WO2019206168A1 - 一种波束管理方法、中继收发节点、终端和基站 - Google Patents

一种波束管理方法、中继收发节点、终端和基站 Download PDF

Info

Publication number
WO2019206168A1
WO2019206168A1 PCT/CN2019/084021 CN2019084021W WO2019206168A1 WO 2019206168 A1 WO2019206168 A1 WO 2019206168A1 CN 2019084021 W CN2019084021 W CN 2019084021W WO 2019206168 A1 WO2019206168 A1 WO 2019206168A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
group
reference signal
transceiver node
relay transceiver
Prior art date
Application number
PCT/CN2019/084021
Other languages
English (en)
French (fr)
Inventor
秦城
孙彦良
徐凯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019206168A1 publication Critical patent/WO2019206168A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present application relates to the field of mobile communications technologies, and in particular, to a beam management method, a relay transceiver node, a terminal, and a base station.
  • the wireless backhaul technology can reduce the network setup and deployment cost by establishing a beam-based wireless link between the base stations, and the scenario of dense deployment and indoor transmission in 5G. It is of great significance.
  • the integrated access backhaul (IAB) technology can share the frequency band resources through the access link (ie, the access link) and the backhaul link (that is, the backhaul link), and perform the same-frequency deployment, which can improve the spectrum. usage efficiency.
  • the NR system introduces the concept of beam management due to the need to use beams at high frequencies.
  • the beam management refers to a series of operations, such as beam selection, beam measurement, beam reporting, and beam scanning, for the base station and the user side to acquire and manage the downlink and uplink transmission and reception of the user.
  • Beam management is performed based on a series of reference signals, and the base station or user uses different transmit or receive beams on these reference signals to achieve beam scanning.
  • the user or the base station performs measurement based on the scanned beam, further performs a beam selection process and feeds back the selected result.
  • the relay transceiver node may be configured to transmit to the base station and the terminal at the same time, that is, the relay transceiver node simultaneously performs transmission of the backhaul link uplink and the access link downlink.
  • the beam management process is also required in the IAB scenario. If the uplink and downlink beam management are performed independently, the corresponding reference signal resources need to be configured for the uplink and downlink beam management respectively, which will cause waste of time-frequency resources.
  • the relay transceiver node separately performs the beam management of the backhaul link and the access link, which causes a problem of waste of time-frequency resources.
  • the present invention provides a beam management method, a relay transceiver node, a terminal, and a base station, which are used to solve the problem that the relay transceiver node independently performs beam management of the backhaul link and the access link in the integrated access and backhaul scenario.
  • the present application provides a beam management method.
  • a relay transceiver node For a relay transceiver node, a relay transceiver node sends an uplink beam to a base station on a series of reference signal resources, and sends a downlink beam to the terminal.
  • the The method includes: the relay transceiver node determines a first resource group and a second resource group, where the resource unit in the first resource group is used to perform a beam in the first beam group between the relay transceiver node and the terminal Measuring and selecting, the resource unit in the second resource group is used for performing measurement and selection of a beam in the second beam group between the relay transceiver node and the base station; the relay transceiver node uses the first The resource group sends the first beam group, and uses the second resource group to send the second beam group, that is, according to the corresponding relationship between the resource unit included in the first resource group and the beam in the first beam group.
  • the beam in the second beam group is transmitted according to a correspondence between a resource unit included in the second resource group and a beam in the second beam group, where
  • the beam sent by the relay transceiver node on the same resource unit is the access chain.
  • a common beam of the path and the backhaul link that is, when there is a shared resource unit in the first resource group and the second resource group, a common beam exists in the first beam group and the second beam group
  • the relay transceiver node sends the shared beam corresponding to the shared resource unit by using the shared resource unit.
  • the terminal when the relay transceiver node transmits a beam to the terminal on a series of reference signal resources, the terminal receives the transmission beam from the relay transceiver node on a series of reference signal resources. Specifically, the terminal determines a first resource group configured by the relay transceiver node, and the terminal uses the first resource group to receive the beam in the first beam group from the relay transceiver node. For a base station, when a relay transceiver node transmits an uplink beam to a base station on a series of reference signal resources, the base station receives a transmission beam from the relay transceiver node on a series of reference signal resources.
  • the base station determines a second resource group, and the base station uses the second resource group to receive a beam in the second beam group from the relay transceiver node.
  • the first resource group is included in the first reference signal resource
  • the second resource group is included in the second reference signal resource
  • the second reference signal resource partially overlaps with the first reference signal resource
  • the first reference signal resource is configured by the relay transceiver node for the terminal according to the second reference signal resource, where the first reference signal resource partially overlaps with the second reference signal resource, the first reference
  • the signal resource is used for beam management of the access link
  • the second reference signal resource is used for beam management of the backhaul link.
  • the relay transceiver node when the relay transceiver node performs joint beam management of the Backhaul link and the access link, when the first resource group and the second resource group have shared resource units, that is, when the beam management of the Backhaul link is required.
  • the rTRP can effectively utilize the shared reference signal resource and the beam to complete a part of the beam on the backhaul and the access link. Management helps to reduce the resource overhead of this part of the beam management and to reduce the total delay of the entire beam management process.
  • the following method flow is also performed in the beam management process of the relay transceiver node:
  • the relay transceiver node determines the first resource group and the second resource group, including: the relay transceiver node determines the first reference signal resource according to the second reference signal resource, so that the a reference signal resource partially overlapping the second reference signal resource, the first reference signal resource being used for beam management of the access link, and the second reference signal resource being used for the backhaul link Beam management; determining, by the relay transceiver node, the first resource group according to the first reference signal resource, and determining the second resource group according to the second reference signal resource; wherein the first resource group is included in the Within a reference signal resource, the second resource group is included in the second reference signal resource.
  • the downlink reference signal resources required for signal management and beam management of the access link are partially overlapped in the time-frequency domain resources.
  • the relay transceiver node before the relay transceiver node transmits the beam in the first beam group according to the correspondence between the resource unit included in the first resource group and the beam in the first beam group The method further includes:
  • the transmission power that the shared beam and the non-shared beam may encounter in the downlink beam are inconsistent, so as to avoid the accuracy of the beam measurement of the terminal in the downlink beam.
  • the performance of the present application generates a set of power offset values for each downlink beam before each beam scan, and informs the terminal of the power offset value of each downlink beam, so that the terminal uses the power offset value. After the actual transmit power of each downlink beam is compensated, the beam quality is calculated, and the downlink beam of the access link has different transmit powers, and the accuracy of the terminal beam measurement is still not affected.
  • the relay transceiver node determines a power offset value corresponding to each beam in the first beam group, including: the relay transceiver node determines each of the first beam groups a transmit power of the beam; the relay transceiver node determines a power offset value of each beam in the first beam group according to a transmit power of one of the first beam groups.
  • the relay transceiver node sends a power offset value corresponding to each resource unit in the first resource group to the terminal, including: the relay transceiver node sends the power to the terminal First indication information, the first indication information includes N indication fields, where the N indication fields are used to indicate N power offset values, and the power offset value corresponding to each resource unit in the first resource group
  • the indication field is included in the N indicator fields, where the resource unit in the first resource group is included in the N resource element subsets pre-configured by the first reference signal resource, and the N indicator fields
  • the position ranking in the first indication information has a one-to-one correspondence with the position ordering of the N resource element subsets pre-configured by the first reference signal resource, where N is a positive integer greater than 1.
  • the relay transceiver node sends a power offset value corresponding to each resource unit in the first resource group to the terminal, including: the relay transceiver node sends the power to the terminal a second indication information, where the second indication information is used to indicate, to the terminal, a location index of each resource unit in the first resource group and a power offset value corresponding to the location index;
  • the two indication information is carried in the RRC signaling of the radio resource control, or carried in the MAC-CE signaling, or carried in the DCI signaling.
  • the relay transceiver node determines a beam corresponding to each resource unit in the first resource group, including: the relay transceiver node receives first index information from the terminal, where The first index information includes a location index of a resource unit associated with one or more beams selected by the terminal from the received management beams; the relay transceiver node determines, according to the first index information, a beam in the first beam group; the relay transceiver node establishes a correspondence between a resource unit included in the first resource group and a beam in the first beam group.
  • the relay transceiver node sends the beam in the second beam group according to the correspondence between the resource unit included in the second resource group and the beam in the second beam group.
  • the method further includes:
  • the relay transceiver node receives second index information from the base station, where the second index information includes a location of a resource unit to which the base station associates one or more beams selected from the received management beams. Indexing; determining, by the relay transceiver node, the beam in the second beam group according to the second index information; the relay transceiver node establishing a resource unit and the second beam included in the second resource group Correspondence between beams in a group.
  • the relay transceiver node sends the corresponding relationship according to the correspondence between the resource unit included in the first resource group and the beam in the first beam group.
  • the method further includes: the relay transceiver node receiving a location index of a resource unit corresponding to one or more beams selected by the terminal; the relay transceiver node is configured according to a location index of a resource unit corresponding to one or more beams selected by the terminal, updating a beam in the first beam group, and establishing a resource unit included in the first resource group and the updated Correspondence between beams in a beam group.
  • the terminal feeds back one or more indexes of the reference signal resources with better beam quality to the relay transceiver node, so that the relay transceiver node can update the information according to the feedback information of the terminal.
  • the beam in the first beam set at the time of one beam scan.
  • the relay transceiver node sends the beam in the second beam group according to the correspondence between the resource unit included in the second resource group and the beam in the second beam group.
  • the method further includes: the relay transceiver node receiving a location index of a resource unit corresponding to one or more beams selected by the base station; and the relay transceiver node selecting one or Position index of the resource unit corresponding to the multiple beams, updating the beam in the second beam group, and establishing between the resource unit included in the second resource group and the updated beam in the second beam group Correspondence.
  • the base station feeds back one or more indexes of the reference signal resources with better beam quality to the relay transceiver node, so that the relay transceiver node determines the next time according to the feedback information of the base station.
  • the method further includes: the terminal is in the middle
  • the first index information is sent by the transceiver node, where the first index information includes a location index of the resource unit associated with the one or more beams selected by the terminal from the received management beams.
  • the method before the terminal uses the first resource group to receive a beam in the first beam group from the relay transceiver node, the method further includes: the terminal receiving a power offset value associated with each resource element in the first resource group of the relay transceiver node;
  • the method further includes: the terminal is associated according to each resource unit in the first resource group a power offset value, selecting one or more beams from the first beam group, and transmitting, to the relay transceiver node, one or more beams selected from the first beam group The location index of the resource unit.
  • the terminal receives a power offset value corresponding to each resource unit in the first resource group from the relay transceiver node, including: receiving, by the terminal, the transceiver from the relay a first indication information of the node, where the first indication information includes N indication fields, where the N indication fields are used to indicate N power offset values, and the power offset corresponding to each resource unit in the first resource group
  • the value-indicating indicator field is included in the N indicator fields, where the resource unit in the first resource group is included in the N resource element subsets pre-configured by the first reference signal resource, and the N
  • the location of the indication field in the first indication information is in a one-to-one correspondence with the location order of the N resource element subsets pre-configured by the first reference signal resource, where N is a positive integer greater than 1.
  • the terminal receives a power offset value corresponding to each resource unit in the first resource group from the relay transceiver node, including: receiving, by the terminal, the transceiver from the relay a second indication information of the node, where the second indication information is used to indicate, to the terminal, a location index of each resource unit in the first resource group and a power offset value corresponding to the location index;
  • the second indication information is carried in the RRC signaling of the RRC, or carried in the MAC-CE signaling, or carried in the DCI signaling.
  • the terminal selects one or more beams from the first beam group according to a power offset value associated with each resource unit in the first resource group, including: The terminal acquires reference signal received power of each resource unit in the first resource group; for the first resource unit in the first resource group, the first resource unit is any one of the first resource groups a resource unit, the terminal corrects the reference signal received power of the first resource unit according to a power offset value associated with the first resource unit, to obtain an equivalent reference signal receiving of the first resource unit The terminal receives power according to the equivalent reference signal of each resource unit in the first resource group, and selects one or more beams from the first beam group.
  • the following method flow is also performed in the beam management process of the relay transceiver node:
  • the method before the base station receives the beam in the second beam group from the relay transceiver node by using the second resource group, the method further includes: the base station transmitting and receiving to the relay The node sends the second index information, where the second index information includes a location index of the resource unit associated with the one or more beams selected by the base station from the received management beams.
  • the method further includes: the base station acquiring Deriving a reference signal received power of each resource unit in the second resource group; the base station selecting one or more beams from the received second beam group according to the reference signal received power, and reporting to the The relay transceiver node transmits a location index of the resource unit associated with the one or more beams selected from the second beam group.
  • the present application provides a relay transceiver node, where the relay transceiver node includes a processor and a communication interface, and the processor is configured to support a relay transceiver node to perform a corresponding function of the relay transceiver node in the foregoing method.
  • the communication interface is configured to support communication between the relay transceiver node and the terminal and the base station to transmit information or instructions involved in the foregoing method to the base station and the terminal.
  • the relay transceiver node may also include a memory for coupling with the processor, which stores program instructions and data necessary for the relay transceiver node.
  • the processor is configured to determine a first resource group and a second resource group, where the resource unit included in the first resource group is used to perform a first beam group between the relay transceiver node and the terminal. Measurement and selection of the beam, the resource unit included in the second resource group is used for measurement and selection of beams in the second beam group between the relay transceiver node and the base station; the communication interface is used for Transmitting the beam in the first beam group according to the beam corresponding to each resource unit in the first resource group, and transmitting the second beam group according to a beam corresponding to each resource unit in the second resource group.
  • a beam wherein, when a resource unit included in the first resource group and a resource unit included in the second resource group have the same resource unit, a beam sent by the relay transceiver node on the same resource unit A shared beam of the access link and the backhaul link.
  • the relay transceiver node performs joint beam management of the backhaul link and the access link, if the uplink reference signal resource required for beam management of the link back and the downlink reference signal resource required for beam management of the access link are When there is a part of the time-frequency domain resource overlap, the relay transceiver node can effectively utilize the shared reference signal resource and the beam to complete the backhaul and part of the beam management on the access link, which is beneficial to reducing the resource overhead of the part of the beam management. And to help reduce the overall delay of the entire beam management process.
  • the determining the first resource group and the second resource group specifically includes: determining, according to the second reference signal resource, the first reference signal resource, so that the first reference signal resource and the second The reference signal resources are partially overlapped; the first reference signal resource is used for beam management of the access link, the second reference signal resource is used for beam management of the backhaul link; and the first reference signal resource is determined according to the first reference signal resource a resource group, the second resource group is determined according to the second reference signal resource; wherein the first resource group is included in the first reference signal resource, and the second resource group is included in the second reference Within the signal resource.
  • the downlink reference signal resources required for signal management and beam management of the access link are partially overlapped in the time-frequency domain resources.
  • the processor is further configured to: send, by the communications interface, the first according to a correspondence between a resource unit included in the first resource group and a beam in the first beam group Before determining a beam in the beam group, determining a power offset value associated with each of the first resource group and each beam in the first beam group; according to each of the first resource groups And determining, by the beam corresponding to the resource unit, a power offset value associated with each beam, a power offset value associated with each resource unit in the first resource group; the communication interface is further configured to send the location to the terminal A power offset value associated with each resource element in the first resource group.
  • the embodiment of the present application when there is a common beam in the uplink beam and the downlink beam, the transmission power that the shared beam and the non-shared beam may encounter in the downlink beam are inconsistent, in order to avoid the accuracy of the beam measurement of the terminal in the downlink beam.
  • the embodiment of the present application generates a set of power offset values for each downlink beam before each beam scan, and informs the terminal of the power offset value of each downlink beam, and each power offset value and one downlink
  • the reference signal resources are associated such that the beam using the downlink reference signal resource will perform a corresponding power offset based on a preset transmit power of the relay transceiver node, so that the terminal uses each of the downlinks by using the power offset value. After the actual transmit power of the beam is compensated, the beam quality is calculated, and the downlink beam of the access link has different transmit powers, and the accuracy of the terminal beam measurement is still not affected.
  • the determining the power offset value associated with each beam in the first beam group includes: determining a transmit power of each beam in the first beam group; The transmit power of one of the beams in the first set of beams determines the transmit power of each of the first set of beams.
  • the sending the power offset value associated with each resource unit in the first resource group to the terminal specifically: sending, to the terminal, first indication information, where the first The indication information includes N indication fields, where the N indication fields are used to indicate N power offset values, and an indication field of a power offset value associated with each resource unit in the first resource group is included in the N In the indication field, where the resource unit in the first resource group is included in the N resource element subsets pre-configured by the first reference signal resource, where the N indication fields are in the first indication information
  • the location ordering has a one-to-one correspondence with the location order of the N resource element subsets pre-configured by the first reference signal resource, where N is a positive integer greater than 1.
  • the association relationship between the subset and the indication field of the offset value it is not necessary to explicitly inform the terminal of the downlink reference signal resource corresponding to each beam, and what is the power offset value corresponding to each downlink reference signal resource.
  • the power offset value of the downlink reference signal resource in the N subsets of the terminal needs to be updated, and the updated power offset value needs to be updated, so that only N indication fields are needed to notify the association relationship, which is beneficial to save the letter. Make the cost.
  • the sending the power offset value associated with each resource unit in the first resource group to the terminal specifically, sending: sending, by the terminal, second indication information, the second The indication information is used to indicate to the terminal, a location index of each resource unit in the first resource group and a power offset value associated with the location index; wherein the second indication information is carried in a radio resource control RRC
  • the signaling is carried in the MAC-CE signaling or carried in the DCI signaling.
  • the communication interface is further configured to send, in the first beam group, according to a correspondence between a resource unit included in the first resource group and a beam in the first beam group.
  • receiving first index information from the terminal where the first index information includes a location index of a resource unit associated with one or more beams selected by the terminal from the received management beams;
  • the determining the beam corresponding to each resource unit in the first resource group includes: determining, according to the first index information, a beam in the first beam group; establishing a resource unit included in the first resource group Correspondence relationship with beams in the first beam group.
  • the relay transceiver node Before triggering beam management, the relay transceiver node establishes an association relationship between multiple resource units in the first resource group and power offset values of multiple beams in the first beam group, and further each power offset value Associated with a downlink reference signal resource, such that the beam using the downlink reference signal resource will perform a corresponding power offset based on a preset transmit power of the relay transceiver node, so that the terminal according to the power offset of the beam The value is beam measured.
  • the communication interface is further configured to send the second beam group according to a correspondence between a resource unit included in the second resource group and a beam in the second beam group.
  • receiving second index information from the base station where the second index information includes a location index of a resource unit to which the base station associates one or more beams selected from the received management beams
  • the processor is further configured to: before the transmitting the beam in the second beam group, determine a beam in the second beam group according to the second index information, and establish the second Correspondence between resource elements included in the resource group and beams in the second beam group.
  • the application provides a terminal, including a processor and a communication interface, the processor configured to support a terminal to perform a function corresponding to the terminal in the foregoing method.
  • the communication interface is configured to support communication between the terminal and the relay transceiver node to transmit information or instructions involved in the foregoing method to the relay transceiver node.
  • the terminal may also include a memory for coupling with the processor, which stores program instructions and data necessary for the terminal.
  • the processor is configured to determine a first resource group configured by the relay transceiver node, where the first resource group is included in the first reference signal resource, and the first reference signal resource is the middle
  • the transceiver node is configured for the terminal according to the second reference signal resource, where the first reference signal resource partially overlaps with the second reference signal resource, and the first reference signal resource is used for accessing the link.
  • Beam management the second reference signal resource is used for beam management of a backhaul link, and the resource unit included in the first resource group is used to perform the first beam group between the relay transceiver node and the terminal Measurement and selection of a beam; the communication interface for receiving a beam in the first beam group from a relay transceiver node using the first resource group.
  • the relay transceiver node When the relay transceiver node performs joint beam management of the backhaul link and the access link, if the second reference signal resource required for beam management of the backhaul link and the first reference required for beam management of the access link When the signal resource exists, there is a part of the frequency domain resource overlap.
  • the relay transceiver node can effectively utilize the shared reference signal resource and the beam to complete the backhaul and part of the beam management on the access link, which is beneficial to reducing the resources of the beam management. The overhead and the total delay for helping to reduce the overall beam management process.
  • the communication interface is further configured to send the first index information to the relay transceiver node before the first resource group receives the beam in the first beam group from the relay transceiver node.
  • the first index information includes a location index of a resource unit to which the terminal associates one or more beams selected from the received management beams.
  • the relay transceiver node determines, according to the beam information corresponding to the first index information, multiple beams in the first beam group.
  • the communication interface is further configured to receive the first resource from the relay transceiver node before receiving a beam in the first beam group from the relay transceiver node a power offset value associated with each resource unit in the group; the processor, further configured to: after the communication interface receives a beam in the first beam group from the relay transceiver node, according to the a power offset value associated with each resource unit in a resource group, one or more beams are selected from the first beam group; the communication interface is further configured to send the processing to the relay transceiver node A location index of resource elements associated with one or more beams selected from the first set of beams.
  • the terminal receives the power offset value corresponding to the reference signal resource used by each downlink beam sent by the relay transceiver node before each beam scanning, by using the power offset value for each downlink beam. After the actual received power is compensated, the beam quality is calculated, and the downlink beam of the access link has different transmission powers, and the accuracy of the terminal beam measurement is still not affected.
  • the selecting one or more beams from the first beam group according to the power offset value associated with each resource unit in the first resource group includes: acquiring a reference signal received power of each resource unit in the first resource group; for the first resource unit in the first resource group, the first resource unit is any one of the first resource groups, The terminal corrects the reference signal received power of the first resource unit according to the power offset value associated with the first resource unit, to obtain an equivalent reference signal received power of the first resource unit; The equivalent reference signal of each resource unit in the first resource group receives power, and one or more beams are selected from the first beam group.
  • the terminal feeds back one or more indexes of the reference signal resources with better beam quality to the relay transceiver node, so that the relay transceiver node can determine the information according to the feedback information of the terminal.
  • the beam in the first beam set at the time of one beam scan.
  • the first indication information includes N indication fields, where the N indication fields are used to indicate N power offset values, where the value includes: An indication field of a power offset value associated with each resource unit in the first resource group is included in the N indication fields; wherein, the resource unit in the first resource group is included in the first reference signal resource
  • the N indicator resource subsets are arranged in the first indication information, and the positions of the N resource unit subsets preconfigured with the first reference signal resource are ranked one by one.
  • N is a positive integer greater than one.
  • the association relationship between the subset and the indication field of the offset value it is not necessary to explicitly inform the terminal of the downlink reference signal resource corresponding to each beam, and what is the power offset value corresponding to each downlink reference signal resource.
  • the power offset value of the downlink reference signal resource in the N subsets of the terminal needs to be updated, and the updated power offset value needs to be updated, so that only N indication fields are needed to notify the association relationship, which is beneficial to save the letter. Make the cost.
  • the second indication information is used to indicate, to the terminal, a location index and a location of each resource unit in the first resource group.
  • the power offset value associated with the location index; wherein the second indication information is carried in the RRC signaling of the radio resource control, or carried in the MAC-CE signaling, or carried in the DCI signaling.
  • the application provides a base station, including a processor and a communication interface, the processor configured to support a base station to perform a corresponding function of a base station in the foregoing method.
  • the communication interface is configured to support communication between the base station and the relay transceiver node to transmit information or instructions involved in the foregoing method to the relay transceiver node.
  • a memory may also be included in the base station for coupling with the processor, which stores the necessary program instructions and data for the base station.
  • the processor is configured to determine a second resource group, where the second resource group is included in a second reference signal resource, where the second reference signal resource partially overlaps with the first reference signal resource, where
  • the first reference signal resource is configured by the relay transceiver node for the terminal according to the second reference signal resource, where the first reference signal resource is used for beam management of the access link, and the second reference signal resource a beam management for the backhaul link, where the resource unit included in the second resource group is used for performing measurement and selection of a beam in the second beam group between the relay transceiver node and the base station;
  • the communication interface is configured to receive, by using the second resource group, a beam in the second beam group from the relay transceiver node.
  • the relay transceiver node When the relay transceiver node performs joint beam management of the backhaul link and the access link, if the second reference signal resource required for beam management of the backhaul link and the first reference required for beam management of the access link When the signal resource exists, there is a part of the frequency domain resource overlap.
  • the relay transceiver node can effectively utilize the shared reference signal resource and the beam to complete the backhaul and part of the beam management on the access link, which is beneficial to reducing the resources of the beam management. The overhead and the total delay for helping to reduce the overall beam management process.
  • the communication interface is further configured to send, to the relay transceiver node, a beam in the second beam group from the relay transceiver node before using the second resource group.
  • Sending second index information where the second index information includes a location index of a resource unit associated with the one or more beams selected by the base station from the received management beams.
  • the relay transceiver node determines, according to the beam information corresponding to the second index information, multiple beams in the second beam group.
  • the processor is further configured to acquire, after the communication interface uses the second resource group to receive a beam in the second beam group from the relay transceiver node, a reference signal received power of each resource unit in the second resource group; selecting one or more beams from the received second beam group according to the reference signal received power; the communication interface is further used And transmitting, to the relay transceiver node, a location index of a resource unit associated with the one or more beams selected by the processor from the second beam group.
  • the base station feeds back one or more indexes of the reference signal resources with better beam quality to the relay transceiver node, so that the relay transceiver node determines the next time according to the feedback information of the base station.
  • the present application provides a circuit system including an interface unit, a control and operation unit, and a storage unit, and the interface unit is configured to communicate with a base station or other components of the terminal, and the storage unit For storing computer programs or instructions for use in decoding and executing such computer programs or instructions; when executed, the computer programs or instructions are executed by a relay transceiver node for implementing the first aspect or the first aspect described above Any of the possible implementations of the first aspect or the first aspect, or any possible implementation by the base station of the first aspect or the first aspect.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by the present application.
  • FIG. 2 is a schematic flowchart of a method for a beam management method provided by the present application
  • FIG. 3 is a schematic diagram of a downlink beam and a downlink beam transmitted by a relay transceiver node according to the present application having a common beam;
  • FIG. 4 is a schematic flowchart of a method for a beam management method provided by the present application.
  • FIG. 5 is a schematic structural diagram of a communication apparatus provided by the present application.
  • FIG. 6 is a schematic structural diagram of a communication apparatus provided by the present application.
  • FIG. 7 is a schematic structural diagram of a circuit system provided by the present application.
  • LTE systems such as LTE/LTE-A/eLTE systems
  • LTE/LTE-A/eLTE systems or other wireless communication systems using various wireless access technologies, for example, using multiple code divisions.
  • SC-FDMA single carrier-frequency division multiple access
  • 5G also known as new radio
  • NR new radio
  • FIG. 1 shows a schematic diagram of a 5G communication system.
  • the communication system may include at least one base station (only one shown), at least one relay transceiver node (rTRP) and at least one terminal.
  • the communication system shown in FIG. 1 can be used to access a backhaul integrated IAB scenario, wherein a base station and a relay transceiver node transmit through a wireless backhaul link, and the relay transceiver node and the terminal pass wireless access. (Access) link transmission.
  • the base station can be a device that can communicate with the terminal.
  • the base station can be any device having a wireless transceiving function. Including but not limited to: a base station NodeB, an evolved base station eNodeB, a base station in a fifth generation (5G) communication system, a base station or base station in a future communication system, an access node in a WiFi system, and a wireless relay node , wireless backhaul nodes, etc.
  • the base station may also be a wireless controller in a cloud radio access network (CRAN) scenario.
  • the base station may also be a base station in a 5G network or a base station in a future evolved network; it may also be a wearable device or an in-vehicle device.
  • the base station may also be a small station, a transmission reference point (TRP), or the like. Of course, no application is not limited to this.
  • the terminal is a wireless transceiver function that can be deployed on land, indoors or outdoors, handheld, wearable or on-board; it can also be deployed on the water (such as ships); it can also be deployed in the air (such as airplanes, balloons, and Satellite, etc.).
  • the terminal may be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, industrial control (industrial control) Wireless terminal, wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transportation safety, A wireless terminal in a smart city, a wireless terminal in a smart home, and the like.
  • the embodiment of the present application does not limit the application scenario.
  • a terminal may also be referred to as a user equipment (UE), an access terminal, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a UE terminal, a terminal, a wireless communication device, and a UE. Agent or UE device, etc.
  • UE user equipment
  • the relay transceiver node may be a device capable of communicating with a base station, a terminal, or other relay transceiver node. Including but not limited to: wireless relay nodes, wireless backhaul nodes, home base stations, wearable devices or in-vehicle devices, small stations, transmission nodes, and the like.
  • system and “network” in the embodiments of the present invention may be used interchangeably.
  • Multiple means two or more, and in view of this, "a plurality” may also be understood as “at least two” in the embodiment of the present invention.
  • the character "/” unless otherwise specified, generally indicates that the contextual object is an "or" relationship.
  • 5G NR systems will have a wider spectrum range (within GHz). Since the signal is in the high frequency range, the signal change will be more severe than the low frequency signal will suffer greater path loss and signal fading. Based on this, the NR system can achieve signal concentration in a certain direction by using multiple-input-multiple-output (MIMO) and multi-beam technologies, which enhances signal resistance. Fading ability. This also creates conditions for the use and deployment of wireless backhaul technology. By establishing wireless backhaul for data technology, beam-based radio signaling link, the network can reduce deployment costs and set up between the base station, to the fifth generation mobile communications technology (5 th generation, 5G) in the dense deployment, Indoor For scenarios such as transmission, it is of great significance.
  • the access and backhaul integration technology can share the frequency band resources through the access link and the backhaul link, and perform the same-frequency deployment, which can improve the spectrum utilization efficiency.
  • the new radio (NR) system introduces the concept of beam management due to the need to use beams at high frequencies.
  • the beam management refers to a series of operations, such as beam selection, beam measurement, beam reporting, and beam scanning, for the base station and the user side to acquire and manage the downlink and uplink beam transmission and reception of the user.
  • Beam management is performed based on a series of reference signals, and the base station or user uses different transmit or receive beams on these reference signals to achieve beam scanning.
  • the user or the base station performs measurement based on the scanned beam, further performs a beam selection process and feeds back the selected result.
  • the relay transceiver node may be configured to transmit to the base station and the terminal at the same time, that is, the relay transceiver node simultaneously performs transmission of the backhaul link uplink and the access link downlink.
  • the beam management process is also required in the IAB scenario. If the uplink and downlink beam management are performed independently, the corresponding reference signal resources need to be configured for the uplink and downlink beam management respectively, which will cause waste of time-frequency resources. At the same time, if the independent beam management process is not performed at the same time, it will cause the beam management completion time to lag.
  • the beams selected by the base station and the terminal after the independent beam management may interfere with each other, which may affect the subsequent transmission.
  • the present invention provides a beam management method for solving the additional resource overhead that may be caused by the relay transceiver node independently performing beam management of the access link and the backhaul link in the IAB scenario, and the beam management delay is long. And other issues.
  • the joint beam management method provided by the present application can effectively utilize the shared reference signal resources and beams to complete beam management on the backhaul link and the access link, and can reduce the total resource overhead and beam management. Delay.
