagram illustrating a functional configuration of a parameter correction unit 4A according to the second embodiment. In addition, about the same structure and function as the control apparatus 1 concerning 1st Embodiment, the same code | symbol is attached | subjected and it demonstrates as needed.
 図12に示すように、制御装置のパラメータ補正部4Aは、新たに演算された被制御装置(例えば、自動運転車両5)の制御に関するパラメータ値A1がパラメータ分割部2で分割された何れかの分割範囲1~4に含まれており、次に演算された制御に関するパラメータ値A2が何れの分割範囲1~4にも含まれていない場合、遷移頻度算出部3で算出された遷移頻度(例えば、図10に示す遷移頻度)を参照して、先に演算されたパラメータ値A1が含まれる分割範囲1~4からの遷移頻度が最も高い分割範囲において、遷移頻度の最も高い分割範囲に含まれる過去のパラメータ値Aのうち、パラメータ値A2から最も近い過去の実際のパラメータ値A2aにパラメータ値A2を補正する。 As shown in FIG. 12, the parameter correction unit 4A of the control device is any one in which the parameter value A1 related to the control of the newly calculated controlled device (for example, the autonomous driving vehicle 5) is divided by the parameter dividing unit 2. When the parameter value A2 relating to the control calculated next is not included in any of the division ranges 1 to 4 and is included in the division ranges 1 to 4, the transition frequency calculated by the transition frequency calculation unit 3 (for example, Referring to (transition frequency shown in FIG. 10), the division range having the highest transition frequency from the division ranges 1 to 4 including the previously calculated parameter value A1 is included in the division range having the highest transition frequency. Of the past parameter values A, the parameter value A2 is corrected to the past actual parameter value A2a closest to the parameter value A2.
 実施形態では、パラメータ補正部4Aは、新たに演算されたパラメータ値A1が分割範囲1に含まれており、次に演算されたパラメータ値A2が何れの分割範囲1~4にも含まれていない場合、遷移頻度算出部3で算出された遷移頻度(図10に示す遷移頻度)を参照して、パラメータA1が含まれる分割範囲1からの遷移頻度が最も高い分割範囲4において、この分割範囲4に含まれる過去のパラメータ値Aのうち、パラメータ値A2から最も近い過去の実際のパラメータ値A2aにパラメータ値A2を補正する。 In the embodiment, the parameter correction unit 4A includes the newly calculated parameter value A1 in the divided range 1, and the next calculated parameter value A2 is not included in any of the divided ranges 1 to 4. In this case, referring to the transition frequency (transition frequency shown in FIG. 10) calculated by the transition frequency calculation unit 3, in the divided range 4 having the highest transition frequency from the divided range 1 including the parameter A1, this divided range 4 The parameter value A2 is corrected to the past actual parameter value A2a that is closest to the parameter value A2 among the past parameter values A included in.
 前述した第2の実施形態では、制御装置1は、被制御装置である自動運転車両5の動作時のパラメータ値Aに基づいて、自動運転車両5の制御に関する過去のパラメータ値Aの分布領域Vの範囲を複数の分割範囲1~4に分割し、パラメータ値Aに基づいて当該パラメータ値Aが分割した複数の分割範囲を遷移した頻度を演算及び記憶し、自動運転車両5の動作時に新たに演算されたパラメータ値A1が何れかの分割範囲1~4に含まれていて、かつ、次に演算されたパラメータ値A2が、何れの分割範囲にも含まれていない場合、遷移頻度に基づいてパラメータ値A1が含まれる分割範囲1からの遷移頻度が最も高い分割範囲4にパラメータ値を補正する。
 特に、制御装置1では、パラメータ値Aをクラスタリングした結果に基づいて複数の範囲に分割する。また、パラメータ値Aが前回属した分割の範囲から今回所属した分割の範囲に遷移したパターンの発生頻度を記憶する。また、分割範囲4に所属する過去のパラメータ値Aのうち、異常なパラメータ値A2から最も近いパラメータ値A2aにパラメータ値A2を補正する。
 したがって、制御装置1の制御パラメータ値の異常を検知した場合、直前の正常なパラメータ値A1が遷移する確率が最も高い制御範囲に異常パラメータ値A2を補正するので、異常発生時に最も適切なパラメータ値A2aに補正することで、制御装置1の異常を高い確率で正常化することが可能となり、自動運転車を安全に制御することが可能となる。
In the second embodiment described above, the control device 1 distributes the past parameter value A related to the control of the autonomous driving vehicle 5 based on the parameter value A during the operation of the autonomous driving vehicle 5 that is the controlled device. Is divided into a plurality of divided ranges 1 to 4, and based on the parameter value A, the frequency of transition of the plurality of divided ranges divided by the parameter value A is calculated and stored. When the calculated parameter value A1 is included in any of the divided ranges 1 to 4 and the next calculated parameter value A2 is not included in any of the divided ranges, based on the transition frequency The parameter value is corrected to the divided range 4 having the highest transition frequency from the divided range 1 including the parameter value A1.
