WO2019205891A1 - 针对管状结构缺陷检测的内置s型阵列涡流检测探头及方法 - Google Patents

针对管状结构缺陷检测的内置s型阵列涡流检测探头及方法 Download PDF

Info

Publication number
WO2019205891A1
WO2019205891A1 PCT/CN2019/080689 CN2019080689W WO2019205891A1 WO 2019205891 A1 WO2019205891 A1 WO 2019205891A1 CN 2019080689 W CN2019080689 W CN 2019080689W WO 2019205891 A1 WO2019205891 A1 WO 2019205891A1
Authority
WO
WIPO (PCT)
Prior art keywords
eddy current
excitation
coil
probe
tubular structure
Prior art date
Application number
PCT/CN2019/080689
Other languages
English (en)
French (fr)
Inventor
陈振茂
赵迎松
解社娟
陈洪恩
于小杰
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/634,574 priority Critical patent/US10823702B2/en
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2019205891A1 publication Critical patent/WO2019205891A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/904Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents with two or more sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/9006Details, e.g. in the structure or functioning of sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents

Definitions

  • the invention relates to an electromagnetic non-destructive testing probe, in particular to a built-in S-shaped array eddy current detecting probe and method for detecting tubular structure defects.
  • Tubular structures are widely used in various industrial fields such as energy, machinery, and chemical industries, such as nuclear steam generator heat transfer tubes.
  • the evaporator heat transfer tubes are the pressure boundary of the nuclear reactor coolant system, with a wall thickness of only about 1 mm and extreme operation. The condition makes the heat transfer tube the weakest link in the primary circuit pressure boundary. Long-term service in extreme environments will inevitably produce various defects inside the pipe. If it is not regularly tested, it will eventually lead to catastrophic accidents. Therefore, in order to avoid huge economic property losses, it is necessary to conduct non-destructive testing and safety evaluation on a regular basis. .
  • the eddy current testing method is a non-destructive testing method based on the principle of electromagnetic induction. It has non-contact, no coupling medium, high detection speed, easy automatic detection, high sensitivity to surface defects.
  • the eddy current testing probes for the detection of heat transfer tube wall cracks include Bobbin probes, rotating probes and array probes. In actual industrial production, Bobbin probes and rotating probes are mainly used. Bobbin probes have fast detection speed, but the detection accuracy is high. It is not high enough to detect the circumferential crack; the rotating probe can obtain the C-scan image of the tube wall, and can effectively detect the characteristics and size of the axial crack and the circumferential crack, but the spiral scanning process is slow and easy to wear the probe.
  • the mechanical system of the control probe rotating machine is complicated and easy to operate, especially for cracks in the tube.
  • an object of the present invention is to provide a built-in S-type array eddy current detecting probe and method for detecting tubular structure defects, and the probe of the present invention can simultaneously detect hoop defects and axial defects;
  • the conventional tubular structure eddy current detecting probe has the advantages of detecting defects in any direction, fast detecting speed and high detecting precision, and can effectively reduce the influence of external environmental conditions such as lift-off and probe tilt on the detection result.
  • a built-in S-type array eddy current detecting probe for detecting tubular structure defects is a built-in S-shaped array eddy current probe, placed inside the tubular structure 1 to be tested, including an excitation coil portion and a detection coil portion; the excitation coil portion
  • the N-beam excitation coil wires 2 are spirally wound on the same columnar bobbin 3, and in the cross section of the columnar coil bobbin 3, the plurality of excitation coil wires 2 are equally spaced, wherein the two excitations are 180° apart.
  • the coil wires 2 are connected at the ends of the columnar coil bobbin 3, which are the same bundle of excitation coil wires, that is, a total of N/2 sets of excitation coil wire bundles; and the detection coil portion is composed of two rows of identical disk small coils 5, Generally, they are spirally distributed on the outer side of the excitation coil wire 2, and any two adjacent disk small coils 5 in each row are combined with two adjacent disk small coils 5 of the same row in the other row.
  • the eddy current detecting unit 4, the four small coils 5 in each of the differential eddy current detecting units 4 are arranged in a square shape; when detecting, the N/2 sets of the exciting coil wires are sequentially passed to the exciting coil portion.
