WO2019206080A1 - 信道资源协调分配方法及装置 - Google Patents
信道资源协调分配方法及装置 Download PDFInfo
- Publication number
- WO2019206080A1 WO2019206080A1 PCT/CN2019/083687 CN2019083687W WO2019206080A1 WO 2019206080 A1 WO2019206080 A1 WO 2019206080A1 CN 2019083687 W CN2019083687 W CN 2019083687W WO 2019206080 A1 WO2019206080 A1 WO 2019206080A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- time interval
- subchannel
- channel
- subchannels
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/155—Ground-based stations
- H04B7/15528—Control of operation parameters of a relay station to exploit the physical medium
- H04B7/15542—Selecting at relay station its transmit and receive resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/10—Small scale networks; Flat hierarchical networks
- H04W84/12—WLAN [Wireless Local Area Networks]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/04—Terminal devices adapted for relaying to or from another terminal or user
Definitions
- the present application relates to the field of communications technologies, and in particular, to a channel resource coordinated allocation technique.
- Wi-Fi is also one of the first choices for IoT communication.
- IEEE Institute of Electrical and Electronics Engineers
- the number of IoT nodes is numerous: especially in the context of large-scale industrial production and commercial activities, a large number of IoT nodes are required to collect and aggregate data;
- the distribution of IoT nodes is wide: for example, in a smart city scenario, the IoT network needs to cover a large range;
- IoT nodes use narrowband communication: narrowband communication is beneficial to the energy saving of IoT nodes, especially the use of battery-powered IoT nodes, while also reducing the maintenance cost of the entire IoT network.
- Wi-Fi Wireless Fidelity
- the narrowband communication of IoT nodes is susceptible to channels. Under the influence of shadow fading, IoT nodes in different geographical locations may need to select different narrowband subchannel transmissions. Therefore, an Access Point (AP) needs to be hopped in multiple subchannels to serve the associated subchannels.
- AP Access Point
- the present application provides a channel resource allocation method, which provides interaction of channel allocation information between nodes, and can realize coordinated utilization of channels in an object-linked network with relays.
- a channel resource coordination allocation method including: a relay device (child node) receives first channel allocation information sent by an access point AP (parent node), and the relay device is one of the access point APs. Or one of the plurality of child nodes, the AP is a parent node of the relay device, and the first channel allocation information includes: indication information indicating a first time interval on the subchannel, where the first time interval is a working time on the subchannel; the second device generates second channel allocation information according to the first channel allocation information, where the second channel allocation information includes: indication information indicating a second time interval on the subchannel, the second The time interval is a second time interval of the second device on the subchannel; the second time interval includes the first time interval; and the resource allocation information between the parent node and the child node through the relay device and the access point AP
- the interaction can ensure normal and matched communication between the relay device and the access point AP, and realize coordinated utilization of the channel to avoid the occurrence of the parent node on the time
- the child node sends data, and the child node waits to receive the data of the parent node on the time interval 2 different from the time interval 1 on the subchannel 2. At this time, it is obvious that the child node cannot receive the parent node in the time interval in the time interval 2.
- the information sent on 1 causes the communication to not match.
- a second aspect provides a channel resource coordination allocation method, where the method includes: an access point AP (parent node) sends first channel allocation information to a relay device (child node), where the relay device is an access point AP
- the first channel allocation information includes: indication information indicating a first time interval on the subchannel, the first time interval is a work of the parent node on the subchannel
- the first channel allocation information is used by the child node to generate second channel allocation information according to the first channel allocation information
- the second channel allocation information includes: indication information for indicating a second time interval on the subchannel,
- the second time interval is a working time of the child node on the subchannel; and the second time interval includes a first time interval.
- the parent node Through the information interaction between the parent node and the child nodes, it is ensured that normal and matched communication can be performed between the parent node and the child node, and channel coordination utilization is realized, and the parent node is prevented from appearing on the time interval 1 of the child channel 2 to the child node.
- the data is transmitted, and the child node waits to receive the data of the parent node on the time interval 2 different from the time interval 1 on the subchannel 2. At this time, it is obvious that the child node cannot receive the parent node in the time interval 1 in the time interval 2 The message was sent, causing the communication to not match.
- the working time of the access point AP is a time interval in which the access point can transmit or communicate with other nodes except the access point; for example, the access point AP can be in working time.
- the information is sent to the child nodes of the access point AP, and the information sent by the child nodes of the access point AP can also be received during working hours.
- the working time of the relay device is a time interval during which the relay device can transmit or communicate with other nodes except the relay device; for example, the relay device can be in the working time. After the device associated with the device sends information, it can also receive information sent by the site associated with the relay device during working hours.
- the subchannel is a working channel between the access point AP and the relay device, and the working channel is a channel for communication between the access point AP and the relay device.
- the subchannel is one of the multiple subchannels
- the second channel allocation information further includes: indicating time on the subchannels other than the subchannel in the multiple subchannels
- the indication information of the interval, the time interval on the other subchannels is the working time of the relay device on the other subchannels, and the time interval of communication on the other subchannels is different from the second time interval.
- the working time of the relay device includes: a second time interval, and a time interval on other subchannels.
- the second channel allocation information when the time length of each time interval in the working time of the relay device is equal, the second channel allocation information further includes: a time length of the time interval in the working time of the relay device; Long time interval allocation can effectively save the signaling overhead of channel allocation information.
- the second channel allocation information when the time lengths of the at least two time intervals in the working time of the relay device are not equal, the second channel allocation information further includes: an end time of each time interval in the working time of the relay device .
- the relay device may further receive occupation information sent by the access point AP for indicating a time interval on the scheduled subchannel in the system, where the scheduled subchannel includes at least: a subchannel.
- the system includes the AP and the multiple relay devices, and the relay device is one of the multiple relay devices.
- the relay device can be used to clarify the occupied situation of the channel in the entire system, and it is convenient for the relay device to select an unoccupied time interval or a time interval with a low occupancy rate as the working time of the relay device, and reduce the relay.
- the device conflicts with the channel assigned by other nodes.
- the occupation information includes: a time offset, used to indicate a start time of a time interval in which a start time is the earliest in a time interval occupied on the scheduled subchannel in the system;
- the number of time interval identifiers used to indicate the number of time intervals occupied on the scheduled subchannels in the system; the subchannel identifiers are used to indicate each of the subchannels of all the scheduled subchannels; An identifier for indicating whether each time interval on each of the subchannels in the system is scheduled to be occupied; or for indicating each time on each of the subchannels of the occupied system being scheduled.
- the child nodes can know which time intervals on the subchannels in the system are occupied, so that the child nodes can select the unoccupied time interval or the time interval with low occupancy rate as their working time. It is possible to avoid the same time, multiple sub-nodes communicate on the same working time on the same channel, which reduces the reuse rate of the channel and improves the utilization of the idle channel.
- the second channel allocation information further includes: a periodic identifier, configured to indicate whether the time interval occupied by the second device on the subchannel has periodicity.
- a periodic identifier configured to indicate whether the time interval occupied by the second device on the subchannel has periodicity.
- the second channel allocation information when the periodic identifier indication has a periodicity, the second channel allocation information further includes: a periodic number identifier, used to indicate the number of periods. By the number of periods, it is convenient for the child node to determine the effective time of the channel allocation information.
- the second channel allocation information further includes: a period total time length identifier, configured to indicate a total time length of a time interval period occupied by the second device on the subchannel. By identifying the total time length of the period, it is convenient for the child node to determine the effective time of the channel allocation information.
- the first channel allocation information is a subchannel selective transmission element, or is a restricted access time window element.
- the subchannel selective transmission element or the restricted access time window element can be effectively compatible with the node supporting the selective transmission of the subchannel, thereby improving compatibility.
- a third aspect provides a channel resource coordination allocation method, where the method includes: an access point AP (parent node) receives second channel allocation information sent by a relay device (child node), and the relay device is an access point AP.
- the second channel allocation information includes: indication information for indicating a second time interval on the subchannel, where the second time interval is a working time of the relay device on the subchannel;
- the ingress AP generates first channel allocation information according to the second channel allocation information, where the first channel allocation information includes indication information for indicating a first time interval on the subchannel, where the first time interval is that the access point AP is in the The working time on the subchannel; the second time interval includes the first time interval;
- the access point AP transmits the first channel allocation information to the child nodes of the access point AP including the relay device.
- the parent node Through the information interaction between the parent node and the child nodes, it is ensured that normal and matched communication can be performed between the parent node and the child node, and channel coordination utilization is realized, and the parent node is prevented from appearing on the time interval 1 of the child channel 2 to the child node.
- the data is transmitted, and the child node waits to receive the data of the parent node on the time interval 2 different from the time interval 1 on the subchannel 2. At this time, it is obvious that the child node cannot receive the parent node in the time interval 1 in the time interval 2 The message was sent, causing the communication to not match.
- a fourth aspect provides a channel resource coordination allocation method, where the method includes: a relay device (child node) sends second channel allocation information to an access point AP (parent node), where the relay device is an access point AP
- the second channel allocation information includes: indication information indicating a second time interval on the subchannel, the second time interval is a working time of the relay device on the subchannel
- the channel allocation information is used by the access point AP to generate first channel allocation information according to the second channel allocation information, where the first channel allocation information includes: indication information for indicating a first time interval on the subchannel, the The time interval is the working time of the access point AP on the subchannel, and the second time interval includes the first time interval; by the information interaction between the parent node and the child node, the parent node and the child node can be ensured Normal and matched communication, channel coordination is utilized to prevent the parent node from transmitting data to the child node in time interval 1 on subchannel 2, and the child node is on subchannel 2 Waiting for
- the working time of the access point AP is a time interval in which the access point can transmit or communicate with other nodes except the access point; for example, the access point AP can be in working time.
- the information is sent to the child nodes of the access point AP, and the information sent by the child nodes of the access point AP can also be received during working hours.
- the working time of the relay device is a time interval during which the relay device can transmit or communicate with other nodes except the relay device; for example, the relay device can be in the working time. After the device associated with the device sends information, it can also receive information sent by the site associated with the relay device during working hours.
- the subchannel is a working channel between the access point AP and the relay device
- the working channel is a channel for communication between the access point AP and the relay device.
- this working channel can be negotiated between the access point AP and the relay device.
- the subchannel is one of the multiple subchannels
- the second channel allocation information further includes: indicating time on the subchannels other than the subchannel in the multiple subchannels
- the indication information of the interval, the time interval on the other subchannels is the working time of the relay device on the other subchannels, and the time interval of communication on the other subchannels is different from the second time interval.
- the working time of the relay device includes: a second time interval, and a time interval on other subchannels.
- the working time of the access point AP includes: a first time interval, and a time interval on the other subchannels of the plurality of subchannels except the subchannel.
- the second channel allocation information when the time length of each time interval in the working time of the relay device is equal, the second channel allocation information further includes: a time length of the time interval in the working time of the relay; The time interval allocation can effectively save the signaling overhead of channel allocation information.
- the second channel allocation information when the time lengths of the at least two time intervals in the working time of the relay device are not equal, the second channel allocation information further includes: an end time of each time interval in the working time of the relay device .
- the relay device may further receive, by the access point AP, occupancy information indicating a time interval on the scheduled subchannel in the system, where the scheduled subchannel includes at least: a subchannel.
- the system includes the AP and the multiple relay devices, and the relay device is one of the multiple relay devices.
- the access point AP can be used to clarify the occupied situation of the channel in the entire system, so that the access point AP selects an unoccupied time interval or a time interval with a low occupancy rate as the working time of the relay device, which is reduced.
- the fifth aspect provides a method for coordinating allocation of channel resources, where the method includes: the relay device (child node) receives system channel occupation information sent by the access point AP (parent node), and the system channel occupation information includes: the scheduled subchannel An occupancy identifier of the upper time interval; wherein the occupancy identifier is used to indicate whether a time interval on the scheduled subchannel is occupied, or occupy each time interval in a time interval on the scheduled subchannel
- the basic service set number the relay device may generate second channel allocation information according to the first channel allocation information, and the second channel allocation information includes: an indication for indicating a working time of the relay device on the scheduled subchannel
- the relay device may also send the second channel allocation information to the station associated with the relay device; wherein the relay device corresponds to the occupation identifier of the working time on the scheduled subchannel, indicating that the working time is not occupied; Or the occupation identifier corresponding to the working time of the relay device on the scheduled subchannel, indicating, the basic service occupying the working time
- a sixth aspect provides a channel resource coordination allocation method, where the method includes: a relay device (child node) sends system channel occupation information to an access point AP (parent node), where system channel occupation information includes: a scheduled child An occupation identifier of a time interval on the channel; an occupation identifier: used to indicate whether a time interval on the scheduled subchannel is occupied, or occupying each time interval in a time interval on the scheduled subchannel The number of basic service sets; the system channel occupation information is used by the access point AP to generate first channel allocation information according to the system channel occupation information, where the first channel allocation information includes: used to indicate that the access point AP is in the scheduled subchannel The indication information of the working time; the occupation identifier of the working time occupied by the access point AP on the scheduled subchannel, indicating that the working time is not occupied; or the access point AP is on the scheduled subchannel The occupied identifier corresponding to the occupied working time indicates that the number of basic service sets occupying the working time is zero, or is less than
- the system channel occupation information includes: a start time offset, which is used to indicate a start time of a time interval of the earliest start time in all time intervals on the scheduled subchannel in the system, relative to a time offset of the end time of the frame carrying the occupation information; a time interval number identifier: indicating a total number of all scheduled time intervals; and a subchannel identifier indicating all the scheduled Each subchannel in the subchannel.
- the occupation identifier is specifically: a subchannel time interval occupancy identifier, configured to indicate whether each time interval in a time interval corresponding to each of the scheduled subchannels is occupied; Or for indicating the number of devices occupying each time interval on the scheduled subchannel.
- a subchannel time interval occupancy identifier configured to indicate whether each time interval in a time interval corresponding to each of the scheduled subchannels is occupied; Or for indicating the number of devices occupying each time interval on the scheduled subchannel.
- the system channel occupation information further includes: an indication of the number of occupied identification bits, where the indication indicates the number of occupied bits corresponding to each time interval.
- a device for coordinated allocation of channel resources may be an access point AP (parent node) or a chip in an access point AP (parent node).
- the apparatus has the function of implementing the above-described embodiments relating to the first device. This function can be implemented in hardware or in hardware by executing the corresponding software.
- the hardware or software includes one or more units corresponding to the functions described above.
- the first device when the device is an access point AP, the first device includes: a processing module and a transceiver module, and the processing module may be, for example, a processor, and the transceiver module may be, for example, a transceiver.
- the transceiver can include a radio frequency circuit and a baseband circuit.
- the device may further comprise a storage unit, which may be, for example, a memory.
- a storage unit which may be, for example, a memory.
- the processing module is coupled to the storage unit, and the processing module executes a computer execution instruction stored by the storage unit to cause the first device to perform the foregoing A method of coordinated allocation of channel resources of a first device function.
- the chip when the device is a chip in an access point AP (parent node), the chip includes: a processing module and a transceiver module, and the processing module may be, for example, a processor, the transceiver module For example, it may be an input/output interface, a pin or a circuit on the chip.
- the apparatus may further include a storage unit, the processing module may execute a computer execution instruction stored by the storage unit, so that the chip in the terminal performs channel resources related to the function of the access point AP (parent node) in any aspect described above. Coordinate the method of allocation.
- the storage unit is a storage unit in the chip, such as a register, a cache, etc.
- the storage unit may also be a storage unit located outside the chip in the access point AP (parent node), such as Read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM).
- ROM Read-only memory
- RAM random access memory
- the processor mentioned in any of the above may be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or An integrated circuit for executing a plurality of programs for controlling a method of coordinated allocation of channel resources in the above aspects.
- CPU central processing unit
- ASIC application-specific integrated circuit
- the application provides a device for coordinated allocation of channel resources, which may be a relay device (child node) or a chip in the relay device.
- the apparatus has the functionality to implement various embodiments of the relay apparatus described above. This function can be implemented in hardware or in hardware by executing the corresponding software.
- the hardware or software includes one or more units corresponding to the functions described above.
- the relay device when the device is a relay device, the relay device includes: a processing module and a transceiver module, the processing module may be, for example, a processor, and the transceiver module may be, for example, a transceiver, The transceiver includes a radio frequency circuit.
- the relay device further includes a storage unit, which may be, for example, a memory.
- the storage unit is configured to store a computer execution instruction
- the processing module is connected to the storage unit, and the processing module executes a computer execution instruction stored by the storage unit, so that the relay device performs any one of the foregoing Aspects relate to a method of coordinated allocation of channel resources for relay device functions.
- the chip when the device is a chip in a relay device, the chip includes: a processing module and a transceiver module, and the processing module may be, for example, a processor, and the transceiver module may be, for example, the chip. Input/output interfaces, pins or circuits on the top.
- the processing module may execute computer-executable instructions stored by the storage unit to cause the chip within the relay device to perform the method of coordinated allocation of channel resources related to the functions of the relay device in the above aspects.
- the storage unit is a storage unit in the chip, such as a register, a cache, etc.
- the storage unit may also be a storage unit located in the access point AP outside the chip, such as a ROM or Other types of static storage devices, RAM, etc. that can store static information and instructions.
- the processor mentioned in any of the above may be a CPU, a microprocessor, an ASIC, or an integrated circuit of one or more programs for controlling the method for coordinating the allocation of the above channel resources.
- a ninth aspect a computer storage medium storing program code for indicating execution of any of the above first to sixth aspects or any possible implementation thereof The instructions of the method.
- a processor for coupling with a memory for performing the method of any of the first to sixth aspects above or any possible implementation thereof.
- a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of any one of the first to sixth aspects above or any possible implementation thereof.
- a communication system comprising: the access point AP and the at least one relay device involved in any one of the first to sixth aspects.
- the information exchange between the access point AP and the relay device can ensure normal and matched communication between the access point AP and the relay device, and achieve channel coordinated utilization.
- FIG. 2 is an exemplary application scenario provided by an embodiment of the present application
- FIG. 3 is a schematic flowchart of a method for coordinating allocation of channel resources according to an embodiment of the present disclosure
- FIG. 4 is a schematic diagram of a channel allocation situation according to an embodiment of the present application.
- FIG. 5 is a schematic structural diagram of first channel allocation information according to an embodiment of the present disclosure.
- FIG. 6 is a schematic structural diagram of another first channel allocation information according to an embodiment of the present disclosure.
- FIG. 7 is a schematic structural diagram of still another first channel allocation information according to an embodiment of the present application.
- FIG. 8 is a schematic structural diagram of still another first channel allocation information according to an embodiment of the present disclosure.
- FIG. 9 is a schematic flowchart of another channel resource coordination and allocation method provided by an embodiment of the present application.
- FIG. 10 is a schematic structural diagram of system channel occupation information according to an embodiment of the present disclosure.
- FIG. 11 is a schematic structural diagram of another system channel occupation information according to an embodiment of the present disclosure.
- FIG. 12 is a schematic structural diagram of still another system channel occupation information according to an embodiment of the present application.
- FIG. 13 is a schematic flowchart of still another channel resource coordination and allocation method according to an embodiment of the present disclosure.
- FIG. 14 is a schematic flowchart of still another channel resource coordination and allocation method according to an embodiment of the present disclosure.
- FIG. 15 is a schematic structural diagram of a channel resource allocation information apparatus according to an embodiment of the present disclosure.
- FIG. 16 is a schematic structural diagram of another channel resource allocation information apparatus according to an embodiment of the present disclosure.
- FIG. 17 is a schematic structural diagram of still another channel resource allocation information apparatus according to an embodiment of the present disclosure.
- FIG. 18 is a schematic structural diagram of still another channel resource allocation information apparatus according to an embodiment of the present disclosure.
- the subchannel selective transmission (SST) mechanism defined by the 802.11ah protocol generally refers to that the access point AP can jump on multiple subchannels, so that the service association is Sites on each subchannel.
- Subchannel selective transmission is typically applied to networks with narrowband transmissions. Narrowband communication is susceptible to shadow fading and cannot communicate for a long time. Therefore, a narrowband communication site needs to select a subchannel with the best communication quality and jump to the subchannel to communicate with the access point AP. Therefore, a subchannel selective transmission mechanism is defined in the 802.11ah protocol, which supports APs to jump on multiple subchannels to serve multiple STAs with different optimal subchannels. The subchannel selective transmission mechanism enables the station to implement the process under the direction of the AP.
- the SST transmission can be applied to the application scenario as shown in FIG. 1.
- the access point AP 101 associates a plurality of sites.
- the AP may switch on multiple subchannels to serve multiple stations (Stations, referred to as STAs) that need different optimal subchannels, such as STA11 and STA12 shown in FIG.
- STAs stations
- the subchannel selection transmission mechanism defined in the 802.11ah protocol only considers the coordination and utilization of the channel in the architecture shown in FIG. 1, and fails to consider the relay network architecture (relay) as shown in FIG. Architecture) Coordination and utilization of the channel.
- the relay network shown in FIG. 2 when both the access point AP and the relay need to switch on multiple subchannels to serve multiple sites, the following problems may occur:
- the access point AP does not match the channel utilization of the relay: for example, when the AP uses the SST mechanism to communicate with the relay on the time interval 1 of the subchannel 1, and the relay uses the SST mechanism on the time interval 2 of the subchannel 1. In the case of communication with the access point AP, the AP cannot be successfully and relayed.
- a channel resource coordinated allocation method proposed by the embodiment of the present application can avoid an access point AP and a relayed channel when both the access point AP and the relay need to switch on multiple subchannels to serve multiple sites. The problem of not communicating due to mismatch.
- the communication system 200 illustrated in FIG. 2 is a relay network including: an access point AP 201, one or more parent relays (eg, relay 202 and relay 203), one or more sub-relays (eg, Relay 204), and one or more stations (station, referred to as STA).
- the parent relay and the access point AP can communicate with each other, and the parent relay can also communicate with the child relay, the STA of the station is associated with the child relay, and can communicate with the child relay; and, in the foregoing relay network
- a sub-relay is connected to a parent relay or an AP, and a parent relay can be associated with multiple sub-relays.
- the frame that the station needs to send to the access point AP can be forwarded to the access point AP via the relay, and the access is performed. Frames that the point AP needs to send to the station can also be forwarded to the station via the relay. .
- the sub-relay can also be connected to the next sub-relay.
- the access point AP, the number of the relays, and the number of the sites in the foregoing communication system 200 are merely exemplary.
- the embodiment of the present application takes a four-layer network as an example, that is, the four-layer network includes an access point AP. Parent relay, sub-relay, and site, but does not constitute a limitation on the embodiments of the present application.
- the parent relay may also be referred to as a parent node
- the child relay may also be referred to as a child node
- the definition of the parent node is relative
- the access point AP is The parent relay and the child relay may also be collectively referred to as a node.
- the relay 202 is a child node of the access point AP 201
- the access point AP 201 is a parent node of the relay 202 with respect to the access point AP 201
- Relative to relay 204, relay 202 is the parent of relay 204 and relay 204 is the child of relay 202.
- the STAs involved in the present application may be various user terminals, user equipments, access devices, subscriber stations, subscriber units, mobile stations, and the like.
- User agent, user equipment or other name wherein the user terminal may include various handheld devices with wireless communication capabilities, in-vehicle devices, wearable devices, computing devices or other processing devices connected to the wireless modem, and various forms of users User Equipment (UE), Mobile Station (MS), Terminal, Terminal Equipment, Portable Communication Equipment, Handheld, Portable Computing Equipment, Entertainment Equipment, Gaming Equipment or System,
- a global positioning system device or any other suitable device configured to communicate over a network via a wireless medium, or the like may also be an internet of things station (IoT STA) in an Internet of Things network.
- IoT STA internet of things station
- the devices mentioned above are collectively referred to as stations or STAs.
- the access point AP and the relay relay involved in the present application are devices deployed in a wireless communication network to provide wireless communication functions for a station STA, and the access point AP can be used as a backbone of the communication system, and the relay relay can be Used as an intermediate device in the communication system, the access point AP and the relay relay may be a base station, a router, a gateway, a relay, a communication server, a switch or a bridge, etc., wherein the base station may include various forms. Macro base station, micro base station, relay station, etc.
