WO2019207225A1 - Groupe moto-ventilateur pour véhicule automobile comprenant une carte électronique de commande d'un moteur électrique - Google Patents

Groupe moto-ventilateur pour véhicule automobile comprenant une carte électronique de commande d'un moteur électrique Download PDF

Info

Publication number
WO2019207225A1
WO2019207225A1 PCT/FR2019/050763 FR2019050763W WO2019207225A1 WO 2019207225 A1 WO2019207225 A1 WO 2019207225A1 FR 2019050763 W FR2019050763 W FR 2019050763W WO 2019207225 A1 WO2019207225 A1 WO 2019207225A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
heat sink
gmv
electronic control
electronic
Prior art date
Application number
PCT/FR2019/050763
Other languages
English (en)
Inventor
Ismaël FRANCO
Clémence KWACZEWSKI
Stéphane De Souza
Maurad Berkouk
Xavier ROUSSEIL
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2019207225A1 publication Critical patent/WO2019207225A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/40Structural association with grounding devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/223Heat bridges
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/227Heat sinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09781Dummy conductors, i.e. not used for normal transport of current; Dummy electrodes of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0058Laminating printed circuit boards onto other substrates, e.g. metallic substrates
    • H05K3/0061Laminating printed circuit boards onto other substrates, e.g. metallic substrates onto a metallic substrate, e.g. a heat sink