In particular, the control device 1 divides the parameter value A into a plurality of ranges based on the result of clustering. Further, the frequency of occurrence of the pattern in which the parameter value A has changed from the division range to which the parameter value A belongs last time to the division range to which the parameter value A belongs is stored. Further, the parameter value A2 is corrected to the parameter value A2a closest to the abnormal parameter value A2 among the past parameter values A belonging to the division range 4.
Therefore, when an abnormality in the control parameter value of the control device 1 is detected, the abnormality parameter value A2 is corrected to a control range in which the previous normal parameter value A1 has the highest probability of transition. By correcting to A2a, it is possible to normalize the abnormality of the control device 1 with a high probability, and it is possible to safely control the autonomous driving vehicle.
 以上説明した通り、第2の実施の形態では、
(8)パラメータ補正部4は、何れの分割範囲1~4にも含まれていないパラメータ値A2を、パラメータ値A1が含まれる分割範囲1からの遷移頻度が最も高い分割範囲4内の第2のパラメータ値から最も近い過去のパラメータ値A2aに補正する構成とした。
As explained above, in the second embodiment,
(8) The parameter correction unit 4 converts the parameter value A2 not included in any of the division ranges 1 to 4 into the second in the division range 4 having the highest transition frequency from the division range 1 including the parameter value A1. The parameter value is corrected to the closest past parameter value A2a.
 このように構成すると、パラメータ補正部4は、異常なパラメータ値A2を、過去の正常な実際のパラメータ値A2aに補正するので、過去の実績ある補正後のパラメータ値A2aに基づいて自動運転車両5を安全に制御することができる。 If comprised in this way, since the parameter correction | amendment part 4 correct | amends the abnormal parameter value A2 to the past normal actual parameter value A2a, based on the past corrected parameter value A2a which has the past track record, the automatic driving vehicle 5 Can be controlled safely.
<第3の実施の形態>
 次に、本発明の第3の実施の形態にかかる制御装置について説明する。
 図13は、第3の実施の形態にかかるパラメータ補正部4Bの機能構成を説明するブロック図である。なお、第1の実施の形態にかかる制御装置1と同じ構成及び機能については同一の符号を付し必要に応じて説明する。
<Third Embodiment>
Next, a control device according to a third embodiment of the present invention will be described.
FIG. 13 is a block diagram illustrating a functional configuration of a parameter correction unit 4B according to the third embodiment. In addition, about the same structure and function as the control apparatus 1 concerning 1st Embodiment, the same code | symbol is attached | subjected and it demonstrates as needed.
 図13に示すように、制御装置のパラメータ補正部4Bは、新たに演算された被制御装置(例えば、自動運転車両5)の制御に関するパラメータ値A1がパラメータ分割部2で分割された何れかの分割範囲1~4に含まれており、次に演算された制御に関するパラメータ値A2が何れの分割範囲1~4にも含まれていない場合、遷移頻度算出部3で算出された遷移頻度(例えば、図10に示す遷移頻度)を参照して、先に演算されたパラメータ値A1が含まれる分割範囲1~4からの遷移頻度が最も高い分割範囲において、遷移頻度の最も高い分割範囲に含まれる過去のパラメータ値の代表ベクトルにパラメータ値A2を補正する。ここで、所定の分割範囲に含まれるパラメータ値Aの代表ベクトルとは、所定の分割範囲に含まれる過去の実際のパラメータ値の分布の中心ベクトルであり、分割範囲に含まれる過去の実際のパラメータ値Aの分布の平均値である。 As shown in FIG. 13, the parameter correction unit 4B of the control device is any of the parameter values A1 related to the control of the newly calculated controlled device (for example, the autonomous driving vehicle 5) divided by the parameter dividing unit 2. When the parameter value A2 relating to the control calculated next is not included in any of the division ranges 1 to 4 and is included in the division ranges 1 to 4, the transition frequency calculated by the transition frequency calculation unit 3 (for example, Referring to (transition frequency shown in FIG. 10), the division range having the highest transition frequency from the division ranges 1 to 4 including the previously calculated parameter value A1 is included in the division range having the highest transition frequency. The parameter value A2 is corrected to the representative vector of the past parameter values. Here, the representative vector of the parameter value A included in the predetermined divided range is a center vector of the distribution of past actual parameter values included in the predetermined divided range, and the past actual parameter included in the divided range. The average value of the distribution of value A.