  • the present application provides a beam management method, which mainly includes the following steps:
  • Step 101 The relay transceiver node determines a first resource group and a second resource group, where the resource unit in the first resource group is used to measure a beam in the first beam group between the relay transceiver node and the terminal. And selecting, the resource unit in the second resource group is used for performing measurement and selection of a beam in the second beam group between the relay transceiver node and the base station.
  • the beam in the first beam group in step 101 is a management beam configured by the relay transceiver node for an access link, and the beam in the second beam group is a backhaul of the relay transceiver node.
  • the management beam of the link configuration is a management beam configured by the relay transceiver node for an access link, and the beam in the second beam group is a backhaul of the relay transceiver node.
  • the upper node is a base station
  • the lower node is a terminal
  • the relay transceiver node and the base station are connected through a backhaul link
  • the relay transceiver node is connected.
  • the relay transceiver node jointly manages the beams of the access link and the backhaul link
  • the beam management of the access transceiver node to the access link is equivalent to the downlink beam management
  • the relay transceiver node pairs the beam of the backhaul link.
  • the management is equivalent to the uplink beam management.
  • the beam transmitted by the relay transceiver node to the base station through the backhaul link is an uplink beam
  • the beam transmitted to the terminal through the access link is a downlink beam.
  • Step 102 The relay transceiver node sends a beam in the first beam group according to a correspondence between a resource unit included in the first resource group and a beam in the first beam group.
  • the terminal receives the beam in the first beam group from the relay transceiver node using the first resource group.
  • Step 103 The relay transceiver node sends a beam in the second beam group according to a correspondence between a resource unit included in the second resource group and a beam in the second beam group.
  • a beam transmitted by the relay transceiver node on the same resource unit is the access link and The common beam of the backhaul link.
  • the base station receives the beam in the second beam group from the relay transceiver node using the second resource group.
  • Step 102 and step 103 have no strict sequence.
  • the same resource unit in step 102 and step 103 The transmission of the common beam on the same occurs simultaneously.
  • the first resource group includes one or more resource units
  • the second resource group includes one or more resource units.
  • the first resource group and the second resource group may have shared resources, or may not have shared resources. In different beam scans, the first resource group and the second resource group may be the same or different.
  • the same resource unit includes one or more resource units, and the same resource unit refers to the first resource unit.
  • a resource unit in which a resource group and a second resource group overlap on a time-frequency domain resource, and the resource unit may be a time-frequency resource occupied by transmitting one beam.
  • the relay transceiver node sends multiple downlink beams in the first beam group by using multiple resource units in the first resource group.
  • the relay transceiver node transmits a plurality of uplink beams in the second beam group using a plurality of resource units in the second resource group.
  • the resource unit included in the first resource group and the resource unit included in the second resource group have the same resource unit, the plurality of downlink beams and the second beam group in the first beam group
  • the plurality of uplink beams have the same beam, that is, the shared beam, and the resource unit that transmits the shared beam may be referred to as a shared resource unit.
  • the first resource group includes 4 resource units
  • the second resource group includes 4 resource units
  • the first resource group and the second resource group include two shared resource units
  • the relay transceiver node uses the The four resource units of a resource group send downlink beam 1, beam 2, beam 3, beam 4, and the relay transceiver node uses the four resource units of the second resource group to transmit uplink beam 3, beam 4, beam 5, beam 6, Then, beam 3 and beam 4 are shared beams, and it can be understood that the relay transceiver node simultaneously transmits beam 3 and beam 4 to the terminal and the base station.
  • the downlink beam in the first beam group can be sent through the reference signal on the access link, and the uplink beam in the second beam group can be sent through the reference signal on the backhaul link, so the first resource group can be the access chain.
  • the downlink reference signal resource in the path, and the second resource group may be an uplink reference signal resource in the backhaul link.
  • the relay transceiver node in step 101 determines the first resource group and the second resource group, including:
  • the relay transceiver node determines the first reference signal resource according to the second reference signal resource, so that the first reference signal resource and the second reference signal resource partially overlap, and the relay transceiver node is configured according to the first reference signal resource. Determining, by the first resource group, the second resource group according to the second reference signal resource, where the first resource group is included in the first reference signal resource, and the second resource group is included in the Two reference signal resources.
  • the first reference signal resource is configured by the relay transceiver node for the terminal, and is used for beam management of an access link.
  • the second reference signal resource is configured by the base station for the relay transceiver node, and is used for beam management of a backhaul link.
  • the first reference signal resource and the second reference signal resource may be configured in a periodic, aperiodic or semi-persistent manner.
  • the first reference signal resource partially overlaps with the second reference signal resource, which means that the first reference signal resource and the second reference signal resource can be multiplexed, that is, the reference signal on the backhaul link is in time
  • the reference signal of the access link on the frequency domain resource has a coincident portion on the time-frequency domain resource, and when the first reference signal resource and the second reference signal resource are periodically configured, the period of the first reference signal resource may be
  • the second reference signal resource has the same period.
  • the reference signal on the backhaul link may be a specific reference signal on the backhaul link, such as a sounding reference signal (SRS).
  • the reference signal on the access link may be a user-specific reference signal, such as a synchronization signal block (SSB), or a channel state information-RS (CSI-RS).
  • SSB synchronization signal block
  • CSI-RS channel state information-RS
  • the shared reference signal resource and the shared beam can be effectively utilized to complete beam management on the backhaul and access links, which can reduce resource overhead and total delay of beam management.
  • the relay transceiver node when the relay transceiver node performs joint beam management of the backhaul link and the access link, if the beam reference of the back link is required for beam management and the beam of the access link
  • the downlink reference signal resources required for management are partially overlapped in the time-frequency domain resources, and the relay transceiver node can effectively utilize the shared reference signal resources and the beam to complete the backhaul and part of the beam management on the access link, which is beneficial to reduce This part of the beam management resource overhead and the overall delay of the entire beam management process.
  • the relay transceiver node independently performs beam management on the backhaul link and the access link
  • the base station and the terminal selected by the independent beam management are selected. Beams may interfere with each other and affect subsequent transmissions.
  • the relay transceiver node since the reference signal resources of the uplink beam and the downlink beam are jointly managed by the relay transceiver node, in the joint management process, it is ensured that the selected beams of the base station and the terminal do not mutually Impact, so even if the backhaul link and the access link are transmitted simultaneously, the beams selected by the base station and the terminal will not affect each other.
  • the relay transceiver node may transmit the power offset value of the beam on the access link to the terminal in advance, and further solve the above problem caused by the inconsistency of the transmit power of the beam on the access link caused by using the shared beam. problem.
  • the relay transceiver node before step 102, the relay transceiver node generates a set of power offset values for the transmitted downlink beam, and informs the terminal of the power offset value of each beam, specifically: The relay transceiver node determines a power offset value associated with each of the first resource group and each beam in the first beam group; the relay transceiver node is configured according to the first resource Determining, according to a beam corresponding to each resource unit in the group, and a power offset value associated with each of the beams, determining a power offset value associated with each resource unit in the first resource group;
  • the relay transceiver node sends a power offset value associated with each resource unit in the first resource group to the terminal.
  • the transmission power that the shared beam and the non-shared beam may encounter in the downlink beam are inconsistent, so as to avoid the accuracy of the beam measurement of the terminal in the downlink beam.
  • the performance of the present application generates a set of power offset values for each downlink beam before each beam scan, and informs the terminal of the power offset value of each downlink beam, so that the terminal uses the power offset value. After the actual transmit power of each downlink beam is compensated, the beam quality is calculated, and the downlink beam of the access link has different transmit powers, and the accuracy of the terminal beam measurement is still not affected.
  • the beam management of the access node by the relay transceiver node refers to a multiple beam scanning and reporting process between the relay transceiver node and the terminal, which uses different transmissions on a series of reference signal resources. / Receive beam to achieve, this process can be repeated for a period of time to determine the best use of the beam.
  • the start of a downlink beam scanning process may be triggered by the relay transceiver node. For example, after the uplink beam scanning process on the backhaul link is triggered by the base station, the relay transceiver node may trigger the access link after being triggered by the uplink beam scanning.
  • the duration of the beam scanning process is the effective time of a non-periodic trigger or the effective time of the period trigger.
  • the determining, by the relay transceiver node, a power offset value corresponding to each beam in the first beam group comprising: determining, by the relay transceiver node, a transmit power of each beam in the first beam group
  • the relay transceiver node determines a power offset value of each beam in the first beam group according to a transmit power of one of the first beam groups.
  • one of the transmit power values is used as a reference, and the offset between the transmit power of each downlink beam in the first beam group and the reference is calculated.
  • the power offset value of each downlink beam in the first beam group is calculated.
  • the transmit power of the shared beam can be consistent with the transmit power of the uplink beam, and the transmit power of the shared beam and the unshared beam can be inconsistent.
  • the power can be the same or it can be inconsistent.
  • the power offset value of the beam in the first beam set is generated by the relay transceiver node based on the uplink or downlink channel measurement results (eg, based on path loss generation).
  • the transmit power of a non-shared beam may be used as a reference, or the transmit power of a common beam may be used as a reference, or a preset fixed value may be used as a reference, and the fixed value may be a transmit power different from the shared beam. And the transmit power of the non-common beam.
  • the relay transceiver node determines a power offset value corresponding to each resource unit in the first resource group, that is, establishing multiple resource units in the first resource group and multiple beams in the first beam group.
  • the relationship between power offset values Before triggering beam management, the relay transceiver node establishes an association relationship between multiple resource units in the first resource group and power offset values of multiple beams in the first beam group, and further each power offset value Associated with a downlink reference signal resource, such that the beam using the downlink reference signal resource will perform a corresponding power offset based on a preset transmit power of the relay transceiver node, so that the terminal according to the power offset of the beam The value is beam measured.
  • the relay transceiver node determines a power offset value corresponding to each resource unit in the first resource group, and the process may be triggered before the relay transceiver node performs the first beam scan.
  • the first resource group It is a downlink reference signal resource that is required to be used by the relay transceiver node for the first beam scanning.
  • the beam in the first beam group is a downlink beam that is needed when the relay transceiver node is about to perform the first beam scanning.
  • the process may be triggered when the relay transceiver node completes a beam scan and updates the power offset value corresponding to the downlink reference signal resource used for the next beam scan. At this time, the first resource group is in the middle.
  • the downlink reference signal resource used in the first beam group is the downlink beam to be used when the relay transceiver node is about to perform the next beam scan.
  • the relay transceiver node calculates the transmission beam used by the relay transceiver node and the power it should use according to the feedback of the terminal for the previous beam scanning, and further The power offset value required for each beam is determined and associated with the corresponding downlink reference signal resource for each beam.
  • the power offset value may not be associated or the power offset value corresponding to the history may not be notified.
  • the relay transceiver node determines to determine a beam corresponding to each resource unit in the first resource group, specifically:
  • the relay transceiver node After the relay transceiver node determines the first resource group and determines the multiple beams in the first beam group, the relay transceiver node configures multiple resource units in the first resource group and the first beam Correspondence between multiple beams in a group.
  • the relay transceiver node determines the multiple beams in the first beam group, including: if the relay transceiver node performs the first beam scan, the beam in the first beam group may be a wide beam.
  • the terminal will feed back the index of one or more reference signal resources with better beam quality to the relay transceiver node after the beam scanning process of the relay transceiver node ends.
  • the beam in the first beam group can be determined according to the feedback information of the terminal.
  • the relay transceiver node determines multiple beams in the first beam group, including: the relay transceiver node receives a number from the terminal An index information, where the first index information includes a location index of a resource unit corresponding to one or more beams selected by the terminal when performing beam measurement and selection between the last time with the relay transceiver node, where The transmitting and receiving node determines the beam in the first beam group according to the first index information.
  • the relay transceiver node determines the transmit power of each beam in the first beam group, including: the transmit power of each beam in the first beam group when the relay transceiver node performs the first beam scan. It can be preset; when the relay transceiver node is performing non-first beam scanning, the transmission power of each beam in the first beam group can be adjusted according to the feedback of the terminal.
  • the transmit power of the shared beam may be configured to be the same as the transmit power of each of the second set of beams.
  • the transmit power of the uplink beam may be the same. If both are 15 mW, the transmit power of the shared beam in the first beam group may also be 15 mW, and the unshared beam in the first beam group may be 10 MW.
  • the terminal may be notified by means of displaying a notification, or may be implicitly notified. Notify the terminal.
  • the relay transceiver node implicitly informs the terminal of each used downlink reference signal resource and its corresponding new power offset value, where the relay transceiver node sends the first resource to the terminal.
  • the power offset value corresponding to each resource unit in the group includes: the relay transceiver node sends the first indication information to the terminal, where the first indication information includes N indication fields, and the N indicator fields are used by Instructing N power offset values, an indication field of a power offset value corresponding to each resource unit in the first resource group is included in the N indication fields; wherein resources in the first resource group The unit is included in the N resource element subsets pre-configured by the first reference signal resource, and the positions of the N indication fields in the first indication information are ordered, and the first reference signal resource pre-configured N There is a one-to-one correspondence between the positional ordering of a subset of resource elements, and N is a positive integer greater than one.
  • the relay transceiver node when the relay transceiver node performs downlink reference resource configuration, the relay transceiver node further divides the configured first reference signal resource into a reserved part and a non-reserved part, and predefines the following rules: if the relay sends and receives When the node uses the reserved reference signal resource, it indicates that the power offset is used by the beam on the part of the reference signal resource, and the corresponding power offset value is notified by the relay transceiver node. If the relay transceiver node notifies more than one power offset value, the relay transceiver node further divides the reserved reference signal resources into a number of subsets. The number of divided subsets is consistent with the number of power offset values that the relay transceiver node can simultaneously notify at most.
  • the updating of the power offset value on the terminal side is performed according to the following method: after receiving the power offset value notified by the relay transceiver node, the terminal associates the reserved reference signal resource with the power offset value, Used for subsequent beam power offset calculations. If the notified power offset value is more than one, the power offset value sequence notified by the relay transceiver node corresponds to the index order of the divided subset of reserved reference signal resources.
  • the terminal receives the multiple power offset values the reference signal resources in the subset of the reserved reference signal resources of the corresponding index sequence number are associated with the power offset value according to the location of the power offset value in the notification signaling. Further, when the terminal receives the beam on the corresponding reference signal resource, the calculation is performed according to the corresponding power offset value.
  • the relay transceiver node may divide the reserved portion of the first reference signal resource into N subsets, where the first resource group actually used in one beam scanning is included in the N sub-subs Within the set, the relay transceiver node sorts the N subsets, obtains the sequence number of each subset, and then implicitly notifies the power corresponding to each subset by the indication information corresponding to the sequence number of each subset before each beam scan. Offset value.
  • the relay transceiver node explicitly informs the terminal of each used downlink reference signal resource and its corresponding new power offset value by using signaling, specifically, the relay transceiver node is Transmitting, by the terminal, the power offset value corresponding to each resource unit in the first resource group, the: the relay transceiver node sending the second indication information to the terminal, where the second indication information is used to send the The terminal indicates a location index of each resource unit in the first resource group and a power offset value corresponding to the location index; wherein the second indication information is carried in a radio resource control (RRC) message
  • RRC radio resource control
  • the command is either carried in the medium access control-control elemen (MAC-CE) signaling or carried in downlink control information (DCI) signaling.
  • MAC-CE medium access control-control elemen
  • DCI downlink control information
  • the relay transceiver node before each beam scanning, the relay transceiver node needs to re-determine the beam in the second beam group, including: when the relay transceiver node performs the first beam scanning, in the second beam group.
  • the beam can be a wide beam.
  • the base station feeds back one or more indexes of the reference signal resources with better beam quality to the relay transceiver node, so when the relay transceiver node performs the non-first beam scanning
  • the beam in the second beam group can be determined according to the feedback information of the base station.
  • the relay transceiver node determines the beam in the second beam group, including: the relay transceiver node receives the second index information from the base station, The second index information includes a location index of the resource unit corresponding to the one or more beams selected by the base station from the received management beam when the base station performs beam measurement and selection with the relay transceiver node.
  • the relay transceiver node determines the beam in the second beam group according to the second index information.
  • the transmit power of each of the second beam groups may be preset to be the same.
  • the second beam group is The transmit power of each beam can be adjusted according to the feedback of the base station, but the transmit power of each beam can still be consistent.
  • the method of the foregoing method further includes: when the relay transceiver node determines that the transceiver beam between the relay transceiver node and the terminal does not change, the terminal sends an indication message to the terminal, indicating that the beam is no longer changed, and stopping the beam scanning.
  • the relay transceiver node may use RRC signaling reconfiguration or use dynamic signaling indication.
  • the method of the foregoing method further includes: when the relay transceiver node determines that the transceiver beam between the relay transceiver node and the base station does not change, the request information is sent to the base station, the request beam is no longer changed, and the beam scanning is stopped.
  • the relay transceiver node may send a stop request by using a physical uplink shared channel (PUSCH) or a physical uplink control channel (PUCCH).
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the terminal when the relay transceiver node transmits a beam to the terminal on a series of reference signal resources, the terminal receives the transmission beam from the relay transceiver node on a series of reference signal resources.
  • the method includes: the terminal determines a first resource group configured by the relay transceiver node, and the terminal uses the first resource group to receive a beam in the first beam group from the relay transceiver node, where the resource unit in the first resource group The measurement and selection of beams are performed between the relay transceiver node and the terminal.
  • the terminal performs measurement and selection of the transmit beam in the beam scanning process triggered by the relay transceiver node, and the multiple resource units in the first resource group used by the terminal and the multiple beams in the received first beam group may be one by one.
  • the first resource group is included in the first reference signal resource, and the first reference signal resource is configured by the relay transceiver node for the terminal according to the second reference signal resource, where the first reference signal is The resource partially overlaps with the second reference signal resource, wherein the first reference signal resource is used for beam management of an access link, and the second reference signal resource is used for beam management of a backhaul link.
  • the terminal may determine the first resource group according to the indication signaling of the relay transceiver node.
  • the method before the terminal receives the beam in the first beam group from the relay transceiver node by using the first resource group, the method further includes: sending, by the terminal, the An index information, where the first index information includes resources corresponding to one or more beams selected by the terminal from the received management beam when performing beam measurement and selection between the last time and the relay transceiver node. a location index of the unit, so that the relay transceiver node determines multiple beams in the first beam group according to beam information corresponding to the first index information.
  • the terminal may send the first index information to the relay transceiver node in the PUCCH or the PUSCH.
  • the method further includes: the terminal receiving a power offset value corresponding to each resource unit in the first resource group from the relay transceiver node; the terminal receiving After relaying the beam in the first beam group of the transceiver node, selecting one or more beams from the first beam group according to a power offset value corresponding to each resource unit in the first resource group, and Sending, to the relay transceiver node, a location index of a resource unit corresponding to the selected one or more beams.
  • the transmission power that the shared beam and the non-shared beam may encounter in the downlink beam are inconsistent, so as to avoid the accuracy of the beam measurement of the terminal in the downlink beam.
  • the performance of the embodiment of the present application receives the power offset value corresponding to the reference signal resource used by each downlink beam sent by the relay transceiver node before each beam scanning, by using the power offset value for each downlink. After the actual received power of the beam is compensated, the beam quality is calculated, and the downlink beam of the access link has different transmission powers, and the accuracy of the terminal beam measurement is still not affected.
  • the terminal selects one or more beams from the first beam group according to a power offset value corresponding to each resource unit in the first resource group, including: The terminal acquires reference signal received power of each resource unit in the first resource group; for the first resource unit in the first resource group, the first resource unit is any one of the first resource groups a resource unit, the terminal corrects the reference signal received power of the first resource unit according to a power offset value associated with the first resource unit, to obtain an equivalent reference signal receiving of the first resource unit The terminal receives power according to the equivalent reference signal of each resource unit in the first resource group, and selects one or more beams from the first beam group.
  • the terminal feeds back one or more indexes of the reference signal resources with better beam quality to the relay transceiver node, so that the relay transceiver node can determine the information according to the feedback information of the terminal.
  • the beam in the first beam set at the time of one beam scan. Specifically, after the beam measurement is completed on the downlink reference signal resource of the terminal, one or a group of reference signal resources are selected, and the index number of the corresponding reference signal resource is fed back to the relay transceiver node.
  • the selected principle may be based on measured reference signal received power (RSRP) on each reference signal resource.
  • the terminal may calculate the reference signal resource by adding the corresponding power offset value based on the actually measured RSRP. Effective RSRP, which in turn ensures the accuracy of beam measurements.
  • the terminal receives a power offset value corresponding to each resource unit in the first resource group from the relay transceiver node, including: receiving, by the terminal, the transceiver from the relay a first indication information of the node, where the first indication information includes N indication fields, where the N indication fields are used to indicate N power offset values, and the power offset corresponding to each resource unit in the first resource group
  • the value-indicating indicator field is included in the N indicator fields, where the resource unit in the first resource group is included in the N resource element subsets pre-configured by the first reference signal resource, and the N
  • the location of the indication field in the first indication information is in a one-to-one correspondence with the location order of the N resource element subsets pre-configured by the first reference signal resource, where N is a positive integer greater than 1.
  • the terminal receives a power offset value corresponding to each resource unit in the first resource group from the relay transceiver node, including: receiving, by the terminal, the transceiver from the relay a second indication information of the node, where the second indication information is used to indicate, to the terminal, a location index of each resource unit in the first resource group and a power offset value corresponding to the location index;
  • the second indication information is carried in the RRC signaling of the RRC, or carried in the MAC-CE signaling, or carried in the DCI signaling.
  • the base station receives the transmission beam from the relay transceiver node on a series of reference signal resources.
  • the method includes: determining, by the base station, a second resource group, the base station receiving, by using the second resource group, a beam in a second beam group from the relay transceiver node, where the resource unit in the second resource group is used for the relay The measurement and selection of the beam is performed between the transceiver node and the terminal.
  • the base station performs measurement and selection of the transmit beam in the beam scanning process triggered by the relay transceiver node, and the plurality of resource units in the second resource group used by the base station correspond to the multiple beams in the received second beam group.
  • the second resource group is included in the second reference signal resource, and the second reference signal resource is used for beam management of the backhaul link. Since the first resource group is included in the first reference signal resource, the base station may perform monitoring at the first reference signal resource location to obtain a second resource group occupied by the relay transceiver node to transmit the beam in the second beam group. In some possible implementation manners, the relay transceiver node may also feed back, to the base station, the second resource group occupied by the relay transceiver node to transmit the beam in the second beam group.
  • the following method flow is also performed in the beam management method flow of the relay transceiver node:
  • the method before the base station receives the beam in the second beam group from the relay transceiver node by using the second resource group, the method further includes: the base station sending the signal to the relay transceiver node a second index information, where the second index information includes one or more beams selected by the base station from the received management beams when performing beam measurement and selection between the last time with the relay transceiver node a location index of the resource unit, so that the relay transceiver node determines multiple beams in the second beam group according to beam information corresponding to the second index information.
  • the base station may send the second index information to a physical downlink shared channel (PUSCH) or a physical downlink control channel (PUCCH) to the relay transceiver node.
  • PUSCH physical downlink shared channel
  • PUCCH physical downlink control channel
  • the method further includes: the base station acquiring reference signal received power of each resource unit in the second resource group; the base station receiving power according to the reference signal, from the One or more beams are selected from the two beam groups, and the location index of the resource unit corresponding to the one or more beams selected by the base station is sent to the relay transceiver node.
  • the base station feeds back one or more indexes of the reference signal resources with better beam quality to the relay transceiver node, so that the relay transceiver node determines the next time according to the feedback information of the base station.
  • the one or a group of reference signal resources are selected, and the index number of the corresponding reference signal resource is fed back to the relay transceiver node.
  • the chosen principle can be based on the measured RSRP on each reference signal resource.
  • the beam of the following access link has different transmit powers, and the beams of the uplink backhaul link have the same power, and the beam of the downlink access link and the beam of the uplink backhaul link have a common beam as an example.
  • the embodiment of the present application provides a method flow of a beam management method, as shown in FIG. 4, which mainly includes the following steps:
  • Step 1 The relay transceiver node configures a reference signal resource of a group of access links for the terminal according to the reference signal resources of a set of backhaul links configured by the base station as the relay transceiver node.
  • the configuration method has the following two situations:
  • the first case if the bandwidth of the backhaul link is less than or equal to the bandwidth of the access link, the reference signal resource of the access link includes the reference signal resource of the backhaul link.
  • the second case if the bandwidth of the backhaul link is greater than the bandwidth of the access link, the reference signal resource of the access link is included in the reference signal resource of the backhaul link.
  • Step 2 The relay transceiver node activates a reference signal resource of a part of the backhaul link for uplink beam management, and activates a reference signal resource of a part of the access link for downlink beam management.
  • the activated downlink beam management is used.
  • the reference signal resource is the first resource group
  • the activated reference signal resource for uplink beam management is the second resource group.
  • Step 3 The relay transceiver node configures a power offset value for each reference signal resource in the first resource group, and notifies the terminal of the power offset value corresponding to each reference signal resource.
  • the first resource group includes N reference signal resources for carrying N reference signals, N reference signals are used for transmitting N downlink beams, and the relay transceiver node configures a set of power offset values ⁇ P 1 , .. ⁇ P N ), where N is the number of configured power offset values (the power offset values may be the same or different).
  • Each power offset value is associated with a reference signal resource for accessing the link in the set of reference signal resources of the access link, ie, the transmit beam using the reference signal (RS) resource will have Corresponding power offset.
  • the association relationship between each power offset value and a reference signal resource for the access link is configured through RRC signaling, or notified by the MAC CE signaling to inform the terminal.
  • Step 4 The relay transceiver node scans the first beam group on the first resource group of the access link, and scans the second beam group on the second resource group of the backhaul link.
  • the terminal is in the access chain.
  • the first resource group is scanned on the first resource group of the path, and the base station scans the second beam group on the second resource group of the backhaul link.
  • the relay transceiver node scans the shared beam on the shared resource.
  • the shared beam is the same as the RS resource used on the backhaul link and the access link, that is, the access link RS resource activated by the relay transceiver node and the backhaul link RS resource activated by the base station are in the time-frequency domain. Same as on the periodic.
  • the terminal After receiving the transmit beam of a relay transceiver node, the terminal calculates an equivalent reference signal reception of each reference signal (which may also be understood as a beam) according to the access link RS resource corresponding to the beam and its corresponding power offset value. power.
  • the terminal After completing the beam measurement and calculation on the access link, the terminal performs beam selection according to a certain rule, such as selecting a beam with the largest RSRP equivalent, and then feeding back the corresponding reference signal resource index number to the relay transceiver node. After the base station completes the beam measurement on the backhaul link, the reference signal resource index sequence number of a backhaul link is similarly selected and fed back to the relay transceiver node.
  • a certain rule such as selecting a beam with the largest RSRP equivalent
  • Step 5 After receiving the feedback from the base station and the terminal, the relay transceiver node updates the beam in the first beam group and the beam in the second beam group, and updates the power offset value corresponding to each reference signal resource.
  • the relay transceiver node associates the power offset value of each updated beam with the RS resource of one access link, and notifies the terminal of each new power offset value by signaling.
  • the association relationship between the RS resources of each access link may be RRC, MAC-CE or DCI signaling.
  • the method of updating is equivalent to updating each corresponding power offset value of the access link RS resource to be used.
  • the next beam scan if there is a shared beam with the uplink beam and some beams are power shifted relative to the other downlink beams, these beams will be used on the corresponding RS resources. If the power of all downlink beams is the same (that is, there is no shared beam with the uplink beam, and the power of all downlink beams can be the same at this time), all beams can be used on RS resources without associated power offset, or all beams. An RS resource with a power offset of 0 can be used.
  • Step 6 Determine whether the uplink beam and the downlink beam are no longer changed. If yes, go to step 7. If no, go back to step 3. Repeat steps 3 to 5 until the relay transceiver node no longer triggers the transmit beam scan.
  • the beam scanning in which steps 3 to 5 are repeated in steps is realized by periodic occurrence or aperiodic activation of RS resources. For example, by setting the repetition field in the RS resource IE to be on or off, it is indicated whether beam scanning is performed.
  • Step 7 The relay transceiver node informs the base station and the terminal that the transmit beam is no longer changed, for example, using RRC signaling reconfiguration or using dynamic signaling indication.
  • the relay transceiver node modifies the access link RS resource information element (IE) IE in the RRC signaling reconfiguration to the "repetition” field to be "ON"; and at the same time, the requesting base station will return the link RS resource.
  • the repetition field is changed to "ON".
  • the implication is that the beams on each reference signal resource are all the same beam.
  • the backlink link and the access link can use the same reference signal resource and the beam to perform the beam management process, improve the beam management efficiency, and save the resource overhead required for beam management.
  • Combined beam management of the backhaul and access links can be achieved compared to the separate beam management procedures for the backhaul link and the access link.
  • the power offset value it is possible to still not affect the accuracy of the beam measurement in the case where the access link beams have different transmission powers.
  • the foregoing step 2 may be replaced by: dividing into a reserved part and a non-reserved part in the first reference signal resource, and dividing the reserved part into N subsets, the N subsets being used for accessing
  • the beam management of the link, the subsets are mutually exclusive, that is, there is no common part, and the result of the division of the subset is notified to the terminal, that is, each terminal knows which subset of the RS resources of each access link belong to.
  • the notification of the result of the subset partitioning may be performed in synchronization with the configuration of the RS resources of the access link in step 1, that is, when the configuration of the RS resources of the access link ends, the division of the subset has also been determined.
  • the equivalent RSRP is calculated according to the sequence number of the reference signal resource and the corresponding power offset value.
  • the foregoing step 5 may be replaced by: after receiving the feedback from the base station and the terminal, the relay transceiver node updates the beam in the first beam group and the beam in the second beam group, and updates the power offset values corresponding to the N subsets.
  • the relay transceiver node determines that the power offset value of K (K is less than or equal to N) beams will change, and the relay transceiver node transmits this through signaling such as RRC or MAC-CE or DCI.
  • the power offset values of the K beams are notified to the terminal, where the K power offset values have a certain order, and each power offset value corresponds to a pre-divided RS resource subset of the access link, and each power
  • the positional arrangement in which the offset value appears in the signaling has a corresponding relationship with the index number of the RS resource subset of the access link. For example, in MAC-CE signaling, K power offset values have a certain order of arrangement in signaling.
  • the power offset value that occurs at location 1 is associated with the RS resource subset of the access link with sequence number 1.
  • the backhaul and access links can use the same reference signal resources and beams for beam management processes, improve beam management efficiency, and save resource overhead required for beam management.
  • the association between the power offset value and the reference signal resource is updated by implicit update, which can save signaling overhead.
  • step 5 according to the feedback situation of the base station and the terminal, when the next beam scanning process does not have a common beam, the downlink beam has the same transmitting power in the next beam scanning process, and need not be performed.
  • the relay transceiver node activates the second resource group for uplink beam management, and activates the third resource group for downlink beam management, wherein the second resource group third resource group and the second resource group The second resource group has no shared resources.
  • Step 3 above is omitted, and step 4 above may be replaced by: the relay transceiver node scans the first beam group on the third resource group of the access link, and scans the second beam on the second resource group of the backhaul link.
  • the group at the same time, the terminal scans the first beam group on the third resource group of the access link, and the base station scans the second beam group on the second resource group of the backhaul link.
  • the first beam group and the second beam group have no shared beam.
  • step 5 may be replaced by: after receiving the feedback from the base station and the terminal, the relay transceiver node updates the beam in the first beam group and the beam in the second beam group, adjusts the transmit power of the beam in the first beam group, and adjusts The transmit power of each beam in the second beam set.
  • the uplink and downlink beam management procedures in step 5 of the non-IAB scenario are similar.
  • This embodiment is not limited to the case where there is no common beam after only one common beam scan.
  • the above-mentioned replaceable steps 4 and 5 can be started.
  • the joint beam management process can be rolled back to an independent uplink or downlink beam management process without the condition of utilizing the common beam, and can be compatible with the existing uplink or downlink beam management process execution.
  • an apparatus 20 provided by an embodiment of the present application includes at least one processor 21, a communication bus 22, a memory 23, and at least one communication interface 24.
  • the relay transceiver node in FIG. 1 can also be the device 20 shown in FIG.
  • the device 20 can implement the steps related to the relay transceiver node in the communication method in the embodiment of the present application by using the processor 21.