Definitions

  • the present invention relates to a motorcycle fan unit for a motor vehicle comprising an electronic control card for an electric motor.
  • a motorcycle fan assembly for a motor vehicle comprises, in a manner known to those skilled in the art:
  • an electronic control card for said electric motor said electronic control card comprising a primary face and a secondary face.
  • Said electronic control card comprises:
  • a heat sink for dissipating the heat emitted by said electronic components and disposed on the secondary face of said electronic control board, on the electric motor side.
  • a disadvantage of this state of the art is that the electric motor is arranged close to the electronic control board.
  • the electronic components of the electronic control board may therefore be degraded by the heat generated by the electric motor.
  • the heat sink is not enough to dissipate all this heat quickly.
  • the present invention aims to solve the aforementioned drawback.
  • the invention proposes a motor-fan unit for a motor vehicle comprising an electric motor and an electronic control card for said electric motor, said electronic control card comprising a primary face and a secondary face, characterized in that:
  • said electronic control board comprises at least one electronic component disposed on said primary face and / or said secondary face of said electronic control board;
  • said fan motor unit further comprises at least one heat sink which extends along all or part of each of the primary and secondary faces of said electronic control board so that said at least one electronic component is cooled on each of its faces.
  • the fact of having one or more heat sinks facing each side of the electronic control board improves the thermal convection of the electronic control board and will thus allow the integration of said electronic control board closer to the electric motor without being degraded by the heat generated by said electric motor.
  • the motor-blower unit may further comprise one or more additional characteristics among the following:
  • said motor-fan unit further comprises an insulating electrical interface between said at least one electronic component and said at least one heat sink. This allows to electrically isolate said at least one heat sink electronic component. This avoids having a short circuit on the heat sink.
  • said motor-fan unit further comprises a conductive thermal interface between said at least one heat sink and a stable potential on said electronic control board. This improves the shielding for electromagnetic compatibility.
  • said at least one electronic component is a MOSFET switch.
  • a MOSFET switch gives off a lot of heat.
  • Said at least one heat sink dissipates the heat generated by such an electronic component.
  • said at least one electronic component is a double-sided electronic component. This promotes heat exchange on the top of the electronic component.
  • a portion of said at least one heat sink is located at a cooling air channel of said motor-fan unit. This optimizes the cooling since a portion of said at least one heat sink will be in contact with a flow of air passing through the cooling air channel.
  • said at least one heat sink is aluminum. It is a light and inexpensive material.
  • said motor-fan unit comprises a single curved honeycomb heat sink having a curvature configured to surround an edge of said electronic control board.
  • a heat sink makes it possible to increase the surface of contact with the air and thus to increase the cooling.
  • said motor-fan unit comprises a primary heat sink and a secondary heat sink which extend respectively along all or part of the primary face and the secondary face of the electronic circuit board. ordered. The set is easy to assemble.
  • the primary and secondary heat sinks are molded.
  • a molded heatsink has a better heat capacity than a heatsink, it cools better in natural convection. It is also easier to assemble on an electronic control board.
  • the primary and secondary heat sinks comprise at least one hole. This allows to let escape the surplus of the insulating electrical interface which is in the form of paste.
  • the primary and secondary heat sinks comprise a retaining edge. This makes it possible to maintain the insulating electrical interface on either side of said at least one electronic component and on the edges of the electronic control board.
  • - Figure 1 shows a diagram of a motorcycle fan unit for a motor vehicle comprising an electric motor, an electronic control card, said electronic control card comprising a double-sided electronic component cooperating with at least one heat sink, according to a first non-limiting embodiment
  • - Figure 2 shows a diagram of a motorcycle fan assembly for a motor vehicle comprising an electric motor, an electronic control card, said electronic control card comprising a double-sided electronic component cooperating with at least one heat sink, according to a second non-limiting embodiment
  • FIG. 3 represents a view from above of the electronic control board of FIGS. 1 and 2, according to one nonlimiting embodiment
  • FIG. 4a shows a top view of the control electronic circuit of Figure 1 comprising a double-sided electronic component cooperating with a single heat sink, according to the first non-limiting embodiment
  • FIG. 4b represents a profile view of the control electronic board of FIG. 4a
  • FIG. 5 represents a profile diagram of the electronic control board of FIG. 2 comprising an electronic double-sided component cooperating with two heat sinks, according to the second nonlimiting embodiment.
  • a motorcycle fan unit GMV for a motor vehicle V according to the invention is described with reference to FIGS. 1 to 5 according to a non-limiting embodiment.
  • motor vehicle we mean any type of motorized vehicle.
  • the motor-fan unit GMV is part of an air blower.
  • the air blower is part of an air conditioning, ventilation and / or heating device (not shown), called in English HVAC "Heating Ventilation and Air Conditioning "for a motor vehicle.
  • the air conditioning, ventilation and / or heating HVAC device further comprises a housing and air ducts (not shown) in which are arranged one or more heat exchangers that will allow heat conditioning (ie ie, heat or cool) a flow of air passing through them. Said air flow is intended to end up in the passenger compartment of the motor vehicle V via at least one air outlet of said housing.
  • An HVAC heating, ventilation and / or air conditioning device for a motor vehicle is generally placed under the board of the motor vehicle.
  • the GMV fan motor unit is mounted on the HVAC heating, ventilation and / or air conditioning system on a volute (not shown).
  • the volute is for example defined by the walls of the housing of the heating, ventilation and / or air conditioning system.
  • the volute is thus an air duct having a variable section which guides the flow of an air flow.
  • a wheel disposed in the volute makes it possible to draw the air axially through the air inlet of the volute (that is to say along an axis substantially parallel to the axis of revolution of the wheel) and to push back radially (that is to say along an axis substantially orthogonal to the axis of revolution of the wheel) the air thus sucked by the air outlet of the volute.
  • the assembly "fan motor unit and volute” is generally referred to by the term "air blower”.
  • the GMV fan motor unit includes:
  • an electronic control card CD of said electric motor MOT said electronic control card CD comprising at least one electronic component CE;
  • At least one heat sink HS At least one heat sink HS.
  • the GMV fan motor unit also includes: a motor support SM in which are housed said MOT electric motor and a wheel (not shown) of centrifugal type mounted on the motor shaft A of the MOT electric motor;
  • a motor cover CM in which is housed said control electronic card CD and which is arranged on the motor support SM.
  • the MOT electric motor is arranged near the electronic control card CD.
  • said motor-fan unit GMV further comprises an SD card support electronic control CD. In a non-limiting embodiment, said motor-fan unit GMV further comprises a motor brush holder SB.
  • said motor-fan unit GMV further comprises an insulating electrical interface 11 (illustrated in FIGS. 4a to 5) between said electronic component CE and said at least one heat sink HS.
  • the insulating electrical interface 11 is thus an intermediate layer which separates said electronic component CE from said at least one heat sink HS.
  • said GMV motor-fan unit further comprises a conductive thermal interface I2 (illustrated in FIGS. 4a to 5) between said at least one heat sink HS and a stable potential PM on said electronic card. CD command.
  • the conductive thermal interface I2 is thus an intermediate layer which separates said at least one heat sink HS and said control electronic card CD.
  • the MOT electric motor is with or without brushes. In the non-limiting example, it includes brushes (not shown).
  • the MOT electric motor comprises a motor shaft A, a rotor Rot and a stator (not illustrated) and a bearing R.
  • the bearing R is embedded in the support SD and carries out the rotation of the motor shaft A.
  • the brushes are close to the Rot rotor.
  • the MOT electric motor is housed in the SM motor support.
  • the MOT electric motor is arranged near the electronic control card CD. It emits a lot of heat, especially at the level of its brooms when it has. This can lead to thermal stress on the electronic control card CD, which can degrade its electronic components CE, including the electronic component (s) double-sided CEd described below. As will be seen below, said at least one heat sink HS will allow to limit the temperature of the electronic components CE, in particular the double-sided electronic component CEd and thus avoids its degradation.
  • control electronic card CD is illustrated in FIGS. 1 to 5.
  • the control electronic card CD is a so-called PCBA printed circuit board assembly.
  • control electronic card CD is placed under the engine bonnet CM and above the electric motor MOT along an engine shaft passing through said shaft engine A.
  • control electronic card CD comprises a primary face a1 and a secondary face a2.
  • the electronic control card CD comprises a plurality of electronic components CE.
  • At least one of the electronic components CE is a MOSFET switch.
  • control electronic card CD comprises a plurality of electronic components CE including at least one double-sided electronic component CEd.
  • Said at least one double-sided electronic component CEd is arranged on one of the two primary faces a1 or secondary a2 of the control electronic card CD. As illustrated in the non-limiting example of Figures 3 to 5, it is disposed on the primary face a1. Said at least one double-sided electronic component CE has two faces c1 and c2. Thus, in the nonlimiting example illustrated, its face c2 is directly opposite the primary face a1 of the electronic control card CD.
  • the electronic control card CD comprises a plurality of double-sided electronic components CE which are arranged on one and / or the other of the two primary faces a1 or secondary a2.
  • a double-sided electronic component CEd comprises two metal pads Pd, called "pad” in English, illustrated in FIG. 3, one on its face c1, otherwise called upper face c1, facing the heat sink HS and the other on its face c2, otherwise called lower face c2, opposite the electronic control card CD.
  • These metal pellets Pd are for thermal and electrical use.
  • the fact of having two metal pellets Pd makes it possible to bring another potential to the double-sided electronic component CEd via the metal pellet Pd on the upper face c1. Due to this additional metal pad Pd on the upper face c1, this makes it possible to have better thermal and electrical conductivity on the top of said double-sided electronic component CEd. This promotes heat exchange on the upper face c1 and on the lower face c2 of said double-sided electronic component CEd so as to evacuate more heat than with an electronic component CE with a single metal pellet Pd or with no metal pellet Pd. So :
  • the cooling of the double-sided electronic component CEd will be greater, which will increase the service life of said component; or as the heat dissipation surface is increased with the additional metal pad Pd (with respect to a single-sided electronic component) or with the two metallic pellets Pd (with respect to an electronic component without any metal pad Pd), it is possible to increase the electric current that passes through the double-sided electronic component CEd and therefore its power since it can better evacuate the heat.
  • FIG. 3 illustrates only one metal pellet Pd.
  • the double-sided electronic component CE is a MOSFET switch. This non-limiting embodiment is taken as an example in the following description.
  • a MOSFET switch is an electronic power component that releases a lot of heat.
  • a pulse width modulated signal is sent by a microcontroller (not shown) to MOSFET switches so as to regulate in particular the motor voltage MOT electric motor and therefore its speed. MOT motor control is thus performed.
  • the microcontroller assembly and MOSFET switches form a driver device called "driver". Since the driving of a MOT electric motor is well known to those skilled in the art, it is not described here.
  • the control electronic card CD comprises a plurality of double-sided electronic components CEd which are MOSFET switches. For the sake of simplicity, only one double-sided component CEd is illustrated in the figures.
  • said at least one heat sink HS will allow to dissipate the heat of the electronic component (s) double sided CE.
  • the electronic control card CD further comprises a stable potential PM.
  • the stable potential PM corresponds to the motor mass potential.
  • the stable potential PM is reproduced by a track P1 on each of its primary faces a1 and secondary a2.
  • a track P1 is illustrated on the primary face a1.
  • a track P1 is thus configured to be in contact with said at least one heat sink HS.
  • a track P1 is then a motor ground track.