 具体的には、パラメータ補正部4Bは、新たに演算されたパラメータ値A1が分割範囲1に含まれており、次に演算されたパラメータ値A2が何れの分割範囲1~4にも含まれていない場合、遷移頻度算出部3で算出された遷移頻度(図10に示す遷移頻度)を参照して、パラメータA1が含まれる分割範囲1からの遷移頻度が最も高い分割範囲4において、この分割範囲4に含まれる過去の実際のパラメータ値Aの分布の平均値である代表ベクトルA2aにパラメータ値A2を補正する。 Specifically, the parameter correction unit 4B includes the newly calculated parameter value A1 in the divided range 1 and the next calculated parameter value A2 in any of the divided ranges 1 to 4. If there is not, in the divided range 4 having the highest transition frequency from the divided range 1 including the parameter A1 with reference to the transition frequency calculated by the transition frequency calculating unit 3 (the transition frequency shown in FIG. 10), this divided range 4, the parameter value A2 is corrected to the representative vector A2a that is the average value of the distribution of the actual parameter value A in the past.
 前述した第3の実施形態では、制御装置1は、被制御装置である自動運転車両5の動作時のパラメータ値Aに基づいて、自動運転車両5の制御に関する過去のパラメータ値Aの分布領域Vの範囲を複数の分割範囲1~4に分割し、パラメータ値Aに基づいて当該パラメータ値Aが分割した複数の分割範囲を遷移した頻度を演算及び記憶し、自動運転車両5の動作時に新たに演算されたパラメータ値A1が何れかの分割範囲1~4に含まれていて、かつ、次に演算されたパラメータ値A2が、何れの分割範囲にも含まれていない場合、遷移頻度に基づいてパラメータ値A1が含まれる分割範囲1からの遷移頻度が最も高い分割範囲4にパラメータ値を補正する。
 特に、制御装置1では、パラメータ値Aをクラスタリングした結果に基づいて複数の範囲に分割する。また、パラメータ値Aが前回属した分割の範囲から今回所属した分割の範囲に遷移したパターンの発生頻度を記憶する。また、分割範囲4に所属する経験したパラメータ値Aの代表ベクトル(中心ベクトル)A2aにパラメータA2を補正する。
 したがって、制御装置1の制御パラメータ値の異常を検知した場合、直前の正常なパラメータ値A1が遷移する確率が最も高い制御範囲に異常パラメータ値A2を補正するので、異常発生時に最も適切なパラメータ値A2aに補正することで、制御装置1の異常を高い確率で正常化することが可能となり、自動運転車を安全に制御することが可能となる。
In the third embodiment described above, the control device 1 distributes the past parameter value A distribution region V related to the control of the autonomous driving vehicle 5 based on the parameter value A during operation of the autonomous driving vehicle 5 that is the controlled device. Is divided into a plurality of divided ranges 1 to 4, and based on the parameter value A, the frequency of transition of the plurality of divided ranges divided by the parameter value A is calculated and stored. When the calculated parameter value A1 is included in any of the divided ranges 1 to 4 and the next calculated parameter value A2 is not included in any of the divided ranges, based on the transition frequency The parameter value is corrected to the divided range 4 having the highest transition frequency from the divided range 1 including the parameter value A1.
In particular, the control device 1 divides the parameter value A into a plurality of ranges based on the result of clustering. Further, the frequency of occurrence of the pattern in which the parameter value A has changed from the division range to which the parameter value A belongs last time to the division range to which the parameter value A belongs is stored. Also, the parameter A2 is corrected to the representative vector (center vector) A2a of the experienced parameter value A belonging to the division range 4.
