WO2019205726A1 - 航母飞机起飞弹射装置 - Google Patents

航母飞机起飞弹射装置 Download PDF

Info

Publication number
WO2019205726A1
WO2019205726A1 PCT/CN2019/000068 CN2019000068W WO2019205726A1 WO 2019205726 A1 WO2019205726 A1 WO 2019205726A1 CN 2019000068 W CN2019000068 W CN 2019000068W WO 2019205726 A1 WO2019205726 A1 WO 2019205726A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
take
pulley
joint block
brake
Prior art date
Application number
PCT/CN2019/000068
Other languages
English (en)
French (fr)
Inventor
韩培洲
Original Assignee
Han Peizhou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Han Peizhou filed Critical Han Peizhou
Publication of WO2019205726A1 publication Critical patent/WO2019205726A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/04Ground or aircraft-carrier-deck installations for launching aircraft
    • B64F1/06Ground or aircraft-carrier-deck installations for launching aircraft using catapults
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/04Ground or aircraft-carrier-deck installations for launching aircraft
    • B64F1/08Ground or aircraft-carrier-deck installations for launching aircraft using winches

Definitions

  • the present invention relates to an aircraft take-off ejection device, and more particularly to an aircraft carrier take-off ejection device.
  • an aircraft take-off ejection device In an aircraft carrier, in order to take off a larger and higher performance aircraft, an aircraft take-off ejection device is usually used to assist the aircraft to take off and sprint.
  • the already used take-off ejection device is to push and reciprocate the pulley in the slotted long cylinder.
  • the connected pistons are driven by the reciprocating pulley to take off and take off.
  • This long-slotted cylinder with a slit has great difficulty in manufacturing.
  • electromagnetic ejection is also used to assist the aircraft to take off and run, but the electromagnetic coils are repeatedly arranged over a long distance to form a linear motor, and the repeatedly arranged electromagnetic coils also make the cost high, which is required for the linear motor. High-power batteries are also costly.
  • This aircraft carrier take-off ejection device includes a flight deck, front and rear pulleys under the deck, and steel ropes wound around the front and rear pulleys, with corresponding slits formed on the decks above the front and rear pulleys and the steel rope. At least one of the rear pulleys is driven by the take-off drive motor, and the other pulley is tightened by the spring seat to straighten the steel rope, and a corresponding number of ropes formed by the same rope groove are sequentially formed on the front and rear pulleys.
  • the two sets of the steel wires of the same length in the corresponding rope grooves on the front and rear pulleys are connected by the joint block between the two joints, and the two joints of the steel rope pass through the intermediate joint block respectively.
  • the steel wire joint is clamped in the corresponding curved hole by the fastening member fastened on the steel wire joint, and formed on the inner side between each pair of front and rear curved holes on the joint block body.
  • the intermediate body has the same outer shape and the corresponding semi-circular inner shape of the front and rear steel wires, and the intermediate body has the same convex height, so that the joint block can smoothly rotate through the corresponding rope grooves on the front and rear pulleys, in the joint block body.
  • the top center height position of the block is substantially aligned with the center line position of the steel cord, and the power of the take-off drive motor is transmitted to the steel rope through the pulley when the pulley is driven by the take-off drive motor And the joint block body, and then the traction member on the front landing gear of the aircraft is directly driven by the block on the joint block or by the reciprocating pulley to assist the traction aircraft to take off and take off.
  • the steel wires connected to the joint block are divided into two rows of ropes, and the corresponding block on the joint block is between the rows of the ropes on both sides.
  • a rib is formed on the left and right sides of the block, and the traction member between the double front wheels on the nose landing gear of the aircraft is a traction swing arm which is mounted on the bottom of the nose gear through the axle pin.
  • the slot swinging downwardly and extending into the deck can extend to the front of the block of the joint block, and the traction arm is restricted by the upper body or the front side of the shaft block.
  • Swing but can be connected to the rear of the traction arm to move back to the upper front between the two front wheels, when the aircraft takes off, let the aircraft stop at the take-off position, press the traction arm on the landing gear before pressing
  • the ejection slide in the middle position of the reciprocating pulley passes through the slot on the flight deck and rises to the appropriate height of the flight deck.
  • the reciprocating pulley is at the steel rope and the joint.
  • the front and rear pulleys and the steel wire wound thereon are on the lower side of the reciprocating pulley, and the plurality of steel ropes
  • the corresponding rope row is formed, the front pulley position is low, and a top smoothing wheel is arranged at a proper position behind the front pulley, so that the steel rope wound around the rear pulley and the top smoothing wheel is parallel with the flight deck, and the joint block body is arranged
  • the retaining seats are located on the left and right sides of the steel cord row, and the lower ends of the retaining arms extending downward from the two sides of the crossbar of the reciprocating pulley are also aligned with the retaining seats on the upper sides of the joint block, at the front of the joint block
  • a lower stop in front of the retaining arm is also protruded to the both sides, and a ram with a brake piston is further mounted on the front center of the reciprocating pulley through
  • the water tank allows the reciprocating pulley to be decelerated by the water resistance until it stops, the joint on the steel rope After the body is controlled to return and stops at the position before the top smoothing wheel, the returning carriage on the short-track track drives the reciprocating pulley to pull out the brake piston and moves backward.