  • the excitation signal under each excitation, the differential eddy current detecting unit 4 outside the corresponding current-carrying wire sequentially obtains a differential detection signal, and at the same time effectively reduces the influence of the external environment such as lift-off and probe tilt on the detection result, thereby having Higher detection accuracy.
  • the number of the excitation coil wires 2 in the excitation coil portion is 6 beams, and is equally spaced at 60° in the cross section of the columnar coil bobbin 3, wherein the two excitation coil wires 2 having a pitch of 180° are at the end of the columnar coil bobbin 3
  • the connection is actually the same bundle of excitation coil wires, that is, there are 3 sets of excitation coil wire bundles.
  • the excitation coil wire 2 in the excitation coil portion is wound in a spiral shape on the columnar coil bobbin 3, and the helix has an elevation angle of 45°.
  • the disc-shaped small coils 5 of the detecting coil portion are spirally distributed on the outer side of the excitation coil wire 2 as a whole with an angle of 45°, and the two disc-shaped small coils 5 at the same position in the two rows are perpendicular to the The spiral tangents are arranged closely in the direction of the line.
  • the final output signal of the detected coil portion is the result of the differential eddy current detecting unit 4 adding the signal to the face small coil 5 and the signal subtraction of the adjacent small coil 5.
  • the method for detecting defects of a built-in S-type array eddy current detecting probe for detecting tubular structure defects firstly, a steady-state sinusoidal excitation current 6 is generated to the excitation coil portion, and the steady-state sinusoidal excitation current generates an alternating magnetic field.
  • the turbulent flow is induced inside the tubular structure 1 to be tested in the alternating magnetic field, and the alternating eddy current induces a secondary magnetic field.
  • the composite magnetic field after the superposition of the two magnetic fields causes the two ends of the small coil 5 to be generated.
  • the voltage signal is affected by different defect patterns inside the tubular structure 1 to be tested, and the induced secondary magnetic field will also produce corresponding changes, thereby generating different voltage signals;
  • the excitation at each detection position is divided into three stages, that is, the steady-state sinusoidal excitation current 6 is sequentially supplied to the N/2 group excitation coil wire bundles in the excitation coil portion, and in each stage of the excitation process, the corresponding load
  • Each group of differential eddy current detecting units 4 outside the current excitation coil wire bundle sequentially generates a differential detection signal, and each of the four small coils 5 of the differential eddy current detecting unit 4 generates a detection signal, and each row is non-
  • the disc-shaped small coils 5 at both ends are continuously operated twice, and the differential eddy current detecting unit is obtained by adding the signals of the opposite disc-type small coils 5 in the differential eddy current detecting unit 4 and subtracting the signals of the adjacent disc-type small coils 5 to perform differential calculation processing. 4
  • the detected signal carries the defect information and at the same time effectively reduces the interference of the external environment such as lift-off and probe tilt.
  • the columnar coil bobbin 3 moves axially along the pipe 1, and the probe composed of the excitation coil portion and the detecting coil portion is axially scanned by the probe to be tested, and the detected signal is compared with the detected signal of the non-defective pipe. It is determined whether there is a defect in the current scanning area, and if there is a defect signal, the scanning area is repeatedly scanned to determine the position of the defect.
  • the present invention has the following advantages:
  • the probe of the invention can simultaneously detect the circumferential defect and the axial defect; compared with the conventional tubular structure eddy current detecting probe, the invention has the defect capable of detecting any direction, the detection speed Fast and high detection accuracy, and can effectively reduce the impact of external environmental conditions such as lift-off and probe tilt on the test results.
  • Figure 1 is a schematic view showing the position of the tubular structure to be tested in the service of the probe of the present invention.
  • FIG. 2 is a schematic view showing the structure of a probe of the present invention.
  • Figure 3 is a schematic view showing the structure of the excitation coil portion of the present invention.
  • FIG. 4 is a schematic view showing the structure of a detecting coil portion of the present invention.
  • the present embodiment is a built-in array eddy current detecting probe for detecting tubular structure defects, which is a built-in array eddy current probe placed inside the tubular structure 1 to be tested and named as an S-type probe.