Therefore, when an abnormality in the control parameter value of the control device 1 is detected, the abnormality parameter value A2 is corrected to a control range in which the previous normal parameter value A1 has the highest probability of transition. By correcting to A2a, it is possible to normalize the abnormality of the control device 1 with a high probability, and it is possible to safely control the autonomous driving vehicle.
 以上説明した通り、第2の実施の形態では、
(9)パラメータ補正部4は、何れの分割範囲1~4にも含まれていないパラメータ値A2を、パラメータ値A1が含まれる分割範囲1からの遷移頻度が最も高い分割範囲4内のパラメータ値A2aの代表ベクトル(代表値)に補正する構成とした。
As explained above, in the second embodiment,
(9) The parameter correction unit 4 converts the parameter value A2 not included in any of the divided ranges 1 to 4 into the parameter value in the divided range 4 having the highest transition frequency from the divided range 1 including the parameter value A1. It was set as the structure correct | amended to the representative vector (representative value) of A2a.
 このように構成すると、パラメータ補正部4は、何れの分割範囲1~4にも含まれない異常なパラメータ値A2を、正常なパラメータ値A1が含まれる分割範囲1からの遷移頻度が最も高い分割範囲4内のパラメータ値A2aの代表値(平均値)に補正するので、より適切な正常なパラメータ値A2aに補正することができる。 With this configuration, the parameter correction unit 4 converts the abnormal parameter value A2 that is not included in any of the division ranges 1 to 4 into the division that has the highest transition frequency from the division range 1 that includes the normal parameter value A1. Since it is corrected to the representative value (average value) of the parameter value A2a in the range 4, it can be corrected to a more appropriate normal parameter value A2a.
<第4の実施の形態>
 次に、本発明の第4の実施の形態にかかる制御装置1について説明する。
 図14は、第4の実施の形態にかかる制御装置1の機能構成を説明するブロック図である。第4の実施の形態では、制御装置1に制御される被制御装置がロボット6である点が前述した実施の形態と異なる。なお、第1の実施の形態にかかる制御装置1と同じ構成及び機能については同一の符号を付し必要に応じて説明する。
<Fourth embodiment>
Next, the control apparatus 1 concerning the 4th Embodiment of this invention is demonstrated.
FIG. 14 is a block diagram illustrating a functional configuration of the control device 1 according to the fourth embodiment. The fourth embodiment is different from the above-described embodiment in that the controlled device controlled by the control device 1 is a robot 6. In addition, about the same structure and function as the control apparatus 1 concerning 1st Embodiment, the same code | symbol is attached | subjected and it demonstrates as needed.
 図14に示すように、制御装置1はロボット6に接続されており、ロボット6の制御に関する新たに演算されたパラメータ値A1が、前述したパラメータ分割部2で分割された何れかの分割範囲1~4に含まれており、次に演算されたパラメータ値A2が、何れの分割範囲1~4にも含まれていない場合、パラメータ補正部4は、パラメータ値A1が含まれる分割範囲からの遷移頻度が最も高い分割範囲において、パラメータ値A2から最も近い分割範囲の境界点A2aにパラメータ値A2を補正する。又は、パラメータ補正部4Aは、パラメータ値A1が含まれる分割範囲からの遷移頻度が最も高い分割範囲において、当該分割範囲に含まれる過去のパラメータ値のうち、パラメータ値A2から最も近いパラメータ値A2aにパラメータ値A2を補正する。又は、パラメータ補正部4Bは、パラメータ値A1が含まれる分割範囲からの遷移頻度が最も高い分割範囲において、当該分割範囲に含まれる過去のパラメータ値の代表ベクトル(中心ベクトル)の点A2aにパラメータ値A2を補正する As shown in FIG. 14, the control device 1 is connected to the robot 6, and the newly calculated parameter value A1 related to the control of the robot 6 is divided into any one of the divided ranges 1 divided by the parameter dividing unit 2 described above. When the parameter value A2 calculated next is not included in any of the divided ranges 1 to 4, the parameter correction unit 4 makes a transition from the divided range including the parameter value A1. In the division range with the highest frequency, the parameter value A2 is corrected to the boundary point A2a of the division range closest to the parameter value A2. Alternatively, the parameter correction unit 4A sets the parameter value A2a closest to the parameter value A2 among the past parameter values included in the division range in the division range having the highest transition frequency from the division range including the parameter value A1. The parameter value A2 is corrected. Alternatively, the parameter correction unit 4B sets the parameter value at the point A2a of the representative vector (center vector) of the past parameter value included in the divided range in the divided range having the highest transition frequency from the divided range including the parameter value A1. Correct A2
 前述のように、制御装置1をロボット6の制御に適用することで、ロボット6の制御パラメータに突発的な異常が発生しても、制御パラメータを適切に補正することでロボット6の誤動作を防止し、安全に制御することができる。また、ロボット6の誤動作による生産ラインの停止などを好適に防止できる。 As described above, by applying the control device 1 to the control of the robot 6, even if a sudden abnormality occurs in the control parameter of the robot 6, the control parameter is appropriately corrected to prevent malfunction of the robot 6. And can be controlled safely. Further, it is possible to suitably prevent the production line from being stopped due to a malfunction of the robot 6.
