WO2019206119A1 - 用于液流电池的电堆框架 - Google Patents

用于液流电池的电堆框架 Download PDF

Info

Publication number
WO2019206119A1
WO2019206119A1 PCT/CN2019/083827 CN2019083827W WO2019206119A1 WO 2019206119 A1 WO2019206119 A1 WO 2019206119A1 CN 2019083827 W CN2019083827 W CN 2019083827W WO 2019206119 A1 WO2019206119 A1 WO 2019206119A1
Authority
WO
WIPO (PCT)
Prior art keywords
stack
frame
stack frame
electrolyte
flow
Prior art date
Application number
PCT/CN2019/083827
Other languages
English (en)
French (fr)
Inventor
祖革
王瑾
郑晓昊
Original Assignee
江苏泛宇能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏泛宇能源有限公司 filed Critical 江苏泛宇能源有限公司
Priority to EP19792266.9A priority Critical patent/EP3813170A4/en
Publication of WO2019206119A1 publication Critical patent/WO2019206119A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2455Grouping of fuel cells, e.g. stacking of fuel cells with liquid, solid or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2459Comprising electrode layers with interposed electrolyte compartment with possible electrolyte supply or circulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the field of liquid flow batteries, in particular to the field of preparation of flow battery components.
  • Electricity has long been recognized as an instant source of instant power.
  • the power grid has formed a power supply system based on fossil fuel power generation (commonly known as thermal power) (accounting for 60% of the total power generation). It mainly controls the combustion of coal, oil, natural gas and other materials to adjust the thermal energy to mechanical energy. Change the output efficiency of the generator to respond immediately to the demand for grid load.
  • hydropower can also respond to changing grid loads as immediately as a thermal power generating unit.
  • the water can be stored from the low-level water source to the high-level reservoir, and the surplus power of the grid can be stored as gravity potential energy for peak use.
  • the flow battery technology has the natural advantage of large-scale energy storage: the amount of stored electricity is linearly proportional to the volume of the electrolyte, and the charge and discharge power is determined by the size and quantity of the stack, so it can be designed according to the demand, from kW to MW.
  • Charge and discharge power a flow battery with different energy storage capacity for 1 hour to several days.
  • inorganic salts Based on common inorganic acids, inorganic salts have stable chemical composition, convenient storage, little impact on the environment, and low self-discharge coefficient. They are suitable for long-term energy storage and have high safety performance. Due to its stable and reliable charge and discharge cycle, there is no upper limit to the theoretical number of charge and discharge cycles.
  • auxiliary structure mainly serves to provide a liquid flow tank for circulating the electrolyte inside the electric pile to ensure smooth and non-blocking of the liquid flow, and to ensure that the components are assembled without displacement, and the parts are assembled.
  • the sealing and liquid flow guiding groove is a very natural solution through the sealing gasket, which has the advantages of simple design and low cost, and becomes the mainstream design scheme of the flow battery stack.
  • the material of the gasket is generally silicone rubber, fluororubber, butyl rubber, EPDM rubber, etc., which has a certain self-expansion, and is easy to contact with the liquid battery electrolyte for a long time. Aging and corrosion occur, thus affecting the service life of the flow battery.
  • Citation 1 discloses a flow battery stack sealing structure, the flow battery stack sealing structure comprising a sealing rubber, the sealing rubber being formed by connecting a plurality of sealing gaskets by a sealing wire, the sealing gasket being provided
  • the common flow hole of the electrolyte, one side of the sealing gasket is provided with a compression deformation structure, and the other surface of the sealing gasket is provided with an annular convex structure.
  • the utility model seals the common flow passage hole of the diaphragm and the periphery thereof, and the diaphragm side seal realizes double-layer protection for the inner and outer embedded line sealing manner, and the inner and outer leakage protection is realized by the surface sealing method at the position of the common flow passage of the electrolyte. However, the electrolyte is still in direct contact with the sealing rubber.
  • Citation 2 discloses an electrode frame structure of a flow battery stack, in which a supplementary flow path of an electrolyte is disposed on a rectangular plate, one end of the electrolyte supply flow path is connected to the through hole of the electrolyte inlet, and the other end is compatible
  • the cavities of the electrodes are connected, and the electrode frame structure thereof improves the concentration distribution in the electrodes and improves the battery performance.
  • Citation 3 provides a bipolar plate and a flow battery stack for a flow battery
  • the bipolar plate for a flow battery includes a fixed frame and a flow guide frame which are attached to each other, and the fixed frame is a frame structure, and the inside of the fixed frame is fixed.
  • a conductive plate is disposed, and at least two first through holes are disposed around the fixed frame;
  • the flow guiding frame is a frame structure, and a diaphragm is disposed inside the guiding frame, and the edge of the diaphragm is fixed to the guiding frame.
  • the diaphragm By separately arranging the first through hole and the second through hole through which the electrolyte is passed, neither of them passes through the diaphragm, the diaphragm is fixed by the flow guiding frame, and the electrolyte flows through the first through hole and the second through hole
  • the diaphragm and the conductive plate are not in contact, and the diaphragm and the conductive plate are not damaged, and the service life of the diaphragm and the conductive plate is prolonged, and the fixed frame and the guide frame are hard and not easily damaged.
  • the application document 3 does not directly disclose the relationship between the electrolyte and the sealing rubber, and it requires two different frames for fixing the diaphragm and the conductive plate, the ease of assembly cannot be said to be sufficient.
  • Reference 4 relates to a stack structure of a flow battery, comprising a repetitively stacked unit cell and a diaphragm, the unit cell being formed by superposing a baffle, a bipolar plate and a baffle in sequence, characterized in that the stack structure
  • the seal is not included, and the side of the stack perpendicular to the plane of the bipolar plate is packaged by the package end plate.
  • it does not use a sealing structure inside the stack, it uses a separate baffle for diversion, and a bipolar plate and two baffles are connected by injection molding, bonding, welding, chemical bonding, etc.
  • the structural unit is sewn and the electrodes are assembled to form a unit cell. As a result, the structure is complicated, and there is also concern about the reliability of use.
  • the so-called flow battery the most important thing is to ensure the smooth flow of liquid electrolyte inside the battery.
  • the design of the current flow battery stack, the rubber gasket has two fatal shortcomings. First, the oxidation resistance is poor. After long-term contact with the electrolyte, the rubber gasket will expand in volume, causing the internal space of the liquid flow tank to be squeezed and affected. The flow of electrolyte inside the tank. A more serious situation is the blockage of the flow cell, causing the entire battery to overcharge and be scrapped. Second, the essence of its elasticity. In the process of stack assembly, it is difficult to ensure that the force of each cell of each battery cell is consistent, which leads to poor uniformity of the electrolyte channel, which will directly cause positive and negative electrolytes.
  • the flow velocity distribution of different battery cells in the flow tank is not uniform. Therefore, the partial flow rate of the battery cell may be overcharged, resulting in a large amount of gas generation, and the conductive graphite felt plate and the bipolar plate are corroded and disintegrated, and finally the internal battery is blocked and scrapped.
  • the present invention provides a stack frame for a liquid flow battery, which has: an electrolyte inlet and a liquid outlet; an electrolyte guide groove; a gasket groove.
  • the electrolyte flow guiding groove is independently connected to the liquid inlet and the liquid outlet, respectively, and allows the electrolyte to flow into or out of the graphite felt on both sides of the bipolar plate or on both sides of the separator through the electrolyte guiding groove.
  • the electrolyte guiding groove and the gasket groove do not communicate with each other in the stack frame, thereby overcoming structural damage and electrolyte flow caused by aging and corrosion and volume expansion of the sealing rubber in the conventional stack frame. The channel is blocked and the positive and negative electrolytes are unevenly distributed in the flow rate of different battery cells.
  • the present invention firstly provides a stack frame for a flow battery, characterized in that the stack frame is made of a polymer material, has a hollow structure, and has an outer shape having a symmetrical structure in a lateral direction and/or a longitudinal direction. ,
  • the stack frame has a front side and a back side, the front surface having:
  • the electrolyte guiding groove and the gasket groove do not communicate with each other, and the electrolyte guiding groove is at least partially exposed on the surface of the front surface of the stack frame.
  • the electrolyte guide trough allows the electrolyte to flow into or out of the graphite felt on either side of the bipolar plates of the flow battery or on both sides of the diaphragm.
  • the electrolyte flow guiding grooves are symmetrically distributed on the front side frames of the stack frame, and on each of the side frames, the electrolyte guiding grooves include and a portion (a) to which the liquid inlet or the liquid outlet is connected, and a portion (b) not connected to the liquid inlet or the liquid outlet.
  • a portion (a) and the gasket groove intersect to each other, and a through hole is respectively formed at both sides of the intersection, and the portion is further (a) being divided into a portion (a1) and a portion (a2) by the intersection, and the portion (a1) and the portion (a2) are respectively connected to through holes provided on both sides of the intersection,