  • the built-in array eddy current detecting probe includes an excitation coil portion and a detection coil portion; the excitation coil portion is a bundle of 6 excitation coil wires 2 and has a spiral shape with an angle of 45° wound in the same column shape.
  • the detection coil portion is composed of two rows of identical disc-type small coils 5, and the whole is arranged in a spiral shape with an angle of 45° on the excitation coil wire.
  • any two adjacent disc coils 5 in each row and two adjacent disc coils 5 in the same row form a set of differential eddy current detecting unit 4, then each group of differential eddy current detection
  • the four disc-shaped small coils 5 in unit 4 are arranged in a square shape.
  • the excitation coil portion is wound on the same columnar bobbin 3 in a spiral shape in which the six excitation coil wires 2 are lifted at an angle of 45°, and six bundles are formed on the cross section of the columnar coil bobbin 3.
  • the excitation coil wires 2 are distributed at an equal interval of 60°, wherein two excitation coil wires 2 with a pitch of 180° are connected at the ends of the cylindrical coil bobbin 3, which are the same bundle of excitation coil wires, that is, a total of three sets of excitation coil wire bundles.
  • a steady state sinusoidal excitation current 6 flows from a bundle of excitation coil wires 2, bypassing the ends of the bobbin, and flowing out of the other bundle of excitation coil wires 2 of the same group.
  • the detecting coil portion is composed of two rows of identical disc-type small coils 5, and the spiral shape with an angle of rise of 45° as a whole is distributed outside the excitation coil wire 2, and any row in each row
  • Two adjacent disc small coils 5 and two adjacent disc small coils 5 of the same row form a set of differential eddy current detecting units 4, and then four discs of each set of differential eddy current detecting units 4
  • the small coils 5 are arranged in a square shape. In operation, under each excitation, two small coils 5 of the same position in the two rows are sequentially combined with the small coils 5 on both sides to form a set of differential eddy current detecting units 4 That is, each of the non-terminal disc coils 5 of each row operates continuously twice.
  • the working principle of the invention is: the invention is to realize the detection and evaluation of the wall defects of the tubular structure 1 to be tested.
  • a steady-state sinusoidal excitation current 6 is generated to the excitation coil portion, and the steady-state sinusoidal excitation current generates an alternating magnetic field, and the eddy current is induced inside the tubular structure 1 to be tested in the alternating magnetic field, and the alternating eddy current
  • the secondary magnetic field is also induced, and the composite magnetic field after the superposition of the two magnetic fields causes a voltage signal to be generated at both ends of the small coil 5, which is affected by the different defect patterns in the tubular structure 1 to be tested, and the induced secondary magnetic field is also Corresponding changes will be generated to generate different voltage signals;
  • the excitation at each detection position is divided into three stages, that is, the steady-state sinusoidal excitation current 6 is sequentially supplied to the three sets of excitation coil wires in the excitation coil portion, and the current-carrying excitation is performed during the excitation process of each stage.
  • Each group of differential eddy current detecting units 4 outside the coil wire bundle sequentially generates a differential detection signal, and each of the four small coils 5 of the differential eddy current detecting unit 4 generates a detection signal (non-terminal ends of each row)
  • the disc small coil 5 is continuously operated twice), and the differential eddy current detecting unit 4 is obtained by performing differential calculation processing on the opposite disc small coil 5 signals in the differential eddy current detecting unit 4 and subtracting the signal from the adjacent disc small coil 5 to obtain the differential eddy current detecting unit 4
  • the detected signal When the signal is detected at the center, the detected signal carries the defect information and can effectively reduce the interference of the external environment such as lift-off and probe tilt.
  • the columnar coil bobbin 3 moves axially along the pipe 1, and the probe composed of the excitation coil portion and the detecting coil portion is axially scanned by the probe to be tested, and the detected signal is compared with the detected signal of the non-defective pipe. It is determined whether there is a defect in the current scanning area, and if there is a defect signal, the scanning area is repeatedly scanned to determine the position of the defect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