<第5の実施の形態>
 次に、本発明の第5の実施の形態にかかる制御装置1について説明する。
 図15は、第5の実施の形態にかかる制御装置1の機能構成を説明するブロック図である。第5の実施の形態では、制御装置1に制御される被制御装置がドローン7である点が前述した実施の形態と異なる。なお、第1の実施の形態にかかる制御装置1と同じ構成及び機能については同一の符号を付し必要に応じて説明する。
<Fifth embodiment>
Next, the control apparatus 1 concerning the 5th Embodiment of this invention is demonstrated.
FIG. 15 is a block diagram illustrating a functional configuration of the control device 1 according to the fifth embodiment. The fifth embodiment differs from the above-described embodiment in that the controlled device controlled by the control device 1 is a drone 7. In addition, about the same structure and function as the control apparatus 1 concerning 1st Embodiment, the same code | symbol is attached | subjected and it demonstrates as needed.
 図15に示すように、制御装置1はドローン7に接続されており、ドローン7の制御に関する新たに演算されたパラメータ値A1が、前述したパラメータ分割部2で分割された何れかの分割範囲1~4に含まれており、次に演算されたパラメータ値A2が、何れの分割範囲1~4にも含まれていない場合、パラメータ補正部4は、パラメータ値A1が含まれる分割範囲からの遷移頻度が最も高い分割範囲において、パラメータ値A2から最も近い分割範囲の境界点A2aにパラメータ値A2を補正する。又は、パラメータ補正部4Aは、パラメータ値A1が含まれる分割範囲からの遷移頻度が最も高い分割範囲において、当該分割範囲に含まれる過去のパラメータ値のうち、パラメータ値A2から最も近いパラメータ値A2aにパラメータ値A2を補正する。又は、パラメータ補正部4Bは、パラメータ値A1が含まれる分割範囲からの遷移頻度が最も高い分割範囲において、当該分割範囲に含まれる過去のパラメータ値の代表ベクトル(中心ベクトル)の点A2aにパラメータ値A2を補正する As shown in FIG. 15, the control device 1 is connected to the drone 7, and the newly calculated parameter value A1 related to the control of the drone 7 is any one of the division ranges 1 divided by the parameter division unit 2 described above. When the parameter value A2 calculated next is not included in any of the divided ranges 1 to 4, the parameter correction unit 4 makes a transition from the divided range including the parameter value A1. In the division range with the highest frequency, the parameter value A2 is corrected to the boundary point A2a of the division range closest to the parameter value A2. Alternatively, the parameter correction unit 4A sets the parameter value A2a closest to the parameter value A2 among the past parameter values included in the division range in the division range having the highest transition frequency from the division range including the parameter value A1. The parameter value A2 is corrected. Alternatively, the parameter correction unit 4B sets the parameter value at the point A2a of the representative vector (center vector) of the past parameter value included in the divided range in the divided range having the highest transition frequency from the divided range including the parameter value A1. Correct A2
 前述のように、制御装置1をドローン7の制御に適用することで、ドローン7の制御パラメータに突発的な異常が発生しても、制御パラメータを適切に補正することができ、ドローン7の誤動作に起因する墜落の危険を防止し、安全に制御することができる。 As described above, by applying the control device 1 to the control of the drone 7, even if a sudden abnormality occurs in the control parameter of the drone 7, the control parameter can be appropriately corrected, and the drone 7 malfunctions. It is possible to prevent the danger of a fall caused by, and to control it safely.