  • a track P1 is located on the entire contour of the electronic control card CD. This makes it possible to create a guard ring to improve the electromagnetic compatibility known as EMC on the electronic control card CD.
  • a track P1 is sized according to the motor current.
  • a track P1 is 105 microns thick and 12 millimeters wide. Such a track P1 is relatively wide. This allows the necessary power to be used to control the MOSFET switches. This increases the contact area between the track P1 and the at least one heat sink HS.
  • a track P1 when a track P1 is a motor ground track, it corresponds to the motor voltage plus or minus 0.7Volts.
  • the non-limiting embodiment of the electronic component CE which is a double-sided electronic component CEd is taken as a non-limiting example.
  • the double-sided electronic component CEd comprises an electrical potential which is not grounded.
  • the insulating electrical interface 11 electrically isolates said at least one heat sink HS from the upper face c1, otherwise called chassis, the double-sided electronic component CEd. It avoids the double-sided electronic component CEd to be in direct contact with said at least one heat sink HS and this therefore prevents the latter from being short-circuited.
  • the insulating electrical interface 11 is situated partly on the upper face c1 of the double-sided electronic component CEd, on the primary face a1 and under the secondary face a2 of the electronic card CD control (in the Cartesian coordinate system x, yz shown). Note that the insulating electrical interface 11 is also located under the secondary face a2 to prevent said at least one heat sink HS is in contact with tracks (not shown) located on the secondary side a2 of the electronic card of CD command, and thus be short-circuited. Said at least one heat sink HS may be in contact with the tracks via solder balls in a non-limiting example.
  • the insulating electrical interface 11 comprises a thickness of 0.4 mm (millimeters) plus or minus 0.2 mm.
  • the insulating electrical interface 11 comprises a thickness of 0.4 mm (millimeters) plus or minus 0.2 mm.
  • the insulating electrical interface 11 is located on each side of the double-sided electronic component CEd so as to isolate it well from said at least one heat sink HS.
  • the insulating electrical interface 11 is an adhesive thermal paste. In a non-limiting embodiment variant, it is an ethoxy paste.
  • the conductive thermal interface I2 makes it possible to improve the electromagnetic shielding, otherwise known as the EMC shielding, for the electronic control card CD.
  • EMC shielding otherwise known as the EMC shielding
  • it attenuates the electromagnetic emissions of the double-sided electronic component CEd towards the outside, namely towards the other electronic components CE of the card control electronics CD and to the MOT electric motor, and it attenuates the electromagnetic emissions MOT electric motor (which is located near the electronic control card CD) to said double-sided electronic component CEd.
  • the conductive thermal interface 12 allows a good thermal conduction of the heat generated by the double-sided electronic component CEd towards said at least one heat sink HS. Thus, the heat dissipation is improved.
  • Said at least one heat sink HS being disposed along all or part of each of the primary faces a1 and secondary a2 of the electronic control board CD and therefore facing said primary faces a1 and secondary a2, the conductive thermal interface I2 is deposited in part on each of said primary faces a1 and secondary a2. There is thus the conductive thermal interface I2 which is located between said at least one heat sink HS and a portion of each primary face a1 and secondary a2 of the electronic control board CD. The conductive thermal interface I2 is thus sandwiched between said at least one heat sink HS and the control electronic card CD.
  • the conductive thermal interface I2 is in contact with the stable potential PM of the control electronic card CD via the tracks P1 described above.
  • the conductive thermal interface I2 is also electrically conductive.
  • the stable potential PM is applied to the at least one heat sink HS.
  • the same potential is thus obtained on the at least one heat sink HS as on the control electronic card CD.
  • the conductive thermal interface I2 is in contact with the insulating electrical interface 11.
  • the conductive thermal interface 12 is a conductive thermal glue, a pad (called “pad” in English ”) doped with carbon or a solder with tin. Carbon and tin are good thermal and electrical conductors. ⁇ Heat sink HS
  • said at least one heat sink HS is aluminum. It is a light and inexpensive material.
  • Said at least one heat sink HS makes it possible to dissipate:
  • the electronic control card CD can be placed near the MOT electric motor so as to have a compact GMV motor-fan unit, and without the electronic control card CD is impacted by the heat released by the electric motor WORD. .
  • said at least heat sink HS is disposed above the electric motor MOT.
  • said at least one heat sink HS extends along all or part of each of the primary faces a1 and secondary a2 of said control electronic card CD so that said at least one electronic component CE is cooled on each of its faces c1, c2. Said at least one heat sink HS is thus disposed facing all or part of each of primary faces a1 and secondary a2 of said electronic control card CD.
  • the at least one heat sink HS partly surrounds the electronic control card CD and completely the said at least one electronic component CE.
  • Said at least one electronic component CE and the control electronic card CD are thus sandwiched by said at least one heat sink HS.
  • the control electronic card CD is partly sandwiched by said at least one heat sink HS.
  • Said at least one CE electronic component is sandwiched completely by said at least one heat sink HS.
  • Said at least one heat sink HS is thus above and below said at least one electronic component CE (in the Cartesian coordinate system x, yz illustrated).
  • said at least one electronic component CE is a double-sided electronic component CEd
  • the combination with at least one heat sink HS above and below the electronic double-sided component CEd makes it possible to pass more power on an electronic board.
  • CD control which can be more compact than an electronic control card CD with a single-sided electronic component or without any metal pad Pd. Thanks to the double-sided electronic component CEd, and said at least one heat sink HS disposed on both sides of said double-sided electronic component CEd, the surface is thus doubled to dissipate the same power as with a heat sink HS which is would extend only along all or part of a single face a1 or a2 of the electronic control board CD.
  • a portion of said at least one heat sink HS is located directly at a cooling air channel CA of said GMV motor-blower unit. This optimizes the cooling of the double-sided electronic component CEd since said at least one heat sink HS is placed directly at the level of the air flow F1 flowing in the cooling air channel CA. This also makes it possible to optimize the evacuation of the heat generated by the MOT electric motor.
  • said at least one heat sink HS is in the cooling air channel CA.
  • the cooling air channel CA is formed by walls of the engine bonnet CM and makes it possible to direct a stream of air F1 towards the control electronic board CE and more particularly towards the said at least one heat sink HS.
  • the latter in contact with the air flow F1 will thus effectively cool said electronic component double-sided CEd.
  • the F1 air flow also makes it possible to cool the MOT electric motor of the GMV fan motor unit.
  • the arrows indicate the flow of F1 airflow. As can be seen the air flow F1 will pass above said MOT motor until it reaches the level of its Rot rotor and therefore at its brooms if it has.
  • Said at least one heat sink HS is described below according to two non-limiting embodiments illustrated in Figures 4a to 5.
  • said motor-fan unit GMV comprises a single curved honeycomb heat exchanger HS having a curvature C1 configured to surround an edge b1 of said electronic card. CD command.
  • the heat sink HS thus has a return that allows it to surround all or part of the upper face A1 of the electronic control card CD.
  • the heat sink HS is formed by a folded aluminum sheet. This makes it possible to have a heat sink HS lighter than if it were molded with ribs.
  • It comprises A1 fins formed by the folded aluminum sheet. These fins A1 make it possible to increase the surface of contact with the flow of air F1 and to increase the convection of the air. Therefore the cooling is improved.
  • the fins A1 make it possible to compensate for the surplus of the insulating electrical interface 11, especially when the latter is in the form of a paste.
  • the paste indeed enters the fins A1 and thus keeps assembled the heat sink assembly HS and electronic control card CD when it dries.
  • the heat sink HS comprises: a primary part hs1 which extends along part of the primary face a1 of the control electronic board CE so as to cover the entire double-sided electronic component CEd. This makes it possible to dissipate the heat generated by the double-sided electronic component CEd on the side of its upper face d.
  • a secondary part hs2 which extends along all or part of the secondary face a2 of the control electronic card CD. This allows to dissipate the heat generated by the double-sided electronic component CEd on the side of its other lower face c2.
  • the primary part hs1 is arranged facing the primary face a1 and opposite the upper face c1 of the double-sided electronic component CEd.
  • the insulating electrical interface 11 is disposed between said primary portion hs1 and said primary face a1, and between said primary portion hs1 and said upper face c1.
  • the conductive thermal interface I2 is disposed between said primary portion hs1 and said primary face a1 and touches an edge of the double-sided electronic component CEd to allow better heat dissipation;
  • the secondary part hs2 is arranged opposite the secondary face a2.
  • the part of the conductive thermal interface I2 which lies under the secondary face a2 is under the part of the conductive thermal interface I2 which is on the primary face a1 of the electronic control card CD.
  • the double-sided electronic component CEd is thus sandwiched between the two primary parts hs1 and secondary hs2 of the single heat sink HS. Its two faces c1, c2 are well cooled.
  • said motor-fan unit GMV comprises a primary heat sink HS1 and a secondary heat sink HS2 which extend respectively along all or part of the primary face a1 and the secondary face a2 of the control electronic card CD.
  • the primary heat sink HS1 and the secondary heat sink HS2 are molded. They are thus simple to manufacture and assemble on the electronic control card CD.
  • a molded heat sink has better heat capacity and better cools in natural convection than a honeycomb heat sink.
  • the primary heat sink HS1 is arranged opposite the primary face a1 of the electronic control board CD and facing the upper face c1 of the double-sided electronic component CEd.
  • the insulating electrical interface 11 is disposed between said primary heat sink HS1 and said primary face a1, and between said primary heat sink HS1 and said upper face c1.
  • the conductive thermal interface I2 is disposed between said primary heat sink HS1 and said primary face a1;
  • the secondary heat sink HS2 is disposed opposite the secondary face a2 of the electronic control card CD.
  • the insulating electrical interface 11 and the conductive thermal interface I2 are arranged between said secondary heat sink HS2 and said secondary face a2.
  • the part of the conductive thermal interface 12 which lies under the secondary face a2 is under the part of the conductive thermal interface 12 which is on the primary face a1 of the control electronic card CD.
  • the double-sided electronic component CE is thus sandwiched between the two primary and secondary heat sinks HS1 and HS2.
  • the primary heat sink HS1 comprises at least one hole where it passes through it.
  • the hole o1 allows to pass the surplus of the insulating electrical interface 11, especially when the latter is in the form of paste.
  • it comprises a plurality of holes o1.
  • the secondary heat sink HS2 comprises at least one hole o2 which passes through it from side to side.
  • the hole o2 allows to pass the surplus of the insulating electrical interface 11, especially when the latter is in the form of paste.
  • it has a plurality of holes o2.
  • control electronic card CD comprises at least one hole o3 which passes right through it.
  • the hole o3 allows to pass the surplus of the insulating electrical interface 11, especially when the latter is in the form of paste.
  • it comprises a plurality of holes o3.
  • the primary heat sink HS1 has a retaining edge g1 over the entire contour of said primary heat sink HS1. This makes it possible to maintain the insulating electrical interface 11 on either side of the electronic double-sided component CEd.
  • the secondary heat sink HS2 has a retaining edge g2 disposed over the entire contour of said secondary heat sink HS2. This makes it possible to prevent the insulating electrical interface 11 from projecting beyond the edges of the electronic control card CD. It will be noted that FIG. 5 only illustrates a portion of the control electronic card CD.
  • the GMV fan motor unit is a front-end fan motor unit for cooling said MOT electric motor.
  • said at least one electronic component CE is an IGBT switch, a power transistor, a voltage regulator, a microcontroller.
  • the stable potential PM corresponds to plus or minus the battery voltage Vbat.
  • the invention described has the following advantages: it is a solution which makes it possible not to have thermal stress on the electronic control board CD which could damage its electronic components CE and thus the control of the electric motor MOT itself;
  • the double-sided electronic component CEd with respect to a single-sided electronic component or without any metallic chip Pd serving as an electrical and thermal interface, it is possible to reduce the size of the electronic control card CD with equal power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