一种针对管状结构缺陷检测的内置S型阵列涡流检测探头及方法,该探头包括激励线圈部分和检出线圈部分,激励线圈部分由螺旋线型缠绕在柱状线圈骨架(3)上多束等间距分布的激励线圈导线(2)组成,其中间距为180°的两束导线(2)在线圈骨架(3)端部连接,实为同一束导线;检出线圈部分由两排相同数量、相同大小的盘式小线圈(5)组成,且每4个呈正方形紧密排布的盘式小线圈(5)组成一个差动涡流检测单元(4),最终输出信号为检测单元(4)的对面线圈信号相加且相邻线圈信号相减;检测时,依次向激励线圈部分的导线束通入激励信号,在每次激励下,相应载流导线束外侧的各组差动涡流检测单元(4)依次获得单元(4)中心点处的检出信号;该探头可同时检测环向缺陷和轴向缺陷。

Description

针对管状结构缺陷检测的内置S型阵列涡流检测探头及方法 技术领域
本发明涉及一种电磁无损检测探头,具体涉及一种针对管状结构缺陷检测的内置S型阵列涡流检测探头及方法。
背景技术
管状结构在能源、机械、化工等各类工业领域中得到广泛应用,如核电蒸汽发生器传热管,蒸发器传热管是核反应堆冷却剂系统压力边界,只有大约1mm的壁厚和极端的运行条件使得传热管成为一回路压力边界最薄弱的环节。长期在极端环境下服役,管内部必然产生各种缺陷,若不进行定期检测,最终导致灾难性事故的发生,因此,为了避免巨大的经济财产损失,定期对其进行无损检测和安全评价十分必要。
涡流检测方法是建立在电磁感应原理基础之上的一种无损检测方法,具有非接触,无需耦合介质,检测速度高,易于实现自动化检测,对表面缺陷的检测灵敏度高等优点。目前针对传热管壁裂纹检测的研究,主要采用的涡流检测探头有Bobbin探头、旋转探头和阵列探头,实际的工业生产中,主要采用Bobbin探头和旋转探头,Bobbin探头检测速度快,但是检测精度不够高,且不能检测环向裂纹;旋转探头可以得到管壁的C扫图像,并且能够高效地检测出轴向裂纹与环向裂纹的特征与尺寸,但是螺旋扫描过程速度慢,易于磨损探头,控制探头旋转机的机械系统复杂,易操作失败,尤其对于管内裂纹。为 了弥补Bobbin探头检测精度不够高,不能检测环向裂纹和旋转探头检测速度慢的不足,研发同时具备二者优点的阵列探头十分必要。
发明内容
为了解决上述现有技术存在的问题,本发明的目的在于提供一种针对管状结构缺陷检测的内置S型阵列涡流检测探头及方法,本发明探头可同时检测环向缺陷和轴向缺陷;相对于常规的管状结构涡流检测探头,本发明具有可检测任意方向的缺陷,检测速度快和检测精度高等优点,且可以同时有效降低提离和探头倾斜等外部环境条件对检测结果的影响。
为达到以上目的,本发明采用如下技术方案:
一种针对管状结构缺陷检测的内置S型阵列涡流检测探头,该探头为内置S型阵列涡流探头,置于待测管状结构1内部,包括激励线圈部分和检出线圈部分;所述激励线圈部分为N束激励线圈导线2呈螺旋线型缠绕在同一个柱状线圈骨架3上,在柱状线圈骨架3的横截面上,多束激励线圈导线2等间距分布,其中间距为180°的两束激励线圈导线2在柱状线圈骨架3端部连接,实为同一束激励线圈导线,即共有N/2组激励线圈导线束;所述检出线圈部分由两排完全相同的盘式小线圈5组成,整体上均呈螺旋线型分布于激励线圈导线2外侧,每排中任意两个相邻的盘式小线圈5与另一排相同位置的两个相邻的盘式小线圈5组成一组差动涡流检测单元4,则每个差动涡流检测单元4中的4个盘式小线圈5呈正方形紧密排布;检测时,依次向所述激励线圈部分的N/2组激励线圈导线束通入激励信号,在每次激励下,相应载流导线外侧的各组差动涡流检测单元4依次得到一个 差分检出信号,同时有效降低提离和探头倾斜等外界环境对检测结果的影响,从而具有较高的检测精度。
所述激励线圈部分中激励线圈导线2的数量为6束,且在柱状线圈骨架3横截面上呈60°等间距分布,其中间距为180°的两束激励线圈导线2在柱状线圈骨架3端部连接,实为同一束激励线圈导线,即共有3组激励线圈导线束。
所述激励线圈部分中激励线圈导线2呈螺旋线型缠绕在柱状线圈骨架3上,该螺旋线的升角为45°。
所述检出线圈部分的盘式小线圈5整体上均呈升角为45°的螺旋线型分布于激励线圈导线2外侧,两排中相同位置的两个盘式小线圈5在垂直于该螺旋线切线的方向上紧密排布。
所述检出线圈部分最终输出信号为差动涡流检测单元4对面盘式小线圈5信号相加且相邻盘式小线圈5信号相减结果。
所述的一种针对管状结构缺陷检测的内置S型阵列涡流检测探头进行缺陷检测的方法,首先,向激励线圈部分通入稳态正弦激励电流6,该稳态正弦激励电流会产生交变磁场,置于该交变磁场中的待测管状结构1内部会感生出涡流,交变的涡流又会感生出二次磁场,两个磁场叠加后的复合磁场会使盘式小线圈5两端产生电压信号,受到待测管状结构1内部不同的缺陷形态的影响,感生出的二次磁场也将产生相应的变化,进而产生不同的电压信号;