 以上、本発明の実施の形態の一例を説明したが、本発明は、前述した実施の形態を全て組み合わせてもよく、何れか2つ以上の実施の形態を任意に組み合わせても好適である。 In the above, an example of the embodiment of the present invention has been described. However, the present invention may combine all of the above-described embodiments, and may arbitrarily combine any two or more embodiments.
 また、本発明は、前述した実施の形態の全ての構成を備えているものに限定されるものではなく、前述した実施の形態の構成の一部を、他の実施の形態の構成に置き換えてもよく、また、前述した実施の形態の構成を、他の実施の形態の構成に置き換えてもよい。 Further, the present invention is not limited to the one having all the configurations of the above-described embodiment, and a part of the configuration of the above-described embodiment is replaced with the configuration of another embodiment. In addition, the configuration of the above-described embodiment may be replaced with the configuration of another embodiment.
 また、前述した実施の形態の一部の構成について、他の実施の形態の構成に追加、削除、置換をしてもよい。 Further, a part of the configuration of the above-described embodiment may be added to, deleted from, or replaced with the configuration of another embodiment.
 1:制御装置、11:記憶装置、12:CPU、13:ROM、14:RAM、15:データバス、16:入力回路、17:入出力ポート、18:出力回路、2:パラメータ分割部、21:第1分割処理部、22:第2分割処理部、3:遷移頻度算出部、4:パラメータ補正部、5:車両、6:ロボット、7:ドローン 1: control device, 11: storage device, 12: CPU, 13: ROM, 14: RAM, 15: data bus, 16: input circuit, 17: input / output port, 18: output circuit, 2: parameter dividing unit, 21 : First division processing unit, 22: second division processing unit, 3: transition frequency calculation unit, 4: parameter correction unit, 5: vehicle, 6: robot, 7: drone

Claims (12)

  1.  被制御装置を制御するために演算されたパラメータ値の分布領域を複数の分割範囲に分割するパラメータ分割部と、
     前記パラメータ分割部により分割された複数の分割範囲において、前記パラメータ値が遷移した分割範囲間の遷移頻度を演算する遷移頻度算出部と、
     前記被制御装置を制御するために演算された第1のパラメータ値が、前記パラメータ分割部により分割された何れかの分割範囲に含まれており、前記第1のパラメータ値の後に演算された第2のパラメータ値が、前記パラメータ分割部により分割された何れの分割範囲にも含まれていない場合、前記遷移頻度算出部により算出された遷移頻度に基づいて、前記第1のパラメータ値が含まれる第1の分割範囲からの遷移頻度が最も高い第2の分割範囲内の値に前記第2のパラメータ値を補正するパラメータ補正部と、を有する制御装置。
    A parameter dividing unit that divides the distribution region of the parameter values calculated for controlling the controlled device into a plurality of divided ranges;
    In a plurality of divided ranges divided by the parameter dividing unit, a transition frequency calculating unit that calculates a transition frequency between divided ranges in which the parameter value has changed,
    The first parameter value calculated for controlling the controlled device is included in any of the division ranges divided by the parameter dividing unit, and the first parameter value calculated after the first parameter value is included. When the parameter value of 2 is not included in any of the division ranges divided by the parameter dividing unit, the first parameter value is included based on the transition frequency calculated by the transition frequency calculating unit. And a parameter correction unit that corrects the second parameter value to a value in the second divided range having the highest transition frequency from the first divided range.
  2.  前記パラメータ分割部は、前記被制御装置を制御するために演算されたパラメータ値の分布領域をクラスタリングにより複数の分割範囲に分割する請求項1に記載の制御装置。 The control device according to claim 1, wherein the parameter dividing unit divides a distribution region of parameter values calculated for controlling the controlled device into a plurality of divided ranges by clustering.
  3.  前記遷移頻度算出部は、前記被制御装置を制御するために演算されたパラメータ値が遷移したパターンの発生頻度を前記パラメータ値が含まれる前記分割範囲内で代表して算出する請求項1に記載の制御装置。 The said transition frequency calculation part calculates the occurrence frequency of the pattern in which the parameter value calculated in order to control the said to-be-controlled apparatus represents in the said division | segmentation range in which the said parameter value is included. Control device.