  • the lower side of the arm on the reciprocating pulley is placed on the steel cord.
  • the returning carriage that continues to move backwards moves the joint block on the steel rope backwards through the top smoothing wheel through the reciprocating pulley, so that the lower side of the arm on the reciprocating pulley is on the joint block and the block on the joint block
  • the drive mechanism of the rear pulley drives the steel rope through the lower stop, so that the reciprocating pulley moves back to the launch start position.
  • the upper open ends of the front and rear curved holes on the joint stoppers connecting the two ends of the steel cord are formed into a flared shape, and the joints at both ends of the steel rope are clamped by the pressed member.
  • the take-off driving motor of the above-mentioned aircraft take-off ejection device may adopt a gas turbine or a steam turbine.
  • a gas turbine When a gas turbine is used, at least one gas turbine is used as a take-off driving motor of the ejection aircraft to drive the front pulley or the rear pulley, and the gas turbine is provided with several
  • the outlet pipe of the bleed valve leads to the power turbine on the drive shaft, and a brake disc is arranged on the drive shaft, and the drive shaft is driven by the clutch to drive the shaft of the pulley.
  • the drive shaft is also controlled by the aligning motor, and the front pulley A position sensor is provided at a suitable position in the rear.
  • the deflation valve When the aircraft stops at the preparatory take-off position, the deflation valve is controlled to open, the brake disc is clamped by the brake, and the joint block is controlled by the aligning motor to be mounted on the aircraft traction arm or reciprocating pulley in the take-off position, the gas turbine In the slow running state.
  • the aircraft starts and the gas turbine accelerates.
  • the brake is released from the brake disc, and the deflation valves on the outlet line are quickly closed, so that the pressure exhaust of the gas turbine drives the power turbine to accelerate rotation. Working with the aircraft's own power to accelerate the aircraft.
  • the signal from the sensor causes the controller to brake the brake disc to decelerate, and simultaneously opens the deflation valve to allow the pressure in the air outlet pipe.
  • the gas leaks out along the deflation valve, so that the joint block does not push the traction arm or the reciprocating pulley of the aircraft due to the deceleration, so that the aircraft takes off from the ship.
  • the steam pipe with the valve passing from the boiler leads to the steam turbine on the rear pulley drive shaft, and the brake shaft is arranged on the drive shaft, and the drive shaft is also adjusted by the motor.
  • Control with a position sensor at the appropriate position behind the front pulley.
  • the aircraft activates the fueling valve, simultaneously releases the brake disc and opens the valve on the steam line, so that the steam from the boiler drives the steam turbine to accelerate the rotation, and cooperates with the aircraft's own power to accelerate the aircraft. Row.
  • the valve When the joint block on the steel rope drives the aircraft to move over the front position sensor, the valve is quickly closed to cut off the steam, and the controller is also driven to brake the brake disc to decelerate, so that the joint block does not push the aircraft due to the deceleration.
  • the traction arm or reciprocating pulley allows the aircraft to take off from the ship.
  • the steel rope directly drives the aircraft to take off and take off through the block on the joint block, and the rear pulley, the top smoothing wheel and the steel wire wound thereon are horizontally separated from the flying deck.
  • the front and rear curved holes on the joint block are formed into the shape of a curved groove, and the two ends of the steel rope with the chuck are connected. After loading the respective curved grooves, bolt the plate to both sides of the joint block.
  • a card slot is formed on the front lower side of the towing arm of the front landing gear, and a card mounting seat is formed on the lower side of the blocking seat of the connector body, and is mounted on the card mounting seat.
  • the chuck with the control tail arm can be stuck on the slot of the traction arm, and correspondingly, the top moving ribs extending rearward between the top smoothing wheels on both sides, the top moving rib moving forward
  • the positioning pulleys are respectively arranged on the outer side of the rear wheel of the left and right rear landing gears or on the inner side of the rear landing gear, correspondingly on the flight deck or
  • the ejection frame is also provided with a left and right parallel pressing slides capable of pressing the positioning pulleys.
  • the take-off ejection device of the unmanned aircraft can adopt an electric motor as a take-off driving motor, and after using a motor capable of rotating forward and backward as a take-off driving motor, the motor is directly connected to the rear pulley via a driving shaft with braking.
  • the overall structure of the first aircraft carrier take-off ejection device of the invention is the simplest, and is convenient for processing and manufacturing. It is easy to achieve sufficient driving force for the aircraft to take off, and a plurality of different types of power devices can be selected as the driving motor for the aircraft to take off, very Suitable for use on aircraft carriers to take off and take off more aircraft. Due to its simple structure, it is convenient to change the non-projectile aircraft carrier into an aircraft carrier capable of aircraft take-off and take-off.