其次,每个检测位置处激励分为三个阶段,即依次向激励线圈部分中的N/2组激励线圈导线束通入稳态正弦激励电流6,在每个阶段的激励过程中,相应载流激励线圈导线束外侧的各组差动涡流检测单 元4依次产生一个差分检出信号,每次工作的差动涡流检测单元4的4个盘式小线圈5均产生检出信号,每排非两端的盘式小线圈5连续工作两次,通过差动涡流检测单元4中对面盘式小线圈5信号相加且相邻盘式小线圈5信号相减进行差分计算处理得到差动涡流检测单元4中心处检出信号,则该检出信号携带缺陷信息且同时有效降低提离和探头倾斜等外部环境的干扰。
最后,柱状线圈骨架3沿管道1轴向运动,带动激励线圈部分和检出线圈部分构成的探头对待测管状结构1进行轴向扫描,将检出信号与无缺陷管道的检出信号进行对比,判断当前扫描区域是否存在缺陷,若存在缺陷信号,对该段扫描区域进行重复扫描,进而确定该缺陷的位置。
和现有技术相比较,本发明具备如下优点:
由于激励线圈和检出线圈的形状和排布方式,本发明探头可同时检测环向缺陷和轴向缺陷;相对于常规的管状结构涡流检测探头,本发明具有可检测任意方向的缺陷,检测速度快和检测精度高等优点,且可以同时有效降低提离和探头倾斜等外部环境条件对检测结果的影响。
附图说明
图1为本发明探头服役中与待测管状结构的位置示意图。
图2为本发明探头的结构示意图。
图3为本发明激励线圈部分的结构示意图。
图4为本发明检测线圈部分的结构示意图。
具体实施方式
以下结合附图及具体实施例对本发明作进一步的详细描述。
如图1所示,本实施例一种针对管状结构缺陷检测的内置阵列涡流检测探头,该探头为内置阵列涡流探头,置于待测管状结构1内部,并命名为S型探头。
如图2所示,所述内置阵列涡流检测探头包括激励线圈部分和检出线圈部分;所述激励线圈部分为6束激励线圈导线2呈升角为45°的螺旋线型缠绕在同一个柱状线圈骨架3上,在柱状线圈骨架3的横截面上,6束激励线圈导线2呈60°等间距分布,其中间距为180°的两束激励线圈导线2在柱状线圈骨架3端部连接,实为同一束导线,即共有3组导线束;所述检出线圈部分由两排完全相同的盘式小线圈5组成,整体上均呈升角为45°的螺旋线型排布于激励线圈导线2外侧,每排中任意两个相邻的盘式小线圈5与另一排相同位置的两个相邻盘式小线圈5组成一组差动涡流检测单元4,则每组差动涡流检测单元4中的4个盘式小线圈5呈正方形紧密排布。
如图3所示,所述激励线圈部分为6束激励线圈导线2呈升角为45°的螺旋线型缠绕在同一个柱状线圈骨架3上,在柱状线圈骨架3的横截面上,6束激励线圈导线2呈60°等间距分布,其中间距为180°的两束激励线圈导线2在柱形线圈骨架3端部连接,实为同一束激励线圈导线,即共有3组激励线圈导线束,工作中,稳态正弦激励电流6从一束激励线圈导线2中流入,绕过骨架端部,从同组的另一束激励线圈导线2流出。
如图4所示,所述检出线圈部分由两排完全相同的盘式小线圈5组成,整体上均呈升角为45°的螺旋线型分布于激励线圈导线2外 侧,每排中任意两个相邻的盘式小线圈5与另一排相同位置的两个相邻盘式小线圈5组成一组差动涡流检测单元4,则每组差动涡流检测单元4中的4个盘式小线圈5呈正方形紧密排布,工作中,每次激励下,两排中相同位置的两个盘式小线圈5先后与两侧的盘式小线圈5组成一组差动涡流检测单元4,即每排非两端的盘式小线圈5连续工作两次。
本发明的工作原理为:本发明是为了实现待测管状结构1管壁缺陷的检测评价。
首先,向激励线圈部分通入稳态正弦激励电流6,该稳态正弦激励电流会产生交变磁场,置于该交变磁场中的待测管状结构1内部会感生出涡流,交变的涡流又会感生出二次磁场,两个磁场叠加后的复合磁场会使盘式小线圈5两端产生电压信号,受到待测管状结构1内部不同的缺陷形态的影响,感生出的二次磁场也将产生相应的变化,进而产生不同的电压信号;
其次,每个检测位置处激励分为三个阶段,即依次向激励线圈部分中的3组激励线圈导线束通入稳态正弦激励电流6,在每个阶段的激励过程中,相应载流激励线圈导线束外侧的各组差动涡流检测单元4依次产生一个差分检出信号,每次工作的差动涡流检测单元4的4个盘式小线圈5均产生检出信号(每排非两端的盘式小线圈5连续工作两次),通过差动涡流检测单元4中对面盘式小线圈5信号相加且相邻盘式小线圈5信号相减进行差分计算处理得到差动涡流检测单元4中心处检出信号,则该检出信号携带缺陷信息且可有效同时降低提离和探头倾斜等外部环境的干扰。
最后,柱状线圈骨架3沿管道1轴向运动,带动激励线圈部分和检出线圈部分构成的探头对待测管状结构1进行轴向扫描,将检出信号与无缺陷管道的检出信号进行对比,判断当前扫描区域是否存在缺陷,若存在缺陷信号,对该段扫描区域进行重复扫描,进而确定该缺陷的位置。