  • the processor 21 is configured to determine a first resource group and a second resource group, where the resource unit included in the first resource group is used to perform a first beam group between the relay transceiver node and the terminal. Measurement and selection of a beam in the second resource group for measuring and selecting a beam in a second beam group between the relay transceiver node and a base station; the communication interface 24, Transmitting a beam in the first beam group according to a beam corresponding to each resource unit in the first resource group, and sending the second beam group according to a beam corresponding to each resource unit in the second resource group.
  • the relay transceiver node transmits on the same resource unit when the resource unit included in the first resource group and the resource unit included in the second resource group have the same resource unit
  • the beam is the shared beam of the access link and the backhaul link.
  • the relay transceiver node performs joint beam management of the backhaul link and the access link, if the uplink reference signal resource required for beam management of the link back and the downlink reference signal resource required for beam management of the access link are When there is a part of the time-frequency domain resource overlap, the relay transceiver node can effectively utilize the shared reference signal resource and the beam to complete the backhaul and part of the beam management on the access link, which is beneficial to reducing the resource overhead of the part of the beam management. And to help reduce the overall delay of the entire beam management process.
  • the determining the first resource group and the second resource group specifically includes: determining, according to the second reference signal resource, the first reference signal resource, so that the first reference signal resource and the second The reference signal resources are partially overlapped; the first reference signal resource is used for beam management of the access link, the second reference signal resource is used for beam management of the backhaul link; and the first reference signal resource is determined according to the first reference signal resource a resource group, the second resource group is determined according to the second reference signal resource; wherein the first resource group is included in the first reference signal resource, and the second resource group is included in the second reference Within the signal resource.
  • the downlink reference signal resources required for signal management and beam management of the access link are partially overlapped in the time-frequency domain resources.
  • the processor 21 is further configured to send, according to the correspondence between the resource unit included in the first resource group and a beam in the first beam group, by the communication interface 24 Determining, according to the beam in the first beam group, a power offset value associated with each of the first resource group and each of the first beam group; according to the first resource group a power offset value associated with each resource unit in the first resource group, and a communication offset 24, The terminal sends a power offset value associated with each resource unit in the first resource group.
  • the transmission power that the shared beam and the non-shared beam may encounter in the downlink beam are inconsistent, in order to avoid the accuracy of the beam measurement of the terminal in the downlink beam.
  • the embodiment of the present application generates a set of power offset values for each downlink beam before each beam scan, and informs the terminal of the power offset value of each downlink beam, and each power offset value and one downlink
  • the reference signal resources are associated such that the beam using the downlink reference signal resource will perform a corresponding power offset based on a preset transmit power of the relay transceiver node, so that the terminal uses each of the downlinks by using the power offset value.
  • the beam quality is calculated, and the downlink beam of the access link has different transmit powers, and the accuracy of the terminal beam measurement is still not affected.
  • the determining the power offset value associated with each beam in the first beam group includes: determining a transmit power of each beam in the first beam group; The transmit power of one of the beams in the first set of beams determines the transmit power of each of the first set of beams.
  • the sending the power offset value associated with each resource unit in the first resource group to the terminal specifically: sending, to the terminal, first indication information, where the first The indication information includes N indication fields, where the N indication fields are used to indicate N power offset values, and an indication field of a power offset value associated with each resource unit in the first resource group is included in the N In the indication field, where the resource unit in the first resource group is included in the N resource element subsets pre-configured by the first reference signal resource, where the N indication fields are in the first indication information
  • the location ordering has a one-to-one correspondence with the location order of the N resource element subsets pre-configured by the first reference signal resource, where N is a positive integer greater than 1.
  • the association relationship between the subset and the indication field of the offset value it is not necessary to explicitly inform the terminal of the downlink reference signal resource corresponding to each beam, and what is the power offset value corresponding to each downlink reference signal resource.
  • the power offset value of the downlink reference signal resource in the N subsets of the terminal needs to be updated, and the updated power offset value needs to be updated, so that only N indication fields are needed to notify the association relationship, which is beneficial to save the letter. Make the cost.
  • the sending the power offset value associated with each resource unit in the first resource group to the terminal specifically, sending: sending, by the terminal, second indication information, the second The indication information is used to indicate to the terminal, a location index of each resource unit in the first resource group and a power offset value associated with the location index; wherein the second indication information is carried in a radio resource control RRC
  • the signaling is carried in the MAC-CE signaling or carried in the DCI signaling.
  • the communication interface 24 is further configured to send, in the first beam group, according to a correspondence between a resource unit included in the first resource group and a beam in the first beam group.
  • the relay transceiver node Before triggering beam management, the relay transceiver node establishes an association relationship between multiple resource units in the first resource group and power offset values of multiple beams in the first beam group, and further each power offset value Associated with a downlink reference signal resource, such that the beam using the downlink reference signal resource will perform a corresponding power offset based on a preset transmit power of the relay transceiver node, so that the terminal according to the power offset of the beam The value is beam measured.
  • the communication interface 24 is further configured to send the second beam according to a correspondence between a resource unit included in the second resource group and a beam in the second beam group.
  • receiving second index information from the base station where the second index information includes a location of a resource unit to which the base station associates one or more beams selected from the received management beams
  • the processor 21 is further configured to: before the communication interface 24 sends the beam in the second beam group, determine a beam in the second beam group according to the second index information, and establish a Corresponding relationship between the resource unit included in the second resource group and the beam in the second beam group.
  • the terminal in FIG. 1 can also be the device 20 shown in FIG. 5.
  • the device 20 can implement the steps related to the terminal in the communication method in the embodiment of the present application by using the processor 2121.
  • the processor 21 is configured to determine a first resource group configured by the relay transceiver node, where the first resource group is included in the first reference signal resource, and the first reference signal resource is The relay transceiver node is configured for the terminal according to the second reference signal resource, where the first reference signal resource partially overlaps with the second reference signal resource, and the first reference signal resource is used for the access link
  • the beam management, the second reference signal resource is used for beam management of the backhaul link, and the resource unit included in the first resource group is used to perform the first beam group between the relay transceiver node and the terminal.
  • Measurement and selection of the beam the communication interface 24 is configured to receive a beam in the first beam group from the relay transceiver node using the first resource group.
  • the relay transceiver node When the relay transceiver node performs joint beam management of the backhaul link and the access link, if the second reference signal resource required for beam management of the backhaul link and the first reference required for beam management of the access link When the signal resource exists, there is a part of the frequency domain resource overlap.
  • the relay transceiver node can effectively utilize the shared reference signal resource and the beam to complete the backhaul and part of the beam management on the access link, which is beneficial to reducing the resources of the beam management. The overhead and the total delay for helping to reduce the overall beam management process.
  • the communication interface 24 is further configured to send the first index to the relay transceiver node before the first resource group receives the beam in the first beam group from the relay transceiver node.
  • Information, the first index information includes a location index of a resource unit to which the terminal is associated with one or more beams selected from the received management beams.
  • the relay transceiver node determines, according to the beam information corresponding to the first index information, multiple beams in the first beam group.
  • the communication interface 24 is further configured to receive the first from the relay transceiver node before receiving a beam from the first beam group of the relay transceiver node a power offset value associated with each resource unit in the resource group; the processor 21, further configured to: after the communication interface 24 receives the beam in the first beam group from the relay transceiver node, according to Determining, by the power offset value associated with each resource unit in the first resource group, one or more beams from the first beam group; the communication interface 24 is further configured to send to the relay transceiver node And transmitting, by the processor 21, a location index of a resource unit associated with one or more beams selected from the first beam group.
  • the terminal receives the power offset value corresponding to the reference signal resource used by each downlink beam sent by the relay transceiver node before each beam scanning, by using the power offset value for each downlink beam. After the actual received power is compensated, the beam quality is calculated, and the downlink beam of the access link has different transmission powers, and the accuracy of the terminal beam measurement is still not affected.
  • the selecting one or more beams from the first beam group according to the power offset value associated with each resource unit in the first resource group includes: acquiring a reference signal received power of each resource unit in the first resource group; for the first resource unit in the first resource group, the first resource unit is any one of the first resource groups, The terminal corrects the reference signal received power of the first resource unit according to the power offset value associated with the first resource unit, to obtain an equivalent reference signal received power of the first resource unit; The equivalent reference signal of each resource unit in the first resource group receives power, and one or more beams are selected from the first beam group.
  • the terminal feeds back one or more indexes of the reference signal resources with better beam quality to the relay transceiver node, so that the relay transceiver node can determine the information according to the feedback information of the terminal.
  • the beam in the first beam set at the time of one beam scan.
  • the first indication information includes N indication fields, where the N indication fields are used to indicate N power offset values, where the value includes: An indication field of a power offset value associated with each resource unit in the first resource group is included in the N indication fields; wherein, the resource unit in the first resource group is included in the first reference signal resource
  • the N indicator resource subsets are arranged in the first indication information, and the positions of the N resource unit subsets preconfigured with the first reference signal resource are ranked one by one.
  • N is a positive integer greater than one.
  • the association relationship between the subset and the indication field of the offset value it is not necessary to explicitly inform the terminal of the downlink reference signal resource corresponding to each beam, and what is the power offset value corresponding to each downlink reference signal resource.
  • the power offset value of the downlink reference signal resource in the N subsets of the terminal needs to be updated, and the updated power offset value needs to be updated, so that only N indication fields are needed to notify the association relationship, which is beneficial to save the letter. Make the cost.
  • the second indication information is used to indicate, to the terminal, a location index and a location of each resource unit in the first resource group.
  • the power offset value associated with the location index; wherein the second indication information is carried in the RRC signaling of the radio resource control, or carried in the MAC-CE signaling, or carried in the DCI signaling.
  • the base station in FIG. 1 may also be the device 20 shown in FIG. 5, and the device 20 may implement the steps related to the base station in the communication method in the embodiment of the present application by using the processor 2121.
  • the processor 21 is configured to determine a second resource group, where the second resource group is included in the second reference signal resource, where the second reference signal resource partially overlaps with the first reference signal resource,
  • the first reference signal resource is configured by the relay transceiver node for the terminal according to the second reference signal resource, where the first reference signal resource is used for beam management of the access link, and the second reference signal is used.
  • Resources are used for beam management of the backhaul link, and resource elements included in the second resource group are used for measurement and selection of beams in the second beam group between the relay transceiver node and the base station
  • the communication interface 24 is configured to receive, by using the second resource group, a beam in the second beam group from the relay transceiver node.
  • the relay transceiver node When the relay transceiver node performs joint beam management of the backhaul link and the access link, if the second reference signal resource required for beam management of the backhaul link and the first reference required for beam management of the access link When the signal resource exists, there is a part of the frequency domain resource overlap.
  • the relay transceiver node can effectively utilize the shared reference signal resource and the beam to complete the backhaul and part of the beam management on the access link, which is beneficial to reducing the resources of the beam management. The overhead and the total delay for helping to reduce the overall beam management process.
  • the communication interface 24 is further configured to send and receive to the relay before receiving the beam in the second beam group from the relay transceiver node by using the second resource group.
  • the node sends the second index information, where the second index information includes a location index of the resource unit associated with the one or more beams selected by the base station from the received management beams.
  • the relay transceiver node determines, according to the beam information corresponding to the second index information, multiple beams in the second beam group.
  • the processor 21 is further configured to: after the communication interface 24 receives the beam in the second beam group from the relay transceiver node by using the second resource group, Obtaining reference signal received power of each resource unit in the second resource group; selecting one or more beams from the received second beam group according to the reference signal received power; the communication interface 24 And transmitting, to the relay transceiver node, a location index of a resource unit associated with the one or more beams selected by the processor 21 from the second beam group.
  • the base station feeds back one or more indexes of the reference signal resources with better beam quality to the relay transceiver node, so that the relay transceiver node determines the next time according to the feedback information of the base station.
  • the processor 21 can be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present application.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication bus 22 may include a path for communicating information between the components described above.
  • the communication interface 24 uses devices such as any transceiver for communicating with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), WALN, and the like.
  • RAN Radio Access Network
  • WALN Wireless Local Area Network
  • the memory 23 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM) or other type that can store information and instructions.
  • the dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, and a disc storage device. (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be Any other medium accessed by the device, but is not limited thereto.
  • the memory can exist independently and be connected to the processor via a bus. The memory can also be integrated with the processor.
  • the memory 23 is used to store application code for executing the solution of the present application, and is controlled by the processor 21 for execution.
  • the processor 21 is configured to execute application code stored in the memory 23.
  • processor 21 may include one or more CPUs, such as CPU0 and CPU1 in FIG.
  • the apparatus 20 can include a plurality of processors, such as the processor 21 and the processor 28 of FIG. Each of these processors can be a single-CPU processor or a multi-core processor.
  • a processor herein may refer to one or more devices, circuits, and/or processing cores for processing data, such as computer program instructions.
  • the embodiment of the present application may perform the division of the function modules on the device shown in FIG. 5 according to the foregoing method example.
  • each function module may be divided according to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules. It should be noted that the division of the modules in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • the apparatus shown in FIG. 5 is presented in the form of dividing each functional module corresponding to each function, or the apparatus is presented in the form of dividing each functional module in an integrated manner.
  • a “module” herein may refer to an application-specific integrated circuit (ASIC), circuitry, a processor and memory that executes one or more software or firmware programs, integrated logic circuitry, and/or other functions that provide the functionality described above. Device.
  • ASIC application-specific integrated circuit
  • FIG. 6 shows a possible structural diagram of the device involved in the above embodiment, and the device 900 may be the relay transceiver node or terminal in the above embodiment. Or base station.
  • the apparatus 900 includes a processing unit 901 and a transceiver unit 902.
  • the transceiver unit 902 is configured to send and receive signals by the processing unit 901.
  • the method performed by the processing unit 901 in FIG. 6 may be implemented by the processor 21 (and/or the processor 28) of FIG. 5 and the memory 23.
  • the method performed by the processing unit 901 may be performed by the processor 21 of FIG. 5 ( And/or the processor 28) is called to execute the application code stored in the memory 23, and the embodiment of the present application does not impose any limitation thereon.
  • the processing unit 901 is configured to determine a first resource group and a second resource group, where the resource group included in the first resource group is used by And performing measurement and selection of a beam in the first beam group between the relay transceiver node and the terminal, where the resource unit included in the second resource group is used between the relay transceiver node and the base station The measurement and selection of the beam in the second beam group; the transceiver unit 902 is configured to send, according to the beam corresponding to each resource unit in the first resource group, the beam in the first beam group, according to the second A beam corresponding to each resource unit in the resource group transmits the beam in the second beam group; wherein, when the resource unit included in the first resource group and the resource unit included in the second resource group have the same resource unit The beam transmitted by the relay transceiver node on the same resource unit is a shared beam of the access link and the backhaul link.
  • the relay transceiver node When the relay transceiver node performs joint beam management of the backhaul link and the access link, if the uplink reference signal resource required for beam management of the link back and the downlink reference signal resource required for beam management of the access link are When there is a part of the time-frequency domain resource overlap, the relay transceiver node can effectively utilize the shared reference signal resource and the beam to complete the backhaul and part of the beam management on the access link, which is beneficial to reducing the resource overhead of the part of the beam management. And to help reduce the overall delay of the entire beam management process.
  • the determining the first resource group and the second resource group specifically includes: determining, according to the second reference signal resource, the first reference signal resource, so that the first reference signal resource and the second The reference signal resources are partially overlapped; the first reference signal resource is used for beam management of the access link, the second reference signal resource is used for beam management of the backhaul link; and the first reference signal resource is determined according to the first reference signal resource a resource group, the second resource group is determined according to the second reference signal resource; wherein the first resource group is included in the first reference signal resource, and the second resource group is included in the second reference Within the signal resource.
  • the downlink reference signal resources required for signal management and beam management of the access link are partially overlapped in the time-frequency domain resources.
  • the processing unit 901 is further configured to: send, by the transceiver unit 902, according to a correspondence between a resource unit included in the first resource group and a beam in the first beam group, Determining, according to the beam in the first beam group, a power offset value associated with each of the first resource group and each of the first beam group; according to the first resource group A power offset value associated with each resource unit in the first resource group is determined by a beam corresponding to each resource unit, and a power offset value associated with each beam; the transceiver unit 902 is further configured to The terminal sends a power offset value associated with each resource unit in the first resource group.
  • the embodiment of the present application when there is a common beam in the uplink beam and the downlink beam, the transmission power that the shared beam and the non-shared beam may encounter in the downlink beam are inconsistent, in order to avoid the accuracy of the beam measurement of the terminal in the downlink beam.
  • the embodiment of the present application generates a set of power offset values for each downlink beam before each beam scan, and informs the terminal of the power offset value of each downlink beam, and each power offset value and one downlink
  • the reference signal resources are associated such that the beam using the downlink reference signal resource will perform a corresponding power offset based on a preset transmit power of the relay transceiver node, so that the terminal uses each of the downlinks by using the power offset value. After the actual transmit power of the beam is compensated, the beam quality is calculated, and the downlink beam of the access link has different transmit powers, and the accuracy of the terminal beam measurement is still not affected.
  • the determining the power offset value associated with each beam in the first beam group includes: determining a transmit power of each beam in the first beam group; The transmit power of one of the beams in the first set of beams determines the transmit power of each of the first set of beams.
  • the sending the power offset value associated with each resource unit in the first resource group to the terminal specifically: sending, to the terminal, first indication information, where the first The indication information includes N indication fields, where the N indication fields are used to indicate N power offset values, and an indication field of a power offset value associated with each resource unit in the first resource group is included in the N In the indication field, where the resource unit in the first resource group is included in the N resource element subsets pre-configured by the first reference signal resource, where the N indication fields are in the first indication information
  • the location ordering has a one-to-one correspondence with the location order of the N resource element subsets pre-configured by the first reference signal resource, where N is a positive integer greater than 1.
  • the association relationship between the subset and the indication field of the offset value it is not necessary to explicitly inform the terminal of the downlink reference signal resource corresponding to each beam, and what is the power offset value corresponding to each downlink reference signal resource.
  • the power offset value of the downlink reference signal resource in the N subsets of the terminal needs to be updated, and the updated power offset value needs to be updated, so that only N indication fields are needed to notify the association relationship, which is beneficial to save the letter. Make the cost.
  • the sending the power offset value associated with each resource unit in the first resource group to the terminal specifically, sending: sending, by the terminal, second indication information, the second The indication information is used to indicate to the terminal, a location index of each resource unit in the first resource group and a power offset value associated with the location index; wherein the second indication information is carried in a radio resource control RRC
  • the signaling is carried in the MAC-CE signaling or carried in the DCI signaling.
  • the transceiver unit 902 is further configured to send, according to the correspondence between the resource unit included in the first resource group and a beam in the first beam group, in the first beam group.
  • the relay transceiver node Before triggering beam management, the relay transceiver node establishes an association relationship between multiple resource units in the first resource group and power offset values of multiple beams in the first beam group, and further each power offset value Associated with a downlink reference signal resource, such that the beam using the downlink reference signal resource will perform a corresponding power offset based on a preset transmit power of the relay transceiver node, so that the terminal according to the power offset of the beam The value is beam measured.
  • the transceiver unit 902 is further configured to send the second beam according to a correspondence between a resource unit included in the second resource group and a beam in the second beam group.
  • receiving second index information from the base station where the second index information includes a location of a resource unit to which the base station associates one or more beams selected from the received management beams
  • the processing unit 901 is further configured to: before the transmitting and receiving unit 902 sends the beam in the second beam group, determine, according to the second index information, a beam in the second beam group, and establish a Corresponding relationship between the resource unit included in the second resource group and the beam in the second beam group.
  • the processing unit 901 is configured to determine a first resource group configured by the relay transceiver node, where the first resource group is included in the first reference In the signal resource, the first reference signal resource is configured by the relay transceiver node to be configured according to the second reference signal resource, where the first reference signal resource partially overlaps with the second reference signal resource
  • the first reference signal resource is used for beam management of an access link
  • the second reference signal resource is used for beam management of a backhaul link
  • the resource element included in the first resource group is used in the Measure and select a beam in the first beam group between the relay transceiver node and the terminal
  • the transceiver unit 902 is configured to receive, by using the first resource group, the first beam group from the relay transceiver node Beam.
  • the relay transceiver node When the relay transceiver node performs joint beam management of the backhaul link and the access link, if the second reference signal resource required for beam management of the backhaul link and the first reference required for beam management of the access link When the signal resource exists, there is a part of the frequency domain resource overlap.
  • the relay transceiver node can effectively utilize the shared reference signal resource and the beam to complete the backhaul and part of the beam management on the access link, which is beneficial to reducing the resources of the beam management. The overhead and the total delay for helping to reduce the overall beam management process.
  • the transceiver unit 902 is further configured to send the first index to the relay transceiver node before the first resource group receives the beam in the first beam group from the relay transceiver node.
  • Information, the first index information includes a location index of a resource unit to which the terminal is associated with one or more beams selected from the received management beams.
  • the relay transceiver node determines, according to the beam information corresponding to the first index information, multiple beams in the first beam group.
  • the transceiver unit 902 is further configured to receive the first from the relay transceiver node before receiving a beam in the first beam group from the relay transceiver node. a power offset value associated with each resource unit in the resource group; the processing unit 901 is further configured to: after the transceiver unit 902 receives the beam in the first beam group from the relay transceiver node, according to a power offset value associated with each resource unit in the first resource group, and one or more beams are selected from the first beam group; the transceiver unit 902 is further configured to send to the relay transceiver node Transmitting, by the processing unit 901, a location index of a resource unit associated with one or more beams selected from the first beam group.
  • the terminal receives the power offset value corresponding to the reference signal resource used by each downlink beam sent by the relay transceiver node before each beam scanning, by using the power offset value for each downlink beam. After the actual received power is compensated, the beam quality is calculated, and the downlink beam of the access link has different transmission powers, and the accuracy of the terminal beam measurement is still not affected.
  • the selecting one or more beams from the first beam group according to the power offset value associated with each resource unit in the first resource group includes: acquiring a reference signal received power of each resource unit in the first resource group; for the first resource unit in the first resource group, the first resource unit is any one of the first resource groups, The terminal corrects the reference signal received power of the first resource unit according to the power offset value associated with the first resource unit, to obtain an equivalent reference signal received power of the first resource unit; The equivalent reference signal of each resource unit in the first resource group receives power, and one or more beams are selected from the first beam group.
  • the terminal feeds back one or more indexes of the reference signal resources with better beam quality to the relay transceiver node, so that the relay transceiver node can determine the information according to the feedback information of the terminal.
  • the beam in the first beam set at the time of one beam scan.
  • the first indication information includes N indication fields, where the N indication fields are used to indicate N power offset values, where the value includes: An indication field of a power offset value associated with each resource unit in the first resource group is included in the N indication fields; wherein, the resource unit in the first resource group is included in the first reference signal resource
  • the N indicator resource subsets are arranged in the first indication information, and the positions of the N resource unit subsets preconfigured with the first reference signal resource are ranked one by one.
  • N is a positive integer greater than one.
  • the association relationship between the subset and the indication field of the offset value it is not necessary to explicitly inform the terminal of the downlink reference signal resource corresponding to each beam, and what is the power offset value corresponding to each downlink reference signal resource.
  • the power offset value of the downlink reference signal resource in the N subsets of the terminal needs to be updated, and the updated power offset value needs to be updated, so that only N indication fields are needed to notify the association relationship, which is beneficial to save the letter. Make the cost.
  • the second indication information is used to indicate, to the terminal, a location index and a location of each resource unit in the first resource group.
  • the power offset value associated with the location index; wherein the second indication information is carried in the RRC signaling of the radio resource control, or carried in the MAC-CE signaling, or carried in the DCI signaling.
  • the processing unit 901 is configured to determine a second resource group, where the second resource group is included in the second reference signal resource, where the second The reference signal resource is partially overlapped with the first reference signal resource, where the first reference signal resource is configured by the relay transceiver node according to the second reference signal resource, and the first reference signal resource is used for accessing Beam management of the link, the second reference signal resource is used for beam management of the backhaul link, and resource elements included in the second resource group are used between the relay transceiver node and the base station Performing measurement and selection of beams in the second beam group; the transceiver unit 902 is configured to receive, by using the second resource group, a beam in the second beam group from the relay transceiver node.
  • the relay transceiver node When the relay transceiver node performs joint beam management of the backhaul link and the access link, if the second reference signal resource required for beam management of the backhaul link and the first reference required for beam management of the access link When the signal resource exists, there is a part of the frequency domain resource overlap.
  • the relay transceiver node can effectively utilize the shared reference signal resource and the beam to complete the backhaul and part of the beam management on the access link, which is beneficial to reducing the resources of the beam management. The overhead and the total delay for helping to reduce the overall beam management process.
  • the transceiver unit 902 is further configured to send and receive to the relay before receiving the beam in the second beam group from the relay transceiver node by using the second resource group.
  • the node sends the second index information, where the second index information includes a location index of the resource unit associated with the one or more beams selected by the base station from the received management beams.
  • the relay transceiver node determines, according to the beam information corresponding to the second index information, multiple beams in the second beam group.
  • the processing unit 901 is further configured to: after the transceiver unit 902 receives the beam in the second beam group from the relay transceiver node by using the second resource group, Obtaining reference signal received power of each resource unit in the second resource group; selecting one or more beams from the received second beam group according to the reference signal received power; the transceiver unit 902 And transmitting, to the relay transceiver node, a location index of a resource unit associated with the one or more beams selected by the processing unit 901 from the second beam group.
  • the base station feeds back one or more indexes of the reference signal resources with better beam quality to the relay transceiver node, so that the relay transceiver node determines the next time according to the feedback information of the base station.
  • FIG. 7 is another schematic structural diagram of a circuit system according to an embodiment of the present invention.
  • the circuitry can be a processor.
  • the processor may be embodied as a chip or a system on chip (SOC), which is disposed in a base station or a terminal of the wireless communication system according to the embodiment of the present invention, so that the base station or the terminal implements the communication method of the embodiment of the present invention.
  • the circuit system 60 includes an interface unit 601, a control and operation unit 602, and a storage unit 603.
  • the interface unit is for communicating with other components of the base station or terminal
  • the storage unit 603 is for storing computer programs or instructions
  • the control and operation unit 602 is for decoding and executing the computer programs or instructions.
  • these computer programs or instructions may include the terminal function programs described above, as well as the base station function programs described above.
  • the terminal function program When the terminal function program is controlled and the operation unit 602 is decoded and executed, the terminal can be configured to implement the indication method of the uplink sub-band precoding matrix and the function of the terminal in the embodiment of the present invention.
  • the base station function program When the base station function program is decoded and executed by the control and operation unit 602, the base station can be configured to implement the function of the base station in the indication method of the uplink subband precoding matrix in the embodiment of the present invention.
  • these terminal function programs or base station function programs are stored in a memory external to circuitry 60.
  • the storage unit 603 temporarily stores part or all of the contents of the terminal function program, or temporarily stores part or all of the contents of the base station function program.
  • these terminal function programs or base station function programs are disposed in a storage unit 603 stored within circuitry 60.
  • the circuit system 60 can be disposed in the terminal of the wireless communication system of the embodiment of the present invention.
  • the base station function program is stored in the storage unit 603 inside the circuit system 60, the circuit system 60 can be disposed in the base station of the wireless communication system of the embodiment of the present invention.
  • portions of the terminal function program or base station function program are stored in a memory external to circuitry 60, and other portions of the terminal function program or base station function program are stored within circuitry system 60. In the storage unit 603.
  • the present application provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to perform various embodiments in the present application Following the method steps associated with the transceiver node.
  • the present application provides a computer readable storage medium having instructions stored therein that, when run on a computer, cause the computer to execute the various embodiments and terminals involved in the present application Related method steps.
  • the present application provides a computer readable storage medium having instructions stored therein that, when executed on a computer, cause the computer to perform various embodiments in accordance with the present application with a base station Related method steps.
  • the present application provides a computer program product comprising instructions that, when executed on a computer, cause the computer to perform the method steps associated with the relay transceiver node in various embodiments of the present application.
  • the present application provides a computer program product comprising instructions that, when executed on a computer, cause the computer to perform the method steps associated with the terminal in various embodiments of the present application.
  • the present application provides a computer program product comprising instructions that, when executed on a computer, cause the computer to perform the method steps associated with the base station in various embodiments of the present application.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • embodiments of the present application can be provided as a method, apparatus (device), or computer program product.
  • the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware aspects, which are collectively referred to herein as "module” or “system.”
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program is stored/distributed in a suitable medium, provided with other hardware or as part of the hardware, or in other distributed forms, such as over the Internet or other wired or wireless telecommunication systems.
  • the various illustrative logic blocks, modules and circuits described in the embodiments of the present application may be implemented by a general purpose processing unit, a digital signal processing unit, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic. Devices, discrete gate or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the functions described.
  • the general purpose processing unit may be a micro processing unit.
  • the general purpose processing unit may be any conventional processing unit, controller, microcontroller or state machine.
  • the processing unit may also be implemented by a combination of computing devices, such as a digital signal processing unit and a microprocessing unit, a plurality of microprocessing units, one or more microprocessing units in conjunction with a digital signal processing unit core, or any other similar configuration. achieve.
  • the above-described functions described in the embodiments of the present invention may be implemented in hardware, software, firmware, or any combination of the three. If implemented in software, these functions may be stored on a computer readable medium or transmitted as one or more instructions or code to a computer readable medium.
  • Computer readable media includes computer storage media and communication media that facilitates the transfer of computer programs from one place to another.
  • the storage medium can be any available media that any general purpose or special computer can access.
  • Such computer-readable media can include, but is not limited to, RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage or other magnetic storage device, or any other device or data structure that can be used for carrying or storing Other media that can be read by a general purpose or special computer, or a general or special processing unit.
  • any connection can be appropriately defined as a computer readable medium, for example, if the software is from a website site, server or other remote source through a coaxial cable, fiber optic computer, twisted pair, digital subscriber line (DSL) Or wirelessly transmitted in, for example, infrared, wireless, and microwave, is also included in the defined computer readable medium.
  • DSL digital subscriber line
  • the disks and discs include compact disks, laser disks, optical disks, DVDs, floppy disks, and Blu-ray disks. Disks typically replicate data magnetically, while disks typically optically replicate data with a laser. Combinations of the above may also be included in a computer readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种波束管理方法、中继收发节点、终端和基站,该方法包括:中继收发节点确定第一资源组和第二资源组,根据第一资源组包括的资源单元与第一波束组中的波束的对应关系发送第一波束组中的波束;根据第二资源组包括的资源单元与第二波束组中的波束的对应关系发送第二波束组中的波束;其中,当第一资源组包括的资源单元和第二资源组包括的资源单元存在相同的资源单元时,在相同的资源单元上发送的波束为接入链路和回传链路的共用波束。利用相同的资源单元发送接入链路和回传链路上的共用波束有利于减小这部分波束管理的资源开销,以及减小波束管理过程的总时延。