  • the second aircraft take-off ejection implementation of the present invention is to take off the aircraft by a reciprocating pulley, and the added cost of the reciprocating pulley is not too high, and the front landing gear of the aircraft does not need to be changed.
  • the aircraft ejection drive motor in the aircraft carrier ejection device of the present invention has various types of options.
  • a gas turbine or a steam turbine can be used as the take-off drive motor. After using a gas turbine as a drive motor, there is no requirement for steam and power supply to the aircraft carrier.
  • the third and fourth embodiments of the aircraft ejection device are mainly used for ejecting unmanned aircraft, and the aircraft ejection device can be installed on a ship or a vehicle.
  • a motor that can rotate forward and backward can be used as the take-off drive motor.
  • Figure 1 is a side elevational view of a first embodiment of an aircraft carrier take-off ejection device of the present invention.
  • Figure 2 is an enlarged side elevational view of the nose landing gear and joint stop of the aircraft of Figure 1.
  • Figure 3 is a front elevational view of the nose landing gear and joint stop of Figure 2;
  • FIG. 4 is a cross-sectional view showing an enlarged structure of a joint block.
  • Figure 5 is a cross-sectional view showing a partial structure of the joint block of Figure 4.
  • Fig. 6 is a structural layout view of the rear pulley using a gas turbine as a take-off drive motor.
  • Figure 7123 is a diagram of an airplane take-off ejector when a gas turbine is used as the take-off drive motor.
  • Fig. 8 is a structural layout view of the rear pulley using a steam turbine as a take-off drive motor.
  • Figure 9 is a side elevational view of a second embodiment of the aircraft carrier take-off ejection device of the present invention.
  • Figure 10 is an enlarged structural view of the shuttle block and the joint block of Figure 9.
  • Figure 11 is a front elevational view of the shuttle block and the joint block in Figure 10.
  • Figure 12 is a process diagram of the piston on the reciprocating pulley just entering the brake cylinder.
  • Figure 13 is a process diagram of the reciprocating block moving to the end position.
  • Figure 14 is a side elevational view of the unmanned aircraft take-off ejection device of the third embodiment of the present invention.
  • Figure 15 is an enlarged plan view of the nose landing gear and the joint block of the unmanned aircraft of Figure 14.
  • Figure 16 is a plan view of the joint block.
  • Figure 17 is a side elevational view of the unmanned aircraft take-off ejection device of the fourth embodiment of the present invention.
  • Figure 18 is a front elevational view of the front and rear landing gear of Figure 17;
  • FIGS. 2 and 3 are enlarged structural views of the aircraft front landing gear and the like of FIG. 1, and FIG. 4 and FIG. An enlarged view of the structure of the joint block between the two joints.
  • aircraft take-off ejection devices include a flight deck 18, front and rear pulleys 20, 23 below the deck, and steel cords 36 wound around the front and rear pulleys, with corresponding openings formed on the decks 18 above the front and rear pulleys and the steel ropes.
  • the slit 19, at least one of the front and rear pulleys 20, 23 is driven by the take-off drive motor 25, and the other pulley is tightened by the spring seat to straighten the steel cord 36.
  • the rear pulley 23 is driven by a take-off drive motor 25, and the front pulley 20 is mounted on the jacking mechanism 21.
  • the aircraft carrier take-off ejection device of the invention adopts the corresponding steel rope around the front and rear pulleys, and connects the joints at both ends of the steel rope by the joint block body 45, and then directly or through the joint block body 45 The reciprocating pulley drove the aircraft 1 to take off.
  • FIGs. 2 and 3 The structure of the nose landing gear 2 and the traction arm 7 and the joint block 45 thereon is shown in Figs. 2 and 3, and the detailed structure of the joint block 45 on the steel rope 36 is shown in Figs. 4 and 5.
  • a plurality of rope groove sets 92 formed by the same rope grooves 32 are sequentially formed on the front and rear pulleys 20, 23, and the respective steel ropes 36 of the same length are wound around the respective rope grooves 32 on the front and rear pulleys 20, 23.
  • the two joints 38 are joined together by a joint stop 45 between the two joints.
  • the inner side between each pair of front and rear curved holes 48, 49 on the joint stopper 45 is formed with an intermediate body 52 whose outer shape is the same as that of the corresponding semi-circular inner side of the front and rear steel wires, and the convex height is equal.
  • the body can also be pressed into the semi-circular rope groove on the front and rear pulleys like a steel rope, so that the joint block 45 can smoothly rotate through the corresponding rope grooves 32 on the front and rear pulleys (see Fig. 4). Figure 5).
  • the wider slot 35 provided on each pulley allows the front and rear pulleys to escape the stop 47 on the connector block 45 (see Fig. 3).