  • the portion (a2) is further in communication with the graphite felt on either side of the bipolar plate or on both sides of the diaphragm.
  • the distance between the through holes on both sides of the intersection matches the length of the portion (b).
  • the front and back structures of the stack frame each have a symmetrical structure with respect to the centerline in the lateral and/or longitudinal direction.
  • stack frame according to any of the preceding claims, wherein the stack frame is a frame carrying a bipolar plate and a graphite felt or a frame carrying a diaphragm and a graphite felt.
  • the stack frame only allows electrolyte to flow into and out of the graphite felt on either side of the bipolar plate or on both sides of the separator through the electrolyte chute.
  • the present invention relates to a stack frame stack for a flow battery, which is laminated in such a manner that the stack frame according to any of the above aspects faces in the same manner in the following manner: one of them The stack frame is referenced, and another stack frame is stacked in a parallel manner by 180°.
  • the invention relates to a flow battery stack comprising one or more stack frames according to any of the above or a stack frame stack as described above.
  • the invention relates to a flow battery comprising a stack according to the above.
  • the flow of the positive and negative electrode electrolytes is not in contact with the seal rubber, thereby avoiding a decrease in physical and mechanical properties of the seal rubber due to long-term contact with the electrolyte.
  • the stack frame is simple in design and convenient to assemble, and the frame can be used as a bipolar plate and a graphite felt frame, or as a diaphragm and a graphite felt frame, and has high versatility and is not easy to cause assembly errors.
  • Figure 1 A top view of the stack frame of the present invention
  • FIG. 2 A situation in which the electrolyte guide groove and the gasket groove meet in the stack frame of the present invention
  • FIG. 3 A situation in which the electrolyte guide groove and the gasket groove meet in the stack frame of the present invention
  • Figure 4 A situation in which the electrolyte guide groove and the gasket groove meet in the stack frame of the present invention
  • the stack frame of the present invention is a polymer material based stack frame, which may be a single polymer material, a mixture of two or more polymers.
  • the polymer may be selected from one or more of a polyolefin-based polymer, a polyphenylene ether, a polyimide, a polyphenylene sulfide, a polysulfone, a polyester, a polyaryletherketone, and a fluororesin.
  • Suitable polyolefin-based polymers may be homopolymers or copolymers of ethylene, propylene or a-olefins, specifically high density polyethylene, low density polyethylene, polypropylene, propylene-butene copolymer, and the like.
  • the stack frame may be formed mainly of the above polymer, or may be a composite material of the above polymer and reinforcing fibers.
  • the reinforcing fibers are not particularly limited and may be selected from organic fibers or inorganic fibers, and the fibers may be continuous fibers or chopped fibers.
  • the stack frame may be prepared by forming a mixture of the above polymer and other functional components.
  • the other functional ingredients include fillers, antioxidants, flame retardants, stabilizers, and various processing aids.
  • Suitable fillers may be selected from one or more of silica, titanium dioxide, talc, mica, calcium carbonate, barium sulfate, and the like.
  • the antioxidant may be selected from one or more of an amine, a phenol, a sulfur-containing compound, a phosphorus-containing compound, and the like.
  • the flame retardant may be one or more selected from the group consisting of a phosphorus-based flame retardant, a nitrogen-based flame retardant, a nitrogen-phosphorus synergistic flame retardant, or a fluorinated flame retardant.
  • the stabilizer may be selected from one or more of a light stabilizer, a heat stabilizer, and the like.
  • the processing aid may be selected from one or more of a plasticizer, a lubricant, an impact modifier, and the like.
  • the above other functional components are not particularly limited as long as they are non-reactive with the electrolyte component, and the amounts of the respective components relative to the polymer resin can be used in accordance with the amount conventionally used in the art.
  • the applicable method includes injection molding, or dip molding, etc., and may be integral molding or splicing molding.
  • the stack frame is a hollow structure.
  • the hollow structure refers to an integral body formed by four frames having a certain edge width, and the frame is hollowed out inside, and is mainly used for carrying a bipolar plate and a graphite felt or a diaphragm and a graphite felt.
  • a sealing gasket is formed using a sealing rubber which is disposed in a gasket groove in the stack frame.
  • the gasket groove is not particularly limited.
  • the gasket groove may be disposed at an edge of the frame around the stack frame, such as the four corners of the frame and the peripheral edges, extending over the outer edge of the frame.
  • elastomers may be used for the type of the sealing rubber to which the present invention is applied, and specifically, an olefin-based elastomer or a silicon-containing elastomer may be used.
  • the inside of the stack frame can be sealed by the pressing force when laminating or encapsulating the plurality of frames.
  • the form of the sealing rubber seal used in the present invention is no particular requirement for the form of the sealing rubber seal used in the present invention, as long as it can satisfy the sealed stack.
  • the sealing rubber since the sealing rubber is not in contact with the positive and negative electrode electrolytes, the service life thereof is greatly prolonged, and since the circulation of the positive and negative electrode liquids is independent of the sealing rubber, even if the sealing rubber is assembled in the stack There is a case where the force is uneven or deformed, and the flow of the electrode liquid in the stack frame is not affected.
  • the stack frame of the present invention has a certain outer shape, and the specific shape of the outer shape is not limited, depending on actual conditions or needs. Further, the stack frame of the present invention has a hollow structure in which a bipolar plate of a flow battery and a graphite felt or a separator and a graphite felt can be mounted as needed. As described above, the frame of the present invention is prepared using a polymer material having a certain rigidity, which ensures the stability of the bipolar plate, the separator and the graphite felt when the frame structure is laminated, so that the inflow and outflow of the electrolyte are more Uniform and smooth.
  • the stack frame forms four borders of the hollow structure, having a long bezel and a short bezel.
  • the width of the long bezel is greater than or equal to the short bezel.
  • an electrolyte inlet and a liquid outlet there are: an electrolyte inlet and a liquid outlet; an electrolyte flow guiding groove; a gasket groove; the electrolyte guiding groove is independently connected to the liquid inlet and the outlet
  • the cells are connected to each other and allow the electrolyte to flow into or out of the graphite felt on both sides of the bipolar plate or on both sides of the separator through the electrolyte guiding groove, and the electrolyte guiding groove and the gasket groove do not communicate with each other.
  • the gasket groove is disposed on the frame of the stack frame.
  • the specific arrangement of the gasket groove is not particularly limited. For reference, a conventional arrangement in the art may be used.
  • the seal is present in the gasket groove.
  • the rubber strip can form a seal inside the stack to prevent leakage of the electrolyte.
  • the liquid inlet and the liquid outlet of the electrolyte provide for the inflow and outflow of the electrolyte.
  • through holes may be formed at the edges of the stack frame, preferably at the corners of the edge to provide the Liquid port and liquid outlet. Such through holes can also function as both positioning and auxiliary assembly.
  • the liquid inlet and the liquid outlet of the electrolyte are respectively connected to the flow guiding groove of the electrolyte of the stack frame.
  • the flow guiding groove of the electrolyte is disposed on the frame structure around the frame.
  • the flow guiding grooves are disposed on two wider opposing bezel edges in the frame structure, and the bezels of the frame that do not require the flow guiding grooves may be provided as narrower bezels.
  • the flow guiding groove is connected to the through hole in the frame, and the other end of the flow guiding groove is connected to the hollow portion inside the stack frame.
  • the hollow portion is a reserved portion for mounting a bipolar plate and a graphite felt or membrane and a graphite felt.
  • the same structure exists on the other frame corresponding to the above-mentioned frame. Such an arrangement ensures that the electrolyte can flow from a frame of the stack frame and, after the reaction of the graphite felt, exits from the guide trough on the other frame.
  • the electrolyte guide groove and the gasket groove of the present invention do not communicate with each other.
  • the entire flow guiding groove portion from the inlet or outlet opening to the one or more runner ports connected to the inner hollow portion of the stack frame is physically separated from the gasket groove, There is no intersection.
  • the gasket groove can be disposed at a more peripheral portion of the flow guiding groove portion.
  • the use of a frame made of a polymer having a certain mechanical strength or rigidity to form a flow guiding groove can ensure that the sealing rubber is not corroded under the long-term use of the flow battery, and the positive guide does not occur during the assembly process.
  • the structure of the flow cell is uneven due to undesired assembly stress.
  • the gasket groove has an intersection with a flow guiding groove of the electrolyte.
  • at least a portion of the gasket groove is provided with a flow guiding groove at the periphery thereof.
  • the gasket groove can be set to be cut at the junction, and the physical structure can reduce the contact of the gasket with the electrolyte.
  • the sealing property is affected.
  • a "tunnel" structure is provided at the junction, i.e., the electrolyte chute is passed through the through structure of the lower portion of the gasket groove, both ends of the channel
  • the frame edge inlet port or the outlet port through hole and the channel opening to the hollow portion inside the frame are respectively connected.