Description

一种波束管理方法、中继收发节点、终端和基站 技术领域
本申请涉及移动通信技术领域,尤其涉及一种波束管理方法、中继收发节点、终端和基站。
背景技术
在5G NR系统中,无线回传(backhaul)技术通过在基站间建立基于波束的无线链路进行数据、信令传输,可以降低网络架设和部署成本,对于5G中的密集部署、室内传输等场景来说,具有重要意义。接入回传一体化(integrated access backhaul,IAB)技术能够通过接入链路(即access链路)和回传链路(即backhaul链路)共享频带资源,进行同频部署,可以提升频谱的利用效率。
由于在高频中需要使用波束,NR系统引入了波束管理的概念。波束管理指的是基站和用户侧对获取和管理能够用户下行和上行发送接收的一系列操作过程,包括波束选择、波束测量、波束上报和波束扫描等部分。波束管理基于一系列参考信号进行,基站或用户在这些参考信号上使用不同的发送或接收波束,实现对于波束的扫描。用户或基站基于扫描的波束进行测量,进一步进行波束的选择过程并将选择的结果进行反馈。
在目前NR的讨论和结论中,仅涉及上行或下行的波束管理过程,且是独立进行的讨论。然而在IAB场景中,中继收发节点可以配置为同时向基站和终端发送,即中继收发节点同时进行回传链路上行和接入链路下行的传输。由于IAB场景下同样需要进行波束管理过程,如果分别独立进行上行和下行的波束管理,则需要为上行和下行的波束管理分别配置相应的参考信号资源,将会造成时频资源的浪费。
综上,在接入回传一体化场景中,中继收发节点分别独立进行回传链路和接入链路的波束管理导致时频资源浪费的技术问题。
发明内容
本申请提供一种波束管理方法、中继收发节点、终端和基站,用以解决在接入回传一体化场景中,中继收发节点分别独立进行回传链路和接入链路的波束管理导致时频资源浪费的技术问题。
第一方面,本申请提供一种波束管理方法,对于中继收发节点来说,中继收发节点在一系列的参考信号资源上向基站发送上行波束,向终端发送下行波束,具体而言,所述方法包括:中继收发节点确定第一资源组和第二资源组,所述第一资源组内的资源单元用于所述中继收发节点和终端之间进行第一波束组中的波束的测量和选择,所述第二资源组内的资源单元用于所述中继收发节点和基站之间进行第二波束组中的波束的测量和选择;所述中继收发节点使用所述第一资源组发送第一波束组,使用所述第二资源组发送第二波束组,即根据所述第一资源组包括的资源单元与所述第一波束组中的波束的对应关系发送所述第一波束组中的波束,根据所述第二资源组包括的资源单元与所述第二波束组中的波束的对应关系发送所述第二波束组中的波束,其中,当所述第一资源组包括的资源单元和所述第二资源组包括的 资源单元存在相同的资源单元时,所述中继收发节点在所述相同的资源单元上发送的波束为所述接入链路和所述回传链路的共用波束,即当所述第一资源组和所述第二资源组存在共用资源单元时,所述第一波束组和所述第二波束组中存在共用波束,所述中继收发节点使用所述共用资源单元发送共用资源单元对应的所述共用波束。对于终端来说,当中继收发节点在一系列的参考信号资源上向终端发送波束时,终端在一系列参考信号资源上接收来自中继收发节点的发送波束。具体来说,终端确定中继收发节点配置的第一资源组,终端使用第一资源组接收来自中继收发节点的第一波束组中的波束。对于基站来说,当中继收发节点在一系列的参考信号资源上向基站发送上行波束时,基站在一系列参考信号资源上接收来自中继收发节点的发送波束。具体来说,基站确定第二资源组,基站使用第二资源组接收来自中继收发节点的第二波束组中的波束。其中,所述第一资源组包含在第一参考信号资源内,所述第二资源组包含在第二参考信号资源内,所述第二参考信号资源与第一参考信号资源部分重叠,所述第一参考信号资源是所述中继收发节点根据第二参考信号资源为所述终端配置的,其中,所述第一参考信号资源与所述第二参考信号资源部分重叠,所述第一参考信号资源用于接入链路的波束管理,所述第二参考信号资源用于回传链路的波束管理。
上述实施例中,当中继收发节点进行Backhaul链路和access链路的联合波束管理时,当第一资源组和第二资源组存在共用资源单元时,即当Backhaul链路的波束管理所需的上行参考信号资源和access链路的波束管理所需的下行参考信号资源存在时频域资源上有一部分重合时,rTRP可以有效利用共用的参考信号资源和波束完成backhaul和access链路上的一部分波束管理,有利于减小这部分波束管理的资源开销和以及有利于减小整个波束管理过程的总时延。
对于中继收发节点来说,在中继收发节点的波束管理过程中还执行以下方法流程:
在一种可能的设计中,所述中继收发节点确定第一资源组和第二资源组,包括:所述中继收发节点根据第二参考信号资源确定第一参考信号资源,使得所述第一参考信号资源与所述第二参考信号资源部分重叠,所述第一参考信号资源用于所述接入链路的波束管理,所述第二参考信号资源用于所述回传链路的波束管理;所述中继收发节点根据第一参考信号资源确定所述第一资源组,根据第二参考信号资源确定所述第二资源组;其中,所述第一资源组包含在所述第一参考信号资源内,所述第二资源组包含在所述第二参考信号资源内。根据基站配置第二参考信号资源来确定第一参考信号资源,并使所述第一参考信号资源与所述第二参考信号资源部分重叠,实现了回传链路的波束管理所需的上行参考信号资源和接入链路的波束管理所需的下行参考信号资源存在时频域资源上有一部分重合。
在一种可能的设计中,在所述中继收发节点根据所述第一资源组包括的资源单元与所述第一波束组中的波束的对应关系发送所述第一波束组中的波束之前,所述方法还包括:
所述中继收发节点确定所述第一资源组中每一资源单元对应的波束和所述第一波束组中每一波束关联的功率偏移值;所述中继收发节点根据所述第一资源组中每一资源单元对应的波束,以及所述每一波束关联的功率偏移值,确定所述第一资源组中每一资源单元关联的功率偏移值;所述中继收发节点向所述终端发送所述第一资源组中每一资源单元关联的功率偏移值。本申请实施例中,当上行波束和下行波束存在共用波束时,下行波束中共用波束和非共用波束可能遇到的发送功率不一致的问题,为了避免下行波束中发送功率对终端的波束测量的准确性产生影响,本申请实施例在每次波束扫描之前,对每个下行波束产生一组功率偏移值, 并将每个下行波束的功率偏移值告知终端,以便终端通过使用功率偏移值对每个下行波束的实际发送功率进行补偿后再计算波束质量,能够在接入链路的下行波束具有不同的发送功率的情况下,仍然不影响终端波束测量的准确性。
在一种可能的设计中,所述中继收发节点确定所述第一波束组中每一波束对应的功率偏移值,包括:所述中继收发节点确定所述第一波束组中每一波束的发射功率;所述中继收发节点根据所述第一波束组中的其中一个波束的发射功率,确定所述第一波束组中每一波束的功率偏移值。
在一种可能的设计中,所述中继收发节点向所述终端发送所述第一资源组中每一资源单元对应的功率偏移值,包括:所述中继收发节点向所述终端发送第一指示信息,所述第一指示信息包括N个指示字段,所述N个指示字段用于指示N个功率偏移值,所述第一资源组中每一资源单元对应的功率偏移值的指示字段包含在所述N个指示字段中;其中,所述第一资源组中的资源单元包含在所述第一参考信号资源预配置的N个资源单元子集中,所述N个指示字段在所述第一指示信息中的位置排序,与所述第一参考信号资源预配置的N个资源单元子集的位置排序存在一一对应关系,N为大于1的正整数。这样,通过预先绑定子集和偏移值的指示字段的关联关系,不需要显式的告知终端每个波束对应的下行参考信号资源,以及每个下行参考信号资源对应的功率偏移值大小是什么,只需要告诉终端N个子集中哪个位置的下行参考信号资源的功率偏移值需要更新,以及更新的功率偏移值大小,这样只需要N个指示字段即可通知上述关联关系,有利于节省信令开销。
在一种可能的设计中,所述中继收发节点向所述终端发送所述第一资源组中每一资源单元对应的功率偏移值,包括:所述中继收发节点向所述终端发送第二指示信息,所述第二指示信息用于向所述终端指示所述第一资源组中的每一资源单元的位置索引和所述位置索引对应的功率偏移值;其中,所述第二指示信息携带在无线资源控制RRC信令中,或者携带在MAC-CE信令中,或者携带在DCI信令中。
在一种可能的设计中,所述中继收发节点确定所述第一资源组中每一资源单元对应的波束,包括:所述中继收发节点接收来自所述终端的第一索引信息,所述第一索引信息包括所述终端从已接收到的管理波束中选择出的一个或多个波束所关联的资源单元的位置索引;所述中继收发节点根据所述第一索引信息,确定所述第一波束组中的波束;所述中继收发节点建立所述第一资源组包括的资源单元与所述第一波束组中的波束之间的对应关系。
在一种可能的设计中,所述中继收发节点根据所述第二资源组包括的资源单元与所述第二波束组中的波束之间的对应关系发送所述第二波束组中的波束之前,所述方法还包括:
所述中继收发节点接收来自所述基站的第二索引信息,所述第二索引信息包括所述基站从已接收到的管理波束中选择出的一个或多个波束所关联的资源单元的位置索引;所述中继收发节点根据所述第二索引信息,确定所述第二波束组中的波束;所述中继收发节点建立所述第二资源组包括的资源单元与所述第二波束组中的波束之间的对应关系。
在一种可能的设计中,对于中继收发节点来说,所述中继收发节点根据所述第一资源组包括的资源单元与所述第一波束组中的波束之间的对应关系发送所述第一波束组中的波束之后,所述方法还包括:所述中继收发节点接收所述终端选择出的一个或多个波束所对应的资源单元的位置索引;所述中继收发节点根据所述终端选择出的一个或多个波束所对应的资源单元的位置索引,更新所述第一波束组中的波束,以及建立所述第一资源组包括的资源单元与更新后的所述第一波束组中的波束之间的对应关系。每次中继收发节点的波束扫描过程结 束后,终端会反馈一个或多个波束质量较好的参考信号资源的索引给中继收发节点,以便中继收发节点可以根据终端的反馈信息来更新下一次波束扫描时第一波束组中的波束。
在一种可能的设计中,所述中继收发节点根据所述第二资源组包括的资源单元与所述第二波束组中的波束之间的对应关系发送所述第二波束组中的波束之后,所述方法还包括:所述中继收发节点接收所述基站选择出的一个或多个波束所对应的资源单元的位置索引;所述中继收发节点根据所述基站选择出的一个或多个波束所对应的资源单元的位置索引,更新所述第二波束组中的波束,以及建立所述第二资源组包括的资源单元与更新后的所述第二波束组中的波束之间的对应关系。每次中继收发节点的波束扫描过程结束后,基站会反馈一个或多个波束质量较好的参考信号资源的索引给中继收发节点,以便中继收发节点根据基站的反馈信息来确定下一次波束扫描时第二波束组中的波束以及每一波束的发射功率。
对于终端来说,在中继收发节点的波束管理过程中还执行以下方法流程:
在一种可能的设计中,在所述终端使用所述第一资源组接收来自中继收发节点的所述第一波束组中的波束之前,所述方法还包括:所述终端向所述中继收发节点发送第一索引信息,所述第一索引信息包括所述终端从已接收到的管理波束中选择出的一个或多个波束所关联的资源单元的位置索引。
在一种可能的设计中,在所述终端使用所述第一资源组接收来自所述中继收发节点的所述第一波束组中的波束之前,所述方法还包括:所述终端接收来自所述中继收发节点的所述第一资源组中每一资源单元关联的功率偏移值;
所述终端使用所述第一资源组接收来自所述中继收发节点的第一波束组中的波束之后,所述方法还包括:所述终端根据所述第一资源组中每一资源单元关联的功率偏移值,从所述第一波束组中选择出一个或多个波束,并向所述中继收发节点发送从所述第一波束组中选择出的一个或多个波束所关联的资源单元的位置索引。
在一种可能的设计中,所述终端接收来自所述中继收发节点的所述第一资源组中每一资源单元对应的功率偏移值,包括:所述终端接收来自所述中继收发节点的第一指示信息,所述第一指示信息包括N个指示字段,所述N个指示字段用于指示N个功率偏移值,所述第一资源组中每一资源单元对应的功率偏移值的指示字段包含在所述N个指示字段中;其中,所述第一资源组中的资源单元包含在所述第一参考信号资源预配置的N个资源单元子集中,所述N个指示字段在所述第一指示信息中的位置排序,与所述第一参考信号资源预配置的N个资源单元子集的位置排序存在一一对应关系,N为大于1的正整数。
在一种可能的设计中,所述终端接收来自所述中继收发节点的所述第一资源组中每一资源单元对应的功率偏移值,包括:所述终端接收来自所述中继收发节点的第二指示信息,所述第二指示信息用于向所述终端指示所述第一资源组中的每一资源单元的位置索引和所述位置索引对应的功率偏移值;其中,所述第二指示信息携带在无线资源控制RRC信令中,或者携带在MAC-CE信令中,或者携带在DCI信令中。
在一种可能的设计中,所述终端根据所述第一资源组中每一资源单元关联的功率偏移值,从所述第一波束组中选择出一个或多个波束,包括:所述终端获取所述第一资源组中每一资源单元的参考信号接收功率;针对所述第一资源组中的第一资源单元,所述第一资源单元为所述第一资源组中的任一资源单元,所述终端根据所述第一资源单元关联的功率偏移值,对所述第一资源单元的所述参考信号接收功率进行校正,得到所述第一资源单元的等效参考信 号接收功率;所述终端根据所述第一资源组中各个资源单元的所述等效参考信号接收功率,从所述第一波束组中选择出一个或多个波束。
对于基站来说,在中继收发节点的波束管理过程中还执行以下方法流程:
在一种可能的设计中,在所述基站使用所述第二资源组接收来自中继收发节点的第二波束组中的波束之前,所述方法还包括:所述基站向所述中继收发节点发送第二索引信息,所述第二索引信息包括所述基站从已接收到的管理波束中选择出的一个或多个波束所关联的资源单元的位置索引。
在一种可能的设计中,在所述基站使用所述第二资源组接收来自所述中继收发节点的所述第二波束组中的波束之后,所述方法还包括:所述基站获取所述第二资源组中每一资源单元的参考信号接收功率;所述基站根据所述参考信号接收功率,从接收到的所述第二波束组中选择出一个或多个波束,并向所述中继收发节点发送从所述第二波束组中选择出的所述一个或多个波束所关联的资源单元的位置索引。
第二方面,本申请提供一种中继收发节点,所述中继收发节点包括处理器和通信接口,所述处理器被配置为支持中继收发节点执行上述方法中中继收发节点相应的功能。所述通信接口用于支持中继收发节点与终端和基站之间的通信,以向基站和终端发送上述方法中所涉及的信息或者指令。中继收发节点中还可以包括存储器,所述存储器用于与处理器耦合,其保存中继收发节点必要的程序指令和数据。
具体的,所述处理器,用于确定第一资源组和第二资源组,所述第一资源组包括的资源单元用于在所述中继收发节点和终端之间进行第一波束组中的波束的测量和选择,所述第二资源组内包括的资源单元用于所述中继收发节点和基站之间进行第二波束组中的波束的测量和选择;所述通信接口,用于根据所述第一资源组中每一资源单元对应的波束发送所述第一波束组中的波束,根据所述第二资源组中每一资源单元对应的波束发送所述第二波束组中的波束;其中,当所述第一资源组包括的资源单元和所述第二资源组包括的资源单元存在相同的资源单元时,所述中继收发节点在所述相同的资源单元上发送的波束为所述接入链路和所述回传链路的共用波束。中继收发节点进行回传链路和接入链路的联合波束管理时,如果回传链路的波束管理所需的上行参考信号资源和接入链路的波束管理所需的下行参考信号资源存在时频域资源上有一部分重合时,中继收发节点可以有效利用共用的参考信号资源和波束完成回传和接入链路上的一部分波束管理,有利于减小这部分波束管理的资源开销和以及有利于减小整个波束管理过程的总时延。
在一种可能的设计中,所述确定第一资源组和第二资源组,具体包括:根据第二参考信号资源确定第一参考信号资源,使得所述第一参考信号资源与所述第二参考信号资源部分重叠;所述第一参考信号资源用于接入链路的波束管理,所述第二参考信号资源用于回传链路的波束管理;根据第一参考信号资源确定所述第一资源组,根据第二参考信号资源确定所述第二资源组;其中,所述第一资源组包含在所述第一参考信号资源内,所述第二资源组包含在所述第二参考信号资源内。根据基站配置第二参考信号资源来确定第一参考信号资源,并使所述第一参考信号资源与所述第二参考信号资源部分重叠,实现了回传链路的波束管理所需的上行参考信号资源和接入链路的波束管理所需的下行参考信号资源存在时频域资源上有一部分重合。
在一种可能的设计中,所述处理器,还用于在所述通信接口根据所述第一资源组包括的资源单元与所述第一波束组中的波束的对应关系发送所述第一波束组中的波束之前,确定所述第一资源组中每一资源单元对应的波束和所述第一波束组中每一波束关联的功率偏移值;根据所述第一资源组中每一资源单元对应的波束,以及每一波束关联的功率偏移值,确定所述第一资源组中每一资源单元关联的功率偏移值;所述通信接口,还用于向所述终端发送所述第一资源组中每一资源单元关联的功率偏移值。实施例中,当上行波束和下行波束存在共用波束时,下行波束中共用波束和非共用波束可能遇到的发送功率不一致的问题,为了避免下行波束中发送功率对终端的波束测量的准确性产生影响,本申请实施例在每次波束扫描之前,对每个下行波束产生一组功率偏移值,并将每个下行波束的功率偏移值告知终端,将每一个功率偏移值与一个下行参考信号资源相关联,使得使用这个下行参考信号资源的波束将在中继收发节点的一个预设的发射功率的基础上进行相应的功率偏移,以便终端通过使用功率偏移值对每个下行波束的实际发送功率进行补偿后再计算波束质量,能够在接入链路的下行波束具有不同的发送功率的情况下,仍然不影响终端波束测量的准确性。
在一种可能的设计中,所述确定所述第一波束组中每一波束关联的功率偏移值,具体包括:确定所述第一波束组中每一波束的发射功率;根据所述第一波束组中的其中一个波束的发射功率,确定所述第一波束组中每一波束的功率偏移值。
在一种可能的设计中,所述向所述终端发送所述第一资源组中每一资源单元关联的功率偏移值,具体包括:向所述终端发送第一指示信息,所述第一指示信息包括N个指示字段,所述N个指示字段用于指示N个功率偏移值,所述第一资源组中每一资源单元关联的功率偏移值的指示字段包含在所述N个指示字段中;其中,所述第一资源组中的资源单元包含在所述第一参考信号资源预配置的N个资源单元子集中,所述N个指示字段在所述第一指示信息中的位置排序,与所述第一参考信号资源预配置的N个资源单元子集的位置排序存在一一对应关系,N为大于1的正整数。通过预先绑定子集和偏移值的指示字段的关联关系,不需要显式的告知终端每个波束对应的下行参考信号资源,以及每个下行参考信号资源对应的功率偏移值大小是什么,只需要告诉终端N个子集中哪个位置的下行参考信号资源的功率偏移值需要更新,以及更新的功率偏移值大小,这样只需要N个指示字段即可通知上述关联关系,有利于节省信令开销。
在一种可能的设计中,所述向所述终端发送所述第一资源组中每一资源单元关联的功率偏移值,具体包括:向所述终端发送第二指示信息,所述第二指示信息用于向所述终端指示所述第一资源组中的每一资源单元的位置索引和所述位置索引关联的功率偏移值;其中,所述第二指示信息携带在无线资源控制RRC信令中,或者携带在MAC-CE信令中,或者携带在DCI信令中。
在一种可能的设计中,所述通信接口,还用于在根据所述第一资源组包括的资源单元与所述第一波束组中的波束的对应关系发送所述第一波束组中的波束之前,接收来自所述终端的第一索引信息,所述第一索引信息包括所述终端从已接收到的管理波束中选择出的一个或多个波束所关联的资源单元的位置索引;所述确定所述第一资源组中每一资源单元对应的波束,具体包括:根据所述第一索引信息,确定所述第一波束组中的波束;建立所述第一资源组包括的资源单元与所述第一波束组中的波束之间的对应关系。在触发波束管理之前,中继收发节点建立第一资源组中的多个资源单元与第一波束组中的多个波束的功率偏移值之间的关联关系,进而将每一个功率偏移值与一个下行参考信号资源相关联,使得使用这个下行参 考信号资源的波束将在中继收发节点的一个预设的发射功率的基础上进行相应的功率偏移,以便终端根据这些波束的功率偏移值进行波束测量。
在一种可能的设计中,所述通信接口,还用于在根据所述第二资源组包括的资源单元与所述第二波束组中的波束之间的对应关系发送所述第二波束组中的波束之前,接收来自所述基站的第二索引信息,所述第二索引信息包括所述基站从已接收到的管理波束中选择出的一个或多个波束所关联的资源单元的位置索引;所述处理器还用于在所述通信接口发送所述第二波束组中的波束之前,根据所述第二索引信息,确定所述第二波束组中的波束,并建立所述第二资源组包括的资源单元与所述第二波束组中的波束之间的对应关系。
第三方面,本申请提供一种终端,包括处理器和通信接口,所述处理器被配置为支持终端执行上述方法中终端相应的功能。所述通信接口用于支持终端与中继收发节点之间的通信,以向中继收发节点发送上述方法中所涉及的信息或者指令。终端中还可以包括存储器,所述存储器用于与处理器耦合,其保存终端必要的程序指令和数据。
具体的,所述处理器,用于确定中继收发节点配置的第一资源组,所述第一资源组包含在所述第一参考信号资源内,所述第一参考信号资源是所述中继收发节点根据第二参考信号资源为所述终端配置的,其中,所述第一参考信号资源与所述第二参考信号资源部分重叠,所述第一参考信号资源用于接入链路的波束管理,所述第二参考信号资源用于回传链路的波束管理,所述第一资源组包括的资源单元用于在所述中继收发节点和终端之间进行第一波束组中的波束的测量和选择;所述通信接口,用于使用所述第一资源组接收来自中继收发节点的所述第一波束组中的波束。当中继收发节点进行回传链路和接入链路的联合波束管理时,如果回传链路的波束管理所需的第二参考信号资源和接入链路的波束管理所需的第一参考信号资源存在时频域资源上有一部分重合,中继收发节点可以有效利用共用的参考信号资源和波束完成回传和接入链路上的一部分波束管理,有利于减小这部分波束管理的资源开销和以及有利于减小整个波束管理过程的总时延。
在一种可能的设计中,所述通信接口,还用于在第一资源组接收来自中继收发节点的所述第一波束组中的波束之前向所述中继收发节点发送第一索引信息,所述第一索引信息包括所述终端从已接收到的管理波束中选择出的一个或多个波束所关联的资源单元的位置索引。以便所述中继收发节点根据所述第一索引信息所对应的波束信息,确定所述第一波束组中的多个波束。
在一种可能的设计中,所述通信接口,还用于在接收来自所述中继收发节点的所述第一波束组中的波束之前接收来自所述中继收发节点的所述第一资源组中每一资源单元关联的功率偏移值;所述处理器,还用于在所述通信接口接收来自所述中继收发节点的所述第一波束组中的波束之后,根据所述第一资源组中每一资源单元关联的功率偏移值,从所述第一波束组中选择出一个或多个波束;所述通信接口,还用于向所述中继收发节点发送所述处理器从所述第一波束组中选择出的一个或多个波束所关联的资源单元的位置索引。
实施例中,当上行波束和下行波束存在共用波束时,下行波束中共用波束和非共用波束可能遇到的发送功率不一致的问题,为了避免下行波束中发送功率对终端的波束测量的准确性产生影响,本申请实施例终端在每次波束扫描之前,接收中继收发节点发送的每个下行波束所使用的参考信号资源对应的功率偏移值,通过使用功率偏移值对每个下行波束的实际接收功率进行补偿后再计算波束质量,能够在接入链路的下行波束具有不同的发送功率的情况 下,仍然不影响终端波束测量的准确性。
在一种可能的设计中,所述根据所述第一资源组中每一资源单元关联的功率偏移值,从所述第一波束组中选择出一个或多个波束,具体包括:获取所述第一资源组中每一资源单元的参考信号接收功率;针对所述第一资源组中的第一资源单元,所述第一资源单元为所述第一资源组中的任一资源单元,所述终端根据所述第一资源单元关联的功率偏移值,对所述第一资源单元的所述参考信号接收功率进行校正,得到所述第一资源单元的等效参考信号接收功率;根据所述第一资源组中各个资源单元的所述等效参考信号接收功率,从所述第一波束组中选择出一个或多个波束。每次中继收发节点的波束扫描过程结束后,终端会反馈一个或多个波束质量较好的参考信号资源的索引给中继收发节点,以便中继收发节点可以根据终端的反馈信息来确定下一次波束扫描时第一波束组中的波束。
在一种可能的设计中,所述在接收来自中继收发节点的第一波束组中的波束之前接收来自所述中继收发节点的所述第一资源组中每一资源单元关联的功率偏移值,具体包括:接收来自所述中继收发节点的第一指示信息,所述第一指示信息包括N个指示字段,所述N个指示字段用于指示N个功率偏移值,所述第一资源组中每一资源单元关联的功率偏移值的指示字段包含在所述N个指示字段中;其中,所述第一资源组中的资源单元包含在所述第一参考信号资源预配置的N个资源单元子集中,所述N个指示字段在所述第一指示信息中的位置排序,与所述第一参考信号资源预配置的N个资源单元子集的位置排序存在一一对应关系,N为大于1的正整数。通过预先绑定子集和偏移值的指示字段的关联关系,不需要显式的告知终端每个波束对应的下行参考信号资源,以及每个下行参考信号资源对应的功率偏移值大小是什么,只需要告诉终端N个子集中哪个位置的下行参考信号资源的功率偏移值需要更新,以及更新的功率偏移值大小,这样只需要N个指示字段即可通知上述关联关系,有利于节省信令开销。
在一种可能的设计中,所述在接收来自中继收发节点的第一波束组中的波束之前接收来自所述中继收发节点的所述第一资源组中每一资源单元关联的功率偏移值,具体包括:接收来自所述中继收发节点的第二指示信息,所述第二指示信息用于向所述终端指示所述第一资源组中的每一资源单元的位置索引和所述位置索引关联的功率偏移值;其中,所述第二指示信息携带在无线资源控制RRC信令中,或者携带在MAC-CE信令中,或者携带在DCI信令中。
第四方面,本申请提供一种基站,包括处理器和通信接口,所述处理器被配置为支持基站执行上述方法中基站相应的功能。所述通信接口用于支持基站与中继收发节点之间的通信,以向中继收发节点发送上述方法中所涉及的信息或者指令。基站中还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