La présente invention concerne un groupe moto-ventilateur (GMV) pour véhicule automobile (V) comprenant un moteur électrique (MOT) et une carte électronique de commande (CD) dudit moteur électrique (MOT), ladite carte électronique de commande (CD) comprenant une face primaire (a1) et une face secondaire (a2), caractérisé en ce que : - ladite carte électronique de commande (CD) comprend au moins un composant électronique (CE) disposé sur ladite face primaire (a1) et/ou ladite face secondaire (a2) de ladite carte électronique de commande (CD); - ledit groupe moto-ventilateur (GMV) comprend en outre au moins un dissipateur de chaleur (FIS) qui s'étend le long de tout ou partie de chacune des faces primaire (a1) et secondaire (a2) de ladite carte électronique de commande (CD) de sorte que ledit au moins un composant électronique (CE) soit refroidit sur chacune de ses faces.

Description

GROUPE MOTO-VENTILATEUR POUR VÉHICULE AUTOMOBILE COMPRENANT
UNE CARTE ÉLECTRONIQUE DE COMMANDE D’UN MOTEUR ÉLECTRIQUE
DOMAINE TECHNIQUE DE L’INVENTION
La présente invention concerne un groupe moto-ventilateur pour véhicule automobile comprenant une carte électronique de commande d’un moteur électrique.
Elle trouve une application particulière, mais non limitative dans les véhicules automobiles.
ARRIÈRE-PLAN TECHNOLOGIQUE DE L’INVENTION Un groupe moto-ventilateur pour véhicule automobile comprend de manière connue de l’homme du métier :
- un moteur électrique ;
- une carte électronique de commande dudit moteur électrique, ladite carte électronique de commande comprenant une face primaire et une face secondaire.
Ladite carte électronique de commande comprend :
- des composants électroniques disposés sur la face primaire de ladite carte électronique de commande ;
- un dissipateur de chaleur pour dissiper la chaleur émise par lesdits composants électroniques et disposé sur la face secondaire de ladite carte électronique de commande, côté moteur électrique.
Un inconvénient de cet état de la technique est que le moteur électrique est disposé à proximité de la carte électronique de commande. Les composants électroniques de la carte électronique de commande risquent donc d’être dégradés par la chaleur dégagée par le moteur électrique. Le dissipateur de chaleur n’est pas suffisant pour dissiper rapidement toute cette chaleur. Dans ce contexte, la présente invention vise à résoudre l’inconvénient précédemment mentionné.
D ESC RI PTION G EN E RALE D E L’I NVENTION
A cette fin, l’invention propose un groupe moto-ventilateur pour véhicule automobile comprenant un moteur électrique et une carte électronique de commande dudit moteur électrique, ladite carte électronique de commande comprenant une face primaire et une face secondaire, caractérisé en ce que :
- ladite carte électronique de commande comprend au moins un composant électronique disposé sur ladite face primaire et/ou ladite face secondaire de ladite carte électronique de commande ;
- ledit groupe moto-ventilateur comprend en outre au moins un dissipateur de chaleur qui s’étend le long de tout ou partie de chacune des faces primaire et secondaire de ladite carte électronique de commande de sorte que ledit au moins un composant électronique soit refroidit sur chacune de ses faces.
Ainsi, comme on va le voir en détail ci-après, le fait d'avoir un ou plusieurs dissipateurs de chaleur en regard de chaque face de la carte électronique de commande améliore la convection thermique de la carte électronique de commande et va ainsi permettre l'intégration de ladite carte électronique de commande au plus proche du moteur électrique sans qu’elle ne soit dégradée par la chaleur dégagée par ledit moteur électrique.
Selon des modes de réalisation non limitatifs, le groupe moto- ventilateur peut comporter en outre une ou plusieurs caractéristiques supplémentaires parmi les suivantes :
Selon un mode de réalisation non limitatif, ledit groupe moto- ventilateur comprend en outre une interface électrique isolante entre ledit au moins un composant électronique et ledit au moins un dissipateur de chaleur. Cela permet d’isoler électriquement ledit au moins un dissipateur de chaleur du composant électronique. Cela évite ainsi d’avoir un court-circuit sur le dissipateur de chaleur.
Selon un mode de réalisation non limitatif, ledit groupe moto- ventilateur comprend en outre une interface thermique conductrice entre ledit au moins un dissipateur de chaleur et un potentiel stable sur ladite carte électronique de commande. Cela permet d’améliorer le blindage pour la compatibilité électromagnétique.
Selon un mode de réalisation non limitatif, ledit au moins un composant électronique est un interrupteur MOSFET. Un interrupteur MOSFET dégage beaucoup de chaleur. Ledit au moins un dissipateur de chaleur permet de dissiper la chaleur dégagée par un tel composant électronique.
Selon un mode de réalisation non limitatif, ledit au moins un composant électronique est un composant électronique double-faces. Cela favorise les échanges de chaleur sur le dessus du composant électronique.
Selon un mode de réalisation non limitatif, une partie dudit au moins un dissipateur de chaleur se situe au niveau d’un canal d’air de refroidissement dudit groupe-moto-ventilateur. Cela permet d’optimiser le refroidissement puisqu’une partie dudit au moins un dissipateur de chaleur va être en contact avec un flux d’air traversant le canal d’air de refroidissement.
Selon un mode de réalisation non limitatif, ledit au moins un dissipateur de chaleur est en aluminium. C’est un matériau léger et peu coûteux.
Selon un mode de réalisation non limitatif, ledit groupe moto- ventilateur comprend un unique dissipateur de chaleur alvéolé recourbé présentant une courbure configurée pour entourer un bord de ladite carte électronique de commande. Un tel dissipateur de chaleur permet d’augmenter la surface de contact avec l’air et donc d’augmenter le refroidissement. Selon un mode de réalisation non limitatif, ledit groupe moto- ventilateur comprend un dissipateur de chaleur primaire et un dissipateur de chaleur secondaire qui s’étendent respectivement le long de tout ou partie de la face primaire et de la face secondaire de la carte électronique de commande. L’ensemble est facile à assembler.
Selon un mode de réalisation non limitatif, les dissipateurs de chaleur primaire et secondaire sont moulés. Un dissipateur moulé possède une meilleure capacité thermique qu’un dissipateur alvéolé, il refroidit mieux en convection naturelle. Il est aussi plus facile à assembler sur une carte électronique de commande.
Selon un mode de réalisation non limitatif, les dissipateurs de chaleur primaire et secondaire comportent au moins un trou. Cela permet de laisser échapper le surplus de l’interface électrique isolante qui se présente sous forme de pâte.
Selon un mode de réalisation non limitatif, les dissipateurs de chaleur primaire et secondaire comportent une bordure de maintien. Cela permet de maintenir l’interface électrique isolante de part et d’autre dudit au moins un composant électronique et sur les bords de la carte électronique de commande. BREVE DESCRIPTION DES FIGURES
L’invention et ses différentes applications seront mieux comprises à la lecture de la description qui suit et à l’examen des figures qui l’accompagnent :
- la figure 1 représente un schéma d’un groupe moto-ventilateur pour véhicule automobile comprenant un moteur électrique, une carte électronique de commande, ladite carte électronique de commande comprenant un composant électronique double-faces coopérant avec au moins un dissipateur de chaleur, selon un premier mode de réalisation non limitatif ; - la figure 2 représente un schéma d’un groupe moto-ventilateur pour véhicule automobile comprenant un moteur électrique, une carte électronique de commande, ladite carte électronique de commande comprenant un composant électronique double-faces coopérant avec au moins un dissipateur de chaleur, selon un deuxième mode de réalisation non limitatif ;
- la figure 3 représente une vue de dessus de la carte électronique de commande des figures 1 et 2, selon un mode de réalisation non limitatif ;
- la figure 4a représente une vue de dessus de la carte électronique de commande de la figure 1 comprenant un composant électronique double- faces coopérant avec un unique dissipateur de chaleur, selon le premier mode de réalisation non limitatif ;
- la figure 4b représente une vue de profil de la carte électronique de commande de la figure 4a ;
- la figure 5 représente un schéma de profil de la carte électronique de commande de la figure 2 comprenant un composant électronique double- faces coopérant avec deux dissipateurs de chaleur, selon le deuxième mode de réalisation non limitatif.
DESCRIPTION DE MODES DE REALISATION DE L’INVENTION
Les éléments identiques, par structure ou par fonction, apparaissant sur différentes figures conservent, sauf précision contraire, les mêmes références.
Un groupe moto-ventilateur GMV pour véhicule automobile V selon l’invention est décrit en référence aux figures 1 à 5 selon un mode de réalisation non limitatif.
Par véhicule automobile, on entend tout type de véhicule motorisé.
Dans un mode de réalisation non limitatif, le groupe-moto-ventilateur GMV fait partie d’un pulseur d’air. Dans un mode de réalisation non limitatif, le pulseur d’air fait partie d’un dispositif de climatisation, de ventilation et/ou de chauffage (non illustré), appelé en anglais HVAC « Heating Ventilation and Air Conditioning » pour véhicule automobile.
Le dispositif de climatisation, de ventilation et/ou de chauffage HVAC comprend en outre un boîtier et des conduits d’air (non illustrés) dans lesquels sont disposés un ou plusieurs échangeurs de chaleur qui vont permettre de conditionner thermiquement (c’est-à-dire réchauffer ou refroidir) un flux d’air les traversant. Ledit flux d’air est destiné à aboutir dans l’habitacle du véhicule automobile V par l’intermédiaire d’au moins une sortie d’air dudit boîtier. Un dispositif de chauffage, ventilation et/ou climatisation HVAC pour véhicule automobile est généralement disposé sous la planche du bord du véhicule automobile.