  • a stop 47 with a top surface 46 is formed at a position other than the set of rope grooves 92 on the joint block 45.
  • the center height position of the top surface 46 of the block is substantially aligned with the center line position of the steel cord 36, and the pulley is taken off.
  • the structure of the nose landing gear of the aircraft is as shown in Figs. 2, 3 and 4, and the traction member that is driven to take off is set in front of the aircraft.
  • the slit 19 on the 18 can extend to the front of the stop 47 of the joint block.
  • the traction arm is restricted from being swung forward by the baffle 6 on the front side of the axle seat 4, as shown in FIG. Or it is restricted by the upper body 8 and cannot swing forward, as shown in FIG. 2, but can be connected to the cable 9 behind the traction arm 7 to be driven by the spring 10 to the rear and the front wheel 3 between.
  • the steel ropes 36 attached to the joint block are divided into the rope rows 37 on both sides (see Fig. 3), and the corresponding joints on the joint block 47 is also between the rows of ropes 37 on both sides, and a rib 44 is formed on the left and right sides of the stopper 47 so that the traction arm 7 of the driven aircraft can be placed in the middle position.
  • the total number of steel ropes on the two rows of ropes 37 reaches six. If it is necessary to increase the friction, the number of steel ropes can be increased, or the front and rear pulleys 20, 23 can be driven by the take-off drive motor. Both the front and rear pulleys are driven by the take-off drive motor, and the total weight of the string 37 can also be reduced.
  • the aircraft When the aircraft is ejected, the aircraft is stopped at the take-off position, and the traction arm 7 on the front landing gear 2 is pressed down to swing downward into the slot 19 on the flight deck 18, and the control pulley is passed through the steel rope 36 to make the joint.
  • the stop 47 on the block is placed on the underside of the traction arm 7 on the aircraft landing gear 2, and then the aircraft can be taken off and taken off.
  • the friction between the rear pulley 23 and the steel cord 36 can be increased by providing a plurality of steel cords and increasing the force of the tightening mechanism, for example, 100 Ten tons of top-loading force to generate 30 tons of friction to take off the aircraft, and driven by the take-off drive motor, it is easy to make this aircraft ejection device generate enough driving force for the aircraft to take off.
  • the overall structure of the aircraft ejection device in addition to the modification of the traction arm 7 on the nose landing gear 2 of the aircraft, the overall structure of the aircraft ejection device is the simplest and easy to manufacture, and is very suitable for use on an aircraft carrier to take off more weight. s plane.
  • the drive motor for the ejection of the aircraft has a variety of options, and can be used with a gas turbine, a steam turbine or an electric motor.
  • FIG. 6 shows a structural arrangement in which the rear pulley 23 is driven by the gas turbine 31.
  • a gas turbine is used as the take-off driving motor of the ejection aircraft, in order to increase the friction between the pulley and the steel rope,
  • the front pulley 20 can also be driven synchronously by the gas turbine.
  • the gas turbine 31 leads to a power turbine 94 on the drive shaft 93 via an outlet line 93 with a plurality of bleed valves 91.
  • a brake disc 33 is disposed on the drive shaft 93.
  • the drive shaft 93 is further driven by the clutch 28 to drive the shaft 24 of the rear pulley.
  • the drive shaft 24 is also controlled by the positioning motor 29, and a position sensor is disposed at an appropriate position behind the front pulley 20. 95.
  • Figure 7123 shows the takeoff process in which the aircraft is ejected by the gas turbine.
  • the aircraft is parked in the preparatory takeoff position, the deflation valve 91 is controlled to open, and the brake disc 33 is The brake 96 is clamped, and the joint block is controlled by the aligning motor 29 to be placed on the aircraft traction arm 7 in the take-off position, and the gas turbine 31 is in the idle running state.
  • the take-off ejection is possible, as shown in Fig. 72, the aircraft 1 is started, the gas turbine 31 is accelerated, and the brake 96 is released from the brake disc 33, and the deflation valves 91 on the outlet line 93 are also quickly closed.
  • the pressure exhaust of the gas turbine 31 causes the power turbine 94 to accelerate the rotation, and the rear pulley 23 drives the steel rope 36 and the joint block 45 thereon to cooperate with the power of the aircraft to accelerate the aircraft.
  • the joint block 45 on the wire rope 36 drives the aircraft to move past the front position sensor 97, as shown in Fig. 73
  • the signal from the sensor causes the controller 98 to drive the brake 96 to brake the brake disk 33, and quickly
  • the deflation valve 91 is opened, and the pressure gas in the air outlet pipe 93 is discharged outwardly along the deflation valve 91, so that the joint body does not push the traction arm of the aircraft due to the deceleration, so that the traction arm of the aircraft can be prevented from being worn.
  • the natural escape from the joint block 45, the aircraft also reached the speed of take-off from the ship to take off.