Claims (6)

  1. 一种针对管状结构缺陷检测的内置S型阵列涡流检测探头,其特征在于:该探头为内置S型阵列涡流探头,置于待测管状结构(1)内部,包括激励线圈部分和检出线圈部分;所述激励线圈部分为N束激励线圈导线(2)呈螺旋线型缠绕在同一个柱状线圈骨架(3)上,在柱状线圈骨架(3)的横截面上,多束激励线圈导线(2)等间距分布,其中间距为180°的两束激励线圈导线(2)在柱状线圈骨架(3)端部连接,实为同一束激励线圈导线,即共有N/2组激励线圈导线束;所述检出线圈部分由两排完全相同的盘式小线圈(5)组成,整体上均呈螺旋线型分布于激励线圈导线(2)外侧,每排中任意两个相邻的盘式小线圈(5)与另一排相同位置的两个相邻的盘式小线圈(5)组成一组差动涡流检测单元(4),则每个差动涡流检测单元(4)中的4个盘式小线圈(5)呈正方形紧密排布;检测时,依次向所述激励线圈部分的N/2组激励线圈导线束通入激励信号,在每次激励下,相应载流导线外侧的各组差动涡流检测单元(4)依次得到一个差分检出信号,同时有效降低提离和探头倾斜外界环境对检测结果的影响,从而具有较高的检测精度。
  2. 根据权利要求1所述的一种针对管状结构缺陷检测的内置S型阵列涡流检测探头,其特征在于:所述激励线圈部分中激励线圈导线(2)的数量为6束,且在柱状线圈骨架(3)横截面上呈60°等间距分布,其中间距为180°的两束激励线圈导线(2)在柱状线圈骨架(3)端部连接,实为同一束激励线圈导线,即共有3组激励线圈导线束。
  3. 根据权利要求1所述的一种针对管状结构缺陷检测的内置S型阵列涡流检测探头,其特征在于:所述激励线圈部分中激励线圈导线(2)呈螺旋线型缠绕在柱状线圈骨架(3)上,该螺旋线的升角为45°。
  4. 根据权利要求1所述的一种针对管状结构缺陷检测的内置S型阵列涡流检测探头,其特征在于:所述检出线圈部分的盘式小线圈(5)整体上均呈升角为45°的螺旋线型分布于激励线圈导线(2)外侧,两排中相同位置的两个盘式小线圈(5)在垂直于该螺旋线切线的方向上紧密排布。
  5. 根据权利要求1所述的一种针对管状结构缺陷检测的内置S型阵列涡流检测探头,其特征在于:所述检出线圈部分最终输出信号为差动涡流检测单元(4)对面的盘式小线圈(5)信号相加后再与相邻的盘式小线圈(5)信号相减作为最终输出信号。
  6. 根据权利要求1至5任一项所述的一种针对管状结构缺陷检测的内置S型阵列涡流检测探头进行缺陷检测的方法,其特征在于:
    首先,向激励线圈部分通入稳态正弦激励电流(6),该稳态正弦激励电流会产生交变磁场,置于该交变磁场中的待测管状结构(1)内部会感生出涡流,交变的涡流又会感生出二次磁场,两个磁场叠加后的复合磁场会使盘式小线圈(5)两端产生电压信号,受到待测管状结构(1)内部不同的缺陷形态的影响,感生出的二次磁场也将产生相应的变化,进而产生不同的电压信号;
    其次,每个检测位置处激励分为三个阶段,即依次向激励线圈部分中的N/2组激励线圈导线束通入稳态正弦激励电流(6),在每个阶段的激励过程中,相应载流激励线圈导线束外侧的各组差动涡流检测单元(4)依次产生一个差分检出信号,每次工作的差动涡流检测单元(4)的4个盘式小线圈(5)均产生检出信号,每排非两端的盘式小线圈(5)连续工作两次,通过差动涡流检测单元(4)中对面的盘式小线圈(5)信号相加后再与相邻的盘式小线圈(5)信号相减进行差分计算处理得到差动涡流检测单元(4)中心处检出信号,则该检出信号携带缺陷信息且同时有效降低提离和探头倾斜外部环境的干扰;
    最后,柱状线圈骨架(3)沿待测管状结构(1)轴向运动,带动激励线圈部分和检出线圈部分构成的探头对待测管状结构(1)进行轴向扫描,将检出信号与无缺陷管道的检出信号进行对比,判断当前扫描区域是否存在缺陷,若存在缺陷信号,对该段扫描区域进行重复扫描,进而确定该缺陷的位置。
PCT/CN2019/080689 2018-04-27 2019-03-30 针对管状结构缺陷检测的内置s型阵列涡流检测探头及方法 WO2019205891A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/634,574 US10823702B2 (en) 2018-04-27 2019-03-20 Built-in S-typed array eddy current testing probe and method for detecting defects of tubular structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810395256.5A CN108693244B (zh) 2018-04-27 2018-04-27 针对管状结构缺陷检测的内置s型阵列涡流检测探头及方法
CN201810395256.5 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019205891A1 true WO2019205891A1 (zh) 2019-10-31