Le groupe moto-ventilateur GMV est monté sur le système de chauffage, ventilation et/ou climatisation HVAC au niveau d’une volute (non illustrée). La volute est par exemple définie par les parois du boîtier du système de chauffage, ventilation et/ou climatisation. La volute est ainsi un conduit d’air présentant une section variable qui guide l’écoulement d’un flux d’air. Une roue disposée dans la volute permet d’aspirer l’air axialement par l’entrée d’air de la volute (c’est-à-dire selon un axe sensiblement parallèle à l’axe de révolution de la roue) et de refouler radialement (c’est-à-dire selon un axe sensiblement orthogonal à l’axe de révolution de la roue) l’air ainsi aspiré par la sortie d’air de la volute.
L’ensemble « groupe moto-ventilateur et volute » est généralement désigné par le terme « pulseur d’air ».
Tel qu’illustré sur les figures 1 et 2, le groupe moto-ventilateur GMV comprend :
- un moteur électrique MOT ;
- une carte électronique de commande CD dudit moteur électrique MOT, ladite carte électronique de commande CD comprenant au moins un composant électronique CE ;
- au moins un dissipateur de chaleur HS.
Le groupe moto-ventilateur GMV comprend en outre : - un support moteur SM dans lequel sont logés ledit moteur électrique MOT et une roue (non illustrée) de type centrifuge montée sur l’arbre moteur A du moteur électrique MOT ;
- un capot moteur CM dans lequel vient se loger ladite carte électronique de commande CD et qui est disposé sur le support moteur SM.
Le moteur électrique MOT est disposé à proximité de la carte électronique de commande CD.
Dans un mode de réalisation non limitatif, ledit groupe moto-ventilateur GMV comprend en outre un support SD de carte électronique de commande CD. Dans un mode de réalisation non limitatif, ledit groupe moto-ventilateur GMV comprend en outre un support de balais moteur SB.
Dans un mode de réalisation non limitatif, ledit groupe moto-ventilateur GMV comprend en outre une interface électrique isolante 11 (illustrée sur les figures 4a à 5) entre ledit composant électronique CE et ledit au moins un dissipateur de chaleur HS. L’interface électrique isolante 11 est ainsi une couche intermédiaire qui sépare ledit composant électronique CE dudit au moins un dissipateur de chaleur HS.
Dans un mode de réalisation non limitatif, ledit groupe moto-ventilateur GMV comprend en outre une interface thermique conductrice I2 (illustrée sur les figures 4a à 5) entre ledit au moins un dissipateur de chaleur HS et un potentiel stable PM sur ladite carte électronique de commande CD. L’interface thermique conductrice I2 est ainsi une couche intermédiaire qui sépare ledit au moins un dissipateur de chaleur HS et ladite carte électronique de commande CD.
Les différents éléments du groupe moto-ventilateur GMV sont décrits en détail ci-après.
• Moteur électrique MOT
Le moteur électrique MOT est avec ou sans balais. Dans l’exemple non limitatif, il comporte des balais (non illustrés). Le moteur électrique MOT comprend un arbre moteur A, un rotor Rot et un stator (non illustré) et un roulement R. Le roulement R s’encastre dans le support SD et réalise la rotation de l’arbre moteur A.
Les balais sont proches du rotor Rot.
Le moteur électrique MOT est logé dans le support moteur SM.
Le moteur électrique MOT est disposé à proximité de la carte électronique de commande CD. Il dégage beaucoup de chaleur, notamment au niveau de ses balais lorsqu’il en comporte. Cela peut entraîner un stress thermique sur la carte électronique de commande CD, ce qui peut dégrader ses composants électroniques CE, et notamment le ou les composant(s) électronique(s) double-faces CEd décrit plus loin. Comme on va le voir ci- dessous, ledit au moins un dissipateur de chaleur HS va permettre de limiter la température des composants électroniques CE, notamment du composant électronique double-faces CEd et évite ainsi sa dégradation.
• Carte électronique de commande CD
La carte électronique de commande CD est illustrée sur les figures 1 à 5. Dans un mode de réalisation non limitatif, la carte électronique de commande CD est une carte à circuit imprimé dite PCBA « Printed Circuit Board Assembly » en anglais.
Tel qu’illustré sur les figures 1 et 2, dans un mode de réalisation non limitatif, la carte électronique de commande CD est disposée sous le capot moteur CM et au dessus du moteur électrique MOT le long d’un axe moteur passant par ledit arbre moteur A.
Tel qu’illustré sur les figures 3 à 5, la carte électronique de commande CD comprend une face primaire a1 et une face secondaire a2.
La carte électronique de commande CD comprend une pluralité de composants électroniques CE.
Dans un mode de réalisation non limitatif, au moins un des composants électroniques CE est un interrupteur MOSFET.
Dans un mode de réalisation non limitatif, la carte électronique de commande CD comprend une pluralité de composants électroniques CE dont au moins un composant électronique double-faces CEd.
Ledit au moins un composant électronique double-faces CEd est disposé sur l’une des deux faces primaire a1 ou secondaire a2 de la carte électronique de commande CD. Tel qu’illustré sur l’exemple non limitatif des figures 3 à 5, il est disposé sur la face primaire a1. Ledit au moins un composant électronique double-faces CE comporte deux faces c1 et c2. Ainsi, dans l’exemple non limitatif illustré, sa face c2 se trouve directement en regard de la face primaire a1 de la carte électronique de commande CD.
Dans un mode de réalisation non limitatif non illustré, la carte électronique de commande CD comprend une pluralité de composants électroniques double- faces CE qui sont disposés sur l’une et/ou l’autre des deux faces primaire a1 ou secondaire a2.
Un composant électronique double-faces CEd comprend deux pastilles métalliques Pd, appelées « pad » en anglais, illustrée sur la figure 3, l’une sur sa face c1 , autrement appelée face supérieure c1 , en regard du dissipateur HS et l’autre sur sa face c2, autrement appelée face inférieure c2, en regard de la carte électronique de commande CD. Ces pastilles métalliques Pd sont à usage thermique et électrique. Par rapport à un composant électronique CE simple-face qui ne comporte qu’une seule pastille métallique Pd sur sa face inférieure c2, le fait d’avoir deux pastilles métalliques Pd permet d’amener un autre potentiel sur le composant électronique double-faces CEd via la pastille métallique Pd sur la face supérieure c1. Du fait de cette pastille métallique Pd supplémentaire sur la face supérieure c1 , cela permet d’avoir une meilleure conductivité thermique et électrique sur le dessus dudit composant électronique double-faces CEd. On favorise ainsi les échanges de chaleur sur la face supérieure c1 et sur la face inférieure c2 dudit composant électronique double-faces CEd de sorte à évacuer plus de chaleur qu’avec un composant électronique CE avec une unique pastille métallique Pd ou avec aucune pastille métallique Pd. Ainsi :
- à puissance égale, le refroidissement du composant électronique double-faces CEd sera plus important, ce qui augmentera la durée de vie dudit composant ; ou - comme on augmente la surface de dissipation thermique avec la pastille métallique Pd supplémentaire (par rapport à un composant électronique simple-face) ou avec les deux pastilles métalliques Pd (par rapport à un composant électronique sans aucune pastille métallique Pd), on peut augmenter le courant électrique qui traverse le composant électronique double-faces CEd et donc sa puissance puisqu’on peut mieux évacuer la chaleur.
On notera que la figure 3 n’illustre qu’une seule pastille métallique Pd.
Dans un mode de réalisation non limitatif, le composant électronique double-faces CE est un interrupteur MOSFET. Ce mode de réalisation non limitatif est pris comme exemple dans la suite de la description.
Un interrupteur MOSFET est un composant électronique de puissance qui dégage beaucoup de chaleur.
De manière connue de l’homme du métier, un signal à modulation de largeur d’impulsion, appelé en anglais « Puise Width Modulation », est envoyé par un microcontrôleur (non illustré) à des interrupteurs MOSFET de sorte à réguler notamment la tension moteur du moteur électrique MOT et par conséquent sa vitesse. Le pilotage du moteur électrique MOT est ainsi effectué. L’ensemble microcontrôleur et interrupteurs MOSFET forment un dispositif de pilotage appelé en anglais « driver ». Le pilotage d’un moteur électrique MOT étant bien connu de l’homme du métier, il n’est pas décrit ici. Dans un mode de réalisation non limitatif, pour l’application non limitative de pilotage du moteur électrique MOT, la carte électronique de commande CD comprend une pluralité de composants électroniques double-faces CEd qui sont des interrupteurs MOSFET. Par souci de simplification, un seul composant double-face CEd est illustré sur les figures.
Comme on va le voir plus loin, ledit au moins un dissipateur de chaleur HS va permettre de dissiper la chaleur du composant électronique(s) double- faces CE.
Dans un mode de réalisation non limitatif, la carte électronique de commande CD comprend en outre un potentiel stable PM. Dans une variante de réalisation non limitative, le potentiel stable PM correspond au potentiel de masse moteur.
Dans un mode de réalisation non limitatif, le potentiel stable PM est reproduit par une piste P1 sur chacune de ses faces primaire a1 et secondaire a2. Sur la figure 3, une piste P1 est illustrée sur la face primaire a1.
Une piste P1 est ainsi configurée pour être en contact avec ledit au moins un dissipateur de chaleur HS. Dans le cas d’un potentiel de masse moteur, une piste P1 est alors une piste de masse moteur.
Dans un mode de réalisation non limitatif non illustré, une piste P1 est située sur tout le contour de la carte électronique de commande CD. Cela permet de créer un anneau de garde pour améliorer la compatibilité électromagnétique dite CEM sur la carte électronique de commande CD.