  • the decelerated joint block still rotates through the front pulley 20 at a relatively high speed. Since the joint stopper 45 on the steel cord 36 is not very large in mass, it does not generate a large centrifugal shock force when the front pulley 20 is rotated. Under the condition that the brake disc 33 is braked and gradually decelerated by the brake 96, the joint stopper 45 on the steel cord 36 is rotated again, and the rear pulley 23 is stopped at the starting position, ready to take off the take-off of the next aircraft.
  • a steam turbine 27 as shown in Fig. 8 can be employed as the takeoff drive motor.
  • the steam line 102 with the valve 101 passing from the boiler leads to the steam turbine 103 on the rear pulley drive shaft 93.
  • a brake disc 33 is provided on the drive shaft 93.
  • the drive shaft is also controlled by the positioning motor 29, and a position sensor 97 is provided at an appropriate position behind the front pulley 20.
  • the aircraft activates the fueling valve, simultaneously releases the brake 96 to the brake disc 33, and also opens the valve 101 on the steam line 102, so that the steam from the boiler drives the steam turbine 103 to accelerate rotation, with the aircraft itself.
  • the combination of power makes the aircraft accelerate.
  • the joint block 45 on the steel rope 36 drives the aircraft to move past the front position sensor 97, the valve 101 is quickly closed to cut off the steam, and the controller 98 is also caused to drive the brake 96 to brake the brake disc 33 to decelerate the joint.
  • the body slowdown no longer pushes the aircraft's traction arm or reciprocating pulley, allowing the aircraft to take off from the ship.
  • the steam can be expanded several times in the turbine turbine of the steam turbine, and the steam consumption is not more than the long cylinder with the slit, and the long slit is relatively long.
  • Cylinders, steam turbines are easier to manufacture, and it is easy to control the power of the steam turbine through the valve.
  • a steam turbine is used to take off a plane, it requires a large amount of steam to take off, which is more suitable for an aircraft carrier that uses nuclear power.
  • the first embodiment of the above-described aircraft ejection is the simplest and most reliable in construction, but a new traction arm on the nose landing gear of the aircraft needs to be redesigned.
  • a second aircraft ejection implementation as shown in Figure 9 can also be employed, if still utilizing the conventional towing structure of the aircraft nose landing gear.
  • the block 47 on the joint block 45 is driven by the reciprocating pulley 53 to take off and take off.
  • the aircraft still uses the original nose landing gear, but adds a more complicated reciprocating pulley. .
  • the structure of this embodiment is shown in Figs.
  • the ejection slider 54 at the intermediate position on the shuttle 32 passes through the slit 19 on the flight deck 18 and rises to the appropriate height of the flight deck, at the reciprocating block 53
  • the upper and lower wheels 55, 56 on the front and rear sides are mounted between the upper and lower rails 57, 58 on both sides.
  • a plurality of steel cords 36 constitute a lower row of steel cords 37 (see Figure 11).
  • the front pulley 20 is positioned lower, and a top smoothing wheel 22 is provided at a suitable position behind the front pulley 20 such that the steel cord 36 wound around the rear pulley 23 and the top smoothing wheel 22 is parallel to the flight deck 18.
  • the retaining seats 47 on the joint retaining body are on the left and right sides of the steel cord row 37, and correspondingly, the lower side of the blocking arm 60 projecting downward from both sides of the cross member 59 of the reciprocating pulley 53 and the retaining seats on both sides of the joint retaining body 47 relative.
  • a lower stop 62 on the front side of the stop arm 60 is also protruded to the front side of the joint block 45, and a ram with a brake piston 66 is further mounted through the shaft pin 65 at the front intermediate position of the shuttle block 53. 68, the front portion of the jack can be depressed at a certain angle and can be pressed back to the horizontal position by the spring 69 at the rear end of the jack (see Fig. 10).
  • a brake cylinder 71 is provided at the end of the front side movement of the flight deck slot 19, the opening 72 of the brake cylinder being aligned with the brake piston 66 in front of the reciprocating pulley 53, the cylinder bottom of the brake cylinder The side is lowered downward by a certain angle to form a height difference in which the water 79 is left in the brake cylinder 71, and a water outlet 76 controlled by the pressure water blocking valve 75 is provided at the cylinder bottom of the brake cylinder. Since the brake piston 66 in front of the reciprocating pulley is to be inserted into the brake cylinder downwardly, the outer diameter of the brake piston 66 is correspondingly reduced in the up and down direction, and the piston is not too thick.
  • a sump 77 is further provided on the lower side of the brake cylinder 71.
  • the outer flap 78 of the sump extends to a position outside the opening 72 of the brake cylinder, and a cylinder inside the opening of the brake cylinder 71
  • An inward spout 74 is provided from the circulating water pump on the wall. When the aircraft begins to eject and take off, the water sprayed from the spout 74 into the brake cylinder can bring the water level in the brake cylinder to a higher position.