Family

ID=63845874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080689 WO2019205891A1 (zh) 2018-04-27 2019-03-30 针对管状结构缺陷检测的内置s型阵列涡流检测探头及方法

Country Status (3)

Country Link
US (1) US10823702B2 (zh)
CN (1) CN108693244B (zh)
WO (1) WO2019205891A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108693244B (zh) * 2018-04-27 2019-02-26 西安交通大学 针对管状结构缺陷检测的内置s型阵列涡流检测探头及方法
CN111351840A (zh) * 2018-12-21 2020-06-30 核动力运行研究所 一种基于分段正交激励的管材内穿阵列探头
CN111487313B (zh) * 2019-01-25 2023-05-05 国核电站运行服务技术有限公司 用于核电蒸汽发生器螺旋传热管的全滚动涡流探头
CN111076029A (zh) * 2019-12-31 2020-04-28 中国人民解放军92578部队 一种用于微小管路腐蚀涡流内检测装置
CN113567544A (zh) * 2020-04-29 2021-10-29 核动力运行研究所 一种适用于角形件检查的涡流阵列探头
CN111879852B (zh) * 2020-08-18 2022-10-25 西安交通大学 一种针对管状结构涡流检测的内插式tr探头及方法
CN112114031B (zh) * 2020-10-14 2023-10-17 西安石油大学 一种测量石油管道基体金属缺陷的探测仪
CN112378993B (zh) * 2020-11-12 2023-12-12 北京航空航天大学 一种用于无损检测的传感系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565633A (en) * 1993-07-30 1996-10-15 Wernicke; Timothy K. Spiral tractor apparatus and method
CN103487503A (zh) * 2013-09-26 2014-01-01 上海海事大学 一种旋转磁场涡流检测探头
CN103868986A (zh) * 2012-12-13 2014-06-18 上海海事大学 一种金属管道内表面缺陷的涡流检测探头及其检测方法
CN105301096A (zh) * 2015-11-20 2016-02-03 清华大学 用于空心车轴内壁探伤的阵列式柔性涡流探头
CN106645393A (zh) * 2016-12-02 2017-05-10 西安交通大学 航空非铁磁金属管件腐蚀缺陷内检成像探头及方法
CN106770636A (zh) * 2017-01-18 2017-05-31 西安交通大学 一种针对管道缺陷检测的磁力传动式阵列涡流探头及方法
CN108693244A (zh) * 2018-04-27 2018-10-23 西安交通大学 针对管状结构缺陷检测的内置s型阵列涡流检测探头及方法
CN109115869A (zh) * 2018-09-29 2019-01-01 西安交通大学 针对钢丝绳断丝缺陷检测的s型阵列涡流探头及检测方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049817A (en) * 1990-06-08 1991-09-17 Atomic Energy Of Canada Limited Eddy current probe, incorporating multi-bracelets of different pancake coil diameters, for detecting internal defects in ferromagnetic tubes
JPH09189682A (ja) * 1996-01-10 1997-07-22 Nuclear Fuel Ind Ltd 探傷検査方法
JP4284663B2 (ja) * 2006-12-26 2009-06-24 住友金属工業株式会社 内面フィン付き管の渦流探傷方法、渦流探傷用差動コイル及び渦流探傷用プローブ
JP4905560B2 (ja) * 2010-01-14 2012-03-28 トヨタ自動車株式会社 渦流計測用センサ、及び、渦流計測用センサによる検査方法
US8884614B2 (en) * 2011-10-31 2014-11-11 General Electric Company Eddy current array probe
CN102841136B (zh) * 2012-09-01 2015-07-29 爱德森(厦门)电子有限公司 一种基于阵元线圈的变阵列涡流仪器设计方法
CN103760232A (zh) * 2014-01-22 2014-04-30 中国人民解放军国防科学技术大学 一种圆形周期结构的柔性阵列式电涡流传感器
CN108139363B (zh) * 2015-07-28 2021-09-28 美国捷特公司 用于涡流检验探头的驱动线圈
CN107941904B (zh) * 2017-12-21 2018-12-18 西安交通大学 航空金属小径管缺陷内检探头及检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565633A (en) * 1993-07-30 1996-10-15 Wernicke; Timothy K. Spiral tractor apparatus and method
CN103868986A (zh) * 2012-12-13 2014-06-18 上海海事大学 一种金属管道内表面缺陷的涡流检测探头及其检测方法
CN103487503A (zh) * 2013-09-26 2014-01-01 上海海事大学 一种旋转磁场涡流检测探头
CN105301096A (zh) * 2015-11-20 2016-02-03 清华大学 用于空心车轴内壁探伤的阵列式柔性涡流探头
CN106645393A (zh) * 2016-12-02 2017-05-10 西安交通大学 航空非铁磁金属管件腐蚀缺陷内检成像探头及方法
CN106770636A (zh) * 2017-01-18 2017-05-31 西安交通大学 一种针对管道缺陷检测的磁力传动式阵列涡流探头及方法
CN108693244A (zh) * 2018-04-27 2018-10-23 西安交通大学 针对管状结构缺陷检测的内置s型阵列涡流检测探头及方法
CN109115869A (zh) * 2018-09-29 2019-01-01 西安交通大学 针对钢丝绳断丝缺陷检测的s型阵列涡流探头及检测方法