  • the "tunnel” structure may be a V-shaped structure or a U-shaped structure or any other structure that satisfies the connection and communication.
  • Such a through structure as described above may be formed only inside the frame, for example, when the flow guiding grooves are all present inside the stack frame, the flow guiding grooves may pass directly under the junction. It may also be constructed in combination with the groove structure of the surface of the other frame corresponding to the lower portion of the frame when assembling the stack. In this case, some of the frames of the present invention may form through holes at both sides of the intersection.
  • the flow channel of the electrolyte is completely enclosed within a stack of the present invention.
  • a closed arrangement of the flow guiding grooves can be physically isolated from the sealing rubber as much as possible.
  • the closed guide channels may form a continuous convex structure at the surface of the frame, and in other embodiments, the closed portions may not form a raised structure.
  • the flow guiding groove of the electrolyte is at least partially exposed on the surface of the stack frame, that is, at least a portion of the flow guiding groove is present inside the stack frame.
  • the flow guiding grooves exposed on the surface of the stack frame can be closed by means of an additional stack frame superimposed on the stack frame during assembly to form the stack.
  • the "tunnel" through-structure formed at the junction may be formed only by the structure of the stack frame itself, or the stack frame may be formed with the stack of stacks below it and adjacent thereto, in such a
  • the lower stack frame is provided with a suitable structure at the corresponding position and an integrated structure of the stack at the intersection, so that the guide groove of the stack frame can A complete flow passage is formed from below the junction.
  • the front and back main surfaces of the stack frame are regarded as the main surface of the stack frame, and therefore, the stack frame has two main surfaces, a front surface and a back surface.
  • the side of the stack frame that exposes the chute is considered to be the front side.
  • the front side of the stack frame has at least a portion of the front surface present on the stack frame.
  • the protrusion is disposed on a portion of the frame of the stack that is not in contact with the guide groove, and the protrusion may be integrally formed with the frame or may be formed of a sealing material, and the protrusion is The frame is closely connected and can function as a fixed stack frame and seal in the assembly of the stack frame.
  • the projections may be of the same material as the sealing rubber described above.
  • the front side of the stack frame of the present invention may have a gasket groove, a flow guiding groove (either inside or partially exposed to the front surface of the stack frame), optionally a structure such as the above-mentioned projections.
  • a gasket groove can be provided as needed.
  • the stack frame structure of the present invention in shape, has a symmetrical structure in the lateral and/or longitudinal direction.
  • the electrolyte flow guide of the stack frame of the present invention disposed on one surface (front side) has a symmetrical structure along the lateral and/or longitudinal direction of the surface.
  • the electrolyte stack of the present invention has an electrolyte flow guiding groove disposed on one surface (front surface), and projection and gasket grooves, and other optional structures. A symmetrical structure in the lateral and/or longitudinal direction of the surface.
  • the present invention also relates to a laminate of a stack frame.
  • the laminate is formed using two or more stack frames of the invention.
  • lamination may be performed with the front faces facing in the same direction.
  • the bipolar plate and the graphite felt may be installed inside the stack frame of the present invention, and the separator and the graphite felt may be installed.
  • the stack frame of the bipolar plate and the graphite felt and the electricity for installing the diaphragm and the graphite felt are installed.
  • the lower frame is closed by the upper frame if it has a flow guiding groove existing on the surface of the stack frame. Additionally, as noted above, in some embodiments, the lower frame provides a corresponding flow channel structure that can form a "tunnel" structure with a corresponding portion of the frame stacked thereon to provide electrolyte flow, It is possible to cause the electrolyte flowing through the upper frame to flow under the junction with the gasket groove and to enter the guide groove provided in the upper frame again.
  • the flow guiding groove at the front portion of the stack frame is provided for the exposed surface, and the stack frame (frame B) used in overlapping with the frame (frame A) when assembling the stack
  • the front side is the same as the front side, wherein the back side of the frame A is combined with the front side of the frame B.
  • the back surface of the frame A has a corresponding structure to close the electrolyte guiding groove of the surface of the frame B, and the frame A and the frame B conform to the conditions described in the above text, that is, A can be identical to B, except that B is obtained by rotating A by 180° in the plane during assembly.
  • the additional frame may be a frame B, in which case an overlapping arrangement of a plurality of frames of B/A/B/A.... is actually formed to close the respective frames. Diversion trough.
  • the electrolyte flow guiding grooves are symmetrically distributed on the surfaces of the frames on both sides of the front surface of the stack frame.
  • the two side frames may be two-sided frames having a wider width and/or a longer length in the stack frame.
  • the electrolyte flow guiding groove intersects with the gasket groove existing on the side surface, and therefore, the electrolyte guiding groove includes a connection to the liquid inlet or the liquid outlet Part (a) and part (b) not connected to the liquid inlet or the liquid outlet.
  • part (a) and/or part (b) are at least partially formed on the surface of the side of the stack frame.
  • portion (a) intersects the gasket groove, and optionally, portion (b) does not intersect the gasket groove.
  • the distance between the through holes on both sides of the junction matches the length of the portion (b).
  • the matching can be understood as the length of the portion (b) being the same as or slightly smaller than the distance between the two through holes.
  • the length of the portion (b) should be the linear distance of the starting end of the portion (b). Therefore, in this sense, there is no particular limitation on the shape or orientation between the two starting end points of part (b).
  • the upper frame has a completely formed front surface of the stack frame.
  • the front side of the frame of the following is the reference, and the upper frame is rotated 180° in a plane in a parallel manner and then laminated on the lower frame to form a laminated body, at which time the front part (a) of the lower frame is completely closed, and part ( b) being connected to the through holes of the upper frame at both sides of the junction.
  • Figure 1 shows a basic embodiment of the invention, the stack frame 1 having a hollow portion 2 having a symmetrical structure in the transverse and/or longitudinal direction, having four of the four corners present on one surface of the frame 1.
  • the through hole 31 is an inflow port of the electrolyte
  • the through hole 32 is an outflow port of the corresponding electrolyte.
  • An electrolyte guide groove 4 is present inside the stack frame 1, and one end of the flow guide groove 4 communicates with the through hole 31 or 32, and the other end communicates with the hollow portion of the frame.
  • the hollow portion may be fitted with a bipolar plate and a graphite felt.
  • a diaphragm and a graphite felt may also be installed.
  • the hollow portion is fitted with a bipolar plate and a graphite felt frame and a diaphragm.
  • the stack frame of the graphite felt can be laminated.
  • a frame gasket groove 5 (not shown in Fig. 1), and the gasket groove 5 can be arbitrarily set.
  • the gasket groove 5 is The sealing rubber is physically isolated from the electrolyte guiding groove 4 of the stack frame 1, which is present inside the stack frame 1 or at least partially on the (front) surface of the stack frame 1.
  • Fig. 2 shows a further embodiment of the invention, in which case the flow guiding groove 4 is present on the front surface of the stack frame 1 and exposed.
  • the gasket groove 5 of the stack frame 1 and the guide groove 4 intersect, and the guide groove 4 passes through the lower portion of the gasket groove 5 at the junction.
  • FIG. 3 A further embodiment of the invention is shown in Fig. 3 (partial top view), in which case the flow guiding groove 4 is present on the front surface of the stack frame 1 and exposed.
  • the gasket groove 5 of the stack frame 1 and the guide groove 4 intersect, and at the junction, the guide groove 4 has two through holes 6 at both sides of the junction.
  • the lower stack walls are formed with an arbitrary structure on the corresponding positional surface, and a "tunnel" structure can be formed with the two through holes.
  • Fig. 4 shows a further embodiment of the invention, in which case the flow guiding groove (a) is present on the front surface of the stack frame 1 and exposed.
  • the gasket groove 5 of the stack frame 1 and the flow guiding groove (a) intersect, so the flow guiding groove (a) can be divided into a part (a1) and a part (a2) (it is to be noted that the part is included here (
  • the flow guiding grooves (a) of a1) and part (a2) are only a part of the), and at the junction, the flow guiding groove (a) has two through holes 6 at both sides of the intersection, in the electric pile
  • the frame on the same side of the frame as the guide groove (a) also has a guide groove (b).
  • 7 in Fig. 4 indicates the edge of the frame on the front side of the stack frame.
  • the present invention relates to a stack using the above-described stack frame or stack frame stack of the present invention, and a flow battery using the same.
  • the stack frame of the present invention can be used in the preparation or assembly of industrial flow batteries.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明涉及一种用于液流电池的电堆框架,其特征在于,所述电堆框架由聚合物材料制成,具有中空结构,并且其外形在横向和/或纵向上具有对称结构,所述电堆框架具有正面和背面,所述正面的表面具有:电解液的进液口和出液口;电解液导流槽;密封垫片槽;所述电解液导流槽与密封垫片槽不产生相互的联通,并且电解液导流槽至少部分的露出于所述电堆框架正面的表面,所述电解液导流槽允许电解液流入或流出液流电池双极板两侧或隔膜两侧的石墨毡。