  • a short-track rail 81 to which the return carriage 80 is mounted is provided below each of the lower side rails 58 between the top smoothing wheel 22 and the brake water tank 71.
  • the joint block 45 on the wire rope 36 is first controlled to stop at the position before the top smoothing wheel 22, and then The return carriage 80 on the short-track 81 drives the shuttle 32 to pull the brake piston 66 in the brake cylinder back. After the lower side of the arm 60 on the reciprocating pulley is placed on the joint block 45 on the steel cord 36, the returning carriage 80, which continues to move backward, drives the joint block 45 on the steel rope 36 to move backward through the reciprocating pulley 53.
  • the lower side of the blocking arm 60 on the reciprocating pulley 53 is placed between the blocking seat 47 on the joint block 45 and the lower stop 62, and then the driving mechanism of the rear pulley drives the steel rope 36 through the lower stop. 62 causes the shuttle block 53 to move back to the launching start position.
  • the third aircraft take-off ejection implementation of the present invention shown in FIG. 14 is mainly used for the ejection take-off unmanned aircraft, and the third embodiment also uses the steel wire 36 to directly drive the aircraft through the block 47 on the joint block 45. 1 ejection method of ejection.
  • the rear pulley 23, the top smoothing wheel 22 and the steel cord 36 wound thereon are lifted horizontally from the slot 19 on the flight deck to the appropriate height of the flight deck 18. Since the unmanned aircraft has a small weight, only two steel cords 36 are provided on the joint stop 45 (see Fig. 16), and the retaining seat 47 on the joint retainer is between the two steel cords 36, and at the retaining seat 47 A rib 44 is formed on the left and right sides.
  • the driven aircraft 1 has a front landing gear 2 with double front wheels and has a joint stop 45 and two steel cords 36 between the front wheels 3 of the aircraft.
  • the lower side of the towing arm 14 projecting forward from the nose gear 2 is at a position opposite to the stop 47 on the joint block 45, so that the aircraft is ejected and take off.
  • the aircraft 1 in Fig. 14 is stopped at a position that can be pushed by the stopper 47 on the joint block 45.
  • the front and rear curved holes on the joint stopper 45 are formed into the shape of the curved groove 51, and the joint of the steel wire 36 with the chuck 40 is connected at both ends. After being respectively inserted into the respective curved grooves 51, the left and right pressure plates 50 are fixed to both sides of the joint stopper 45 by bolts 11.
  • the fourth embodiment of the present invention in Fig. 17 is modified on the basis of the arrangement of Fig. 14, in which a card slot 43 is formed on the front lower side of the trailing arm 14 of the nose landing gear 2, from the joint
  • a clip mounting seat 83 is formed on the lower side of the retaining seat 47 of the retaining body 45, and the chuck 84 with the control tail arm 85 mounted on the clip mounting seat can be caught on the latching groove 43 of the trailing arm.
  • a top pushing rib 86 which is extended rearward, and the top moving rib is also inclined downward after moving forwardly past the shaft 88 of the top smoothing wheel 22.
  • the wire rope 36 is inclined downwardly.
  • positioning pulleys 41 are respectively mounted, respectively, correspondingly on the flight deck or the ejection frame 89, respectively.
  • a lower pressing slide rail 90 capable of pressing the positioning pulley 41 is provided.
  • the unmanned aircraft 17 has moved in the direction of arrow 92 to a position that is about to be disengaged from the lower slide rail 90 and the chuck 84. At this time, the lift generated by the wing of the unmanned aircraft is greater than the weight of the aircraft, once left. The restraint of the slide rail and the chuck will fly forward into the air.
  • the aircraft take-off ejection device in Figure 17 can be made into a special launcher mounted on a ship or a vehicle. Since the unmanned aircraft is in a restrained state during the ejection takeoff, it can be in a large swing of the ship or in the running state of the vehicle. Successful launch.
  • the unmanned aircraft take-off ejection device of the present invention it is more suitable to use an electric motor as a driving motor for the aircraft to take off, and the rear pulley 23 can be rotated by the motor capable of rotating forward and backward due to the position adjustment and the ejection of the aircraft.