Also Published As

Publication number Publication date
US20200271622A1 (en) 2020-08-27
CN108693244B (zh) 2019-02-26
CN108693244A (zh) 2018-10-23
US10823702B2 (en) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2019205891A1 (zh) 针对管状结构缺陷检测的内置s型阵列涡流检测探头及方法
Machado et al. Novel eddy current probes for pipes: Application in austenitic round-in-square profiles of ITER
CN109115869B (zh) 针对钢丝绳断丝缺陷检测的s型阵列涡流探头及检测方法
CN103868986A (zh) 一种金属管道内表面缺陷的涡流检测探头及其检测方法
Lee et al. Bobbin-type solid-state hall sensor array with high spatial resolution for cracks inspection in small-bore piping systems
CN112352166B (zh) 一种利用三维激励线圈的电磁涡流探头
CN103487503A (zh) 一种旋转磁场涡流检测探头
Kim et al. Eddy current probes of inclined coils for increased detectability of circumferential cracks in tubing
CN111678979A (zh) 一种钢丝绳涡流热成像缺陷检测方法及装置
CN107941904B (zh) 航空金属小径管缺陷内检探头及检测方法
CN113433212B (zh) 抗干扰强的均匀场激励方向性涡流探头及检测方法
PIEDADE et al. Customized eddy current probes for pipe inspection
CN112067690A (zh) 针对小径管检测的倾斜轴向阵列环向偏心涡流探头及方法
CN112415088A (zh) 一种内穿式横向脉冲涡流检测探头及其使用方法
US11169116B2 (en) Probe for nondestructive testing device using crossed gradient induced current and method for manufacturing induction coil for nondestructive testing device
CN109115866B (zh) 周向旋转点式涡流传感器及检测方法
CN212255191U (zh) 一种钢丝绳涡流热成像缺陷检测装置
CN212964761U (zh) 一种柔性涡流检测探头
JP7295522B2 (ja) 渦電流探傷用プローブ及び渦電流探傷装置
CN111879852B (zh) 一种针对管状结构涡流检测的内插式tr探头及方法
CN105806932A (zh) 一种可分辨裂纹信号的涡流检测传感器及制作方法
Kasai et al. The effect of eddy current probe configurations on crack signal magnitude: Consideration of excitation coil direction
KR102265354B1 (ko) 자기렌즈를 구비한 환형 배열 와전류프로브 비파괴검사 장치
Lee et al. A review of real time visualization of eddy currents in a small bore-piping system using solid-state Hall sensor arrays
CN111351840A (zh) 一种基于分段正交激励的管材内穿阵列探头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793906

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19793906

Country of ref document: EP

Kind code of ref document: A1