Description

用于液流电池的电堆框架 技术领域
本发明属于液流电池领域,具体而言属于液流电池构件的制备领域。
背景技术
电力一直以来被认为是瞬发瞬供的即时能源。几十年来,电网形成了以化石燃料发电(俗称火电)为基础(占全网发电量六成)的供电体系,主要通过控制煤,石油,天然气等物质的燃烧,调整热能对机械能的驱动,改变发电机的输出效率,以便即时响应电网负荷的需求。
90年代以来,水库式水力发电的兴建,有效降低了电网对化石燃料发电的依赖。通过水库水位的控制,水力发电也能像火力发电机组一样即时响应变化的电网负荷。同时,在电网负荷低峰期,可以通过将水从低位水源抽至高位水库,将电网余电以重力势能方式储存起来,留作高峰用途。
本世纪初开始,太阳能发电和风能发电为主的新一代可再生能源系统,被广泛接纳为更科学的能源提供方案。与传统火电为主,水电为辅的发电电网相比,新清洁能源代表了能源的未来。但是,其最大劣势,便是能量来源的间歇性。一个新清洁能源为主导的发电电网,势必出现发电峰谷跟电网负荷的严重不匹配,造成发电峰值期间电能的大量浪费,和发电低谷期间大规模的电能匮乏。
真正实现全电网的清洁能源化,需要完成整个电网的储能化。在发电端,配备高效的储能单元,实现电能的就地快速存取,可以在电网低负荷状态收纳废电,在高负荷状态释放存电变废为宝。在输配电方面,建立储能站,参与电网调峰,提高配电效率,缓解输电拥堵,推迟输配电升级。在用户端,不仅利用储能电站做为备用电源,同时低电价时间从电网充电,高电价时间从储能系统放电,达到分时电费管理、增加光伏自用量、按需供电节约电费 等多种要求。同时在供电方和用电方进行发电和负荷的双重削峰填谷,大大改善电网的利用效率。
液流电池技术有大规模储能的天然优势:储电量的大小与电解液体积成线性正比,充放电功率由电堆尺寸及数量决定,所以能按照需求,设计出从kW到MW级别不同的充放电功率,可持续放电1小时到数天的不同储能体量的液流电池。基于常用无机酸,无机盐的电解液化学成分稳定,储存方便,对环境影响小,自放电系数极低,适合长期的电能储存,安全性能极高,。由于其稳定可靠的充放电循环,理论充放电次数没有上限。
目前世界范围里液流电池企业,其产品绝大部分还处在用于电网级储能的示范性项目,远没有达到商业化产品对可靠性和稳定性的要求,其主要技术瓶颈在于电池的关键组件---电堆。由于电堆设计缺陷,电堆材料机械性能的局限性,以及同时需要兼顾电池转换效率和电解液内部循环稳定性的局限,电堆寿命仅能达到1000-3000次,大大增加了度电储能成本。如何制造出稳定高效能长时间充放电的电堆,是摆在各液流电池企业面前的难题。
普通的电堆生产是将电堆内部主要部件,即石墨双极板,石墨毡和隔膜依次叠加在一起,将单电池以串联方式组成电堆。密封组装后,引入正负电解液,进行充放电循环。将内部部件组装叠加时,需要引入辅助框架结构,该辅助结构主要作用是提供电解液在电堆内部循环的液流槽,保证液流顺畅无阻塞;保证各部件组装时不发生位移,各部分对应位置确保对齐;同时对各单体电池起到密封作用,确保电解液不渗漏;保持电堆内部一定的内压,使得个组件之间的接触电阻最小,从而提高电堆的能量转换效率。现有的主流电堆技术,液流槽的设计主要是通过密封垫圈来实现。
通过密封垫圈来实现密封及液流导槽是一种很“自然而然”的方案,具有设计简单,成本低廉等优点,成为液流电池电堆的主流设计方案。然而,密封垫圈的材质一般为硅橡胶密、氟橡胶、丁基橡胶密、三元乙丙橡胶等,其具有一定的自膨胀性,同时在长期的与液流电池电解液的接触中,容易发生老化、腐蚀,因此,影响液流电池的使用寿命。
引用文献1公开了一种液流电池电堆密封结构,所述液流电池电堆密封结构包括密封橡胶,所述密封橡胶由密封线将若干个密封垫圈连接而成,所述密封垫圈设有电解液公共流道孔,所述密封垫圈的一面设有压缩变形结构,所述密封垫圈的另一面设有环形凸起结构。其对隔膜的电解液公共流道孔处和周边进行密封,隔膜侧密封为内外嵌透的线密封方式实现双层保护,在电解液公共流道的位置采用面密封的方式实现内外漏的保护,但电解液依然与密封橡胶直接接触。
引用文献2公开了一种液流电池电堆的电极框结构,于矩形平板上设置电解液的补充流道,电解液补充流道的一端与电解液进口的通孔相连,另一端与可容置电极的空腔相连通,其电极框结构,改善了电极内的浓度分布,提高电池性能。虽然其没有提及电解液导流槽与密封构件之间的关系,但从其结构图上可以看出,其电解液的流入和流出仍然需依靠密封件形成的导流槽。
引用文献3提供了一种液流电池用双极板和液流电池电堆,液流电池用双极板包括相互贴合的固定边框和导流边框,固定边框为框架结构,固定边框的内部设置有导电板,固定边框的四周设置有至少两个第一通孔;导流边框为框架结构,导流边框的内部设置有隔膜,隔膜的边缘与导流边框固定。通过将使电解液通过的第一通孔和第二通孔单独设置,二者均不会穿过隔膜,隔膜被导流边框固定,电解液流过第一通孔和第二通孔时与隔膜和导电板均不接触,不会对隔膜和导电板产生破坏,延长隔膜和导电板的使用寿命,而固定边框和导流边框质地较硬,不容易被破坏。虽然应用文献3没有直接公开电解液与密封橡胶的相互关系,同时其用于固定隔膜以及导电板需要两个不同的边框,组装上的简易性也不能说是充分的。
引用文献4一种液流电池的电堆结构,包括重复叠合的单元电池和隔膜,单元电池由导流板、双极板、导流板依次叠合而成,其特征在于,电堆结构中不含密封垫,垂直于双极板所在平面的电堆侧面采用封装端板进行封装。虽然其在电堆内部不使用密封结构,但其采用了单独的导流板进行导流,且 一片双极板与两片导流板通过注塑、粘结、焊接、化学结合等方式连接成无缝的结构单元,并装入电极构成单元电池。因此,导致其结构复杂,也产生使用可靠性上的担忧。
可见,现有技术的基本状况,在电堆框架的简易性以及结构设计的合理性方面仍然有进一步提升的余地。
引用文献1:CN106374129A
引用文献2:CN206225462U
引用文献3:CN204516844U
引用文献4:CN107123824A
发明内容
发明要解决的问题
所谓液流电池,最重要的是保证液体电解液在电池内部畅通无阻的流动。通常的液流电池电堆设计,橡胶垫圈有两个致命的缺点,一是抗氧化性差,长期与电解液接触后,橡胶垫圈会发生体积膨胀,从而造成液流槽内部空间受到挤压,影响电解液在槽内部的流动。更严重的情况是对液流槽造成堵塞,造成整个电池过充从而报废。二是其弹性的本质,在电堆组装的过程中,很难保证各个电池单体的各个区域受力一致,这就导致电解液导槽的均一性很差,会直接造成正负电解液在液流槽不同电池单体的流速分布不均匀。从而可能导致部分流速低电池单体发生过充,致使大量产生气体,导电石墨毡板和双极板被腐蚀解体,最终电池内部阻塞报废。