  • the motor is directly coupled to the rear pulley 23 via a drive shaft 93 with a brake disc 33 (not shown).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transmission Devices (AREA)
  • Manipulator (AREA)

Abstract

一种航母飞机起飞弹射装置,包括带有开缝(19)的飞行甲板(18)、前后滑轮(20、23)和绕在各滑轮上的钢绳(36),由接头挡体(45)把钢绳的两端连在一起,在接头挡体上形成有挡座(47),起飞驱动马达(25)经后滑轮、钢绳和接头挡体上的挡座(47)可直接带动飞机前起落架上的牵引摆臂(7)或经往复滑车带动飞机滑跑起飞,由于可通过设置多条钢绳和增大顶紧机构的作用力来增加滑轮与钢绳之间的摩擦力,让这种飞机弹射装置很容易达到飞机起飞所需的足够推动力,并且装置的整体结构较为简单,也容易加工制造,非常适合用在航母上弹射起飞重量更大的飞机。也适合小型化安装在舰船或车辆上,专门弹射起飞小型无人飞机。

Description

航母飞机起飞弹射装置
技术领域 本发明涉及一种飞机起飞弹射装置,特别是一种航母飞机起飞弹射装置。
背景技术 在航空母舰上为了起飞更大重量更高性能的飞机,通常采用飞机起飞弹射装置来助推飞机起飞滑跑,已经应用的起飞弹射装置是在带开缝的长筒汽缸中推动与往复滑车相连的活塞,通过往复滑车带动飞机滑跑起飞,这种带开缝的长筒汽缸在制造上存在着很大的难度。另外,目前也在进行用电磁弹射方式助推飞机起飞滑跑,但把电磁线圈在很长的距离上重复排列构成直线电机,重复排列的电磁线圈也会使造价很高,直线电机所需的大功率电池成本也很高。
发明目的 本发明的目的是提供一种航母飞机起飞弹射装置,不仅能可靠的弹射飞机起飞,而且结构简单,成本较低更容易制造,也适合采用多种不同的动力马达作为起飞弹射动力装置。
发明内容 这种航母飞机起飞弹射装置包括飞行甲板、甲板下面的前后滑轮和绕在前、后滑轮上的钢绳,在前、后滑轮和钢绳上方的甲板上形成有相应的开缝,前、后滑轮中至少有一个滑轮被起飞驱动马达带动,另一个滑轮则被弹簧座顶紧使钢绳被拉直,在前、后滑轮上依次形成有相应数量的由相同绳槽排列形成的绳槽组,绕在前、后滑轮上相应绳槽中长度相同的各钢绳的两接头由两接头之间的接头挡体连在一起,钢绳的两接头分别穿过中间接头挡体上所对应的前、后弯孔后,由紧固在钢绳接头上的卡件把钢绳接头卡在相应的弯孔内,在接头挡体上的每对前、后弯孔之间的内侧形成有其外部形状与相对应的前后段钢绳内侧半圆外形相同、凸出高度相等的中间体,让接头挡体能平顺地转过前、后滑轮上的各相对应的绳槽,在接头挡体上的绳槽组以外位置形成带有顶面的挡座,该挡座的顶面中心高度位置基本与钢绳的中心线位置相对齐,在滑轮被起飞驱动马达带动时、起飞驱动马达的动力经滑轮传递到钢绳和接头挡体,再由接头挡体上的挡座直接或经往复滑车带动飞机前起落架上的牵引件助力牵引飞机滑跑起飞。
在利用接头挡体上的挡座直接带动飞机弹射起飞时,连在接头挡体上的各钢绳分成两侧的绳排,相应的接头挡体上的挡座处于两侧的绳排之间, 在挡座的左右两侧还形成有挡边,设在飞机前起落架上的双前轮之间的牵引件是一种牵引摆臂,该牵引摆臂通过轴销装在前起落架底部的轴座上,牵引摆臂向下摆动伸进甲板上的开缝可伸到接头挡体的挡座前面,牵引摆臂被其上部的挡体或轴座前侧的挡板限制不能向前摆动,但可被连在牵引摆臂后面的弹簧作用向后上方收起到两前轮之间,在飞机弹射起飞时,让飞机停在起飞位置,下压前起落架上的牵引摆臂使其向下摆动伸进飞行甲板上的开缝,在控制滑轮通过钢绳使接头挡体上的挡座顶在飞机起落架上的牵引摆臂下侧后,便可带动飞机弹射起飞。