Une piste P1 est dimensionnée en fonction du courant moteur. Dans un exemple non limitatif, pour un courant moteur de 30 ampères, une piste P1 est de 105 micromètres d’épaisseur et de largeur 12 millimètres. Une telle piste P1 est relativement large. Cela permet de passer la puissance nécessaire pour commander les interrupteurs MOSFET. Cela augmente la surface de contact entre la piste P1 et ledit au moins un dissipateur de chaleur HS.
Dans un exemple non limitatif, lorsqu’une piste P1 est une piste de masse moteur, elle correspond à la tension moteur plus ou moins 0,7Volts.
Pour la suite de la description, le mode de réalisation non limitatif du composant électronique CE qui est un composant électronique double-faces CEd est pris comme exemple non limitatif. · Interfaces électrique isolante 11 et interface thermique conductrice I2 o Interface électrique isolante 11
Le composant électronique double-faces CEd comprend un potentiel électrique qui n’est pas à la masse.
Aussi, l’interface électrique isolante 11 permet d’isoler électriquement ledit au moins un dissipateur de chaleur HS de la face supérieure c1 , autrement appelée châssis, du composant électronique double-faces CEd. Cela évite au composant électronique double-faces CEd d’être en contact direct avec ledit au moins un dissipateur de chaleur HS et cela évite donc que ce dernier ne soit en court-circuit.
Comme on peut le voir sur les figures 4b et 5, l’interface électrique isolante 11 se situe en partie sur la face supérieure c1 du composant électronique double-faces CEd, sur la face primaire a1 et sous la face secondaire a2 de la carte électronique de commande CD (dans le repère cartésien x, y z illustré). On notera que l’interface électrique isolante 11 se situe également sous la face secondaire a2 pour éviter que ledit au moins un dissipateur de chaleur HS ne soit en contact avec des pistes (non illustrées) situées sur la face secondaire a2 de la carte électronique de commande CD, et ne soit ainsi en court-circuit. Ledit au moins un dissipateur de chaleur HS risque d’être en contact avec les pistes via des billes de soudure dans un exemple non limitatif. Afin d’éviter tout contact, dans un mode de réalisation non limitatif, l’interface électrique isolante 11 comprend une épaisseur de 0,4mm (millimètres) plus ou moins 0,2mm. Ainsi, grâce à l’interface électrique isolante 11 on obtient un espace suffisant entre ledit au moins un dissipateur de chaleur HS et la face secondaire a2 pour éviter un tel contact avec lesdites billes de soudure.
Par ailleurs, l’interface électrique isolante 11 se situe de chaque côté du composant électronique double-faces CEd de sorte à bien l’isoler dudit au moins un dissipateur de chaleur HS.
Dans un mode de réalisation non limitatif, l’interface électrique isolante 11 est une pâte thermique adhésive. Dans une variante de réalisation non limitative, c’est une pâte éthoxy.
o Interface thermique conductrice I2
L’interface thermique conductrice I2 permet d’améliorer le blindage électromagnétique, autrement appelée blindage CEM, pour la carte électronique de commande CD. Ainsi, elle atténue les émissions électromagnétiques du composant électronique double-faces CEd vers l’extérieur, à savoir vers les autres composants électroniques CE de la carte électronique de commande CD et vers le moteur électrique MOT, et elle atténue les émissions électromagnétiques du moteur électrique MOT (qui se trouve à proximité de la carte électronique de commande CD) vers ledit composant électronique double-faces CEd.
Par ailleurs, l’interface thermique conductrice 12 permet une bonne conduction thermique de la chaleur dégagée par le composant électronique double-faces CEd vers ledit au moins un dissipateur de chaleur HS. Ainsi, la dissipation de chaleur est améliorée.
Ledit au moins un dissipateur de chaleur HS étant disposé le long de tout ou partie de chacune des faces primaire a1 et secondaire a2 de la carte électronique de commande CD et donc en regard desdites faces primaire a1 et secondaire a2, l’interface thermique conductrice I2 est déposée en partie sur chacune desdites faces primaire a1 et secondaire a2. On a ainsi l’interface thermique conductrice I2 qui se situe entre ledit au moins un dissipateur de chaleur HS et une partie de chaque face primaire a1 et secondaire a2 de la carte électronique de commande CD. L’interface thermique conductrice I2 est ainsi prise en sandwich entre ledit au moins un dissipateur de chaleur HS et la carte électronique de commande CD.
L’interface thermique conductrice I2 est en contact avec le potentiel stable PM de la carte électronique de commande CD via les pistes P1 décrites précédemment. L’interface thermique conductrice I2 est également électriquement conductrice.
Grâce à l’interface thermique conductrice I2, le potentiel stable PM est appliqué sur ledit au moins un dissipateur de chaleur HS. On obtient ainsi le même potentiel sur ledit au moins un dissipateur de chaleur HS que sur la carte électronique de commande CD. On a ainsi un même potentiel sur tout ledit au moins un dissipateur de chaleur HS. On évite ainsi les fluctuations de tensions ce qui permet de confiner les émissions électromagnétiques rayonnées par notamment le composant électronique double-faces CEd.
Dans un mode de réalisation non limitatif, l’interface thermique conductrice I2 est en contact avec l’interface électrique isolante 11. Dans des modes de réalisation non limitatifs, l’interface thermique conductrice 12 est une colle thermique conductrice, une pastille (appelée « pad » en anglais ») thermique dopé en carbone ou une soudure à l’étain. Le carbone et l’étain sont de bons conducteurs thermiques et électriques. · Dissipateur de chaleur HS
Dans un mode de réalisation non limitatif, ledit au moins un dissipateur de chaleur HS est en aluminium. C’est un matériau léger et peu coûteux.
Ledit au moins un dissipateur de chaleur HS permet de dissiper :
- la chaleur dégagée par la carte électronique de commande CD, en particulier celle dégagée par ledit au moins un composant électronique CE, et ce sur chacune de ces deux faces c1 , c2.
Ainsi, la carte électronique de commande CD peut être disposée à proximité du moteur électrique MOT de sorte à avoir un groupe moto-ventilateur GMV compact, et ce sans que la carte électronique de commande CD ne soit impactée par la chaleur dégagée par le moteur électrique MOT. . Tel qu’illustré sur les figures 1 et 2, ledit au moins dissipateur de chaleur HS est disposé au dessus du moteur électrique MOT.
En outre, ledit au moins un dissipateur de chaleur HS s’étend le long de tout ou partie de chacune des faces primaire a1 et secondaire a2 de ladite carte électronique de commande CD de sorte que ledit au moins un composant électronique CE soit refroidit sur chacune de ses faces c1 , c2. Ledit au moins un dissipateur de chaleur HS est ainsi disposé en regard de tout ou partie de chacune des faces primaire a1 et secondaire a2 de ladite carte électronique de commande CD.
Tel qu’illustré sur les figures 4a à 5, ledit au moins un dissipateur de chaleur HS entoure en partie la carte électronique de commande CD et complètement ledit au moins un composant électronique CE.
Ledit au moins un composant électronique CE et la carte électronique de commande CD sont ainsi pris en sandwich par ledit au moins un dissipateur de chaleur HS. La carte électronique de commande CD est prise en partie en sandwich par ledit au moins un dissipateur de chaleur HS. Ledit au moins un composant électronique CE est pris complètement en sandwich par ledit au moins un dissipateur de chaleur HS. Ledit au moins un dissipateur de chaleur HS se trouve ainsi au dessus et en dessous dudit au moins un composant électronique CE (dans le repère cartésien x, y z illustré).
Lorsque ledit au moins un composant électronique CE est un composant électronique double-faces CEd, la combinaison avec au moins un dissipateur de chaleur HS au dessus et en dessous du composant électronique double- faces CEd permet de passer plus de puissance sur une carte électronique de commande CD qui peut être ainsi plus compacte qu’une carte électronique de commande CD avec un composant électronique simple-face ou sans aucune pastille métallique Pd. Grâce au composant électronique double- faces CEd, et audit au moins dissipateur de chaleur HS disposé des deux côtés dudit composant électronique double-faces CEd, on double ainsi la surface pour dissiper une même puissance qu’avec un dissipateur de chaleur HS qui s’étendrait uniquement le long de tout ou partie d’une seule face a1 ou a2 de la carte électronique de commande CD.
Dans un mode de réalisation non limitatif illustré sur les figures 1 et 2, une partie dudit au moins un dissipateur de chaleur HS se situe directement au niveau d’un canal d’air de refroidissement CA dudit groupe-moto- ventilateur GMV. Cela permet d’optimiser le refroidissement du composant électronique double-faces CEd puisque ledit au moins un dissipateur de chaleur HS est placé directement au niveau du flux d’air F1 circulant dans le canal d’air de refroidissement CA. Cela permet également d’optimiser l’évacuation de la chaleur dégagée par le moteur électrique MOT. Dans une variante de réalisation non limitative, ledit au moins un dissipateur de chaleur HS se situe dans le canal d’air de refroidissement CA.
Comme on peut le voir sur les figures 1 et 2, le canal d’air de refroidissement CA est formé par des parois du capot moteur CM et permet de diriger un flux d’air F1 vers la carte électronique de commande CE et plus particulièrement vers ledit au moins un dissipateur de chaleur HS. Ce dernier au contact du flux d’air F1 va ainsi refroidir efficacement ledit composant électronique double-faces CEd. On notera que le flux d’air F1 permet également de refroidir le moteur électrique MOT du groupe moto-ventilateur GMV. Les flèches indiquent la circulation du flux d’air F1. Comme on peut le voir le flux d’air F1 va passer au dessus dudit moteur électrique MOT jusqu’à arriver au niveau de sont rotor Rot et donc au niveau de ses balais s’il en possède.
Ledit au moins un dissipateur de chaleur HS est décrit ci-après selon deux modes de réalisation non limitatifs illustrés sur les figures 4a à 5.