针对上述现有技术所具有的问题,本发明提供了一种用于液流电池的电堆框架,其具有:电解液的进液口和出液口;电解液导流槽;密封垫片槽;所述电解液导流槽分别独立地与进液口和出液口相连通,并且允许电解液通过所述电解液导流槽流入或者流出双极板两侧或隔膜两侧的石墨毡,所述电堆框架中电解液导流槽与密封垫片槽不产生相互的联通,因此克服了传统电 堆框架中密封橡胶因为老化和腐蚀以及体积膨胀所带来的结构性破坏、电解液流道堵塞以及正负电解液在不同的电池单体的流速分布不均匀的问题。
用于解决问题的方案
经过本发明发明人的努力研究,提出了以下技术方案用以解决上述技术问题:
本发明首先提供了一种用于液流电池的电堆框架,其特征在于,所述电堆框架由聚合物材料制成,具有中空结构,并且其外形在横向和/或纵向上具有对称结构,
所述电堆框架具有正面和背面,所述正面的表面具有:
电解液的进液口和出液口;
电解液导流槽;
密封垫片槽;
所述电解液导流槽与密封垫片槽不产生相互的联通,并且电解液导流槽至少部分的露出于所述电堆框架正面的表面,
所述电解液导流槽允许电解液流入或流出液流电池双极板两侧或隔膜两侧的石墨毡。
根据以上所述的电堆框架,所述电解液导流槽对称分布于所述电堆框架的正面两侧框架上,在其中的每一侧框架上,所述电解液导流槽包括与所述进液口或出液口相连的部分(a)以及不与所述进液口或出液口相连的部分(b)。
根据以上所述的电堆框架,在所述电堆框架的每一侧框架上,部分(a)与所述密封垫片槽产生交汇,在交汇处的两边分别具有通孔,进而所述部分(a)被所述交汇处分割而成部分(a1)和部分(a2),并且,所述部分(a1)和部分(a2)分别与在所述交汇处两边具有的通孔相连接,所述部分(a2)进一步与双极板两侧或隔膜两侧的石墨毡相连通。
根据以上所述的电堆框架,所述交汇处的两边的通孔之间的距离与所述部分(b)的长度匹配。
根据以上任一项所述的电堆框架,所述电堆框架正面和背面的结构均在横向和/或纵向上具有相对于中心线的对称结构。
根据以上任一项所述的电堆框架,所述电堆框架为承载双极板以及石墨毡的框架或承载隔膜以及石墨毡的框架。
根据以上任一项所述的电堆框架,所述电堆框架仅允许电解液过所述电解液导流槽流入和流出所述双极板两侧或隔膜两侧的石墨毡。
此外,本发明还涉及一种用于液流电池的电堆框架层叠体,将根据以上任一项所述的电堆框架以正面朝向相同的的方式按照下述方法进行层叠:以其中的一个电堆框架为基准,将另外一个电堆框架以平行的方式旋转180°的方式进行层叠。
此外,本发明还涉及一种液流电池电堆,其包括一个或多个根据以上任一项所述的电堆框架或以上所述的电堆框架层叠体。
此外,本发明还涉及一种液流电池,其包括根据以上所述的电堆。
发明的效果
根据本发明的技术方案,能够获得如下的技术效果:
(1)本发明的电堆框架设计中,正负极电解液的流通不与密封橡胶接触,从而避免了由于与电解液长期接触而导致的密封橡胶的物理、机械性能的下降。
(2)本发明中由于正负极电解液的流通无需经过密封橡胶而形成的流道,因此,在封装过程中由于密封橡胶受力不均匀而导致的不同电池单元中压缩最终形态不同,这种压缩形态的差异不会传导给电解液的流动,因此不会导致电解液流动性的不均匀。
(3)本发明中电堆框架设计简单,并且组装方便,并且框架既可以作 为双极板和石墨毡框架,也可以作为隔膜和石墨毡框架,通用性强,且不易产生装配错误。
附图说明
附图1:本发明电堆框架的一个俯视图
附图2:本发明电堆框架中电解液导流槽和密封垫片槽交汇的一个情况
附图3:本发明电堆框架中电解液导流槽和密封垫片槽交汇的一个情况
附图4:本发明电堆框架中电解液导流槽和密封垫片槽交汇的一个情况
具体实施方式
以下将对本发明的具体实施方式作出详细介绍,需要说明的是,所述内容不应被视作对本发明发明内容的限制性解释,本发明的所有技术方案并不限于以下记载,凡符合本发明技术特征以及等同的形态均落入本发明的保护范围以内。
框架材质
本发明的电堆框架为基于聚合物材料的电堆框架,所述聚合物材料可以单一聚合物材料、两种或多种聚合物形成的混合物。
所述聚合物可以选自聚烯烃系聚合物、聚苯醚、聚酰亚胺、聚苯硫醚、聚砜类、聚酯、聚芳醚酮和氟树脂等的一种或多种。适用的聚烯烃类聚合物可以为乙烯、丙烯或a-烯烃的均聚物或共聚物,具体可以为高密度聚乙烯、低密度聚乙烯,聚丙烯、丙烯-丁烯共聚物等。
电堆框架可以主要由上述聚合物而形成,也可以是上述聚合物与增强纤维所形成的复合材料。对于增强纤维没有特别的限制,可以选自有机纤维或无机纤维,所述纤维可以为连续纤维也可以为短切纤维。
此外,电堆框架也可以是有上述聚合物与其他功能性成分形成混合物而 制备得到。所述其他功能性成分,包括填料、抗氧化剂、阻燃剂、稳定剂以及各种加工助剂等。
对于填料,主要作用在于增强最终电堆框架的机械性能,适用的填料可以选自二氧化硅、钛白粉、滑石粉、云母、碳酸钙、硫酸钡等的一种或多种。
对于抗氧化剂可以选自胺类、酚类、含硫化合物、含磷化合物等的一种或多种。
对于阻燃剂,可以选自磷系阻燃剂、氮系阻燃剂、氮磷协效阻燃剂或者氟代阻燃剂等的一种或多种。
对于稳定剂可以选自光稳定剂、热稳定剂等的一种或多种。
对于加工助剂,可以选自增塑剂、润滑剂、抗冲击改性剂等的一种或多种。
上述这些其他功能性成分只要是与电解液成分是非反应性的,对于其使用就没有特别限制,其各自成分相对于聚合物树脂的用量可以遵循本领域常规的使用量。
进一步,对于电堆框架的制备方法,适用的方法包括注塑成型、或浸渍成型等,可以是整体成型,也可以是拼接成型。
对于电堆框架的形状,在本发明中,电堆框架为中空结构。所述中空结构是指电堆框架为具有一定边缘宽度的四个边框形成的整体,边框以内为镂空结构,主要用于承载双极板以及石墨毡或隔膜及石墨毡。
密封垫片槽以及密封橡胶
在本发明中,使用密封橡胶形成密封垫片,所述密封垫片设置于电堆框架中的密封垫片槽中。
对于密封垫片槽的设置没有特别的限定。在一些实施方案中,密封垫片槽可以设置于电堆框架四周框架的边缘部位,例如框架的四角以及四周的边缘,延框架的外边缘的走向而设置。
此外,对于本发明适用的密封橡胶的种类,可以使用各种弹性体,具体可以是烯烃系弹性体或者是含硅弹性体等。