具体的,所述处理器,用于确定第二资源组,所述第二资源组包含在第二参考信号资源内,其中,所述第二参考信号资源与第一参考信号资源部分重叠,所述第一参考信号资源是所述中继收发节点根据第二参考信号资源为所述终端配置的,所述第一参考信号资源用于接入链路的波束管理,所述第二参考信号资源用于所述回传链路的波束管理,所述第二资源组内包括的资源单元用于所述中继收发节点和所述基站之间进行第二波束组中的波束的测量和选择;所述通信接口,用于使用所述第二资源组接收来自所述中继收发节点的所述第二波束组中的波束。当中继收发节点进行回传链路和接入链路的联合波束管理时,如果回传链路的波 束管理所需的第二参考信号资源和接入链路的波束管理所需的第一参考信号资源存在时频域资源上有一部分重合,中继收发节点可以有效利用共用的参考信号资源和波束完成回传和接入链路上的一部分波束管理,有利于减小这部分波束管理的资源开销和以及有利于减小整个波束管理过程的总时延。
在一种可能的设计中,所述通信接口,还用于在使用所述第二资源组接收来自所述中继收发节点的所述第二波束组中的波束之前向所述中继收发节点发送第二索引信息,所述第二索引信息包括所述基站从已接收到的管理波束中选择出的一个或多个波束所关联的资源单元的位置索引。以便所述中继收发节点根据所述第二索引信息所对应的波束信息,确定所述第二波束组中的多个波束。
在一种可能的设计中,所述处理器,还用于在所述通信接口使用所述第二资源组接收来自所述中继收发节点的所述第二波束组中的波束之后,获取所述第二资源组中每一资源单元的参考信号接收功率;根据所述参考信号接收功率,从接收到的所述第二波束组中选择出一个或多个波束;所述通信接口,还用于向所述中继收发节点发送所述处理器从所述第二波束组中选择出的所述一个或多个波束所关联的资源单元的位置索引。每次中继收发节点的波束扫描过程结束后,基站会反馈一个或多个波束质量较好的参考信号资源的索引给中继收发节点,以便中继收发节点根据基站的反馈信息来确定下一次波束扫描时第二波束组中的波束以及每一波束的发射功率。
第五方面,为了实现上述发明目的,本申请提供一种电路系统,所述电路系统包括接口单元,控制及运算单元,和存储单元,接口单元用于与基站或终端的其他组件连通,存储单元用于存储计算机程序或指令,控制及运算单元用于译码和执行这些计算机程序或指令;这些计算机程序或指令被执行时用于实现上述第一方面或第一方面的由中继收发节点执行的任意可能的实现方式,或者,上述第一方面或第一方面的由终端执行的任意可能的实现方式,或者,上述第一方面或第一方面的由基站执行的任意可能的实现方式。
附图说明
图1为本申请提供的一种无线通信系统的架构示意图;
图2为本申请提供的一种波束管理方法的方法流程示意图;
图3为本申请提供的一种中继收发节点发送的上行波束和下行波束具有共用波束的示意图;
图4为本申请提供的一种波束管理方法的方法流程示意图;
图5为本申请提供的一种通信装置的结构示意图;
图6为本申请提供的一种通信装置的结构示意图;
图7为本申请提供的一种电路系统的结构示意图。
具体实施方式
下面将结合附图对本申请作进一步地详细描述。
下面介绍一下本申请的系统运行环境,本申请描述的技术可以适用于LTE系统,如LTE/LTE-A/eLTE系统,或其他采用各种无线接入技术的无线通信系统,例如采用码分多址 (code division multiple access,CDMA),频分多址(frequency division multiple access,FDMA),时分多址(time division multiple access,TDMA),正交频分多址(orthogonal frequency division multiple access,OFDMA),单载波频分多址(single carrier-frequency division multiple access,SC-FDMA)等接入技术的系统,还适用于后续的演进系统,如第五代5G(还可以称为新无线电(new radio,NR))系统等,也可以扩展到类似的无线通信系统中,如wifi、wimax、以及3gpp相关的蜂窝系统。
本申请实施例中的波束管理方法应用于5G通信系统中的IAB应用场景。图1给出了一种5G通信系统的示意图。该通信系统可以包括至少一个基站(仅示出1个),至少一个中继收发节点(rTRP)和至少一个终端。图1所示的通信系统可用于接入回传一体化IAB场景,其中基站和中继收发节点之间通过无线回传(backhaul)链路传输,中继收发节点与终端之间通过无线接入(Access)链路传输。
基站可以是能和终端通信的设备。基站可以是任意一种具有无线收发功能的设备。包括但不限于:基站NodeB、演进型基站eNodeB、第五代(the fifth generation,5G)通信系统中的基站、未来通信系统中的基站或基站、WiFi系统中的接入节点、无线中继节点、无线回传节点等。基站还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。基站还可以是5G网络中的基站或未来演进网络中的基站;还可以是可穿戴设备或车载设备等。基站还可以是小站,传输节点(transmission reference point,TRP)等。当然不申请不限于此。
终端是一种具有无线收发功能的设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端有时也可以称为用户设备(user equipment,UE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、终端、无线通信设备、UE代理或UE装置等。
中继收发节点可以是能和基站、终端,或其他中继收发节点通信的设备。包括但不限于:无线中继节点、无线回传节点、家庭基站、可穿戴设备或车载设备、小站,传输节点等。
需要说明的是,本发明实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
相比于LTE系统,5G NR系统将具有更广的频谱范围(GHz以内)。由于信号位于高频范围,相比于低频信号将受到更大的路径损耗和信号衰落,信号变化也会更加剧烈。基于此,NR系统通过采用大规模多入多出(multiple-input-multiple-output,MIMO)和多波束(multi-beam)的技术,可以实现信号集中在某一方向上传输,增强了信号的抗衰落能力。这也为无线回传技术的使用和部署创造了条件。无线回传技术通过在基站间建立基于波束的无线链路进行数 据、信令传输,可以降低网络架设和部署成本,对于第五代移动通信技术(5 th generation,5G)中的密集部署、室内传输等场景来说,具有重要意义。接入回传一体化技术能够通过接入链路和回传链路共享频带资源,进行同频部署,可以提升频谱的利用效率。
由于在高频中需要使用波束,新空口(new radio,NR)系统引入了波束管理的概念。波束管理指的是基站和用户侧对获取和管理用于用户下行和上行波束发送接收的一系列操作过程,包括波束选择、波束测量、波束上报和波束扫描等部分。波束管理基于一系列参考信号进行,基站或用户在这些参考信号上使用不同的发送或接收波束,实现对于波束的扫描。用户或基站基于扫描的波束进行测量,进一步进行波束的选择过程并将选择的结果进行反馈。
在目前NR的讨论和结论中,仅涉及上行或下行的波束管理过程,且是独立进行的讨论。然而在IAB场景中,中继收发节点可以配置为同时向基站和终端发送,即中继收发节点同时进行回传链路上行和接入链路下行的传输。由于IAB场景下同样需要进行波束管理过程,如果分别独立进行上行和下行的波束管理,则需要为上行和下行的波束管理分别配置相应的参考信号资源,将会造成时频资源的浪费。同时,如果独立的波束管理过程不是同时进行,也将造成波束管理的完成时间滞后。此外,由于没有考虑回传链路和接入链路同时传输的影响,独立波束管理后基站和终端选择出的波束可能会互相具有干扰,对之后的传输带来影响。
本申请提供一种波束管理方法,用以解决中继收发节点在IAB场景中分别独立进行接入链路和回传链路的波束管理时可能带来的额外资源开销,波束管理时延较长等问题。相比现有技术,本申请提供的联合波束管理方法可以有效利用共用的参考信号资源和波束,完成回传链路和接入链路上的波束管理,能够减小资源开销和波束管理的总时延。如图2所示,本申请提供一种波束管理方法,主要包括如下步骤:
步骤101,中继收发节点确定第一资源组和第二资源组,所述第一资源组内的资源单元用于所述中继收发节点和终端之间进行第一波束组中的波束的测量和选择,所述第二资源组内的资源单元用于所述中继收发节点和基站之间进行第二波束组中的波束的测量和选择。
其中,步骤101中所述第一波束组中的波束是所述中继收发节点为接入链路配置的管理波束,所述第二波束组中的波束是所述中继收发节点为回传链路配置的管理波束。
需要说明的是,在IAB场景中,对于一个中继收发节点而言,其上级节点为基站,其下级节点为终端,中继收发节点与基站之间通过回传链路连接,中继收发节点与终端之间通过接入链路连接。当中继收发节点对接入链路和回传链路的波束进行联合管理时,中继收发节点对接入链路的波束管理等同于下行波束管理,中继收发节点对回传链路的波束管理等同于上行波束管理,为了便于描述,本申请中,中继收发节点通过回传链路向基站发送的波束为上行波束,通过接入链路向终端发送的波束为下行波束。
步骤102,所述中继收发节点根据所述第一资源组包括的资源单元与所述第一波束组中的波束的对应关系发送所述第一波束组中的波束。相应的,终端使用第一资源组接收来自中继收发节点的第一波束组中的波束。
步骤103,所述中继收发节点根据所述第二资源组包括的资源单元与所述第二波束组中的波束的对应关系发送所述第二波束组中的波束;其中,当所述第一资源组包括的资源单元和所述第二资源组包括的资源单元存在相同的资源单元时,所述中继收发节点在所述相同的资源单元上发送的波束为所述接入链路和所述回传链路的共用波束。相应的,基站使用第二资源组接收来自中继收发节点的第二波束组中的波束。
步骤102和步骤103没有严格的先后顺序,当所述第一资源组包括的资源单元和所述第二资源组包括的资源单元存在相同的资源单元时,步骤102和步骤103中相同的资源单元上的共用波束的发送是同时发生的。
其中,第一资源组包括一个或多个资源单元,第二资源组包括一个或多个资源单元,第一资源组和第二资源组可以存在共用资源,也可以不存在共用资源。在不同次的波束扫描中,第一资源组和第二资源组可以相同,也可以不同。
其中当所述第一资源组包括的资源单元和所述第二资源组包括的资源单元存在相同的资源单元时,相同的资源单元包括一个或多个资源单元,相同的资源单元是指第一资源组和第二资源组在时频域资源上重合的资源单元,资源单元可以为发送一个波束所占用的时频资源。
其中,中继收发节点使用第一资源组中的多个资源单元发送第一波束组中的多个下行波束。中继收发节点使用第二资源组中的多个资源单元发送第二波束组中的多个上行波束。当所述第一资源组包括的资源单元和所述第二资源组包括的资源单元存在相同的资源单元时,,所述第一波束组中的多个下行波束和所述第二波束组中的多个上行波束存在相同的波束,即共用波束,发送共用波束的资源单元可以称为共用资源单元。
例如,如图3所示,第一资源组包括4个资源单元,第二资源组包括4个资源单元,第一资源组和第二资源组包括两个共用资源单元,中继收发节点使用第一资源组的4个资源单元发送下行波束1,波束2,波束3,波束4,中继收发节点使用第二资源组的4个资源单元发送上行波束3,波束4,波束5,波束6,则波束3和波束4为共用波束,可以理解为中继收发节点同时向终端和基站发送波束3和波束4。
第一波束组中的下行波束可以通过接入链路上的参考信号发送,第二波束组中的上行波束可以通过回传链路上的参考信号发送,所以第一资源组可以为接入链路中的下行参考信号资源,第二资源组可以为回传链路中的上行参考信号资源。
在一种可能的设计中,步骤101中所述中继收发节点确定第一资源组和第二资源组,包括:
所述中继收发节点根据第二参考信号资源确定第一参考信号资源,使得所述第一参考信号资源与所述第二参考信号资源部分重叠,所述中继收发节点根据第一参考信号资源确定所述第一资源组,根据第二参考信号资源确定所述第二资源组,所述第一资源组包含在所述第一参考信号资源内,所述第二资源组包含在所述第二参考信号资源内。
其中,所述第一参考信号资源是所述中继收发节点为所述终端配置的,用于接入链路的波束管理。所述第二参考信号资源是所述基站为所述中继收发节点配置的,用于回传链路的波束管理。
可选的,第一参考信号资源和第二参考信号资源可以为周期、非周期或半持续配置的。
所述第一参考信号资源与所述第二参考信号资源部分重叠,其含义是指第一参考信号资源与所述第二参考信号资源可以复用,即回传链路上的参考信号在时频域资源上与接入链路的参考信号在时频域资源上具有重合部分,且当第一参考信号资源和第二参考信号资源是周期配置时,第一参考信号资源具有的周期可以与第二参考信号资源具有的周期相同。
可选的,回传链路上的参考信号可以为回传链路上特定的参考信号,如探测参考信号(sounding reference signal,SRS)。接入链路上的参考信号可以为用户特定的参考信号,如同步信号块(synchronization signal block,SSB),或信道状态信息参考信号(channel state information-RS,CSI-RS)。
基于上述方法流程,可以有效利用共用的参考信号资源和共用波束,完成回传和接入链路上的波束管理,能够减小资源开销和波束管理的总时延.
基于上述步骤101至步骤103,当中继收发节点进行回传链路和接入链路的联合波束管理时,如果回传链路的波束管理所需的上行参考信号资源和接入链路的波束管理所需的下行参考信号资源存在时频域资源上有一部分重合,中继收发节点可以有效利用共用的参考信号资源和波束完成回传和接入链路上的一部分波束管理,有利于减小这部分波束管理的资源开销和以及有利于减小整个波束管理过程的总时延。
此外,当中继收发节点对回传链路和接入链路独立进行波束管理时,由于没有考虑回传链路和接入链路同时传输的影响,导致独立波束管理后基站和终端选择出的波束可能会互相具有干扰,对之后的传输带来影响。本申请的上述联合波束管理方法,由于上行波束和下行波束的参考信号资源是由中继收发节点联合管理的,因此,在联合管理过程中,就能够保证基站和终端所选的波束不会互相影响,因此即使回传链路和接入链路同时传输,基站和终端所选的波束也不会互相影响。
但是当中继收发节点对接入链路和回传链路的波束进行联合管理时,回传链路上的波束功率可能一致,接入链路上的波束功率可能不一致,这会带来终端基于测量到的波束接收功率进行波束选择的误差较大的问题。本申请中,中继收发节点可以预先向终端发送接入链路上的波束的功率偏移值,进而解决使用共用波束时带来的接入链路上的波束的发送功率不一致带来的上述问题。
在一种可能的设计中,在步骤102之前,中继收发节点针对发送的下行波束产生一组功率偏移值,并将每个波束的功率偏移值告知终端,具体来说,包括:所述中继收发节点确定所述第一资源组中每一资源单元对应的波束和所述第一波束组中每一波束关联的功率偏移值;所述中继收发节点根据所述第一资源组中每一资源单元对应的波束,以及所述每一波束关联的功率偏移值,确定所述第一资源组中每一资源单元关联的功率偏移值;
所述中继收发节点向所述终端发送所述第一资源组中每一资源单元关联的功率偏移值。
本申请实施例中,当上行波束和下行波束存在共用波束时,下行波束中共用波束和非共用波束可能遇到的发送功率不一致的问题,为了避免下行波束中发送功率对终端的波束测量的准确性产生影响,本申请实施例在每次波束扫描之前,对每个下行波束产生一组功率偏移值,并将每个下行波束的功率偏移值告知终端,以便终端通过使用功率偏移值对每个下行波束的实际发送功率进行补偿后再计算波束质量,能够在接入链路的下行波束具有不同的发送功率的情况下,仍然不影响终端波束测量的准确性。
需要说明的是,中继收发节点对接入链路的波束管理,是指中继收发节点和终端之间的多次波束扫描和上报过程,其通过在一系列参考信号资源上使用不同的发送/接收波束来实现,这个过程可以反复进行,持续一段时间,从而确定出最佳的使用波束。一次下行波束扫描过程的开始可以为中继收发节点触发,例如当回传链路上的上行波束扫描过程由基站触发之后,中继收发节点可以在被触发上行波束扫描后,触发接入链路上的波束扫描过程。也可为配置好的周期性触发。波束扫描过程的持续时间为一次非周期触发的有效时间或周期触发的有效时间。在每一次波束扫描之前,中继收发节点都要确定每一被激活的资源单元所对应的功率偏移值,直到中继收发节点通知基站以及终端发送波束不再改变。
可选的,所述中继收发节点确定所述第一波束组中每一波束对应的功率偏移值,包括:所述中继收发节点确定所述第一波束组中每一波束的发射功率;所述中继收发节点根据所述 第一波束组中的其中一个波束的发射功率,确定所述第一波束组中每一波束的功率偏移值。
具体的,可以在确定第一波束组中每一个下行波束的发射功率之后,将其中一个发射功率值作为基准,基于第一波束组中每一个下行波束的发射功率和基准之间的偏差,计算第一波束组中每一个下行波束的功率偏移值。
若将第一波束组中的波束可以划分为共用波束和非共用波束,共用波束的发射功率可以与上行波束的发射功率一致,共用波束和非共用波束的发射功率可以不一致,非共用波束的发射功率可以一致,也可以不一致。第一波束组中的波束的功率偏移值由中继收发节点基于上行或下行的信道测量结果生成(例如基于路径损耗生成)。
可选的,可以将一个非共用波束的发射功率作为基准,或者将一个共用波束的发射功率作为基准,或者将预设的一个固定值作为基准,该固定值可以是不同于共用波束的发射功率和非共用波束的发射功率。
可选的,中继收发节点确定所述第一资源组中每一资源单元对应的功率偏移值,即建立第一资源组中的多个资源单元与第一波束组中的多个波束的功率偏移值之间的关联关系。在触发波束管理之前,中继收发节点建立第一资源组中的多个资源单元与第一波束组中的多个波束的功率偏移值之间的关联关系,进而将每一个功率偏移值与一个下行参考信号资源相关联,使得使用这个下行参考信号资源的波束将在中继收发节点的一个预设的发射功率的基础上进行相应的功率偏移,以便终端根据这些波束的功率偏移值进行波束测量。
所以,中继收发节点确定所述第一资源组中每一资源单元对应的功率偏移值,此过程可以是中继收发节点进行第一次波束扫描之前触发的,此时,第一资源组是中继收发节点即将进行第一次波束扫描所需使用的下行参考信号资源,第一波束组中的波束是中继收发节点即将进行第一次波束扫描时所需使用的下行波束。或者此过程也可以是中继收发节点完成一次波束扫描后,对下一次波束扫描所需使用的下行参考信号资源对应的功率偏移值进行更新时触发的,此时,第一资源组是中继收发节点即将进行下一次波束扫描所需使用的下行参考信号资源,第一波束组中的波束是中继收发节点即将进行下一次波束扫描时所需使用的下行波束。中继收发节点每完成一次波束扫描,就会根据终端针对上一次波束扫描发送的反馈情况计算出下一次波束扫描中,中继收发节点所采用的发送波束及其应该采用的功率情况,并进一步确定每个波束所需采用的功率偏移值,并将该功率偏移值与每个波束相应的下行参考信号资源相关联。
需要说明的是,对于第一参考信号资源中没有被激活使用的下行参考信号资源,可以不关联功率偏移值,或者不通知其历史对应的功率偏移值。
其中,所述中继收发节点确定确定所述第一资源组中每一资源单元对应的波束,具体为:
所述中继收发节点在确定第一资源组和确定所述第一波束组中的多个波束之后,中继收发节点配置所述第一资源组中的多个资源单元与所述第一波束组中的多个波束之间的对应关系。
其中,所述中继收发节点确定所述第一波束组中的多个波束,包括:若中继收发节点当进行首次波束扫描时,第一波束组中的波束可以是宽波束。当中继收发节点在进行非首次波束扫描时,由于每次中继收发节点的波束扫描过程结束后,终端会反馈一个或多个波束质量较好的参考信号资源的索引给中继收发节点,因此,可以根据终端的反馈信息来确定第一波束组中的波束。
可选的,当中继收发节点在进行非首次波束扫描时,所述中继收发节点确定所述第一波 束组中的多个波束,包括:所述中继收发节点接收来自所述终端的第一索引信息,所述第一索引信息包括所述终端在上一次与中继收发节点之间进行波束测量和选择时选择出的一个或多个波束所对应的资源单元的位置索引,所述中继收发节点根据所述第一索引信息,确定所述第一波束组中的波束。
其中,所述中继收发节点确定所述第一波束组中每一波束的发射功率,包括:当中继收发节点在进行首次波束扫描时,所述第一波束组中的每一波束的发射功率可以预设;当中继收发节点在进行非首次波束扫描时,所述第一波束组中的每一波束的发射功率可以根据终端的反馈进行调整。
当存在所述共用波束时,可以配置所述共用波束的发射功率与所述第二波束组中的每一波束的发射功率相同。例如,上行波束的发射功率可以一致,如都为15mW,那么第一波束组中的共用波束的发射功率也可以为15mW,第一波束组中的非共用波束可以为10Mw。
在一种可能的设计中,在中继收发节点确定第一资源组中的每个资源单元对应的功率偏移值之后,可以通过显示通知的方式通知给终端,也可以通过隐式通知的方式通知给终端。
可选的,中继收发节点隐式告知终端每个被使用的下行参考信号资源及其对应的新功率偏移值,具体为:所述中继收发节点向所述终端发送所述第一资源组中每一资源单元对应的功率偏移值,包括:所述中继收发节点向所述终端发送第一指示信息,所述第一指示信息包括N个指示字段,所述N个指示字段用于指示N个功率偏移值,所述第一资源组中每一资源单元对应的功率偏移值的指示字段包含在所述N个指示字段中;其中,所述第一资源组中的资源单元包含在所述第一参考信号资源预配置的N个资源单元子集中,所述N个指示字段在所述第一指示信息中的位置排序,与所述第一参考信号资源预配置的N个资源单元子集的位置排序存在一一对应关系,N为大于1的正整数。这样,通过预先绑定子集和偏移值的指示字段的关联关系,不需要显式的告知终端每个波束对应的下行参考信号资源,以及每个下行参考信号资源对应的功率偏移值大小是什么,只需要告诉终端N个子集中哪个位置的下行参考信号资源的功率偏移值需要更新,以及更新的功率偏移值大小,这样只需要N个指示字段即可通知上述关联关系,有利于节省信令开销。
具体的,在中继收发节点进行下行参考资源配置时,中继收发节点将配置好的第一参考信号资源进一步划分成预留部分和非预留部分,并预定义如下规则:如果中继收发节点使用了预留的参考信号资源,则表示在这部分参考信号资源上的波束使用了功率偏移,相应的功率偏移值由中继收发节点进行通知。如果中继收发节点通知的功率偏移值多于一个,则中继收发节点对预留的参考信号资源进一步划分为若干个子集。划分的子集数量与中继收发节点最多可以同时通知的功率偏移值数量一致。
终端侧的所述的功率偏移值的更新依据如下方法进行:当终端收到中继收发节点通知的功率偏移值后,终端将预留的参考信号资源与该功率偏移值进行关联,用于之后的波束功率偏移计算。若通知的功率偏移值多于一个,中继收发节点通知的功率偏移值顺序与划分的预留参考信号资源子集的索引顺序对应。当终端收到多个功率偏移值时,按照功率偏移值在通知信令中的位置,将相应索引序号的预留参考信号资源子集中的参考信号资源与该功率偏移值相关联。进一步,当终端在相应的参考信号资源上接收到波束时,按照对应的功率偏移值进行计算。
可选的,基于上述规则,中继收发节点可将第一参考信号资源的预留部分划分为N个子集,在其中一次波束扫描时实际使用的所述第一资源组包含在所述N个子集内,中继收发节 点为这N个子集进行排序,得到每个子集的序号,然后每一次波束扫描之前,可以通过每个子集的序号对应的指示信息来隐式通知每个子集对应的功率偏移值。
在另一种可能的设计中,中继收发节点通过信令显式告知终端每个被使用的下行参考信号资源及其对应的新功率偏移值,具体的,所述中继收发节点向所述终端发送所述第一资源组中每一资源单元对应的功率偏移值,包括:所述中继收发节点向所述终端发送第二指示信息,所述第二指示信息用于向所述终端指示所述第一资源组中的每一资源单元的位置索引和所述位置索引对应的功率偏移值;其中,所述第二指示信息携带在无线资源控制(radio resource control,RRC)信令中,或者携带在媒体接入控制单元(medium access control-control elemen,MAC-CE)信令中,或者携带在下行控制信息(downlink control information,DCI)信令中。
在一种可能的设计中,在每一次波束扫描之前,中继收发节点需要重新确定第二波束组中的波束,具体包括:当中继收发节点在进行首次波束扫描时,第二波束组中的波束可以是宽波束。由于每次中继收发节点的波束扫描过程结束后,基站会反馈一个或多个波束质量较好的参考信号资源的索引给中继收发节点,因此,当中继收发节点在进行非首次波束扫描时,可以根据基站的反馈信息来确定第二波束组中的波束。
可选的,当中继收发节点在进行非首次波束扫描时,中继收发节点确定第二波束组中的波束,包括:所述中继收发节点接收来自所述基站的第二索引信息,所述第二索引信息包括所述基站在上一次与中继收发节点之间进行波束测量和选择时从已接收到的管理波束中选择出的一个或多个波束所对应的资源单元的位置索引,所述中继收发节点根据所述第二索引信息,确定所述第二波束组中的波束。当中继收发节点在进行首次波束扫描时,所述第二波束组中的每一波束的发射功率可以预设为相同,当中继收发节点在进行非首次波束扫描时,所述第二波束组中的每一波束的发射功率可以根据基站的反馈进行调整,但每一波束的发射功率仍可以保持一致。
可选的,上述方法流程还包括:当中继收发节点确定中继收发节点与终端之间的收发波束不再改变时,会向终端发送指示信息,指示波束不再改变,停止波束扫描。可选的,中继收发节点可以使用RRC信令重配或使用动态信令指示。
可选的,上述方法流程还包括:当中继收发节点确定中继收发节点与基站之间的收发波束不再改变时,会向基站发送请求信息,请求波束不再改变,停止波束扫描。可选的,中继收发节点可以通过物理上行共享信道(physical uplink shared channel,PUSCH)或物理上行控制信道(physical uplink control channel,PUCCH)发送停止请求。