- the embodiment of the present application provides a channel resource coordination method, and a corresponding device.
- the method and device exchange information between the parent node and the child node, so that the time interval occupied by the child node on the working channel includes the time interval occupied by the parent node on the channel, ensuring that both the parent node and the child node need to perform the child.
- the communication time interval between the child node and the parent node on the working channel is matched, and the parent node and the child node are prevented from selecting different time intervals on the working channel, and communication cannot be performed.
- a working channel may generally include multiple subchannels, wherein when communication between two devices, one or more subchannels may be selected for communication, such a subchannel selected for communication. It can also be called a working channel.
- the working channel is a subchannel that selects the best communication quality or channel state.
- the channel occupation information of the node itself in the embodiment of the present application may be used to indicate the working time of the node on one or several subchannels.
- the system channel occupation information may be used to indicate time interval occupancy information on the scheduled subchannels in the entire system, and part of the time interval on the scheduled subchannel may be occupied by one or more nodes in the system, the Another portion of the time interval on the scheduled subchannel may or may not be occupied by any node.
- FIG. 3 is a schematic flowchart diagram of a method for coordinating allocation of channel resources according to an embodiment of the present application.
- the method includes:
- the parent node generates first channel allocation information.
- the parent node may be the access point AP 201 in the communication system 200, and may also be the parent relay 202.
- the access point AP 201 is a parent node
- the relay 202 and the relay 203 are child nodes of the AP 201.
- the relay 204 is a child node of the relay 202.
- the first channel allocation information includes: indication information for indicating a first time interval, where the first time interval is a working time of the parent node on the subchannel.
- the parent node is the access point AP201
- the child node is the relay 202, the relay 203, and the relay 204.
- the first channel allocation information includes indication information of the working time of the parent node on the working channel between the parent node and the child node (eg, relay 203).
- the working channel of the parent node and the child node is the subchannel 2
- the working time of the parent node on the subchannel 2 is the first time interval
- the first time interval is the dark gray time shown in FIG. 4.
- the first channel allocation information generated by the AP 201 includes indication information for indicating the time interval 2 (for example, the dark gray square in FIG. 4) on the subchannel 2.
- the first channel allocation information may further include indication information of the working time of the parent node on the other subchannels.
- the working time of AP 201 on other subchannels includes: dark gray time interval 1 on subchannel 3, time interval 3 on subchannel 1, and time interval 4 on subchannel 4, generated by AP 201.
- the first channel allocation information includes at least indication information indicating a time interval 2 (for example, a dark gray square in FIG. 4) on the subchannel 2, and may further include a dark gray for indicating the subchannel 3 Time interval 1, time interval 3 on subchannel 1, and indication information of time interval 4 on subchannel 4.
- the channel occupancy of the AP 201 itself is: time interval 2 on subchannel 2 (for example, dark gray square in FIG. 4), dark gray time interval on subchannel 3, time interval 3 on subchannel 1, subchannel Time interval 4 on 4.
- a subchannel for example, subchannel 2 for communication between a child node (for example, the relay 203) and a parent node (for example, the AP 201) may be agreed by a protocol; or the parent node may send Before the channel allocation information, the parent node determines the subchannel to communicate with the child node, and then the parent node notifies the determined child channel to the child node; or the child node determines the parent node before receiving the channel allocation information.
- a subchannel that communicates between the nodes, and the child node reports the determined subchannel to the parent node.
- the working time of the node on the channel refers to that the node can communicate with its associated node or station in the time interval on the channel; if the parent node is the AP 201 in FIG. 2, the AP 201 working time
- the interval is a dark gray square in FIG. 4, which means that AP 201 can have time interval 2 on subchannel 2 (for example, dark gray square in FIG. 4), time interval 1 on subchannel 3, and time interval on subchannel 1. 3.
- Data transmission is performed on time zone 4 on subchannel 4 with its child nodes (e.g., relay 203 or relay 202 or relay 201).
- the parent node sends the first channel allocation information to the child node.
- the parent node transmits the first channel allocation information to the child node, so that the child node determines the second channel allocation information according to the first channel allocation information.
- the parent node is the access point AP201, and the child node is the relay 203.
- the AP 201 sends the first channel allocation information to the relay 203. After receiving the first channel allocation information, the relay 203 does. It is known that the working time of the AP 201 on the subchannel 2 is dark gray time interval 2, and the working channel determined by the previous negotiation is the subchannel 2, and the relay 203 can be in the dark gray time interval 2 on the subchannel 2. Communicate with AP201.
- the child node generates second channel allocation information according to the first channel allocation information.
- the second channel allocation information includes: indication information indicating a second time interval in which the second device communicates with the child node of the second device on the subchannel; in order to ensure that the parent node is on the first time interval on the subchannel
- the child node may also communicate with the parent node on the subchannel
- the second time interval includes the first time interval.
- the second time interval including the first time interval can be understood as a time interval formed by the start time and the end time of the second time interval, including the start time and the end time of the first time interval.
- the start time of the second time interval is T1
- the end time is T2
- the time interval formed is [T1, T2]
- the start time of the first time interval is T3
- the end time is T4
- T1 ⁇ T3 is satisfied.
- the relay 203 determines that the working time of the AP 201 on the subchannel 2 is dark gray time interval 2, and the work determined by the previous negotiation is determined.
- the channel is a subchannel, and the relay 203 can communicate with the AP 201 on the time interval 2 on the subchannel 2. Further, in order to ensure normal communication with the AP 201, the relay 203 can communicate with the AP 201 on the light gray time interval 2 shown in FIG. 4 on the subchannel 2, and the light gray time interval 2 includes dark gray.
- the second channel allocation information generated by the relay 203 includes indication information for indicating the time interval 2 (for example, the light gray square in FIG. 4) on the subchannel 2.
- the second channel allocation information may further include: indication information indicating a working time of the child node on the other subchannels; the working time of the child nodes on the other subchannels is different from the second time interval.
- the working time of the relay 203 on the subchannel 2 includes at least: a light gray time interval 2
- the working time of the relay 203 may further include: a time interval 1 on the subchannel 1 and a subchannel 4 Time interval 3, time interval 4 on subchannel 3, that is, the station associated with relay 203 (eg, STA 31 and STA 32) can communicate with this relay 203 during the working time of relay 203, then relay
- the second channel allocation information generated by the 203 includes indication information indicating a light gray time interval 2 shown in FIG. 4 on the subchannel 2, and may further include time interval 1 on the subchannel 1 and subchannel 4.
- the first channel allocation information may be a subchannel selective transmission element SST element, or an RPS element or other cells.
- the child node sends second channel allocation information to the station associated with the child node.
- the second channel allocation information may also be a field included in the management frame, for example, the second channel allocation information is one element included in the beacon frame; in another example, the second channel allocation information is also Can be included in a new frame.
- the relay 203 sends the second channel allocation information to its associated stations, such as STA 31 and STA 32.
- the STA 31 and the STA 32 can learn the time interval that can be in the subchannel 1. 1.
- subchannel selection transmission is realized.
- the parent node when no sub-node occupies the sub-channel when the sub-channel is selected, the parent node may send the channel occupation information of the parent node to the child node through the first channel allocation information.
- one child node Before the parent node (AP201) performs subchannel selective transmission, one child node (for example, relay 202) performs selective transmission of the subchannel, and feeds back its own channel occupation information to the parent node, and the parent node
- the first channel allocation information may be generated according to the channel occupancy information fed back by the relay 202 to the parent node.
- the plurality of child nodes feed back the channel allocation status of the parent node to the parent node.
- the first channel allocation information may be generated for one of the child nodes (for example, the relay 203) according to the channel occupation information fed back by the plurality of child nodes.
- the indication information used to indicate the working time of the parent node on the subchannel may be referred to as the channel occupancy information of the parent node itself.
- the access point AP201 may send a beacon frame to the relay 203, where the beacon frame may carry the channel occupancy information of the access point AP itself, that is, the first channel allocation information, as shown in the dark gray square in FIG.
- the occupancy information of the parent node itself indicates that the parent node occupies time interval 1 on subchannel 3, time interval 2 on subchannel 2, time interval 3 on subchannel 1, subchannel
- the time interval 4 on 4 can communicate with the node associated with the parent node within the time interval.
- the channel occupancy information of the parent node itself may include:
- the time offset is used to indicate the start time of the earliest time interval of the start time of the working time of the parent node; for example, the time offset may be the start time of the first time interval, or may be the first time interval
- the first time interval refers to the earliest time interval of the start time.
- the number of time interval identifiers is used to indicate the number of time intervals in the working time of the parent node; for example, as shown in FIG. 4, the number of time intervals occupied by the parent node is 4.
- a subchannel identifier which is used to indicate a subchannel corresponding to each time interval in the working time of the parent node; for example, as shown in FIG. 4, the subchannels corresponding to the four time intervals included in the working time of the parent node are respectively subchannels. 3.
- Subchannel 2, subchannel 1 and subchannel 4. Therefore, the identifier of the four subchannels may be further included in the first channel allocation information, and the identifiers of the four subchannels are in one-to-one correspondence with the four time intervals.
- the working time of the parent node includes at least: the first time interval, such as the dark gray time interval 2 on the subchannel 2 in FIG.
- the working time of the parent node may further include: a working time interval of the parent node on other subchannels, such as a dark gray time interval 1 on the subchannel 3 shown in FIG. 4, and a dark gray time interval 3 on the subchannel 1. , dark gray time interval 4 on subchannel 4.
- the first channel allocation information further includes: a time length of the time interval in the working time of the parent node; The signaling overhead of effectively saving channel allocation information.
- the first channel allocation information further includes: an ending time of each time interval in the working time of the parent node.
- the first channel allocation information may further include: a length of time of each time interval in the working time interval of the parent node.
- FIG. 5 shows a data structure of an exemplary first channel allocation information in an embodiment of the present application.
- the first channel allocation information may include:
- the time offset field 501 is used to indicate the start time of the first time interval in the working time of the parent node, and the first time interval refers to the earliest time interval of the start time, for example, as shown in FIG. 4, this time
- the offset may be the start time of the time interval 1 on the subchannel 3, and may also be the offset of the start time of the time interval 1 on the subchannel 3 with respect to the end time of the frame carrying the first channel allocation information;
- the slot time length field 502 is used to indicate the length of time of the time interval in the working time of the parent node. For example, taking FIG. 4 as an example, if the time interval 1, the time interval 2, the time interval 3, and the time interval 4 are both 2 ms, the time slot length field 502 indicates 2 ms.
- the number of slots field 503 indicates the number of time intervals in the working time of the parent node. For example, as shown in FIG. 4, the number of time intervals occupied by the parent node is 4;
- a subchannel identification field 504 configured to indicate a subchannel corresponding to each time interval in the working time of the parent node, where the subchannel indicated by the subchannel identification field corresponds to a time interval; the subchannel identification field includes a subchannel The same number of subfields or segmentation bits, one of which is used to indicate one subchannel, and the order of the subfields corresponds to the order of the working time intervals. Taking FIG. 4 as an example, the first subfield indicates subchannel 3, the second subfield indicates subchannel 2, the third subfield indicates subchannel 1, and the fourth subfield indicates subchannel 4.
- the subfield may be a bit bitmap, where only one bit of the bit bitmap has a value different from that of other bits, and the position where the different bit is located indicates a subchannel.
- the working channel in the system includes 8 subchannels, and the number of subchannels occupied by the parent node is 4.
- bit bitmap occupying 8 bits is used to indicate a subchannel
- the value of the first subfield of the subchannel identifier field is 00100000, indicating subchannel 3, and corresponds to time interval 1; the value of the second subfield is 01000000, indicating subchannel 2, and corresponding to time interval 2
- the value of the third subfield is 10000000, indicating subchannel 1 and corresponding to time interval 1; the value of the fourth subfield is 00010000 indicating subchannel 4, corresponding to time interval 4.
- bit channel 01111111 can be used to indicate the subchannel 1 and the bit bitmap 11011111 is used to indicate the subchannel 3.
- the embodiment of the present application is not specifically limited.
- the subfield of the subchannel identification field 504 can be an identification of a subchannel.
- the working channel in the system includes 8 subchannels, and the number of subchannels occupied by the parent node is 4.
- the subfield can indicate one subchannel every 3 bits, the first sub
- the value of the field is 011, which can be used to indicate subchannel 3, corresponding to time interval 1;
- the value of the second subfield is 010, which is used to indicate subchannel 2, corresponding to time interval 2;
- the value of the third subfield is 001. It can be used to indicate subchannel 1, corresponding to time interval 3;
- the fourth subfield has a value of 100, which is used to indicate subchannel 4, corresponding to time interval 4.
- the first channel allocation information may further include: a periodic identifier field 505, configured to indicate whether the subchannel and the time interval occupied by the parent node have periodicity.
- the first channel allocation information may further include: a period number identification field 506, where the number of periods is indicated, indicating that the first channel allocation information is included The time interval allocation information on the subchannel will continue on the indicated period; when the periodic identifier indicates that there is no periodicity, it indicates that the channel allocation information is valid only in one cycle, and may not include the periodic number identification field. For example, a 1-bit indication period may be used.
- the bit value When the bit value is 0, it indicates that there is no period; when the bit is 1, it indicates that there is periodicity, and the periodic number identification field indicates the number of periods. A value of 3 indicates that during the second and third periods, the parent node is still the same as the subchannel and time interval occupied during the first period. It is to be understood that the meaning of the value of the bit is replaceable, and the embodiment of the present application is not specifically limited.
- the first allocation information may also not include the periodic number identifier.
- the periodic identifier includes multiple bits, for example, 2 bits, when the periodic identifier field is taken. When the value is 00, it indicates that there is no periodicity; when the value of the periodic identifier is greater than 0, for example, 10, the number of periods can be indicated as 3.
- the working time of the parent node includes the time interval 1, the time interval 2, the time interval 3, and the time interval 4, the length of the first channel allocation information is equal.
- the structure diagram can also be as shown in FIG. 6, wherein the time offset 601, the slot time length 602, the slot number 603, and the subchannel identification field 604 are similar to those in FIG. 5, and are not described herein again. 5 is different, the first channel allocation information in FIG.
- a total period duration field 607 which is used to indicate the total length of the period; when the total length of the period is greater than the length of the slot, When the time length is the product of the number of time slots indicated by the number of slots field, it indicates that there is periodicity, and the total time length of the period is indicated by the total length of time field; when the total length of the period is equal to the length of the time slot field When the time length of the finger is multiplied by the number of time slots indicated by the number of slots field, it indicates that there is no periodicity.
- the total duration indicated by the period total duration field is 16 ms, indicating that there is periodicity, including In two cycles, the total duration of the cycle is 16ms.
- the length of each time interval of the first channel allocation information allocation is the same, that is, the parent node allocates the same length of the time slot, which can reduce the information amount of the first channel allocation information, and save signaling overhead.
- FIG. 7 shows a data structure of still another exemplary first channel allocation information in the embodiment of the present application.
- the first channel allocation information may include:
- the time offset field 701, the time interval number field 702, and the subchannel identification field 703 are similar to the data structure of the first channel allocation information shown in FIG. 5, and details are not described herein again.
- the first channel allocation information further includes an end time field of each time interval; for example, the first end time field 704 indicates an end time of the time interval 1.
- the subchannel identification field 703 may be similar to the subchannel identification field 504 in FIG. 5, and may be implemented in a centralized indication manner, for example, as shown in FIG. 7, and details are not described herein again;
- the subchannel identification field 703 may also be implemented in the form of a distribution indication, such as shown in FIG. 8, before or after the end time field of each time interval (as shown in FIG. 8) or after (not shown in FIG. 8)
- the first channel allocation information further includes a subchannel identification subfield, the subchannel identifier subfield indicating the end of the subchannel followed by (as shown in FIG. 8) or before (not shown in FIG. 8)
- the first subchannel identifier subfield 803.1 and the first end time field 804.1 are taken as an example.
- the first subchannel identifier subfield 803.1 indicates subchannel 3
- the first end time field is used.
- 804.1 indicates the end time of the time interval 1 on the subchannel 3
- the mth subchannel identification field corresponds to the end time of the mth time interval.
- the first channel allocation information may further include a periodic identifier 805, configured to indicate whether the subchannel and the time interval occupied by the parent node are periodic.
- the periodic identifier 805 can be similar to the foregoing periodic identifier field 505, and details are not described herein again.
- the periodic identifier 805 may be similar to the foregoing total duration field 507. It should be noted that when the total length of the period indicated by the total duration field of the period is greater than the sum of the lengths of all the time intervals, the present invention exists. Periodicity; when the total period length of the period indicated by the period total duration field is equal to the sum of the lengths of all time intervals, there is no periodicity.
- the lengths of the respective time intervals included in the first channel allocation information may be different, so that the utilization of the channels by the parent node and the child nodes is more flexible.
- the first channel allocation information may be a field included in the management frame, for example, the first channel allocation information is one element included in the beacon frame; in another example, the first channel allocation information is further Can be included in a new frame.
- the child node After receiving the channel occupancy information of the parent node itself, the child node determines, according to the channel occupancy information of the parent node, which time interval on the child channel the parent node communicates with the child node, and the child node reassigns the child node and The sub-channel and time interval for communication between the sites associated with the child node, and generating channel occupancy information of the child node itself, that is, second channel allocation information.
- the second channel allocation information generated by the child node includes indication information indicating a second time interval on the subchannel, and the second time interval is the child node in the child
- the working time on the channel, and the indication information indicating the working time of the child node on other subchannels may be referred to as the channel occupancy information of the child node itself.
- the light gray square shown in FIG. 4 is an example of the channel occupancy of the child node itself, and the occupancy information of the child node indicates that the working time of the child node includes: time interval 1 on the subchannel 1, time on the subchannel 2. Interval 2, time interval 3 on subchannel 4 and time interval 4 on subchannel 3.
- the parent node (eg, AP 201) and the child node (eg, relay 203) may communicate on a dark gray time interval 2 on the subchannel 1 assigned by the parent node, the sites associated with the child nodes (eg, STA 31 and STA 32), Obtaining the channel occupancy information of the child node itself, and communicating with the child node in the time interval 1 on the subchannel 1 allocated by the child node, the time interval 3 on the subchannel 4, and the time interval 4 on the subchannel 3.
- the channel occupation information of the child node may include:
- the time offset is used to indicate the start time of the first time interval in the working time of the child node; and may also be used to indicate the start time of the first time interval in all time intervals relative to the second channel allocation information
- the time offset of the end time of the frame for example, as shown in FIG. 4, this time offset may be the start time of the time interval 1 on the subchannel 1.
- the number of time interval identifiers is used to indicate the number of time intervals in the working time of the child node.
- the working time of the child node includes the number of time intervals of 4;
- a subchannel identifier which is used to indicate a subchannel corresponding to each time interval in the working time of the child node; for example, as shown in FIG. 4, the subchannels corresponding to the four time intervals included in the working time of the child node are respectively subchannels. 1, subchannel 2, subchannel 4 and subchannel 3. Therefore, the identifier of the four subchannels may also be included in the second channel allocation information.
- All time intervals occupied by the child nodes may include: a time interval in which the child nodes operate on the other subchannels (eg, time interval 1, time interval 3, time interval 4 in FIG. 4), and a second time interval (eg, The light gray time interval in Figure 4);
- the second channel allocation information further includes: a time length of a time interval in the working time of the child node.
- the second channel allocation information further includes: an ending time of each time interval in the working time of the child nodes.
- the subchannel identifier included in the second channel allocation information has a one-to-one correspondence with the time interval occupied by the child nodes.
- the frame structure of the second channel allocation information is similar to the frame structure of the first channel allocation information, as shown in FIG. 5 and FIG. I won't go into details here.
- the frame structure of the second channel allocation information is similar to the frame structure of the first channel allocation information, as shown in FIG. 7 and FIG. I will not repeat them here.
- the child node after receiving the first channel allocation information, the child node can determine that the working time of the parent node on the working channel of the parent node and the child node is the first time interval, so that it can be determined that the parent node and the parent node can be in the first time interval. Communication is performed in a time interval. Therefore, in order to ensure that the parent node and the child node can communicate normally when the parent node operates in the first time interval, the working time of the child node on the working channel, that is, the second time interval includes the first time. Interval. For example, as shown in FIG.
- subchannel 2 is the working channel of the parent node and the child node
- the working time of the parent node on the subchannel 2 is dark gray time interval 2
- the working time of the child node on the working channel 2 is light gray time.
- Interval 2 ensures that when the parent node sends data to the child node in the dark gray time interval 2 on the subchannel 2, the child node can also receive the data in the matched time interval, avoiding the occurrence of the parent node on the subchannel 2.
- the time interval 2 communicates with the child node, and the child node works in the time interval 3 on the subchannel 2, so that the data transmitted by the parent node in the time interval 2 of the subchannel 2 cannot be received, thereby causing the parent node and the child node to fail to communicate.
- the time interval A on the parent node allocation subchannel 2 is prevented from communicating with the child node, and the child node is allocated on the subchannel 2.
- the time interval B communicates with the parent node, and finally the time interval A does not match the time interval B, thereby causing the parent node to communicate with the child node.
- FIG. 9 is a schematic flowchart diagram of a channel resource coordination scheduling method provided by an embodiment of the present application.
- the parent node may further send system channel occupation information to the child node, which is used to indicate occupation information of the time interval on the scheduled subchannel in the system.
- the child node may determine the second channel allocation information according to the system channel occupation information.
- the method includes:
- the parent node generates first channel allocation information.
- the parent node sends the first channel allocation information to the child node.
- the parent node generates system channel occupation information.
- the system channel occupation information may include: occupation information for indicating a time interval on the scheduled subchannel in the system. This system channel occupies information so that the child node selects a time interval on the subchannel that is not occupied or has a lower occupancy rate for communication with the site associated with the child node.
- the parent node does not receive any channel occupancy information fed back by any other child nodes before generating the system channel occupancy information
- the occupied time interval in the system includes: the parent The working time of the node on each subchannel (for example, the dark gray square in Figure 4).
- the system channel occupancy information includes: information used to indicate the occupancy of the working time of the parent node on each subchannel.
- the parent node before the parent node generates the system channel occupation information, the parent node also receives the channel occupancy information of the child nodes fed back by the other child nodes, and the parent node generates the system channel according to the channel occupancy information of the child nodes. Occupy information.
- the working time occupied by the channel of the system includes: the working time of the parent node on each subchannel (for example, the dark gray square in FIG. 4), and includes that other child nodes (excluding the parent node) occupy the respective subchannels. Working time (for example, the grid filled squares in Figure 4). Taking the parent node of FIG.
- the AP 201 can summarize the channel occupancy of the current system. Taking FIG. 4 as an example, if the relay 202 feeds back its own occupation: time interval 1 on subchannel 5, time interval 2 on subchannel 1, time interval 4 on subchannel 2, relay 204 feeds back its own occupation: subchannel Time interval 1 on 5, time interval 2 on subchannel 6, time interval 3 on subchannel 3, time interval 4 on subchannel 2.
- the working time occupied by the other sub-nodes (excluding the parent node) on each sub-channel in the system channel occupancy situation includes: time interval 1 on sub-channel 5, time interval 2 on sub-channel 1, 6, sub-channel 3 Time interval 3, and time interval 4 on subchannel 2, the working time of the parent node on each subchannel in the system channel occupancy situation includes: time interval 1 on subchannel 3, dark gray time interval on subchannel 2 2, time interval 3 on subchannel 1, and time interval 4 on subchannel 4; then the subchannels scheduled in the system include subchannels 1, 2, 3, 4, 5, 6, and the system channel generated by AP 201
- the occupancy information includes: occupancy information indicating time intervals on the subchannels 1, 2, 3, 4, 5, 6.
- time interval 2 on subchannel 1 is occupied by a basic service set
- time interval 2 and time interval 3 on subchannel 1 are occupied by only one basic service set
- time interval 2 on subchannel 2 is one.
- the basic service set occupies, the time interval 4 on subchannel 2 is occupied by two basic service sets, the time intervals 1 and 3 on subchannel 3 are all occupied by one basic service set, and the time interval 4 on subchannel 4 is a basic
- the service set occupies, time interval 1 on subchannel 5 is occupied by two basic service sets, and time interval 2 on subchannel 6 is occupied by a basic service set.
- the channel occupancy information of the system may include:
- time offset for indicating a start time of a time interval in which the start time of the working time on the scheduled subchannel in the system is the earliest; or, for indicating the earliest start time of the working time on the scheduled subchannel in the system
- the time offset of the start time of the time interval relative to the end time of the frame carrying the channel occupancy information of the system may be the start time of the time interval 1 on the subchannel 5, and may also be Is the offset of the start time of the time interval 1 on the subchannel 5 with respect to the end time of the frame carrying the channel occupancy information of the system;
- the number of time interval identifiers is used to indicate the number of scheduled time intervals on the subchannel; for example, referring to FIG. 4, the number of scheduled time intervals on each subchannel is 4.
- a subchannel identifier for indicating each of the subchannels to be scheduled for example, referring to FIG. 4, the scheduled subchannels in the system include subchannels 1, 2, 3, 4, 5, 6. Therefore, the identifier of the six subchannels is included in the channel occupancy information of the system.
- Subchannel time interval occupancy indicator in one example, the subchannel time interval occupancy indicator can be used to indicate whether each time interval in the scheduled time on the subchannel is occupied; in another example, the subchannel time interval The occupancy indicator can be used to indicate the number of basic service sets occupying each of the time intervals on the scheduled subchannel. For example, referring to FIG. 4, taking the second case as an example, according to the channel occupancy of the relay 202 and the relay 204, and the channel occupancy of the AP itself.
- the sub-channel time interval occupancy indicator generated by the AP 201 may indicate that the time interval 2 on the sub-channel 1 is occupied by two basic service sets, and the time interval 2 and the time interval 3 on the sub-channel 1 are occupied by only one basic service set.
- Time interval 2 on channel 2 is occupied by a basic service set
- time interval 4 on subchannel 2 is occupied by two basic service sets
- time intervals 1 and 3 on subchannel 3 are occupied by a basic service set
- subchannel Time interval 4 on 4 is occupied by a basic service set
- time interval 1 on subchannel 5 is occupied by two basic service sets
- time interval 2 on subchannel 6 is occupied by a basic service set.
- FIG. 10 is a schematic diagram showing a frame structure of an exemplary system channel occupation information according to an embodiment of the present application.
- the time interval included in the working time on the scheduled subchannel in the system is equal, the time interval may be referred to as a time slot, and the channel occupancy information of the system may include:
- a time offset field 1001 (which may be similar to the aforementioned time offset field 501), a slot length field 1002 (which may be similar to the aforementioned slot length field 502), a slot number field 1004 (which may be associated with the aforementioned time slot)
- the number field 503 is similar) and will not be described here;
- the channel occupancy information of the system further includes: a subchannel identification field 1003.
- the subchannel identification field 1003 can be similar to the foregoing subchannel identification field 904, and details are not described herein; in another example, the sub The channel identification field 1003 may also be implemented by a bit bitmap, where each bit in the bit bitmap corresponds to indicate whether one subchannel is scheduled.
- the system channel occupancy information may also include a time slot and subchannel occupancy indicator 1005 for indicating whether each time slot on each subchannel is occupied.
- the system channel occupancy situation in the second case shown in FIG. 4 is taken as an example for description.
- the total channel includes 8 subchannels in the whole system, and there are 6 subchannels scheduled, which are subchannel 1, subchannel 2, subchannel 3, subchannel 4, subchannel 5, and subchannel 6.
- time interval 2 and time interval 3 are occupied on subchannel 1; time interval 4 on subchannel 2 is occupied; time interval 3 on subchannel 3 is occupied; time interval 4 on subchannel 4 is occupied; Time interval 1 on subchannel 5 is occupied; time interval 2 on subchannel 6 is occupied.
- the number of slots field 1004 indicates that the number of available slots on the subchannel is 4; the subchannel identification field 1003.
- an 8-bit bitmap may be used, each bit A value of 1 may be allocated for the subchannel.
- the bit bitmap of 8 bits may be 11111100 to indicate subchannel 1, subchannel 2, subchannel 3, subchannel 4, subchannel 5, and subchannel. 6 is scheduled, it can be understood that each bit of the 8-bit bit bitmap can be 0 to indicate that the corresponding subchannel is scheduled, and the value of 00000011 can indicate subchannel 1, subchannel 2 Subchannel 3, subchannel 4, subchannel 5, and subchannel 6 are scheduled.
- the time slot and subchannel occupancy indicator 1005 may adopt a bit bitmap including 24 bits to indicate the occupation of 4 time slots on the 6 subchannels, as shown in Table 1 below.
- the corresponding time slot on the subchannel may be occupied.
- the corresponding time slot on the subchannel may be indicated as being unoccupied.
- the subchannel and the slot occupancy indicator 1005 may be preferentially identified in units of subchannels, that is, the first 4 bits indicate which time slots on the subchannel 1 are occupied, for example, 4 bits corresponding to the following subchannel 1
- the value is 0110, indicating that slot 2 (time interval 2) and slot 3 on the subchannel are occupied, the second 4 bits indicate which slots on subchannel 2 are occupied, and so on, then the subchannel
- the value of the slot occupancy identifier is 011001011010000110000100.
- the subchannel and the slot occupancy identifier may be identified by using a slot as a unit, that is, the first 6 bits indicate which subchannels corresponding to slot 1 are occupied.
- the first 6 bits have a value of 001010 indicating that subchannel 3 and slot 1 (time interval 1) on subchannel 5 are occupied, the second 6 bits indicate which subchannels of slot 2 are occupied, and so on.
- the value of the subchannel and the slot occupancy identifier may be 001010110001101000010100.
- the value of the corresponding bit of the corresponding time slot on the sub-channel in Table 1 is the value of the value of the value 1 and the value of the value 0 is replaceable.
- Time slot 1 Time slot 2
- Time slot 3 Time slot 4
- Subchannel 1 0 1 1 0
- Subchannel 2 0 1 0 1
- Subchannel 3 1 0 1 0
- Subchannel 4 0 0 0 1
- Subchannel 5 1 0 0 0
- Subchannel 6 0 1 0 0
- the system channel occupancy information includes a time offset field 1101 (which may be similar to the aforementioned time offset field 501) and a slot length field 1102 (which may be as described above)
- the slot length field 502 is similar
- the slot number field 1104 which may be similar to the foregoing slot number field 503
- the subchannel identification field 1103 similar to the subchannel identification field 1003 in FIG. 10 above
- the system channel occupancy information further includes a bit number indication field 1106, and the value indicated by the number of bits indication field 1106 plus 1 represents a sub-indicative The number of bits used in the occupancy of a time slot on the channel. For example, when the number of bits indicates that the field 1106 field is 0, the occupancy of a slot on a subchannel is represented by 1 bit, similar to the indication mode of FIG. 10; when the number of bits indicates the field 1106 When 1, the occupancy of a slot on a subchannel is represented by 2 bits. In this case, the number of bits of the slot and subchannel occupancy identifier 1107 is the slot and subchannel occupancy indicator 1104 in FIG. Double the number of bits.
- the 2 bits used to indicate the occupancy of a slot on a subchannel takes a value of 0, it indicates that the subchannel is not occupied on the corresponding slot, when used to indicate a subchannel.
- the value of the 2 bits of the slot occupancy is 1, it means that the corresponding subchannel has a basic service set (BSS) on the time slice, and 2 is used to indicate that the subchannel is corresponding.
- BSS basic service set
- Two BSSs are used on the slot.
- the 2 bits used to indicate the occupancy of a slot on a subchannel takes a value of 3
- time interval 2 on subchannel 1 is occupied by two basic service sets, and time interval 2 and time interval 3 on subchannel 1 are occupied by only one basic service set, and time interval on subchannel 2.
- 2 is occupied by a basic service set
- time interval 4 on subchannel 2 is occupied by two basic service sets
- time intervals 1 and 3 on subchannel 3 are occupied by a basic service set
- time interval 4 on subchannel 4 It is occupied by a basic service set.
- the time interval 1 on the subchannel 5 is occupied by two basic service sets
- the time interval 2 on the subchannel 6 is occupied by a basic service set.
- the channel occupancy of the system is as follows. As shown, the time slot and subchannel occupancy indicator 1107 can include 48 bits.
- the first 8 bits indicate the occupancy of all time slots of subchannel 1
- the second 8 bits indicate all time slots of subchannel 2. Occupancy, for example, the second 8 bits take the value 00010100, indicating that slot 2 (time interval 2) and time slot 4 (time interval 4) on subchannel 2 are occupied by two basic service sets, and so on. , can get time slots and subchannels Using the value of the identifier; in another example, the first 12 bits indicate the occupancy of the scheduled subchannel corresponding to slot 1, for example, the first 12 bits are 000001001000 indicating the slot 1 on the subchannel 5.
- time interval 1 on subchannel 3 is occupied by 1 basic service set, and the second 12 bits indicate occupancy of scheduled subchannels corresponding to time slot 2, and so on.
- the time slot and subchannel occupy the value of the identifier 1107.
- an exemplary frame structure of system channel occupancy information may be as shown in FIG. 12 when there are at least two time intervals of different time intervals occupied by respective devices in the entire system.
- the system channel occupancy information may include a time offset field 1201, which may be similar to the foregoing time offset field 1201, and details are not described herein again.
- the channel occupancy information of the system may further include an identifier for indicating time interval occupancy information on the plurality of groups of subchannels, wherein time interval occupancy information on each group of subchannels may include, the subchannel identifier, and the sub-channel identifier
- the occupancy of the time interval corresponding to the channel for example, taking the first group of subchannels as the subchannel 1 as an example in FIG. 12, the time interval occupancy information of the subchannel 1 includes: the subchannel 1 identifier 1202.1, and the subchannel 1 occupation time interval 1203.1.
- the sub-channel 1 occupied time interval field 1203.1 may further include: a time interval number 1204 for indicating the number of all time intervals of the occupied time interval on the sub-channel 1; and, each time in all the time intervals The start time and end time of the interval, for example, the time interval 1 start time 1205.1 and the time interval 1 end time 1206.1.
- the parent node sends system channel occupation information to the child node.
- system channel occupation information sent by the parent node to the child node may be carried by a single frame.
- the system channel occupation information may be used as a field of the management frame, and carried in the management frame and sent to the child.
- the node, the management frame may be a beacon frame; in another example, the system channel occupation information may also be a field as a new frame, carried in the new frame and sent to the child node.
- the order of the above steps S903 and S902 may be replaced; the above steps S903 and S904 may also be located before step S901 and step S902.
- the system channel occupation information may be carried in the same frame as the first channel allocation information and sent to the child node, or the system channel occupation information and the first channel allocation information may be carried in different frames respectively. Sent to the child node.
- the embodiments of the present application are not specifically limited.
- the child node of the parent node can also forward the channel occupancy information of the system, so that the system channel occupation information can be spread from top to bottom to each node, so as to facilitate each node. Generate its own channel occupancy information to reduce the chances of collisions and collisions in channel usage.
- the access point AP 201 transmits system channel occupation information to the relay 202 and the relay 203, and the relay 202 can further forward the system channel occupation information to the relay 204, so that the relay 204 can acquire the system channel. Occupation situation.
- the child node generates second channel allocation information according to the first channel allocation information and the system channel occupation information.
- the child node After receiving the first channel allocation information, the child node generates second channel allocation information according to the channel occupancy information of the parent node and the system channel occupancy information.
- the second channel allocation information includes: indication information indicating a second time interval in which the child node communicates with the child station of the child node on the subchannel, and the second time interval includes the first time interval.
- the child node in order to ensure that the parent node communicates with the child node in the first time interval on the subchannel (the working channel of the parent node and the child node), the child node may also be on the child channel with the parent.
- the node communicates, the working time of the child node on the working channel is the second time interval, and the second time interval includes the first time interval.
- the second channel allocation information may further include: indication information indicating a working time of the child node on the other subchannels.
- indication information indicating a working time of the child node on the other subchannels.
- the child node can know which time intervals on which subchannels in the system are occupied according to the received system occupation information. Therefore, when the child node allocates working time on other subchannels, it tries to avoid the time interval on the occupied subchannel as its own working time, or tries to select the subchannel with lower occupancy rate. The time interval is used as its own working time.
- the child node selects the time interval on the unoccupied subchannel as the working time of the child node on the other subchannels.
- the relay 203 uses the system channel occupation information sent by the AP 201. It is determined that the time interval 2 on the subchannel 1 is occupied by a basic service set, and the time interval 2 and the time interval 3 on the subchannel 1 are occupied by only one basic service set, and the time interval 2 on the subchannel 2 is used as a basic service set. Occupancy, time interval 4 on subchannel 2 is occupied by two basic service sets, time intervals 1 and 3 on subchannel 3 are occupied by a basic service set, and time interval 4 on subchannel 4 is occupied by a basic service set.
- Time interval 1 on subchannel 5 is occupied by two basic service sets, and time interval 2 on subchannel 6 is occupied by a basic service set.
- relay 203 selects time interval 1 on subchannel 1,
- the time interval 3 on the subchannel 4 and the time interval 4 on the subchannel 3 serve as the operating time of the relay 203 on other subchannels than the subchannel 2.
- the second channel allocation information generated by the relay 203 includes: a light gray time interval 2 for indicating the subchannel 2, and a time interval 1 on the subchannel 1, and a time interval 3 and subchannels on the subchannel 4.
- the child node when the subchannel time interval occupancy identifier included in the system channel occupation information is used to indicate the number of basic service sets occupying each time interval on each subchannel of the scheduled subchannel, the child node
- the sub-channel time interval occupancy indicator may indicate that the number of basic service sets occupying the time interval on some subchannels is zero, or the number of basic service sets indicating that the time interval on some subchannels is occupied is less than or equal to the preset.
- the relay 203 determines that the time interval 2 on the subchannel 1 is occupied by a basic service set according to the system channel information transmitted by the AP 201, and the time interval 2 and the time interval 3 on the subchannel 1 are only
- a basic service set occupies, time interval 2 on subchannel 2 is occupied by a basic service set, time interval 4 on subchannel 2 is occupied by two basic service sets, and time intervals 1 and 3 on subchannel 3 are both
- the basic service set occupies, the time interval 4 on subchannel 4 is occupied by a basic service set, the time interval 1 on subchannel 5 is occupied by two basic service sets, and the time interval 2 on subchannel 6 is occupied by a basic service set.
- the relay 203 can select the time interval in which the number of basic service sets occupied is less than or equal to 1 as the working time of the relay 203 on other subchannels other than the subchannel 2 (not shown in FIG. 4). It is to be understood that the preset value is flexible and can be set and adjusted. The embodiment of the present application is not specifically limited.
- the slave node when the slave node selects its working time, it can avoid the coincidence degree of channel utilization among multiple relays, reduce the probability of collision and collision, and improve the system efficiency.
- the child node sends second channel allocation information to the station associated with the child node.
- the parent node interacts with the child node to occupy channel information to coordinate the interests of the subchannel resources in the system, thereby effectively reducing channel reciprocal utilization between multiple nodes, reducing channel utilization conflicts and collision probability.
- FIG. 13 is a schematic flowchart diagram of another channel resource coordination scheduling method provided by an embodiment of the present application. Different from the embodiment shown in FIG. 3, in this embodiment of the present application, the child node sends its own channel occupation information to the parent node, so that the parent node determines the channel occupancy of the parent node according to the channel occupancy information of the child node itself. information.
- the method includes:
- the child node generates second channel allocation information.
- the embodiment of the present application sends the generated second channel allocation information to the parent node by the child node, so that the parent node generates the first channel allocation information, where the second channel allocation information includes: the first time interval for indicating the subchannel.
- the indication information, the second time interval is the working time of the child node on the subchannel.
- the subchannel is a working channel between the parent node and the child node, and the determining method is referred to step S301.
- the second channel allocation information may also include: a working time of the child node on other subchannels except the subchannel.
- the working time of the relay 203 includes: shallow on the subchannel 2 (working channel) Gray time interval 2, time interval 1 on subchannel 1, time interval 3 on subchannel 4, time interval 4 on subchannel 3.
- the second channel allocation information includes: indication information indicating a light gray time interval 2 on the channel 2 (working channel), and further includes: a time interval 1 on the subchannel 1 and a time on the subchannel 4. Interval 3, time interval 4 on subchannel 3.
- the frame structure of the second channel allocation information may be as shown in FIG. 5 or FIG. 6 , and details are not described herein again.
- the second channel allocation information further includes: an ending time of each time interval in the working time of the child node.
- the second channel allocation information may further include: a length of time of each time interval in the working time of the child node.
- the structure of the second channel allocation information may be as shown in FIG. 7 or 8, and details are not described herein again.
- the child node sends second channel allocation information to the parent node.
- the child node transmits the second channel allocation information to the parent node, so that the parent node determines the first channel allocation information according to the second channel allocation information.
- the first channel allocation information may be a field included in the management frame, for example, the first channel allocation information is one element included in the beacon frame; in another example, the first channel allocation information may be Included in a new frame.
- the child node when the child node is a relay node and is associated with a relay node downward, the child node can also forward its own channel allocation information sent by the child node of the child node to adopt the bottom-up
- the above method summarizes the channel allocation of the nodes in the entire system to the access point AP, so as to facilitate the access point AP to acquire the system channel occupation information.
- the relay 204 transmits its own channel occupation information to the relay 202, and the relay 202 forwards the channel occupancy information of the relay 204 itself to the access point AP201 to facilitate the access point AP to determine the system channel. Occupy information.
- the parent node generates first channel allocation information according to the second channel allocation information.
- the parent node generates first channel allocation information according to the second channel allocation information. According to the received second channel allocation information, the parent node can learn that the working time of the child node on the working channel is the second time interval, so to ensure that the child node can receive the parent in the second time interval on the working channel.
- the parent node allocates the first time interval on the working channel as the working time, and the second time interval includes the first time interval.
- the working channel of the AP 201 and the relay 203 is the subchannel 2
- the AP 201 knows that the working time of the relay 203 on the subchannel 2 is shallow according to the second channel allocation information sent by the relay 203.
- the AP 201 allocates the dark gray time interval 2 on the subchannel 2 as the working time according to the above principle.
- the first channel allocation information generated by the parent node may further include: indicating a time interval on the other subchannels, where the other subchannels are other than the working channel between the parent node and the child nodes in the system.
- the subchannel, the time interval on the other subchannels is the time interval of the parent node on other subchannels.
- the working time of the parent node includes time interval 1 on subchannel 3, time interval 3 on subchannel 1, and subchannel 4, in addition to time interval 2 including dark gray on subchannel 2.
- the time interval on the 4th is the working time of the parent node on other subchannels.
- the first channel allocation information may be similar to the first channel allocation information in the foregoing example, and the specific data structure may also be as shown in FIG. 5. Or as shown in Figure 6, it will not be repeated here;
- the first channel allocation information may be similar to the first channel allocation information in the foregoing example, and the specific data structure may also be as shown in FIG. 7. And Figure 8 shows. .
- the parent node sends second channel allocation information to the child node including the child node.
- the parent node sends second channel allocation information to the child nodes including the child node, so that the child node knows which time intervals of which subchannels the child node can communicate with the parent node.
- the AP 201 generates second channel allocation information according to the first channel allocation information sent by the relay 203, and sends the second channel allocation information to the relay 202, and the relay 204, the relay 202 and the medium.
- the time interval 2 of the parent node on the subchannel 2 communicates with the child node, and the child node works in the time interval 3 on the subchannel 2, so that the parent node cannot be received in the subchannel.
- the data transmitted within the time interval 2 of 2 causes the parent node to communicate with the child node and cannot communicate.
- FIG. 14 is a schematic flowchart diagram of a channel resource coordination scheduling method provided by an embodiment of the present application.
- the child node may also send system channel occupation information to the parent node, so that the parent node determines the occupation information of the parent node according to the system channel occupation information and the occupancy information of the child node itself.
- the method includes:
- the child node generates first channel allocation information.
- the child node sends the first channel allocation information to the parent node.
- S1403 The child node generates system channel occupation information.
- step S903 the system channel occupancy information is generated by the child node and sent to the parent node.
- the system channel occupancy information includes: occupancy information indicating a time interval on the scheduled subchannels in the system.
- the system channel occupancy information is such that the parent node selects a time interval on the subchannel that is not occupied or has a low occupancy rate as its working time for communicating with the child node of the parent node.
- the child node does not receive any channel occupancy information sent by any other child nodes before generating the system channel occupancy information
- the occupied time interval in the system includes: The working time of the node on each subchannel (for example, the light gray square in Figure 4).
- the system channel occupancy information includes: information indicating the occupancy of the working time of the child nodes on the respective subchannels.
- the child node receives the channel occupancy information of the child nodes fed back by the other child nodes before generating the system channel occupancy information, and the child nodes according to the channel of the child nodes themselves. Occupancy information, generate channel occupancy information of this system.
- the working time occupied by the channel of the system includes: the working time of the child nodes on each subchannel (for example, the light gray square in FIG. 4), and includes that other child nodes (excluding the parent node) occupy the respective subchannels.
- Working time for example, the grid filled squares in Figure 4).
- step S903 For the structure of the channel occupancy information of the system, refer to step S903.
- An example of the data structure may be as shown in FIG. 10 or FIG. 11 , and details are not described herein again.
- S1404 The child node sends system channel occupation information to the parent node.
- step S904 Similar to step S904, the difference is that the system channel occupancy information is sent by the child node to the parent node.
- the order of the above steps S1403 and S1402 may be replaced; the above steps S1403 and S1404 may also be located before step S1401 and step S1402.
- the system channel occupation information may also be carried in the same frame and sent to the parent node in the same frame allocation information.
- the system channel occupation information and the first channel allocation information may be respectively carried in In different frames and sent to the parent node.
- the embodiments of the present application are not specifically limited.
- the parent node generates second channel allocation information according to the first channel allocation information and the system channel occupation information.
- the difference is that after receiving the first channel allocation information, the parent node generates second channel allocation information according to the channel occupancy information of the child node and the system channel occupancy information.
- the child node may also be on the child channel with the parent.
- the node communicates, the working time of the child node on the working channel is the second time interval, and the second time interval includes the first time interval.
- the second channel allocation information further includes: indication information indicating a working time of the parent node on the other subchannels.
- indication information indicating a working time of the parent node on the other subchannels.
- the parent node can know which time intervals on which subchannels in the system are occupied according to the system occupancy information that is never received. Therefore, when the parent node allocates the working time of the parent node on other subchannels, it tries to avoid the time interval on the occupied subchannel as its own working time, or tries to select the child with lower occupancy rate. The time interval on the channel is taken as its own working time.
- the parent node selects the time interval on the unoccupied subchannel as the working time of the parent node on the other subchannels.
- the AP 201 determines that the time interval of the grid filling in FIG. 4 is occupied according to the system channel occupancy information sent by the relay 203, and the light gray time interval in FIG. 4 is occupied, and the AP 201 selects.
- the time interval other than the time interval of the grid filling and the time interval of the light gray, as the working time of the AP 201 on other subchannels for example, the time interval 1 on the subchannel 3, the time interval 4 on the subchannel 1 , time interval 4 on subchannel 4. Therefore, the first channel allocation information generated by the AP 201 includes: indication information indicating time interval 1 on the subchannel 3, time interval 4 on the subchannel 1, time interval 4 on the subchannel 4, and Indicates indication information of the dark gray time interval 2 on the subchannel 2.
- the parent node when the subchannel time interval occupancy identifier included in the system channel occupation information is used to indicate the number of basic service sets occupying each time interval on each subchannel of the scheduled subchannel, the parent node
- the sub-channel time interval occupancy indicator may indicate that the number of basic service sets occupying the time interval on some subchannels is zero, or the number of basic service sets indicating that the time interval on some subchannels is occupied is less than or equal to the preset.
- the embodiment of the present application is not specifically limited. According to the channel occupancy information of the system, when the parent node selects its working time, the coincidence degree of channel utilization between multiple relays can be avoided as much as possible, the probability of collision and collision is reduced, and the system efficiency is improved.
- the parent node sends second channel allocation information to the child node.
- the method further includes the step S1407, the child node sending the second channel allocation information to the site associated with the child node.
- the child node may further send the second channel allocation information to the site associated with the child node, so that the site associated with the child node receives the second channel allocation information, and then learns that the child can be associated with the child. Which time intervals of which subchannels the node communicates.
- step S1407 may be sent after step S1401.
- step S1407 may occur simultaneously with step S1402, or may occur before step S1402, or may occur after step S1402.
- the parent node interacts with the child node to occupy channel information to coordinate the utilization of the subchannel resources in the system, thereby effectively reducing channel reuse and utilization among multiple nodes, and reducing channel utilization conflicts and collision probability.
- the parent node needs to use subchannel selection transmission to communicate with other nodes, and the parent node can initiate subchannel selective transmission, for example, using the method shown in FIG. 3 to implement subchannel selectivity. Transmission; in another allocation period, when the child node needs to use subchannel selective transmission, the method shown in FIG. 6 can be adopted.
- the parent node and the child node in the embodiment of the present application can also generate their own channel occupation information according to the system channel occupation information in the process of interaction.
- the parent node receives the system channel occupation information sent by the child node, and according to the occupancy identifier in the system channel occupation information, the occupancy of the time interval on the subchannel in the system can be known, so the parent node can generate its own channel occupation.
- the time interval on the subchannel that is not occupied or occupied is selected as much as possible for communication with the child node associated with it; in another example, the child node receives the system channel occupation information sent by the parent node, according to the system channel
- the occupied identifier in the occupied information can be used to know the occupancy of the time interval on the subchannel in the system. Therefore, the child node can generate its own channel occupation information, and can select the time interval on the subchannel that is not occupied or has a low occupancy rate. Used to communicate with its associated child nodes or sites. Therefore, the degree of coincidence of channel utilization can be reduced, and multiple nodes can be prevented from selecting time intervals on the same subchannel for communication, and an unoccupied time interval can be utilized, which not only improves channel utilization but also improves communication quality.
- both the access point AP 201 and the relay 203 need to switch back and forth on multiple subchannels to communicate with other nodes (such as parent nodes and child nodes) by using subchannel selection transmission.
- the relay 202 does not need to communicate by means of subchannel selection transmission.
- the access point AP 201 can transmit a beacon frame to the relay 203, which carries the channel occupancy information of the access point AP itself, that is, the first channel allocation information. Based on the first channel allocation information, the relay 203 generates its own channel occupancy information to ensure that the time interval of the relay 203 on the working channel with the access point AP 201 includes the time allocated by the access point AP on the working channel. Interval.
- both the access point AP 201 and the relay 202 need to switch back and forth on multiple subchannels to communicate with other nodes (e.g., parent nodes and child nodes) using subchannel selective transmission.
- the relay 203 does not need to use the subchannel selection transmission to communicate with other nodes before, but the subchannel selection transmission mode is adopted due to the increase of the subnodes or sites associated with the relay 203; or, because the relay 203 and the middle
- the relay 203 may acquire the channel occupation information of the access point AP 201 itself, and the system channel occupancy. information. Based on the channel occupancy information transmitted by the access point AP 201 and the system channel occupancy information, the channel occupancy information of the channel can be allocated according to the following principles:
- the working time of the relay 203 on the working channels of the relay 203 and the AP 201 includes the working time of the access point AP on the working channel of the relay 203 and the access point AP 201;
- the relay 203 selects an unoccupied time interval or a time interval with a low occupancy rate, and serves as a relay working time for the relay 203 to communicate with its associated node or station.
- the relay 203 can ensure the matching communication between the relay 203 and the access point AP 201, and can also try to stagger the time interval occupied by the system as much as possible, and avoid the time interval and the connection of the relay 203 as much as possible.
- the collision of the time interval occupied by the ingress AP 201 and the relay 202 can improve the channel utilization.
- the access point AP 201 is in the first beacon period, because there are fewer associated nodes, for example, only the relay 202 is associated with the access point AP 201. At this time, the access point AP 201 The subchannel selection transmission is not used to communicate with the relay 202. In the second beacon period, the access point AP needs to adopt the subchannel after the new node joins, for example, the relay 203 is associated with the access point AP201. The transmission is selected to communicate with the relay 202 and the relay 203. At this time, in the first beacon period, the relay 202 may send the first beacon frame carrying the first channel allocation information to the access point AP201 to report its channel occupancy information to the access point AP201.
- the access point AP 201 determines the channel allocation situation, that is, the second channel allocation information, according to the first channel allocation information sent by the relay 202, where the channel allocation of the access point AP 201 itself is satisfied.
- the relay 202 is within the time period, the occupied subchannel is the work between the access point AP and the relay 202.
- the channel, the access point AP201 and the relay 202 can communicate during the time period; if the relay 202 is within the time period, the occupied subchannel is not the working channel between the access point AP and the relay 202, Then, the access point AP201 may send a second beacon frame to the relay 202, where the second beacon frame indicates that the access point AP201 can be in the access point AP and the time interval after the second beacon frame is sent. Communicate with the relay 202 on the working channel between 202, further After the second relay 202 receives the beacon frame can be adjusted to occupy its own channel, to meet the access point AP at the time interval occupied by a relay operating channels 202 on working channel occupancy time interval comprises.
- a method for coordinating allocation of channel resources according to an embodiment of the present application is described in detail above, and an apparatus for coordinated allocation of channel resources according to an embodiment of the present application will be described below.
- the embodiment of the present application describes in detail the schematic structure of the channel resource allocation apparatus on the parent node side.
- FIG. 15 shows a schematic block diagram of an apparatus 1500 for channel resource coordinated allocation in an embodiment of the present application.
- the device 1500 in the embodiment of the present application may be a parent node in the foregoing method embodiment, or may be one or more chips in the parent node.
- Apparatus 1500 can be used to perform some or all of the functions of the parent node in the above method embodiments.
- the device 1500 can include a processing module 1510 and a transceiver module 1520.
- the device 1500 can further include a storage module 1530.
- processing module 1510 may be configured to perform step S301 in the foregoing method embodiment, or to perform steps S901, S903, and S905, or to perform step S1303, or to execute 1405.
- the transceiver module 1520 may be configured to perform step S302 in the foregoing method embodiment, or to perform steps S902 and S904, or to receive second channel allocation information from the child node in step S1302 and to perform step S1304, Or for receiving the second channel allocation information from the child node in step S1402, the system channel occupation information from the child node in step S1404, and performing step S1406.
- the device 1500 can also be configured as a general purpose processing system, such as generally referred to as a chip
- the processing module 1510 can include one or more processors that provide processing functionality;
- the transceiver module 1520 can be, for example, an input/output interface, Pin/circuit, etc.
- the input/output interface can be used to be responsible for the information exchange between the chip system and the outside world.
- the input/output interface can output the first channel allocation information generated by the parent node to other modules outside the chip for processing.
- the processing module can execute computer execution instructions stored in the storage module to implement the functions of the parent node in the above method embodiment.
- the optional storage module 1530 in the device 1500 may be a storage unit in the chip, such as a register, a cache, etc., and the storage module 1530 may also be a storage unit located outside the chip in the parent node.
- ROM read-only memory
- RAM random access memory
- FIG. 16 shows a schematic block diagram of another apparatus 1600 for channel resource coordination allocation in an embodiment of the present application.
- the device 1600 of the embodiment of the present application may be a parent node in the foregoing method embodiment, and the device 1600 may be used to perform some or all functions of the parent node in the foregoing method embodiment.
- the apparatus 1600 can include a processor 1610, a baseband circuit 1630, a radio frequency circuit 1640, and an antenna 1650.
- the apparatus 1600 can further include a memory 1620.
- the various components of device 1600 are coupled together by a bus 1660 that includes, in addition to the data bus, a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 1660 in the figure.
- the processor 1610 can be used to implement control of the parent node for performing the processing performed by the parent node in the foregoing embodiment, and can perform the processing involving the parent node in the foregoing method embodiment and/or for the technology described in the present application.
- Other processes can also run an operating system that is responsible for managing the bus and can execute programs or instructions stored in memory.
- the baseband circuit 1630, the radio frequency circuit 1640, and the antenna 1650 can be used to support the transmission and reception of information between the parent node and the child nodes involved in the above embodiments to support wireless communication between the parent node and the child node.
- the second channel allocation information sent from the child node is received via the antenna 1650, filtered, amplified, down-converted, digitized, etc. by the radio frequency circuit 1640, and then decoded by the baseband circuit 1630, and the baseband is decapsulated by the protocol.
- the processor 1610 After processing, the processor 1610 performs processing to recover the service data and signaling information sent by the child node; in yet another example, the first channel allocation in the parent node for indicating the working time interval of the parent node on the subchannel
- the information may be processed by the processor 1610, and subjected to baseband processing by a baseband circuit 1630, such as protocol encapsulation, encoding, etc., and further subjected to radio frequency processing such as analog conversion, filtering, amplification, and up-conversion by the radio frequency circuit 1640, and then transmitted through the antenna 1650.
- the memory 1620 can be used to store program code and data of the parent node, and the memory 1620 can be the memory module 1530 in FIG. It can be understood that the baseband circuit 1630, the radio frequency circuit 1640, and the antenna 1650 can also be used to support the parent node to communicate with other network entities, for example, to support the parent node to communicate with the network element on the core network side.
- the memory 1620 of Figure 16 is shown separate from the processor 1610, however, it will be readily apparent to those skilled in the art that the memory 1620, or any portion thereof, can be located outside of the channel resource allocation device 1600.
- memory 1620 can include transmission lines, and/or computer products separate from wireless nodes, all of which can be accessed by processor 1610 through bus interface 1660.
- memory 1620, or any portion thereof may be integrated into processor 1610, for example, may be a cache and/or a general purpose register.
- Figure 16 only shows a simplified design of the parent node.
- the parent node may contain any number of transmitters, receivers, processors, memories, etc., and all parent nodes that can implement the present invention are within the scope of the present invention.
- the channel resource allocation device on the parent node side can also be implemented by using one or more field-programmable gate arrays (FPGAs) and programmable logic devices (programmable logic devices).
- FPGAs field-programmable gate arrays
- programmable logic devices programmable logic devices
- Device, PLD programmable logic devices
- state machine gate logic
- discrete hardware components any other suitable circuitry, or any combination of circuitry capable of performing the various functions described throughout this application.
- the embodiment of the present application further provides a computer storage medium, where the computer storage medium may store program instructions for indicating any of the foregoing methods, so that the processor executes the program instructions to implement the foregoing method embodiments.
- FIG. 17 shows a schematic block diagram of an apparatus 1700 for channel resource coordinated allocation in an embodiment of the present application.
- the device 1700 in this embodiment may be a child node in the foregoing method embodiment, or may be one or more chips in the child node.
- Apparatus 1700 can be used to perform some or all of the functions of the child nodes in the above method embodiments.
- the device 1700 can include a processing module 1710 and a transceiver module 1720.
- the device 1700 can further include a storage module 1730.
- processing module 1710 may be configured to perform step S303 in the foregoing method embodiment, or to perform step S905, or to perform step S1301, or to perform step S1401 and step S1403;
- the transceiver module 1720 may be configured to receive, by the child node, the first channel allocation information from the parent node in step S302 in the foregoing method embodiment, or to receive the information from the parent node in step S902 and step S904, or to perform the step. S1302, or for performing step S1402 and step S1404 and step S1407;
- the device 1700 can also be configured as a general purpose processing system, such as generally referred to as a chip, and the processing module 1710 can include one or more processors that provide processing functions; the transceiver module can be, for example, an input/output interface, a tube
- the input/output interface can be used to perform information exchange between the chip system and the outside world.
- the input/output interface can output the second channel allocation information generated by the child node to other modules outside the chip for processing.
- the one or more processors can execute computer executed instructions stored in the storage module to implement the functions of the child nodes in the above method embodiments.
- the optional storage module 1730 included in the device 1700 may be a storage unit within the chip, such as a register, a cache, etc., and the storage module 1730 may also be a storage unit located outside the chip within the child node.
- ROM read-only memory
- RAM random access memory
- FIG. 18 is a schematic block diagram of another apparatus 1800 for channel resource coordination allocation in an embodiment of the present application.
- the device 1800 of the embodiment of the present application may be a child node in the foregoing method embodiment, and the device 1800 may be used to perform some or all functions of the child node in the foregoing method embodiment.
- the apparatus 1800 can include a processor 1810, a baseband circuit 1830, a radio frequency circuit 1840, and an antenna 1850.
- the apparatus 1800 can further include a memory 1820.
- the various components of device 1800 are coupled together by a bus 1860, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 1860 in the figure.
- the processor 1810 can be used to implement control of the child nodes for performing the processing performed by the child nodes in the foregoing embodiments, and can perform the processing involving the parent node in the foregoing method embodiments and/or for the techniques described in the present application.
- Other processes can also run an operating system that is responsible for managing the bus and can execute programs or instructions stored in memory.
- the baseband circuit 1830, the radio frequency circuit 1840, and the antenna 1850 can be used to support the transmission and reception of information between the child node and the parent node involved in the above embodiment to support wireless communication between the child node and the parent node.
- the first channel allocation information sent by the parent node is received via the antenna 1850, processed by the RF circuit, filtered, amplified, down-converted, digitized, etc., and then decoded by the baseband circuit, decapsulated by the protocol, and the like.
- the baseband processing such as encoding is further processed by the RF circuit 1840 for analog conversion, filtering, amplification, and up-conversion, and then transmitted through the antenna 1850.
- the memory 1820 can be used to store the program code and data of the parent node, and the memory 1820 can be a map. Storage module 1730 in 17. It can be understood that the baseband circuit 1830, the radio frequency circuit 1840, and the antenna 1850 can also be used to support the child node to communicate with other network entities, for example, to support the child node to communicate with the site associated with the child node, for example, in FIG. STA shown.
- Figure 18 only shows a simplified design of the child nodes.
- a child node may contain any number of transmitters, receivers, processors, memories, etc., and all child nodes that can implement the present invention are within the scope of the present invention.
- the channel resource allocation device on the child node side can also be implemented by using one or more field-programmable gate arrays (FPGAs) and programmable logic devices (programmable logic devices).
- FPGAs field-programmable gate arrays
- programmable logic devices programmable logic devices
- the embodiment of the present application further provides a computer storage medium, where the computer storage medium may store program instructions for indicating any of the foregoing methods, so that the processor executes the program instructions to implement the foregoing method embodiment.
- the processor involved in the foregoing apparatus 1600 and the apparatus 1800 may be a general-purpose processor, such as a general-purpose central processing unit (CPU), a network processor (NP Processor, NP), a microprocessor, etc., or may be an application-specific integrated circuit ( Application-specific integrated circBIt (ASIC), or one or more integrated circuits for controlling the execution of the program of the present application. It can also be a Digital Signal Processor (DSP), a Field-Programmable Gate Array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component.
- DSP Digital Signal Processor
- FPGA Field-Programmable Gate Array
- the controller/processor may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
- the processor typically performs logical and arithmetic operations based on program instructions stored in the memory.
- the memory involved in the above apparatus 1600 and apparatus 1800 may also hold an operating system and other applications.
- the program can include program code, the program code including computer operating instructions.
- the above memory may be a read-only memory (ROM), other types of static storage devices that can store static information and instructions, a random access memory (RAM), and a storable memory. Other types of dynamic storage devices, disk storage, and the like for information and instructions.
- the memory can be a combination of the above types of storage.
- the computer readable storage medium/memory described above may be distributed in the processor, external to the processor, or on multiple entities including the processor or processing circuitry.
- the computer readable storage medium/memory described above may be embodied in a computer program product.
- a computer program product can include a computer readable medium in a packaging material.
- the disclosed system, apparatus, and method may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
- the computer program product includes one or more computer instructions.
- the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
- the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center via wired (eg, coaxial cable, fiber optic, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
- the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
- the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (eg, a solid state hard disk).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供一种信道资源协调分配方法和装置,该方法在中继网络中,通过父节点和子节点之间的信道分配信息的交互,确保子节点在子信道上工作时间区间包含父节点在子信道上分配的工作时间区间,该子信道可以为父节点和子节点之间相互通信的工作信道,使得父节点和子节点进行子信道选择传输时,避免出现父节点和子节点之间通信不匹配而造成无法正常通信的问题,并实现了多个信道的协调和利用.
Description
本申请要求于2018年04月26日提交中国国家知识产权局、申请号为201810385842.1、申请名称为“信道资源协调分配方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信技术领域,特别涉及信道资源协调分配技术。
近年来,物联网技术迅速发展,开始被广泛应用于生产和生活,大大促进了工商业活动和日常生活的自动化和智能化。其中,物联网节点之间及时有效的无线通信是物联网发展的核心支持技术。作为目前无线通信的主流技术,Wi-Fi也是物联网通信的首要选择之一。为了使Wi-Fi技术适合于物联网的特性,电气电子工程学会(Institute of Electrical and Electronics Engineers,简称为IEEE)制定了一系列新的标准,比如802.11ah和802.11ax。
物联网通信网络通常具有以下特点:
1)物联网节点数目众多:尤其是在大规模工业生产和商业活动的场景下,需要大量物联网节点采集和汇总数据;
2)物联网节点分布范围广:比如在智能城市场景下,物联网网络需要覆盖很大范围;
3)物联网节点采用窄带通信:采用窄带通信有利于物联网节点的节能,特别是使用电池供电的物联网节点,同时也降低整个物联网网络的维护成本。
一方面,由于物联网节点的数目多,覆盖广的特点,需要有效扩展无线保真网络(Wireless Fidelity,简称Wi-Fi)的覆盖范围;另一方面,由于物联网节点的窄带通信易受信道阴影衰落的影响,不同地理位置的物联网节点可能需要选择不同的窄带子信道传输,因此,接入点(Access Point,简称AP)需要在多个子信道跳转来服务各个子信道上相关联的物联网节点。
采用具有中继的网络可有效扩展网络的覆盖范围,但目前仍然缺乏合理有效的机制来协调中继网络架构下信道的使用。因此,在具有中继的网络中,如何协调利用信道,避免当接入点AP和中继Relay都需要在多个子信道上切换来服务多个站点时,接入点AP与中继relay的信道利用不匹配而导致无法通信,成为亟待解决的问题。
发明内容
本申请提供了一种信道资源分配方法,提供节点之间信道分配信息的交互,可以实现具有中继的物联网络中信道的协调利用。
第一方面,提供了一种信道资源协调分配方法,包括:中继设备(子节点)接收接入点AP(父节点)发送的第一信道分配信息,中继设备为接入点AP的一个或多个子节点中的一个,AP为中继设备的父节点,第一信道分配信息包含:用于指示子信道上的第一时间区间的指示信息,该第一时间区间为此第一设备在此子信道上的工作时间;第二设备根据第一信道分配信息生成第二信道分配信息,第二信道分配信息包含:用于指示此子 信道上的第二时间区间的指示信息,此第二时间区间是此第二设备在此子信道上的第二时间区间;第二时间区间包含第一时间区间;通过中继设备和接入点AP,即父节点和子节点之间的资源分配信息的交互,可以确保中继设备与接入点AP之间可以进行正常和匹配的通信,实现信道的协调利用,避免出现父节点在子信道2上的时间区间1上向子节点发送数据,而子节点在子信道2上与时间区间1不相同的时间区间2上等待接收父节点的数据,此时,显然子节点无法在时间区间2上接收到父节点在时间区间1上发送的信息,导致通信不匹配。
第二方面,提供了一种信道资源协调分配方法,所述方法包括:接入点AP(父节点)向中继设备(子节点)发送第一信道分配信息,中继设备是接入点AP的一个或多个子节点中的一个,第一信道分配信息包含:用于指示子信道上第一时间区间的指示信息,所述第一时间区间是所述父节点在所述子信道上的工作时间;第一信道分配信息用于子节点根据第一信道分配信息生成第二信道分配信息,所述第二信道分配信息包含:用于指示所述子信道上的第二时间区间的指示信息,所述第二时间区间是所述子节点在所述子信道上的工作时间;第二时间区间包含第一时间区间。通过父节点和子节点之间的信息交互,可以确保父节点与子节点之间可以进行正常和匹配的通信,实现信道协调利用,避免出现父节点在子信道2上的时间区间1上向子节点发送数据,而子节点在子信道2上与时间区间1不相同的时间区间2上等待接收父节点的数据,此时,显然子节点无法在时间区间2上接收到父节点在时间区间1上发送的信息,导致通信不匹配。
在一些可能的实现方式中,接入点AP的工作时间为此接入点可与除此接入点之外的其他节点传输或通信的时间区间;例如,接入点AP可以在工作时间上向接入点AP的子节点发送信息,还可以在工作时间上接收接入点AP的子节点发送的信息。
在一些可能的实现方式中,中继设备的工作时间为此中继设备可与除此中继设备之外的其他节点传输或通信的时间区间;例如,中继设备可以在工作时间上向中继设备关联的站点发送信息,还可以在工作时间上接收中继设备关联的站点发送的信息。
在一些可能的实现方式中,此子信道为接入点AP和中继设备之间的工作信道,工作信道为此接入点AP和中继设备之间通信的信道。
在一些可能的实现方式中,此子信道为多个子信道中的一个,第二信道分配信息还包括:用于指示在所述多个子信道中除此子信道之外的其他子信道上的时间区间的指示信息,该其他子信道上的时间区间是该中继设备在该其他子信道上的工作时间,其他子信道上通信的时间区间与第二时间区间不同。通过第二信道分配信息的发送,使得与中继设备关联的子节点或站点能够获取可与第二设备进行通信的子信道和时间区间,提升了通信的可靠性。
在一些可能的实现方式中,中继设备的工作时间包括:第二时间区间,和,其他子信道上的时间区间。
在一些可能的实现方式中,当中继设备的工作时间中每一个时间区间的时间长度相等时,第二信道分配信息还包括:所述中继设备的工作时间中时间区间的时间长度;通过等长的时间区间分配,可有效节省信道分配信息的信令开销。
在一些可能的实现方式中,当中继设备的工作时间中至少两个时间区间的时间长度不相等时,第二信道分配信息还包括:中继设备的工作时间中的每一个时间区间的结束时刻。通过不等长的时间区间分配,可使得信道的协调利用更加灵活。
在一些可能的实现方式中,中继设备还可以接收接入点AP发送的用于指示系统中被调 度的子信道上的时间区间的占用信息,被调度的子信道至少包括:子信道。所述系统中包括所述AP和所述多个中继设备,所述中继设备为所述多个中继设备中的一个。通过占用信息,可使得中继设备明确整个系统中信道的被占用情况,便于中继设备选择未被占用的时间区间或者占用率低的时间区间作为此中继设备的工作时间,减少了中继设备与其他节点分配的信道的冲突。
在一些可能的实现方式中,占用信息,包括:时间偏移量,用于指示所述系统中被调度的子信道上被占用的时间区间中开始时刻最早的时间区间的开始时刻;
时间区间个数标识:用于指示系统中被调度的子信道上被占用的时间区间的数量;子信道标识,用于指示所有被调度的子信道中的每一个子信道;子信道时间区间占用标识,用于指示系统中被调度的子信道中的每一个子信道上的每一个时间区间是否被占用;或者,用于指示占用系统被调度的子信道中每一个子信道上的每一个时间区间的基本服务集的数量;其中,系统中被调度的子信道上被占用的时间区间至少包括:第一时间区间。通过占用标识,使得子节点可获知在系统中哪些子信道上的哪些时间区间被占用,便于子节点尽量选择未被占用的时间区间或者是占用率较低的时间区间作为自身的工作时间。可尽量避免同一时间,多个子节点在同一信道上的同一工作时间上通信,降低了信道的重复利用率,提升了空闲信道利用率。
在一些可能的实现方式中,第二信道分配信息还包括:周期性标识,用于指示所述第二设备在所述子信道上占用的时间区间是否具有周期性。当节点的信道资源分配在多个周期内相同时,通过周期性标识,使得节点不需要在每个周期内都发送此信道分配信息,节省了信令开销。
在一些可能的实现方式中,当周期性标识指示具有周期性时,第二信道分配信息还包括:周期个数标识,用于指示周期个数。通过周期个数,便于子节点确定此信道分配信息的有效时间。
在一些可能的实现方式中,第二信道分配信息还包括:周期总时间长度标识,用于指示第二设备在所述子信道上占用的时间区间周期的总时间长度。通过周期总时间长度标识,便于子节点确定此信道分配信息的有效时间。
在一些可能的实现方式中,第一信道分配信息为子信道选择性传输元素,或者,为受限接入时间窗口元素。采用子信道选择性传输元素或受限接入时间窗口元素,可有效兼容支持子信道选择性传输的节点,提升了兼容性。
第三方面,提供一种信道资源协调分配方法,所述方法包括:接入点AP(父节点)接收中继设备(子节点)发送的第二信道分配信息,中继设备为接入点AP的一个或多个子节点中的一个,第二信道分配信息包括:用于指示子信道上第二时间区间的指示信息,该第二时间区间为该中继设备在子信道上的工作时间;接入点AP根据第二信道分配信息生成第一信道分配信息,第一信道分配信息包含用于指示子信道上的第一时间区间的指示信息,该第一时间区间为该接入点AP在该子信道上的工作时间;第二时间区间包含所述第一时间区间;接入点AP向包括中继设备在内的接入点AP的子节点发送第一信道分配信息。通过父节点和子节点之间的信息交互,可以确保父节点与子节点之间可以进行正常和匹配的通信,实现信道协调利用,避免出现父节点在子信道2上的时间区间1上向子节点发送数据,而子节点在子信道2上与时间区间1不相同的时间区间2上等待接收父节点的数据,此时,显然子节点无法在时间区间2上接收到父节点在时间区间1上发送的信息,导致通信不匹配。
第四方面,提供一种信道资源协调分配方法,所述方法包括:中继设备(子节点)向接入点AP(父节点)发送第二信道分配信息,中继设备是接入点AP的一个或多个子节点中的一个,第二信道分配信息包含:用于指示子信道上的第二时间区间的指示信息,该第二时间区间为中继设备在子信道上的工作时间;第二信道分配信息用于接入点AP根据所述第二信道分配信息生成第一信道分配信息,所述第一信道分配信息包含:用于指示子信道上的第一时间区间的指示信息,该第一时间区间为该接入点AP在该子信道上的工作时间,第二时间区间包含第一时间区间;通过父节点和子节点之间的信息交互,可以确保父节点与子节点之间可以进行正常和匹配的通信,实现信道协调利用,避免出现父节点在子信道2上的时间区间1上向子节点发送数据,而子节点在子信道2上与时间区间1不相同的时间区间2上等待接收父节点的数据,此时,显然子节点无法在时间区间2上接收到父节点在时间区间1上发送的信息,导致通信不匹配。
在一些可能的实现方式中,接入点AP的工作时间为此接入点可与除此接入点之外的其他节点传输或通信的时间区间;例如,接入点AP可以在工作时间上向接入点AP的子节点发送信息,还可以在工作时间上接收接入点AP的子节点发送的信息。
在一些可能的实现方式中,中继设备的工作时间为此中继设备可与除此中继设备之外的其他节点传输或通信的时间区间;例如,中继设备可以在工作时间上向中继设备关联的站点发送信息,还可以在工作时间上接收中继设备关联的站点发送的信息。
在一些可能的实现方式中,此子信道为接入点AP和中继设备之间的工作信道,工作信道为此接入点AP和中继设备之间通信的信道。一个示例中,此工作信道可以由接入点AP和中继设备之间协商约定。
在一些可能的实现方式中,此子信道为多个子信道中的一个,第二信道分配信息还包括:用于指示在所述多个子信道中除此子信道之外的其他子信道上的时间区间的指示信息,该其他子信道上的时间区间是该中继设备在该其他子信道上的工作时间,其他子信道上通信的时间区间与第二时间区间不同。通过第二信道分配信息的发送,使得与中继设备关联的子节点或站点能够获取可在哪些子信道的哪些时间区间上与中继设备进行通信,提升了通信的可靠性。
在一些可能的实现方式中,中继设备的工作时间包括:第二时间区间,和,其他子信道上的时间区间。
在一些可能的额实现方式中,接入点AP的工作时间包括:第一时间区间,和,接入点AP在多个子信道中除此子信道之外的其他子信道上的时间区间。
在一些可能的实现方式中,当中继设备的工作时间中每一个时间区间的时间长度相等时,第二信道分配信息还包括:所述中继的工作时间中时间区间的时间长度;通过等长的时间区间分配,可有效节省信道分配信息的信令开销。
在一些可能的实现方式中,当中继设备的工作时间中至少两个时间区间的时间长度不相等时,第二信道分配信息还包括:中继设备的工作时间中的每一个时间区间的结束时刻。通过不等长的时间区间分配,可使得信道的协调利用更加灵活。
在一些可能的实现方式中,中继设备还可以相接入点AP发送的用于指示系统中被调度的子信道上的时间区间的占用信息,被调度的子信道至少包括:子信道。所述系统中包括所述AP和所述多个中继设备,所述中继设备为所述多个中继设备中的一个。通过占用信息,可使得接入点AP明确整个系统中信道的被占用情况,便于接入点AP选择未被占用的时间区间或者占用率低的时间区间作为此中继设备的工作时间,减少了系统中节点分 配的信道的冲突。
第五方面,提供一种信道资源协调分配方法,方法包括:中继设备(子节点)接收接入点AP(父节点)发送的系统信道占用信息,系统信道占用信息包含:被调度的子信道上的时间区间的占用标识;其中,占用标识:用于指示所述被调度的子信道上的时间区间是否被占用,或者,占用所述被调度的子信道上的时间区间中每一个时间区间的基本服务集个数;根据第一信道分配信息,中继设备可生成第二信道分配信息,第二信道分配信息包括:用于指示中继设备在被调度的子信道上的工作时间的指示信息;中继设备还可以向此中继设备关联的站点发送第二信道分配信息;其中,中继设备在被调度的子信道上的工作时间对应的占用标识,指示此工作时间未被占用;或者,中继设备在被调度的子信道上的工作时间对应的占用标识,指示,占用此工作时间的基本服务集个数为零,或者,小于或等于阈值。通过系统占用信息,可尽量避免同一时间,多个节点在同一信道上,多个节点的信道利用重合度高的问题,并降低了信道的重复利用率,提升了空闲信道利用率。
第六方面,提供一种信道资源协调分配方法,所述方法包括:中继设备(子节点)向接入点AP(父节点)发送系统信道占用信息,系统信道占用信息包含:被调度的子信道上的时间区间的占用标识;占用标识:用于指示所述被调度的子信道上的时间区间是否被占用,或者,占用所述被调度的子信道上的时间区间中每一个时间区间的基本服务集个数;系统信道占用信息用于所述接入点AP根据系统信道占用信息生成第一信道分配信息,第一信道分配信息包括:用于指示接入点AP在被调度的子信道上的工作时间的指示信息;其中,接入点AP在被调度的子信道上占用的工作时间的占用标识,指示此工作时间未被占用;或者,接入点AP在被调度的子信道上占用的工作时间对应的占用标识,指示,占用此工作时间的基本服务集个数为零,或者,小于或等于阈值。通过系统占用信息,可尽量避免同一时间,多个节点在同一信道上,多个节点的信道利用重合度高的问题,并降低了信道的重复利用率,提升了空闲信道利用率。
在一些可能的实现方式中,系统信道占用信息,包括:起始时刻偏移,用于指示所述系统中被调度的子信道上的所有时间区间中开始时刻最早的时间区间的开始时刻相对于承载所述占用信息的帧的结束时刻的时间偏移量;时间区间个数标识:用于指示所述所有被调度的时间区间的总数量;子信道标识,用于指示所述所有被调度的子信道中的每一个子信道。
在一些可能的实现方式中,占用标识具体为:子信道时间区间占用标识,用于指示所述被调度的子信道中的每一个子信道对应的时间区间中的每一个时间区间是否被占用;或者,用于指示占用所述被调度的子信道上的每一个时间区间的设备数量。通过信道占用标识,可尽量避免同一时间,多个节点在同一信道上,多个节点的信道利用重合度高的问题,并降低了信道的重复利用率,提升了空闲信道利用率。
在一些可能的实现方式中,系统信道占用信息还包括:占用标识比特个数指示,此指示指示每一个时间区间对应的占用标识的比特位的个数。
第七方面,提供了一种信道资源协调分配的装置,该装置可以是接入点AP(父节点),也可以是接入点AP(父节点)内的芯片。该装置具有实现上述各实施例涉及第一设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的设计中,当该装置为接入点AP时,第一设备包括:处理模块和收发模块, 所述处理模块例如可以是处理器,所述收发模块例如可以是收发器,所述收发器可以包括射频电路和基带电路。
可选地,所述装置还可以包括存储单元,该存储单元例如可以是存储器。当第一设备包括存储单元时,该存储单元用于存储计算机执行指令,该处理模块与该存储单元连接,该处理模块执行该存储单元存储的计算机执行指令,以使该第一设备执行上述涉及第一设备功能的信道资源协调分配的方法。
在另一种可能的设计中,当该装置为接入点AP(父节点)内的芯片时,该芯片包括:处理模块和收发模块,所述处理模块例如可以是处理器,所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。可选的,该装置还可以包括存储单元,该处理模块可执行存储单元存储的计算机执行指令,以使该终端内的芯片执行上述任一方面涉及接入点AP(父节点)功能的信道资源协调分配的方法。
可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是接入点AP(父节点)内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,简称ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,简称RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(Central Processing Unit,简称CPU),微处理器,特定应用集成电路(application-specific integrated circuit,简称ASIC),或一个或多个用于控制上述各方面信道资源协调分配的方法的程序执行的集成电路。
第八方面,本申请提供一种信道资源协调分配的装置,该装置可以是中继设备(子节点),也可以是中继设备内的芯片。该装置具有实现上述各方面涉及中继设备的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的设计中,当该装置为中继设备时,中继设备包括:处理模块和收发模块,所述处理模块例如可以是处理器,所述收发模块例如可以是收发器,所述收发器包括射频电路,可选地,所述中继设备还包括存储单元,该存储单元例如可以是存储器。当中继设备包括存储单元时,该存储单元用于存储计算机执行指令,该处理模块与该存储单元连接,该处理模块执行该存储单元存储的计算机执行指令,以使该中继设备执行上述任意一方面涉及中继设备功能的信道资源协调分配的方法。
在另一种可能的设计中,当该装置为中继设备内的芯片时,该芯片包括:处理模块和收发模块,所述处理模块例如可以是处理器,所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。该处理模块可执行存储单元存储的计算机执行指令,以使该中继设备内的芯片执行上述各方面涉及中继设备功能的信道资源协调分配的方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述接入点AP内的位于所述芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述信道资源协调分配的方法的程序执行的集成电路。
第九方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面至第六方面中的任一方面或其任意可能的实现方式中的方法的指令。
第十方面,提供了一种处理器,用于与存储器耦合,用于执行上述第一方面至第六方面 中的任一方面或其任意可能的实现方式中的方法。
第十一方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面至第六方面中的任一方面或其任意可能的实现方式中的方法。
第十二方面,提供了一种通信系统,该系统包括:上述第一方面至第六方面中任意一方面涉及的接入点AP和至少一个中继设备。
基于上述方案,通过接入点AP和中继设备之间的信息交互,可以确保接入点AP与中继设备之间可以进行正常和匹配的通信,实现信道协调利用。
为了更清楚地说明本发明实施例,下面将对实施例中所需要使用的附图作简单地介绍。显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获取其他的附图。
图1为现有的一种示例性网络结构;
图2为本申请实施例提供的一种示例性的应用场景;
图3为本申请实施例提供的一种信道资源协调分配方法的流程示意图;
图4为本申请实施例提供的一种信道分配情况的示意图;
图5为本申请实施例提供的一种第一信道分配信息的结构示意图;
图6为本申请实施例提供的另一种第一信道分配信息的结构示意图;
图7为本申请实施例提供的又一种第一信道分配信息的结构示意图;
图8为本申请实施例提供的又一种第一信道分配信息的结构示意图;
图9本申请实施例提供的另一种信道资源协调分配方法的流程示意图;
图10为本申请实施例提供的一种系统信道占用信息的结构示意图;
图11为本申请实施例提供的另一种系统信道占用信息的结构示意图;
图12为本申请实施例提供的又一种系统信道占用信息的结构示意图;
图13为本申请实施例提供的又一种信道资源协调分配方法的流程示意图;
图14为本申请实施例提供的又一种信道资源协调分配方法的流程示意图;
图15为本申请实施例提供的一种信道资源分配信息装置的结构示意图;
图16为本申请实施例提供的另一种信道资源分配信息装置的结构示意图;
图17为本申请实施例提供的又一种信道资源分配信息装置的结构示意图;
图18为本申请实施例提供的又一种信道资源分配信息装置的结构示意图。
本申请实施例描述的场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定。显然,所描述的实施例仅仅是本发明的一部分实施例,并不是全部的实施例,基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在现有技术中,802.11ah协议定义的子信道选择性传输(subchannel selective transmission,简称SST)机制,子信道选择性传输一般指接入点AP可以在多个子信道上跳转,从而服务关联在各个子信道上的站点。子信道选择性传输通常应用于窄带传输的网络。窄带通讯容易受到阴影衰落的影响而长期不能通讯,因此窄带通讯的站点需要选取通讯质量最佳的子信道,并跳转到该子信道上与接入点AP通讯。因此,在802.11ah协议中定义了子 信道选择性传输机制,支持AP在多个子信道跳转来服务最佳子信道不同的多个STA。子信道选择性传输机制可以使站点在AP的指示下实现该过程。SST传输可应用于如图1所示的应用场景中。如图1中所示,接入点AP101关联多个站点。当接入点AP采用子信道选择性传输机制时,AP可以在多个子信道上切换来服务需要不同最佳子信道的多个站点(Station,简称STA),例如图1所示的STA11和STA12,然而,802.11ah协议中定义的子信道选择传输机制,仅仅考虑了如图1所示的架构下信道的协调和利用,未能考虑如图2所示的中继(Relay)网络架构(relay architecture)下信道的协调和利用。例如图2所示的中继网络中,当接入点AP和中继都需要在多个子信道上切换来服务多个站点时,可能会出现以下问题:
接入点AP跟中继的信道利用不匹配:例如,当AP采用SST机制在子信道1的时间区间1上与中继通信时,而中继采用SST机制在子信道1的时间区间2上与接入点AP进行通信的情况下,导致AP不能成功和中继通信。
因此,本申请实施例提出的一种信道资源协调分配方法,可避免当接入点AP和中继都需要在多个子信道上切换来服务多个站点时,接入点AP跟中继的信道利用不匹配而导致无法通信的问题。
参阅图2,示出了本申请实施例提供的一种示例性应用场景的网络架构。图2示出的通信系统200为一个中继网络,包括:接入点AP 201、一个或多个父中继(例如,中继202和中继203)、一个或多个子中继(例如,中继204)、以及、一个或多个站点(station,简称STA)。其中,父中继与接入点AP可以相互通信,父中继还可以与子中继相互通信,站点STA与子中继相关联,可以与子中继相互通信;并且,在上述中继网络中,一个子中继与一个父中继或AP相连接,一个父中继可关联多个子中继,站点需要发送给接入点AP的帧可以经由中继转发给接入点AP,接入点AP需要发送给站点的帧也可以经由中继转发给站点。。需要说明的是,子中继还可以与下一层子中继相连接。上述通信系统200中的接入点AP,中继以及站点的个数仅是示例性的,为描述方便,本申请实施例以四层网络为例,即该四层网络包含接入点AP,父中继,子中继,以及站点,但并不构成对本申请实施例的限定。
需要说明的是,本申请实施例中,为了方便描述,父中继也可以称为父节点,子中继也可以称为子节点,父节点,子节点的定义是相对的,接入点AP,父中继和子中继也可以统称为节点,例如图2中,相对于接入点AP201,中继202为接入点AP201的子节点,接入点AP201为中继202的父节点;而相对于中继204,中继202为中继204的父节点,中继204为中继202的子节点。
本领域技术人员可以理解的,在上述通信系统200中,本申请涉及到的站点STA可以是各种具有无线通信功能的用户终端、用户装置,接入装置,订户站,订户单元,移动站,用户代理,用户装备或其他名称,其中,用户终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,简称UE),移动台(Mobile station,简称MS),终端(terminal),终端设备(Terminal Equipment),便携式通信设备,手持机,便携式计算设备,娱乐设备,游戏设备或系统,全球定位系统设备或被配置为经由无线介质进行网络通信的任何其他合适的设备等等,还可以是物联网网络中的物联网站点(internet of things station,简称IoT STA)。在此,为了描述方便,上面提到的设备统称为站点或STA。
本申请所涉及到的接入点AP和中继Relay是一种部署在无线通信网络中为站点STA提供无线通信功能的装置,接入点AP可用作该通信系统的中枢,中继Relay可用作该通信系统中的中间设备,该接入点AP和中继Relay可以为基站、路由器、网关、中继器,通信服务器, 交换机或网桥等,其中,所述基站可以包括各种形式的宏基站,微基站,中继站等。
本申请实施例提供一种信道资源协调方法,和相应的装置。该方法和装置通过父节点与子节点之间的信息交互,使得子节点在工作信道上占用的时间区间包括父节点在该信道上占用的时间区间,确保了当父节点和子节点都需要进行子信道选择时,子节点与父节点在工作信道上的通信时间区间是相匹配的,避免了父节点和子节点在工作信道上选择不同的时间区间,而无法通信的情况。
需要说明的,在通信系统中,工作信道一般可以包括多个子信道,其中,当两个设备之间进行通信时,可选择一个或多个子信道进行通信,这种被选择用于通信的子信道也可以称为工作信道。一个示例中,工作信道为选取通讯质量最佳或信道状态最佳的子信道。
本申请实施例中节点自身的信道占用信息,可以用于指示该节点在某个或某几个子信道上的工作时间。系统信道占用信息,可以用于指示整个系统中被调度的子信道上的时间区间占用信息,该被调度的子信道上的部分时间区间,可以被系统中的一个或多个节点占用,该被调度的子信道上的另一部分时间区间,也可以没有被任何节点占用。
下面结合更多的附图,对本申请实施例的方案进一步说明。图3示出了本申请实施例提供的一种信道资源协调分配方法的流程示意图。该方法包括:
S301,父节点生成第一信道分配信息。
以图2为例,父节点可以是通信系统200中的接入点AP201,还可以是父中继202。当接入点AP201是父节点时,中继202和中继203就是AP201的子节点。当中继202是父节点时,中继204就是中继202的子节点。
第一信道分配信息包括:用于指示第一时间区间的指示信息,该第一时间区间是父节点在该子信道上的工作时间。
以图2为例,假设父节点为接入点AP201,子节点为中继202、中继203、中继204,系统中总共有8个子信道。
在一个示例中,该第一信道分配信息包括父节点在父节点与子节点之间(例如,中继203)的工作信道上的工作时间的指示信息。例如,参阅图4,父节点与子节点的工作信道为子信道2,父节点在子信道2上的工作时间为第一时间区间,此第一时间区间为图4所示的深灰色的时间区间2,则AP201生成的第一信道分配信息中包括用于指示子信道2上时间区间2(例如图4中的深灰色方块)的指示信息。
该第一信道分配信息还可以包括父节点在其他子信道上的工作时间的指示信息。参见图4所示,AP201在其他子信道上的工作时间包括:子信道3上的深灰色时间区间1,子信道1上的时间区间3,子信道4上的时间区间4,则AP201生成的第一信道分配信息至少包括用于指示子信道2上的时间区间2(例如图4中的深灰色方块)的指示信息,除此之外,还可以包括用于指示子信道3上的深灰色时间区间1、子信道1上的时间区间3、子信道4上的时间区间4的指示信息。则AP201自身的信道占用情况为:子信道2上的时间区间2(例如图4中的深灰色方块)、子信道3上的深灰色时间区间1、子信道1上的时间区间3、子信道4上的时间区间4。
需要说明的是,子节点(例如,中继203)与父节点(例如,AP201)之间进行通信的子信道(例如,子信道2)可以是通过协议约定的;还可以是父节点在发送信道分配信息之前,由父节点确定与子节点之间进行通信的子信道,再由父节点将确定的子信道告知子节点;还可以是子节点在接收信道分配信息之前,由子节点确定与父节点之间进行通信的子信道,再由子节点将该确定的子信道报告给父节点。
需要说明的是,节点在信道上的工作时间指的是该节点可以在该信道上的该时间区间内与其关联的节点或站点进行通信;若父节点为图2中的AP201,则AP201工作时间区间为图4中的深灰色方块,意味着AP201可以在子信道2上的时间区间2(例如图4中的深灰色方块)、子信道3上的时间区间1、子信道1上的时间区间3、子信道4上的时间区间4上与其子节点(例如,中继203或中继202或中继201)进行数据传输。
S302,父节点向子节点发送第一信道分配信息。
父节点将第一信道分配信息发送给子节点,以便于子节点根据第一信道分配信息确定第二信道分配信息。
以图2为例,假设父节点为接入点AP201,子节点为中继203,AP201将该第一信道分配信息发送给中继203,中继203收到该第一信道分配信息后,确知该AP201在子信道2上的工作时间为深灰色的时间区间2,通过之前协商确定的工作信道为子信道2,则中继203可以在子信道2上的深灰色的时间区间2期间内与AP201进行通信。
S303,子节点根据第一信道分配信息,生成第二信道分配信息。
第二信道分配信息包含:用于指示第二设备与该第二设备的子节点在该子信道上通信的第二时间区间的指示信息;为了确保父节点在子信道上的第一时间区间上与子节点进行通信时,子节点也可以在子信道上与该父节点通信,该第二时间区间包含该第一时间区间。需要说明的是,第二时间区间包含第一时间区间可以理解为:第二时间区间的起始时刻和结束时刻构成的时间区间,包含第一时间区间的起始时刻和结束时刻。例如,第二时间区间的起始时刻为T1,结束时刻为T2,构成的时间区间为[T1,T2],第一时间区间的起始时刻为T3,结束时刻为T4,且满足T1≤T3≤T2,T1≤T4≤T2。
以图4为例,中继203接收到接入点AP201发送的第一信道分配信息后,确知该AP201在子信道2上的工作时间为深灰色的时间区间2,通过之前协商确定的工作信道为子信道,则中继203可以在子信道2上的时间区间2上与AP201进行通信。则进一步的,中继203为了确保能够与AP201进行正常通信,中继203可在子信道2上图4所示的浅灰色的时间区间2上与AP201进行通信,浅灰色时间区间2包含深灰色时间区间2,确保父节点需要与子节点进行通信时,例如,父节点需要发送数据帧给子节点时,子节点始终在子信道上的时间区间2上,使得子节点可接收到该数据帧,确保了两者之间的匹配通信。则中继203生成的第二信道分配信息中包括用于指示子信道2上时间区间2(例如图4中的浅灰色方块)的指示信息。
可选的,该第二信道分配信息还可以包括:用于指示子节点在其他子信道上的工作时间的指示信息;子节点在其他子信道上的工作时间与第二时间区间不同。以图4为例,中继203在子信道2上的工作时间至少包括:浅灰色时间区间2,中继203的工作时间还可以包括:子信道1上的时间区间1、子信道4上的时间区间3、子信道3上的时间区间4,也就是说,中继203关联的站点(例如,STA31和STA32)可以在中继203的工作时间上与此中继203进行通信,则中继203生成的第二信道分配信息包括用于指示子信道2上图4所示的浅灰色的时间区间2的指示信息,还可以包括用于指示子信道1上的时间区间1、子信道4上的时间区间3、子信道3上的时间区间4的指示信息。
上述第一信道分配信息可以为子信道选择性传输元素SST element,或者,RPS element或者是其它信元。
S304,子节点向与子节点关联的站点发送第二信道分配信息。
相类似,该第二信道分配信息也可以是包含于管理帧中的一个字段,例如,第二信道分 配信息为包括于信标帧中的一个元素;另一个示例中,第二信道分配信息也可以包含于一个新的帧中。
以图2为例,中继203向其关联的站点,例如STA31和STA32发送该第二信道分配信息,根据该第二信道分配信息,则该STA31和STA32可获知可在子信道1的时间区间1、子信道4的时间区间3、子信道3的时间区间4上与中继203进行通信,则实现了子信道选择传输。
对于上文中提到的第一信道分配信息,可能存在如下三种情况:
(1)父节点(例如接入点AP201),在进行子信道选择时,没有子节点占用子信道,则父节点可以将该父节点的信道占用信息通过第一信道分配信息发送给子节点。
(2)父节点(AP201)进行子信道选择性传输之前,已经有一个子节点(例如中继202)进行了子信道选择性传输,并向父节点反馈了自身的信道占用信息,则父节点可以根据该中继202向父节点反馈的信道占用信息生成第一信道分配信息。
(3)在接入点AP201生成第一信道分配信息之前,多个子节点(例如图2中的中继202、中继203、中继204)向父节点反馈自身的信道分配情况,在父节点则可以根据该多个子节点反馈的信道占用信息为其中一个子节点(例如,中继203)生成第一信道分配信息。
在本申请实施例中,用于指示父节点在子信道上的工作时间的指示信息,可以称为父节点自身的信道占用信息。例如,接入点AP201可向中继203发送一个信标帧,该信标帧可携带接入点AP自身的信道占用信息,即第一信道分配信息,如图4所示的深灰色方块为父节点自身的信道占用情况的一个示例,父节点自身的占用信息指示父节点占用子信道3上的时间区间1,子信道2上的时间区间2,子信道1上的时间区间3,子信道4上的时间区间4,可在该时间区间内与该父节点关联的节点进行通信。
父节点自身的信道占用信息,可以包括:
时间偏移量,用于指示父节点的工作时间中开始时刻最早的时间区间的开始时刻;例如,该时间偏移量可以为第一个时间区间的开始时刻,还可以为第一个时间区间的开始时刻相对于承载该父节点自身的信道占用信息的帧的结束时刻的时间偏移;例如,参见图4所示,此时间偏移量可以是子信道3上时间区间1的开始时刻,还可以是子信道3上的时间区间1的开始时刻相对于承载第一信道分配信息的帧的结束时刻的偏移量。需要说明的是,第一个时间区间是指的开始时刻最早的时间区间。
时间区间个数标识,用于指示父节点的工作时间中的时间区间的数量;例如,参见图4所示,父节点占用的时间区间个数为4。
子信道标识,用于指示该父节点的工作时间中的每一个时间区间对应的子信道;例如,参见图4所示,父节点工作时间包括的4个时间区间对应的子信道分别为子信道3,子信道2,子信道1和子信道4。因此,该第一信道分配信息中还可以包括这四个子信道的标识,该四个子信道的标识与该4个时间区间一一对应。
其中,该父节点的工作时间至少包括:该第一时间区间,例如图4中的子信道2上的深灰色时间区间2。该父节点工作时间还可以包括:该父节点在其他子信道上的工作时间区间,例如图4中所示的子信道3上的深灰色时间区间1,子信道1上的深灰色时间区间3,子信道4上的深灰色时间区间4。
当父节点的工作时间中的每一个时间区间的时间长度相等时,该第一信道分配信息还包括:该父节点的工作时间中的时间区间的时间长度;通过等长的时间区间分配,可有效节省信道分配信息的信令开销。
当父节点的工作时间中的至少两个时间区间的时间长度不相等时,一个示例中,该第一信道分配信息还包括:该父节点的工作时间中每一个时间区间的结束时刻。另一个示例中,该第一信道分配信息还可以包括:该父节点的工作时间区间中的每一个时间区间的时间长度。通过不等长的时间区间分配,可使得信道的协调利用更加灵活。
图5示出了本申请实施例中一种示例性的第一信道分配信息的的数据结构。当父节点的工作时间中的每一个时间区间的时间长度相等时,此第一信道分配信息可以包括:
时间偏移量字段501:用于指示父节点的工作时间中第一个时间区间的开始时刻,第一个时间区间是指的开始时刻最早的时间区间,例如,参见图4所示,此时间偏移量可以是子信道3上时间区间1的开始时刻,还可以是子信道3上的时间区间1的开始时刻相对于承载第一信道分配信息的帧的结束时刻的偏移量;
时隙时间长度字段502,用于指示父节点的工作时间中时间区间的时间长度。例如,以图4为例,若时间区间1,时间区间2,时间区间3,时间区间4的长度都为2ms时,则该时隙长度字段502指示为2ms。
时隙个数字段503:用于指示父节点的工作时间中时间区间的数量。例如图4所示,父节点占用的时间区间的个数为4;
子信道标识字段504:用于指示父节点的工作时间中的每一个时间区间对应的子信道,该子信道标识字段指示的子信道与时间区间一一对应;该子信道标识字段包括与子信道个数相同的子字段或分段比特位,其中的一个子字段用于指示一个子信道,且子字段的次序与工作时间区间的次序相对应。以图4为例,则该第一个子字段指示子信道3,第二个子字段指示子信道2,第三个子字段指示子信道1,第四个子字段指示子信道4。
在一个示例中,该子字段可以为比特位图,该比特位图中只有一位的取值与其他位的取值不同,则该取值不同的比特位所在的位置指示一个子信道。例如,以图4为例,系统中的工作信道包含的子信道个数为8,父节点占用的子信道个数为4,则可以采用占据8比特的比特位图来指示一个子信道,则该子信道标识字段的第一个子字段的取值为00100000,指示子信道3,且与时间区间1对应;第二个子字段的取值为01000000,指示子信道2,且与时间区间2对应;第三个子字段的取值为10000000,指示子信道1,且与时间区间1对应;第四个子字段的取值为00010000指示子信道4,对应时间区间4。可以理解的,此处还可以采用比特位图01111111来指示子信道1,比特位图11011111来指示子信道3,本申请实施例并不具体限定。
在另一个示例中,该子信道标识字段504的子字段可以为子信道的标识。以图4为例,系统中的工作信道包含的子信道个数为8,父节点占用的子信道个数为4,则子字段可以采用每3个比特来指示一个子信道,第一个子字段的取值为011,可用于指示子信道3,对应时间区间1;第二个子字段的取值为010,用于指示子信道2,对应时间区间2;第三子字段的取值为001可用于指示子信道1,对应时间区间3;第四个子字段的取值为100,用于指示子信道4,对应时间区间4。
可选的,第一信道分配信息还可以包含:周期性标识字段505,用于指示父节点占用的子信道和时间区间是否具有周期性。在一个示例中,当周期性标识指示具有周期性时,第一信道分配信息还可以包括:周期个数标识字段506,用于指示周期的个数,则表示该第一信道分配信息中包含的子信道上的时间区间分配信息将在所指示的周期上延续;当周期性标识指示不具有周期性时,则表示该信道分配信息只在一个周期内有效,则可不包含周期个数标识字段。例如,可采用1比特指示周期性,当该比特位取值为0时,指示 不存在周期;当该比特为指示为1时,指示存在周期性,且周期性个数标识字段指示周期个数为3,则指示在第二个和第三个周期内,父节点仍然与第一周期内占用的子信道和时间区间相同。可以理解的,该比特位取值所对应的含义是可置换的,本申请实施例并不具体限定。在另一个示例中,当周期性标识指示具有周期性时,第一分配信息也可以不包括周期个数标识,例如,周期性标识包含多个比特,例如2比特,当该周期性标识字段取值为00时,可指示不具有周期性;当周期性标识取值大于0时,例如为10时,可指示周期个数为3。
本申请的又一个实施例中,以图4为例,当父节点的工作时间包括的时间区间1、时间区间2、时间区间3、时间区间4的长度相等时,第一信道分配信息的数据结构示意图还可以如图6所示,其中,时间偏移量601,时隙时间长度602,时隙个数603,子信道标识字段604与图5中相类似,此处不再赘述,与图5中不相同的是,图6中的第一信道分配信息可以可选的包括:周期总时长字段607,用于指示周期总时间长度;当该周期总时间长度大于时隙时间长度字段所指的时间长度与时隙个数字段所指的时隙个数的乘积时,则指示存在周期性,周期总时间长度由周期总时长字段指示;当该周期总时间长度等于时隙时间长度字段所指的时间长度与时隙个数字段所指的时隙个数的乘积时,则指示不存在周期性。例如,当时隙时间长度字段指示的时隙长度为2ms,时隙个数字段所指的时隙个数为4,周期总时长字段指示的周期总时间长度为16ms,则指示存在周期性,包含两个周期,周期总时长为16ms。
在本申请实施例中,第一信道分配信息分配的各个时间区间的长度相同,即父节点分配相同长度的时隙,可减少第一信道分配信息的信息量,节省信令开销。
图7示出了本申请实施例中又一种示例性的第一信道分配信息的的数据结构。以图4为例,当父节点的工作时间包括的时间区间1、时间区间2、时间区间3、时间区间4中任意两个时间区间的长度相等时,此第一信道分配信息可以包括:
时间偏移量字段701、时间区间个数字段702、子信道标识字段703,与前述5所示的第一信道分配信息的数据结构相类似,此处不再赘述。该第一信道分配信息还包含各个时间区间的结束时刻字段;例如,第一个结束时刻字段704指示时间区间1的结束时刻。
在一个示例中,子信道标识字段703可以与图5中的子信道标识字段504相类似,可以采用集中指示的形式实现,例如图7所示,此处不再赘述;
在另一个示例中,子信道标识字段703还可以采用分布指示的形式实现,例如图8所示,在每一个时间区间的结束时刻字段之前(如图8所示)或之后(图8中未示出),第一信道分配信息还包含一个子信道标识子字段,该子信道标识子字段指示的子信道与其后(如图8所示)或其前(图8中未示出)的结束时刻字段相对应,以第一个子信道标识子字段803.1和第一个结束时刻字段804.1为例进行说明,当第一个子信道标识子字段803.1指示子信道3时,第一个结束时刻字段804.1指示子信道3上的时间区间1的结束时刻,第m个子信道标识字段与第m个时间区间的结束时刻相对应。
可选的,第一信道分配信息还可以包含周期性标识805,用于指示父节点占用的子信道和时间区间是否具有周期性。一个示例中,该周期性标识805可以与前述周期性标识字段505相类似,此处不再赘述。又一个示例中,该周期性标识805可以与前述周期总时长字段507相类似,需要说明的是,当该周期总时长字段指示的周期总时间长度大于所有时间区间时间长度的总和时,则存在周期性;当周期总时长字段指示的周期总时间长度等于所有时间区间时间长度的总和时,则不存在周期性。
在本申请实施例中,第一信道分配信息包括的各个时间区间的长度可以不相同,使得父节点和子节点对信道的利用更加灵活。
可选的,该第一信道分配信息可以是包含于管理帧中的一个字段,例如,第一信道分配信息为包括于信标帧中的一个元素;另一个示例中,第一信道分配信息还可以包含于一个新的帧中。
子节点接收到父节点自身的信道占用信息后,根据父节点自身的信道占用信息,确定父节点与子节点在哪个子信道上的哪个时间区间上进行通信,该子节点再分配该子节点与该子节点关联的站点间的进行通信的子信道和时间区间,并生成子节点自身的信道占用信息,即第二信道分配信息。
与步骤301中第一信道分配信息相类似的,子节点生成的第二信道分配信息包括的用于指示子信道上的第二时间区间的指示信息,该第二时间区间为该子节点在子信道上的工作时间,和,用于指示子节点在其他子信道上的工作时间的指示信息,可以称为子节点自身的信道占用信息。例如图4所示的浅灰色方块为子节点自身的信道占用情况的一个示例,子节点自身的占用信息指示子节点的工作时间包括:子信道1上的时间区间1,子信道2上的时间区间2,子信道4上的时间区间3和子信道3上的时间区间4。父节点(例如,AP201)和子节点(例如,中继203)可在父节点分配的子信道1上的深灰色的时间区间2上进行通信,子节点关联的站点(例如,STA31和STA32),获取到子节点自身的信道占用信息,可在子节点分配的子信道1上的时间区间1、子信道4上的时间区间3、以及子信道3上的时间区间4上与子节点进行通信。
该子节点的信道占用信息可以包括:
时间偏移量,用于指示子节点的工作时间中第一个时间区间的开始时刻;还可以用于指示所有时间区间中第一个时间区间的开始时刻相对于承载所述第二信道分配信息的帧的结束时刻的时间偏移量;例如,参见图4所示,此时间偏移量可以是子信道1上时间区间1的开始时刻。
时间区间个数标识,用于指示子节点的工作时间中时间区间的数量,例如,参见图4所示,子节点的工作时间包括的时间区间的个数为4;
子信道标识,用于指示子节点的工作时间中的每一个时间区间对应的子信道;例如,参见图4所示,子节点的工作时间包括的4个时间区间对应的子信道分别为子信道1,子信道2,子信道4和子信道3。因此,该第二信道分配信息中还可以包括这四个子信道的标识。
子节点占用的所有时间区间可以包括:子节点在所述其他子信道上工作的时间区间(例如图4中的时间区间1,时间区间3,时间区间4),和,第二时间区间(例如图4中的浅灰色的时间区间2);
当子节点的工作时间中的每一个时间区间的时间长度相等时,所述第二信道分配信息还包括:子节点的工作时间中的时间区间的时间长度。当子节点的工作时间中的至少两个时间区间的时间长度不相等时,所述第二信道分配信息还包括:子节点的工作时间中每一个时间区间的结束时刻。
其中,第二信道分配信息中包括的子信道标识与子节点占用的时间区间是一一对应的。
当子节点的工作时间中的每一个时间区间的时间长度相等时,第二信道分配信息的帧结构与第一信道分配信息的帧结构相类似,也可以如图5和图6所示,此处不再赘述。
当子节点的工作时间中的任意两个时间区间的时间长度相等时,第二信道分配信息的帧结构与第一信道分配信息的帧结构相类似,也可以如图7和图8所示,此处不再赘述。
因此,子节点接收到第一信道分配信息后,可以确知父节点在父节点与子节点的工作信道上的工作时间为第一时间区间,因此可确知自身与父节点之间可以在第一时间区间进行通信,因此,为了确保父节点工作在第一时间区间时,父节点和子节点之间可以正常通信,则子节点在工作信道上的工作时间,即第二时间区间包含第一时间区间。例如图4所示,子信道2为父节点与子节点的工作信道,父节点在子信道2上的工作时间为深灰色时间区间2,子节点在工作信道2上的工作时间为浅灰色时间区间2,则确保了父节点在子信道2上的深灰色时间区间2向子节点发送数据时,子节点也能够在匹配的时间区间上接收该数据,避免出现父节点在子信道2上的时间区间2与子节点通信,而子节点工作在子信道2上的时间区间3,从而无法接收到父节点在子信道2的时间区间2内发送的数据从而导致父节点与子节点而无法通信的问题。
通过本申请实施例的方案,可以确保父节点与子节点之间可以进行正常和匹配的通信,避免出现父节点分配子信道2上的时间区间A与子节点通信,子节点分配子信道2上的时间区间B与父节点进行通信,最终出现时间区间A与时间区间B不匹配,从而导致父节点与子节点而无法通信的问题。
图9示出了本申请实施例提供的一种信道资源协调调度方法的流程示意图。与前一实施例不相同的是,本申请实施例中父节点还可以向子节点发送系统信道占用信息,用于指示系统中被调度的子信道上的时间区间的占用信息。子节点可根据该系统信道占用信息,确定第二信道分配信息。该方法包括:
S901,父节点生成第一信道分配信息。
与前述步骤S301相类似,此处不再赘述。
S902,父节点向子节点发送第一信道分配信息。
与前述步骤S902相类似,此处不再赘述。
S903,父节点生成系统信道占用信息。
具体的,该系统信道占用信息可以包括:用于指示系统中被调度的子信道上的时间区间的占用信息。此系统信道占用信息以便于子节点选择未被占用或者是占用率较低的子信道上的时间区间用于与该子节点关联的站点进行通信。
在第一种情形中,父节点在生成系统信道占用信息之前,未收到任何其他子节点反馈的自身的信道占用信息,那么在这种情况下,此系统中被占用的时间区间包括:父节点在各个子信道上的工作时间(例如,图4中的深灰色的方块)。则系统信道占用信息包括:用于指示父节点在各个子信道上的工作时间的占用情况的信息。
在第二种情形中,父节点在生成系统信道占用信息之前,还接收到其他子节点反馈的这些子节点自身的信道占用信息,则父节点根据这些子节点自身信道占用信息,生成此系统信道占用信息。此系统信道占用的工作时间包括:父节点在各个子信道上的工作时间(例如,图4中的深灰色的方块),还包括,其他子节点(不包括父节点)在各个子信道上占用的工作时间(例如,图4中的网格填充的方块)。以图2中父节点为接入点AP201为例,AP201接收到子节点(例如,中继202,中继204)自身的信道占用信息后,可以汇总得到目前系统中信道占用情况。以图4为例,若中继202反馈自身占用:子信道5上的时间区间1,子信道1上的时间区间2,子信道2上的时间区间4,中继204反馈自身占用:子信道5上的时间区间1,子信道6上的时间区间2,子信道3上的时间区间3,子信道2上的时间区间4。则系统信道占用情况中其他子节点(不包括父节点)在各个子信道上占用的工作时间包括:子信道 5上的时间区间1,子信道1、6上的时间区间2,子信道3上的时间区间3,以及子信道2上的时间区间4,系统信道占用情况中父节点在各个子信道上的工作时间包括:子信道3上的时间区间1,子信道2上的深灰色时间区间2,子信道1上的时间区间3,以及子信道4上的时间区间4;则系统中被调度的子信道包括子信道1、2、3、4、5、6,则AP201生成的系统信道占用信息包括:用于指示子信道1、2、3、4、5、6上的时间区间的占用信息。
且AP201可知,子信道1上的时间区间2被一个基本服务集占用,子信道1上的时间区间2和时间区间3都只被一个基本服务集占用,子信道2上的时间区间2被一个基本服务集占用,子信道2上的时间区间4被两个基本服务集占用,子信道3上的时间区间1、3都被一个基本服务集占用,子信道4上的时间区间4被一个基本服务集占用,子信道5上的时间区间1被两个基本服务集占用,子信道6上的时间区间2被一个基本服务集占用。
因此,在这两种情形下,此系统信道占用信息可以包括:
时间偏移量,用于指示系统中被调度的子信道上的工作时间中开始时刻最早的时间区间的开始时刻;或者,用于指示系统中被调度的子信道上的工作时间中开始时刻最早的时间区间的开始时刻相对于承载系统信道占用信息的帧的结束时刻的时间偏移量;例如,参阅图4,此时间偏移量可以是子信道5上时间区间1的开始时刻,还可以是子信道5上时间区间1的开始时刻相对于承载系统信道占用信息的帧的结束时刻的偏移量;
时间区间个数标识,用于指示子信道上被调度的时间区间的数量;例如,参阅图4,每个子信道上被调度的时间区间的数量为4。
子信道标识,用于指示被调度的子信道中的每一个子信道;例如,参阅图4,系统中被调度的子信道包括子信道1、2、3、4、5、6。因此,此系统信道占用信息中包括这6个子信道的标识。
子信道时间区间占用标识,在一个示例中,子信道时间区间占用标识可用于指示被调度的子信道上的工作时间中的每一个时间区间是否被占用;在另一个示例中,子信道时间区间占用标识可用于指示占用被调度的子信道上工作时间中的每一个时间区间的基本服务集的数量。例如,参阅图4,以第二种情形为例,根据中继202和中继204反馈的自身的信道占用情况,以及结合AP自身的信道占用情况。AP201生成的子信道时间区间占用标识可指示,子信道1上的时间区间2被两个基本服务集占用,子信道1上的时间区间2和时间区间3都只被一个基本服务集占用,子信道2上的时间区间2被一个基本服务集占用,子信道2上的时间区间4被两个基本服务集占用,子信道3上的时间区间1、3都被一个基本服务集占用,子信道4上的时间区间4被一个基本服务集占用,子信道5上的时间区间1被两个基本服务集占用,子信道6上的时间区间2被一个基本服务集占用。
图10示出了本申请实施例的一种示例性的系统信道占用信息的帧结构示意图。当系统中被调度的子信道上的工作时间中包括的时间区间的长度相等时,可称此时间区间为时隙,则此系统信道占用信息可以包括:
时间偏移量字段1001(可与前述时间偏移量字段501相类似)、时隙长度字段1002(可与前述时隙长度字段502相类似)、时隙个数字段1004(可与前述时隙个数字段503相类似),此处不再赘述;
该系统信道占用信息还包括:子信道标识字段1003,在一个示例中,该子信道标识字段1003可与前述子信道标识字段904相类似,此处不再赘述;在另一个示例中,该子信道标识字段1003还可以由比特位图来实现,其中比特位图中的每一个比特位对应指示一个子信道是否被调度。
系统信道占用信息还可以包括时隙和子信道占用标识1005,用于指示每一个子信道上的每一个时隙是否被占用。
为方便描述,以图4所示的第二种情形下的系统信道占用情况为例进行说明。整个系统中总信道包括8个子信道,被调度的子信道有6个,分别为子信道1,子信道2,子信道3,子信道4,子信道5,子信道6。其中,在子信道1上时间区间2和时间区间3被占用;子信道2上的时间区间4被占用;子信道3上的时间区间3被占用;子信道4上的时间区间4被占用;子信道5上时间区间1被占用;子信道6上的时间区间2被占用。相应的,则时隙个数字段1004指示子信道上可用的时隙个数为4;子信道标识字段1003,在一个可能的实现方式中,可以采用8个比特的比特位图,每一个比特取值为1可以对应该子信道被调度,例如8个比特的比特位图取值可为11111100,以指示子信道1、子信道2、子信道3、子信道4、子信道5、子信道6被调度,可以理解的是,还可以令8个比特的比特位图中每一个比特取值为0指示对应的该子信道被调度,则取值为00000011可指示子信道1、子信道2、子信道3、子信道4、子信道5、子信道6被调度。在一个可能的实现方式中,时隙和子信道占用标识1005可以采用包含24个比特的比特位图以指示6个子信道上的4个时隙的占用情况,例如下表1所示,取值为1时,可指示该子信道上对应的该时隙被占用,取值为0时,可指示该子信道上对应的该时隙未被占用。一个示例中,子信道与时隙占用标识1005可以优先以子信道为单位进行标识,即第一个4比特指示子信道1上的哪些时隙被占用,例如下表子信道1对应的4比特的取值为0110,指示子信道上的时隙2(时间区间2)和时隙3被占用,第二个4比特指示子信道2上的哪些时隙被占用,以此类推,则子信道与时隙占用标识的取值为011001011010000110000100;另一个示例中,子信道与时隙占用标识可以优先以时隙为单元进行标识,即第一个6比特指示时隙1对应的哪些子信道被占用,例如第一个6比特取值为001010指示子信道3和子信道5上的时隙1(时间区间1)被占用,第二个6比特指示时隙2的哪些子信道被占用,以此类推,则子信道与时隙占用标识的取值可以为001010110001101000010100。
可以理解的,表1中子信道上对应的时隙的占用情况对应的比特位的取值,取值1与取值0的含义是可置换的,本申请实施例并不具体限定。
表1
时隙1 | 时隙2 | 时隙3 | 时隙4 | |
子信道1 | 0 | 1 | 1 | 0 |
子信道2 | 0 | 1 | 0 | 1 |
子信道3 | 1 | 0 | 1 | 0 |
子信道4 | 0 | 0 | 0 | 1 |
子信道5 | 1 | 0 | 0 | 0 |
子信道6 | 0 | 1 | 0 | 0 |
当整个系统中各个节点占用的各个时间区间的长度相同时,例如各个时间区间为时隙长度相等的时隙时,系统信道占用信息的另一种示例性帧结构可以如图11所示。与图10所示的示例性数据结构相似的是,系统信道占用信息包括:时间偏移量字段1101(可与前述时间偏移量字段501相类似)、时隙长度字段1102(可与前述时隙长度字段502相类似)、时隙个数字段1104(可与前述时隙个数字段503相类似)、子信道标识字段1103(与前述图10中的 子信道标识字段1003相类似)、时隙和子信道占用标识1107此处不再赘述;
与前述图10所示的示例性数据结构不相同的是,系统信道占用信息还包括比特位个数指示字段1106,比特位个数指示字段1106所指示的数值加上1代表用于指示一个子信道上的一个时隙的占用情况时所使用的比特数。例如,当比特位个数指示字段1106字段为0时,代表一个子信道上一个时隙的占用情况使用1个比特来表示,类似于图10的指示方式;当比特位个数指示字段1106字段为1时,代表一个子信道上一个时隙的占用情况使用2个比特来表示,在该种情况下,时隙和子信道占用标识1107的比特数为图10中的时隙和子信道占用标识1104的比特数的两倍。作为一个例子,当用于指示一个子信道上一个时隙的占用情况的2比特取值为0时,表示该子信道在对应的时隙上没有被占用,当用于指示一个子信道上一个时隙的占用情况的2比特取值为1时,表示对应的子信道在那个时间片上有一个基本服务集(Base Service Set,简称BSS)在使用,设置为2表示该子信道在对应的时隙上有两个BSS在使用,当用于指示一个子信道上一个时隙的占用情况的2比特取值为3时,表示该子信道对应的时隙上至少有三个BSS在使用。例如,参阅图4,子信道1上的时间区间2被两个基本服务集占用,子信道1上的时间区间2和时间区间3都只被一个基本服务集占用,子信道2上的时间区间2被一个基本服务集占用,子信道2上的时间区间4被两个基本服务集占用,子信道3上的时间区间1、3都被一个基本服务集占用,子信道4上的时间区间4被一个基本服务集占用,子信道5上的时间区间1被两个基本服务集占用,子信道6上的时间区间2被一个基本服务集占用为例,则此系统信道占用的情况如下表2所示,时隙和子信道占用标识1107可包含48比特,一个示例中,第一个8比特指示子信道1的所有时隙的占用情况,第二个8比特指示子信道2的所有时隙的占用情况,例如,第二个8比特取值为00010100,则指示子信道2上的时隙2(时间区间2)和时隙4(时间区间4)被两个基本服务集占用,以此类推,可得到时隙和子信道占用标识的取值;又一个示例中,第一个12比特指示时隙1对应的被调度的子信道的占用情况,例如第一个12比特取值为000001001000指示子信道5上的时隙1被两个基本服务集占用,子信道3上的时间区间1被1个基本服务集占用,第二个12比特指示时隙2对应的被调度的子信道的占用情况,以此类推,可得到时隙和子信道占用标识1107的取值。
表2
时隙1 | 时隙2 | 时隙3 | 时隙4 | |
子信道1 | 00 | 01 | 01 | 00 |
子信道2 | 00 | 01 | 00 | 10 |
子信道3 | 01 | 00 | 01 | 00 |
子信道4 | 00 | 00 | 00 | 01 |
子信道5 | 10 | 00 | 00 | 00 |
子信道6 | 00 | 01 | 01 | 00 |
在又一个示例中,当整个系统中各个设备占用的所有时间区间中存在至少两个时间区间的长度不相同时,系统信道占用信息的一种示例性帧结构可以如图12所示。
系统信道占用信息可包括:时间偏移量字段1201,可与前述时间偏移量字段1201相类似,此处不再赘述。
该系统信道占用信息还可以包括用于指示多组子信道上的时间区间占用信息的标识,其中,每一组子信道上的时间区间占用信息可以包括,该子信道标识,以及,与该子信道对应 的时间区间的占用情况,例如图12中以第一组子信道为子信道1为例,子信道1的时间区间占用信息包括:子信道1标识1202.1,子信道1占用时间区间1203.1,其中,子信道1占用时间区间字段1203.1进一步可包括:时间区间个数1204,用于指示子信道1上被占用的时间区间的所有时间区间的个数;以及,所有时间区间中的每一个时间区间的开始时间和结束时间,例如,时间区间1开始时间1205.1和时间区间1的结束时间1206.1。
S904,父节点向子节点发送系统信道占用信息。
需要说明的是,父节点向子节点发送的系统信道占用信息,可以由一个单独的帧携带,一个示例中,系统信道占用信息可作为管理帧的一个字段,携带于该管理帧中发送给子节点,该管理帧可以为信标帧;又一个示例中,系统信道占用信息还可以是作为一个新的帧的一个字段,携带于该新的帧中发送给子节点。
应理解,上述步骤S903和步骤S902的顺序是可以替换的;上述步骤S903和步骤S904还可以位于步骤S901和步骤S902之前。此外,在另一个示例中,系统信道占用信息还可以和第一信道分配信息携带于同一帧中发送给子节点,还可以是系统信道占用信息和第一信道分配信息分别携带于不同的帧中发送给子节点。本申请实施例并不具体限定。
父节点将系统信道占用信息发送给子节点之后,父节点的子节点还可以转发此系统信道占用信息,以使得系统信道占用信息可以由自上而下的,扩散到各个节点,以便于各个节点生成自身的信道占用信息,以减少信道使用的冲突和碰撞的几率。例如图2所示,接入点AP201向中继202和中继203发送系统信道占用信息,中继202可以再进一步向中继204转发该系统信道占用信息,以便于中继204可获取系统信道占用情况。
S905,子节点根据第一信道分配信息和系统信道占用信息,生成第二信道分配信息。
子节点接收到第一信道分配信息后,根据父节点自身的信道占用信息,和,系统信道占用信息,生成第二信道分配信息。该第二信道分配信息包括:用于指示子节点与该子节点的关联站点在子信道上通信的第二时间区间的指示信息,第二时间区间包含第一时间区间。
与前述步骤S303相类似的,为了确保父节点在子信道(父节点和子节点的工作信道)上的第一时间区间上与子节点进行通信时,子节点也可以在此子信道上与该父节点通信,则子节点在工作信道上的工作时间为第二时间区间,且第二时间区间包含该第一时间区间。
可选的,该第二信道分配信息还可以包括:用于指示子节点在其他子信道上的工作时间的指示信息。与前述步骤S303中不同的是,此时子节点根据接收到的系统占用信息,可获知系统中的哪些子信道上的哪些时间区间被占用。因此,该子节点在分配在其他子信道上的工作时间时,会尽量避开被占用的子信道上的时间区间作为自身的工作时间,或者,是会尽量选择占用率较低的子信道上的时间区间作为自身的工作时间。
一个示例中,子节点选择未被占用的子信道上的时间区间作为此子节点在其他子信道上的工作时间,例如,以图4为例,中继203根据AP201发送的系统信道占用信息,确定子信道1上的时间区间2被一个基本服务集占用,子信道1上的时间区间2和时间区间3都只被一个基本服务集占用,子信道2上的时间区间2被一个基本服务集占用,子信道2上的时间区间4被两个基本服务集占用,子信道3上的时间区间1、3都被一个基本服务集占用,子信道4上的时间区间4被一个基本服务集占用,子信道5上的时间区间1被两个基本服务集占用,子信道6上的时间区间2被一个基本服务集占用,则一个示例中,中继203选择子信道1上的时间区间1,和子信道4上的时间区间3以及子信道3上的时间区间4作为中继203在除子信道2之外的其他子信道上的工作时间。
因此,中继203生成的第二信道分配信息包括:用于指示子信道2上的浅灰色时间区间2,以及,子信道1上的时间区间1,和子信道4上的时间区间3以及子信道3上的时间区间4的指示信息。
又一个示例中,当系统信道占用信息中包含的子信道时间区间占用标识,用于指示占用被调度的子信道中每一个子信道上的每一个时间区间的基本服务集的数量时,子节点可选取子信道时间区间占用标识指示占用某些子信道上的时间区间的基本服务集的数量为零,或者,指示占用某些子信道上的时间区间的基本服务集的数量小于或等于预设值的时间区间,作为子节点在除工作信道之外的其他子信道上的工作时间。例如,以图4为例,中继203根据AP201发送的系统信道信息,确定子信道1上的时间区间2被一个基本服务集占用,子信道1上的时间区间2和时间区间3都只被一个基本服务集占用,子信道2上的时间区间2被一个基本服务集占用,子信道2上的时间区间4被两个基本服务集占用,子信道3上的时间区间1、3都被一个基本服务集占用,子信道4上的时间区间4被一个基本服务集占用,子信道5上的时间区间1被两个基本服务集占用,子信道6上的时间区间2被一个基本服务集占用,则中继203可选择占用的基本服务集个数小于等于1的时间区间作为中继203在除子信道2之外的其他子信道上的工作时间(图4未示出)。可以理解的,预设值是可灵活设置和调整的,本申请实施例并不具体限定。
根据系统信道占用信息,子节点在选取自身的工作时间时,可尽量避免多个中继之间信道利用的重合度,减少冲突和碰撞的几率,提升了系统效率。
S906,子节点向与子节点关联的站点发送第二信道分配信息。
与前述步骤S304相类似,此处不再赘述。
本申请实施例的方案,通过父节点与子节点交互系统信道占用信息,以协调系统中子信道资源的利益,可有效减少多个节点之间信道重合利用,减少信道利用冲突和碰撞几率。
图13示出了本申请实施例提供的另一种信道资源协调调度方法的流程示意图。与图3所示的实施例不相同的是,本申请实施例是由子节点发送自身的信道占用信息给父节点,以便于父节点根据子节点自身的信道占用信息,确定父节点自身的信道占用信息。该方法包括:
S1301,子节点生成第二信道分配信息。
与前述步骤S303中子节点生成的第二信道分配信息的结构和功能相类似,此处不再赘述。本申请实施例由子节点先将生成的第二信道分配信息发送给父节点,以便于父节点生成第一信道分配信息,该第二信道分配信息包括:用于指示子信道的第一时间区间的指示信息,此第二时间区间为子节点在子信道上的工作时间。该子信道为父节点和子节点之间的工作信道,其确定方法参见步骤S301。
可选的,该第二信道分配信息也可以包括:该子节点在除该子信道之外的其他子信道上的工作时间。例如,以图4中浅灰色的方块为子节点的第二信道分配信息的一个示例,以子节点为中继203,则中继203的工作时间包括:子信道2(工作信道)上的浅灰色的时间区间2,子信道1上的时间区间1,子信道4上的时间区间3,子信道3上的时间区间4。则第二信道分配信息包括:用于指示信道2(工作信道)上的浅灰色的时间区间2的指示信息,还包括:用于指示子信道1上的时间区间1,子信道4上的时间区间3,子信道3上的时间区间4。当该该子节点的工作时间中的每一个时间区间的时间长度相等时,该第二信道分配信息的帧结构可以如图5或如图6所示,此处不再赘述。
当该子节点的工作时间中的至少两个时间区间的时间长度不相等时,该第二信道分配信息还包括:该子节点的工作时间中每一个时间区间的结束时刻。另一个示例中,该第二信道分配信息还可以包括:该子节点的工作时间中的每一个时间区间的时间长度。该第二信道分配信息的结构可以如图7或8所示,此处不再赘述。
S1302,子节点向父节点发送第二信道分配信息。
子节点将第二信道分配信息发送给父节点,以便于父节点根据第二信道分配信息确定第一信道分配信息。
可选的,该第一信道分配信息可以是包含于管理帧中的一个字段,例如,第一信道分配信息为包括于信标帧中的一个元素;另一个示例中,第一信道分配信息可以包含于一个新的帧中。
可以理解的,当该子节点作为一个中继节点,其向下还关联一个中继节点时,该子节点还可以转发该子节点的子节点发送的自身的信道分配信息,以采用自下而上的方式将整个系统中节点的信道分配情况汇总给接入点AP,以方便接入点AP获取系统信道占用信息。例如图2所示,中继204将自身的信道占用信息发送给中继202,中继202再将中继204自身的信道占用信息转发给接入点AP201,以方便接入点AP确定系统信道占用信息。
S1303,父节点根据第二信道分配信息,生成第一信道分配信息。
父节点根据第二信道分配信息,生成第一信道分配信息。根据接收到的第二信道分配信息,父节点可以获知,子节点在工作信道上的工作时间为第二时间区间,则为了确保,子节点能够在工作信道上的第二时间区间内接收到父节点向子节点发送的数据时这一原则,父节点分配在工作信道上的第一时间区间作为工作时间,且,第二时间区间包含第一时间区间。例如,结合图2和图4,AP201与中继203的工作信道为子信道2,AP201根据中继203发送的第二信道分配信息,获知,中继203在子信道2上的工作时间为浅灰色的时间区间2,则AP201依照上述原则,分配子信道2上的深灰色的时间区间2为工作时间。
可选的,父节点生成的第一信道分配信息,还可以包括:用于指示在其他子信道上的时间区间,该其他子信道为系统中除父节点和子节点之间的工作信道之外的子信道,该其他子信道上的时间区间为父节点在其他子信道上的时间区间。例如,参阅图4,父节点的工作时间除包括子信道2上的深灰色的时间区间2外,还包括子信道3上的时间区间1,子信道1上的时间区间3,以及子信道4上的时间区间4。
可以理解的,当该父节点的工作时间中的所有时间区间的时间长度相等时,该第一信道分配信息可以与前述示例中的第一信道分配信息相类似,具体数据结构也可以如图5或图6所示,此处不再赘述;
当该父节点的工作时间中存在至少两个时间区间的时间长度不相等时,,该第一信道分配信息可以与前述示例中的第一信道分配信息相类似,具体数据结构也可以如图7和图8所示。。
S1304,父节点向包括该子节点在内的子节点发送第二信道分配信息。
父节点向与包括该子节点在内的子节点发送第二信道分配信息,以使得子节点获知,该子节点可在哪些子信道的哪些时间区间上与此父节点进行通信。
例如,结合图2和图4,AP201根据中继203发送的第一信道分配信息生成第二信道分配信息,将此第二信道分配信息给中继202,中继204,则中继202和中继204获知,可在子信道2上的深灰色的时间区间2,子信道3上的时间区间1,子信道1上的时间区间3,以及子信道4上的时间区间4上与AP201通信。
通过本申请实施例的方案,避免出现父节点在子信道2上的时间区间2与子节点通信, 而子节点却工作在子信道2上的时间区间3,从而无法接收到父节点在子信道2的时间区间2内发送的数据从而导致父节点与子节点而无法通信的问题。
图14示出了本申请实施例提供的一种信道资源协调调度方法的流程示意图。与图14中对应的实施例不同的是,子节点还可以向父节点发送系统信道占用信息,以便于父节点根据系统信道占用信息和子节点自身的占用信息,确定父节点自身的占用信息。该方法包括:
S1401,子节点生成第一信道分配信息。
与前述步骤S1301相类似,此处不再赘述。
S1402,子节点向父节点发送第一信道分配信息。
与前述步骤S1302相类似,此处不再赘述。
S1403,子节点生成系统信道占用信息。
与前述步骤S903相类似,此处不再赘述。其区别在于,在步骤S903中,该系统信道占用信息由子节点生成,并发送给父节点。该系统信道占用信息包括:用于指示系统中被调度的子信道上的时间区间的占用信息。此系统信道占用信息以便于父节点选择未被占用或者是占用率较低的子信道上的时间区间作为其工作时间,用于与该父节点的子节点进行通信。
在第一种情形中,子节点在生成系统信道占用信息之前,未收到任何其他子节点发送的自身的信道占用信息,那么在这种情况下,此系统中被占用的时间区间包括:子节点在各个子信道上的工作时间(例如,图4中的浅灰色的方块)。则系统信道占用信息包括:用于指示子节点在各个子信道上的工作时间的占用情况的信息。
在第二种情形中,在第二种情形中,子节点在生成系统信道占用信息之前,还接收到其他子节点反馈的这些子节点自身的信道占用信息,则子节点根据这些子节点自身信道占用信息,生成此系统信道占用信息。此系统信道占用的工作时间包括:子节点在各个子信道上的工作时间(例如,图4中的浅灰色的方块),还包括,其他子节点(不包括父节点)在各个子信道上占用的工作时间(例如,图4中的网格填充的方块)。
此系统信道占用信息的结构可以参阅步骤S903,其数据结构的示例可以如图10或图11所示,此处不再具体赘述。
S1404,子节点向父节点发送系统信道占用信息。
与步骤S904相类似,其区别在于,该系统信道占用信息由子节点发送给父节点。
应理解,上述步骤S1403和步骤S1402的顺序是可以替换的;上述步骤S1403和步骤S1404还可以位于步骤S1401和步骤S1402之前。此外,在另一个示例中,系统信道占用信息还可以和第一信道分配信息携带于同一帧中发送给父节点,在又一个示例中,系统信道占用信息和第一信道分配信息可以分别携带于不同的帧中并发送给父节点。本申请实施例并不具体限定。
S1405,父节点根据第一信道分配信息和系统信道占用信息,生成第二信道分配信息。
与步骤S905相类似,其区别在于,父节点接收到第一信道分配信息后,根据子节点自身的信道占用信息,和,系统信道占用信息,生成第二信道分配信息。
与前述步骤S1305相类似的,为了确保父节点在子信道(父节点和子节点的工作信道)上的第一时间区间上与子节点进行通信时,子节点也可以在此子信道上与该父节点通信,则子节点在工作信道上的工作时间为第二时间区间,且第二时间区间包含该第一时间区间。
可选的,该第二信道分配信息还包括:用于指示父节点在其他子信道上的工作时间 的指示信息。与前述步骤S1303不同的是,此时父节点根据绝收到的系统占用信息,可获知系统中的哪些子信道上的哪些时间区间被占用。因此,父节点在分配该父节点在其他子信道上的工作时间时,会尽量避开被占用的子信道上的时间区间作为自身的工作时间,或者,是会尽量选择占用率较低的子信道上的时间区间作为自身的工作时间。
一个示例中,父节点选择未被占用的子信道上的时间区间作为此父节点在其他子信道上的工作时间。例如,结合图2和图4,AP201根据中继203发送的系统信道占用信息,确定图4中的网格填充的时间区间被占用,且图4中浅灰色的时间区间被占用,则AP201选择除网格填充的时间区间和浅灰色的时间区间之外的时间区间,作为此AP201在其他子信道上的工作时间,例如,子信道3上的时间区间1,子信道1上的时间区间4,子信道4上的时间区间4。因此,AP201生成的第一信道分配信息包括:用于指示子信道3上的时间区间1,子信道1上的时间区间4,子信道4上的时间区间4的指示信息,还包括,用于指示子信道2上的深灰色时间区间2的指示信息。
又一个示例中,当系统信道占用信息中包含的子信道时间区间占用标识,用于指示占用被调度的子信道中每一个子信道上的每一个时间区间的基本服务集的数量时,父节点可选取子信道时间区间占用标识指示占用某些子信道上的时间区间的基本服务集的数量为零,或者,指示占用某些子信道上的时间区间的基本服务集的数量小于或等于预设值的时间区间,作为父节点在除工作信道之外的其他子信道上的工作时间。可以理解的,预设值是可灵活设置和调整的,本申请实施例并不具体限定。根据系统信道占用信息,父节点在选取自身的工作时间时,可尽量避免多个中继之间信道利用的重合度,减少冲突和碰撞的几率,提升了系统效率。
S1406,父节点向子节点发送第二信道分配信息。
与前述步骤S1304相类似,本申请实施例并不具体限定。
可选的,还可以包括步骤S1407,子节点向子节点关联的站点发送第二信道分配信息。
子节点在生成第二信道分配信息后,还可以将该第二信道分配信息发送给子节点关联的站点,以便于子节点关联的站点收到该第二信道分配信息后,获知可与此子节点在哪些子信道的哪些时间区间上进行通信。
可以理解的,步骤S1407在步骤S1401之后发送即可,例如,该步骤S1407可以与步骤S1402同时发生,还可以在步骤S1402之前发生,也可以在步骤S1402之后发生。
本申请实施例的方案,通过父节点与子节点交互系统信道占用信息,以协调系统中子信道资源的利用,可有效减少多个节点之间信道重合利用,减少信道利用冲突和碰撞几率。
需要说明的是,本申请实施例中如图3,如图9,如图13,如图14中的方案可以以符合逻辑的方式使用。
一个示例中,在一个分配周期内,父节点需采用子信道选择传输来与其他节点进行通信,可由父节点发起子信道选择性传输,例如采用如图3所示的方法来实现子信道选择性传输;在另一个分配周期内,当子节点需采用子信道选择性传输时,可采用如图6所示的方法。
可以理解的,本申请实施例中的父节点和子节点在交互的过程中,也可以根据系统信道占用信息生成自身的信道占用信息。在一个示例中,父节点接收子节点发送的系统信道占用信息,根据系统信道占用信息中的占用标识,可获知系统中子信道上的时间区间的占用情况,因此父节点可生成自身的信道占用信息,可尽量选择未被占用或者占有率较低的子信道上的时间区间,用于与其关联的子节点通信;另一个示例中,子节点接收父节点发送的系统信道 占用信息,根据系统信道占用信息中的占用标识,可获知系统中子信道上的时间区间的占用情况,因此子节点可生成自身的信道占用信息,可尽量选择未被占用或者占有率较低的子信道上的时间区间,用于与其关联的子节点或站点通信。因此,可减少信道利用的重合度,并且避免多个节点选择相同的子信道上的时间区间进行通信,而是利用未被占用的时间区间,不仅提升了信道利用率,还提升了通信质量。
以图2所示的应用场景为例,接入点AP201和中继203都需要采用子信道选择传输的方式在多个子信道上来回切换来与其他节点(例如父节点和子节点)进行通信。此时,中继202无需采用子信道选择传输的方式进行通信。
在一种情形中,接入点AP201可向中继203发送一个信标帧,该信标帧携带接入点AP自身的信道占用信息,即第一信道分配信息。基于该第一信道分配信息,中继203生成自身的信道占用信息,以确保中继203在与接入点AP201的工作信道上的时间区间,包含接入点AP分配的在工作信道上的时间区间。
在另一种情形中,接入点AP201和中继202都需要采用子信道选择传输的方式在多个子信道上来回切换来与其他节点(例如父节点和子节点)进行通信。中继203之前无需采用子信道选择传输的方式与其他节点进行通信,但由于中继203关联的子节点或站点的增多而需采用子信道选择传输的方式;或者,由于中继203以及与中继203关联的子节点或站点的最佳信道或工作信道的信道质量下降而需重新选择其他子信道进行通信时,中继203可获取接入点AP201自身的信道占用信息,以及,系统信道占用信息。基于接入点AP201发送的自身的信道占用信息以及系统信道占用信息,可根据以下原则来分配自身的信道占用信息:
1、中继203在中继203和AP201的工作信道上的工作时间包含,接入点AP在中继203与接入点AP201的工作信道上的工作时间;
2、中继203选择未被占用的时间区间或占有率较低的时间区间,作为中继的工作时间,用于中继203与其关联的节点或站点进行通信。
中继203根据以上两个原则,即可以确保中继203与接入点AP201之间的匹配通信,还可以尽量错开系统中已被占用的时间区间,尽量避免中继203分配的时间区间与接入点AP201和中继202占用的时间区间的冲突,并且可提升信道利用率。
在又一种情形下,例如,接入点AP201在第一个信标周期内,由于关联的节点较少,例如仅有中继202与接入点AP201相关联,此时,接入点AP201未采用子信道选择传输来与中继202进行通信,在第二信标周期内,由于新节点的加入,例如,中继203与接入点AP201相关联后,接入点AP需要采用子信道选择传输来与中继202和中继203进行通信。此时,在第一个信标周期内,中继202可向接入点AP201发送携带第一信道分配信息的第一信标帧,以向接入点AP201汇报自身的信道占用信息,在第二个信标周期内,接入点AP201根据中继202发送的第一信道分配信息,确定自身的信道分配情况,即第二信道分配信息,其中,接入点AP201自身的信道分配情况满足,在发送第二个信标帧和发送第一个信标帧之间的时间段内,如果中继202该时间段内,其占用的子信道为接入点AP和中继202之间的工作信道,则接入点AP201与中继202可在该时间段内进行通信;如果中继202该时间段内,其占用的子信道不为接入点AP和中继202之间的工作信道,则接入点AP201可向中继202发送第二信标帧,其中,该第二信标帧指示接入点AP201可在第二个信标帧发送后的时间区间内在接入点AP与中继202之间的工作信道上与中继202进行通信,进一步的,中继202接收到该第二信标帧后,可对自身占用的信道进行调整,以满足中继202在工作信道上占用的时间区间包 含接入点AP在工作信道上占用的时间区间。
上文中详细描述了根据本申请实施例的信道资源协调分配的方法,下面将描述本申请实施例的信道资源协调分配的装置。
本申请实施例详细描述了父节点侧的信道资源分配装置的示意性结构。
在一个示例中,图15示出了本申请实施例的一种信道资源协调分配的装置1500的示意性框图。本申请实施例的装置1500可以是上述方法实施例中的父节点,也可以是父节点内的一个或多个芯片。装置1500可以用于执行上述方法实施例中的父节点的部分或全部功能。该装置1500可以包括处理模块1510和收发模块1520,可选的,该装置1500还可以包括存储模块1530。
例如,该处理模块1510,可以用于执行前述方法实施例中步骤S301,或者用于执行步骤S901、S903和S905,或者用于执行步骤S1303,或者用于执行1405。
该收发模块1520,可以用于执行前述方法实施例中的步骤S302,或者用于执行步骤S902和S904,或者用于接收步骤S1302中来自子节点的第二信道分配信息和用于执行步骤S1304,或者用于接收步骤S1402中来自子节点的第二信道分配信息、步骤S1404中来自子节点的系统信道占用信息和执行步骤S1406。
可以替换的,装置1500也可配置成通用处理系统,例如通称为芯片,该处理模块1510可以包括:提供处理功能的一个或多个处理器;所述收发模块1520例如可以是输入/输出接口、管脚或电路等,输入/输出接口可用于负责此芯片系统与外界的信息交互,例如,此输入/输出接口可将父节点生成的第一信道分配信息输出给此芯片外的其他模块进行处理。该处理模块可执行存储模块中存储的计算机执行指令以实现上述方法实施例中父节点的功能。在一个示例中,装置1500中可选的包括的存储模块1530可以为芯片内的存储单元,如寄存器、缓存等,所述存储模块1530还可以是所述父节点内的位于芯片外部的存储单元,如只读存储器(read-only memory,简称ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,简称RAM)等。
在另一个示例中,图16示出了本申请实施例的另一种信道资源协调分配的装置1600的示意性框图。本申请实施例的装置1600可以是上述方法实施例中的父节点,装置1600可以用于执行上述方法实施例中的父节点的部分或全部功能。该装置1600可以包括:处理器1610,基带电路1630,射频电路1640以及天线1650,可选的,该装置1600还可以包括存储器1620。装置1600的各个组件通过总线1660耦合在一起,其中总线系统1660除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统1660。
处理器1610可用于实现对父节点的控制,用于执行上述实施例中由父节点进行的处理,可以执行上述方法实施例中涉及父节点的处理过程和/或用于本申请所描述的技术的其他过程,还可以运行操作系统,负责管理总线以及可以执行存储在存储器中的程序或指令。
基带电路1630、射频电路1640以及天线1650可以用于支持父节点和上述实施例中涉及的子节点之间收发信息,以支持父节点与子节点之间进行无线通信。一个示例中,来自子节点发送的第二信道分配信息经由天线1650接收,由射频电路1640进行滤波、放大、下变频以及数字化等处理后,再经由基带电路1630解码、按协议解封装数据等基带处理后,由处理器1610进行处理来恢复子节点所发送的业务数据和信令信息;又一个示例中,父节点中用于指示父节点的在子信道上的工作时间区间的第一信道分配信息可由处理器1610进行处理,经 由基带电路1630进行按协议封装,编码等基带处理,进一步由射频电路1640进行模拟转换、滤波、放大和上变频等射频处理后,经由天线1650发射出去。
存储器1620可以用于存储父节点的程序代码和数据,存储器1620可以是图15中的存储模块1530。可以理解的,基带电路1630、射频电路1640以及天线1650还可以用于支持父节点与其他网络实体进行通信,例如,用于支持父节点与核心网侧的网元进行通信。图16中存储器1620被示为与处理器1610分离,然而,本领域技术人员很容易明白,存储器1620或其任意部分可位于信道资源分配装置1600之外。举例来说,存储器1620可以包括传输线、和/或与无线节点分离开的计算机制品,这些介质均可以由处理器1610通过总线接口1660来访问。可替换地,存储器1620或其任意部分可以集成到处理器1610中,例如,可以是高速缓存和/或通用寄存器。
可以理解的是,图16仅仅示出了父节点的简化设计。例如,在实际应用中,父节点可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本发明的父节点都在本发明的保护范围之内。
一种可能的实现方式中,父节点侧的信道资源分配装置也可以使用下述来实现:一个或多个现场可编程门阵列(field-programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。在又一个示例中,本申请实施例还提供一种计算机存储介质,该计算机存储介质可以存储用于指示上述任一种方法的程序指令,以使得处理器执行此程序指令实现上述方法实施例中涉及父节点的方法和功能。
本申请实施例详细描述子节点侧的信道资源分配装置的示意性结构。在一个示例中,图17示出了本申请实施例的一种信道资源协调分配的装置1700的示意性框图。本申请实施例的装置1700可以是上述方法实施例中的子节点,也可以是子节点内的一个或多个芯片。装置1700可以用于执行上述方法实施例中的子节点的部分或全部功能。该装置1700可以包括处理模块1710和收发模块1720,可选的,该装置1700还可以包括存储模块1730。
例如,该处理模块1710,可以用于执行前述方法实施例中的步骤S303,或者用于执行步骤S905,或者用于执行步骤S1301,或者用于执行步骤S1401和步骤S1403;
该收发模块1720,可以用于子节点接收前述方法实施例中的步骤S302来自父节点的第一信道分配信息,或者用于接收步骤S902和步骤S904中来自父节点的信息,或者用于执行步骤S1302,或者用于执行步骤S1402和步骤S1404和步骤S1407;
可以替换的,装置1700也可配置成通用处理系统,例如通称为芯片,该处理模块1710可以包括:提供处理功能的一个或多个处理器;所述收发模块例如可以是输入/输出接口、管脚或电路等,输入/输出接口可用于负责此芯片系统与外界的信息交互,例如,此输入/输出接口可将子节点生成的第二信道分配信息输出给此芯片外的其他模块进行处理。该一个或多个处理器可执行存储模块中存储的计算机执行指令以实现上述方法实施例中子节点的功能。在一个示例中,装置1700中可选的包括的存储模块1730可以为芯片内的存储单元,如寄存器、缓存等,所述存储模块1730还可以是所述子节点内的位于芯片外部的存储单元,如只读存储器(read-only memory,简称ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,简称RAM)等。
在另一个示例中,图18示出了本申请实施例的另一种信道资源协调分配的装置1800的 示意性框图。本申请实施例的装置1800可以是上述方法实施例中的子节点,装置1800可以用于执行上述方法实施例中的子节点的部分或全部功能。该装置1800可以包括:处理器1810,基带电路1830,射频电路1840以及天线1850,可选的,该装置1800还可以包括存储器1820。装置1800的各个组件通过总线1860耦合在一起,其中总线系统1860除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统1860。
处理器1810可用于实现对子节点的控制,用于执行上述实施例中由子节点进行的处理,可以执行上述方法实施例中涉及父节点的处理过程和/或用于本申请所描述的技术的其他过程,还可以运行操作系统,负责管理总线以及可以执行存储在存储器中的程序或指令。
基带电路1830、射频电路1840以及天线1850可以用于支持子节点和上述实施例中涉及的父节点之间收发信息,以支持子节点与父节点之间进行无线通信。一个示例中,来自父节点发送的第一信道分配信息经由天线1850接收,由射频电路进行滤波、放大、下变频以及数字化等处理后,再经由基带电路解码、按协议解封装数据等基带处理后,由处理器1810进行处理来恢复父节点所发送的业务数据和信令信息;又一个示例中,子节点的第二信道分配信息可由处理器1810进行处理,经由基带电路1830进行按协议封装,编码等基带处理,进一步由射频电路1840进行模拟转换、滤波、放大和上变频等射频处理后,经由天线1850发射出去,存储器1820可以用于存储父节点的程序代码和数据,存储器1820可以是图17中的存储模块1730。可以理解的,基带电路1830、射频电路1840以及天线1850还可以用于支持子节点与其他网络实体进行通信,例如,用于支持子节点与该子节点关联的站点进行通信,例如,图2中所示的STA。
可以理解的是,图18仅仅示出了子节点的简化设计。例如,在实际应用中,子节点可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本发明的子节点都在本发明的保护范围之内。
一种可能的实现方式中,子节点侧的信道资源分配装置也可以使用下述来实现:一个或多个现场可编程门阵列(field-programmable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
在又一个示例中,本申请实施例还提供一种计算机存储介质,该计算机存储介质可以存储用于指示上述任一种方法的程序指令,以使得处理器执所述程序指令实现上述方法实施例中涉及子节点的方法和功能。
上述装置1600和装置1800中涉及的处理器可以是通用处理器,例如通用中央处理器(CPU)、网络处理器(Network Processor,简称NP)、微处理器等,也可以是特定应用集成电路(application-specific integrated circBIt,简称ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。还可以是数字信号处理器(Digital Signal Processor,简称DSP)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。控制器/处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。处理器通常是基于存储器内存储的程序指令来执行逻辑和算术运算。
上述装置1600和装置1800中涉及的存储器还可以保存有操作系统和其他应用程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。更具体的,上述存储器可以是只读存储器(read-only memory,简称ROM)、可存储静态信息和指令的其他类型的静态存 储设备、随机存取存储器(random access memory,简称RAM)、可存储信息和指令的其他类型的动态存储设备、磁盘存储器等等。存储器可以是上述存储类型的组合。并且上述计算机可读存储介质/存储器可以在处理器中,还可以在处理器的外部,或在包括处理器或处理电路的多个实体上分布。上述计算机可读存储介质/存储器可以具体体现在计算机程序产品中。举例而言,计算机程序产品可以包括封装材料中的计算机可读介质。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk)等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (27)
- 一种信道资源协调分配方法,其特征在于,中继设备是接入点AP的一个或多个子节点中的一个,所述方法包括:所述中继设备接收所述AP发送的第一信道分配信息,所述第一信道分配信息包含:用于指示子信道上的第一时间区间的指示信息,所述第一时间区间是所述AP在所述子信道上的工作时间;所述中继设备根据所述第一信道分配信息生成第二信道分配信息,所述第二信道分配信息包含:用于指示所述子信道上的第二时间区间的指示信息,所述第二时间区间是所述中继设备在所述子信道上的工作时间;所述第二时间区间包含所述第一时间区间;所述中继设备向所述中继设备的子节点发送所述第二信道分配信息。
- 根据权利要求1所述的方法,其特征在于,所述子信道为多个子信道中的一个,所述第二信道分配信息还包括:用于指示所述多个子信道中除所述子信道之外的其他子信道上的时间区间的指示信息,所述其他子信道上的时间区间是所述中继设备在所述其他子信道上的工作时间,所述其他子信道上的时间区间与所述第二时间区间不同。
- 根据权利要求1或2所述的方法,其特征在于,所述第二信道分配信息包括:时间偏移量,用于指示所述中继设备的工作时间中第一个时间区间的开始时刻;时间区间个数标识,用于指示所述中继设备的工作时间中的时间区间的数量;子信道标识,用于指示所述中继设备的工作时间中的每一个时间区间对应的子信道。
- 根据权利要求1至3中任一项所述的方法,其特征在于,当所述中继设备的工作时间中每一个时间区间的时间长度相等时,所述第二信道分配信息还包括:所述中继设备的工作时间中时间区间的时间长度。
- 根据权利要求1至3中任一项所述的方法,其特征在于,当所述中继设备的工作时间中的至少两个时间区间的时间长度不相等时,所述第二信道分配信息还包括:所述中继设备的工作时间中的每一个时间区间的结束时刻。
- 根据权利要求1至5中任一项所述的方法,其特征在于,所述子信道为多个子信道中的一个,所述第一信道分配信息还包括:用于指示所述AP在所述多个子信道中除所述子信道之外的其他子信道上的工作时间的指示信息,所述AP在所述多个子信道中除所述子信道之外的其他子信道上的工作时间与所述第一时间区间不同。
- 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一信道分配信息,包括:时间偏移量,用于指示所述AP的工作时间中的第一个时间区间的开始时刻;时间区间个数标识,用于指示所述AP的工作时间中的时间区间的数量;子信道标识,用于指示所述AP的工作时间中的每一个时间区间对应的子信道;其中,所述AP的工作时间至少包括:所述第一时间区间。
- 根据权利要求7所述的方法,其特征在于,当所述AP的工作时间中的每一个时间区间的时间长度相等时,所述第一信道分配信息还包括:所述AP的工作时间中时间区间的时间长度。
- 根据权利要求7所述的方法,其特征在于,当所述AP的工作时间中的至少两个时间区间的时间长度不相等时,所述第一信道分配信息还包括:所述AP的工作时间中每一个时间区间的结束时刻。
- 根据权利要求1至9中任一项所述的方法,其特征在于,所述方法还包括:所述中继设备接收用于指示系统中被调度的子信道上的时间区间的占用信息,所述被调度的子信道至少包括:所述子信道,所述系统包括所述AP和多个中继设备,所述中继设备为所述多个中继设备中的一个。
- 根据权利要求10所述的方法,其特征在于,所述占用信息,包括:时间偏移量,用于指示所述系统中被调度的子信道上被占用的时间区间中的第一个时间区间的开始时刻;时间区间个数标识:用于指示所述系统中被调度的子信道上的被占用的时间区间的数量;子信道标识,用于指示所述被调度的子信道中的每一个子信道;子信道时间区间占用标识,用于指示所述系统中被调度的子信道中的每一个子信道上的每一个时间区间是否被占用;或者,用于指示占用所述系统中被调度的子信道中每一个子信道上的每一个时间区间的基本服务集的数量;其中,所述系统中被调度的子信道上被占用的时间区间至少包括:所述第一时间区间。
- 一种中继设备,其特征在于,所述中继设备是接入点AP的一个或多个子节点中的一个,所述中继设备包括:收发器,用于接收所述AP发送的第一信道分配信息,所述第一信道分配信息包含:用于指示子信道上的第一时间区间的指示信息,所述第一时间区间是所述AP在所述子信道上的工作时间;处理器,用于根据所述第一信道分配信息生成第二信道分配信息,所述第二信道分配信息包含:用于指示所述子信道上的第二时间区间的指示信息,所述第二时间区间是所述中继设备在所述子信道上的工作时间;所述第二时间区间包含所述第一时间区间;所述收发器,用于向所述中继设备的子节点发送所述第二信道分配信息。
- 根据权利要求12所述的中继设备,其特征在于,所述子信道为多个子信道中的一个,所述第二信道分配信息还包括:用于指示在所述多个子信道中除所述子信道之外的其他子信道上的时间区间的指示信息,所述其他子信道上的时间区间是所述中继设备在所述其他子信道上的工作时间,所述其他子信道上的时间区间与所述第一时间区间不同。
- 根据权利要求12或13所述的中继设备,其特征在于,所述第二信道分配信息包括:时间偏移量,用于指示所述中继设备的工作时间中的第一个时间区间的开始时刻;时间区间个数标识,用于指示所述中继设备的工作时间中的时间区间的数量;子信道标识,用于指示所述中继设备的工作时间中的每一个时间区间对应的子信道
- 根据权利要求12至14中任一项所述的中继设备,其特征在于,当所述中继设备的工作时间中每一个时间区间的时间长度相等时,所述第二信道分配信息还包括:所述中继设备的工作时间中时间区间的时间长度。
- 根据权利要求12至14中任一项所述的中继设备,其特征在于,当所述中继设备的工作时间中的至少两个时间区间的时间长度不相等时,所述第二信道分配信息还包括:所述中继设备的工作时间中的每一个时间区间的结束时刻。
- 根据权利要求12至16中任一项所述的中继设备,其他在于,所述子信道为多个子信道中的一个,所述第一信道分配信息还包括:用于指示所述AP在所述多个子信道中除所述子信道之外的其他子信道上的工作时间的指示信息,所述AP在所述多个子信道中除 所述子信道之外的其他子信道上的工作时间与所述第一时间区间不同。
- 根据权利要求12至17中任一项所述的中继设备,其特征在于,所述第一信道分配信息包括:时间偏移量,用于指示所述AP的工作时间中的第一时间区间的开始时刻;时间区间个数标识,用于指示所述AP的工作时间中的时间区间的数量;子信道标识,用于指示所述AP的工作时间中的每一个时间区间对应的子信道;其中,所述AP的工作时间至少包括:所述第一时间区间。
- 根据权利要求18所述的中继设备,其特征在于,当所述AP的工作时间中的每一个时间区间的时间长度相等时,所述第一信道分配信息还包括:所述AP的工作时间中时间区间的时间长度。
- 根据权利要求18所述的中继设备,其特征在于,当所述AP的工作时间中的至少两个时间区间的时间长度不相等时,所述第一信道分配信息还包括:所述AP的工作时间中每一个时间区间的结束时刻。
- 根据权利要求12至20中任一项所述的中继设备,其特征在于,所述收发器还用于接收用于指示系统中被调度的子信道上的时间区间的占用信息,所述被调度的子信道至少包括:所述子信道,所述系统中包括所述接入点和多个中继设备,所述中继设备为所述多个中继设备中的一个。
- 根据权利要求21所述的中继设备,其特征在于,所述占用信息,包括:时间偏移量,用于指示所述系统中被调度的子信道上被占用的时间区间中的第一个时间区间的开始时刻;时间区间个数标识:用于指示所述系统中被调度的子信道上的被占用的时间区间的数量;子信道标识,用于指示所述被调度的子信道中的每一个子信道;子信道时间区间占用标识,用于指示所述系统中被调度的子信道中的每一个子信道上的每一个时间区间是否被占用;或者,用于指示占用所述系统中被调度的子信道中每一个子信道上的每一个时间区间的基本服务集的数量;其中,所述系统中被调度的子信道上被占用的时间区间至少包括:所述第一时间区间。
- 一种装置,包括:处理模块和收发模块,所述装置用于执行如权利要求1至11中任一项所述的方法。
- 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至11中任一项所述的方法。
- 一种计算机程序产品,当其在计算机上运行时,使得计算机执行权利要求1至11中任一项所述的方法。
- 一种装置,用于执行权利要求1至权利要求11中任一项所述方法。
- 一种处理器,所述处理器用于与存储器耦合,所述存储器用于存储指令,当所述处理器执行所述指令时用于执行权利要求1至权利要求11中的任一项所述方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19793512.5A EP3787358A4 (en) | 2018-04-26 | 2019-04-22 | METHOD AND DEVICE FOR CHANNEL RESOURCE COORDINATION AND ALLOCATION |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810385842.1A CN110418409B (zh) | 2018-04-26 | 2018-04-26 | 信道资源协调分配方法及装置 |
CN201810385842.1 | 2018-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019206080A1 true WO2019206080A1 (zh) | 2019-10-31 |
Family
ID=68293752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/083687 WO2019206080A1 (zh) | 2018-04-26 | 2019-04-22 | 信道资源协调分配方法及装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3787358A4 (zh) |
CN (1) | CN110418409B (zh) |
WO (1) | WO2019206080A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116961861B (zh) * | 2019-11-15 | 2024-08-27 | 华为技术有限公司 | 一种收发能力指示方法及相关设备 |
CN111417096B (zh) * | 2019-12-31 | 2021-10-22 | 咻享智能(深圳)有限公司 | 无线物联网节点管理方法及相关装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101170343A (zh) * | 2006-10-26 | 2008-04-30 | 华为技术有限公司 | 实现中继站稳态的方法及传输系统和传输设备 |
CN102143588A (zh) * | 2011-03-15 | 2011-08-03 | 东南大学 | 一种多用户多中继通信系统的资源分配方法 |
US20130070628A1 (en) * | 2006-01-30 | 2013-03-21 | Motorola Mobility Llc | System and method for allocating sub-channels in a network |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103209468B (zh) * | 2012-01-17 | 2016-05-18 | 华为终端有限公司 | 无线传输的方法、接入点和站点 |
KR102072597B1 (ko) * | 2012-06-19 | 2020-02-03 | 한국전자통신연구원 | 무선랜 시스템의 슬롯 기반 채널 액세스 제어 장치 및 방법, 무선랜 시스템의 슬롯 기반 채널 액세스 단말 |
KR102166184B1 (ko) * | 2012-11-30 | 2020-10-15 | 한국전자통신연구원 | 무선랜 시스템에서의 자원 할당 방법, 무선랜 시스템 |
GB2509145B (en) * | 2012-12-21 | 2015-06-03 | Broadcom Corp | Assigning resources between an intermediate node and a station |
US9686719B2 (en) * | 2013-06-03 | 2017-06-20 | Qualcomm Incorporated | Beacon indication target wakeup time (TWT) |
CN107872838B (zh) * | 2016-09-27 | 2021-09-21 | 华为技术有限公司 | 中继指示方法及接入点ap |
-
2018
- 2018-04-26 CN CN201810385842.1A patent/CN110418409B/zh active Active
-
2019
- 2019-04-22 WO PCT/CN2019/083687 patent/WO2019206080A1/zh active Application Filing
- 2019-04-22 EP EP19793512.5A patent/EP3787358A4/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130070628A1 (en) * | 2006-01-30 | 2013-03-21 | Motorola Mobility Llc | System and method for allocating sub-channels in a network |
CN101170343A (zh) * | 2006-10-26 | 2008-04-30 | 华为技术有限公司 | 实现中继站稳态的方法及传输系统和传输设备 |
CN102143588A (zh) * | 2011-03-15 | 2011-08-03 | 东南大学 | 一种多用户多中继通信系统的资源分配方法 |
Non-Patent Citations (3)
Title |
---|
JEONG, A.H. ET AL.: "Proportional Fair Scheduling Combined with Adjustment of Two Hop Transmission Time for Relay-Aided OFDMA Systems", 2009 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS & SIGNAL PROCESSING, 31 December 2009 (2009-12-31), XP031594737 * |
See also references of EP3787358A4 |
TAO, ZHIFENG ET AL.: "Frame Structure Design for IEEE 802.16j Mobile Multihop Relay (MMR) Networks", IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, 26 December 2007 (2007-12-26), XP031196746 * |
Also Published As
Publication number | Publication date |
---|---|
CN110418409A (zh) | 2019-11-05 |
CN110418409B (zh) | 2024-05-07 |
EP3787358A4 (en) | 2021-06-23 |
EP3787358A1 (en) | 2021-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11006461B2 (en) | Orthogonal frequency division multiple access communication apparatus and communication method | |
WO2020182071A1 (zh) | 用于无线通信系统的信息传输方法、信息接收方法和装置 | |
US20220272699A1 (en) | Time domain resource format configuration method, communication apparatus, and communication system | |
CN107370573B (zh) | 一种下行数据传输的方法及设备 | |
WO2018196716A1 (zh) | 一种寻呼指示的传输方法及装置 | |
WO2020200114A1 (zh) | Dmrs端口的指示方法及装置 | |
US11395284B2 (en) | Method and apparatus of indicating alternative resource at collision of configured grants | |
CN103238306A (zh) | 支持从/向多个设备数据传输的设备到设备簇增强 | |
EP3169123B1 (en) | Base station, user equipment and associated methods | |
EP4044707A1 (en) | Dynamic resource indication method and apparatus | |
US11659565B2 (en) | Method and apparatus of retransmission using adjacent configured grant resource in wireless communications systems | |
WO2020011000A1 (zh) | 多接入点ap协作传输方法、相关装置及系统 | |
EP3537767A1 (en) | Station association method and device | |
US20210204312A1 (en) | Downlink control information transmission method and apparatus | |
US20230143285A1 (en) | Communication method and sidelink device | |
US20230171066A1 (en) | Uplink transmission resource indication method and apparatus | |
WO2021212514A1 (zh) | 基于设备到设备的资源确定方法和设备 | |
WO2022213828A1 (zh) | 用于资源确定的方法及装置 | |
WO2019206080A1 (zh) | 信道资源协调分配方法及装置 | |
WO2023185433A1 (zh) | 通信方法和通信装置 | |
WO2023005679A1 (zh) | 资源分配方法、通信装置以及通信设备 | |
US10944625B2 (en) | Bearer configuration method and related products | |
EP4247084A1 (en) | Resource allocation method and apparatus | |
EP4138475A1 (en) | Method, apparatus and system for determining resource | |
WO2022027594A1 (zh) | 一种通信方法及通信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19793512 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2019793512 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2019793512 Country of ref document: EP Effective date: 20201126 |