本发明中设置于密封垫片槽中的密封橡胶可以在进行多个框架的层叠或封装时,通过挤压用力而对电堆框架内部进行密封。对于本发明中所使用的密封橡胶密封时的形态,没有特别要求,只要是能够满足密封电堆即可。
本发明中,由于密封橡胶并不与正负极电解液相接处,因此,其使用寿命将大大延长,并且由于正负极电极液的流通与密封橡胶相互独立,即使密封橡胶在电堆组装时存在受力不均或变形的情况,也不会影响电极液在电堆框架中的流动。
电堆框架结构
本发明的电堆框架具有一定的外部形状,所述外部性状的具体形状没有限定,这取决于实际情况或需要。并且,本发明的电堆框架具有中空结构,在所述中空的结构中,可以根据需要安装液流电池的双极板以及石墨毡或隔膜及石墨毡。如上所述,本发明的框架使用具有一定刚性的聚合物材料进行制备,保证了在进行框架结构的层叠时,双极板、隔膜及石墨毡的稳定性,使得电解液的流入和流出更为均匀和流畅。
在本发明一些实施方案中,电堆框架形成中空结构的四个边框,具有长边框和短边框,优选的,所述长边框的宽度大于或等于短边框。
在所述电堆框架中,具有:电解液的进液口和出液口;电解液导流槽;密封垫片槽;所述电解液导流槽分别独立地与进液口和出液口相连通,并且允许电解液通过所述电解液导流槽流入或者流出双极板两侧或隔膜两侧的石墨毡,所述电解液导流槽与密封垫片槽不产生相互的联通。
所述密封垫片槽设置于电堆框架边框上,对于垫片槽的具体布置方式没有特别限定,可以参考本领域中常规的布置方式,在组装时,存在于所述密封垫片槽的密封橡胶条能够对电堆内部形成密封,防止电解液的泄露。
电解液的进液口以及出液口提供电解液的流入和流出,在本发明的一些优选的实施方案中,可以在电堆框架的边缘,优选为边缘四角处形成通孔以提供所述进液口和出液口。这样的通孔还可以同时起到定位和辅助装配的作用。
与所述电解液的进液口和出液口分别与电堆框架的电解液的导流槽相连通。电解液的导流槽设置于框架的四周边框结构上。在本发明一些优选的实施方案中,所述导流槽设置在框架结构中较宽的两个相对的边框边上,对于无需具有导流槽的框架的边框可设置成较窄的边框。在保证结构强度的基础上,有利于增大电堆的内部空间。
在本发明的一些实施方案中,电堆框架的一个边框上,导流槽与边框上的通孔相连,同时该导流槽的另一端与电堆框架内部中空部分相连。所述中空部分为安装双极板以及石墨毡或隔膜以及石墨毡的预留部分。在另一个与上述边框相对应的边框上,也存在同样的结构。这样的设置保证电解液能够从电堆框架的一个边框流入,经过在石墨毡反应后,从另一个边框上的导流槽而流出。
如上所述,本发明所述电解液导流槽与密封垫片槽不产生相互的联通。在本发明的一些实施方案中,从上述进液口或出液口通孔至与电堆框架内部中空部分连接的一个或多个流道口的整个导流槽部分与密封垫片槽物理相隔,也不产生交汇处。在这样的方案中,例如,可以将密封垫片槽设置于导流槽部分的更外围部分。这种情况下,利用具有一定机械强度或刚性的聚合物制备的框架形成导流槽,即可以保证在液流电池的长期使用下,不对密封橡胶产生腐蚀,也不会在装配过程发生正导流槽由于不期望的装配应力导致的结构不均匀。
在本发明另外的一些实施方案中,所述密封垫片槽与电解液的导流槽具有交汇处。例如,至少部分的密封垫片槽的外围设置有导流槽。在这种情况下,可以将密封垫片槽设置为在交汇点切断,物理结构上可以减少密封垫片与电解液的接触。但考虑到这种切断密封垫片槽的设置在一些极端的情况 下,也存在影响密封性的担忧。因此,在本发明另外一些优选的实施方案中,在交汇点处设置“隧道”结构,即,使电解液导流槽从密封垫片槽的下部的贯穿结构穿过,导流槽的两端分别连接框架边缘进液口或出液口通孔、和框架内部的通向中空部分的流道口。所述“隧道”结构可以为V型结构或U型结构或者其他任意满足连接、联通的结构。上述的这种贯穿结构可以仅在所述框架内部形成,例如,当导流槽全部存在于电堆框架内部时,则导流槽可以直接从交汇点的下方经过。也可在组装电堆时与层叠于所述框架下部的其他框架对应区域表面的凹槽结构共同构成。在这种情况下,本发明的一些框架可以在上述交汇点处两侧形成贯通的孔。
在本发明的一些实施方案中,所述电解液的导流槽是完全封闭于本发明的一个电堆框架内部。如上所述,当导流槽与密封垫片槽具有交汇点或者交汇部分时,这样的导流槽的封闭设置可以尽量的与密封橡胶保持物理的隔绝。在另外一些实施方案中,封闭的导流槽在框架表面可以形成连续的凸出结构,在另外一些实施方案中,上述封闭的部分不形成凸出结构。
此外,在本发明的另外一些实施方案中,所述电解液的导流槽是至少部分的露出于电堆框架的表面,也即,至少部分的导流槽存在于电堆框架内部。在这样的结构中电堆框架表面露出的导流槽可以在装配形成电堆过程中,借助叠加在该电堆框架的另外的电堆框架而封闭。
在本发明中,无论所述的电解液的导流槽是否完全封闭与单独的电堆框架内,还是部分的导流槽形成与电堆框架的表面,只要导流槽与密封垫片槽产生交汇,在交汇处形成的“隧道”贯通结构可以仅仅由该电堆框架自身的结构而形成,或者所述电堆框架与和其相邻层叠的下方的电堆框架共同构成的,在这样的情况下,不言而喻的,所述下方的电堆框架在相应位置设置合适的结构与所述电堆在所述交汇处的结构形成一体的联通结构,使得电堆框架的导流槽能够从所述交汇处下方形成完整的流通通道。
此外,本发明中将电堆框架的正、背两个主表面视为电堆框架的主表面,因此,电堆框架具有正面和背面两个主表面,在本发明的一些实施方案中, 可以将电堆框架露出导流槽的一面视为正面。在这样的情况下,电堆框架的正面具有至少部分的存在于电堆框架的正面表面。在本发明的一些实施方案中,在所述框架的正面还可以具有一些凸起。优选的,将凸起设置在电堆框架的边框上与导流槽不接触的部分,所述凸起可以与边框是一体成型获得的,也可以是由密封材料形成的,所述凸起与边框紧密连接,在进行电堆框架的装配中,可以起到固定电堆框架以及密封的作用。在本发明的一些实施方案中,所述凸起可以与上述密封橡胶采用相同的材质。因此,本发明的电堆框架的正面可以具有密封垫片槽,导流槽(在电堆框架内部或者部分露出与电堆框架正面表面),任选的上述凸起等结构。
在电堆框架的背面,可以根据需要而设置密封垫片槽。
在本发明一些优选的实施方案中,本发明的电堆框架结构在外形上,具有在横向和/或纵向上的对称结构。在一些实施方案中,本发明的电堆框架在一个表面(正面)上设置的电解液导流槽具有沿着该表面的横向和/或纵向上的对称结构。进而在本发明的另一些实施方案中,本发明的电堆框架在一个表面(正面)上设置的电解液导流槽、以及凸起和密封垫片槽、以及其他任选的结构均具有沿着该表面的横向和/或纵向上的对称结构。