对于终端侧来说,当中继收发节点在一系列的参考信号资源上向终端发送波束时,终端在一系列参考信号资源上接收来自中继收发节点的发送波束。具体来说,包括:终端确定中继收发节点配置的第一资源组,终端使用第一资源组接收来自中继收发节点的第一波束组中的波束,所述第一资源组内的资源单元用于所述中继收发节点和终端之间进行波束的测量和选择。终端在中继收发节点触发的波束扫描过程中进行发送波束的测量和选择,终端所使用的第一资源组中的多个资源单元与所接收的第一波束组中的多个波束可以一一对应。其中,所述第一资源组包含在第一参考信号资源内,所述第一参考信号资源是所述中继收发节点根据第二参考信号资源为所述终端配置的,所述第一参考信号资源与所述第二参考信号资源部分重叠,其中,所述第一参考信号资源用于接入链路的波束管理,所述第二参考信号资源用于回传链路的波束管理。终端可以根据中继收发节点的指示信令来确定第一资源组。
对于终端来说,在中继收发节点的上述波束管理方法流程中还执行以下方法流程:
在一种可能的设计中,所述终端使用第一资源组接收来自中继收发节点的第一波束组中的波束之前,所述方法还包括:所述终端向所述中继收发节点发送第一索引信息,所述第一索引信息包括所述终端在上一次与中继收发节点之间进行波束测量和选择时从已接收到的管理波束中选择出的一个或多个波束所对应的资源单元的位置索引,以便所述中继收发节点根据所述第一索引信息所对应的波束信息,确定所述第一波束组中的多个波束。可选的,终端可以将第一索引信息携带在PUCCH或PUSCH中发送给中继收发节点。
在一种可能的设计中,所述方法还包括:所述终端接收来自所述中继收发节点的所述第一资源组中每一资源单元对应的功率偏移值;所述终端在接收来自中继收发节点的第一波束组中的波束之后,根据所述第一资源组中每一资源单元对应的功率偏移值,从所述第一波束组中选择出一个或多个波束,并向所述中继收发节点发送选择出的一个或多个波束所对应的资源单元的位置索引。本申请实施例中,当上行波束和下行波束存在共用波束时,下行波束中共用波束和非共用波束可能遇到的发送功率不一致的问题,为了避免下行波束中发送功率对终端的波束测量的准确性产生影响,本申请实施例终端在每次波束扫描之前,接收中继收发节点发送的每个下行波束所使用的参考信号资源对应的功率偏移值,通过使用功率偏移值对每个下行波束的实际接收功率进行补偿后再计算波束质量,能够在接入链路的下行波束具有不同的发送功率的情况下,仍然不影响终端波束测量的准确性。
在一种可能的设计中,所述终端根据所述第一资源组中每一资源单元对应的功率偏移值,从所述第一波束组中选择出一个或多个波束,包括:所述终端获取所述第一资源组中每一资源单元的参考信号接收功率;针对所述第一资源组中的第一资源单元,所述第一资源单元为所述第一资源组中的任一资源单元,所述终端根据所述第一资源单元关联的功率偏移值,对所述第一资源单元的所述参考信号接收功率进行校正,得到所述第一资源单元的等效参考信号接收功率;所述终端根据所述第一资源组中各个资源单元的所述等效参考信号接收功率,从所述第一波束组中选择出一个或多个波束。
每次中继收发节点的波束扫描过程结束后,终端会反馈一个或多个波束质量较好的参考信号资源的索引给中继收发节点,以便中继收发节点可以根据终端的反馈信息来确定下一次波束扫描时第一波束组中的波束。具体来说,当终端下行参考信号资源上完成波束测量后,选择一个或一组参考信号资源,将相应参考信号资源的索引序号反馈给中继收发节点。所选取的原则可以基于每个参考信号资源上测量得到的参考信号接收功率(RS receiving power,RSRP)。终端在获取每个下行波束所使用的参考信号资源对应的功率偏移值之后,可以在实际测量到的RSRP的基础之上,加上相应的功率偏移值,计算出该参考信号资源上等效的RSRP,进而保证波束测量的准确性。
在一种可能的设计中,所述终端接收来自所述中继收发节点的所述第一资源组中每一资源单元对应的功率偏移值,包括:所述终端接收来自所述中继收发节点的第一指示信息,所述第一指示信息包括N个指示字段,所述N个指示字段用于指示N个功率偏移值,所述第一资源组中每一资源单元对应的功率偏移值的指示字段包含在所述N个指示字段中;其中,所述第一资源组中的资源单元包含在所述第一参考信号资源预配置的N个资源单元子集中,所述N个指示字段在所述第一指示信息中的位置排序,与所述第一参考信号资源预配置的N个资源单元子集的位置排序存在一一对应关系,N为大于1的正整数。这样,通过预先绑定子集和偏移值的指示字段的关联关系,不需要显式的告知终端每个波束对应的下行参考信号 资源,以及每个下行参考信号资源对应的功率偏移值大小是什么,只需要告诉终端N个子集中哪个位置的下行参考信号资源的功率偏移值需要更新,以及更新的功率偏移值大小,这样只需要N个指示字段即可通知上述关联关系,有利于节省信令开销。
在一种可能的设计中,所述终端接收来自所述中继收发节点的所述第一资源组中每一资源单元对应的功率偏移值,包括:所述终端接收来自所述中继收发节点的第二指示信息,所述第二指示信息用于向所述终端指示所述第一资源组中的每一资源单元的位置索引和所述位置索引对应的功率偏移值;其中,所述第二指示信息携带在无线资源控制RRC信令中,或者携带在MAC-CE信令中,或者携带在DCI信令中。
对于基站侧来说,当中继收发节点在一系列的参考信号资源上向基站发送上行波束时,基站在一系列参考信号资源上接收来自中继收发节点的发送波束。具体来说,包括:基站确定第二资源组,基站使用第二资源组接收来自中继收发节点的第二波束组中的波束,所述第二资源组内的资源单元用于所述中继收发节点和终端之间进行波束的测量和选择。基站在中继收发节点触发的波束扫描过程中进行发送波束的测量和选择,基站所使用的第二资源组中的多个资源单元与所接收的第二波束组中的多个波束一一对应。其中,所述第二资源组包含在第二参考信号资源内,所述第二参考信号资源用于回传链路的波束管理。由于第一资源组包含在第一参考信号资源中,因此,基站可以在第一参考信号资源位置进行监测来获取中继收发节点发送第二波束组中的波束所占用的第二资源组。在一些可能的实施方式中,也可以由中继收发节点向基站反馈中继收发节点发送第二波束组中的波束所占用的第二资源组。
对于基站来说,在中继收发节点的波束管理方法流程中还执行以下方法流程:
在一种可能的设计中,在所述基站使用第二资源组接收来自中继收发节点的第二波束组中的波束之前,所述方法还包括:所述基站向所述中继收发节点发送第二索引信息,所述第二索引信息包括所述基站在上一次与中继收发节点之间进行波束测量和选择时从已接收到的管理波束中选择出的一个或多个波束所对应的资源单元的位置索引,以便所述中继收发节点根据所述第二索引信息所对应的波束信息,确定所述第二波束组中的多个波束。可选的,基站可以将第二索引信息携带在物理上行共享信道(physical downlink shared channel,PUSCH)或物理上行控制信道(physical downlink control channel,PUCCH)中发送给中继收发节点。
在一种可能的设计中,所述方法还包括:所述基站获取所述第二资源组中每一资源单元的参考信号接收功率;所述基站根据所述参考信号接收功率,从所述第二波束组中选择出一个或多个波束,并向所述中继收发节点发送所述基站选择出的一个或多个波束所对应的资源单元的位置索引。每次中继收发节点的波束扫描过程结束后,基站会反馈一个或多个波束质量较好的参考信号资源的索引给中继收发节点,以便中继收发节点根据基站的反馈信息来确定下一次波束扫描时第二波束组中的波束以及每一波束的发射功率。具体来说,当基站在上行参考信号资源上完成测量后,选择一个或一组参考信号资源,将相应参考信号资源的索引序号反馈给中继收发节点。所选取的原则可以基于每个参考信号资源上测量得到的RSRP。
基于上述方法流程,以下行接入链路的波束具有不同发射功率,上行回传链路的波束具有相同功率,下行接入链路的波束与上行回传链路的波束具有共用波束为例,本申请实施例提供一种波束管理方法的方法流程,如图4所示,主要包括以下步骤:
步骤1:中继收发节点根据基站为中继收发节点配置的一组回传链路的参考信号资源, 为终端配置一组接入链路的参考信号资源。
其中,配置方式有如下两种情况:
第一种情况:如果回传链路的带宽小于等于接入链路的带宽,则接入链路的参考信号资源包含回传链路的参考信号资源。
第二种情况:如果回传链路的带宽大于接入链路的带宽,则接入链路的参考信号资源被包含于回传链路的参考信号资源。
步骤2:中继收发节点激活一部分回传链路的参考信号资源用于上行波束管理,激活一部分接入链路的参考信号资源用于下行波束管理,为了便于描述,激活的用于下行波束管理的参考信号资源为第一资源组,激活的用于上行波束管理的参考信号资源为第二资源组。
步骤3:中继收发节点为第一资源组中每一参考信号资源配置一个功率偏移值,向终端通知每一参考信号资源对应的功率偏移值。
例如,第一资源组包括N个参考信号资源,用于承载N个参考信号,N个参考信号用于传输N个下行波束,中继收发节点配置一组功率偏移值{ΔP 1,...,ΔP N),其中N为所配置的功率偏移值的个数(功率偏移值之间可以相同也可以不同)。每个功率偏移值与接入链路的参考信号资源集合中的一个用于接入链路的参考信号资源相关联,即,使用该参考信号(reference signal,RS)资源的发送波束将具有相应的功率偏移。同时,将每个功率偏移值与一个用于接入链路的参考信号资源的关联关系通过RRC信令配置,或通过MAC CE信令通知,告知终端。
步骤4:中继收发节点在接入链路的第一资源组上扫描第一波束组,在回传链路的第二资源组上扫描第二波束组,与此同时,终端在接入链路的第一资源组上扫描第一波束组,基站在回传链路的第二资源组上扫描第二波束组。其中,当第一资源组和第二资源组具有共用资源时,第一波束组和第二波束组具有共用波束,中继收发节点在共用资源上扫描共用波束。
其中,共用波束在回传链路和接入链路上所使用的RS资源相同,即中继收发节点激活的接入链路RS资源与被基站激活的回传链路RS资源在时频域和周期性上相同。
当终端接收一个中继收发节点的发送波束后,根据波束对应的接入链路RS资源及其相应的功率偏移值,计算每个参考信号(也可以理解为波束)的等效参考信号接收功率。
其计算方式为
Figure PCTCN2019084021-appb-000001
其中
Figure PCTCN2019084021-appb-000002
为终端对第i个参考信号资源测量得到的等效参考信号接收功率,RSRP i为终端对第i个参考信号资源测量得到的实际参考信号接收功率,ΔP i为第i个参考信号资源对应的功率偏移值。
终端完成接入链路上的波束测量和计算后,依据一定规则进行波束选择,如选择等效RSRP最大的波束,然后向中继收发节点反馈相应的参考信号资源索引序号。基站完成回传链路上的波束测量后,类似选择一个回传链路的参考信号资源索引序号,反馈给中继收发节点。
步骤5:中继收发节点收到基站和终端的反馈后,更新第一波束组中的波束和第二波束组中的波束,更新每一参考信号资源对应的功率偏移值。
针对需要更新后的波束,中继收发节点将每一个更新后的波束的功率偏移值与一个接入链路的RS资源相关联,并通过信令通知终端每一个新的功率偏移值和每一个接入链路的RS资源之间的关联关系,该信令可以为RRC、MAC-CE或DCI信令。
其中,更新的方法相当于对每个将要使用的接入链路RS资源更新其对应的功率偏移值。在下次波束扫描时,如果存在与上行波束的共用波束,某些波束相对于其他下行波束进行了 功率偏移,则这些波束将使用在对应的RS资源上。如果所有下行波束的功率都一致(即不存在与上行波束的共用波束,此时所有下行波束的功率可以一样),则将所有波束可以使用在没有关联功率偏移的RS资源上,或者所有波束可以使用功率偏移为0的RS资源。
步骤6:判断发送上行波束和下行波束是否不再改变,若是则执行步骤7,若否返回步骤3,重复步骤3至5直到中继收发节点不再触发发送波束扫描为止。
其中重复步骤步骤3至5的波束扫描,是通过RS资源的周期性出现或非周期激活实现。例如,通过配置RS资源IE中repetition域为开启或关闭,实现指示是否进行了波束扫描。
步骤7:中继收发节点告知基站和终端发送波束不再改变,例如使用RRC信令重配或使用动态信令指示。
例如,中继收发节点通过RRC信令重配修改接入链路RS资源信息元素(information element,IE)IE中重复(repetition)域为”ON”;同时请求基站将回传链路RS资源的repetition域修改为”ON”。其含义是说每个参考信号资源上的波束都为相同的波束。
通过上述步骤1至步骤7,可以实现回传链路和接入链路使用相同的参考信号资源和波束进行波束管理过程,提高波束管理的效率,节约波束管理所需的资源开销。相比于回传链路和接入链路独立的波束管理过程,可以实现回传和接入链路的联合波束管理。同时通过使用功率偏移值,能够在接入链路波束具有不同的发送功率的情况下,仍然不影响波束测量的准确性。
作为一种可替换方案,上述步骤2可以替换为:在第一参考信号资源中划分为预留部分和非预留部分,将预留部分划分出N个子集,这N个子集用于接入链路的波束管理,这些子集之间互斥,即没有公共部分,并将子集的划分结果通知终端,即每个终端知道每个接入链路的RS资源属于哪个子集。子集划分结果的通知可以与步骤1中接入链路的RS资源的配置同步进行,即在接入链路的RS资源的配置结束时,子集的划分也已经确定。
上述步骤4中,当终端在某个接入链路的参考信号资源上接收到发送波束时,按照参考信号资源所属的子集序号及其对应的功率偏移值,计算等效RSRP。
上述步骤5可替换为:中继收发节点收到基站和终端的反馈后,更新第一波束组中的波束和第二波束组中的波束,对N个子集对应的功率偏移值进行更新。
基于步骤4测量的结果,中继收发节点确定K(K小于或等于N)个波束的功率偏移值将会发生变化,则中继收发节点通过RRC或MAC-CE或DCI等信令将这K个波束的功率偏移值通知给终端,其中K个功率偏移值具有一定的排列顺序,每个功率偏移值对应一个预划分的接入链路的RS资源子集,且每个功率偏移值在信令中出现的位置排列与接入链路的RS资源子集的索引序号具有对应关系。例如,在MAC-CE信令中,K个功率偏移值在信令中的具有一定的排列顺序。这样,出现在位置1的功率偏移值,则和序号为1的接入链路的RS资源子集相关联。
在此可替换方案中,可以实现回传和接入链路使用相同的参考信号资源和波束进行波束管理过程,提高波束管理的效率,节约波束管理所需的资源开销。通过隐式更新的方式对功率偏移值和参考信号资源之间的关联关系进行更新,能够节约信令开销。
在另一种可替换方案中,步骤5中,根据基站和终端的反馈情况,发现下次的波束扫描过程不具有公共波束时,下次的波束扫描过程中下行波束的发射功率相同,无需进行功率偏 移值的更新时,一种方式是可以仍然更新每个参考信号资源对应的功率偏移值,只是将功率偏移值更新为0。另一种方式是将上述步骤2替换为:中继收发节点激活第二资源组用于上行波束管理,激活第三资源组用于下行波束管理,其中,第二资源组第三资源组与第二资源组无共用资源。
省去上述步骤3,并且上述步骤4可替换为:中继收发节点在接入链路的第三资源组上扫描第一波束组,在回传链路的第二资源组上扫描第二波束组,与此同时,终端在接入链路的第三资源组上扫描第一波束组,基站在回传链路的第二资源组上扫描第二波束组。其中,第一波束组和第二波束组没有共用波束。
上述步骤5可替换为:中继收发节点收到基站和终端的反馈后,更新第一波束组中的波束和第二波束组中的波束,调整第一波束组中的波束的发射功率,调整第二波束组中的每一波束的发射功率。此时的步骤5非IAB场景中的上行和下行波束管理过程类似。
此实施例不局限于仅进行一次公共波束扫描后就出现没有公共波束的情况。当根据反馈结果发现不具有公共波束时,可以开始执行上述可替换的步骤4和步骤5。
上述可替换的实施例中,可以使得在不具有利用公共波束的条件时,联合波束管理过程可以回退到独立的上行或下行波束管理过程,可以兼容现有的上行或下行的波束管理过程执行。
基于相同的发明构思,如图5所示,本申请实施例提供的一种装置20,包括至少一个处理器21,通信总线22,存储器23以及至少一个通信接口24。
示例性的,图1中的中继收发节点也可以为图3所示的装置20。装置20可以通过处理器21实现本申请实施例中的通信方法中与中继收发节点有关的步骤。
具体的,所述处理器21,用于确定第一资源组和第二资源组,所述第一资源组包括的资源单元用于在所述中继收发节点和终端之间进行第一波束组中的波束的测量和选择,所述第二资源组内包括的资源单元用于所述中继收发节点和基站之间进行第二波束组中的波束的测量和选择;所述通信接口24,用于根据所述第一资源组中每一资源单元对应的波束发送所述第一波束组中的波束,根据所述第二资源组中每一资源单元对应的波束发送所述第二波束组中的波束;其中,当所述第一资源组包括的资源单元和所述第二资源组包括的资源单元存在相同的资源单元时,所述中继收发节点在所述相同的资源单元上发送的波束为所述接入链路和所述回传链路的共用波束。中继收发节点进行回传链路和接入链路的联合波束管理时,如果回传链路的波束管理所需的上行参考信号资源和接入链路的波束管理所需的下行参考信号资源存在时频域资源上有一部分重合时,中继收发节点可以有效利用共用的参考信号资源和波束完成回传和接入链路上的一部分波束管理,有利于减小这部分波束管理的资源开销和以及有利于减小整个波束管理过程的总时延。
在一种可能的设计中,所述确定第一资源组和第二资源组,具体包括:根据第二参考信号资源确定第一参考信号资源,使得所述第一参考信号资源与所述第二参考信号资源部分重叠;所述第一参考信号资源用于接入链路的波束管理,所述第二参考信号资源用于回传链路的波束管理;根据第一参考信号资源确定所述第一资源组,根据第二参考信号资源确定所述第二资源组;其中,所述第一资源组包含在所述第一参考信号资源内,所述第二资源组包含在所述第二参考信号资源内。根据基站配置第二参考信号资源来确定第一参考信号资源,并使所述第一参考信号资源与所述第二参考信号资源部分重叠,实现了回传链路的波束管理所需 的上行参考信号资源和接入链路的波束管理所需的下行参考信号资源存在时频域资源上有一部分重合。
在一种可能的设计中,所述处理器21,还用于在所述通信接口24根据所述第一资源组包括的资源单元与所述第一波束组中的波束的对应关系发送所述第一波束组中的波束之前,确定所述第一资源组中每一资源单元对应的波束和所述第一波束组中每一波束关联的功率偏移值;根据所述第一资源组中每一资源单元对应的波束,以及每一波束关联的功率偏移值,确定所述第一资源组中每一资源单元关联的功率偏移值;所述通信接口24,还用于向所述终端发送所述第一资源组中每一资源单元关联的功率偏移值。实施例中,当上行波束和下行波束存在共用波束时,下行波束中共用波束和非共用波束可能遇到的发送功率不一致的问题,为了避免下行波束中发送功率对终端的波束测量的准确性产生影响,本申请实施例在每次波束扫描之前,对每个下行波束产生一组功率偏移值,并将每个下行波束的功率偏移值告知终端,将每一个功率偏移值与一个下行参考信号资源相关联,使得使用这个下行参考信号资源的波束将在中继收发节点的一个预设的发射功率的基础上进行相应的功率偏移,以便终端通过使用功率偏移值对每个下行波束的实际发送功率进行补偿后再计算波束质量,能够在接入链路的下行波束具有不同的发送功率的情况下,仍然不影响终端波束测量的准确性。
在一种可能的设计中,所述确定所述第一波束组中每一波束关联的功率偏移值,具体包括:确定所述第一波束组中每一波束的发射功率;根据所述第一波束组中的其中一个波束的发射功率,确定所述第一波束组中每一波束的功率偏移值。
在一种可能的设计中,所述向所述终端发送所述第一资源组中每一资源单元关联的功率偏移值,具体包括:向所述终端发送第一指示信息,所述第一指示信息包括N个指示字段,所述N个指示字段用于指示N个功率偏移值,所述第一资源组中每一资源单元关联的功率偏移值的指示字段包含在所述N个指示字段中;其中,所述第一资源组中的资源单元包含在所述第一参考信号资源预配置的N个资源单元子集中,所述N个指示字段在所述第一指示信息中的位置排序,与所述第一参考信号资源预配置的N个资源单元子集的位置排序存在一一对应关系,N为大于1的正整数。通过预先绑定子集和偏移值的指示字段的关联关系,不需要显式的告知终端每个波束对应的下行参考信号资源,以及每个下行参考信号资源对应的功率偏移值大小是什么,只需要告诉终端N个子集中哪个位置的下行参考信号资源的功率偏移值需要更新,以及更新的功率偏移值大小,这样只需要N个指示字段即可通知上述关联关系,有利于节省信令开销。
在一种可能的设计中,所述向所述终端发送所述第一资源组中每一资源单元关联的功率偏移值,具体包括:向所述终端发送第二指示信息,所述第二指示信息用于向所述终端指示所述第一资源组中的每一资源单元的位置索引和所述位置索引关联的功率偏移值;其中,所述第二指示信息携带在无线资源控制RRC信令中,或者携带在MAC-CE信令中,或者携带在DCI信令中。
在一种可能的设计中,所述通信接口24,还用于在根据所述第一资源组包括的资源单元与所述第一波束组中的波束的对应关系发送所述第一波束组中的波束之前,接收来自所述终端的第一索引信息,所述第一索引信息包括所述终端从已接收到的管理波束中选择出的一个或多个波束所关联的资源单元的位置索引;所述确定所述第一资源组中每一资源单元对应的波束,具体包括:根据所述第一索引信息,确定所述第一波束组中的波束;建立所述第一资源组包括的资源单元与所述第一波束组中的波束之间的对应关系。在触发波束管理之前,中 继收发节点建立第一资源组中的多个资源单元与第一波束组中的多个波束的功率偏移值之间的关联关系,进而将每一个功率偏移值与一个下行参考信号资源相关联,使得使用这个下行参考信号资源的波束将在中继收发节点的一个预设的发射功率的基础上进行相应的功率偏移,以便终端根据这些波束的功率偏移值进行波束测量。
在一种可能的设计中,所述通信接口24,还用于在根据所述第二资源组包括的资源单元与所述第二波束组中的波束之间的对应关系发送所述第二波束组中的波束之前,接收来自所述基站的第二索引信息,所述第二索引信息包括所述基站从已接收到的管理波束中选择出的一个或多个波束所关联的资源单元的位置索引;所述处理器21还用于在所述通信接口24发送所述第二波束组中的波束之前,根据所述第二索引信息,确定所述第二波束组中的波束,并建立所述第二资源组包括的资源单元与所述第二波束组中的波束之间的对应关系。
示例性的,图1中的终端也可以为图5所示的装置20。装置20可以通过处理器2121实现本申请实施例中的通信方法中与终端有关的步骤。
具体的,所述处理器21,用于确定中继收发节点配置的第一资源组,所述第一资源组包含在所述第一参考信号资源内,所述第一参考信号资源是所述中继收发节点根据第二参考信号资源为所述终端配置的,其中,所述第一参考信号资源与所述第二参考信号资源部分重叠,所述第一参考信号资源用于接入链路的波束管理,所述第二参考信号资源用于回传链路的波束管理,所述第一资源组包括的资源单元用于在所述中继收发节点和终端之间进行第一波束组中的波束的测量和选择;所述通信接口24,用于使用所述第一资源组接收来自中继收发节点的所述第一波束组中的波束。当中继收发节点进行回传链路和接入链路的联合波束管理时,如果回传链路的波束管理所需的第二参考信号资源和接入链路的波束管理所需的第一参考信号资源存在时频域资源上有一部分重合,中继收发节点可以有效利用共用的参考信号资源和波束完成回传和接入链路上的一部分波束管理,有利于减小这部分波束管理的资源开销和以及有利于减小整个波束管理过程的总时延。
在一种可能的设计中,所述通信接口24,还用于在第一资源组接收来自中继收发节点的所述第一波束组中的波束之前向所述中继收发节点发送第一索引信息,所述第一索引信息包括所述终端从已接收到的管理波束中选择出的一个或多个波束所关联的资源单元的位置索引。以便所述中继收发节点根据所述第一索引信息所对应的波束信息,确定所述第一波束组中的多个波束。
在一种可能的设计中,所述通信接口24,还用于在接收来自所述中继收发节点的所述第一波束组中的波束之前接收来自所述中继收发节点的所述第一资源组中每一资源单元关联的功率偏移值;所述处理器21,还用于在所述通信接口24接收来自所述中继收发节点的所述第一波束组中的波束之后,根据所述第一资源组中每一资源单元关联的功率偏移值,从所述第一波束组中选择出一个或多个波束;所述通信接口24,还用于向所述中继收发节点发送所述处理器21从所述第一波束组中选择出的一个或多个波束所关联的资源单元的位置索引。
实施例中,当上行波束和下行波束存在共用波束时,下行波束中共用波束和非共用波束可能遇到的发送功率不一致的问题,为了避免下行波束中发送功率对终端的波束测量的准确性产生影响,本申请实施例终端在每次波束扫描之前,接收中继收发节点发送的每个下行波束所使用的参考信号资源对应的功率偏移值,通过使用功率偏移值对每个下行波束的实际接收功率进行补偿后再计算波束质量,能够在接入链路的下行波束具有不同的发送功率的情况 下,仍然不影响终端波束测量的准确性。
在一种可能的设计中,所述根据所述第一资源组中每一资源单元关联的功率偏移值,从所述第一波束组中选择出一个或多个波束,具体包括:获取所述第一资源组中每一资源单元的参考信号接收功率;针对所述第一资源组中的第一资源单元,所述第一资源单元为所述第一资源组中的任一资源单元,所述终端根据所述第一资源单元关联的功率偏移值,对所述第一资源单元的所述参考信号接收功率进行校正,得到所述第一资源单元的等效参考信号接收功率;根据所述第一资源组中各个资源单元的所述等效参考信号接收功率,从所述第一波束组中选择出一个或多个波束。每次中继收发节点的波束扫描过程结束后,终端会反馈一个或多个波束质量较好的参考信号资源的索引给中继收发节点,以便中继收发节点可以根据终端的反馈信息来确定下一次波束扫描时第一波束组中的波束。