o Premier mode de réalisation non limitatif
Tel qu’illustré sur les figures 4a et 4b, dans un premier mode de réalisation non limitatif, ledit groupe moto-ventilateur GMV comprend un unique dissipateur de chaleur HS alvéolé recourbé présentant une courbure C1 configurée pour entourer un bord b1 de ladite carte électronique de commande CD.
On a ainsi un seul élément qui permet d’évacuer la chaleur dégagée par le composant électronique double-faces CE. Le dissipateur de chaleur HS présente ainsi un retour qui lui permet d’entourer tout ou partie la face supérieure a1 de la carte électronique de commande CD.
Dans un mode de réalisation non limitatif, le dissipateur de chaleur HS est formé par une feuille en aluminium pliée. Cela permet d’avoir un dissipateur de chaleur HS plus léger que s’il était moulé avec des nervures.
Il comprend des ailettes A1 formées par la feuille en aluminium pliée. Ces ailettes A1 permettent d’augmenter la surface de contact avec le flux d’air F1 et d’augmenter la convection de l’air. Par conséquent le refroidissement est amélioré.
On notera que les ailettes A1 permettent de compenser le surplus de l’interface électrique isolante 11 , notamment lorsque cette dernière est sous forme de pâte. La pâte rentre en effet dans les ailettes A1 et maintient ainsi assemblé l’ensemble dissipateur de chaleur HS et carte électronique de commande CD lorsqu’elle sèche.
Dans un mode de réalisation non limitatif illustré, le dissipateur de chaleur HS comprend : - une partie primaire hs1 qui s’étend le long d’une partie de la face primaire a1 de la carte électronique de commande CE de sorte à recouvrir tout le composant électronique double-face CEd. Cela permet de dissiper la chaleur dégagée par le composant électronique double- faces CEd du côté de sa face supérieure d .
- une partie secondaire hs2 qui s’étend le long de toute ou partie de la face secondaire a2 de la carte électronique de commande CD. Cela permet dissiper la chaleur dégagée par le composant électronique double-faces CEd du côté de son autre face inférieure c2.
Comme on peut le voir sur la figure 4b :
- la partie primaire hs1 est disposée en regard de la face primaire a1 et en regard de la face supérieure c1 du composant électronique double-faces CEd. L’interface électrique isolante 11 est disposée entre ladite partie primaire hs1 et ladite face primaire a1 , et entre ladite partie primaire hs1 et ladite face supérieure c1. Par ailleurs, l’interface thermique conductrice I2 est disposée entre ladite partie primaire hs1 et ladite face primaire a1 et touche un bord du composant électronique double-faces CEd pour permettre une meilleure dissipation thermique ;
- la partie secondaire hs2 est disposée en regard de la face secondaire a2. L’interface électrique isolante 11 et l’interface thermique conductrice
I2 sont disposées entre ladite partie secondaire hs2 et ladite face secondaire a2. La partie de l’interface thermique conductrice I2 qui se situe sous la face secondaire a2 se trouve sous la partie de l’interface thermique conductrice I2 qui se trouve sur la face primaire a1 de la carte électronique de commande CD.
Ainsi, dans un plan défini par les axes x et y du repère cartésien, passant par ledit composant électronique double-faces CEd, on a un empilement des couches suivantes :
- partie primaire hs1 du dissipateur de chaleur HS ;
- interface électrique isolante 11 ;
- composant électronique double-faces CEd ; - carte électronique de commande CD ;
- interface électrique isolante 11 ;
- partie secondaire hs2 du dissipateur de chaleur HS.
Le composant électronique double-faces CEd est ainsi placé en sandwich entre les deux parties primaire hs1 et secondaire hs2 du dissipateur de chaleur HS unique. Ses deux faces c1 , c2 sont ainsi bien refroidies.
o Deuxième mode de réalisation non limitatif
Tel qu’illustré sur la figure 5, dans un deuxième mode de réalisation non limitatif, ledit groupe moto-ventilateur GMV comprend un dissipateur de chaleur primaire HS1 et un dissipateur de chaleur secondaire HS2 qui s’étendent respectivement le long de tout ou partie de la face primaire a1 et de la face secondaire a2 de la carte électronique de commande CD.
Dans un mode de réalisation non limitatif, le dissipateur de chaleur primaire HS1 et le dissipateur de chaleur secondaire HS2 sont moulés. Ils sont ainsi simples à fabriquer et à assembler sur la carte électronique de commande CD. Par ailleurs, un dissipateur de chaleur moulé présente une meilleure capacité thermique et refroidit mieux en convection naturelle qu’un dissipateur de chaleur alvéolé.
Comme on peut le voir sur la figure 5 :
- le dissipateur de chaleur primaire HS1 est disposé en regard de la face primaire a1 de la carte électronique de commande CD et en regard de la face supérieure c1 du composant électronique double-faces CEd. L’interface électrique isolante 11 est disposée entre ledit dissipateur de chaleur primaire HS1 et ladite face primaire a1 , et entre ledit dissipateur de chaleur primaire HS1 et ladite face supérieure c1. Par ailleurs, l’interface thermique conductrice I2 est disposée entre ledit dissipateur de chaleur primaire HS1 et ladite face primaire a1 ;
- le dissipateur de chaleur secondaire HS2 est disposé en regard de la face secondaire a2 de la carte électronique de commande CD. L’interface électrique isolante 11 et l’interface thermique conductrice I2 sont disposées entre ledit dissipateur de chaleur secondaire HS2 et ladite face secondaire a2. La partie de l’interface thermique conductrice 12 qui se situe sous la face secondaire a2 se trouve sous la partie de l’interface thermique conductrice 12 qui se trouve sur la face primaire a1 de la carte électronique de commande CD.
Ainsi, dans un plan défini par les axes x ety du repère cartésien, passant par ledit composant électronique double-faces CEd, on a un empilement des couches suivantes :
- dissipateur de chaleur primaire HS1 ;
- interface électrique isolante 11 ;
- composant électronique double-faces CEd ;
- carte électronique de commande CD ;
- interface électrique isolante 11 ;
- dissipateur de chaleur secondaire HS2.
Le composant électronique double-faces CE est ainsi placé en sandwich entre les deux dissipateurs de chaleur primaire HS1 et secondaire HS2.
Dans un mode de réalisation non limitatif, le dissipateur de chaleur primaire HS1 comporte au moins un trou o1 qui le traverse de part en part. Le trou o1 permet de laisser passer le surplus de l’interface électrique isolante 11 , notamment lorsque cette dernière est sous forme de pâte. Dans l’exemple non limitatif illustré sur la figure 5, il comporte une pluralité de trous o1.
Dans un mode de réalisation non limitatif, le dissipateur de chaleur secondaire HS2 comporte au moins un trou o2 qui le traverse de part en part. Le trou o2 permet de laisser passer le surplus de l’interface électrique isolante 11 , notamment lorsque cette dernière est sous forme de pâte. Dans l’exemple non limitatif illustré sur la figure 5, il comporte une pluralité de trous o2.
Dans un mode de réalisation non limitatif, la carte électronique de commande CD comprend au moins un trou o3 qui la traverse de part en part. Le trou o3 permet de laisser passer le surplus de l’interface électrique isolante 11 , notamment lorsque cette dernière est sous forme de pâte. Dans l’exemple non limitatif illustré sur la figure 5, elle comporte une pluralité de trous o3.
On notera que dans des modes de réalisation non limitatifs, on peut avoir une combinaison de trous o1 , o2, de trous o2, o3, de trous o1 , o3, ou de trous o1 , o2, o3.
Dans un mode de réalisation non limitatif, le dissipateur de chaleur primaire HS1 comporte une bordure de maintien g1 sur tout le contour dudit dissipateur de chaleur primaire HS1. Cela permet de maintenir l’interface électrique isolante 11 de part et d’autre du composant électronique double- faces CEd.
Dans un mode de réalisation non limitatif, le dissipateur de chaleur secondaire HS2 comporte une bordure de maintien g2 disposée sur tout le contour dudit dissipateur de chaleur secondaire HS2. Cela permet d’éviter que l’interface électrique isolante 11 ne déborde des bords de la carte électronique de commande CD. On notera que la figure 5 n’illustre qu’une partie de la carte électronique de commande CD.
Bien entendu la description de l’invention n’est pas limitée aux modes de réalisation ou applications décrits ci-dessus.
Ainsi, dans une autre application non limitative, le groupe-moto ventilateur GMV est un groupe moto-ventilateur face avant pour refroidir ledit moteur électrique MOT.
Ainsi, l’invention s’applique à tout type de composant électronique CE qui dégage beaucoup de chaleur. Ainsi, dans d’autres modes de réalisation non limitatifs, ledit au moins un composant électronique CE est un interrupteur IGBT, un transistor de puissance, un régulateur de tension, un microcontrôleur.
Ainsi, dans un autre mode de réalisation non limitatif, le potentiel stable PM correspond à plus ou moins la tension batterie Vbat.
Ainsi, l’invention décrite présente notamment les avantages suivants : - c’est une solution qui permet de ne pas avoir de stress thermique sur la carte électronique de commande CD qui risquerait d’endommager ses composants électroniques CE et donc le pilotage du moteur électrique MOT lui-même ;
- c’est une solution qui évite à la chaleur dégagée par le moteur électrique
MOT de dégrader la carte électronique de commande CD dans son ensemble ;
- c’est une solution qui permet de positionner la carte électronique de commande CD au plus près du moteur électrique MOT de sorte à obtenir un groupe moto-ventilateur GMV compact ;
- c’est une solution qui permet de dissiper rapidement la chaleur dégagée par ledit au moins composant électronique CE lui-même qui coopère avec ledit au moins dissipateur de chaleur HS ;
- grâce au mode de réalisation non limitatif du composant électronique double-faces CEd, par rapport à un composant électronique simple-face ou sans aucune pastille métallique Pd servant d’interface électrique et thermique, on peut diminuer la taille de la carte électronique de commande CD à puissance égale.