  4.  前記遷移頻度算出部は、前記被制御装置を制御するために演算されたパラメータ値が、過去に属する分割範囲から、今回属する分割範囲に遷移したパターンの発生頻度を算出する請求項1に記載の制御装置。 The said transition frequency calculation part calculates the occurrence frequency of the pattern in which the parameter value calculated in order to control the said to-be-controlled device changed to the division range which belongs this time from the division range which belongs to the past. Control device.
  5.  前記パラメータ補正部は、前記何れの分割範囲にも含まれていない前記第2のパラメータ値を、前記第1のパラメータ値が含まれる第1の分割範囲からの遷移頻度が最も高い第2の分割範囲内の何れかの値に補正する請求項1に記載の制御装置。 The parameter correction unit converts the second parameter value that is not included in any of the divided ranges into a second division that has the highest transition frequency from the first divided range that includes the first parameter value. The control device according to claim 1, wherein the control device corrects any value within the range.
  6.  前記パラメータ補正部は、前記何れの分割範囲にも含まれていない前記第2のパラメータ値を、前記第1のパラメータ値が含まれる第1の分割範囲からの遷移頻度が最も高い第2の分割範囲の境界値に補正する請求項1に記載の制御装置。 The parameter correction unit converts the second parameter value that is not included in any of the divided ranges into a second division that has the highest transition frequency from the first divided range that includes the first parameter value. The control device according to claim 1, wherein the control device corrects the boundary value of the range.
  7.  前記パラメータ補正部は、前記何れの分割範囲にも含まれていない前記第2のパラメータ値を、前記第1のパラメータ値が含まれる第1の分割範囲からの遷移頻度が最も高い第2の分割範囲内の前記第2のパラメータ値から最も近い過去のパラメータ値に補正する請求項1に記載の制御装置。 The parameter correction unit converts the second parameter value that is not included in any of the divided ranges into a second division that has the highest transition frequency from the first divided range that includes the first parameter value. The control device according to claim 1, wherein the control is performed to correct the past parameter value closest to the second parameter value within the range.
  8.  前記パラメータ補正部は、前記何れの分割範囲にも含まれていない前記第2のパラメータ値を、前記第1のパラメータ値が含まれる第1の分割範囲からの遷移頻度が最も高い第2の分割範囲内のパラメータ値の代表値に補正する請求項1に記載の制御装置。 The parameter correction unit converts the second parameter value that is not included in any of the divided ranges into a second division that has the highest transition frequency from the first divided range that includes the first parameter value. The control device according to claim 1, wherein the control device corrects the parameter value within a range to a representative value.
  9.  前記被制御装置は自動運転車であり、前記制御装置は前記自動運転車を制御する請求項1に記載の制御装置。 The control device according to claim 1, wherein the controlled device is an autonomous vehicle, and the control device controls the autonomous vehicle.
  10.  前記被制御装置はロボットであり、前記制御装置は前記ロボットを制御する請求項1に記載の制御装置。 The control device according to claim 1, wherein the controlled device is a robot, and the control device controls the robot.
  11.  前記被制御装置は飛行体であり、前記制御装置は前記飛行体を制御する請求項1に記載の制御装置。 The control device according to claim 1, wherein the controlled device is a flying object, and the control device controls the flying object.
  12.  被制御装置を制御するために演算されたパラメータ値の分布領域を複数の分割範囲に分割するステップと、
     前記パラメータ分割部により分割された複数の分割範囲において、前記パラメータ値が遷移した分割範囲間の遷移頻度を演算するステップと、
     前記被制御装置を制御するために演算された第1のパラメータ値が、前記パラメータ分割部により分割された何れかの分割範囲に含まれており、前記第1のパラメータ値の後に演算された第2のパラメータ値が、前記パラメータ分割部により分割された何れの分割範囲にも含まれていない場合、前記遷移頻度算出部により算出された遷移頻度に基づいて、前記第1のパラメータ値が含まれる第1の分割範囲からの遷移頻度が最も高い第2の分割範囲内の値に前記第2のパラメータ値を補正するステップと、を有する制御方法。
     
    Dividing the distribution region of the parameter values calculated for controlling the controlled device into a plurality of divided ranges;
    Calculating a transition frequency between division ranges in which the parameter value has changed in a plurality of division ranges divided by the parameter division unit;
    The first parameter value calculated for controlling the controlled device is included in any of the division ranges divided by the parameter dividing unit, and the first parameter value calculated after the first parameter value is included. When the parameter value of 2 is not included in any of the division ranges divided by the parameter dividing unit, the first parameter value is included based on the transition frequency calculated by the transition frequency calculating unit. And a step of correcting the second parameter value to a value in the second divided range having the highest transition frequency from the first divided range.