在一种可能的设计中,所述在接收来自中继收发节点的第一波束组中的波束之前接收来自所述中继收发节点的所述第一资源组中每一资源单元关联的功率偏移值,具体包括:接收来自所述中继收发节点的第一指示信息,所述第一指示信息包括N个指示字段,所述N个指示字段用于指示N个功率偏移值,所述第一资源组中每一资源单元关联的功率偏移值的指示字段包含在所述N个指示字段中;其中,所述第一资源组中的资源单元包含在所述第一参考信号资源预配置的N个资源单元子集中,所述N个指示字段在所述第一指示信息中的位置排序,与所述第一参考信号资源预配置的N个资源单元子集的位置排序存在一一对应关系,N为大于1的正整数。通过预先绑定子集和偏移值的指示字段的关联关系,不需要显式的告知终端每个波束对应的下行参考信号资源,以及每个下行参考信号资源对应的功率偏移值大小是什么,只需要告诉终端N个子集中哪个位置的下行参考信号资源的功率偏移值需要更新,以及更新的功率偏移值大小,这样只需要N个指示字段即可通知上述关联关系,有利于节省信令开销。
在一种可能的设计中,所述在接收来自中继收发节点的第一波束组中的波束之前接收来自所述中继收发节点的所述第一资源组中每一资源单元关联的功率偏移值,具体包括:接收来自所述中继收发节点的第二指示信息,所述第二指示信息用于向所述终端指示所述第一资源组中的每一资源单元的位置索引和所述位置索引关联的功率偏移值;其中,所述第二指示信息携带在无线资源控制RRC信令中,或者携带在MAC-CE信令中,或者携带在DCI信令中。
示例性的,图1中的基站也可以为图5所示的装置20,装置20可以通过处理器2121实现本申请实施例中的通信方法中与基站有关的步骤。
具体的,所述处理器21,用于确定第二资源组,所述第二资源组包含在第二参考信号资源内,其中,所述第二参考信号资源与第一参考信号资源部分重叠,所述第一参考信号资源是所述中继收发节点根据第二参考信号资源为所述终端配置的,所述第一参考信号资源用于接入链路的波束管理,所述第二参考信号资源用于所述回传链路的波束管理,所述第二资源组内包括的资源单元用于所述中继收发节点和所述基站之间进行第二波束组中的波束的测量和选择;所述通信接口24,用于使用所述第二资源组接收来自所述中继收发节点的所述第二波束组中的波束。当中继收发节点进行回传链路和接入链路的联合波束管理时,如果回传链路的波束管理所需的第二参考信号资源和接入链路的波束管理所需的第一参考信号资源存在时频域资源上有一部分重合,中继收发节点可以有效利用共用的参考信号资源和波束完成回传 和接入链路上的一部分波束管理,有利于减小这部分波束管理的资源开销和以及有利于减小整个波束管理过程的总时延。
在一种可能的设计中,所述通信接口24,还用于在使用所述第二资源组接收来自所述中继收发节点的所述第二波束组中的波束之前向所述中继收发节点发送第二索引信息,所述第二索引信息包括所述基站从已接收到的管理波束中选择出的一个或多个波束所关联的资源单元的位置索引。以便所述中继收发节点根据所述第二索引信息所对应的波束信息,确定所述第二波束组中的多个波束。
在一种可能的设计中,所述处理器21,还用于在所述通信接口24使用所述第二资源组接收来自所述中继收发节点的所述第二波束组中的波束之后,获取所述第二资源组中每一资源单元的参考信号接收功率;根据所述参考信号接收功率,从接收到的所述第二波束组中选择出一个或多个波束;所述通信接口24,还用于向所述中继收发节点发送所述处理器21从所述第二波束组中选择出的所述一个或多个波束所关联的资源单元的位置索引。每次中继收发节点的波束扫描过程结束后,基站会反馈一个或多个波束质量较好的参考信号资源的索引给中继收发节点,以便中继收发节点根据基站的反馈信息来确定下一次波束扫描时第二波束组中的波束以及每一波束的发射功率。
处理器21可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信总线22可包括一通路,在上述组件之间传送信息。所述通信接口24,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(RAN),WALN等。
存储器23可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由该装置存取的任何其他介质,但不限于此。存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。
其中,所述存储器23用于存储执行本申请方案的应用程序代码,并由处理器21来控制执行。所述处理器21用于执行所述存储器23中存储的应用程序代码。
在具体实现中,作为一种实施例,处理器21可以包括一个或多个CPU,例如图5中的CPU0和CPU1。
在具体实现中,作为一种实施例,该装置20可以包括多个处理器,例如图5中的处理器21和处理器28。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
本申请实施例可以根据上述方法示例对图5所示的装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说 明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在本实施例中,图5所示的装置以对应各个功能划分各个功能模块的形式来呈现,或者,该装置以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
比如,在采用对应各个功能划分各个功能模块的情况下,图6示出了上述实施例中所涉及的装置的可能的结构示意图,该装置900可以是上述实施例中的中继收发节点或终端或基站。该装置900包括处理单元901和收发单元902。所述收发单元902用于所述处理单元901收发信号。图6中的处理单元901执行的方法可以通过图5的处理器21(和/或处理器28)和存储器23来实现,具体的,处理单元901执行的方法可以通过图5的处理器21(和/或处理器28)来调用存储器23中存储的应用程序代码来执行,本申请实施例对此不作任何限制。
具体实现中,当装置900可以是上述实施例中的中继收发节点时,所述处理单元901,用于确定第一资源组和第二资源组,所述第一资源组包括的资源单元用于在所述中继收发节点和终端之间进行第一波束组中的波束的测量和选择,所述第二资源组内包括的资源单元用于所述中继收发节点和基站之间进行第二波束组中的波束的测量和选择;所述收发单元902,用于根据所述第一资源组中每一资源单元对应的波束发送所述第一波束组中的波束,根据所述第二资源组中每一资源单元对应的波束发送所述第二波束组中的波束;其中,当所述第一资源组包括的资源单元和所述第二资源组包括的资源单元存在相同的资源单元时,所述中继收发节点在所述相同的资源单元上发送的波束为所述接入链路和所述回传链路的共用波束。中继收发节点进行回传链路和接入链路的联合波束管理时,如果回传链路的波束管理所需的上行参考信号资源和接入链路的波束管理所需的下行参考信号资源存在时频域资源上有一部分重合时,中继收发节点可以有效利用共用的参考信号资源和波束完成回传和接入链路上的一部分波束管理,有利于减小这部分波束管理的资源开销和以及有利于减小整个波束管理过程的总时延。
在一种可能的设计中,所述确定第一资源组和第二资源组,具体包括:根据第二参考信号资源确定第一参考信号资源,使得所述第一参考信号资源与所述第二参考信号资源部分重叠;所述第一参考信号资源用于接入链路的波束管理,所述第二参考信号资源用于回传链路的波束管理;根据第一参考信号资源确定所述第一资源组,根据第二参考信号资源确定所述第二资源组;其中,所述第一资源组包含在所述第一参考信号资源内,所述第二资源组包含在所述第二参考信号资源内。根据基站配置第二参考信号资源来确定第一参考信号资源,并使所述第一参考信号资源与所述第二参考信号资源部分重叠,实现了回传链路的波束管理所需的上行参考信号资源和接入链路的波束管理所需的下行参考信号资源存在时频域资源上有一部分重合。
在一种可能的设计中,所述处理单元901,还用于在所述收发单元902根据所述第一资源组包括的资源单元与所述第一波束组中的波束的对应关系发送所述第一波束组中的波束之前,确定所述第一资源组中每一资源单元对应的波束和所述第一波束组中每一波束关联的功率偏移值;根据所述第一资源组中每一资源单元对应的波束,以及每一波束关联的功率偏移值,确定所述第一资源组中每一资源单元关联的功率偏移值;所述收发单元902,还用于向 所述终端发送所述第一资源组中每一资源单元关联的功率偏移值。实施例中,当上行波束和下行波束存在共用波束时,下行波束中共用波束和非共用波束可能遇到的发送功率不一致的问题,为了避免下行波束中发送功率对终端的波束测量的准确性产生影响,本申请实施例在每次波束扫描之前,对每个下行波束产生一组功率偏移值,并将每个下行波束的功率偏移值告知终端,将每一个功率偏移值与一个下行参考信号资源相关联,使得使用这个下行参考信号资源的波束将在中继收发节点的一个预设的发射功率的基础上进行相应的功率偏移,以便终端通过使用功率偏移值对每个下行波束的实际发送功率进行补偿后再计算波束质量,能够在接入链路的下行波束具有不同的发送功率的情况下,仍然不影响终端波束测量的准确性。
在一种可能的设计中,所述确定所述第一波束组中每一波束关联的功率偏移值,具体包括:确定所述第一波束组中每一波束的发射功率;根据所述第一波束组中的其中一个波束的发射功率,确定所述第一波束组中每一波束的功率偏移值。
在一种可能的设计中,所述向所述终端发送所述第一资源组中每一资源单元关联的功率偏移值,具体包括:向所述终端发送第一指示信息,所述第一指示信息包括N个指示字段,所述N个指示字段用于指示N个功率偏移值,所述第一资源组中每一资源单元关联的功率偏移值的指示字段包含在所述N个指示字段中;其中,所述第一资源组中的资源单元包含在所述第一参考信号资源预配置的N个资源单元子集中,所述N个指示字段在所述第一指示信息中的位置排序,与所述第一参考信号资源预配置的N个资源单元子集的位置排序存在一一对应关系,N为大于1的正整数。通过预先绑定子集和偏移值的指示字段的关联关系,不需要显式的告知终端每个波束对应的下行参考信号资源,以及每个下行参考信号资源对应的功率偏移值大小是什么,只需要告诉终端N个子集中哪个位置的下行参考信号资源的功率偏移值需要更新,以及更新的功率偏移值大小,这样只需要N个指示字段即可通知上述关联关系,有利于节省信令开销。
在一种可能的设计中,所述向所述终端发送所述第一资源组中每一资源单元关联的功率偏移值,具体包括:向所述终端发送第二指示信息,所述第二指示信息用于向所述终端指示所述第一资源组中的每一资源单元的位置索引和所述位置索引关联的功率偏移值;其中,所述第二指示信息携带在无线资源控制RRC信令中,或者携带在MAC-CE信令中,或者携带在DCI信令中。
在一种可能的设计中,所述收发单元902,还用于在根据所述第一资源组包括的资源单元与所述第一波束组中的波束的对应关系发送所述第一波束组中的波束之前,接收来自所述终端的第一索引信息,所述第一索引信息包括所述终端从已接收到的管理波束中选择出的一个或多个波束所关联的资源单元的位置索引;所述确定所述第一资源组中每一资源单元对应的波束,具体包括:根据所述第一索引信息,确定所述第一波束组中的波束;建立所述第一资源组包括的资源单元与所述第一波束组中的波束之间的对应关系。在触发波束管理之前,中继收发节点建立第一资源组中的多个资源单元与第一波束组中的多个波束的功率偏移值之间的关联关系,进而将每一个功率偏移值与一个下行参考信号资源相关联,使得使用这个下行参考信号资源的波束将在中继收发节点的一个预设的发射功率的基础上进行相应的功率偏移,以便终端根据这些波束的功率偏移值进行波束测量。
在一种可能的设计中,所述收发单元902,还用于在根据所述第二资源组包括的资源单元与所述第二波束组中的波束之间的对应关系发送所述第二波束组中的波束之前,接收来自所述基站的第二索引信息,所述第二索引信息包括所述基站从已接收到的管理波束中选择出的 一个或多个波束所关联的资源单元的位置索引;所述处理单元901还用于在所述收发单元902发送所述第二波束组中的波束之前,根据所述第二索引信息,确定所述第二波束组中的波束,并建立所述第二资源组包括的资源单元与所述第二波束组中的波束之间的对应关系。
具体实现中,当装置900可以是上述实施例中的终端时,所述处理单元901,用于确定中继收发节点配置的第一资源组,所述第一资源组包含在所述第一参考信号资源内,所述第一参考信号资源是所述中继收发节点根据第二参考信号资源为所述终端配置的,其中,所述第一参考信号资源与所述第二参考信号资源部分重叠,所述第一参考信号资源用于接入链路的波束管理,所述第二参考信号资源用于回传链路的波束管理,所述第一资源组包括的资源单元用于在所述中继收发节点和终端之间进行第一波束组中的波束的测量和选择;所述收发单元902,用于使用所述第一资源组接收来自中继收发节点的所述第一波束组中的波束。当中继收发节点进行回传链路和接入链路的联合波束管理时,如果回传链路的波束管理所需的第二参考信号资源和接入链路的波束管理所需的第一参考信号资源存在时频域资源上有一部分重合,中继收发节点可以有效利用共用的参考信号资源和波束完成回传和接入链路上的一部分波束管理,有利于减小这部分波束管理的资源开销和以及有利于减小整个波束管理过程的总时延。
在一种可能的设计中,所述收发单元902,还用于在第一资源组接收来自中继收发节点的所述第一波束组中的波束之前向所述中继收发节点发送第一索引信息,所述第一索引信息包括所述终端从已接收到的管理波束中选择出的一个或多个波束所关联的资源单元的位置索引。以便所述中继收发节点根据所述第一索引信息所对应的波束信息,确定所述第一波束组中的多个波束。
在一种可能的设计中,所述收发单元902,还用于在接收来自所述中继收发节点的所述第一波束组中的波束之前接收来自所述中继收发节点的所述第一资源组中每一资源单元关联的功率偏移值;所述处理单元901,还用于在所述收发单元902接收来自所述中继收发节点的所述第一波束组中的波束之后,根据所述第一资源组中每一资源单元关联的功率偏移值,从所述第一波束组中选择出一个或多个波束;所述收发单元902,还用于向所述中继收发节点发送所述处理单元901从所述第一波束组中选择出的一个或多个波束所关联的资源单元的位置索引。
实施例中,当上行波束和下行波束存在共用波束时,下行波束中共用波束和非共用波束可能遇到的发送功率不一致的问题,为了避免下行波束中发送功率对终端的波束测量的准确性产生影响,本申请实施例终端在每次波束扫描之前,接收中继收发节点发送的每个下行波束所使用的参考信号资源对应的功率偏移值,通过使用功率偏移值对每个下行波束的实际接收功率进行补偿后再计算波束质量,能够在接入链路的下行波束具有不同的发送功率的情况下,仍然不影响终端波束测量的准确性。
在一种可能的设计中,所述根据所述第一资源组中每一资源单元关联的功率偏移值,从所述第一波束组中选择出一个或多个波束,具体包括:获取所述第一资源组中每一资源单元的参考信号接收功率;针对所述第一资源组中的第一资源单元,所述第一资源单元为所述第一资源组中的任一资源单元,所述终端根据所述第一资源单元关联的功率偏移值,对所述第一资源单元的所述参考信号接收功率进行校正,得到所述第一资源单元的等效参考信号接收功率;根据所述第一资源组中各个资源单元的所述等效参考信号接收功率,从所述第一波束 组中选择出一个或多个波束。每次中继收发节点的波束扫描过程结束后,终端会反馈一个或多个波束质量较好的参考信号资源的索引给中继收发节点,以便中继收发节点可以根据终端的反馈信息来确定下一次波束扫描时第一波束组中的波束。
在一种可能的设计中,所述在接收来自中继收发节点的第一波束组中的波束之前接收来自所述中继收发节点的所述第一资源组中每一资源单元关联的功率偏移值,具体包括:接收来自所述中继收发节点的第一指示信息,所述第一指示信息包括N个指示字段,所述N个指示字段用于指示N个功率偏移值,所述第一资源组中每一资源单元关联的功率偏移值的指示字段包含在所述N个指示字段中;其中,所述第一资源组中的资源单元包含在所述第一参考信号资源预配置的N个资源单元子集中,所述N个指示字段在所述第一指示信息中的位置排序,与所述第一参考信号资源预配置的N个资源单元子集的位置排序存在一一对应关系,N为大于1的正整数。通过预先绑定子集和偏移值的指示字段的关联关系,不需要显式的告知终端每个波束对应的下行参考信号资源,以及每个下行参考信号资源对应的功率偏移值大小是什么,只需要告诉终端N个子集中哪个位置的下行参考信号资源的功率偏移值需要更新,以及更新的功率偏移值大小,这样只需要N个指示字段即可通知上述关联关系,有利于节省信令开销。
在一种可能的设计中,所述在接收来自中继收发节点的第一波束组中的波束之前接收来自所述中继收发节点的所述第一资源组中每一资源单元关联的功率偏移值,具体包括:接收来自所述中继收发节点的第二指示信息,所述第二指示信息用于向所述终端指示所述第一资源组中的每一资源单元的位置索引和所述位置索引关联的功率偏移值;其中,所述第二指示信息携带在无线资源控制RRC信令中,或者携带在MAC-CE信令中,或者携带在DCI信令中。
具体实现中,当装置900可以是上述实施例中的基站时,处理单元901,用于确定第二资源组,所述第二资源组包含在第二参考信号资源内,其中,所述第二参考信号资源与第一参考信号资源部分重叠,所述第一参考信号资源是所述中继收发节点根据第二参考信号资源为所述终端配置的,所述第一参考信号资源用于接入链路的波束管理,所述第二参考信号资源用于所述回传链路的波束管理,所述第二资源组内包括的资源单元用于所述中继收发节点和所述基站之间进行第二波束组中的波束的测量和选择;所述收发单元902,用于使用所述第二资源组接收来自所述中继收发节点的所述第二波束组中的波束。当中继收发节点进行回传链路和接入链路的联合波束管理时,如果回传链路的波束管理所需的第二参考信号资源和接入链路的波束管理所需的第一参考信号资源存在时频域资源上有一部分重合,中继收发节点可以有效利用共用的参考信号资源和波束完成回传和接入链路上的一部分波束管理,有利于减小这部分波束管理的资源开销和以及有利于减小整个波束管理过程的总时延。
在一种可能的设计中,所述收发单元902,还用于在使用所述第二资源组接收来自所述中继收发节点的所述第二波束组中的波束之前向所述中继收发节点发送第二索引信息,所述第二索引信息包括所述基站从已接收到的管理波束中选择出的一个或多个波束所关联的资源单元的位置索引。以便所述中继收发节点根据所述第二索引信息所对应的波束信息,确定所述第二波束组中的多个波束。
在一种可能的设计中,所述处理单元901,还用于在所述收发单元902使用所述第二资源组接收来自所述中继收发节点的所述第二波束组中的波束之后,获取所述第二资源组中每一 资源单元的参考信号接收功率;根据所述参考信号接收功率,从接收到的所述第二波束组中选择出一个或多个波束;所述收发单元902,还用于向所述中继收发节点发送所述处理单元901从所述第二波束组中选择出的所述一个或多个波束所关联的资源单元的位置索引。每次中继收发节点的波束扫描过程结束后,基站会反馈一个或多个波束质量较好的参考信号资源的索引给中继收发节点,以便中继收发节点根据基站的反馈信息来确定下一次波束扫描时第二波束组中的波束以及每一波束的发射功率。
上述装置实施例的具体实现方式与方法实施例相对应,其具体实现方式和有益效果和参加方式实施例的相关描述。
图7为本发明实施例的电路系统的另一种结构示意图。该电路系统可以是处理器。该处理器可体现为芯片或片上系统(system on chip,SOC),被设置于本发明实施例的无线通信系统的基站或终端中,以使得该基站或终端实现本发明实施例的通信方法。如图6所示,电路系统60包括:接口单元601,控制及运算单元602,和存储单元603。其中,接口单元用于与基站或终端的其他组件连通,存储单元603用于存储计算机程序或指令,控制及运算单元602用于译码和执行这些计算机程序或指令。应理解,这些计算机程序或指令可包括上述终端功能程序,也可包括上述基站功能程序。当终端功能程序被控制及运算单元602译码并执行时,可使得终端实现本发明实施例的上行子带预编码矩阵的指示方法,终端的功能。当基站功能程序被所述控制及运算单元602译码并执行时,可使得基站实现本发明实施例的上行子带预编码矩阵的指示方法中基站的功能。
在一种可能的设计中,这些终端功能程序或基站功能程序存储在电路系统60外部的存储器中。当上述终端功能程序或基站功能程序被控制及运算单元602译码并执行时,存储单元603中临时存放上述终端功能程序的部分或全部内容,或者临时存放上述基站功能程序的部分或全部内容。
在另一种可选实现方式中,这些终端功能程序或基站功能程序被设置于存储在电路系统60内部的存储单元603中。当电路系统60内部的存储单元603中存储有终端功能程序时,电路系统60可被设置在本发明实施例的无线通信系统的终端中。当电路系统60内部的存储单元603中存储有基站功能程序时,电路系统60可被设置在本发明实施例的无线通信系统的基站中。
在又一种可选实现方式中,这些终端功能程序或基站功能程序的部分内容存储在电路系统60外部的存储器中,这些终端功能程序或基站功能程序的其他部分内容存储在电路系统60内部的存储单元603中。
基于相同构思,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行本申请所涉及的各种实施例中与中继收发节点相关的方法步骤。
基于相同构思,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行本申请所涉及的各种实施例中与终端相关的方法步骤。
基于相同构思,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行本申请所涉及的各种实施例中与基站相关 的方法步骤。
基于相同构思,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行本申请所涉及的各种实施例中与中继收发节点相关的方法步骤。
基于相同构思,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行本申请所涉及的各种实施例中与终端相关的方法步骤。
基于相同构思,本申请提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行本申请所涉及的各种实施例中与基站相关的方法步骤。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本所属领域的技术人员可以清楚地了解到,本发明提供的各实施例的描述可以相互参照,为描述的方便和简洁,关于本发明实施例提供的各装置、设备的功能以及执行的步骤可以参照本发明方法实施例的相关描述,在此不做赘述。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
本领域技术人员应明白,本申请的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式,这里将它们都统称为“模块”或“系统”。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机程序存储/分布在合适的介质中,与其它硬件一起提供或作为硬件的一部分,也可以采用其他分布形式,如通过Internet或其它有线或无线电信系统。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。为清楚展示硬件和软件的可替换性(interchangeability),上述的各种说明性部件(illustrative components)和步骤已经通用地描述了它们的功能。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法 实现所述的功能,但这种实现不应被理解为超出本发明实施例保护的范围。
本申请实施例中所描述的各种说明性的逻辑块,模块和电路可以通过通用处理单元,数字信号处理单元,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理单元可以为微处理单元,可选地,该通用处理单元也可以为任何传统的处理单元、控制器、微控制器或状态机。处理单元也可以通过计算装置的组合来实现,例如数字信号处理单元和微处理单元,多个微处理单元,一个或多个微处理单元联合一个数字信号处理单元核,或任何其它类似的配置来实现。
在一个或多个示例性的设计中,本发明实施例所描述的上述功能可以在硬件、软件、固件或这三者的任意组合来实现。如果在软件中实现,这些功能可以存储与电脑可读的媒介上,或以一个或多个指令或代码形式传输于电脑可读的媒介上。电脑可读媒介包括电脑存储媒介和便于使得让电脑程序从一个地方转移到其它地方的通信媒介。存储媒介可以是任何通用或特殊电脑可以接入访问的可用媒体。例如,这样的电脑可读媒体可以包括但不限于RAM、ROM、EEPROM、CD-ROM或其它光盘存储、磁盘存储或其它磁性存储装置,或其它任何可以用于承载或存储以指令或数据结构和其它可被通用或特殊电脑、或通用或特殊处理单元读取形式的程序代码的媒介。此外,任何连接都可以被适当地定义为电脑可读媒介,例如,如果软件是从一个网站站点、服务器或其它远程资源通过一个同轴电缆、光纤电脑、双绞线、数字用户线(DSL)或以例如红外、无线和微波等无线方式传输的也被包含在所定义的电脑可读媒介中。所述的碟片(disk)和磁盘(disc)包括压缩磁盘、镭射盘、光盘、DVD、软盘和蓝光光盘,磁盘通常以磁性复制数据,而碟片通常以激光进行光学复制数据。上述的组合也可以包含在电脑可读媒介中。
本发明说明书的上述描述可以使得本领域技术任何可以利用或实现本发明的内容,任何基于所公开内容的修改都应该被认为是本领域显而易见的,本发明所描述的基本原则可以应用到其它变形中而不偏离本发明的发明本质和范围。因此,本发明所公开的内容不仅仅局限于所描述的实施例和设计,还可以扩展到与本发明原则和所公开的新特征一致的最大范围。