电堆框架层叠体
进而,本发明还涉及一种电堆框架的层叠体。
在本发明的优选的实施方案中,使用本发明的两个或更多个电堆框架形成层叠体。当层叠本发明的电堆框架时,可以以正面朝向相同的方向进行层叠。
本发明的电堆框架内部可以安装双极板和石墨毡,也可以安装隔膜和石墨毡,在一些优选的实施方案中安装双极板和石墨毡的电堆框架与安装隔膜和石墨毡的电堆框架在进行组装时,相邻的两个电堆框架其中的一个相对于另一个以平行的方式、平面旋转180°(以框架主表面的法线方向为轴)的方式进行层叠。因此,在本发明中,提供了一种非常简便的组装液流电池电堆的方法,使用本发明的框架,并在其中的中空结构中装入双极板和石墨毡 或隔膜和石墨毡,然后进行层叠,层叠时将按照上述方法进行,可以方便的避免装配错误的发生。
在进行层叠时,在两个框架相接的界面处,下方框架如果具有存在于电堆框架表面的导流槽时,该导流槽被上方的框架封闭。另外,如上所述,在一些实施方案中,下方的框架提供相应的导流槽结构,这个导流槽可以与层叠在其上方的框架的对应部分形成“隧道”结构,以提供电解液流动,能够使得流经上方框架的电解液从与密封垫片槽交汇点的下方流过,并再次进入上方框架中所设置的导流槽中。
在一个具体的实施方案中,在电堆框架的正面部分的导流槽为露出表面设置,则在装配电堆时,与该框架(框架A)相重叠使用的电堆框架(框架B)的正面与其正面朝向相同,其中框架A的背面与框架B的正面相结合。同时框架A的背面具有相应结构能够封闭框架B表面的电解液导流槽,所述框架A与框架B符合上文本发明的所描述的条件,即,A可以与B是完全相同的,只不过是在装配时将A按照平面旋转180°就得到B。
在另外的实施方案中,如果框架A(正面的)密封垫片槽与电解液的导流槽具有交汇处,并且在交汇点处两侧框架A的导流槽具有通孔,由存在于框架A下面层叠的另外的框架的正面的对应处具有凹槽结构,与上述框架A交汇点两侧的通孔共同形成贯通结构,使得在框架A中流通的电解液通过该贯通结构又重新流回框架A中,在优选的方案中,所述另外的框架可以为框架B,在这样的情况中实际形成了B/A/B/A….的多个框架的重叠排布以封闭各个框架的导流槽。
此外,在本发明的另一个具体的实施方案中,所述电解液导流槽对称分布于所述电堆框架的正面表面两侧框架的表面上。如上所述,所述的两侧框架可以为电堆框架中宽度较为宽和/或长度较为长的两侧框架。在其中的每一侧上,电解液导流槽与存在于该侧表面上的密封垫片槽产生交汇,因此,并且所述电解液导流槽包括与所述进液口或出液口相连的部分(a)以及不与所述进液口或出液口相连的部分(b)。在一些情况下,部分(a)和/或部分 (b)均至少部分的形成于电堆框架该侧的表面上。
在所述电堆框架的每一侧的表面上,部分(a)与所述密封垫片槽产生交汇,而任选地,部分(b)不与密封垫片槽产生交汇。在交汇处的两边分别具有通孔,进而所述部分(a)被所述交汇处分割而成部分(a1)和部分(a2),并且,所述部分(a1)和部分(a2)分别与在所述交汇处两边具有的通孔相连接,所述部分(a2)进一步与双极板或隔膜两侧的石墨毡相连通。
所述交汇处的两边的通孔之间的距离与所述部分(b)的长度匹配。此处的匹配可以理解为所述部分(b)的长度与所述两个通孔之间的距离相同或略小。所述部分(b)长度,应当是部分(b)起始端点的直线距离。因此在这个意义上,对于部分(b)两个起始端点之间的形状或走向,没有特别的限制。
此时,在将两个或多个本发明的电堆框架以正面朝向相同的方式进行层叠组装时,以上下两个层叠框架进行说明,位于上方的框架具有完全形成于电堆框架正面表面的电解液导流槽部分(a)和部分(b)。并且,上述部分(a)和部分(b)不相连通,具有与上文所描述的相同的结构设置。以下方的框架的正面为基准,将上方的框架以平行的方式平面旋转180°后层叠于下方框架上,形成层叠体,此时下方框架的正面的部分(a)被完全封闭,且部分(b)与上方框架的在所述交汇点两侧的通孔相连接。
以下结合具体附图说明本发明的实施方式,需要说明的是,以下各个附图中各部分(包括电解液导流槽、密封垫片槽等)均为部分的示出:
图1表示了本发明的基本实施方案,电堆框架1具有中空部分2,所述电堆框架具有横向和/或纵向上的对称结构,在框架1的一个表面上具有存在于四角的四个通孔。通孔31为电解液的流入口,通孔32为相应的电解液的流出口。在所述电堆框架1内部存在电解液导流槽4,导流槽4的一端与通孔31或32相连通,另一端与框架中空部分相连通。
在图1所表述的电堆框架中,其中中空部分可以安装双极板和石墨毡也可以安装隔膜和石墨毡,在优选的实施方案中中空部分安装双极板和石墨毡 的框架与安装隔膜和石墨毡的电堆框架可以进行层叠。
在图1中,还具有框架密封垫片槽5(图1中没有示出),密封垫片槽5可以任意设置,在这种情况下,进行电堆的组装时,密封垫片槽5中的密封橡胶与电堆框架1的电解液导流槽4存在物理隔绝,所述电解液导流槽4存在于电堆框架1内部或至少部分的于电堆框架1的(正面)表面。
图2(局部俯视图)示出了本发明另外的实施方案,在该情况中,导流槽4为存在于电堆框架1正面表面,并露出。电堆框架1的密封垫片槽5与导流槽4产生交汇,在交汇点处导流槽4从密封垫片槽5的下部穿过。
图3(局部俯视图)中示出了本发明另外的实施方案,在该情况中,导流槽4为存在于电堆框架1正面表面,并露出。电堆框架1的密封垫片槽5与导流槽4产生交汇,在交汇点处导流槽4存在交汇点两侧处具有两个贯通的孔6。借助于与电堆框架1的其他电堆框架在进行层叠时,层叠于下层电堆框架的在对应的位置表面形成任意结构而能够与上述两个贯通的孔形成“隧道”结构。
图4(局部俯视图)示出了本发明另外的实施方案,在该情况中,导流槽(a)为存在于电堆框架1正面表面,并露出。电堆框架1的密封垫片槽5与导流槽(a)产生交汇,因此导流槽(a)可以分为部分(a1)和部分(a2)(需要说明的是,此处包括部分(a1)和部分(a2)的导流槽(a)仅为一部分的示出),在交汇点处导流槽(a)存在交汇点两侧处具有两个贯通的孔6,在该电堆框架与导流槽(a)相同一侧的框架上还有导流槽(b)。并且图4中的7表示电堆框架正面一侧的框架的边缘。
此外,本发明还涉及一种使用了本发明上述电堆框架或电堆框架层叠体的电堆,以及使用了该电堆的液流电池。
产业上的可利用性
本发明的电堆框架可以用于工业上液流电池的制备或组装。