Claims

REVENDICATIONS
1. Groupe moto-ventilateur (GMV) pour véhicule automobile (V) comprenant un moteur électrique (MOT) et une carte électronique de commande (CD) dudit moteur électrique (MOT), ladite carte électronique de commande (CD) comprenant une face primaire (a1 ) et une face secondaire (a2), caractérisé en ce que :
- ladite carte électronique de commande (CD) comprend au moins un composant électronique (CE) disposé sur ladite face primaire (a1 ) et/ou ladite face secondaire (a2) de ladite carte électronique de commande (CD) ;
- ledit groupe moto-ventilateur (GMV) comprend en outre au moins un dissipateur de chaleur (HS) qui s’étend le long de tout ou partie de chacune des faces primaire (a1 ) et secondaire (a2) de ladite carte électronique de commande (CD) de sorte que ledit au moins un composant électronique (CE) soit refroidit sur chacune de ses faces (c1 , c2).
2. Groupe moto-ventilateur (GMV) selon la revendication 1 , selon lequel ledit groupe moto-ventilateur (GMV) comprend en outre une interface électrique isolante (11 ) entre ledit au moins un composant électronique (CE) et ledit au moins un dissipateur de chaleur (HS).
3. Groupe moto-ventilateur (GMV) selon la revendication 1 ou la revendication 2, selon lequel ledit groupe moto-ventilateur (GMV) comprend en outre une interface thermique conductrice (I2) entre ledit au moins un dissipateur de chaleur (HS) et un potentiel stable (PM) sur ladite carte électronique de commande (CD).
4. Groupe moto-ventilateur (GMV) selon l’une quelconque des revendications 1 à 3, selon lequel ledit au moins un composant électronique (CE) est un interrupteur MOSFET.
5. Groupe moto-ventilateur (GMV) selon l’une quelconque des revendications 1 à 4, selon lequel ledit au moins un composant électronique (CE) est un composant électronique double-faces (CEd).
6. Groupe moto-ventilateur (GMV) selon l’une quelconque des revendications 1 à 5, selon lequel une partie dudit au moins un dissipateur de chaleur (HS) se situe au niveau d’un canal d’air de refroidissement (CA) dudit groupe-moto-ventilateur (GMV).
7. Groupe moto-ventilateur (GMV) selon l’une quelconque des revendications 1 à 6, selon lequel ledit groupe moto-ventilateur (GMV) comprend un unique dissipateur de chaleur (HS) alvéolé recourbé présentant une courbure (C1 ) configurée pour entourer un bord (b1 ) de ladite carte électronique de commande (CD).
8. Groupe moto-ventilateur (GMV) selon l’une quelconque des revendications 1 à 6, selon lequel ledit groupe moto-ventilateur (GMV) comprend un dissipateur de chaleur primaire (HS1 ) et un dissipateur de chaleur secondaire (HS2) qui s’étendent respectivement le long de tout ou partie de la face primaire (a1 ) et de la face secondaire (a2) de la carte électronique de commande (CD).
9. Groupe moto-ventilateur (GMV) selon la revendication 8, selon lequel les dissipateurs de chaleur primaire (HS1 ) et secondaire (HS2) comportent au moins un trou (o1 , o2).
10. Groupe moto-ventilateur (GMV) selon la revendication 8 ou la revendication 9, selon lequel les dissipateurs de chaleur primaire (HS1 ) et secondaire (HS2) comportent une bordure de maintien (g1 , 92).
PCT/FR2019/050763 2018-04-23 2019-04-02 Groupe moto-ventilateur pour véhicule automobile comprenant une carte électronique de commande d'un moteur électrique WO2019207225A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1853537A FR3080501B1 (fr) 2018-04-23 2018-04-23 Groupe moto-ventilateur pour vehicule automobile comprenant une carte electronique de commande d’un moteur electrique
FR1853537 2018-04-23

Publications (1)

Publication Number Publication Date
WO2019207225A1 true WO2019207225A1 (fr) 2019-10-31

Family

ID=62684936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/050763 WO2019207225A1 (fr) 2018-04-23 2019-04-02 Groupe moto-ventilateur pour véhicule automobile comprenant une carte électronique de commande d'un moteur électrique

Country Status (2)

Country Link
FR (1) FR3080501B1 (fr)
WO (1) WO2019207225A1 (fr)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941067A (en) * 1989-04-07 1990-07-10 Motorola Inc. Thermal shunt for electronic circuits
US5164884A (en) * 1990-03-29 1992-11-17 Nokia Mobile Phones, Ltd. Device for cooling a power transistor
US20010036065A1 (en) * 2000-04-26 2001-11-01 Matsushita Electric Industrial Co., Ltd. Thermally conductive board, method of manufacturing the same, and power module with the same incorporated therein
US6501661B1 (en) * 2001-12-21 2002-12-31 Motorola, Inc. Electronic control unit
US20030202328A1 (en) * 2002-04-25 2003-10-30 Deeney Jeffrey L. Wrap- around cooling arrangement for printed circuit board
US20070053168A1 (en) * 2004-01-21 2007-03-08 General Electric Company Advanced heat sinks and thermal spreaders
US20070222046A1 (en) * 2004-11-10 2007-09-27 Matsushita Electric Industrial Co., Ltd. Electronic Circuit Device
CN201282610Y (zh) * 2007-12-26 2009-07-29 宗珀工业有限公司 蜂巢型散热体
FR3019951A1 (fr) * 2014-04-11 2015-10-16 Valeo Systemes Thermiques Moteur electrique, dispositif de pulsion d'air et systeme de ventilation de chauffage et/ou de climatisation equipes d'un tel moteur
US20160150662A1 (en) * 2013-06-27 2016-05-26 Zf Friedrichshafen Ag Electrical Circuit and Method for Producing an Electrical Circuit for Activating a Load
JP6137079B2 (ja) * 2014-07-28 2017-05-31 マツダ株式会社 回転電機
US20170349206A1 (en) * 2015-02-18 2017-12-07 Mitsubishi Electric Corporation Integrated electric power steering apparatus
CN107482856A (zh) * 2017-07-25 2017-12-15 江阴双马机电科技有限公司 汽车空调电机

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941067A (en) * 1989-04-07 1990-07-10 Motorola Inc. Thermal shunt for electronic circuits
US5164884A (en) * 1990-03-29 1992-11-17 Nokia Mobile Phones, Ltd. Device for cooling a power transistor
US20010036065A1 (en) * 2000-04-26 2001-11-01 Matsushita Electric Industrial Co., Ltd. Thermally conductive board, method of manufacturing the same, and power module with the same incorporated therein
US6501661B1 (en) * 2001-12-21 2002-12-31 Motorola, Inc. Electronic control unit
US20030202328A1 (en) * 2002-04-25 2003-10-30 Deeney Jeffrey L. Wrap- around cooling arrangement for printed circuit board
US20070053168A1 (en) * 2004-01-21 2007-03-08 General Electric Company Advanced heat sinks and thermal spreaders
US20070222046A1 (en) * 2004-11-10 2007-09-27 Matsushita Electric Industrial Co., Ltd. Electronic Circuit Device
CN201282610Y (zh) * 2007-12-26 2009-07-29 宗珀工业有限公司 蜂巢型散热体
US20160150662A1 (en) * 2013-06-27 2016-05-26 Zf Friedrichshafen Ag Electrical Circuit and Method for Producing an Electrical Circuit for Activating a Load
FR3019951A1 (fr) * 2014-04-11 2015-10-16 Valeo Systemes Thermiques Moteur electrique, dispositif de pulsion d'air et systeme de ventilation de chauffage et/ou de climatisation equipes d'un tel moteur
JP6137079B2 (ja) * 2014-07-28 2017-05-31 マツダ株式会社 回転電機
US20170349206A1 (en) * 2015-02-18 2017-12-07 Mitsubishi Electric Corporation Integrated electric power steering apparatus
CN107482856A (zh) * 2017-07-25 2017-12-15 江阴双马机电科技有限公司 汽车空调电机

Also Published As

Publication number Publication date
FR3080501B1 (fr) 2021-10-08
FR3080501A1 (fr) 2019-10-25

Similar Documents

Publication Publication Date Title
EP3044856B1 (fr) Capot de protection pour machine electrique tournante pour vehicule automobile
FR3010590A1 (fr) Ensemble electronique pour machine electrique tournante pour vehicule automobile
FR2896348A1 (fr) Machine dynamoelectrique a dispositif de commande integre
EP2819863B1 (fr) Dispositif de chauffage électrique de fluide pour véhicule automobile et appareil de chauffage et/ou de climatisation associé
EP2766669B1 (fr) Module de chauffe isolé pour dispositif de chauffage additionnel
EP3350511B1 (fr) Dispositif de dissipation thermique pour un module lumineux de vehicule automobile
WO2019122584A1 (fr) Module d'alimentation pour radiateur de chauffage et radiateur de chauffage equipe d'un tel module
EP3418630A1 (fr) Module lumineux pour vehicule automobile
EP2936954B1 (fr) Dispositif de ventilation pour installation de ventilation, chauffage et/ou climatisation
EP3749537B1 (fr) Module de commande de pulseur et installation de chauffage et/ou ventilation et/ou climatisation correspondante
WO2019207225A1 (fr) Groupe moto-ventilateur pour véhicule automobile comprenant une carte électronique de commande d'un moteur électrique
EP2913910A2 (fr) Ensemble électronique pour machine électrique tournante pour véhicule automobile
EP1439971B1 (fr) Groupe moto-ventilateur, notamment pour installation de chauffage et/ou de climatisation de vehicule automobile
FR3106450A1 (fr) Machine electrique tournante
FR2911017A1 (fr) Dispositif de redressement de courant pour machine electrique tournante comportant un tel dispositif
WO2020174196A1 (fr) Carte electronique et ensemble associe pour commander un groupe moto-ventilateur d'un vehicule automobile
FR3033362A1 (fr) Ensemble de ventilation pour vehicule automobile
EP3731612B1 (fr) Dispositif de commande a refroidissement optimise pour actionneur electrique
FR3077775A1 (fr) Module de commande de pulseur et installation de chauffage et/ou ventilation et/ou climatisation correspondante
EP2604089B1 (fr) Module chauffant comprenant un element chauffant serigraphie
FR3077772A1 (fr) Ensemble de commande et de refroidissement pour une installation de chauffage et/ou ventilation et/ou climatisation et module de commande et evaporateur correspondants
FR3077774A1 (fr) Module de commande de pulseur et installation de chauffage et/ou ventilation et/ou climatisation correspondante
FR3087972A1 (fr) Systeme de pilotage pour pulseur d'air
FR3064445A1 (fr) Dispositif de pilotage de l'alimentation electrique pour une source lumineuse a semi-conducteur
WO2000039850A1 (fr) Circuit electronique de puissance avec un radiateur de dissipation thermique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19719574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19719574

Country of ref document: EP

Kind code of ref document: A1