PCT/JP2018/017208 2018-04-27 2018-04-27 Control device and control method WO2019207767A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017208 WO2019207767A1 (en) 2018-04-27 2018-04-27 Control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017208 WO2019207767A1 (en) 2018-04-27 2018-04-27 Control device and control method

Publications (1)

Publication Number Publication Date
WO2019207767A1 true WO2019207767A1 (en) 2019-10-31

Family

ID=68295175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017208 WO2019207767A1 (en) 2018-04-27 2018-04-27 Control device and control method

Country Status (1)

Country Link
WO (1) WO2019207767A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218550A1 (en) * 2022-05-11 2023-11-16 三菱電機株式会社 Correction equipment, processing method, and processing program
WO2023233611A1 (en) * 2022-06-02 2023-12-07 日立Astemo株式会社 Electronic control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061028A1 (en) * 2015-10-09 2017-04-13 株式会社日立製作所 Abnormality detection device
JP2018067065A (en) * 2016-10-17 2018-04-26 三菱重工業株式会社 Information processing method, information processing device, program and information processing system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017061028A1 (en) * 2015-10-09 2017-04-13 株式会社日立製作所 Abnormality detection device
JP2018067065A (en) * 2016-10-17 2018-04-26 三菱重工業株式会社 Information processing method, information processing device, program and information processing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218550A1 (en) * 2022-05-11 2023-11-16 三菱電機株式会社 Correction equipment, processing method, and processing program
WO2023233611A1 (en) * 2022-06-02 2023-12-07 日立Astemo株式会社 Electronic control device

Similar Documents

Publication Publication Date Title
US20220146993A1 (en) Machine learning method and machine learning device for learning fault conditions, and fault prediction device and fault prediction system including the machine learning device
JP6148316B2 (en) Machine learning method and machine learning device for learning failure conditions, and failure prediction device and failure prediction system provided with the machine learning device
US20200026246A1 (en) Control device and control system
US20170285584A1 (en) Machine learning device that performs learning using simulation result, machine system, manufacturing system, and machine learning method
US20180284703A1 (en) Machine learning device, servo control apparatus, servo control system, and machine learning method
WO2019207767A1 (en) Control device and control method
US10338541B2 (en) Machine learning to establish optimal filter for removing external noise without degrading responsivity
JP6869589B1 (en) Information processing equipment, methods and programs
EP4113397A1 (en) Model update device, method, and program
US20190118380A1 (en) Method, apparatus and terminal device for robot fail prediction
EP3825928A2 (en) Additional learning device, additional learning method, and additional learning program
WO2017061028A1 (en) Abnormality detection device
KR20220159485A (en) Device status monitoring device and device status monitoring method
CN113635896B (en) Driving behavior determination method and related equipment thereof
US20220300362A1 (en) Distributed system and diagnostic method
CN114089637A (en) Multi-mode robust active disturbance rejection motion control method and system
WO2019207766A1 (en) Control device and control method
CN110736460A (en) Position fusion method and system based on neural network and vehicle-mounted terminal
WO2017199652A1 (en) Diagnostic system and electronic control device
US20170122843A1 (en) Stable manufacturing efficiency generating method and system and non-transitory computer readable storage medium
CN110737278A (en) Robot stabilization control method and device, storage medium and inspection robot
JP6919955B2 (en) Information processing equipment, methods and programs
CN114020055B (en) Speed control method, speed control device, automation device, electronic device and storage medium
WO2022264599A1 (en) Substrate processing apparatus, data processing method, and data processing program
Brockmann et al. Stabilizing the convergence of online-learning in neuro-fuzzy systems by an immune system-inspired approach

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP