WO2019206031A1 - 用户设备、电子设备、无线通信方法和存储介质 - Google Patents

用户设备、电子设备、无线通信方法和存储介质 Download PDF

Info

Publication number
WO2019206031A1
WO2019206031A1 PCT/CN2019/083395 CN2019083395W WO2019206031A1 WO 2019206031 A1 WO2019206031 A1 WO 2019206031A1 CN 2019083395 W CN2019083395 W CN 2019083395W WO 2019206031 A1 WO2019206031 A1 WO 2019206031A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
dci
network side
control information
side device
Prior art date
Application number
PCT/CN2019/083395
Other languages
English (en)
French (fr)
Inventor
曹建飞
Original Assignee
索尼公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼公司 filed Critical 索尼公司
Priority to US16/964,210 priority Critical patent/US11405146B2/en
Priority to CN201980008396.5A priority patent/CN111602453A/zh
Publication of WO2019206031A1 publication Critical patent/WO2019206031A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • Embodiments of the present disclosure generally relate to the field of wireless communications, and in particular, to user equipment, electronic devices, wireless communication methods, and computer readable storage media in a wireless communication system. More particularly, the present disclosure relates to a user equipment in a wireless communication system, an electronic device as a network side device in a wireless communication system, a wireless communication method performed by a user equipment in a wireless communication system, and a A wireless communication method performed by a network side device in a wireless communication system and a computer readable storage medium.
  • Hybrid Automatic Repeat Request (HARQ) technology can well compensate for the time-varying characteristics of wireless mobile channels and the impact of multipath fading on signal transmission.
  • the receiver adopting HARQ technology saves the received data in the case of decoding failure, and requests the sender to retransmit the data, and the receiver combines the retransmitted data with the previously received data and decodes it, thereby realizing certain The diversity gain and the number of retransmissions are reduced, thereby reducing the delay and improving the reliability of data transmission.
  • the receiver mainly feeds back data information, thereby improving the reliability of data information transmission.
  • the control information sent by the higher layer signaling such as RRC (Radio Resource Control) layer signaling and MAC (Media Access Control) layer signaling, such as MAC CE
  • RRC Radio Resource Control
  • MAC Media Access Control
  • MAC CE Media Access Control
  • the downlink shared channel Physical Downlink Share Channel, PDSCH
  • PDSCH Physical Downlink Share Channel
  • the application of the HARQ mechanism to the control information carried by the physical downlink control channel (PDCCH) is not yet discussed. It is well known that the control information carried by the PDCCH is critical to the user equipment. If the user equipment cannot successfully obtain the control information carried by the PDCCH, it will affect the demodulation of the downlink data information and the transmission of the uplink data information.
  • An object of the present disclosure is to provide a user equipment, an electronic device, a wireless communication method, and a computer readable storage medium to improve reliability of control information carried by a PDCCH.
  • a user equipment including processing circuitry, configured to: demodulate a downlink signal from a network side device to obtain a physical downlink control channel PDCCH included therein; and according to the PDCCH bearer
  • the downlink control information DCI determines whether to perform hybrid automatic repeat request HARQ feedback for the DCI.
  • an electronic device for use as a network side device including processing circuitry configured to: transmit a downlink signal including a physical downlink control channel PDCCH to a user equipment; and carry according to the PDCCH
  • the content of the downlink control information DCI is used to determine whether to receive a hybrid automatic repeat request HARQ feedback message for the DCI from the user equipment.
  • a user equipment including processing circuitry, configured to: receive first data information, second data information, first control information for the first data information from a network side device And second control information for the second data information, wherein the first data information includes the second control information, and the second data information includes the first control information; The information received by the network side device is decoded to obtain the first data information and the second data information.
  • an electronic device for use as a network side device including processing circuitry configured to: transmit first data information, second data information, for the first data information to a user equipment First control information and second control information for the second data information, wherein the first data information includes the second control information, and the second data information includes the first control information.
  • an electronic device serving as a network side device including processing circuitry configured to: receive a second for second data information from other network side devices other than the electronic device Controlling information; transmitting, to the other network side device, first control information for the first data information, for the other network side device to include the first control information in the second data information;
  • the user equipment sends the first data information and the first control information, where the first data information includes second control information, where the first data information is downlink data information that is sent by the electronic device to the user equipment And the second data information is downlink data information that is sent by the other network side device to the user equipment.
  • a wireless communication method performed by a user equipment including: demodulating a downlink signal from a network side device to acquire a physical downlink control channel PDCCH included therein; and according to the PDCCH
  • the content of the downlink control information DCI carried is determined to determine whether to perform hybrid automatic repeat request HARQ feedback for the DCI.
  • a wireless communication method performed by a network side device includes: transmitting a downlink signal including a physical downlink control channel PDCCH to a user equipment; and downlink control information DCI according to the PDCCH Content to determine whether to receive a hybrid automatic repeat request HARQ feedback message for the DCI from the user equipment.
  • a wireless communication method performed by a network side device, comprising: receiving second control information for second data information from other network side devices other than the network side device; The other network side device sends first control information for the first data information, where the other network side device includes the first control information in the second data information; and sends the first information to the user equipment a data information and first control information, where the first data information includes second control information, where the first data information is downlink data information that is sent by the network side device to the user equipment, and The second data information is used for downlink data information sent by the other network side device to the user equipment.
  • a computer readable storage medium comprising executable computer instructions that, when executed by a computer, cause the computer to perform a wireless communication method in accordance with the present disclosure.
  • the user equipment may determine whether to perform HARQ feedback for the DCI according to the content of the DCI carried by the PDCCH, and the network side device may also according to the DCI The content is determined to determine whether a HARQ feedback message for the DCI needs to be received from the user equipment, so that the application of the HARQ feedback mechanism on the PDCCH is implemented, and the transmission reliability of the DCI carried by the PDCCH is improved.
  • the network side device may transmit first data information, second data information, first control information for the first data information, and the user equipment to the user equipment, and Second control information for the second data information, wherein the first data information includes second control information, and the second data information includes the first control information, so that the user equipment can obtain according to the information received from the network side device First data information and second data information.
  • the first control information and the second control information are transmitted twice, thereby implementing diversity gain, and further improving transmission reliability of the PDCCH.
  • FIG. 1 is a block diagram showing an example of a configuration of a user equipment according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram showing a process of performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure
  • Figure 3 is a diagram showing the configuration of a time slot of the embodiment shown in Figure 2;
  • FIG. 4 is a schematic diagram showing a process of performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure
  • Figure 5 is a diagram showing the configuration of a time slot of the embodiment shown in Figure 4.
  • FIG. 6 is a schematic diagram illustrating a process of performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram illustrating a process of performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram illustrating a process of performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram illustrating a process of performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure.
  • Figure 10 is a diagram showing the configuration of a time slot of the embodiment shown in Figure 9;
  • FIG. 11 is a schematic diagram illustrating a process of performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure
  • Figure 12 is a diagram showing the configuration of a time slot of the embodiment shown in Figure 11;
  • FIG. 13 is a schematic diagram showing a process of performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure
  • Figure 14 is a diagram showing the configuration of a time slot of the embodiment shown in Figure 13;
  • FIG. 15 is a schematic diagram showing a process of performing HARQ feedback for a PDCCH according to an embodiment of the present disclosure
  • FIG. 16 is a schematic diagram showing a process of backing up a PDCCH according to an embodiment of the present disclosure
  • 17 is a block diagram showing an example of a configuration of an electronic device as a network side device according to an embodiment of the present disclosure
  • FIG. 18 is a signaling flowchart illustrating performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure
  • FIG. 19 is a signaling flowchart illustrating performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure
  • FIG. 20 is a signaling flowchart illustrating performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure
  • 21 is a signaling flowchart illustrating performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure
  • FIG. 22 is a signaling flowchart illustrating performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure
  • FIG. 23 is a signaling flowchart illustrating performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure
  • FIG. 24 is a signaling flowchart illustrating performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure
  • FIG. 25 is a signaling flowchart illustrating performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure
  • FIG. 26 is a signaling flowchart illustrating performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure
  • FIG. 27 is a signaling flowchart illustrating a backup PDCCH according to an embodiment of the present disclosure
  • FIG. 28 is a flowchart illustrating a wireless communication method performed by a user equipment, in accordance with an embodiment of the present disclosure
  • 29 is a flowchart illustrating a wireless communication method performed by an electronic device as a network side device, according to an embodiment of the present disclosure
  • FIG. 30 is a flowchart illustrating a wireless communication method performed by a user equipment, according to an embodiment of the present disclosure
  • 31(a) is a flowchart illustrating a wireless communication method performed by an electronic device as a network side device, according to an embodiment of the present disclosure
  • 31(b) is a flowchart illustrating a wireless communication method performed by an electronic device as a network side device, according to an embodiment of the present disclosure
  • FIG. 32 is a block diagram showing a first example of a schematic configuration of an eNB (Evolved Node B);
  • FIG. 33 is a block diagram showing a second example of a schematic configuration of an eNB
  • FIG. 34 is a block diagram showing an example of a schematic configuration of a smartphone
  • 35 is a block diagram showing an example of a schematic configuration of a car navigation device.
  • Example embodiments are provided so that this disclosure will be thorough, and the scope will be fully conveyed by those skilled in the art. Numerous specific details, such as specific components, devices, and methods, are set forth to provide a thorough understanding of the embodiments of the present disclosure. It will be apparent to those skilled in the art that ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; ⁇ / RTI> ⁇ RTIgt; In some example embodiments, well-known processes, well-known structures, and well-known techniques are not described in detail.
  • the network side device may send the DCI to the user equipment in its coverage by using the PDCCH, and the user equipment may obtain the control information by demodulating the DCI carried by the PDCCH, so as to perform subsequent operations, such as demodulating and transmitting the downlink data information. Upstream data information, etc.
  • the format of the DCI that the PDCCH can carry includes DCI format 0 (DCI format 0), DCI format 1 (DCI format 1), and DCI format 2 (DCI format 2).
  • the DCI format 0 indicates control information related to uplink transmission between the user equipment and the network side device, for example, control information related to PUSCH (Physical Uplink Share Channel) transmission and CSI (Channel State Information, The reporting of the channel state information triggers related control information and the like, and currently mainly includes DCI format 0_0 and DCI format 0_1.
  • the DCI format 1 indicates control information related to downlink transmission between the user equipment and the network side device, for example, control information related to PDSCH transmission, etc., and currently mainly includes DCI format 1_0 and DCI format 1_1.
  • DCI format 2 indicates control information other than DCI format 0 and DCI format 1, for example, control information related to GC-PDCCH (Group Common-Physical Downlink Control Channel) and power control, and currently mainly includes DCI. Format 2_0, DCI format 2_1, DCI format 2_2, and DCI format 2_3.
  • the present disclosure proposes a user equipment in a wireless communication system, an electronic device as a network side device, a wireless communication method performed by a network side device in a wireless communication system, and a wireless communication method performed by a user equipment in a wireless communication system And a computer readable storage medium to improve transmission reliability of the DCI carried by the PDCCH.
  • the wireless communication system according to the present disclosure may be a 5G NR communication system.
  • the high reliability and low latency communication service of URLLC (Ultra Reliable & Low Latency Communication) requires an error probability of 10 ⁇ -5 for the control channel, which is more severe than other service types, and can utilize the device and method of the present disclosure. Guarantee the transmission reliability of the PDCCH of the URLLC service.
  • the network side device may be any type of TRP (Transmit and Receive Port).
  • the TRP may have a transmitting and receiving function, for example, may receive information from the user equipment and the base station device, or may transmit information to the user equipment and the base station device.
  • the TRP can provide services to the user equipment and be controlled by the base station equipment. That is, the base station device provides a service to the user equipment through the TRP.
  • the network side device described in the present disclosure may also be a base station device, and may be, for example, an eNB or a gNB (a base station in a 5th generation communication system).
  • the user equipment may be a mobile terminal such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router, and a digital camera device, or an in-vehicle terminal such as a car navigation device. ).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the above terminals.
  • FIG. 1 is a block diagram showing an example of a configuration of a user device 100 according to an embodiment of the present disclosure.
  • the electronic device 100 herein can function as a user equipment in a wireless communication system.
  • the user equipment 100 may include a communication unit 110, a demodulation unit 120, and a determination unit 130.
  • each unit of the user equipment 100 may be included in a processing circuit. It should be noted that the user equipment 100 may include one processing circuit or multiple processing circuits. Further, the processing circuitry can include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the communication unit 110 may receive a downlink signal from a network side device.
  • the network side device may be a network side device that provides service to the user equipment 100, so that the user equipment 100 may receive a downlink signal from the network side device.
  • the demodulation unit 120 may demodulate a downlink signal from a network side device to acquire a PDCCH included therein. Further, the downlink signal may include a DCI carried by the PDCCH.
  • the determining unit 130 may determine whether to perform HARQ feedback for the DCI according to the content of the DCI carried by the PDCCH.
  • the user equipment 100 may determine whether to perform HARQ feedback for the DCI according to the content of the DCI carried by the PDCCH, thereby implementing an application of the HARQ feedback mechanism on the PDCCH, and improving the PDCCH.
  • the reliability of DCI transmission may be determined whether to perform HARQ feedback for the DCI according to the content of the DCI carried by the PDCCH, thereby implementing an application of the HARQ feedback mechanism on the PDCCH, and improving the PDCCH. The reliability of DCI transmission.
  • the determining unit 130 may determine whether to perform HARQ feedback for the DCI according to whether the DCI carried by the PDCCH includes control information related to uplink transmission or control information related to downlink transmission.
  • the determining unit 130 may determine, according to the format of the DCI carried by the PDCCH, whether the DCI includes control information related to uplink transmission or control information related to downlink transmission. As described above, when the format of the DCI is DCI format 0, the determining unit 130 may determine that the DCI includes control information related to uplink transmission; when the format of the DCI is DCI format 1, the determining unit 130 may determine that the DCI includes Downstream transmission related control information.
  • the determining unit 130 when the determining unit 130 determines that the DCI includes control information related to downlink transmission, it may be determined to perform HARQ feedback for the DCI.
  • the DCI when the DCI includes control information related to downlink transmission, the DCI may adopt DCI format 1.
  • the determining unit 130 when the determining unit 130 determines that the DCI includes control information related to uplink transmission, it may be determined that HARQ feedback for the DCI is not performed.
  • the DCI when the DCI includes control information related to uplink transmission, the DCI may adopt DCI format 0.
  • the user equipment 100 may implicitly feed back to the network side device whether to correctly decode the DCI.
  • the network side device may determine, from the received CSI report, whether the user equipment 100 correctly decodes the DCI.
  • the network side device may determine whether the user exists by observing whether the PUSCH exists on the uplink resource indicated by the DCI.
  • the user equipment 100 may implicitly feed back to the network side device whether the DCI is correctly decoded through the behavior related to the DCI, and the implicit feedback is also the same.
  • the transmission reliability of the DCI related to the uplink transmission can be improved.
  • the user equipment 100 does not perform HARQ feedback for the DCI. In this way, signaling overhead can be saved and latency can be reduced.
  • the user equipment 100 may determine whether to perform HARQ feedback according to the content of the DCI, and perform HARQ feedback only in a case where the DCI includes control information related to downlink transmission, thereby improving transmission reliability Based on saving overhead.
  • the demodulation unit 120 may also demodulate and decode the DCI.
  • the user equipment 100 may further include a feedback unit 140 configured to generate feedback information if it is required to perform HARQ feedback for DCI of the PDCCH bearer.
  • the feedback information herein may include an ACK message and a NACK message.
  • the feedback unit 140 may generate an ACK message for the DCI and transmit an ACK message for the DCI to the network side device. Further, in this case, the user equipment 100 may also receive downlink data from the network side device according to the correctly decoded DCI.
  • FIG. 2 is a schematic diagram illustrating a process of performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure. Specifically, FIG. 2 shows a schematic diagram of correctly decoding the DCI carried by the PDCCH.
  • the horizontal direction represents the time domain
  • the vertical direction represents the frequency domain.
  • the network side device selects time-frequency resources (occupying one or more OFDM symbols in the time domain, occupies one or more subcarriers in the frequency domain), and sends the selected time-frequency resources to the user equipment. PDCCH.
  • the user equipment sends an ACK message for the PDCCH to the network side device, where the user equipment can use the PUCCH (Physical Uplink Control Channel) to carry the ACK message for the PDCCH.
  • the network side device transmits the downlink data information to the user equipment by using the PDSCH indicated in the PDCCH.
  • the PDCCH carries the DCI
  • the PDCCH and the DCI are not specifically distinguished herein, so that the ACK message for the PDCCH refers to the ACK message for the DCI carried by the PDCCH.
  • FIG. 3 is a schematic diagram showing a configuration of a time slot of the embodiment shown in FIG. 2.
  • FIG. 3 shows a schematic diagram of a configuration of one slot including 14 OFDM symbols.
  • the first OFDM symbol of the time slot is used for downlink transmission, and the network side device sends a PDCCH to the user equipment; the second OFDM symbol of the time slot is used for uplink transmission, and the user equipment sends the signal to the network side device.
  • FIG. 3 is merely an exemplary time slot configuration.
  • the PDCCH occupies 1 OFDM symbol
  • the PDCCH may of course occupy 2 or 3 OFDM symbols.
  • the PDSCH can also occupy other numbers of OFDM symbols.
  • the user equipment 100 may generate an ACK message for the DCI, so that the network side device can transmit the downlink data to the user equipment 100 according to the ACK message.
  • the feedback unit 140 may generate a NACK message for the DCI and transmit a NACK message for the DCI to the network side device. Further, in this case, after transmitting the NACK message, the user equipment 100 may receive the retransmitted DCI from the network side device.
  • FIG. 4 is a schematic diagram illustrating a process of performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure. Specifically, FIG. 4 shows a schematic diagram of not correctly decoding the DCI carried by the PDCCH.
  • the horizontal direction represents the time domain
  • the vertical direction represents the frequency domain.
  • the network side device selects time-frequency resources (occupying one or more OFDM symbols in the time domain, occupies one or more subcarriers in the frequency domain), and sends the selected time-frequency resources to the user equipment. PDCCH.
  • the user equipment sends a NACK message for the PDCCH to the network side device, where the user equipment can utilize the PUCCH to carry the NACK message for the PDCCH.
  • the network side device After receiving the NACK message for the PDCCH, the network side device resends the PDCCH to the user equipment.
  • the user equipment decodes the retransmitted PDCCH, and transmits an ACK message for the PDCCH to the network side device by using the PUCCH.
  • the network side device After receiving the ACK message for the PDCCH, the network side device transmits the downlink data information to the user equipment by using the PDSCH indicated in the PDCCH.
  • FIG. 5 is a schematic diagram showing a configuration of a time slot of the embodiment shown in FIG.
  • FIG. 5 shows a schematic diagram of a configuration of one slot including 14 OFDM symbols.
  • the first OFDM symbol of the time slot is used for downlink transmission, and the network side device sends a PDCCH to the user equipment; the second OFDM symbol of the time slot is used for uplink transmission, and the user equipment sends the signal to the network side device.
  • a PUCCH where the NACK message for the PDCCH is carried; the third OFDM symbol of the time slot is used for downlink transmission, and the network side device retransmits the PDCCH to the user equipment; the fourth OFDM symbol of the time slot is used for uplink transmission, and the user equipment Transmitting a PUCCH to the network side device, where the ACK message for the PDCCH is carried; the 5-13th OFDM symbol of the time slot is used for downlink transmission, and the network side device sends the PDSCH to the user equipment; the 14th OFDM symbol of the time slot is used by In the uplink transmission, the user equipment sends a HARQ feedback message for the PDSCH to the network side device.
  • Figure 5 is merely an exemplary time slot configuration.
  • the PDCCH may of course occupy 2 or 3 OFDM symbols.
  • the PDSCH can also occupy other numbers of OFDM symbols.
  • the user equipment correctly decodes the DCI carried by the PDCCH by one retransmission of the PDCCH.
  • the user equipment 100 may receive the retransmitted PDCCH from the network side device until the user equipment 100 correctly decodes the DCI carried by the PDCCH, and then The network side device receives downlink data. That is to say, the process of PDCCH retransmission between the network side device and the user equipment 100 may be one time or multiple times.
  • the number of PDCCH retransmissions may be limited.
  • the network side device may not retransmit the PDCCH.
  • the user equipment 100 is re-scheduled and the like.
  • the user equipment 100 may generate a NACK message for DCI without correctly decoding the DCI, so that the network side device may retransmit the PDCCH to the user equipment 100 according to the NACK message until The user equipment 100 correctly decodes the DCI. After the user equipment 100 correctly decodes the DCI, the network side device may send downlink data to the user equipment 100.
  • the threshold of the number of PDCCH retransmissions can also be set, thereby reducing the delay.
  • the communication unit 110 may simultaneously receive downlink data and retransmitted DCI from the network side device using different frequency domain resources.
  • the PDCCH retransmission and the PDSCH can be performed by using the same time domain resources of different frequency domain resources. Transmission.
  • the retransmitted DCI may be decoded, and an ACK/NACK message is sent to the network side device according to the decoding condition of the DCI.
  • FIG. 6 is a schematic diagram illustrating a process of performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure. Specifically, FIG. 6 shows a schematic diagram of performing retransmission of a PDCCH and transmission of a PDSCH using different frequency domain resources.
  • the horizontal direction represents the time domain
  • the vertical direction represents the frequency domain.
  • the network side device selects time-frequency resources (occupying one or more OFDM symbols in the time domain, occupies one or more subcarriers in the frequency domain), and sends the selected time-frequency resources to the user equipment. PDCCH.
  • the user equipment sends a NACK message for the PDCCH to the network side device, where the user equipment can utilize the PUCCH to carry the NACK message for the PDCCH.
  • the network side device resends the PDCCH to the user equipment.
  • the network side device uses different frequency domain resources to simultaneously transmit downlink data to the user equipment by using the PDSCH.
  • the user equipment decodes the retransmitted PDCCH, and transmits an ACK message for the PDCCH to the network side device by using the PUCCH.
  • the user equipment 100 may receive a PDCCH that is retransmitted multiple times from a network side device. Further, in this case, the user equipment may not transmit an ACK/NACK message for the retransmitted PDCCH to the network side device.
  • FIG. 7 is a schematic diagram illustrating a process of performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure. Specifically, FIG. 7 shows a schematic diagram of performing multiple retransmissions of a PDCCH and transmission of a PDSCH using different frequency domain resources.
  • the horizontal direction represents the time domain
  • the vertical direction represents the frequency domain.
  • the network side device selects time-frequency resources (occupying one or more OFDM symbols in the time domain, occupies one or more subcarriers in the frequency domain), and sends the selected time-frequency resources to the user equipment. PDCCH.
  • the user equipment sends a NACK message for the PDCCH to the network side device, where the user equipment can utilize the PUCCH to carry the NACK message for the PDCCH.
  • the network side device retransmits the PDCCH to the user equipment multiple times.
  • the network side device uses different frequency domain resources to simultaneously transmit downlink data to the user equipment by using the PDSCH. As shown in FIG. 7, the network side device retransmits the PDCCH twice to the user equipment, and the user equipment does not perform ACK/NACK feedback for the retransmitted PDCCH.
  • the network side device may also resend the PDCCH three or more times to the user equipment.
  • the PDCCH retransmission and the PDSCH transmission can be performed using the same frequency domain resources with the same time domain resources, thereby reducing the delay.
  • the retransmitted PDCCH may be received from the network side device multiple times, thereby improving the reliability of the PDCCH.
  • the possibility that the PDCCH is correctly decoded by the user equipment 100 is greatly improved, so the user equipment 100 may not ACK the retransmitted PDCCH. /NACK feedback.
  • the feedback unit 140 may generate a feedback message and transmit a feedback message to the network side device.
  • the feedback message here only includes ACK/NACK messages for one DCI. Further embodiments of the feedback message will be described below.
  • the HARQ feedback message sent by the user equipment 100 to the network side device may also be a combined HARQ feedback message.
  • the combined HARQ feedback message may include a HARQ feedback message for DCI and a HARQ feedback message for downlink data carried by the PDSCH.
  • the merged HARQ feedback message may include, for example, an ACK/NACK message for DCI and an ACK/NACK message for downlink data.
  • the user equipment 100 may receive the DCI of the PDCCH and the downlink data of the PDSCH from the network side device, and combine the HARQ feedback message of the DCI and the HARQ feedback message of the downlink data, thereby saving the letter. Increase overhead and reduce latency.
  • FIG. 8 is a schematic diagram illustrating a process of performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram showing a combination of a DCI carried by a PDCCH and a feedback message of downlink data carried by a PDSCH.
  • the horizontal direction represents the time domain
  • the vertical direction represents the frequency domain.
  • the network side device selects time-frequency resources (occupying one or more OFDM symbols in the time domain, occupies one or more subcarriers in the frequency domain), and uses the selected time-frequency resources to pass the PDCCH to the user.
  • the device sends a DCI.
  • the network side device sends downlink data to the user equipment through the PDSCH.
  • the user equipment decodes the DCI and the downlink data, and generates a feedback message for the DCI and a feedback message for the downlink data, and then combines the two feedback messages and sends the combined feedback message to the network side device, where The user equipment can utilize the PUCCH to carry the combined feedback message.
  • the merged HARQ feedback message may include a HARQ feedback message for the DCI and a HARQ feedback message for one or more other DCIs.
  • the merged HARQ feedback message may include an ACK/NACK message for each of the plurality of DCIs.
  • the user equipment 100 may receive multiple DCIs carried by the PDCCH from the network side device, and combine the HARQ feedback messages of the multiple DCIs, thereby saving signaling overhead and reducing delay.
  • FIG. 9 is a schematic diagram illustrating a process of performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure.
  • FIG. 9 shows a schematic diagram of combining feedback messages of multiple DCIs carried by a PDCCH.
  • the horizontal direction represents the time domain
  • the vertical direction represents the frequency domain.
  • the network side device selects time-frequency resources (occupying one or more OFDM symbols in the time domain, occupies one or more subcarriers in the frequency domain), and uses the selected time-frequency resources to pass the PDCCH to the user.
  • the device sends the first DCI (labeled PDCCH1 in Figure 9).
  • the network side device selects the time-frequency resource and sends the second DCI (labeled as PDCCH2 in FIG. 9) to the user equipment through the PDCCH by using the selected time-frequency resource.
  • the user equipment decodes the first DCI and the second DCI, and generates a feedback message for the first DCI and a feedback message for the second DCI, and then merges the two feedback messages to the network side.
  • the device sends the combined feedback message, where the user equipment can use the PUCCH to carry the combined feedback message. Assuming that the user equipment successfully decodes both the first DCI and the second DCI, next, the network side device transmits the PDSCH indicated by the first DCI to the user equipment.
  • the network side device transmits the PDSCH indicated by the second DCI to the user equipment.
  • FIG. 9 shows a situation in which the user equipment 100 combines feedback messages of two DCIs. Of course, the user equipment 100 may also combine feedback messages of three or more DCIs.
  • FIG. 10 is a schematic diagram showing the configuration of a time slot of the embodiment shown in FIG.
  • FIG. 10 shows a schematic diagram of a configuration of one slot including 14 OFDM symbols.
  • the first and second OFDM symbols of the time slot are used for downlink transmission, and the network side device sends multiple PDCCHs to the user equipment; the third OFDM symbol of the time slot is used for uplink transmission, and the user The device sends a PUCCH to the network side device, where the HARQ feedback message for multiple DCIs is carried; the 4-10 OFDM symbols of the time slot are used for downlink transmission, and the network side device sends the PDSCH to the user equipment; - 14 OFDM symbols are used for uplink transmission, and the user equipment transmits a PUSCH to the network side device.
  • Figure 10 is merely an exemplary time slot configuration.
  • the PDCCH may of course occupy 1 or 3 OFDM symbols.
  • the PDSCH and PUSCH can also occupy other numbers of OFDM symbols.
  • the feedback message sent by the user equipment 100 to the network side device may be a combined feedback message
  • the combined feedback message may include a feedback message to the DCI and a feedback message to the downlink data
  • the combined feedback message may also be Includes feedback messages for multiple DCIs.
  • the combined feedback message may further include a feedback message for multiple DCIs and a feedback message for downlink data. That is to say, the user equipment 100 can combine various HARQ feedback messages according to actual needs, thereby saving signaling overhead and reducing delay.
  • the network side device may send downlink data through the PDSCH after the user equipment 100 correctly decodes the PDCCH, or may send downlink data through the PDSCH before the user equipment 100 correctly decodes the PDCCH. In the latter case, the user equipment 100 may buffer the received downlink data. After the PDCCH is successfully decoded, the downlink data is decoded. This cache mode may be referred to as a soft buffer.
  • the user equipment 100 may further include a buffer unit 150 for buffering downlink data without correctly decoding the PDCCH.
  • the communication unit 110 may receive the downlink data from the network side device, and the buffer unit 150 may buffer the received downlink data.
  • the user equipment 100 can receive downlink data from the network side device through the PDSCH.
  • the user equipment 100 may receive the retransmitted DCI from the network side device, and demodulate the buffered downlink data by using the correctly decoded DCI.
  • the communication unit 110 may receive downlink data from the network side device after transmitting the NACK message for the PDCCH to the network side device and before receiving the retransmitted DCI from the network side device, and the buffer unit 150 may The received downlink data is buffered.
  • FIG. 11 is a schematic diagram illustrating a process of performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure. Specifically, FIG. 11 shows a schematic diagram of receiving downlink data from a network side device and buffering it after transmitting a NACK message for the PDCCH to the network side device.
  • the horizontal direction represents the time domain
  • the vertical direction represents the frequency domain.
  • the network side device selects time-frequency resources (occupying one or more OFDM symbols in the time domain, occupies one or more subcarriers in the frequency domain), and uses the selected time-frequency resources to pass the PDCCH to the user.
  • the device sends a DCI.
  • the user equipment decodes the DCI and generates a NACK message for the DCI and sends it to the network side device, where the user equipment can use the PUCCH to carry the NACK message.
  • the network side device transmits the PDSCH indicated by the DCI to the user equipment.
  • the user equipment caches the PDSCH.
  • the network side device resends the PDCCH to the user equipment.
  • the user equipment decodes the retransmitted PDCCH, generates an ACK message for the PDCCH, and transmits it to the network side device.
  • the user equipment can demodulate the buffered downlink data by using the correctly decoded PDCCH.
  • FIG. 12 is a schematic diagram showing the configuration of a time slot of the embodiment shown in Fig. 11.
  • FIG. 12 shows a schematic diagram of a configuration of one slot including 14 OFDM symbols.
  • the first OFDM symbol of the time slot is used for downlink transmission, and the network side device sends a PDCCH to the user equipment; the second OFDM symbol of the time slot is used for uplink transmission, and the user equipment sends the signal to the network side device.
  • FIG. 12 is merely an exemplary time slot configuration.
  • the PDCCH occupies 1 OFDM symbol
  • the PDCCH can also occupy 2 or 3 OFDM symbols.
  • the PDSCH can also occupy other numbers of OFDM symbols.
  • the communication unit 110 may receive downlink data from the network side device, and the cache unit 150 may The received downlink data is buffered.
  • FIG. 13 is a schematic diagram illustrating a process of performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure. Specifically, FIG. 13 shows a schematic diagram of receiving downlink data from a network side device and buffering it before transmitting a NACK message for the PDCCH to the network side device.
  • the horizontal direction represents the time domain
  • the vertical direction represents the frequency domain.
  • the network side device selects time-frequency resources (occupying one or more OFDM symbols in the time domain, occupies one or more subcarriers in the frequency domain), and uses the selected time-frequency resources to pass the PDCCH to the user.
  • the device sends a DCI.
  • the network side device transmits the PDSCH indicated by the DCI to the user equipment.
  • the user equipment caches the PDSCH.
  • the user equipment decodes the DCI and generates a NACK message for the DCI and sends it to the network side device, where the user equipment can use the PUCCH to carry the NACK message.
  • the network side device resends the PDCCH to the user equipment.
  • the user equipment decodes the retransmitted PDCCH, generates an ACK message for the PDCCH, and transmits it to the network side device.
  • the user equipment can demodulate the buffered downlink data by using the correctly decoded PDCCH.
  • FIG. 14 is a schematic diagram showing the configuration of a time slot of the embodiment shown in Fig. 13.
  • FIG. 14 shows a schematic diagram of a configuration of one slot including 14 OFDM symbols.
  • the first OFDM symbol of the time slot is used for downlink transmission, and the network side device sends a PDCCH to the user equipment; the 2-11th OFDM symbol of the time slot is used for downlink transmission, and the network side device is used for the user.
  • the device sends a PDSCH; the 12th OFDM symbol of the time slot is used for uplink transmission, and the user equipment sends a PUCCH to the network side device, where the NACK message for the DCI is carried; the 13th OFDM symbol of the time slot is used for downlink transmission, the network
  • the side device retransmits the PDCCH to the user equipment; the 14th OFDM symbol of the time slot is used for uplink transmission, and the user equipment sends a PUCCH to the network side device, where the ACK message for the retransmitted DCI is carried.
  • Figure 14 is merely an exemplary time slot configuration.
  • FIG. 14 shows a case where the PDCCH occupies 1 OFDM symbol, of course, the PDCCH can also occupy 2 or 3 OFDM symbols.
  • the PDSCH can also occupy other numbers of OFDM symbols.
  • the user equipment 100 may transmit downlink data through the PDSCH before correctly decoding the PDCCH. In this case, since the user equipment 100 does not correctly decode the PDCCH, the location of the PDSCH indicated by the PDCCH is not known.
  • the user equipment 100 may be pre-configured by the network side device to multiple BWPs (Bandwidth Part) for receiving downlink data, one of the multiple BWPs is in an active state, and the other BWPs are in an inactive state. .
  • BWPs Bandwidth Part
  • the user equipment 100 may receive downlink data and cache on a plurality of pre-configured BWPs of the user equipment 100. That is, the user equipment 100 can search for and receive downlink data on all (for example, four) BWPs that are pre-configured, thereby buffering the downlink data.
  • the user equipment 100 may receive downlink data and cache on the default one or more BWPs of the user equipment 100.
  • the default BWP can be a BWP that is active. That is to say, the user equipment 100 can search for and receive downlink data on a BWP in an activated state, thereby buffering the downlink data.
  • the default BWP may also be a pre-agreed BWP between the user equipment 100 and the network side device, such as the BWP that the user equipment 100 used to receive downlink data last time. That is to say, the user equipment 100 can search and receive downlink data on the BWP pre-agreed with the network side device, thereby buffering the downlink data.
  • the user equipment 100 may also receive information about a default BWP from the network side device.
  • the information may include identification information of a default BWP.
  • such information can be received, for example, by higher layer signaling such as RRC layer signaling or MAC layer signaling. That is, the user equipment 100 can search for and receive downlink data on the BWP indicated by the network side device, thereby buffering the downlink data.
  • the communication unit 110 may further receive an indication message indicating that the downlink data is buffered from the network side device.
  • the indication message for indicating that the downlink data is buffered may include, for example, indication information of a time domain resource and a frequency domain resource for carrying downlink data.
  • indication information can be carried by a more compact or compressed DCI format.
  • the user equipment 100 can obtain the resource location of the downlink data by using the indication message, so that the downlink data can be received and buffered. Further, after the user equipment 100 receives the subsequent complete DCI information, the buffered downlink data may be demodulated by using the completed DCI.
  • FIG. 15 is a schematic diagram illustrating a process of performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of a network side device sending cache indication information to a user equipment.
  • the horizontal direction represents the time domain
  • the vertical direction represents the frequency domain.
  • the network side device selects time-frequency resources (occupying one or more OFDM symbols in the time domain, occupies one or more subcarriers in the frequency domain), and uses the selected time-frequency resources to pass the PDCCH to the user.
  • the device sends the first DCI (labeled PDCCH1 in Figure 15).
  • the network side device may also select a time-frequency resource and send a second DCI (labeled as PDCCH2 in FIG. 15) to the user equipment through the PDCCH by using the selected time-frequency resource.
  • the second DCI carries buffer indication information for instructing the user equipment to buffer the downlink data.
  • the network side device transmits the PDSCH to the user equipment.
  • the user equipment caches the PDSCH according to location information of a resource for transmitting downlink data carried in the second DCI.
  • the user equipment decodes the first DCI and generates a NACK message for the first DCI and sends it to the network side device, where the user equipment can use the PUCCH to carry the NACK message.
  • the network side device resends PDCCH1 to the user equipment.
  • the user equipment decodes the retransmitted PDCCH1, generates an ACK message for PDCCH1, and transmits it to the network side device.
  • the user equipment can demodulate the buffered downlink data by using the correctly decoded PDCCH1.
  • the network side device may send an indication message indicating that the downlink data is buffered to the user equipment 100, or may not send an indication to the user equipment 100 to indicate that the downlink data is buffered. Message. In the latter case, the user equipment 100 may receive downlink data on a BWP that is pre-agreed with the network side device or indicated by the network side device.
  • the user equipment 100 may determine whether to perform HARQ feedback for the DCI according to the content of the DCI carried by the PDCCH. Further, the user equipment 100 can perform HARQ feedback only in the case where the DCI includes control information related to downlink transmission, thereby saving overhead on the basis of improving transmission reliability. In addition, in order to further save overhead and reduce delay, the user equipment 100 may combine and transmit multiple HARQ feedback messages. Further, the user equipment 100 may also buffer the downlink data before correctly decoding the PDCCH. In summary, the user equipment 100 according to the embodiment of the present disclosure may implement the application of the HARQ feedback mechanism on the PDCCH, and improve the transmission reliability of the DCI carried by the PDCCH.
  • the user equipment 100 that improves PDCCH transmission reliability according to another embodiment of the present disclosure will be described in detail below.
  • the user equipment 100 can also adopt a structural configuration as shown in FIG. 1.
  • the communication unit 110 may receive first data information, second data information, first control information for the first data information, and second control information for the second data information from the network side device, where The first data information includes second control information, and the second data information includes the first control information.
  • the demodulation unit 120 may decode information received from the network side device, including the first data information, the second data information, the first control information, and the second control information to acquire the first data information. And second data information.
  • the first control information and the second control information are received twice, thereby implementing diversity gain, and further improving transmission reliability of the PDCCH.
  • the first data information and the second data information may be downlink data information carried by the PDSCH, and the first control information and the second control information may be downlink control information carried by the PDCCH.
  • FIG. 16 is a schematic diagram showing a process of backing up a PDCCH according to an embodiment of the present disclosure.
  • the horizontal direction represents the time domain
  • the vertical direction represents the frequency domain.
  • the network side device selects time-frequency resources (occupying one or more OFDM symbols in the time domain, occupies one or more subcarriers in the frequency domain), and uses the selected time-frequency resources to pass the PDCCH to the user.
  • the device sends the first DCI (labeled PDCCH1 in Figure 16).
  • the network side device may also select a time-frequency resource and send a second DCI (labeled as PDCCH2 in FIG. 16) to the user equipment through the PDCCH by using the selected time-frequency resource.
  • the network side device transmits the first data information (labeled as PDSCH1 in FIG. 16) to the user equipment through the PDSCH, where the first data information includes the second DCI. Further, the network side device may further send a second data information (labeled as PDSCH2 in FIG. 16) to the user equipment through the PDSCH, where the second data information includes the first DCI.
  • the first data information labeled as PDSCH1 in FIG. 16
  • the network side device may further send a second data information (labeled as PDSCH2 in FIG. 16) to the user equipment through the PDSCH, where the second data information includes the first DCI.
  • the user equipment 100 may receive the first data information, the first control information, the second data information, and the second control information from the same network side device that provides the service to the user equipment 100. That is, the first control information and the second control information are different downlink control information from the same network side device, and the first data information and the second data information are different downlinks from the same network side device. Data information.
  • the network side device here may be, for example, a base station or a TRP.
  • the user equipment 100 may also receive the above information from different network side devices that provide services for the user equipment 100.
  • the user equipment 100 receives the first control information and the first data information from the first network side device, and receives the second control information and the second data information from the second network side device. That is, the first control information is downlink control information from the first network side device, the first data information is downlink data information from the first network side device, and the second control information is from the second network side.
  • the first and second network side devices herein may be, for example, a TRP.
  • information may be interactively controlled between the first network side device and the second network side device through an Xn interface (an interface between TRPs).
  • the first network side device sends the first control information to the second network side device through the Xn interface, so that the second network side device encodes the first control information in the second data information
  • the second network side device may Transmitting the second control information to the first network side device by using the Xn interface, where the first network side device encodes the second control information in the first data information.
  • the demodulation unit 120 may decode the first control information and decode the first data information using the correctly decoded first control information. Further, the decoding unit 120 may further decode the second control information, and decode the second data information by using the correctly decoded second control information.
  • the demodulation unit 120 may utilize the correctly decoded second control information. Decoding the second data information to determine first control information included in the second data information according to the decoded second data information. Next, the demodulation unit 120 may decode the first data information using the obtained first control information.
  • the demodulation unit 120 may utilize the correctly decoded first control information. Decoding the first data information to determine second control information included in the first data information according to the decoded first data information. Next, the demodulation unit 120 may decode the second data information using the obtained second control information.
  • PDCCH1 and PDCCH2 are decoded.
  • the user equipment 100 may decode the PDSCH1 by using the correctly decoded PDCCH1 to obtain the downlink data carried in the PDSCH1, and decode the PDSCH2 by using the correctly decoded PDCCH2 to obtain the PDSCH2. Downstream data carried.
  • user equipment 100 may decode PDSCH1 by using correctly decoded PDCCH1 to acquire downlink data carried in PDSCH1, thereby acquiring PDCCH2 included in PDSCH1, and utilizing The PDCCH 2 thus obtained decodes PDSCH2 to obtain downlink data carried in PDSCH2.
  • user equipment 100 may decode PDSCH2 with correctly decoded PDCCH2 to acquire downlink data carried in PDSCH2, thereby acquiring PDCCH1 included in PDSCH2, and utilizing The PDCCH 1 thus obtained decodes PDSCH1 to obtain downlink data carried in PDSCH1.
  • the user equipment 100 can receive PDCCH1 and PDCCH2 twice, thereby achieving diversity gain.
  • PDCCH1 is copied to PDSCH2 for transmission
  • PDCCH2 is copied to PDSCH1 for transmission
  • "backup" to PDCCH1 and PDCCH2 is actually implemented.
  • the user equipment 100 only needs to correctly decode one of PDCCH1 and PDCCH2, and can acquire downlink data carried by PDSCH1 and PDSCH2, thereby improving the reliability of PDCCH transmission.
  • the foregoing embodiment of the DCI carried by the PDCCH is used as an example to improve the reliability of the PDCCH transmission, those skilled in the art should understand that three or more DCIs and corresponding ones may also be utilized.
  • the second control information may be included in the first data information
  • the third control information is included in the second data information
  • the first control information is included in the third data information. That is, in the case where there are a plurality of pieces of data information and a plurality of pieces of control information transmitted to one user equipment, control information for other data information may be included in each of the plurality of pieces of data information such that each The control information is sent twice to achieve the diversity gain of the control information.
  • FIG. 17 is a block diagram showing a structure of an electronic device 1700 serving as a network side device in a wireless communication system according to an embodiment of the present disclosure.
  • the electronic device 1700 can include a communication unit 1710 and a determination unit 1720.
  • various units of the electronic device 1700 may be included in the processing circuit. It should be noted that the electronic device 1700 may include one processing circuit or multiple processing circuits. Further, the processing circuitry can include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and differently named units may be implemented by the same physical entity.
  • the communication unit 1710 may transmit a downlink signal including a PDCCH to the user equipment.
  • the PDCCH can carry DCI.
  • the determining unit 1720 may determine whether it is necessary to receive a HARQ feedback message for the DCI from the user equipment according to the content of the DCI carried by the PDCCH.
  • the electronic device 1700 may determine whether it is necessary to receive HARQ feedback for the DCI from the user equipment according to the content of the DCI carried by the PDCCH, thereby implementing an application of the HARQ feedback mechanism on the PDCCH, The transmission reliability of the DCI carried by the PDCCH is improved.
  • the electronic device 1700 may include a processing unit 1740 for generating a DCI transmitted to a user equipment using a specific DCI format, and carrying the DCI through the PDCCH.
  • the determining unit 1720 may determine whether it is necessary to receive HARQ feedback for the DCI from the user equipment according to whether the DCI carried by the PDCCH includes control information related to uplink transmission or control information related to downlink transmission.
  • the determining unit 1720 determines that HARQ feedback for DCI needs to be received from the user equipment. Further, when the DCI includes control information related to downlink transmission of the electronic device 1700, the DCI may adopt DCI format 1.
  • the determining unit 1720 determines that it is not necessary to receive HARQ feedback for the DCI from the user equipment. Further, when the DCI includes control information related to uplink transmission of the electronic device 1700, the DCI may adopt DCI format 0.
  • the determining unit 1720 determines that the HARQ feedback for the DCI needs to be received from the user equipment, it is necessary to wait for the HARQ feedback message for the DCI after transmitting the DCI, and determine whether the pair needs to be performed according to the HARQ feedback message.
  • Retransmission of DCI when determining unit 1720 determines that HARQ feedback for the DCI is not required to be received from the user equipment, there is no need to wait for a HARQ feedback message for the DCI after transmitting the DCI, but directly perform subsequent operations, such as through PUSCH Receive uplink data sent by the user equipment or send downlink data to the user equipment through the PDSCH.
  • the electronic device 1700 may include a demodulation unit 1730 for demodulating the HARQ feedback message if it is required to receive a HARQ feedback message from the user equipment.
  • the demodulation unit 1730 can also demodulate uplink data from the user equipment.
  • the communication unit 1710 may transmit downlink data to the user equipment.
  • FIG. 18 is a signaling flowchart illustrating performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure.
  • FIG. 18 shows a signaling flow diagram in the case where the user equipment correctly decodes the DCI, which corresponds to the process shown in FIG. 2.
  • the base station sends a PDCCH to a UE (User Equipment), and the PDCCH carries a DCI for the UE.
  • the UE decodes the received DCI carried by the PDCCH. It is assumed here that the UE correctly decodes the DCI carried by the PDCCH, and then generates an ACK message for the DCI.
  • the UE transmits a PUCCH to the base station, which carries an ACK message for the DCI.
  • the base station transmits downlink data to the UE through the PDSCH.
  • the UE transmits a PUCCH to the base station, which carries an ACK/NACK message for downlink data.
  • the communication unit 1710 may resend the DCI to the user equipment. Further, the electronic device 1700 can also receive an ACK/NACK message for the retransmitted DCI from the user equipment.
  • the UE transmits a PUCCH to the base station, which carries a NACK message for the DCI.
  • the base station retransmits the DCI to the UE through the PDCCH.
  • the UE decodes the retransmitted DCI. It is assumed here that the UE correctly decodes the retransmitted DCI, and then generates an ACK message for the retransmitted DCI.
  • the UE transmits a PUCCH to the base station carrying an ACK message for the retransmitted DCI.
  • the base station transmits downlink data to the UE through the PDSCH.
  • step S1908 the UE transmits a PUCCH to the base station carrying an ACK/NACK message for the downlink data.
  • step S1904 and step S1905 shown in FIG. 19 may be repeated a plurality of times until the UE correctly decodes the retransmitted DCI.
  • the number of times the DCI is resent can be limited to reduce the delay.
  • the communication unit 1710 may simultaneously transmit downlink data and retransmitted DCI to the user equipment by using different frequency domain resources.
  • FIG. 20 is a signaling flowchart illustrating performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure.
  • FIG. 20 shows a signaling flow diagram in the case where the electronic device simultaneously transmits downlink data and retransmitted DCI using different frequency domain resources, which corresponds to the process shown in FIG. 6.
  • a base station transmits a PDCCH to a UE, and the PDCCH carries a DCI for the UE.
  • the UE decodes the received DCI carried by the PDCCH. It is assumed here that the UE does not correctly decode the DCI carried by the PDCCH, and generates a NACK message for the DCI.
  • the UE transmits a PUCCH to the base station, which carries a NACK message for the DCI.
  • the base station retransmits the DCI to the UE through the PDCCH.
  • the base station may also send downlink data to the UE through the PDSCH by using the same frequency domain resource with the same time domain resource.
  • the UE decodes the retransmitted DCI. It is assumed here that the UE correctly decodes the retransmitted DCI, and then generates an ACK message for the retransmitted DCI.
  • the UE transmits a PUCCH to the base station carrying an ACK message for the retransmitted DCI.
  • the communication unit 1710 may resend the DCI one or more times to the user equipment.
  • FIG. 21 is a signaling flowchart illustrating performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure. Specifically, FIG. 21 shows a signaling flowchart in the case where the electronic device retransmits the DCI a plurality of times, which corresponds to the process shown in FIG.
  • a base station transmits a PDCCH to a UE, and the PDCCH carries a DCI for the UE.
  • the UE decodes the received DCI carried by the PDCCH. It is assumed here that the UE does not correctly decode the DCI carried by the PDCCH, and generates a NACK message for the DCI.
  • the UE transmits a PUCCH to the base station, which carries a NACK message for the DCI.
  • the base station retransmits the DCI to the UE multiple times through the PDCCH.
  • the base station may further send downlink data to the UE through the PDSCH by using the same frequency domain resource with the same time domain resource. As shown in FIG. 21, in the case where the electronic device 1700 retransmits the DCI multiple times, it may not be necessary to receive a HARQ feedback message for the retransmitted DCI from the user equipment.
  • the communication unit 1710 may transmit the DCI of the PDCCH bearer to the user equipment, and send the downlink data of the PDSCH bearer to the user equipment. Further, in a case where the content of the DCI indicates that the HARQ feedback message needs to be received from the user equipment, the communication unit 1710 may receive the combined HARQ feedback message from the user equipment, where the HARQ feedback message includes a HARQ feedback message for the DCI and a HARQ for the downlink data. Feedback message.
  • the communication unit 1710 may resend the downlink data to the user equipment.
  • the electronic device 1700 may retransmit only the PDSCH to the user equipment.
  • the downlink data is obtained by causing the user equipment to decode the retransmitted PDSCH by using the previously correctly decoded PDCCH.
  • the communication unit 1710 may resend the DCI to the user equipment.
  • the electronic device 1700 may only retransmit the PDCCH to the user equipment.
  • the user equipment is configured to use the retransmitted PDCCH to decode the previously buffered PDSCH to obtain downlink data.
  • FIG. 22 is a signaling flowchart illustrating performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure. Specifically, FIG. 22 shows a signaling flowchart in the case where the user equipment merges the feedback messages of the PDCCH and the PDSCH, which corresponds to the procedure shown in FIG.
  • the base station transmits a PDCCH to the UE, and the PDCCH carries a DCI for the UE.
  • the base station transmits downlink data to the UE through the PDSCH.
  • the UE decodes the received DCI carried by the PDCCH, and decodes the downlink data carried by the PDSCH.
  • the UE transmits a PUCCH to the base station carrying an ACK/NACK message for DCI and an ACK/NACK message for downlink data.
  • the communication unit 1710 may further transmit a plurality of DCIs carried by the PDCCH to the user equipment. Further, the communication unit 1710 may further receive the merged HARQ feedback message from the user equipment, where the merged HARQ feedback message includes a HARQ feedback message for each of the plurality of DCIs.
  • FIG. 23 is a signaling flowchart illustrating performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure. Specifically, FIG. 23 shows a signaling flowchart in the case where the user equipment combines feedback messages of a plurality of DCIs, which corresponds to the process shown in FIG.
  • the base station transmits PDCCH1 to the UE, and PDCCH1 carries the first DCI for the UE.
  • PDCCH2 is transmitted to the UE, and PDCCH2 carries a second DCI for the UE.
  • the UE decodes the received first DCI carried by PDCCH1 and the second DCI carried by PDCCH2.
  • the UE transmits a PUCCH to the base station carrying an ACK/NACK message for the first DCI and an ACK/NACK message for the second DCI.
  • the communication unit 1710 may transmit downlink data to the user equipment for caching by the user equipment.
  • FIG. 24 is a signaling flowchart illustrating performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure.
  • FIG. 24 shows a signaling flowchart in the case where downlink data is first transmitted to the user equipment and DCI is retransmitted to the user equipment, which corresponds to the procedure shown in FIG.
  • the base station transmits a PDCCH to the UE, and the PDCCH carries the DCI for the UE.
  • the UE decodes the received DCI carried by the PDCCH. It is assumed here that the UE does not correctly decode the DCI carried by the PDCCH, and generates a NACK message for the DCI.
  • the UE transmits a PUCCH to the base station, which carries a NACK message for the DCI.
  • the base station sends downlink data to the UE through the PDSCH, and the UE buffers the received downlink data.
  • the base station retransmits the DCI to the UE through the PDCCH.
  • the UE decodes the retransmitted DCI.
  • the UE transmits a PUCCH to the base station carrying an ACK message for the retransmitted DCI.
  • FIG. 25 is a signaling flowchart illustrating performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure.
  • FIG. 25 shows a signaling flowchart in the case where downlink data is first transmitted to the user equipment and DCI is retransmitted to the user equipment, which corresponds to the procedure shown in FIG.
  • the base station transmits a PDCCH to the UE, and the PDCCH carries the DCI for the UE.
  • the base station transmits downlink data to the UE through the PDSCH, and the UE buffers the received downlink data.
  • the UE decodes the received DCI carried by the PDCCH.
  • the UE does not correctly decode the DCI carried by the PDCCH, and generates a NACK message for the DCI.
  • the UE transmits a PUCCH to the base station, which carries a NACK message for the DCI.
  • the base station retransmits the DCI to the UE through the PDCCH.
  • the UE decodes the retransmitted DCI.
  • the UE correctly decodes the retransmitted DCI, so that the buffered downlink data can be decoded with the correctly decoded DCI.
  • the UE transmits a PUCCH to the base station carrying an ACK message for the retransmitted DCI.
  • S2502 and S2503 can be performed simultaneously, that is, the base station transmits a PDSCH to the UE in S2502, and the UE decodes the DCI in S2503.
  • the communication unit 1710 may further send information about a default BWP to the user equipment for the user equipment to search for and receive downlink data on the default BWP indicated by the electronic device 1700, thereby buffering the downlink data.
  • the information may include identification information of a default BWP.
  • the electronic device 1700 can transmit information about the default BWP, for example, through higher layer signaling such as RRC layer signaling or MAC layer signaling.
  • the communication unit 1710 may further transmit an indication message for instructing to buffer the downlink data to the user equipment.
  • the indication message for indicating that the downlink data is buffered may include, for example, indication information of a time domain resource and a frequency domain resource for carrying downlink data.
  • electronic device 1700 can carry such indication information through a more compact or compressed DCI format.
  • the user equipment can obtain the resource location of the downlink data by using the indication message, so that the downlink data can be received and buffered. Further, after the user equipment receives subsequent complete DCI information from the electronic device 1700, the buffered downlink data may be demodulated.
  • FIG. 26 is a signaling flowchart illustrating performing HARQ feedback for a PDCCH, according to an embodiment of the present disclosure. Specifically, FIG. 26 shows a signaling flowchart in the case where the electronic device transmits the buffer indication information to the network side device, which corresponds to the process shown in FIG.
  • the base station transmits a PDCCH to the UE, and the PDCCH carries DCI and buffer indication information for the UE.
  • the base station transmits downlink data to the UE through the PDSCH, and the UE buffers the received downlink data.
  • the UE decodes the received DCI carried by the PDCCH.
  • the UE does not correctly decode the DCI carried by the PDCCH, and generates a NACK message for the DCI.
  • the UE transmits a PUCCH to the base station, which carries a NACK message for the DCI.
  • the base station retransmits the DCI to the UE through the PDCCH.
  • the UE decodes the retransmitted DCI.
  • the UE correctly decodes the retransmitted DCI, so that the buffered downlink data can be decoded with the correctly decoded DCI.
  • the UE transmits a PUCCH to the base station carrying an ACK message for the retransmitted DCI.
  • S2602 and S2603 may be performed simultaneously, that is, the base station transmits a PDSCH to the UE in S2602, and the UE decodes the DCI in S2603.
  • the electronic device 1700 may determine whether it is necessary to receive HARQ feedback for the DCI from the user equipment according to the content of the DCI carried by the PDCCH. Further, HARQ feedback can be received from the user equipment only if the DCI includes control information related to downlink transmission, thereby saving overhead on the basis of improving transmission reliability. In addition, to further save overhead and reduce latency, the combined HARQ feedback message can be received from the user equipment. Further, the electronic device 1700 may further send downlink data to the user equipment for buffering before the user equipment has correctly decoded the PDCCH. In summary, the electronic device 1700 according to the embodiment of the present disclosure may implement the application of the HARQ feedback mechanism on the PDCCH, and improve the transmission reliability of the DCI carried by the PDCCH.
  • the electronic device 1700 may serve as a network side device, that is, the electronic device 1700 may provide a service to the user device 100, and thus all embodiments related to the user device 100 described in the foregoing are applicable thereto.
  • An electronic device 1700 serving as a network side device that improves PDCCH transmission reliability according to another embodiment of the present disclosure will be described in detail below.
  • the electronic device 1700 can also adopt a structural configuration as shown in FIG.
  • the processing unit 1740 may generate first data information, second data information, first control information for the first data information, and second control information for the second data information, wherein the first The data information includes the second control information, and the second data information includes the first control information.
  • the communication unit 1710 may transmit the first data information, the second data information, the first control information, and the second control information to the user equipment.
  • the electronic device 1700 transmits the first control information and the second control information twice to the user equipment, thereby implementing diversity gain, and further improving transmission reliability of the PDCCH.
  • the communication unit 1710 may further receive second control information for the second data information from other network side devices other than the electronic device 1700.
  • the processing unit 1740 may generate first data information and first control information for the first data information, the first data information including the second control information.
  • the communication unit 1710 may further transmit first control information to other network side devices for the other network side devices to include the first control information in the second data information.
  • the communication unit 1710 may transmit the first data information and the first control information to the user equipment.
  • the first data information is downlink data information that is sent by the electronic device 1700 to the user equipment
  • the second data information is downlink data information that is sent by other network side devices to the user equipment.
  • the electronic device 1700 may send the first control information to the other network side devices through the Xn interface, and may receive the second control information from the other network side devices through the Xn interface.
  • the first data information and the second data information may be downlink data information carried by the PDSCH, and the first control information and the second control information may be downlink control information carried by the PDCCH.
  • the first control information is sent twice, once to other network side devices for other network side devices to send to the user equipment, and directly sent to the user equipment at a time.
  • the diversity gain is realized, and the transmission reliability of the PDCCH is further improved.
  • FIG. 27 is a signaling flowchart illustrating a backup PDCCH according to an embodiment of the present disclosure.
  • Fig. 27 only shows an embodiment in which the first data information and the second data information are from the same network side device.
  • the base station transmits the first DCI carried by PDCCH1 to the UE.
  • the base station transmits a second DCI carried by the PDCCH 2 to the UE.
  • the base station transmits downlink data to the UE through PDSCH1, including PDCCH2, and transmits downlink data, including PDCCH1, to the UE through PDSCH2.
  • the UE decodes the DCI carried by PDCCH1, the DCI carried by PDCCH2, PDSCH1 and PDSCH2 to obtain downlink data in PDSCH1 and downlink data in PDSCH2.
  • PDCCH1 and PDCCH2 can be transmitted twice, thereby achieving diversity gain.
  • the user equipment only needs to correctly decode one of PDCCH1 and PDCCH2, and can acquire downlink data carried by PDSCH1 and PDSCH2, thereby improving the reliability of PDCCH transmission.
  • a wireless communication method performed by the user equipment 100 in the wireless communication system and the electronic device 1700 as the network side device in the wireless communication system according to an embodiment of the present disclosure will be described in detail next.
  • FIG. 28 is a flowchart illustrating a wireless communication method performed by user equipment 100 in a wireless communication system, according to an embodiment of the present disclosure.
  • step S2810 the downlink signal from the network side device is demodulated to acquire the PDCCH included therein.
  • step S2820 it is determined whether to perform HARQ feedback for DCI according to the content of the DCI carried by the PDCCH.
  • the method further comprises: performing HARQ feedback for DCI when the DCI includes control information related to downlink transmission of the user equipment 100.
  • the DCI adopts DCI format 1 when the DCI includes control information related to downlink transmission of the user equipment 100.
  • the method further comprises: when the DCI includes control information related to uplink transmission of the user equipment 100, HARQ feedback for DCI is not performed.
  • the DCI adopts DCI format 0 when the DCI includes control information related to uplink transmission of the user equipment 100.
  • the method further comprises: sending an ACK message for the DCI to the network side device in the case of correctly decoding the DCI, and receiving the downlink data from the network side device according to the DCI.
  • the method further comprises: transmitting a NACK message for the DCI to the network side device and receiving the retransmitted DCI from the network side device without correctly decoding the DCI.
  • the method further comprises: simultaneously receiving downlink data and retransmitted DCI from the network side device by using different frequency domain resources.
  • the method further comprises: receiving downlink data from the network side device and performing buffering before receiving the retransmitted DCI from the network side device.
  • the method further comprises: receiving downlink data and buffering on the pre-configured plurality of BWPs of the user equipment 100.
  • the method further comprises: receiving downlink data and buffering on the default one or more BWPs of the user equipment 100.
  • the method further includes: receiving, from the network side device, an indication message indicating that the downlink data is buffered.
  • the method further includes: transmitting the merged HARQ feedback message to the network side device, where the merged HARQ feedback message includes a HARQ feedback message for DCI and a HARQ feedback message for one or more other DCIs.
  • the method further includes: sending the merged HARQ feedback message to the network side device, where the merged HARQ feedback message includes a HARQ feedback message for DCI and a HARQ feedback message for downlink data carried by the PDSCH.
  • the subject performing the above method may be the user device 100 according to an embodiment of the present disclosure, and thus all of the foregoing embodiments regarding the user device 100 are applicable thereto.
  • a wireless communication method performed by the electronic device 1700 as a network side device in the wireless communication system according to an embodiment of the present disclosure will be described in detail next.
  • 29 is a flowchart illustrating a wireless communication method performed by an electronic device 1700 as a network side device in a wireless communication system, according to an embodiment of the present disclosure.
  • step S2910 a downlink signal including a PDCCH is transmitted to the user equipment.
  • step S2920 it is determined whether to receive the HARQ feedback message for the DCI from the user equipment according to the content of the DCI carried by the PDCCH.
  • the method further comprises receiving HARQ feedback for the DCI from the user equipment when the DCI includes control information related to downlink transmission of the electronic device 1700.
  • the DCI adopts DCI format 1 when the DCI includes control information related to downlink transmission of the electronic device 1700.
  • the method further comprises receiving no HARQ feedback for the DCI from the user equipment when the DCI includes control information related to uplink transmissions of the electronic device 1700.
  • the DCI adopts DCI format 0 when the DCI includes control information related to uplink transmission of the electronic device 1700.
  • the method further comprises: transmitting downlink data to the user equipment in the case of receiving an ACK message for the DCI from the user equipment.
  • the method further comprises resending said DCI to the user equipment in the event of receiving a NACK message for the DCI from the user equipment.
  • the method further comprises: simultaneously transmitting downlink data and retransmitted DCI to the user equipment by using different frequency domain resources.
  • the method further comprises: resending the DCI one or more times to the user equipment.
  • the method further comprises: transmitting downlink data to the user equipment before resending the DCI to the user equipment.
  • the method further comprises: sending an indication message to the user equipment for indicating that the downlink data is buffered.
  • the method further comprises: transmitting a plurality of DCIs to the user equipment; and receiving the combined HARQ feedback message from the user equipment, the HARQ feedback message including a HARQ feedback message for each of the plurality of DCIs.
  • the method further includes: transmitting, by the user equipment, the DCI carried by the PDCCH, and transmitting the downlink data carried by the PDSCH to the user equipment; and receiving the combined HARQ feedback message from the user equipment, where the HARQ feedback message includes the HARQ feedback message for the DCI and HARQ feedback message for downlink data.
  • the method further comprises: resending the downlink data to the user equipment if the merged HARQ feedback message indicates that the user equipment correctly decodes the DCI and does not correctly decode the downlink data.
  • the method further comprises: resending the DCI to the user equipment if the merged HARQ feedback message indicates that the user equipment does not correctly decode the DCI and does not correctly decode the downlink data.
  • the main body performing the above method may be the electronic device 1700 according to an embodiment of the present disclosure, and thus all of the foregoing embodiments regarding the electronic device 1700 are applicable thereto.
  • FIG. 30 is a flowchart illustrating a wireless communication method performed by user equipment 100 in a wireless communication system, according to another embodiment of the present disclosure.
  • step S3010 the first data information, the second data information, the first control information for the first data information, and the second control information for the second data information are received from the network side device, where The first data information includes second control information, and the second data information includes first control information.
  • step S3020 the information received from the network side device is decoded to acquire the first data information and the second data information.
  • the method further comprises: decoding the first control information, and decoding the first data information by using the decoded first control information.
  • the method further comprises: determining second control information according to the decoded first data information; and decoding the second data information by using the determined second control information.
  • the subject performing the above method may be the user device 100 according to an embodiment of the present disclosure, and thus all of the foregoing embodiments regarding the user device 100 are applicable thereto.
  • FIG. 31(a) is a flowchart illustrating a wireless communication method performed by the electronic device 1700 as a network side device in a wireless communication system, according to another embodiment of the present disclosure.
  • step S3110 the first data information, the second data information, the first control information for the first data information, and the second control information for the second data information are transmitted to the user equipment,
  • the first data information includes second control information
  • the second data information includes first control information.
  • the main body performing the above method may be the electronic device 1700 as a network side device according to an embodiment of the present disclosure, and thus all of the foregoing embodiments regarding the electronic device 1700 are applicable thereto.
  • FIG. 31(b) is a flowchart illustrating a wireless communication method performed by the electronic device 1700 as a network side device in the wireless communication system, according to another embodiment of the present disclosure.
  • step S3120 second control information for the second data information is received from other network side devices other than the electronic device 1700.
  • step S3130 first control information for the first data information is sent to the other network side devices for the other network side devices to include the first control information in the second data information.
  • step S3140 the first data information and the first control information are sent to the user equipment, where the first data information includes the second control information.
  • the first data information is downlink data information that is sent by the electronic device 1700 to the user equipment
  • the second data information is downlink data information that is sent by other network side devices to the user equipment.
  • the main body performing the above method may be the electronic device 1700 as a network side device according to an embodiment of the present disclosure, and thus all of the foregoing embodiments regarding the electronic device 1700 are applicable thereto.
  • the technology of the present disclosure can be applied to various products.
  • the network side device can be implemented as any type of TRP.
  • the TRP may have a transmitting and receiving function, for example, may receive information from the user equipment and the base station device, or may transmit information to the user equipment and the base station device.
  • the TRP can provide services to the user equipment and be controlled by the base station equipment.
  • the TRP may have a structure similar to that of the base station device described below, or may have only a structure related to transmitting and receiving information in the base station device.
  • the network side device can also be implemented as any type of base station device, such as a macro eNB and a small eNB, and can also be implemented as any type of gNB (base station in a 5G system).
  • the small eNB may be an eNB covering a cell smaller than the macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • the base station can be implemented as any other type of base station, such as a NodeB and a base transceiver station (BTS).
  • the base station can include: a body (also referred to as a base station device) configured to control wireless communication; and one or more remote wireless headends (RRHs) disposed at a different location than the body.
  • RRHs remote wireless headends
  • the user device can be implemented as a mobile terminal (such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/encrypted dog type mobile router and a digital camera device) or an in-vehicle terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) that performs machine-to-machine (M2M) communication.
  • MTC machine type communication
  • M2M machine-to-machine
  • the user equipment may be a wireless communication module (such as an integrated circuit module including a single wafer) installed on each of the user equipments described above.
  • the eNB 3200 includes one or more antennas 3210 and base station devices 3220.
  • the base station device 3220 and each antenna 3210 may be connected to each other via an RF cable.
  • Each of the antennas 3210 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple input multiple output (MIMO) antenna, and is used by the base station device 3220 to transmit and receive wireless signals.
  • the eNB 3200 can include multiple antennas 3210.
  • multiple antennas 3210 can be compatible with multiple frequency bands used by eNB 3200.
  • FIG. 32 illustrates an example in which the eNB 3200 includes a plurality of antennas 3210, the eNB 3200 may also include a single antenna 3210.
  • the base station device 3220 includes a controller 3221, a memory 3222, a network interface 3223, and a wireless communication interface 3225.
  • the controller 3221 can be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 3220. For example, controller 3221 generates data packets based on data in signals processed by wireless communication interface 3225 and delivers the generated packets via network interface 3223. The controller 3221 can bundle data from a plurality of baseband processors to generate bundled packets and deliver the generated bundled packets. The controller 3221 may have logic functions that perform control such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby eNBs or core network nodes.
  • the memory 3222 includes a RAM and a ROM, and stores programs executed by the controller 3221 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • Network interface 3223 is a communication interface for connecting base station device 3220 to core network 3224. Controller 3221 can communicate with a core network node or another eNB via network interface 3223. In this case, the eNB 3200 and the core network node or other eNBs may be connected to each other through a logical interface such as an S1 interface and an X2 interface. Network interface 3223 can also be a wired communication interface or a wireless communication interface for wireless backhaul lines. If the network interface 3223 is a wireless communication interface, the network interface 1823 can use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 3225.
  • the wireless communication interface 3225 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of the eNB 3200 via the antenna 3210.
  • Wireless communication interface 3225 may typically include, for example, a baseband (BB) processor 3226 and RF circuitry 3227.
  • the BB processor 3226 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers (eg, L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) Various types of signal processing.
  • BB processor 3226 may have some or all of the above described logic functions.
  • the BB processor 3226 may be a memory that stores a communication control program, or a module that includes a processor and associated circuitry configured to execute the program.
  • the update program can cause the function of the BB processor 3226 to change.
  • the module can be a card or blade that is inserted into a slot of base station device 3220. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 3227 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 3210.
  • the wireless communication interface 3225 can include a plurality of BB processors 3226.
  • multiple BB processors 3226 can be compatible with multiple frequency bands used by eNB 3200.
  • the wireless communication interface 3225 can include a plurality of RF circuits 3227.
  • multiple RF circuits 3227 can be compatible with multiple antenna elements.
  • FIG. 32 illustrates an example in which the wireless communication interface 3225 includes a plurality of BB processors 3226 and a plurality of RF circuits 3227, the wireless communication interface 3225 may also include a single BB processor 3226 or a single RF circuit 3227.
  • FIG. 33 is a block diagram showing a second example of a schematic configuration of an eNB to which the technology of the present disclosure can be applied.
  • the eNB 3330 includes one or more antennas 3340, base station equipment 3350, and RRH 3360.
  • the RRH 3360 and each antenna 3340 may be connected to each other via an RF cable.
  • the base station device 3350 and the RRH 3360 can be connected to each other via a high speed line such as a fiber optic cable.
  • Each of the antennas 3340 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used for the RRH 3360 to transmit and receive wireless signals.
  • the eNB 3330 can include multiple antennas 3340.
  • multiple antennas 3340 can be compatible with multiple frequency bands used by eNB 3330.
  • FIG. 33 illustrates an example in which the eNB 3330 includes multiple antennas 3340, the eNB 3330 may also include a single antenna 3340.
  • the base station device 3350 includes a controller 3351, a memory 3352, a network interface 3353, a wireless communication interface 3355, and a connection interface 3357.
  • the controller 3351, the memory 3352, and the network interface 3353 are the same as the controller 3221, the memory 3222, and the network interface 3223 described with reference to FIG.
  • the wireless communication interface 3355 supports any cellular communication scheme (such as LTE and LTE-Advanced) and provides wireless communication to terminals located in sectors corresponding to the RRH 3360 via the RRH 3360 and the antenna 3340.
  • Wireless communication interface 3355 can typically include, for example, BB processor 3356.
  • the BB processor 3356 is identical to the BB processor 3226 described with reference to FIG. 32 except that the BB processor 3356 is connected to the RF circuit 3364 of the RRH 3360 via the connection interface 3357.
  • the wireless communication interface 3355 can include a plurality of BB processors 3356.
  • multiple BB processors 3356 can be compatible with multiple frequency bands used by eNB 3330.
  • FIG. 33 illustrates an example in which the wireless communication interface 3355 includes a plurality of BB processors 3356, the wireless communication interface 3355 may also include a single BB processor 3356.
  • connection interface 3357 is an interface for connecting the base station device 3350 (wireless communication interface 3355) to the RRH 3360.
  • the connection interface 3357 may also be a communication module for connecting the base station device 3350 (wireless communication interface 3355) to the communication in the above-described high speed line of the RRH 3360.
  • the RRH 3360 includes a connection interface 3361 and a wireless communication interface 3363.
  • connection interface 3361 is an interface for connecting the RRH 3360 (wireless communication interface 3363) to the base station device 3350.
  • the connection interface 3361 may also be a communication module for communication in the above high speed line.
  • the wireless communication interface 3363 transmits and receives wireless signals via the antenna 3340.
  • Wireless communication interface 3363 may typically include, for example, RF circuitry 3364.
  • the RF circuit 3364 can include, for example, a mixer, a filter, and an amplifier, and transmits and receives wireless signals via the antenna 3340.
  • the wireless communication interface 3363 can include a plurality of RF circuits 3364.
  • multiple RF circuits 3364 can support multiple antenna elements.
  • FIG. 33 shows an example in which the wireless communication interface 3363 includes a plurality of RF circuits 3364, the wireless communication interface 3363 may also include a single RF circuit 3364.
  • the determining unit 1720, the demodulating unit 1730, and the processing unit 1740 described by using FIG. 17 can be implemented by the controller 3221 and/or the controller 3351. At least a portion of the functionality can also be implemented by controller 3221 and controller 3351.
  • the controller 3221 and/or the controller 3351 may perform a function of determining whether to receive HARQ feedback, demodulate the feedback message, and configure downlink control information carried by the PDCCH by executing an instruction stored in the corresponding memory.
  • FIG. 34 is a block diagram showing an example of a schematic configuration of a smartphone 3400 to which the technology of the present disclosure can be applied.
  • the smart phone 3400 includes a processor 3401, a memory 3402, a storage device 3403, an external connection interface 3404, an imaging device 3406, a sensor 3407, a microphone 3408, an input device 3409, a display device 3410, a speaker 3411, a wireless communication interface 3412, and one or more An antenna switch 3415, one or more antennas 3416, a bus 3417, a battery 3418, and an auxiliary controller 3419.
  • the processor 3401 may be, for example, a CPU or a system on chip (SoC), and controls functions of an application layer and another layer of the smartphone 3400.
  • the memory 3402 includes a RAM and a ROM, and stores data and programs executed by the processor 3401.
  • the storage device 3403 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 3404 is an interface for connecting an external device such as a memory card and a universal serial bus (USB) device to the smartphone 3400.
  • the image pickup device 3406 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensor 3407 can include a set of sensors, such as a measurement sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 3408 converts the sound input to the smartphone 3400 into an audio signal.
  • the input device 3409 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 3410, and receives an operation or information input from a user.
  • the display device 3410 includes screens such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 3400.
  • the speaker 3411 converts the audio signal output from the smartphone 3400 into sound.
  • the wireless communication interface 3412 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 3412 may typically include, for example, BB processor 3413 and RF circuitry 3414.
  • the BB processor 3413 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 3414 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 3416.
  • the wireless communication interface 3412 can be a chip module on which the BB processor 3413 and the RF circuit 3414 are integrated. As shown in FIG.
  • the wireless communication interface 3412 can include a plurality of BB processors 3413 and a plurality of RF circuits 3414.
  • FIG. 34 illustrates an example in which the wireless communication interface 3412 includes a plurality of BB processors 3413 and a plurality of RF circuits 3414, the wireless communication interface 3412 may also include a single BB processor 3413 or a single RF circuit 3414.
  • wireless communication interface 3412 can support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 3412 can include a BB processor 3413 and RF circuitry 3414 for each wireless communication scheme.
  • Each of the antenna switches 3415 switches the connection destination of the antenna 3416 between a plurality of circuits (e.g., circuits for different wireless communication schemes) included in the wireless communication interface 3412.
  • Each of the antennas 3416 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 3412 to transmit and receive wireless signals.
  • the smartphone 3400 can include a plurality of antennas 3416.
  • FIG. 34 shows an example in which the smartphone 3400 includes a plurality of antennas 3416, the smartphone 3400 may also include a single antenna 3416.
  • smart phone 3400 can include an antenna 3416 for each wireless communication scheme.
  • the antenna switch 3415 can be omitted from the configuration of the smartphone 3400.
  • the bus 3417 connects the processor 3401, the memory 3402, the storage device 3403, the external connection interface 3404, the imaging device 3406, the sensor 3407, the microphone 3408, the input device 3409, the display device 3410, the speaker 3411, the wireless communication interface 3412, and the auxiliary controller 3419 to each other. connection.
  • Battery 3418 provides power to various blocks of smart phone 3400 shown in FIG. 34 via a feeder, which is partially shown as a dashed line in the figure.
  • the secondary controller 3419 operates the minimum required function of the smartphone 3400, for example, in a sleep mode.
  • the demodulation unit 120, the determination unit 130, the feedback unit 140, and the buffer unit 150 described by using FIG. 1 can be realized by the processor 3401 or the auxiliary controller 3419. At least a portion of the functionality may also be implemented by processor 3401 or auxiliary controller 3419.
  • the processor 3401 or the auxiliary controller 3419 may perform a function of demodulating a downlink signal, determining whether to perform HARQ feedback, performing HARQ feedback, and buffering downlink data by executing an instruction stored in the memory 3402 or the storage device 3403.
  • FIG. 35 is a block diagram showing an example of a schematic configuration of a car navigation device 3520 to which the technology of the present disclosure can be applied.
  • the car navigation device 3520 includes a processor 3521, a memory 3522, a global positioning system (GPS) module 3524, a sensor 3525, a data interface 3526, a content player 3527, a storage medium interface 3528, an input device 3529, a display device 3530, a speaker 3531, and a wireless device.
  • the processor 3521 can be, for example, a CPU or SoC and controls the navigation functions and additional functions of the car navigation device 3520.
  • the memory 3522 includes a RAM and a ROM, and stores data and programs executed by the processor 3521.
  • the GPS module 3524 measures the position of the car navigation device 3520 (such as latitude, longitude, and altitude) using GPS signals received from GPS satellites.
  • Sensor 3525 can include a set of sensors, such as a gyro sensor, a geomagnetic sensor, and an air pressure sensor.
  • the data interface 3526 is connected to, for example, the in-vehicle network 3541 via a terminal not shown, and acquires data (such as vehicle speed data) generated by the vehicle.
  • the content player 3527 reproduces content stored in a storage medium such as a CD and a DVD, which is inserted into the storage medium interface 3528.
  • the input device 3529 includes, for example, a touch sensor, a button or a switch configured to detect a touch on the screen of the display device 3530, and receives an operation or information input from a user.
  • the display device 3530 includes a screen such as an LCD or OLED display, and displays an image of the navigation function or reproduced content.
  • the speaker 3531 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 3533 supports any cellular communication scheme (such as LTE and LTE-Advanced) and performs wireless communication.
  • Wireless communication interface 3533 may typically include, for example, BB processor 3534 and RF circuitry 3535.
  • the BB processor 3534 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 3535 may include, for example, a mixer, a filter, and an amplifier, and transmits and receives a wireless signal via the antenna 3537.
  • the wireless communication interface 3533 can also be a chip module on which the BB processor 3534 and the RF circuit 3535 are integrated. As shown in FIG.
  • the wireless communication interface 3533 may include a plurality of BB processors 3534 and a plurality of RF circuits 3535.
  • FIG. 35 illustrates an example in which the wireless communication interface 3533 includes a plurality of BB processors 3534 and a plurality of RF circuits 3535, the wireless communication interface 3533 may also include a single BB processor 3534 or a single RF circuit 3535.
  • the wireless communication interface 3533 can support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near-field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 3533 may include a BB processor 3534 and an RF circuit 3535 for each wireless communication scheme.
  • Each of the antenna switches 3536 switches the connection destination of the antenna 3537 between a plurality of circuits included in the wireless communication interface 3533, such as circuits for different wireless communication schemes.
  • Each of the antennas 3537 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the wireless communication interface 3533 to transmit and receive wireless signals.
  • car navigation device 3520 can include a plurality of antennas 3537.
  • FIG. 35 shows an example in which the car navigation device 3520 includes a plurality of antennas 3537, the car navigation device 3520 may also include a single antenna 3537.
  • car navigation device 3520 can include an antenna 3537 for each wireless communication scheme.
  • the antenna switch 3536 can be omitted from the configuration of the car navigation device 3520.
  • Battery 3538 provides power to various blocks of car navigation device 3520 shown in FIG. 35 via a feeder, which is partially shown as a dashed line in the figure. Battery 3538 accumulates power supplied from the vehicle.
  • the demodulation unit 120, the determination unit 130, the feedback unit 140, and the cache unit 150 described by using FIG. 1 can be implemented by the processor 3521. At least a portion of the functionality can also be implemented by processor 3521.
  • the processor 3521 can perform a function of demodulating a downlink signal, determining whether to perform HARQ feedback, performing HARQ feedback, and buffering downlink data by executing an instruction stored in the memory 3522.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 3540 including one or more of the car navigation device 3520, the in-vehicle network 3541, and the vehicle module 3542.
  • vehicle module 3542 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 3541.
  • a plurality of functions included in one unit in the above embodiment may be implemented by separate devices.
  • a plurality of functions implemented by a plurality of units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by a plurality of units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processes performed in time series in the stated order, but also processes performed in parallel or individually rather than necessarily in time series. Further, even in the step of processing in time series, it is needless to say that the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及用户设备、电子设备、无线通信方法和存储介质。根据本公开的用户设备包括处理电路,被配置为:对来自网络侧设备的下行信号进行解调以获取其中包含的物理下行控制信道PDCCH;以及根据所述PDCCH承载的下行控制信息DCI的内容来确定是否执行针对所述DCI的混合自动重传请求HARQ反馈。使用根据本公开的用户设备、电子设备、无线通信方法和计算机可读存储介质,可以提高PDCCH所承载的控制信息的可靠性。

Description

用户设备、电子设备、无线通信方法和存储介质
本申请要求于2018年4月27日提交中国专利局、申请号为201810393956.0、发明名称为“用户设备、电子设备、无线通信方法和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开的实施例总体上涉及无线通信领域,具体地涉及无线通信系统中的用户设备、电子设备、无线通信方法和计算机可读存储介质。更具体地,本公开涉及一种无线通信系统中的用户设备、一种作为无线通信系统中的网络侧设备的电子设备、一种由无线通信系统中的用户设备执行的无线通信方法、一种由无线通信系统中的网络侧设备执行的无线通信方法以及一种计算机可读存储介质。
背景技术
混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)技术能够很好地补偿无线移动信道的时变特性和多径衰落对信号传输的影响。采用HARQ技术的接收方在解码失败的情况下,保存接收到的数据,并要求发送方重传数据,接收方将重传的数据和先前接收到的数据进行合并后再解码,由此实现一定的分集增益、减少重传次数,从而减少时延并提高数据传输的可靠性。
在传统的HARQ技术中,接收方主要针对数据信息进行反馈,从而提高数据信息传输的可靠性。而对于通过高层信令,例如RRC(Radio Resource Control,无线资源控制)层信令和MAC(Media Access Control,媒体接入控制)层信令如MAC CE发送的控制信息,由于其作为数据由物理下行共享信道(Physical Downlink Share Channel,PDSCH)所承载,所以也可以应用HARQ技术。目前尚未讨论HARQ机制对于物理下行控制信道(Physical Downlink Control Channel,PDCCH)所承载的控制信息的应用。众所周知,PDCCH所承载的控制信息对于用户设备来说至关重要,如果用户设备不能成功获取PDCCH所承载的控制信息,将影响对下行数据信息的解调和上行数据信息的发送。
因此,有必要提出一种技术方案,以提供针对PDCCH所承载的控制信息的HARQ反馈机制,从而提高PDCCH所承载的控制信息的可靠性。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种用户设备、电子设备、无线通信方法和计算机可读存储介质,以提高PDCCH所承载的控制信息的可靠性。
根据本公开的一方面,提供了一种用户设备,包括处理电路,被配置为:对来自网络侧设备的下行信号进行解调以获取其中包含的物理下行控制信道PDCCH;以及根据所述PDCCH承载的下行控制信息DCI的内容来确定是否执行针对所述DCI的混合自动重传请求HARQ反馈。
根据本公开的另一方面,提供了一种用作网络侧设备的电子设备,包括处理电路,被配置为:向用户设备发送包含物理下行控制信道PDCCH的下行信号;以及根据所述PDCCH承载的下行控制信息DCI的内容来确定是否从所述用户设备接收针对所述DCI的混合自动重传请求HARQ反馈消息。
根据本公开的另一方面,提供了一种用户设备,包括处理电路,被配置为:从网络侧设备接收第一数据信息、第二数据信息、针对所述第一数据信息的第一控制信息以及针对所述第二数据信息的第二控制信息,其中,所述第一数据信息包括所述第二控制信息,并且所述第二数据信息包括所述第一控制信息;以及对从所述网络侧设备接收到的信息进行解码以获取所述第一数据信息和所述第二数据信息。
根据本公开的另一方面,提供了一种用作网络侧设备的电子设备,包括处理电路,被配置为:向用户设备发送第一数据信息、第二数据信息、针对所述第一数据信息的第一控制信息以及针对所述第二数据信息的第二控制信息,其中,所述第一数据信息包括所述第二控制信息,并且所述第二数据信息包括所述第一控制信息。
根据本公开的另一方面,提供了一种用作网络侧设备的电子设备,包括处理电路,被配置为:从除所述电子设备以外的其它网络侧设备接收针对第二数据信息的第二控制信息;向所述其它网络侧设备发送针对第一数据信息的第一控制信息,以用于所述其它网络侧设备将所述第一控制信 息包括在所述第二数据信息中;以及向用户设备发送第一数据信息和第一控制信息,所述第一数据信息包括第二控制信息,其中,所述第一数据信息是用于所述电子设备向所述用户设备发送的下行数据信息,并且所述第二数据信息是用于所述其它网络侧设备向所述用户设备发送的下行数据信息。
根据本公开的另一方面,提供了一种由用户设备执行的无线通信方法,包括:对来自网络侧设备的下行信号进行解调以获取其中包含的物理下行控制信道PDCCH;以及根据所述PDCCH承载的下行控制信息DCI的内容来确定是否执行针对所述DCI的混合自动重传请求HARQ反馈。
根据本公开的另一方面,提供了一种由网络侧设备执行的无线通信方法,包括:向用户设备发送包含物理下行控制信道PDCCH的下行信号;以及根据所述PDCCH承载的下行控制信息DCI的内容来确定是否从所述用户设备接收针对所述DCI的混合自动重传请求HARQ反馈消息。
根据本公开的另一方面,提供了一种由网络侧设备执行的无线通信方法,包括:从除所述网络侧设备以外的其它网络侧设备接收针对第二数据信息的第二控制信息;向所述其它网络侧设备发送针对第一数据信息的第一控制信息,以用于所述其它网络侧设备将所述第一控制信息包括在所述第二数据信息中;以及向用户设备发送第一数据信息和第一控制信息,所述第一数据信息包括第二控制信息,其中,所述第一数据信息是用于所述网络侧设备向所述用户设备发送的下行数据信息,并且所述第二数据信息是用于所述其它网络侧设备向所述用户设备发送的下行数据信息。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
使用根据本公开的用户设备、电子设备、无线通信方法和计算机可读存储介质,用户设备可以根据PDCCH所承载的DCI的内容来确定是否执行针对该DCI的HARQ反馈,网络侧设备也可以根据DCI的内容来确定是否需要从用户设备接收针对该DCI的HARQ反馈消息,从而实现HARQ反馈机制在PDCCH上的应用,提高PDCCH所承载的DCI的传输可靠性。
使用根据本公开的用户设备、电子设备、无线通信方法和计算机可读存储介质,网络侧设备可以向用户设备发送第一数据信息、第二数据信 息、针对第一数据信息的第一控制信息以及针对第二数据信息的第二控制信息,其中,第一数据信息包括第二控制信息,并且第二数据信息包括所述第一控制信息,从而用户设备可以根据从网络侧设备接收到的信息获取第一数据信息和第二数据信息。这样一来,第一控制信息和第二控制信息被发送两次,从而实现分集增益,进一步提高PDCCH的传输可靠性。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出根据本公开的实施例的用户设备的配置的示例的框图;
图2是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的进程的示意图;
图3是示出图2所示的实施例的时隙的配置的示意图;
图4是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的进程的示意图;
图5是示出图4所示的实施例的时隙的配置的示意图;
图6是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的进程的示意图;
图7是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的进程的示意图;
图8是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的进程的示意图;
图9是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的进程的示意图;
图10是示出图9所示的实施例的时隙的配置的示意图;
图11是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的进程的示意图;
图12是示出图11所示的实施例的时隙的配置的示意图;
图13是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的进程的示意图;
图14是示出图13所示的实施例的时隙的配置的示意图;
图15是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的进程的示意图;
图16是示出根据本公开的实施例的备份PDCCH的进程的示意图;
图17是示出根据本公开的实施例的作为网络侧设备的电子设备的配置的示例的框图;
图18是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的信令流程图;
图19是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的信令流程图;
图20是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的信令流程图;
图21是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的信令流程图;
图22是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的信令流程图;
图23是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的信令流程图;
图24是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的信令流程图;
图25是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的信令流程图;
图26是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的信令流程图;
图27是示出根据本公开的实施例的备份PDCCH的信令流程图;
图28是示出根据本公开的实施例的由用户设备执行的无线通信方法的流程图;
图29是示出根据本公开的实施例的由作为网络侧设备的电子设备执行的无线通信方法的流程图;
图30是示出根据本公开的实施例的由用户设备执行的无线通信方法的流程图;
图31(a)是示出根据本公开的实施例的由作为网络侧设备的电子设备执行的无线通信方法的流程图;
图31(b)是示出根据本公开的实施例的由作为网络侧设备的电子设备执行的无线通信方法的流程图;
图32是示出eNB(Evolved Node B,演进型节点B)的示意性配置的第一示例的框图;
图33是示出eNB的示意性配置的第二示例的框图;
图34是示出智能电话的示意性配置的示例的框图;以及
图35是示出汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.场景的描述;
2.执行针对PDCCH的HARQ反馈的用户设备的配置示例;
3.备份PDCCH的用户设备的配置示例;
4.执行针对PDCCH的HARQ反馈的网络侧设备的配置示例;
5.备份PDCCH的网络侧设备的配置示例;
6.方法实施例;
7.应用示例。
<1.场景的描述>
网络侧设备可以通过PDCCH向其覆盖范围内的用户设备发送DCI,用户设备通过对PDCCH承载的DCI进行解调可以获取控制信息,从而能够执行后续的操作,例如对下行数据信息进行解调和发送上行数据信息等。
在NR(New Radio,新无线)通信系统中,PDCCH所能承载的DCI的格式包括DCI格式0(DCI format 0)、DCI格式1(DCI format 1)和DCI格式2(DCI format 2)。其中,DCI格式0表示与用户设备和网络侧设备之间的上行传输有关的控制信息,例如与PUSCH(Physical Uplink Share Channel,物理上行共享信道)传输相关的控制信息和与CSI(Channel State Information,信道状态信息)的上报触发相关的控制信息等,目前主要包括DCI格式0_0和DCI格式0_1。DCI格式1表示与用户设备和网络侧设备之间的下行传输有关的控制信息,例如与PDSCH传输相关的控制信息等,目前主要包括DCI格式1_0和DCI格式1_1。DCI格式2表示除DCI格式0和DCI格式1以外的控制信息,例如与GC-PDCCH(Group Common-Physical Downlink Control Channel,组公共物理下行控制信道)和功率控制相关的控制信息,目前主要包括DCI格式2_0、DCI格式2_1、DCI格式2_2和DCI格式2_3。
本公开提出了一种无线通信系统中的用户设备、作为网络侧设备的电子设备、由无线通信系统中的网络侧设备执行的无线通信方法、由无线通信系统中的用户设备执行的无线通信方法以及计算机可读存储介质,以提高PDCCH所承载的DCI的传输可靠性。
根据本公开的无线通信系统可以是5G的NR通信系统。在NR通信 系统中,URLLC(Ultra Reliable&Low Latency Communication)高可靠低时延通信业务对于控制信道的差错概率要求为10^-5,较其他业务类型更为严苛,利用本公开的设备和方法能够保证URLLC业务的PDCCH的传输可靠性。
根据本公开的网络侧设备可以是任何类型的TRP(Transmit and Receive Port,发送和接收端口)。该TRP可以具备发送和接收功能,例如可以从用户设备和基站设备接收信息,也可以向用户设备和基站设备发送信息。在一个示例中,TRP可以为用户设备提供服务,并且受基站设备的控制。也就是说,基站设备通过TRP向用户设备提供服务。此外,在本公开中所述的网络侧设备也可以是基站设备,例如可以是eNB,也可以是gNB(第5代通信系统中的基站)。
根据本公开的用户设备可以是移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<2.执行针对PDCCH的HARQ反馈的用户设备的配置示例>
图1是示出根据本公开的实施例的用户设备100的配置的示例的框图。这里的电子设备100可以作为无线通信系统中的用户设备。
如图1所示,用户设备100可以包括通信单元110、解调单元120和确定单元130。
这里,用户设备100的各个单元都可以包括在处理电路中。需要说明的是,用户设备100既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,通信单元110可以从网络侧设备接收下行信号。这里,网络侧设备可以是为用户设备100提供服务的网络侧设备,从而用户设备100可以从网络侧设备接收下行信号。
根据本公开的实施例,解调单元120可以对来自网络侧设备的下行 信号进行解调以获取其中包含的PDCCH。进一步,下行信号中可以包括PDCCH承载的DCI。
根据本公开的实施例,确定单元130可以根据PDCCH承载的DCI的内容来确定是否执行针对该DCI的HARQ反馈。
如上所述,根据本公开的实施例的用户设备100,可以根据PDCCH所承载的DCI的内容来确定是否执行针对该DCI的HARQ反馈,从而实现HARQ反馈机制在PDCCH上的应用,提高PDCCH所承载的DCI的传输可靠性。
根据本公开的实施例,确定单元130可以根据PDCCH承载的DCI包括与上行传输有关的控制信息还是包括与下行传输有关的控制信息来确定是否执行针对该DCI的HARQ反馈。
根据本公开的实施例,确定单元130可以根据PDCCH承载的DCI的格式来确定DCI包括与上行传输有关的控制信息还是包括与下行传输有关的控制信息。如前文所述,当DCI的格式为DCI格式0时,确定单元130可以确定该DCI包括与上行传输有关的控制信息;当DCI的格式为DCI格式1时,确定单元130可以确定该DCI包括与下行传输有关的控制信息。
根据本公开的实施例,当确定单元130确定DCI包括与下行传输有关的控制信息时,可以确定执行针对该DCI的HARQ反馈。这里,当DCI包括与下行传输有关的控制信息时,DCI可以采用DCI格式1。
根据本公开的实施例,当确定单元130确定DCI包括与上行传输有关的控制信息时,可以确定不执行针对该DCI的HARQ反馈。这里,当DCI包括与上行传输有关的控制信息时,DCI可以采用DCI格式0。
根据本公开的实施例,当DCI包括与上行传输有关的控制信息时,用户设备100可以隐式地向网络侧设备反馈是否对该DCI进行正确解码。例如,当DCI包括CSI上报请求,即请求用户设备100随后向网络侧设备报告CSI,那么网络侧设备可以从接收到的CSI报告来判断用户设备100是否正确解码了DCI。又如,当DCI包括与PUSCH的发送相关的控制信息,即请求用户设备100通过PUSCH向网络侧设备发送上行数据,那么网络侧设备可以通过在DCI指示的上行资源上观察是否存在PUSCH来判断用户设备100是否正确解码了DCI。也就是说,当DCI包括与上行传输有关的控制信息时,用户设备100可以通过与该DCI有关的行为隐式地向 网络侧设备反馈是否对该DCI进行正确解码,这种隐式的反馈同样可以提高与上行传输有关的DCI的传输可靠性。在这种情况下,根据本公开的实施例,用户设备100不执行针对该DCI的HARQ反馈。这样一来,可以节约信令开销,减少时延。
如上所述,根据本公开的实施例,用户设备100可以根据DCI的内容来确定是否执行HARQ反馈,仅仅在DCI包括与下行传输有关的控制信息的情况下执行HARQ反馈,从而在提高传输可靠性的基础上节约开销。
根据本公开的实施例,解调单元120还可以对DCI进行解调和解码。
进一步,如图1所示,用户设备100还可以包括反馈单元140,用于在需要执行针对PDCCH承载的DCI进行HARQ反馈的情况下生成反馈信息。这里的反馈信息可以包括ACK消息和NACK消息。
根据本公开的实施例,在对DCI正确解码的情况下,反馈单元140可以生成针对DCI的ACK消息并向网络侧设备发送针对DCI的ACK消息。进一步,在这种情况下,用户设备100还可以根据正确解码的DCI从网络侧设备接收下行数据。
图2是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的进程的示意图。具体地,图2示出了对PDCCH承载的DCI正确解码的示意图。在图2中,水平方向表示时域,竖直方向表示频域。如图2所示,首先,网络侧设备选取时频资源(在时域上占用一个或多个OFDM符号,在频域上占用一个或多个子载波)并利用选取的时频资源向用户设备发送PDCCH。接下来,用户设备向网络侧设备发送针对PDCCH的ACK消息,这里,用户设备可以利用PUCCH(Physical Uplink Control Channel,物理上行控制信道)来携带针对PDCCH的ACK消息。接下来,在收到了针对PDCCH的ACK消息后,网络侧设备利用PDCCH中指示的PDSCH向用户设备发送下行数据信息。在本文中,由于PDCCH携带了DCI,因此在本文中没有对PDCCH和DCI进行特定的区分,从而针对PDCCH的ACK消息指的是针对PDCCH携带的DCI的ACK消息。
图3是示出图2所示的实施例的时隙的配置的示意图。图3示出了包括14个OFDM符号的一个时隙的配置的示意图。如图3所示,该时隙的第1个OFDM符号用于下行传输,网络侧设备向用户设备发送PDCCH;该时隙的第2个OFDM符号用于上行传输,用户设备向网络侧设备发送 PUCCH,其中携带针对PDCCH的ACK消息;该时隙的第3-13个OFDM符号用于下行传输,网络侧设备向用户设备发送PDSCH;该时隙的第14个OFDM符号用于上行传输,用户设备向网络侧设备发送针对PDSCH的HARQ反馈消息。值得注意的是,图3仅仅是一种示例性的时隙配置。例如,图3虽然示出了PDCCH占用1个OFDM符号的情形,当然PDCCH还可以占用2个或3个OFDM符号。此外,PDSCH也可以占用其它数目的OFDM符号。
如上所述,根据本公开的实施例,在对DCI正确解码的情况下,用户设备100可以生成针对DCI的ACK消息,从而网络侧设备可以根据该ACK消息向用户设备100发送下行数据。
根据本公开的实施例,在未对DCI正确解码的情况下,反馈单元140可以生成针对该DCI的NACK消息,并向网络侧设备发送针对该DCI的NACK消息。进一步,在这种情况下,在发送NACK消息之后,用户设备100可以从网络侧设备接收重新发送的DCI。
图4是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的进程的示意图。具体地,图4示出了未对PDCCH承载的DCI正确解码的示意图。在图4中,水平方向表示时域,竖直方向表示频域。如图4所示,首先,网络侧设备选取时频资源(在时域上占用一个或多个OFDM符号,在频域上占用一个或多个子载波)并利用选取的时频资源向用户设备发送PDCCH。接下来,用户设备向网络侧设备发送针对PDCCH的NACK消息,这里,用户设备可以利用PUCCH来携带针对PDCCH的NACK消息。接下来,在收到了针对PDCCH的NACK消息后,网络侧设备向用户设备重新发送PDCCH。接下来,用户设备对重新发送的PDCCH进行解码,并利用PUCCH向网络侧设备发送针对PDCCH的ACK消息。接下来,在收到针对PDCCH的ACK消息之后,网络侧设备利用PDCCH中指示的PDSCH向用户设备发送下行数据信息。
图5是示出图4所示的实施例的时隙的配置的示意图。图5示出了包括14个OFDM符号的一个时隙的配置的示意图。如图5所示,该时隙的第1个OFDM符号用于下行传输,网络侧设备向用户设备发送PDCCH;该时隙的第2个OFDM符号用于上行传输,用户设备向网络侧设备发送PUCCH,其中携带针对PDCCH的NACK消息;该时隙的第3个OFDM符号用于下行传输,网络侧设备向用户设备重新发送PDCCH;该时隙的第4个OFDM符号用于上行传输,用户设备向网络侧设备发送PUCCH, 其中携带针对PDCCH的ACK消息;该时隙的第5-13个OFDM符号用于下行传输,网络侧设备向用户设备发送PDSCH;该时隙的第14个OFDM符号用于上行传输,用户设备向网络侧设备发送针对PDSCH的HARQ反馈消息。值得注意的是,图5仅仅是一种示例性的时隙配置。例如,图5虽然示出了PDCCH占用1个OFDM符号的情形,当然PDCCH还可以占用2个或3个OFDM符号。此外,PDSCH也可以占用其它数目的OFDM符号。
在图4和图5所示的实施例中,经过PDCCH的一次重传,用户设备对PDCCH承载的DCI进行正确解码。当然,也可能经过PDCCH的两次或更多次重传用户设备才对PDCCH承载的DCI进行正确解码。根据本公开的实施例,用户设备100每次向网络侧设备发送针对PDCCH的NACK消息之后,都可以从网络侧设备接收重传的PDCCH,直到用户设备100对PDCCH承载的DCI正确解码,再从网络侧设备接收下行数据。也就是说,网络侧设备和用户设备100之间的PDCCH重传的过程可以是一次,也可以是多次。
进一步,根据本公开的实施例,也可以对PDCCH重传的次数进行限定,在收到来自用户设备的针对DCI的NACK消息超过重传次数的预定阈值时,网络侧设备可以不再重新传输PDCCH,例如对用户设备100进行重新调度等。
如上所述,根据本公开的实施例,在未对DCI正确解码的情况下,用户设备100可以生成针对DCI的NACK消息,从而网络侧设备可以根据该NACK消息向用户设备100重新发送PDCCH,直到用户设备100对DCI进行正确解码为止。在用户设备100对DCI进行正确解码之后,网络侧设备可以向用户设备100发送下行数据。此外,还可以设定PDCCH重传次数的阈值,从而减少时延。
根据本公开的实施例,通信单元110可以利用不同的频域资源从网络侧设备同时接收下行数据和重新发送的DCI。这里,当用户设备100和网络侧设备所在的无线通信系统采用FDD(Frequency Division Duplex,频分复用)模式时,可以利用不同的频域资源相同的时域资源来进行PDCCH的重传和PDSCH的传输。
根据本公开的实施例,当用户设备100从网络侧设备接收到重新发送的DCI之后,可以对该重新发送的DCI进行解码,并根据对DCI的解码情况向网络侧设备发送ACK/NACK消息。
图6是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的进程的示意图。具体地,图6示出了利用不同的频域资源来进行PDCCH的重传和PDSCH的传输的示意图。在图6中,水平方向表示时域,竖直方向表示频域。如图6所示,首先,网络侧设备选取时频资源(在时域上占用一个或多个OFDM符号,在频域上占用一个或多个子载波)并利用选取的时频资源向用户设备发送PDCCH。接下来,用户设备向网络侧设备发送针对PDCCH的NACK消息,这里,用户设备可以利用PUCCH来携带针对PDCCH的NACK消息。接下来,在收到了针对PDCCH的NACK消息后,网络侧设备向用户设备重新发送PDCCH。同时,网络侧设备利用不同的频域资源同时利用PDSCH向用户设备发送下行数据。在下行数据的发送过程中,用户设备对重新发送的PDCCH进行解码,并利用PUCCH向网络侧设备发送针对PDCCH的ACK消息。
根据本公开的实施例,用户设备100可以从网络侧设备接收多次重新发送的PDCCH。进一步,在这种情况下,用户设备可以不向网络侧设备发送针对重新传输的PDCCH的ACK/NACK消息。
图7是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的进程的示意图。具体地,图7示出了利用不同的频域资源来进行PDCCH的多次重传和PDSCH的传输的示意图。在图7中,水平方向表示时域,竖直方向表示频域。如图7所示,首先,网络侧设备选取时频资源(在时域上占用一个或多个OFDM符号,在频域上占用一个或多个子载波)并利用选取的时频资源向用户设备发送PDCCH。接下来,用户设备向网络侧设备发送针对PDCCH的NACK消息,这里,用户设备可以利用PUCCH来携带针对PDCCH的NACK消息。接下来,在收到了针对PDCCH的NACK消息后,网络侧设备向用户设备多次重新发送PDCCH。同时,网络侧设备利用不同的频域资源同时利用PDSCH向用户设备发送下行数据。如图7所示,网络侧设备向用户设备重新发送PDCCH两次,并且用户设备没有针对重新发送的PDCCH进行ACK/NACK的反馈。当然,网络侧设备还可以向用户设备重新发送PDCCH三次或更多次。
如上所述,可以利用相同的时域资源不同的频域资源来进行PDCCH的重传和PDSCH的传输,由此减少时延。进一步,在用户设备100没有对DCI正确解码的情况下,可以多次从网络侧设备接收重新传输的PDCCH,由此提高PDCCH的可靠性。在这种情况下,由于网络侧设备与用户设备100之间的PDCCH重传有多次,因此PDCCH被用户设备100 正确解码的可能性大大提高,因此用户设备100可以不对重新传输的PDCCH进行ACK/NACK的反馈。
如上所述,在确定单元130确定需要执行针对PDCCH承载的DCI的HARQ反馈的情况下,反馈单元140可以生成反馈消息并向网络侧设备发送反馈消息。这里的反馈消息仅仅包括针对一个DCI的ACK/NACK消息。下面将描述反馈消息的另外实施例。
根据本公开的实施例,用户设备100向网络侧设备发送的HARQ反馈消息还可以是合并的HARQ反馈消息。例如,合并后的HARQ反馈消息可以包括针对DCI的HARQ反馈消息以及针对PDSCH承载的下行数据的HARQ反馈消息。这里,合并后的HARQ反馈消息例如可以包括针对DCI的ACK/NACK消息和针对下行数据的ACK/NACK消息。
根据本公开的实施例,用户设备100可以从网络侧设备接收PDCCH承载的DCI以及PDSCH承载的下行数据,并将对DCI的HARQ反馈消息和对下行数据的HARQ反馈消息进行合并,由此节约信令开销,减少时延。
图8是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的进程的示意图。图8示出了对PDCCH承载的DCI以及PDSCH承载的下行数据的反馈消息进行合并的示意图。在图8中,水平方向表示时域,竖直方向表示频域。如图8所示,首先,网络侧设备选取时频资源(在时域上占用一个或多个OFDM符号,在频域上占用一个或多个子载波)并利用选取的时频资源通过PDCCH向用户设备发送DCI。接下来,网络侧设备通过PDSCH向用户设备发送下行数据。接下来,用户设备对DCI和下行数据进行解码,并生成针对DCI的反馈消息和针对下行数据的反馈消息,然后将两个反馈消息进行合并并向网络侧设备发送合并后的反馈消息,这里,用户设备可以利用PUCCH来携带合并后的反馈消息。
根据本公开的实施例,合并后的HARQ反馈消息可以包括针对该DCI的HARQ反馈消息以及针对一个或多个其它DCI的HARQ反馈消息。这里,合并后的HARQ反馈消息可以包括针对多个DCI中的每个DCI的ACK/NACK消息。
根据本公开的实施例,用户设备100可以从网络侧设备接收PDCCH承载的多个DCI,并将对该多个DCI的HARQ反馈消息进行合并,由此节约信令开销,减少时延。
图9是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的进程的示意图。图9示出了对PDCCH承载的多个DCI的反馈消息进行合并的示意图。在图9中,水平方向表示时域,竖直方向表示频域。如图9所示,首先,网络侧设备选取时频资源(在时域上占用一个或多个OFDM符号,在频域上占用一个或多个子载波)并利用选取的时频资源通过PDCCH向用户设备发送第一个DCI(图9中标示为PDCCH1)。接下来,网络侧设备选取时频资源并利用选取的时频资源通过PDCCH向用户设备发送第二个DCI(图9中标示为PDCCH2)。接下来,用户设备对第一个DCI和第二个DCI进行解码,并生成针对第一个DCI的反馈消息和针对第二个DCI的反馈消息,然后将两个反馈消息进行合并并向网络侧设备发送合并后的反馈消息,这里,用户设备可以利用PUCCH来携带合并后的反馈消息。假定用户设备对第一个DCI和第二个DCI都成功解码,接下来,网络侧设备向用户设备发送由第一个DCI指示的PDSCH。接下来,网络侧设备向用户设备发送由第二个DCI指示的PDSCH。图9示出了用户设备100对两个DCI的反馈消息进行合并的情形,当然用户设备100还可以对三个或更多个DCI的反馈消息进行合并。
图10是示出图9所示的实施例的时隙的配置的示意图。图10示出了包括14个OFDM符号的一个时隙的配置的示意图。如图10所示,该时隙的第1个和第2个OFDM符号用于下行传输,网络侧设备向用户设备发送多个PDCCH;该时隙的第3个OFDM符号用于上行传输,用户设备向网络侧设备发送PUCCH,其中携带针对多个DCI的HARQ反馈消息;该时隙的第4-10个OFDM符号用于下行传输,网络侧设备向用户设备发送PDSCH;该时隙的第11-14个OFDM符号用于上行传输,用户设备向网络侧设备发送PUSCH。值得注意的是,图10仅仅是一种示例性的时隙配置。例如,图10虽然示出了PDCCH占用2个OFDM符号的情形,当然PDCCH还可以占用1个或3个OFDM符号。此外,PDSCH和PUSCH也可以占用其他数目的OFDM符号。
如上所述,用户设备100向网络侧设备发送的反馈消息可以是合并后的反馈消息,合并后的反馈消息可以包括对DCI的反馈消息和对下行数据的反馈消息,合并后的反馈消息也可以包括对多个DCI的反馈消息。进一步,合并后的反馈消息还可以包括对多个DCI的反馈消息和对下行数据的反馈消息。也就是说,用户设备100可以根据实际的需求对各种HARQ反馈消息进行合并,由此节约信令开销并减少时延。
根据本公开的实施例,网络侧设备可以在用户设备100对PDCCH正确解码之后再通过PDSCH发送下行数据,也可以在用户设备100对PDCCH正确解码之前通过PDSCH发送下行数据。在后一种情况下,用户设备100可以对接收到的下行数据进行缓存,待对PDCCH成功解码之后,再对下行数据进行解码,这种缓存方式可以称为软缓存。
如图1所示,根据本公开的实施例,用户设备100还可以包括缓存单元150,用于在没有对PDCCH正确解码的情况下对下行数据进行缓存。
根据本公开的实施例,在从网络侧设备接收重新发送的DCI之前,通信单元110可以从网络侧设备接收下行数据,并且缓存单元150可以对接收的下行数据进行缓存。这里,用户设备100可以通过PDSCH从网络侧设备接收下行数据。此外,在对接收的下行数据进行缓存之后,用户设备100可以从网络侧设备接收重新发送的DCI,并利用正确解码的DCI对缓存的下行数据进行解调。
根据本公开的实施例,在向网络侧设备发送针对PDCCH的NACK消息之后并且在从网络侧设备接收重新发送的DCI之前,通信单元110可以从网络侧设备接收下行数据,并且缓存单元150可以对接收的下行数据进行缓存。
图11是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的进程的示意图。具体地,图11示出了在向网络侧设备发送针对PDCCH的NACK消息之后从网络侧设备接收下行数据并进行缓存的示意图。在图11中,水平方向表示时域,竖直方向表示频域。如图11所示,首先,网络侧设备选取时频资源(在时域上占用一个或多个OFDM符号,在频域上占用一个或多个子载波)并利用选取的时频资源通过PDCCH向用户设备发送DCI。接下来,用户设备对DCI进行解码,并生成针对DCI的NACK消息并向网络侧设备发送,这里,用户设备可以利用PUCCH来携带NACK消息。接下来,网络侧设备向用户设备发送由DCI指示的PDSCH。用户设备对PDSCH进行缓存。接下来,网络侧设备向用户设备重新发送PDCCH。接下来,用户设备对重新发送的PDCCH进行解码,生成针对PDCCH的ACK消息并向网络侧设备发送。同时,用户设备可以利用正确解码的PDCCH对缓存的下行数据进行解调。
图12是示出图11所示的实施例的时隙的配置的示意图。图12示出了包括14个OFDM符号的一个时隙的配置的示意图。如图12所示,该时隙的第1个OFDM符号用于下行传输,网络侧设备向用户设备发送 PDCCH;该时隙的第2个OFDM符号用于上行传输,用户设备向网络侧设备发送PUCCH,其中携带针对DCI的NACK消息;该时隙的第3-12个OFDM符号用于下行传输,网络侧设备向用户设备发送PDSCH;该时隙的第13个OFDM符号用于下行传输,网络侧设备向用户设备重新发送PDCCH;该时隙的第14个OFDM符号用于上行传输,用户设备向网络侧设备发送PUCCH,其中携带针对重新传输的DCI的ACK消息。值得注意的是,图12仅仅是一种示例性的时隙配置。例如,图12虽然示出了PDCCH占用1个OFDM符号的情形,当然PDCCH还可以占用2个或3个OFDM符号。此外,PDSCH也可以占用其他数目的OFDM符号。
根据本公开的实施例,在向网络侧设备发送针对PDCCH的NACK消息之前并且在从网络侧设备接收重新发送的DCI之前,通信单元110可以从网络侧设备接收下行数据,并且缓存单元150可以对接收的下行数据进行缓存。
图13是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的进程的示意图。具体地,图13示出了在向网络侧设备发送针对PDCCH的NACK消息之前从网络侧设备接收下行数据并进行缓存的示意图。在图13中,水平方向表示时域,竖直方向表示频域。如图13所示,首先,网络侧设备选取时频资源(在时域上占用一个或多个OFDM符号,在频域上占用一个或多个子载波)并利用选取的时频资源通过PDCCH向用户设备发送DCI。接下来,网络侧设备向用户设备发送由DCI指示的PDSCH。用户设备对PDSCH进行缓存。接下来,用户设备对DCI进行解码,并生成针对DCI的NACK消息并向网络侧设备发送,这里,用户设备可以利用PUCCH来携带NACK消息。接下来,网络侧设备向用户设备重新发送PDCCH。接下来,用户设备对重新发送的PDCCH进行解码,生成针对PDCCH的ACK消息并向网络侧设备发送。同时,用户设备可以利用正确解码的PDCCH对缓存的下行数据进行解调。
图14是示出图13所示的实施例的时隙的配置的示意图。图14示出了包括14个OFDM符号的一个时隙的配置的示意图。如图14所示,该时隙的第1个OFDM符号用于下行传输,网络侧设备向用户设备发送PDCCH;该时隙的第2-11个OFDM符号用于下行传输,网络侧设备向用户设备发送PDSCH;该时隙的第12个OFDM符号用于上行传输,用户设备向网络侧设备发送PUCCH,其中携带针对DCI的NACK消息;该时隙的第13个OFDM符号用于下行传输,网络侧设备向用户设备重新发送 PDCCH;该时隙的第14个OFDM符号用于上行传输,用户设备向网络侧设备发送PUCCH,其中携带针对重新传输的DCI的ACK消息。值得注意的是,图14仅仅是一种示例性的时隙配置。例如,图14虽然示出了PDCCH占用1个OFDM符号的情形,当然PDCCH还可以占用2个或3个OFDM符号。此外,PDSCH也可以占用其他数目的OFDM符号。
如上所述,根据本公开的实施例,用户设备100可以在对PDCCH正确解码之前通过PDSCH发送下行数据。在这种情况下,由于用户设备100没有对PDCCH正确解码,因此并不知晓由PDCCH指示的PDSCH的位置。在NR通信系统中,用户设备100可以被网络侧设备预先配置多个用于接收下行数据的BWP(Bandwidth Part,带宽部分),这多个BWP中的一个BWP是激活状态,其它BWP是非激活状态。
根据本公开的实施例,用户设备100可以在用户设备100的被预先配置的多个BWP上接收下行数据并进行缓存。也就是说,用户设备100可以在被预先配置的所有(例如4个)BWP上搜索并接收下行数据,从而对下行数据进行缓存。
根据本公开的实施例,用户设备100可以在用户设备100的默认的一个或多个BWP上接收下行数据并进行缓存。这里,默认的BWP可以是处于激活状态的BWP。也就是说,用户设备100可以在处于激活状态的一个BWP上搜索并接收下行数据,从而对下行数据进行缓存。默认的BWP还可以是用户设备100与网络侧设备之间预先约定好的BWP,例如最近一次用户设备100用于接收下行数据的BWP。也就是说,用户设备100可以在与网络侧设备预先约定好的BWP上搜索并接收下行数据,从而对下行数据进行缓存。
根据本公开的实施例,用户设备100还可以从网络侧设备接收关于默认的BWP的信息。例如,信息中可以包括默认的BWP的标识信息。进一步,这种信息例如可以通过诸如RRC层信令或MAC层信令的高层信令来接收。也就是说,用户设备100可以在网络侧设备指示的BWP上搜索并接收下行数据,从而对下行数据进行缓存。
根据本公开的实施例,通信单元110还可以从网络侧设备接收用于指示对下行数据进行缓存的指示消息。这里,用于指示对下行数据进行缓存的指示消息例如可以包括用于承载下行数据的时域资源和频域资源的指示信息。例如,可以通过更为紧凑或者压缩的DCI格式来承载这样的指示信息。这样一来,用户设备100可以通过指示消息获取下行数据的资源 位置,从而可以对下行数据进行接收和缓存。进一步,在用户设备100接收到后续完整的DCI信息之后,可以利用完成的DCI对缓存的下行数据进行解调。
图15是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的进程的示意图。具体地,图15示出了网络侧设备向用户设备发送缓存指示信息的示意图。在图15中,水平方向表示时域,竖直方向表示频域。如图15所示,首先,网络侧设备选取时频资源(在时域上占用一个或多个OFDM符号,在频域上占用一个或多个子载波)并利用选取的时频资源通过PDCCH向用户设备发送第一个DCI(在图15中标记为PDCCH1)。此外,网络侧设备还可以选取时频资源并利用选取的时频资源通过PDCCH向用户设备发送第二个DCI(在图15中标记为PDCCH2)。这里,第二个DCI携带用于指示用户设备对下行数据进行缓存的缓存指示信息。接下来,网络侧设备向用户设备发送PDSCH。用户设备根据第二个DCI中携带的用于发送下行数据的资源的位置信息对该PDSCH进行缓存。接下来,用户设备对第一个DCI进行解码,并生成针对第一个DCI的NACK消息并向网络侧设备发送,这里,用户设备可以利用PUCCH来携带NACK消息。接下来,网络侧设备向用户设备重新发送PDCCH1。接下来,用户设备对重新发送的PDCCH1进行解码,生成针对PDCCH1的ACK消息并向网络侧设备发送。同时,用户设备可以利用正确解码的PDCCH1对缓存的下行数据进行解调。
如上所述,根据本公开的实施例,网络侧设备可以向用户设备100发送用于指示对下行数据进行缓存的指示消息,也可以不向用户设备100发送用于指示对下行数据进行缓存的指示消息。在后一种情况下,用户设备100可以在与网络侧设备之间预先约定好的或者网络侧设备指示的BWP上接收下行数据。
由此可见,根据本公开的实施例的用户设备100,可以根据PDCCH所承载的DCI的内容来确定是否执行针对该DCI的HARQ反馈。进一步,用户设备100可以仅仅在DCI包括与下行传输有关的控制信息的情况下执行HARQ反馈,从而在提高传输可靠性的基础上节约开销。此外,为了进一步节约开销并减少时延,用户设备100可以将多个HARQ反馈消息进行合并发送。进一步,用户设备100还可以在对PDCCH正确解码之前对下行数据进行缓存。综上,根据本公开的实施例的用户设备100,可以实现HARQ反馈机制在PDCCH上的应用,提高PDCCH所承载的DCI 的传输可靠性。
<3.备份PDCCH的用户设备的配置示例>
下面将详述根据本公开的另一个实施例的提高PDCCH传输可靠性的用户设备100。该用户设备100也可以采用如图1所示的结构配置。
根据本公开的实施例,通信单元110可以从网络侧设备接收第一数据信息、第二数据信息、针对第一数据信息的第一控制信息以及针对第二数据信息的第二控制信息,其中,第一数据信息包括第二控制信息,并且第二数据信息包括所述第一控制信息。
根据本公开的实施例,解调单元120可以对从网络侧设备接收到的信息,包括第一数据信息、第二数据信息、第一控制信息和第二控制信息进行解码以获取第一数据信息和第二数据信息。
如上所述,根据本公开的实施例的用户设备100,第一控制信息和第二控制信息被接收两次,从而实现分集增益,进一步提高PDCCH的传输可靠性。
根据本公开的实施例,第一数据信息和第二数据信息可以是通过PDSCH承载的下行数据信息,第一控制信息和第二控制信息可以是通过PDCCH承载的下行控制信息。
图16是示出根据本公开的实施例的备份PDCCH的进程的示意图。在图16中,水平方向表示时域,竖直方向表示频域。如图16所示,首先,网络侧设备选取时频资源(在时域上占用一个或多个OFDM符号,在频域上占用一个或多个子载波)并利用选取的时频资源通过PDCCH向用户设备发送第一个DCI(在图16中标记为PDCCH1)。此外,网络侧设备还可以选取时频资源并利用选取的时频资源通过PDCCH向用户设备发送第二个DCI(在图16中标记为PDCCH2)。接下来,网络侧设备通过PDSCH向用户设备发送第一个数据信息(在图16中标记为PDSCH1),这里的第一个数据信息包括了第二个DCI。进一步,网络侧设备还可以通过PDSCH向用户设备发送第二个数据信息(在图16中标记为PDSCH2),这里的第二个数据信息包括了第一个DCI。
根据本公开的实施例,用户设备100可以从为用户设备100提供服务的同一个网络侧设备接收第一数据信息、第一控制信息、第二数据信息和第二控制信息。也就是说,第一控制信息和第二控制信息是来自于同一 个网络侧设备的不同的下行控制信息,而第一数据信息和第二数据信息是来自于同一个网络侧设备的不同的下行数据信息。这里的网络侧设备例如可以是基站或者TRP。
根据本公开的实施例,用户设备100也可以从为用户设备100提供服务的不同的网络侧设备接收上述信息。例如,用户设备100从第一网络侧设备接收第一控制信息和第一数据信息,从第二网络侧设备接收第二控制信息和第二数据信息。也就是说,第一控制信息是来自于第一网络侧设备的下行控制信息,第一数据信息是来自于第一网络侧设备的下行数据信息,而第二控制信息是来自于第二网络侧设备的下行控制信息,第二数据信息是来自于第二网络侧设备的下行数据信息。这里的第一和第二网络侧设备例如可以是TRP。
根据本公开的实施例,第一网络侧设备和第二网络侧设备之间可以通过Xn接口(TRP之间的接口)来交互控制信息。例如,第一网络侧设备通过Xn接口向第二网络侧设备发送第一控制信息,以用于第二网络侧设备将第一控制信息编码在第二数据信息中,而第二网络侧设备可以通过Xn接口向第一网络侧设备发送第二控制信息,以用于第一网络侧设备将第二控制信息编码在第一数据信息中。
根据本公开的实施例,解调单元120可以对第一控制信息进行解码,并利用正确解码后的第一控制信息对第一数据信息进行解码。进一步,解码单元120还可以对第二控制信息进行解码,并利用正确解码后的第二控制信息对第二数据信息进行解码。
根据本公开的实施例,在解调单元120没有对第一控制信息进行正确解码而仅仅对第二控制信息进行了正确解码的情况下,解调单元120可以利用正确解码后的第二控制信息对第二数据信息进行解码,从而根据解码后的第二数据信息确定第二数据信息中包括的第一控制信息。接下来,解调单元120可以利用获得的第一控制信息对第一数据信息进行解码。
根据本公开的实施例,在解调单元120没有对第二控制信息进行正确解码而仅仅对第一控制信息进行了正确解码的情况下,解调单元120可以利用正确解码后的第一控制信息对第一数据信息进行解码,从而根据解码后的第一数据信息确定第一数据信息中包括的第二控制信息。接下来,解调单元120可以利用获得的第二控制信息对第二数据信息进行解码。
以图16所示的实施例为例,当用户设备100接收到PDCCH1和 PDCCH2之后,对PDCCH1和PDCCH2进行解码。在用户设备100对PDCCH1和PDCCH2都正确解码的情况下,用户设备100可以利用正确解码的PDCCH1对PDSCH1进行解码以获取PDSCH1中承载的下行数据,利用正确解码的PDCCH2对PDSCH2进行解码以获取PDSCH2中承载的下行数据。在用户设备100对PDCCH1正确解码而未对PDCCH2正确解码的情况下,用户设备100可以利用正确解码的PDCCH1对PDSCH1进行解码以获取PDSCH1中承载的下行数据,从而获取PDSCH1中包括的PDCCH2,并利用因此获得的PDCCH2对PDSCH2进行解码以获取PDSCH2中承载的下行数据。在用户设备100对PDCCH2正确解码而未对PDCCH1正确解码的情况下,用户设备100可以利用正确解码的PDCCH2对PDSCH2进行解码以获取PDSCH2中承载的下行数据,从而获取PDSCH2中包括的PDCCH1,并利用因此获得的PDCCH1对PDSCH1进行解码以获取PDSCH1中承载的下行数据。
如上所述,根据本公开的实施例的用户设备100,可以接收两次PDCCH1和PDCCH2,从而实现分集增益。在这个实施例中,将PDCCH1复制到PDSCH2中发送,并将PDCCH2复制到PDSCH1中发送,实际上实现了对PDCCH1和PDCCH2的“备份”。这样一来,用户设备100仅需要对PDCCH1和PDCCH2中的一个进行正确解码,就可以获取PDSCH1和PDSCH2承载的下行数据,从而提高了PDCCH传输的可靠性。
值得注意的是,虽然前文以PDCCH承载的两个DCI为例对提高PDCCH传输可靠性的实施例进行了说明,但是本领域技术人员应该理解,还可以利用三个或更多个DCI以及相对应的下行数据来实现分集增益。例如,可以在第一数据信息中包括第二控制信息,在第二数据信息中包括第三控制信息,并在第三数据信息中包括第一控制信息。也就是说,在存在发送至一个用户设备的多个数据信息和多个控制信息的情况下,可以在多个数据信息中的每一个数据信息中包括针对其它数据信息的控制信息,以使得每个控制信息被发送两次,从而实现控制信息的分集增益。
<4.执行针对PDCCH的HARQ反馈的网络侧设备的配置示例>
图17是示出根据本公开的实施例的无线通信系统中的用作网络侧设备的电子设备1700的结构的框图。如图17所示,电子设备1700可以包括通信单元1710和确定单元1720。
这里,电子设备1700的各个单元都可以包括在处理电路中。需要说明的是,电子设备1700既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,通信单元1710可以向用户设备发送包含PDCCH的下行信号。这里,PDCCH可以承载DCI。
根据本公开的实施例,确定单元1720可以根据PDCCH承载的DCI的内容来确定是否需要从用户设备接收针对该DCI的HARQ反馈消息。
如上所述,根据本公开的实施例的电子设备1700,可以根据PDCCH所承载的DCI的内容来确定是否需要从用户设备接收针对该DCI的HARQ反馈,从而实现HARQ反馈机制在PDCCH上的应用,提高PDCCH所承载的DCI的传输可靠性。
根据本公开的实施例,如图17所示,电子设备1700可以包括处理单元1740,用于利用特定的DCI格式生成向用户设备发送的DCI,并通过PDCCH来承载DCI。
根据本公开的实施例,确定单元1720可以根据PDCCH承载的DCI包括与上行传输有关的控制信息还是包括与下行传输有关的控制信息来确定是否需要从用户设备接收针对该DCI的HARQ反馈。
根据本公开的实施例,当DCI包括与电子设备1700的下行传输有关的控制信息时,确定单元1720确定需要从用户设备接收针对DCI的HARQ反馈。进一步,当DCI包括与电子设备1700的下行传输有关的控制信息时,该DCI可以采用DCI格式1。
根据本公开的实施例,当DCI包括与电子设备1700的上行传输有关的控制信息时,确定单元1720确定不需要从用户设备接收针对该DCI的HARQ反馈。进一步,当DCI包括与电子设备1700的上行传输有关的控制信息时,该DCI可以采用DCI格式0。
根据本公开的实施例,当确定单元1720确定需要从用户设备接收针对该DCI的HARQ反馈时,在发送DCI之后需要等待针对该DCI的HARQ反馈消息,并根据HARQ反馈消息来判断是否需要执行对DCI的重传;当确定单元1720确定不需要从用户设备接收针对该DCI的HARQ反馈时,在发送DCI之后不需要等待针对该DCI的HARQ反馈消息,而是直 接执行后续的操作,例如通过PUSCH接收用户设备发送的上行数据或者通过PDSCH向用户设备发送下行数据。
根据本公开的实施例,如图17所示,电子设备1700可以包括解调单元1730,用于在需要从用户设备接收HARQ反馈消息的情况下对HARQ反馈消息进行解调。此外,解调单元1730还可以对来自用户设备的上行数据进行解调。
根据本公开的实施例,在从用户设备接收针对DCI的ACK消息的情况下,通信单元1710可以向用户设备发送下行数据。
图18是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的信令流程图。具体地,图18示出了在用户设备对DCI正确解码的情况下的信令流程图,其对应于图2中所示的进程。如图18所示,在S1801中,基站向UE(User Equipment,用户设备)发送PDCCH,PDCCH承载针对该UE的DCI。接下来,在S1802中,UE对接收到的通过PDCCH承载的DCI进行解码。这里假定UE对PDCCH承载的DCI进行正确解码,则生成针对DCI的ACK消息。接下来,在S1803中,UE向基站发送PUCCH,其中携带针对DCI的ACK消息。接下来,在S1804中,基站通过PDSCH向UE发送下行数据。接下来,在S1805中,UE向基站发送PUCCH,其中携带针对下行数据的ACK/NACK消息。
根据本公开的实施例,在从用户设备接收针对DCI的NACK消息的情况下,通信单元1710可以向用户设备重新发送DCI。进一步,电子设备1700还可以从用户设备接收针对重新发送的DCI的ACK/NACK消息。
图19是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的信令流程图。具体地,图19示出了在用户设备未对DCI正确解码的情况下的信令流程图,其对应于图4中所示的进程。如图19所示,在S1901中,基站向UE发送PDCCH,PDCCH承载针对该UE的DCI。接下来,在S1902中,UE对接收到的通过PDCCH承载的DCI进行解码。这里假定UE没有对PDCCH承载的DCI进行正确解码,则生成针对DCI的NACK消息。接下来,在S1903中,UE向基站发送PUCCH,其中携带针对DCI的NACK消息。接下来,在S1904中,基站通过PDCCH向UE重新发送DCI。接下来,在S1905中,UE对重新发送的DCI进行解码。这里假定UE对重新发送的DCI进行正确解码,则生成针对重新发送的DCI的ACK消息。接下来,在S1906中,UE向基站发送PUCCH,其中携带针对重新发送的DCI的ACK消息。接下来,在S1907中,基站通过PDSCH向UE 发送下行数据。接下来,在S1908中,UE向基站发送PUCCH,其中携带针对下行数据的ACK/NACK消息。如前文中所述,图19中所示的步骤S1904和步骤S1905可以重复多次,直到UE对重新发送的DCI正确解码为止。此外,还可以对重新发送DCI的次数进行限定以减少时延。
根据本公开的实施例,通信单元1710可以利用不同的频域资源向用户设备同时发送下行数据和重新发送的DCI。
图20是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的信令流程图。具体地,图20示出了在电子设备利用不同的频域资源同时发送下行数据和重新传输的DCI的情况下的信令流程图,其对应于图6中所示的进程。如图20所示,在S2001中,基站向UE发送PDCCH,PDCCH承载针对该UE的DCI。接下来,在S2002中,UE对接收到的通过PDCCH承载的DCI进行解码。这里假定UE没有对PDCCH承载的DCI进行正确解码,则生成针对DCI的NACK消息。接下来,在S2003中,UE向基站发送PUCCH,其中携带针对DCI的NACK消息。接下来,在S2004中,基站通过PDCCH向UE重新发送DCI。这里,在S2004中,基站还可以利用相同的时域资源不同的频域资源通过PDSCH向UE发送下行数据。接下来,在S2005中,UE对重新发送的DCI进行解码。这里假定UE对重新发送的DCI进行正确解码,则生成针对重新发送的DCI的ACK消息。接下来,在S2006中,UE向基站发送PUCCH,其中携带针对重新发送的DCI的ACK消息。
根据本公开的实施例,通信单元1710可以向用户设备重新发送DCI一次或多次。
图21是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的信令流程图。具体地,图21示出了在电子设备多次重新发送DCI的情况下的信令流程图,其对应于图7中所示的进程。如图21所示,在S2101中,基站向UE发送PDCCH,PDCCH承载针对该UE的DCI。接下来,在S2102中,UE对接收到的通过PDCCH承载的DCI进行解码。这里假定UE没有对PDCCH承载的DCI进行正确解码,则生成针对DCI的NACK消息。接下来,在S2103中,UE向基站发送PUCCH,其中携带针对DCI的NACK消息。接下来,在S2104中,基站通过PDCCH向UE多次重新发送DCI。这里,在S2104中,基站还可以利用相同的时域资源不同的频域资源通过PDSCH向UE发送下行数据。如图21所示,在电子设备1700多次重新发送DCI的情况下,可以不需要从用户设备接收针对重新发送的 DCI的HARQ反馈消息。
根据本公开的实施例,通信单元1710可以向用户设备发送PDCCH承载的DCI,并向用户设备发送PDSCH承载的下行数据。进一步,在DCI的内容表明需要从用户设备接收HARQ反馈消息的情况下,通信单元1710可以从用户设备接收合并后的HARQ反馈消息,HARQ反馈消息包括针对DCI的HARQ反馈消息以及针对下行数据的HARQ反馈消息。
根据本公开的实施例,在合并后的HARQ反馈消息表明用户设备对DCI正确解码并且未对下行数据正确解码的情况下,通信单元1710可以向用户设备重新发送所述下行数据。
根据本公开的实施例,在用户设备对针对PDCCH和PDSCH的反馈信息进行合并的情况下,当用户设备对PDCCH正确解码而没有对PDSCH正确解码时,电子设备1700可以仅向用户设备重新发送PDSCH。以使得用户设备利用之前正确解码的PDCCH对重新发送的PDSCH进行解码从而获取下行数据。
根据本公开的实施例,在合并后的HARQ反馈消息表明用户设备未对DCI正确解码并且未对下行数据正确解码的情况下,通信单元1710可以向用户设备重新发送DCI。
根据本公开的实施例,在用户设备对针对PDCCH和PDSCH的反馈信息进行合并的情况下,当用户设备没有对PDCCH正确解码时,其也必然不能对PDSCH正确解码。在这种情况下,电子设备1700可以仅向用户设备重新发送PDCCH。以使得用户设备利用重新发送的PDCCH对之前缓存的PDSCH进行解码从而获取下行数据。由此一来,由于只需要重新发送数据量较少的PDCCH,从而可以节约开销并减少时延。
图22是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的信令流程图。具体地,图22示出了在用户设备对PDCCH和PDSCH的反馈消息进行合并的情况下的信令流程图,其对应于图8中所示的进程。如图22所示,在S2201中,基站向UE发送PDCCH,PDCCH承载针对该UE的DCI。接下来,在步骤S2202中,基站通过PDSCH向UE发送下行数据。接下来,在S2203中,UE对接收到的通过PDCCH承载的DCI进行解码,并且对通过PDSCH承载的下行数据进行解码。接下来,在S2204中,UE向基站发送PUCCH,其中携带针对DCI的ACK/NACK消息和针对下行数据的ACK/NACK消息。
根据本公开的实施例,通信单元1710还可以向用户设备发送通过PDCCH承载的多个DCI。进一步,通信单元1710还可以从用户设备接收合并后的HARQ反馈消息,合并后的HARQ反馈消息包括针对多个DCI中的每个DCI的HARQ反馈消息。
图23是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的信令流程图。具体地,图23示出了在用户设备对多个DCI的反馈消息进行合并的情况下的信令流程图,其对应于图9中所示的进程。如图23所示,在S2301中,基站向UE发送PDCCH1,PDCCH1承载针对该UE的第一DCI。接下来,在步骤S2302中,向UE发送PDCCH2,PDCCH2承载针对该UE的第二DCI。接下来,在S2303中,UE对接收到的通过PDCCH1承载的第一DCI和通过PDCCH2承载的第二DCI进行解码。接下来,在S2304中,UE向基站发送PUCCH,其中携带针对第一DCI的ACK/NACK消息和针对第二DCI的ACK/NACK消息。
根据本公开的实施例,在向用户设备重新发送DCI之前,通信单元1710可以向用户设备发送下行数据,以用于用户设备进行缓存。
图24是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的信令流程图。具体地,图24示出了先向用户设备发送下行数据再向用户设备重新发送DCI的情况下的信令流程图,其对应于图11中所示的进程。如图24所示,在S2401中,基站向UE发送PDCCH,PDCCH承载针对该UE的DCI。接下来,在S2402中,UE对接收到的通过PDCCH承载的DCI进行解码。这里假定UE没有对PDCCH承载的DCI进行正确解码,则生成针对DCI的NACK消息。接下来,在S2403中,UE向基站发送PUCCH,其中携带针对DCI的NACK消息。接下来,在S2404中,基站通过PDSCH向UE发送下行数据,UE对接收到的下行数据进行缓存。接下来,在S2405中,基站通过PDCCH向UE重新发送DCI。接下来,在S2406中,UE对重新发送的DCI进行解码。这里,假定UE对重新发送的DCI正确解码,从而可以利用正确解码的DCI对缓存的下行数据进行解码。接下来,在S2407中,UE向基站发送PUCCH,其中携带针对重新发送的DCI的ACK消息。
图25是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的信令流程图。具体地,图25示出了先向用户设备发送下行数据再向用户设备重新发送DCI的情况下的信令流程图,其对应于图13中所示的进程。如图25所示,在S2501中,基站向UE发送PDCCH,PDCCH承载 针对该UE的DCI。接下来,在S2502中,基站通过PDSCH向UE发送下行数据,UE对接收到的下行数据进行缓存。接下来,在S2503中,UE对接收到的通过PDCCH承载的DCI进行解码。这里假定UE没有对PDCCH承载的DCI进行正确解码,则生成针对DCI的NACK消息。接下来,在S2504中,UE向基站发送PUCCH,其中携带针对DCI的NACK消息。接下来,在S2505中,基站通过PDCCH向UE重新发送DCI。接下来,在S2506中,UE对重新发送的DCI进行解码。这里,假定UE对重新发送的DCI正确解码,从而可以利用正确解码的DCI对缓存的下行数据进行解码。接下来,在S2507中,UE向基站发送PUCCH,其中携带针对重新发送的DCI的ACK消息。在图25中,S2502和S2503可以同时进行,也就是说,基站在S2502中向UE发送PDSCH,同时UE在S2503中对DCI进行解码。
根据本公开的实施例,通信单元1710还可以向用户设备发送关于默认的BWP的信息,以用于用户设备在电子设备1700指示的默认的BWP上搜索并接收下行数据,从而对下行数据进行缓存。例如,信息中可以包括默认的BWP的标识信息。进一步,电子设备1700例如可以通过诸如RRC层信令或MAC层信令的高层信令来发送关于默认的BWP的信息。
根据本公开的实施例,通信单元1710还可以向用户设备发送用于指示对下行数据进行缓存的指示消息。这里,用于指示对下行数据进行缓存的指示消息例如可以包括用于承载下行数据的时域资源和频域资源的指示信息。例如,电子设备1700可以通过更为紧凑或者压缩的DCI格式来承载这样的指示信息。用户设备可以通过指示消息获取下行数据的资源位置,从而可以对下行数据进行接收和缓存。进一步,在用户设备接收到来自电子设备1700的后续完整的DCI信息之后,可以对缓存的下行数据进行解调。
图26是示出根据本公开的实施例的执行针对PDCCH的HARQ反馈的信令流程图。具体地,图26示出了在电子设备向网络侧设备发送缓存指示信息情况下的信令流程图,其对应于图15中所示的进程。如图26所示,在S2601中,基站向UE发送PDCCH,PDCCH承载针对该UE的DCI以及缓存指示信息。接下来,在S2602中,基站通过PDSCH向UE发送下行数据,UE对接收到的下行数据进行缓存。接下来,在S2603中,UE对接收到的通过PDCCH承载的DCI进行解码。这里假定UE没有对PDCCH承载的DCI进行正确解码,则生成针对DCI的NACK消息。接 下来,在S2604中,UE向基站发送PUCCH,其中携带针对DCI的NACK消息。接下来,在S2605中,基站通过PDCCH向UE重新发送DCI。接下来,在S2606中,UE对重新发送的DCI进行解码。这里,假定UE对重新发送的DCI正确解码,从而可以利用正确解码的DCI对缓存的下行数据进行解码。接下来,在S2607中,UE向基站发送PUCCH,其中携带针对重新发送的DCI的ACK消息。在图26中,S2602和S2603可以同时进行,也就是说,基站在S2602中向UE发送PDSCH,同时UE在S2603中对DCI进行解码。
如上所述,根据本公开的实施例的电子设备1700,可以根据PDCCH所承载的DCI的内容来确定是否需要从用户设备接收针对该DCI的HARQ反馈。进一步,可以仅仅在DCI包括与下行传输有关的控制信息的情况下从用户设备接收HARQ反馈,从而在提高传输可靠性的基础上节约开销。此外,为了进一步节约开销并减少时延,可以从用户设备接收合并的HARQ反馈消息。进一步,电子设备1700还可以在用户设备尚未对PDCCH正确解码之前向用户设备发送下行数据以用于用户设备进行缓存。综上,根据本公开的实施例的电子设备1700,可以实现HARQ反馈机制在PDCCH上的应用,提高PDCCH所承载的DCI的传输可靠性。
根据本公开的实施例的电子设备1700可以作为网络侧设备,即电子设备1700可以为用户设备100提供服务,因此在前文中描述的关于用户设备100的全部实施例都适用于此。
<5.备份PDCCH的网络侧设备的配置示例>
下面将详述根据本公开的另一个实施例的提高PDCCH传输可靠性的用作网络侧设备的电子设备1700。该电子设备1700也可以采用如图17所示的结构配置。
根据本公开的实施例,处理单元1740可以生成第一数据信息、第二数据信息、针对第一数据信息的第一控制信息和针对第二数据信息的第二控制信息,其中,所述第一数据信息包括所述第二控制信息,并且所述第二数据信息包括所述第一控制信息。
根据本公开的实施例,通信单元1710可以向用户设备发送第一数据信息、第二数据信息、第一控制信息以及第二控制信息。
如上所述,根据本公开的实施例的电子设备1700,向用户设备发送 两次第一控制信息和第二控制信息,从而实现分集增益,进一步提高PDCCH的传输可靠性。
根据本公开的实施例,通信单元1710还可以从除电子设备1700以外的其它网络侧设备接收针对第二数据信息的第二控制信息。
根据本公开的实施例,处理单元1740可以生成第一数据信息和针对第一数据信息的第一控制信息,所述第一数据信息包括所述第二控制信息。
根据本公开的实施例,通信单元1710还可以向其它网络侧设备发送第一控制信息,以用于其它网络侧设备将第一控制信息包括在所述第二数据信息中。
根据本公开的实施例,通信单元1710可以向用户设备发送第一数据信息和第一控制信息。这里,第一数据信息是用于电子设备1700向用户设备发送的下行数据信息,并且第二数据信息是用于其它网络侧设备向用户设备发送的下行数据信息。
这里,当电子设备1700和其它网络侧设备是TRP时,电子设备1700可以通过Xn接口来向其它网络侧设备发送第一控制信息,并可以通过Xn接口从其它网络侧设备接收第二控制信息。
根据本公开的实施例,第一数据信息和第二数据信息可以是通过PDSCH承载的下行数据信息,第一控制信息和第二控制信息可以是通过PDCCH承载的下行控制信息。
如上所述,根据本公开的实施例的电子设备1700,第一控制信息被发送两次,一次发送给其它网络侧设备以用于其它网络侧设备发送给用户设备,一次直接发送给用户设备,从而实现分集增益,进一步提高PDCCH的传输可靠性。
图27是示出根据本公开的实施例的备份PDCCH的信令流程图。图27仅仅示出了第一数据信息和第二数据信息是来自于同一个网络侧设备的实施例。在图27中,在S2701中,基站向UE发送由PDCCH1承载的第一DCI。接下来,在S2702中,基站向UE发送由PDCCH2承载的第二DCI。接下来,在S2703中,基站通过PDSCH1向UE发送下行数据,其中包括PDCCH2,并通过PDSCH2向UE发送下行数据,其中包括PDCCH1。接下来,在S2704中,UE对PDCCH1承载的DCI、PDCCH2承载的DCI、PDSCH1和PDSCH2进行解码以获取PDSCH1中的下行数 据和PDSCH2中的下行数据。
如上所述,根据本公开的实施例的电子设备1700,可以发送两次PDCCH1和PDCCH2,从而实现分集增益。这样一来,用户设备仅需要对PDCCH1和PDCCH2中的一个进行正确解码,就可以获取PDSCH1和PDSCH2承载的下行数据,从而提高了PDCCH传输的可靠性。
<6.方法实施例>
接下来将详细描述根据本公开实施例的由无线通信系统中的用户设备100和由无线通信系统中的作为网络侧设备的电子设备1700执行的无线通信方法。
图28是示出根据本公开的实施例的由无线通信系统中的用户设备100执行的无线通信方法的流程图。
如图28所示,在步骤S2810中,对来自网络侧设备的下行信号进行解调以获取其中包含的PDCCH。
接下来,在步骤S2820中,根据PDCCH承载的DCI的内容来确定是否执行针对DCI的HARQ反馈。
优选地,方法还包括:当DCI包括与用户设备100的下行传输有关的控制信息时,执行针对DCI的HARQ反馈。
优选地,当DCI包括与用户设备100的下行传输有关的控制信息时,DCI采用DCI格式1。
优选地,方法还包括:当DCI包括与用户设备100的上行传输有关的控制信息时,不执行针对DCI的HARQ反馈。
优选地,当DCI包括与用户设备100的上行传输有关的控制信息时,DCI采用DCI格式0。
优选地,方法还包括:在对DCI正确解码的情况下,向网络侧设备发送针对DCI的ACK消息,并根据DCI从网络侧设备接收下行数据。
优选地,方法还包括:在未对DCI正确解码的情况下,向网络侧设备发送针对DCI的NACK消息,并从网络侧设备接收重新发送的DCI。
优选地,方法还包括:利用不同的频域资源从网络侧设备同时接收下行数据和重新发送的DCI。
优选地,方法还包括:在从网络侧设备接收重新发送的DCI之前,从网络侧设备接收下行数据并进行缓存。
优选地,方法还包括:在用户设备100的被预先配置的多个BWP上接收下行数据并进行缓存。
优选地,方法还包括:在用户设备100的默认的一个或多个BWP上接收下行数据并进行缓存。
优选地,方法还包括:从网络侧设备接收用于指示对下行数据进行缓存的指示消息。
优选地,方法还包括:向网络侧设备发送合并后的HARQ反馈消息,合并后的HARQ反馈消息包括针对DCI的HARQ反馈消息以及针对一个或多个其它DCI的HARQ反馈消息。
优选地,方法还包括:向网络侧设备发送合并后的HARQ反馈消息,合并后的HARQ反馈消息包括针对DCI的HARQ反馈消息以及针对PDSCH承载的下行数据的HARQ反馈消息。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的用户设备100,因此前文中关于用户设备100的全部实施例均适用于此。
接下来将详细描述根据本公开实施例的由无线通信系统中的作为网络侧设备的电子设备1700执行的无线通信方法。
图29是示出根据本公开的实施例的由无线通信系统中的作为网络侧设备的电子设备1700执行的无线通信方法的流程图。
如图29所示,在步骤S2910中,向用户设备发送包含PDCCH的下行信号。
接下来,在步骤S2920中,根据PDCCH承载的DCI的内容来确定是否从用户设备接收针对DCI的HARQ反馈消息。
优选地,方法还包括:当DCI包括与电子设备1700的下行传输有关的控制信息时,从用户设备接收针对DCI的HARQ反馈。
优选地,当DCI包括与电子设备1700的下行传输有关的控制信息时,DCI采用DCI格式1。
优选地,方法还包括:当DCI包括与电子设备1700的上行传输有关 的控制信息时,不从用户设备接收针对DCI的HARQ反馈。
优选地,当DCI包括与电子设备1700的上行传输有关的控制信息时,DCI采用DCI格式0。
优选地,方法还包括:在从用户设备接收针对DCI的ACK消息的情况下,向用户设备发送下行数据。
优选地,方法还包括:在从用户设备接收针对DCI的NACK消息的情况下,向用户设备重新发送所述DCI。
优选地,方法还包括:利用不同的频域资源向用户设备同时发送下行数据和重新发送的DCI。
优选地,方法还包括:向用户设备重新发送DCI一次或多次。
优选地,方法还包括:在向用户设备重新发送DCI之前,向用户设备发送下行数据。
优选地,方法还包括:向用户设备发送用于指示对下行数据进行缓存的指示消息。
优选地,方法还包括:向用户设备发送多个DCI;以及从用户设备接收合并后的HARQ反馈消息,HARQ反馈消息包括针对多个DCI中的每个DCI的HARQ反馈消息。
优选地,方法还包括:向用户设备发送PDCCH承载的DCI,并向用户设备发送PDSCH承载的下行数据;以及从用户设备接收合并后的HARQ反馈消息,HARQ反馈消息包括针对DCI的HARQ反馈消息以及针对下行数据的HARQ反馈消息。
优选地,方法还包括:在合并后的HARQ反馈消息表明用户设备对DCI正确解码并且未对下行数据正确解码的情况下,向用户设备重新发送所述下行数据。
优选地,方法还包括:在合并后的HARQ反馈消息表明用户设备未对DCI正确解码并且未对下行数据正确解码的情况下,向用户设备重新发送所述DCI。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备1700,因此前文中关于电子设备1700的全部实施例均适用于此。
图30是示出根据本公开的另一个实施例的由无线通信系统中的用户设备100执行的无线通信方法的流程图。
如图30所示,在步骤S3010中,从网络侧设备接收第一数据信息、第二数据信息、针对第一数据信息的第一控制信息以及针对第二数据信息的第二控制信息,其中,第一数据信息包括第二控制信息,并且第二数据信息包括第一控制信息。
接下来,在步骤S3020中,对从网络侧设备接收到的信息进行解码以获取第一数据信息和所述第二数据信息。
优选地,方法还包括:对第一控制信息进行解码,并利用解码后的第一控制信息对第一数据信息进行解码。
优选地,方法还包括:根据解码后的第一数据信息确定第二控制信息;以及利用确定的第二控制信息对第二数据信息进行解码。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的用户设备100,因此前文中关于用户设备100的全部实施例均适用于此。
图31(a)是示出根据本公开的另一个实施例的由无线通信系统中的作为网络侧设备的电子设备1700执行的无线通信方法的流程图。
如图31(a)所示,在步骤S3110中,向用户设备发送第一数据信息、第二数据信息、针对第一数据信息的第一控制信息以及针对第二数据信息的第二控制信息,其中,第一数据信息包括第二控制信息,并且第二数据信息包括第一控制信息。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的作为网络侧设备的电子设备1700,因此前文中关于电子设备1700的全部实施例均适用于此。
图31(b)是示出根据本公开的另一个实施例的由无线通信系统中的作为网络侧设备的电子设备1700执行的无线通信方法的流程图。
如图31(b)所示,在步骤S3120中,从除电子设备1700以外的其它网络侧设备接收针对第二数据信息的第二控制信息.
接下来,在步骤S3130中,向其它网络侧设备发送针对第一数据信息的第一控制信息,以用于其它网络侧设备将第一控制信息包括在第二数据信息中。
接下来,在步骤S3140中,向用户设备发送第一数据信息和第一控制信息,第一数据信息包括第二控制信息。
这里,第一数据信息是用于电子设备1700向用户设备发送的下行数据信息,并且第二数据信息是用于其它网络侧设备向用户设备发送的下行数据信息。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的作为网络侧设备的电子设备1700,因此前文中关于电子设备1700的全部实施例均适用于此。
<7.应用示例>
本公开内容的技术能够应用于各种产品。
网络侧设备可以被实现为任何类型的TRP。该TRP可以具备发送和接收功能,例如可以从用户设备和基站设备接收信息,也可以向用户设备和基站设备发送信息。在典型的示例中,TRP可以为用户设备提供服务,并且受基站设备的控制。进一步,TRP可以具备与如下所述的基站设备类似的结构,也可以仅具备基站设备中与发送和接收信息相关的结构。
网络侧设备也可以被实现为任何类型的基站设备,诸如宏eNB和小eNB,还可以被实现为任何类型的gNB(5G系统中的基站)。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<关于基站的应用示例>
(第一应用示例)
图32是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 3200包括一个或多个天线3210以及基站设备3220。基站设备3220和每个天线3210可以经由RF线缆彼此连接。
天线3210中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备3220发送和接收无线信号。如图32所示,eNB 3200可以包括多个天线3210。例如,多个天线3210可以与eNB 3200使用的多个频带兼容。虽然图32示出其中eNB 3200包括多个天线3210的示例,但是eNB 3200也可以包括单个天线3210。
基站设备3220包括控制器3221、存储器3222、网络接口3223以及无线通信接口3225。
控制器3221可以为例如CPU或DSP,并且操作基站设备3220的较高层的各种功能。例如,控制器3221根据由无线通信接口3225处理的信号中的数据来生成数据分组,并经由网络接口3223来传递所生成的分组。控制器3221可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器3221可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器3222包括RAM和ROM,并且存储由控制器3221执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口3223为用于将基站设备3220连接至核心网3224的通信接口。控制器3221可以经由网络接口3223而与核心网节点或另外的eNB进行通信。在此情况下,eNB 3200与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口3223还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口3223为无线通信接口,则与由无线通信接口3225使用的频带相比,网络接口1823可以使用较高频带用于无线通信。
无线通信接口3225支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线3210来提供到位于eNB 3200的小区中的终端的无线连接。无线通信接口3225通常可以包括例如基带(BB)处理器3226和RF电路3227。BB处理器3226可以执行例如编码/解码、调制/解 调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器3221,BB处理器3226可以具有上述逻辑功能的一部分或全部。BB处理器3226可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器3226的功能改变。该模块可以为插入到基站设备3220的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路3227可以包括例如混频器、滤波器和放大器,并且经由天线3210来传送和接收无线信号。
如图32所示,无线通信接口3225可以包括多个BB处理器3226。例如,多个BB处理器3226可以与eNB 3200使用的多个频带兼容。如图32所示,无线通信接口3225可以包括多个RF电路3227。例如,多个RF电路3227可以与多个天线元件兼容。虽然图32示出其中无线通信接口3225包括多个BB处理器3226和多个RF电路3227的示例,但是无线通信接口3225也可以包括单个BB处理器3226或单个RF电路3227。
(第二应用示例)
图33是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 3330包括一个或多个天线3340、基站设备3350和RRH 3360。RRH 3360和每个天线3340可以经由RF线缆而彼此连接。基站设备3350和RRH 3360可以经由诸如光纤线缆的高速线路而彼此连接。
天线3340中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 3360发送和接收无线信号。如图33所示,eNB 3330可以包括多个天线3340。例如,多个天线3340可以与eNB 3330使用的多个频带兼容。虽然图33示出其中eNB 3330包括多个天线3340的示例,但是eNB 3330也可以包括单个天线3340。
基站设备3350包括控制器3351、存储器3352、网络接口3353、无线通信接口3355以及连接接口3357。控制器3351、存储器3352和网络接口3353与参照图32描述的控制器3221、存储器3222和网络接口3223相同。
无线通信接口3355支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 3360和天线3340来提供到位于与RRH 3360对应的扇区中的终端的无线通信。无线通信接口3355通常可以包括例如BB处理器 3356。除了BB处理器3356经由连接接口3357连接到RRH 3360的RF电路3364之外,BB处理器3356与参照图32描述的BB处理器3226相同。如图33所示,无线通信接口3355可以包括多个BB处理器3356。例如,多个BB处理器3356可以与eNB 3330使用的多个频带兼容。虽然图33示出其中无线通信接口3355包括多个BB处理器3356的示例,但是无线通信接口3355也可以包括单个BB处理器3356。
连接接口3357为用于将基站设备3350(无线通信接口3355)连接至RRH 3360的接口。连接接口3357还可以为用于将基站设备3350(无线通信接口3355)连接至RRH 3360的上述高速线路中的通信的通信模块。
RRH 3360包括连接接口3361和无线通信接口3363。
连接接口3361为用于将RRH 3360(无线通信接口3363)连接至基站设备3350的接口。连接接口3361还可以为用于上述高速线路中的通信的通信模块。
无线通信接口3363经由天线3340来传送和接收无线信号。无线通信接口3363通常可以包括例如RF电路3364。RF电路3364可以包括例如混频器、滤波器和放大器,并且经由天线3340来传送和接收无线信号。如图33所示,无线通信接口3363可以包括多个RF电路3364。例如,多个RF电路3364可以支持多个天线元件。虽然图33示出其中无线通信接口3363包括多个RF电路3364的示例,但是无线通信接口3363也可以包括单个RF电路3364。
在图32和图33所示的eNB 3200和eNB 3330中,通过使用图17所描述的确定单元1720、解调单元1730和处理单元1740可以由控制器3221和/或控制器3351实现。功能的至少一部分也可以由控制器3221和控制器3351实现。例如,控制器3221和/或控制器3351可以通过执行相应的存储器中存储的指令而执行确定是否接收HARQ反馈、对反馈消息进行解调以及配置由PDCCH承载的下行控制信息的功能。
<关于终端设备的应用示例>
(第一应用示例)
图34是示出可以应用本公开内容的技术的智能电话3400的示意性配置的示例的框图。智能电话3400包括处理器3401、存储器3402、存储装置3403、外部连接接口3404、摄像装置3406、传感器3407、麦克风 3408、输入装置3409、显示装置3410、扬声器3411、无线通信接口3412、一个或多个天线开关3415、一个或多个天线3416、总线3417、电池3418以及辅助控制器3419。
处理器3401可以为例如CPU或片上系统(SoC),并且控制智能电话3400的应用层和另外层的功能。存储器3402包括RAM和ROM,并且存储数据和由处理器3401执行的程序。存储装置3403可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口3404为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话3400的接口。
摄像装置3406包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器3407可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风3408将输入到智能电话3400的声音转换为音频信号。输入装置3409包括例如被配置为检测显示装置3410的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置3410包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话3400的输出图像。扬声器3411将从智能电话3400输出的音频信号转换为声音。
无线通信接口3412支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口3412通常可以包括例如BB处理器3413和RF电路3414。BB处理器3413可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路3414可以包括例如混频器、滤波器和放大器,并且经由天线3416来传送和接收无线信号。无线通信接口3412可以为其上集成有BB处理器3413和RF电路3414的一个芯片模块。如图34所示,无线通信接口3412可以包括多个BB处理器3413和多个RF电路3414。虽然图34示出其中无线通信接口3412包括多个BB处理器3413和多个RF电路3414的示例,但是无线通信接口3412也可以包括单个BB处理器3413或单个RF电路3414。
此外,除了蜂窝通信方案之外,无线通信接口3412可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口3412可以包括针对每种无线通信方案的BB处理器3413和RF电路3414。
天线开关3415中的每一个在包括在无线通信接口3412中的多个电 路(例如用于不同的无线通信方案的电路)之间切换天线3416的连接目的地。
天线3416中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口3412传送和接收无线信号。如图34所示,智能电话3400可以包括多个天线3416。虽然图34示出其中智能电话3400包括多个天线3416的示例,但是智能电话3400也可以包括单个天线3416。
此外,智能电话3400可以包括针对每种无线通信方案的天线3416。在此情况下,天线开关3415可以从智能电话3400的配置中省略。
总线3417将处理器3401、存储器3402、存储装置3403、外部连接接口3404、摄像装置3406、传感器3407、麦克风3408、输入装置3409、显示装置3410、扬声器3411、无线通信接口3412以及辅助控制器3419彼此连接。电池3418经由馈线向图34所示的智能电话3400的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器3419例如在睡眠模式下操作智能电话3400的最小必需功能。
在图34所示的智能电话3400中,通过使用图1所描述的解调单元120、确定单元130、反馈单元140和缓存单元150可以由由处理器3401或辅助控制器3419实现。功能的至少一部分也可以由处理器3401或辅助控制器3419实现。例如,处理器3401或辅助控制器3419可以通过执行存储器3402或存储装置3403中存储的指令而执行对下行信号进行解调、确定是否执行HARQ反馈、进行HARQ反馈以及缓存下行数据的功能。
(第二应用示例)
图35是示出可以应用本公开内容的技术的汽车导航设备3520的示意性配置的示例的框图。汽车导航设备3520包括处理器3521、存储器3522、全球定位系统(GPS)模块3524、传感器3525、数据接口3526、内容播放器3527、存储介质接口3528、输入装置3529、显示装置3530、扬声器3531、无线通信接口3533、一个或多个天线开关3536、一个或多个天线3537以及电池3538。
处理器3521可以为例如CPU或SoC,并且控制汽车导航设备3520的导航功能和另外的功能。存储器3522包括RAM和ROM,并且存储数据和由处理器3521执行的程序。
GPS模块3524使用从GPS卫星接收的GPS信号来测量汽车导航设 备3520的位置(诸如纬度、经度和高度)。传感器3525可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口3526经由未示出的终端而连接到例如车载网络3541,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器3527再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口3528中。输入装置3529包括例如被配置为检测显示装置3530的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置3530包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器3531输出导航功能的声音或再现的内容。
无线通信接口3533支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口3533通常可以包括例如BB处理器3534和RF电路3535。BB处理器3534可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路3535可以包括例如混频器、滤波器和放大器,并且经由天线3537来传送和接收无线信号。无线通信接口3533还可以为其上集成有BB处理器3534和RF电路3535的一个芯片模块。如图35所示,无线通信接口3533可以包括多个BB处理器3534和多个RF电路3535。虽然图35示出其中无线通信接口3533包括多个BB处理器3534和多个RF电路3535的示例,但是无线通信接口3533也可以包括单个BB处理器3534或单个RF电路3535。
此外,除了蜂窝通信方案之外,无线通信接口3533可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口3533可以包括BB处理器3534和RF电路3535。
天线开关3536中的每一个在包括在无线通信接口3533中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线3537的连接目的地。
天线3537中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口3533传送和接收无线信号。如图35所示,汽车导航设备3520可以包括多个天线3537。虽然图35示出其中汽车导航设备3520包括多个天线3537的示例,但是汽车导航设备3520也可以包括单个天线3537。
此外,汽车导航设备3520可以包括针对每种无线通信方案的天线3537。在此情况下,天线开关3536可以从汽车导航设备3520的配置中省略。
电池3538经由馈线向图35所示的汽车导航设备3520的各个块提供电力,馈线在图中被部分地示为虚线。电池3538累积从车辆提供的电力。
在图35示出的汽车导航设备3520中,通过使用图1所描述的解调单元120、确定单元130、反馈单元140和缓存单元150可以由处理器3521实现。功能的至少一部分也可以由处理器3521实现。例如,处理器3521可以通过执行存储器3522中存储的指令而执行对下行信号进行解调、确定是否执行HARQ反馈、进行HARQ反馈以及缓存下行数据的功能。
本公开内容的技术也可以被实现为包括汽车导航设备3520、车载网络3541以及车辆模块3542中的一个或多个块的车载系统(或车辆)3540。车辆模块3542生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络3541。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求 及其等效含义来限定。

Claims (40)

  1. 一种用户设备,包括处理电路,被配置为:
    对来自网络侧设备的下行信号进行解调以获取其中包含的物理下行控制信道PDCCH;以及
    根据所述PDCCH承载的下行控制信息DCI的内容来确定是否执行针对所述DCI的混合自动重传请求HARQ反馈。
  2. 根据权利要求1所述的用户设备,其中,所述处理电路还被配置为:
    当所述DCI包括与所述用户设备的下行传输有关的控制信息时,执行针对所述DCI的HARQ反馈。
  3. 根据权利要求2所述的用户设备,其中,所述DCI采用DCI格式1。
  4. 根据权利要求1所述的用户设备,其中,所述处理电路还被配置为:
    当所述DCI包括与所述用户设备的上行传输有关的控制信息时,不执行针对所述DCI的HARQ反馈。
  5. 根据权利要求4所述的用户设备,其中,所述DCI采用DCI格式0。
  6. 根据权利要求2所述的用户设备,其中,所述处理电路还被配置为:
    在对所述DCI正确解码的情况下,向所述网络侧设备发送针对所述DCI的ACK消息,并根据所述DCI从所述网络侧设备接收下行数据。
  7. 根据权利要求2所述的用户设备,其中,所述处理电路还被配置为:
    在未对所述DCI正确解码的情况下,向所述网络侧设备发送针对所述DCI的NACK消息,并从所述网络侧设备接收重新发送的DCI。
  8. 根据权利要求7所述的用户设备,其中,所述处理电路还被配置为:
    利用不同的频域资源从所述网络侧设备同时接收下行数据和重新发 送的DCI。
  9. 根据权利要求7所述的用户设备,其中,所述处理电路还被配置为:
    在从所述网络侧设备接收重新发送的DCI之前,从所述网络侧设备接收下行数据并进行缓存。
  10. 根据权利要求9所述的用户设备,其中,所述处理电路还被配置为:
    在所述用户设备的被预先配置的多个带宽部分BWP上接收下行数据并进行缓存。
  11. 根据权利要求9所述的用户设备,其中,所述处理电路还被配置为:
    在所述用户设备的默认的一个或多个带宽部分BWP上接收下行数据并进行缓存。
  12. 根据权利要求9所述的用户设备,其中,所述处理电路还被配置为:
    从所述网络侧设备接收用于指示对所述下行数据进行缓存的指示消息。
  13. 根据权利要求2所述的用户设备,其中,所述处理电路还被配置为:
    向所述网络侧设备发送合并后的HARQ反馈消息,所述合并后的HARQ反馈消息包括针对所述DCI的HARQ反馈消息以及针对一个或多个其它DCI的HARQ反馈消息。
  14. 根据权利要求2所述的用户设备,其中,所述处理电路还被配置为:
    向所述网络侧设备发送合并后的HARQ反馈消息,所述合并后的HARQ反馈消息包括针对所述DCI的HARQ反馈消息以及针对物理下行共享信道PDSCH承载的下行数据的HARQ反馈消息。
  15. 一种用作网络侧设备的电子设备,包括处理电路,被配置为:
    向用户设备发送包含物理下行控制信道PDCCH的下行信号;以及
    根据所述PDCCH承载的下行控制信息DCI的内容来确定是否从所述 用户设备接收针对所述DCI的混合自动重传请求HARQ反馈消息。
  16. 根据权利要求15所述的电子设备,其中,所述处理电路还被配置为:
    当所述DCI包括与所述电子设备的下行传输有关的控制信息时,从所述用户设备接收针对所述DCI的HARQ反馈。
  17. 根据权利要求16所述的电子设备,其中,所述DCI采用DCI格式1。
  18. 根据权利要求15所述的电子设备,其中,所述处理电路还被配置为:
    当所述DCI包括与所述电子设备的上行传输有关的控制信息时,不从所述用户设备接收针对所述DCI的HARQ反馈。
  19. 根据权利要求18所述的电子设备,其中,所述DCI采用DCI格式0。
  20. 根据权利要求16所述的电子设备,其中,所述处理电路还被配置为:
    在从所述用户设备接收针对所述DCI的ACK消息的情况下,向所述用户设备发送下行数据。
  21. 根据权利要求16所述的电子设备,其中,所述处理电路还被配置为:
    在从所述用户设备接收针对所述DCI的NACK消息的情况下,向所述用户设备重新发送所述DCI。
  22. 根据权利要求21所述的电子设备,其中,所述处理电路还被配置为:
    利用不同的频域资源向所述用户设备同时发送下行数据和重新发送的DCI。
  23. 根据权利要求21所述的电子设备,其中,所述处理电路还被配置为:
    向所述用户设备重新发送所述DCI一次或多次。
  24. 根据权利要求21所述的电子设备,其中,所述处理电路还被配置为:
    在向所述用户设备重新发送所述DCI之前,向所述用户设备发送下行数据。
  25. 根据权利要求24所述的电子设备,其中,所述处理电路还被配置为:
    向所述用户设备发送用于指示对所述下行数据进行缓存的指示消息。
  26. 根据权利要求16所述的电子设备,其中,所述处理电路还被配置为:
    向所述用户设备发送多个DCI;以及
    从所述用户设备接收合并后的HARQ反馈消息,所述HARQ反馈消息包括针对所述多个DCI中的每个DCI的HARQ反馈消息。
  27. 根据权利要求16所述的电子设备,其中,所述处理电路还被配置为:
    向所述用户设备发送所述PDCCH承载的DCI,并向所述用户设备发送物理下行共享信道PDSCH承载的下行数据;以及
    从所述用户设备接收合并后的HARQ反馈消息,所述HARQ反馈消息包括针对所述DCI的HARQ反馈消息以及针对所述下行数据的HARQ反馈消息。
  28. 根据权利要求27所述的电子设备,其中,所述处理电路还被配置为:
    在所述合并后的HARQ反馈消息表明所述用户设备对所述DCI正确解码并且未对所述下行数据正确解码的情况下,向所述用户设备重新发送所述下行数据。
  29. 根据权利要求27所述的电子设备,其中,所述处理电路还被配置为:
    在所述合并后的HARQ反馈消息表明所述用户设备未对所述DCI正确解码并且未对所述下行数据正确解码的情况下,向所述用户设备重新发送所述DCI。
  30. 一种用户设备,包括处理电路,被配置为:
    从网络侧设备接收第一数据信息、第二数据信息、针对所述第一数据信息的第一控制信息以及针对所述第二数据信息的第二控制信息,其中, 所述第一数据信息包括所述第二控制信息,并且所述第二数据信息包括所述第一控制信息;以及
    对从所述网络侧设备接收到的信息进行解码以获取所述第一数据信息和所述第二数据信息。
  31. 根据权利要求30所述的用户设备,其中,所述处理电路还被配置为:
    对所述第一控制信息进行解码,并利用解码后的第一控制信息对所述第一数据信息进行解码。
  32. 根据权利要求31所述的用户设备,其中,所述处理电路还被配置为:
    根据解码后的第一数据信息确定所述第二控制信息;以及
    利用确定的第二控制信息对所述第二数据信息进行解码。
  33. 一种用作网络侧设备的电子设备,包括处理电路,被配置为:
    向用户设备发送第一数据信息、第二数据信息、针对所述第一数据信息的第一控制信息以及针对所述第二数据信息的第二控制信息,其中,所述第一数据信息包括所述第二控制信息,并且所述第二数据信息包括所述第一控制信息。
  34. 一种用作网络侧设备的电子设备,包括处理电路,被配置为:
    从除所述电子设备以外的其它网络侧设备接收针对第二数据信息的第二控制信息;
    向所述其它网络侧设备发送针对第一数据信息的第一控制信息,以用于所述其它网络侧设备将所述第一控制信息包括在所述第二数据信息中;以及
    向用户设备发送第一数据信息和第一控制信息,所述第一数据信息包括所述第二控制信息,
    其中,所述第一数据信息是用于所述电子设备向所述用户设备发送的下行数据信息,并且所述第二数据信息是用于所述其它网络侧设备向所述用户设备发送的下行数据信息。
  35. 一种由用户设备执行的无线通信方法,包括:
    对来自网络侧设备的下行信号进行解调以获取其中包含的物理下行 控制信道PDCCH;以及
    根据所述PDCCH承载的下行控制信息DCI的内容来确定是否执行针对所述DCI的混合自动重传请求HARQ反馈。
  36. 一种由网络侧设备执行的无线通信方法,包括:
    向用户设备发送包含物理下行控制信道PDCCH的下行信号;以及
    根据所述PDCCH承载的下行控制信息DCI的内容来确定是否从所述用户设备接收针对所述DCI的混合自动重传请求HARQ反馈消息。
  37. 一种由用户设备执行的无线通信方法,包括:
    从网络侧设备接收第一数据信息、第二数据信息、针对所述第一数据信息的第一控制信息以及针对所述第二数据信息的第二控制信息,其中,所述第一数据信息包括所述第二控制信息,并且所述第二数据信息包括所述第一控制信息;以及
    对从所述网络侧设备接收到的信息进行解码以获取所述第一数据信息和所述第二数据信息。
  38. 一种由网络侧设备执行的无线通信方法,包括:
    向用户设备发送第一数据信息、第二数据信息、针对所述第一数据信息的第一控制信息以及针对所述第二数据信息的第二控制信息,其中,所述第一数据信息包括所述第二控制信息,并且所述第二数据信息包括所述第一控制信息。
  39. 一种由网络侧设备执行的无线通信方法,包括:
    从除所述网络侧设备以外的其它网络侧设备接收针对第二数据信息的第二控制信息;
    向所述其它网络侧设备发送针对第一数据信息的第一控制信息,以用于所述其它网络侧设备将所述第一控制信息包括在所述第二数据信息中;以及
    向用户设备发送第一数据信息和第一控制信息,所述第一数据信息包括所述第二控制信息,
    其中,所述第一数据信息是用于所述网络侧设备向所述用户设备发送的下行数据信息,并且所述第二数据信息是用于所述其它网络侧设备向所述用户设备发送的下行数据信息。
  40. 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求35-39中任一项所述的无线通信方法。
PCT/CN2019/083395 2018-04-27 2019-04-19 用户设备、电子设备、无线通信方法和存储介质 WO2019206031A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/964,210 US11405146B2 (en) 2018-04-27 2019-04-19 User equipment, electronic device, wireless communication method, and storage medium
CN201980008396.5A CN111602453A (zh) 2018-04-27 2019-04-19 用户设备、电子设备、无线通信方法和存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810393956.0 2018-04-27
CN201810393956.0A CN110418410A (zh) 2018-04-27 2018-04-27 用户设备、电子设备、无线通信方法和存储介质

Publications (1)

Publication Number Publication Date
WO2019206031A1 true WO2019206031A1 (zh) 2019-10-31

Family

ID=68294774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083395 WO2019206031A1 (zh) 2018-04-27 2019-04-19 用户设备、电子设备、无线通信方法和存储介质

Country Status (3)

Country Link
US (1) US11405146B2 (zh)
CN (2) CN110418410A (zh)
WO (1) WO2019206031A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115189812A (zh) * 2021-04-06 2022-10-14 大唐移动通信设备有限公司 Harq反馈、波束指示方法、网络侧设备及终端

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216733A1 (ko) * 2018-05-11 2019-11-14 엘지전자 주식회사 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
US11356996B2 (en) * 2019-07-06 2022-06-07 Qualcomm Incorporated Cross carrier activation of a periodic grant
CN112804753A (zh) * 2019-11-14 2021-05-14 大唐移动通信设备有限公司 信道传输方法及装置
US11611411B2 (en) * 2019-12-05 2023-03-21 Qualcomm Incorporated Downlink control information for dormancy indication and one-shot hybrid automatic repeat request feedback

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297205A (zh) * 2012-02-24 2013-09-11 中兴通讯股份有限公司 一种动态帧结构的混合自动重传方法和装置
CN103312473A (zh) * 2012-03-06 2013-09-18 中兴通讯股份有限公司 减少harq合并失败的方法和装置
WO2014110790A1 (zh) * 2013-01-18 2014-07-24 华为技术有限公司 反馈信息的处理方法、基站和用户设备
CN104010368A (zh) * 2013-02-21 2014-08-27 中兴通讯股份有限公司 Tdd配置更新方法、装置及系统
CN106537979A (zh) * 2014-07-31 2017-03-22 华为技术有限公司 用于多载波传输的系统和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017176017A1 (en) * 2016-04-04 2017-10-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving feedback in wireless communication system
US10506586B2 (en) * 2017-03-24 2019-12-10 Qualcomm Incorporated Slot format indicator (SFI) and slot aggregation level indication in group common PDCCH and SFI conflict handling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103297205A (zh) * 2012-02-24 2013-09-11 中兴通讯股份有限公司 一种动态帧结构的混合自动重传方法和装置
CN103312473A (zh) * 2012-03-06 2013-09-18 中兴通讯股份有限公司 减少harq合并失败的方法和装置
WO2014110790A1 (zh) * 2013-01-18 2014-07-24 华为技术有限公司 反馈信息的处理方法、基站和用户设备
CN104010368A (zh) * 2013-02-21 2014-08-27 中兴通讯股份有限公司 Tdd配置更新方法、装置及系统
CN106537979A (zh) * 2014-07-31 2017-03-22 华为技术有限公司 用于多载波传输的系统和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115189812A (zh) * 2021-04-06 2022-10-14 大唐移动通信设备有限公司 Harq反馈、波束指示方法、网络侧设备及终端
CN115189812B (zh) * 2021-04-06 2023-11-07 大唐移动通信设备有限公司 Harq反馈、波束指示方法、网络侧设备及终端

Also Published As

Publication number Publication date
US11405146B2 (en) 2022-08-02
CN111602453A (zh) 2020-08-28
CN110418410A (zh) 2019-11-05
US20210044388A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
WO2019206031A1 (zh) 用户设备、电子设备、无线通信方法和存储介质
WO2018030038A1 (ja) 通信装置、通信方法及び記録媒体
US11102705B2 (en) Communication device, communication method, and program
WO2020029950A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2018128065A1 (ja) 無線通信装置、無線通信方法及びコンピュータプログラム
US11196495B2 (en) Communication device, communication method, and program
EP3927040A1 (en) Communication device and communication method
JP6553592B2 (ja) 通信制御方法及びユーザ端末
JP7027706B2 (ja) 送信装置、受信装置、送信方法、受信方法及び記録媒体
US20220232565A1 (en) Communication apparatus, communication method, and recording medium
WO2018030049A1 (ja) 通信装置、通信方法及び記録媒体
WO2017076215A1 (zh) 无线通信系统中的电子设备、用户设备和无线通信方法
WO2021031882A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2021093699A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
CN112237027B (zh) 用于无线通信系统的电子设备、方法和存储介质
US10674515B2 (en) User equipment and base station in wireless communications system, and wireless communications method
JP6265139B2 (ja) 通信制御装置、通信制御方法及び端末装置
JP6134220B2 (ja) 基地局及びプロセッサ
WO2023185659A1 (zh) 用户设备、电子设备、无线通信方法和存储介质
US20230262700A1 (en) Electronic device, wireless communication method, and computer readable storage medium
CN116615873A (zh) 使用一个或多个中继器中继信息

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793231

Country of ref document: EP

Kind code of ref document: A1