Claims (10)

  1. 一种用于液流电池的电堆框架,其特征在于,所述电堆框架由聚合物材料制成,具有中空结构,并且其外形在横向和/或纵向上具有对称结构,
    所述电堆框架具有正面和背面,所述正面的表面具有:
    电解液的进液口和出液口;
    电解液导流槽;
    密封垫片槽;
    所述电解液导流槽与密封垫片槽不产生相互的联通,并且电解液导流槽至少部分的露出于所述电堆框架正面的表面,
    所述电解液导流槽允许电解液流入或流出液流电池双极板两侧或隔膜两侧的石墨毡。
  2. 根据权利要求1所述的电堆框架,其特征在于,所述电解液导流槽对称分布于所述电堆框架正面两侧框架上,在其中的每一侧框架上,所述电解液导流槽包括与所述进液口或出液口相连的部分(a)以及不与所述进液口或出液口相连的部分(b)。
  3. 根据权利要求2所述的电堆框架,其特征在于,在所述电堆框架的每一侧框架的表面上,部分(a)与所述密封垫片槽产生交汇,在交汇处的两边分别具有通孔,进而所述部分(a)被所述交汇处分割而成部分(a1)和部分(a2),并且,所述部分(a1)和部分(a2)分别与在所述交汇处两边具有的通孔相连接,所述部分(a2)进一步与双极板两侧或隔膜两侧的石墨毡相连通。
  4. 根据权利要求3所述的电堆框架,其特征在于,所述交汇处的两边的通孔之间的距离与所述部分(b)的长度匹配。
  5. 根据权利要求1-4任一项所述的电堆框架,其特征在于,所述电堆框架正面和背面的结构均在横向和/或纵向上具有相对于中心线的对称结构。
  6. 根据权利要求1-5任一项所述的电堆框架,其特征在于,所述电堆框架为承载双极板以及石墨毡的框架或承载隔膜以及石墨毡的框架。
  7. 根据权利要求1-6任一项所述的电堆框架,其特征在于,所述电堆框 架仅允许电解液过所述电解液导流槽流入和流出所述双极板两侧或隔膜两侧的石墨毡。
  8. 一种用于液流电池的电堆框架层叠体,其特征在于,将根据权利要求1-7任一项所述的电堆框架以正面朝向相同的的方式按照下述方法进行层叠:以其中的一个电堆框架为基准,将另外一个电堆框架以平行的方式旋转180°的方式进行层叠。
  9. 一种液流电池电堆,其特征在于,包括一个或多个根据权利要求1-7任一项所述的电堆框架或权利要求8所述的电堆框架层叠体。
  10. 一种液流电池,其特征在于,包括根据权利要求9所述的电堆。
PCT/CN2019/083827 2018-04-27 2019-04-23 用于液流电池的电堆框架 WO2019206119A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19792266.9A EP3813170A4 (en) 2018-04-27 2019-04-23 STACKING FRAME FOR REDOX BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810391609.4A CN110416584B (zh) 2018-04-27 2018-04-27 用于液流电池的电堆框架
CN201810391609.4 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019206119A1 true WO2019206119A1 (zh) 2019-10-31

Family

ID=68293737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083827 WO2019206119A1 (zh) 2018-04-27 2019-04-23 用于液流电池的电堆框架

Country Status (3)

Country Link
EP (1) EP3813170A4 (zh)
CN (1) CN110416584B (zh)
WO (1) WO2019206119A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112787012B (zh) * 2019-11-11 2022-05-27 北京好风光储能技术有限公司 一种电池架及其操作方法以及安装有该电池架的储能电站

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764237A (zh) * 2008-12-23 2010-06-30 比亚迪股份有限公司 一种液流框、钒电池和钒电池组
CN101841050A (zh) * 2010-05-31 2010-09-22 青岛武晓集团有限公司 一种全钒离子氧化还原液流电池的新型液流框装置
CN102479963A (zh) * 2010-11-30 2012-05-30 新奥科技发展有限公司 膜组件、液流电池单元以及电池堆
CN204516844U (zh) 2015-02-05 2015-07-29 四川中物电新能源科技有限公司 液流电池用双极板和液流电池电堆
JP2015215948A (ja) * 2014-05-07 2015-12-03 旭化成イーマテリアルズ株式会社 セル積層体および蓄電池
CN106374129A (zh) 2016-11-09 2017-02-01 大连融科储能技术发展有限公司 一种液流电池电堆密封结构
CN206225462U (zh) 2016-09-21 2017-06-06 中国科学院大连化学物理研究所 一种液流电池电堆的电极框结构
CN107123824A (zh) 2017-04-26 2017-09-01 乐山伟力得能源有限公司 一种液流电池的电堆结构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3682244B2 (ja) * 2001-06-12 2005-08-10 住友電気工業株式会社 レドックスフロー電池用セルフレーム及びレドックスフロー電池
US10141594B2 (en) * 2011-10-07 2018-11-27 Vrb Energy Inc. Systems and methods for assembling redox flow battery reactor cells
CN202454666U (zh) * 2011-12-31 2012-09-26 中国东方电气集团有限公司 集流板及包括其的液流电池堆
CN102569843B (zh) * 2012-01-13 2014-10-29 清华大学 一种液流电池电堆的嵌入式电极框
CN204651401U (zh) * 2015-06-10 2015-09-16 中国东方电气集团有限公司 一种用于液流电池的电极组件及包含其的电池堆
CN106328969B (zh) * 2015-07-07 2019-10-25 宁波亘新储能技术有限公司 一种液流电池及其单电池框架、一体化单电池、电堆
KR20170127848A (ko) * 2016-05-13 2017-11-22 주식회사케이세라셀 내부 커버를 포함하는 레독스 흐름전지
DE112016006948A5 (de) * 2016-06-09 2019-02-21 Schunk Kohlenstofftechnik Gmbh Elektrodenplatte und Verfahren zur Herstellung
EP3525276B1 (en) * 2016-10-05 2020-07-08 Sumitomo Electric Industries, Ltd. Frame body, cell frame, cell stack, and redox flow battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764237A (zh) * 2008-12-23 2010-06-30 比亚迪股份有限公司 一种液流框、钒电池和钒电池组
CN101841050A (zh) * 2010-05-31 2010-09-22 青岛武晓集团有限公司 一种全钒离子氧化还原液流电池的新型液流框装置
CN102479963A (zh) * 2010-11-30 2012-05-30 新奥科技发展有限公司 膜组件、液流电池单元以及电池堆
JP2015215948A (ja) * 2014-05-07 2015-12-03 旭化成イーマテリアルズ株式会社 セル積層体および蓄電池
CN204516844U (zh) 2015-02-05 2015-07-29 四川中物电新能源科技有限公司 液流电池用双极板和液流电池电堆
CN206225462U (zh) 2016-09-21 2017-06-06 中国科学院大连化学物理研究所 一种液流电池电堆的电极框结构
CN106374129A (zh) 2016-11-09 2017-02-01 大连融科储能技术发展有限公司 一种液流电池电堆密封结构
CN107123824A (zh) 2017-04-26 2017-09-01 乐山伟力得能源有限公司 一种液流电池的电堆结构

Also Published As

Publication number Publication date
EP3813170A4 (en) 2022-04-20
EP3813170A1 (en) 2021-04-28
CN110416584A (zh) 2019-11-05
CN110416584B (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
CN103579658B (zh) 一种液流电池堆
US10720653B2 (en) Bipolar plate intake structure of fuel cell having drainage channels
CN101667646B (zh) 一种氧化还原液流电池的电极框结构
KR101586117B1 (ko) 레독스 흐름 전지 및 셀 프레임
CN105932314A (zh) 燃料电池阴极板密封装置、燃料电池和燃料电池堆
CN108448146B (zh) 一种单板框的氧化还原液流电池电堆结构
CN115000438A (zh) 一种应用于液流电池的电极框与双极板一体式结构和电堆
WO2019206119A1 (zh) 用于液流电池的电堆框架
WO2019206117A1 (zh) 用于液流电池的电堆框架
CN213936255U (zh) 一种液流电池板框
CN103579641B (zh) 一种液流电池的电堆结构
CN202888318U (zh) 一种分配管外置的液流电池堆
CN111313054A (zh) 燃料电池冷却组件和燃料电池
CN111640961A (zh) 一种燃料电池模块和燃料电池堆
CN113540495B (zh) 一种液流电池液流框结构及其侧面封装方法
CN214152947U (zh) 一种液流电池流体板框及其组成的单电池
CN213401256U (zh) 一种铝空气燃料单体电池
CN201820854U (zh) 端子具有卡臂的摩托车用阀控式铅酸蓄电池
CN117374352B (zh) 液流电池用电堆框架
CN115441032B (zh) 一种液流电池及电堆
CN218918957U (zh) 一种液流电池的叠组结构
CN219180549U (zh) 一种复合式电极流场结构及液流电池电堆
CN116565413B (zh) 储能装置及用电设备
CN211295267U (zh) 一种用于燃料电池的双极板
CN220627863U (zh) 双极板及燃料电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792266

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019792266

Country of ref document: EP

Effective date: 20201127