Claims (21)

  1. 一种波束管理方法,其特征在于,所述方法包括:
    中继收发节点确定第一资源组和第二资源组,所述第一资源组包括的资源单元用于在所述中继收发节点和终端之间进行第一波束组中的波束的测量和选择,所述第二资源组内包括的资源单元用于所述中继收发节点和基站之间进行第二波束组中的波束的测量和选择;
    所述中继收发节点根据所述第一资源组包括的资源单元与所述第一波束组中的波束的对应关系发送所述第一波束组中的波束,根据所述第二资源组包括的资源单元与所述第二波束组中的波束的对应关系发送所述第二波束组中的波束;其中,当所述第一资源组包括的资源单元和所述第二资源组包括的资源单元存在相同的资源单元时,所述中继收发节点在所述相同的资源单元上发送的波束为所述接入链路和所述回传链路的共用波束。
  2. 根据权利要求1所述的方法,其特征在于,所述中继收发节点确定第一资源组和第二资源组,包括:
    所述中继收发节点根据第二参考信号资源确定第一参考信号资源,使得所述第一参考信号资源与所述第二参考信号资源部分重叠,所述第一参考信号资源用于所述接入链路的波束管理,所述第二参考信号资源用于所述回传链路的波束管理;
    所述中继收发节点根据第一参考信号资源确定所述第一资源组,根据第二参考信号资源确定所述第二资源组;其中,所述第一资源组包含在所述第一参考信号资源内,所述第二资源组包含在所述第二参考信号资源内。
  3. 根据权利要求2所述的方法,其特征在于,在所述中继收发节点根据所述第一资源组包括的资源单元与所述第一波束组中的波束的对应关系发送所述第一波束组中的波束之前,所述方法还包括:
    所述中继收发节点确定所述第一资源组中每一资源单元对应的波束和所述第一波束组中每一波束关联的功率偏移值;
    所述中继收发节点根据所述第一资源组中每一资源单元对应的波束,以及所述每一波束关联的功率偏移值,确定所述第一资源组中每一资源单元关联的功率偏移值;
    所述中继收发节点向所述终端发送所述第一资源组中每一资源单元关联的功率偏移值。
  4. 根据权利要求3所述的方法,其特征在于,所述中继收发节点确定所述第一波束组中每一波束关联的功率偏移值,包括:
    所述中继收发节点确定所述第一波束组中每一波束的发射功率;
    所述中继收发节点根据所述第一波束组中的其中一个波束的发射功率,确定所述第一波束组中每一波束的功率偏移值。
  5. 根据权利要求3所述的方法,其特征在于,所述中继收发节点向所述终端发送所 述第一资源组中每一资源单元关联的功率偏移值,包括:
    所述中继收发节点向所述终端发送第一指示信息,所述第一指示信息包括N个指示字段,所述N个指示字段用于指示N个功率偏移值,所述第一资源组中每一资源单元关联的功率偏移值的指示字段包含在所述N个指示字段中;
    其中,所述第一资源组中的资源单元包含在所述第一参考信号资源预配置的N个资源单元子集中,所述N个指示字段在所述第一指示信息中的位置排序,与所述第一参考信号资源预配置的N个资源单元子集的位置排序存在一一对应关系,N为大于1的正整数。
  6. 根据权利要求3所述的方法,其特征在于,所述中继收发节点向所述终端发送所述第一资源组中每一资源单元关联的功率偏移值,包括:
    所述中继收发节点向所述终端发送第二指示信息,所述第二指示信息用于向所述终端指示所述第一资源组中的每一资源单元的位置索引和所述位置索引关联的功率偏移值;
    其中,所述第二指示信息携带在无线资源控制RRC信令中,或者携带在媒体接入控制单元MAC-CE信令中,或者携带在下行控制信息DCI信令中。
  7. 一种波束管理方法,其特征在于,包括:
    终端确定中继收发节点配置的第一资源组,所述第一资源组包含在第一参考信号资源内,所述第一参考信号资源是所述中继收发节点根据第二参考信号资源为所述终端配置的,其中,所述第一参考信号资源与所述第二参考信号资源部分重叠,所述第一参考信号资源用于接入链路的波束管理,所述第二参考信号资源用于回传链路的波束管理,所述第一资源组包括的资源单元用于在所述中继收发节点和终端之间进行第一波束组中的波束的测量和选择;
    所述终端使用所述第一资源组接收来自所述中继收发节点的第一波束组中的波束。
  8. 根据权利要求7所述的方法,其特征在于,在所述终端使用所述第一资源组接收来自所述中继收发节点的所述第一波束组中的波束之前,所述方法还包括:
    所述终端接收来自所述中继收发节点的所述第一资源组中每一资源单元关联的功率偏移值;
    所述终端使用所述第一资源组接收来自所述中继收发节点的第一波束组中的波束之后,所述方法还包括:
    所述终端根据所述第一资源组中每一资源单元关联的功率偏移值,从所述第一波束组中选择出一个或多个波束,并向所述中继收发节点发送从所述第一波束组中选择出的一个或多个波束所关联的资源单元的位置索引。
  9. 根据权利要求8所述的方法,其特征在于,所述终端根据所述第一资源组中每一资源单元关联的功率偏移值,从所述第一波束组中选择出一个或多个波束,包括:
    所述终端获取所述第一资源组中每一资源单元的参考信号接收功率;
    针对所述第一资源组中的第一资源单元,所述第一资源单元为所述第一资源组中的任一资源单元,所述终端根据所述第一资源单元关联的功率偏移值,对所述第一资源单元的 所述参考信号接收功率进行校正,得到所述第一资源单元的等效参考信号接收功率;
    所述终端根据所述第一资源组中各个资源单元的所述等效参考信号接收功率,从所述第一波束组中选择出一个或多个波束。
  10. 一种波束管理方法,其特征在于,包括:
    基站确定第二资源组,其中,所述第二资源组包含在第二参考信号资源内,所述第二参考信号资源与第一参考信号资源部分重叠,所述第一参考信号资源是所述中继收发节点根据第二参考信号资源为所述终端配置的,所述第一参考信号资源用于接入链路的波束管理,所述第二参考信号资源用于所述回传链路的波束管理,所述第二资源组内包括的资源单元用于所述中继收发节点和所述基站之间进行第二波束组中的波束的测量和选择;
    基站使用所述第二资源组接收来自中继收发节点的第二波束组中的波束。
  11. 一种中继收发节点,其特征在于,包括:处理器和通信接口;
    所述处理器,用于确定第一资源组和第二资源组,所述第一资源组包括的资源单元用于在所述中继收发节点和终端之间进行第一波束组中的波束的测量和选择,所述第二资源组内包括的资源单元用于所述中继收发节点和基站之间进行第二波束组中的波束的测量和选择;
    所述通信接口,用于根据所述第一资源组中每一资源单元对应的波束发送所述第一波束组中的波束,根据所述第二资源组中每一资源单元对应的波束发送所述第二波束组中的波束;其中,当所述第一资源组包括的资源单元和所述第二资源组包括的资源单元存在相同的资源单元时,所述中继收发节点在所述相同的资源单元上发送的波束为所述接入链路和所述回传链路的共用波束。
  12. 根据权利要求11所述的中继收发节点,其特征在于,所述确定第一资源组和第二资源组,具体包括:
    根据第二参考信号资源确定第一参考信号资源,使得所述第一参考信号资源与所述第二参考信号资源部分重叠;所述第一参考信号资源用于接入链路的波束管理,所述第二参考信号资源用于回传链路的波束管理;
    根据第一参考信号资源确定所述第一资源组,根据第二参考信号资源确定所述第二资源组;其中,所述第一资源组包含在所述第一参考信号资源内,所述第二资源组包含在所述第二参考信号资源内。
  13. 根据权利要求12所述的中继收发节点,其特征在于,
    所述处理器,还用于在所述通信接口根据所述第一资源组包括的资源单元与所述第一波束组中的波束的对应关系发送所述第一波束组中的波束之前,确定所述第一资源组中每一资源单元对应的波束和所述第一波束组中每一波束关联的功率偏移值;根据所述第一资源组中每一资源单元对应的波束,以及每一波束关联的功率偏移值,确定所述第一资源组中每一资源单元关联的功率偏移值;
    所述通信接口,还用于向所述终端发送所述第一资源组中每一资源单元关联的功率偏移值。
  14. 根据权利要求13所述的中继收发节点,其特征在于,所述确定所述第一波束组中每一波束关联的功率偏移值,具体包括:
    确定所述第一波束组中每一波束的发射功率;
    根据所述第一波束组中的其中一个波束的发射功率,确定所述第一波束组中每一波束的功率偏移值。
  15. 根据权利要求13所述的中继收发节点,其特征在于,所述向所述终端发送所述第一资源组中每一资源单元关联的功率偏移值,具体包括:
    向所述终端发送第一指示信息,所述第一指示信息包括N个指示字段,所述N个指示字段用于指示N个功率偏移值,所述第一资源组中每一资源单元关联的功率偏移值的指示字段包含在所述N个指示字段中;
    其中,所述第一资源组中的资源单元包含在所述第一参考信号资源预配置的N个资源单元子集中,所述N个指示字段在所述第一指示信息中的位置排序,与所述第一参考信号资源预配置的N个资源单元子集的位置排序存在一一对应关系,N为大于1的正整数。
  16. 根据权利要求13所述的通信装置,其特征在于,所述向所述终端发送所述第一资源组中每一资源单元关联的功率偏移值,具体包括:
    向所述终端发送第二指示信息,所述第二指示信息用于向所述终端指示所述第一资源组中的每一资源单元的位置索引和所述位置索引关联的功率偏移值;
    其中,所述第二指示信息携带在无线资源控制RRC信令中,或者携带在媒体接入控制单元MAC-CE信令中,或者携带在下行控制信息DCI信令中。
  17. 一种终端,其特征在于,所述终端包括:处理器和通信接口;
    所述处理器,用于确定中继收发节点配置的第一资源组,所述第一资源组包含在所述第一参考信号资源内,所述第一参考信号资源是所述中继收发节点根据第二参考信号资源为所述终端配置的,其中,所述第一参考信号资源与所述第二参考信号资源部分重叠,所述第一参考信号资源用于接入链路的波束管理,所述第二参考信号资源用于回传链路的波束管理,所述第一资源组包括的资源单元用于在所述中继收发节点和终端之间进行第一波束组中的波束的测量和选择;
    所述通信接口,用于使用所述第一资源组接收来自中继收发节点的所述第一波束组中的波束。
  18. 根据权利要求17所述的终端,其特征在于,
    所述通信接口,还用于在接收来自所述中继收发节点的所述第一波束组中的波束之前接收来自所述中继收发节点的所述第一资源组中每一资源单元关联的功率偏移值;
    所述处理器,还用于在所述通信接口接收来自所述中继收发节点的所述第一波束组中 的波束之后,根据所述第一资源组中每一资源单元关联的功率偏移值,从所述第一波束组中选择出一个或多个波束;
    所述通信接口,还用于向所述中继收发节点发送所述处理器从所述第一波束组中选择出的一个或多个波束所关联的资源单元的位置索引。
  19. 根据权利要求18所述的终端,其特征在于,所述根据所述第一资源组中每一资源单元关联的功率偏移值,从所述第一波束组中选择出一个或多个波束,具体包括:
    获取所述第一资源组中每一资源单元的参考信号接收功率;针对所述第一资源组中的第一资源单元,所述第一资源单元为所述第一资源组中的任一资源单元,所述终端根据所述第一资源单元关联的功率偏移值,对所述第一资源单元的所述参考信号接收功率进行校正,得到所述第一资源单元的等效参考信号接收功率;根据所述第一资源组中各个资源单元的所述等效参考信号接收功率,从所述第一波束组中选择出一个或多个波束。
  20. 一种基站,其特征在于,包括:处理器和通信接口;
    所述处理器,用于确定第二资源组,所述第二资源组包含在第二参考信号资源内,其中,所述第二参考信号资源与第一参考信号资源部分重叠,所述第一参考信号资源是所述中继收发节点根据第二参考信号资源为所述终端配置的,所述第一参考信号资源用于接入链路的波束管理,所述第二参考信号资源用于所述回传链路的波束管理,所述第二资源组内包括的资源单元用于所述中继收发节点和所述基站之间进行第二波束组中的波束的测量和选择;
    所述通信接口,用于使用所述第二资源组接收来自所述中继收发节点的所述第二波束组中的波束。
  21. 一种电路系统,其特征在于,包括接口单元,控制及运算单元,和存储单元;所述接口单元用于与基站或终端的其他组件连通,所述存储单元用于存储计算机程序或指令,所述控制及运算单元用于译码和执行所述计算机程序或指令;所述计算机程序或指令被执行,用于执行如权利要求1至6,或7-9,或10中任一项所述的方法。
PCT/CN2019/084021 2018-04-28 2019-04-24 一种波束管理方法、中继收发节点、终端和基站 WO2019206168A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810400477.7 2018-04-28
CN201810400477.7A CN110418412B (zh) 2018-04-28 2018-04-28 一种波束管理方法、中继收发节点、终端和基站

Publications (1)

Publication Number Publication Date
WO2019206168A1 true WO2019206168A1 (zh) 2019-10-31

Family

ID=68294806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084021 WO2019206168A1 (zh) 2018-04-28 2019-04-24 一种波束管理方法、中继收发节点、终端和基站

Country Status (2)

Country Link
CN (1) CN110418412B (zh)
WO (1) WO2019206168A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023025017A1 (zh) * 2021-08-24 2023-03-02 维沃移动通信有限公司 传输处理方法、装置及设备
WO2024032514A1 (zh) * 2022-08-11 2024-02-15 华为技术有限公司 用于信号转发的方法及相关装置
WO2024065813A1 (zh) * 2022-09-30 2024-04-04 北京小米移动软件有限公司 波束应用方法、装置、存储介质及芯片

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112788612B (zh) * 2019-11-08 2022-07-29 上海华为技术有限公司 一种波束处理方法、装置以及存储介质
CN113286366B (zh) * 2020-02-20 2023-03-10 上海华为技术有限公司 波束管理方法,波束管理系统以及相关设备
CN113676920B (zh) * 2020-05-13 2023-09-12 上海华为技术有限公司 数据传输方法和相关设备
CN113853012A (zh) * 2020-06-28 2021-12-28 大唐移动通信设备有限公司 波束确定装置、终端及网络侧设备
CN114007216B (zh) * 2020-07-28 2022-11-11 维沃移动通信有限公司 波束管理方法、装置及中继节点
EP4224763A4 (en) * 2020-10-23 2023-11-22 Huawei Technologies Co., Ltd. BEAM MANAGEMENT METHOD AND COMMUNICATION DEVICE
CN116686365A (zh) * 2021-01-14 2023-09-01 华为技术有限公司 波束管理方法与装置
CN115913484A (zh) * 2021-08-24 2023-04-04 维沃移动通信有限公司 波束控制方法、装置及信号中继设备
CN115915441A (zh) * 2021-09-30 2023-04-04 华为技术有限公司 一种资源配置方法及通信装置
CN116095701A (zh) * 2021-10-29 2023-05-09 华为技术有限公司 一种波束指示方法和装置
CN116566452A (zh) * 2022-01-28 2023-08-08 华为技术有限公司 管理波束的方法和装置
CN117354954A (zh) * 2022-06-23 2024-01-05 维沃移动通信有限公司 波束控制方法、装置、中继设备及网络侧设备
CN117676888A (zh) * 2022-08-12 2024-03-08 华为技术有限公司 中继通信方法、通信系统及通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107615681A (zh) * 2016-01-13 2018-01-19 维尔塞特公司 用于在端到端波束成形中采用接入节点群集的技术
US20180092139A1 (en) * 2016-09-29 2018-03-29 At&T Intellectual Property I, L.P. Initial access and radio resource management for integrated access and backhaul (iab) wireless networks

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102026377B (zh) * 2009-09-09 2014-11-05 夏普株式会社 上行控制信令传输方法、基站和用户设备
CN105812035B (zh) * 2014-12-31 2020-03-03 中兴通讯股份有限公司 一种分级波束接入方法及装置
CN106506129B (zh) * 2015-09-07 2019-09-06 普天信息技术有限公司 中继回传链路的上行传输方法
JP2017143320A (ja) * 2016-02-08 2017-08-17 富士通株式会社 無線通信装置、無線通信システム、及びビーム制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107615681A (zh) * 2016-01-13 2018-01-19 维尔塞特公司 用于在端到端波束成形中采用接入节点群集的技术
US20180092139A1 (en) * 2016-09-29 2018-03-29 At&T Intellectual Property I, L.P. Initial access and radio resource management for integrated access and backhaul (iab) wireless networks

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AT &T: "Summary of 7.7.1 Enhancements to support NR backhaul links", 3GPP TSG RAN WG1 MEETING #92BIS, RL- 1805673, 20 April 2018 (2018-04-20), XP051427800 *
HUAWEI: "Overview of RAN2 IAB Impacts", 3GPP TSG-RAN WG2#101BIS, R2-1806178, 20 April 2018 (2018-04-20), XP051416480 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023025017A1 (zh) * 2021-08-24 2023-03-02 维沃移动通信有限公司 传输处理方法、装置及设备
WO2024032514A1 (zh) * 2022-08-11 2024-02-15 华为技术有限公司 用于信号转发的方法及相关装置
WO2024065813A1 (zh) * 2022-09-30 2024-04-04 北京小米移动软件有限公司 波束应用方法、装置、存储介质及芯片

Also Published As

Publication number Publication date
CN110418412A (zh) 2019-11-05
CN110418412B (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
WO2019206168A1 (zh) 一种波束管理方法、中继收发节点、终端和基站
TWI719471B (zh) 波束故障偵測資源子集之選擇及使用技術
US11582004B2 (en) Method and apparatus for reporting channel state information in wireless communication systems
CN111565099B (zh) 一种状态配置方法和设备
US11979213B2 (en) Methods and apparatuses for channel state information configuration and reporting for multi-transmission reception point operation
US11985679B2 (en) Wireless communication method and device
US20170034727A1 (en) Method and Apparatus for Channel State Information Measurement
CN113169836A (zh) 用于多发射/接收点(trp)操作的方法和装置
KR102491526B1 (ko) 이중 연결을 위한 자동 이웃 관계 개선 기법
WO2022074834A1 (ja) 端末、無線通信方法及び基地局
US20210037432A1 (en) Communications method and apparatus
JP7346563B2 (ja) 無線通信の方法及び機器
US20210320768A1 (en) Method, device and computer readable medium for iab transmission
WO2021026907A1 (en) Methods, devices and computer storage media for csi feedback
BR112020005024A2 (pt) método e aparelho de processamento de sinal
WO2019062560A1 (zh) 一种上行子带预编码矩阵的指示方法、终端及基站
WO2022021437A1 (zh) 通信方法、装置及系统
JP2023527388A (ja) ビーム指示方法、ネットワーク側機器と端末
JPWO2020066022A1 (ja) 端末、無線通信方法、基地局及びシステム
US20230113940A1 (en) Terminal, radio communication method, and base station
US20220353880A1 (en) Method and device for self-interference cancellation in wireless communication system
CN110831140A (zh) 一种功率确定方法和装置
JP7398459B2 (ja) 端末、無線通信方法、基地局及びシステム
US20230146581A1 (en) Network Node, Terminal Device and Methods Therein for Data Transmission using Beamforming
WO2019154281A1 (zh) 信息指示的方法、通信装置和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791609

Country of ref document: EP

Kind code of ref document: A1