在接头挡体上的挡座通过往复滑车带动飞机滑跑起飞时,往复滑车上中间位置的弹射滑块穿过飞行甲板上的开缝升出飞行甲板适当高度,往复滑车处在钢绳和接头挡体的上方,并通过前后侧的上、下轮安装在两侧的上、下轨道之间,前、后滑轮和绕在其上的钢绳处于往复滑车的下侧,由多条钢绳组成了相应的绳排,前滑轮位置较低,在前滑轮后面的适当位置处设有顶平滑轮,让绕在后滑轮和顶平滑轮上的钢绳与飞行甲板相平行,接头挡体上的挡座处于钢绳排的左右两侧,相应地从往复滑车的横梁两侧向下伸出的挡臂下端也与接头挡体上两侧的挡座相对准,在接头挡体的前部还向两侧伸出有处于挡臂前面的低位挡块,在往复滑车的前面中间位置上通过轴销还装有带制动活塞的顶杆,顶杆的前部可被下压一定的角度,并可被顶杆后端的弹簧压回到水平位置,相应地在飞行甲板开缝的前侧移动终止处设有制动水缸,该制动水缸的开口与往复滑车前面的制动活塞相对准,制动水缸的缸底侧向下降低倾斜一定的角度,形成让水留在制动水缸内的高度差,在制动水缸的缸底设有被压力阻水阀控制的出水口,在制动水缸的下侧还设有集水池,该集水池的外挡水板延伸到制动水缸的开口之外位置处,在制动水缸的开口内侧的缸壁上设有从循环水泵接出的向内喷水口,在顶平滑轮与制动水缸之间的两侧下轨道下面分别设有安装回位车的短程轨道,在弹射飞机过程中,当钢绳的接头挡体上的挡座移过顶平滑轮降低高度脱开往复滑车后、仍前移的往复滑车上的制动活塞也移到了制动水缸的开口处,在制动活塞前端的导轮偏移作用下让制动活塞进入制动水缸,让往复滑车被水阻作用减速直到停止,在钢绳上的接头挡体被控制准备返回而停在顶平滑轮之前位置处后,短程轨道上的回位车便带动往复滑车抽出制动活塞后移,在往复滑车上的挡臂下侧顶在带钢绳上的接头挡体后,继续后移的回位车经往复滑车带动钢绳上的接头挡体向后移过顶 平滑轮后,让往复滑车上的挡臂下侧处于接头挡体上的挡座与低位挡块之间后,再由后滑轮的驱动机构带动钢绳经低位挡块,让往复滑车后移返回到发射起始位置。
在上述两实施方案中,连接钢绳两端的接头挡体上的前、后弯孔上部开口端是被制成扩口形状的,并用下压的卡件夹紧钢绳的两端接头。
上述飞机起飞弹射装置的起飞驱动马达可采用燃汽轮机或蒸汽轮机,在采用燃汽轮机时,至少用一台燃汽轮机作为弹射飞机的起飞驱动马达来带动前滑轮或后滑轮,燃汽轮机经带有若干放气阀门的出气管路通向驱动轴上的动力涡轮,在驱动轴上设有制动盘,驱动轴再经离合器带动后滑轮的传动轴,传动轴还被调位电机控制,在前滑轮后面的适当位置设有位置传感器。在飞机停在预备起飞位置时,放气阀门被控制开启,制动盘被制动器夹紧,接头挡体被调位电机控制已顶在处于起飞位置的飞机牵引摆臂或往复滑车上,燃汽轮机处于慢车运转状态中。在起飞弹射过程时,飞机启动、燃汽轮机加速运转,同时让制动器松开制动盘、也让出气管路上的各放气阀门迅速依次关闭,让燃汽轮机的压力排气带动动力涡轮加速旋转,与飞机自身的动力共同作用让飞机加速前行。当钢绳上的接头挡体带动飞机移过前面的位置传感器后,传感器发出的信号让控制器带动制动器对制动盘进行制动减速,同时迅速开启放气阀门、让出气管路中的压力燃气沿放气阀门向外泄出,使接头挡体因减速不再推动飞机的牵引摆臂或往复滑车,让飞机离舰起飞。
在采用蒸汽轮机作为起飞驱动马达时,从锅炉通过来的带有阀门的蒸汽管路通向后滑轮驱动轴上的蒸汽涡轮,在驱动轴上设有制动盘,驱动轴还被调位电机控制,在前滑轮后面的适当位置设有位置传感器。在起飞弹射过程时,飞机启动加油门、同时让制动器松开制动盘、也开启蒸汽管路上的阀门,让锅炉来的蒸汽带动蒸汽涡轮加速旋转,与飞机自身的动力共同作用让飞机加速前行。当钢绳上的接头挡体带动飞机移过前面的位置传感器后,迅速关闭阀门切断蒸汽、同时也让控制器带动制动器对制动盘进行制动减速,使接头挡体因减速不再推动飞机的牵引摆臂或往复滑车,让飞机离舰起飞。
在利用飞机起飞弹射装置弹射无人飞机时,钢绳经接头挡体上的挡座直接带动飞机弹射起飞,后滑轮、顶平滑轮和绕在其上的钢绳从飞行甲板上的开缝水平升出飞行甲适当高度,在接头挡体上设有两条钢绳,接头挡 体上的挡座处于两钢绳之间,并且在挡座的左右两侧形成有挡边,被带动的飞机具有装着双前轮的前起落架,让接头挡体和两钢绳处在飞机的双前轮之间,从前起落架上向前伸出的牵引臂的下侧处在能与接头挡体上的挡座相对准的位置上,以便飞机被带动弹射起飞。
在无人飞机起飞弹射装置的接头挡体上只设左右两条钢绳时,接头挡上的前、后弯孔被制成弯槽的形状,当把带有卡头的钢绳两端接头分别装入各自的弯槽后,用螺栓把压板固定在接头挡体的两侧。
在改进的无人飞机起飞弹射装置中,从前起落架的牵引臂的前下侧形成有卡槽,从接头挡体的挡座下侧形成有卡件安装座,装在卡件安装座上的带有控制尾臂的卡头可卡在牵引臂的卡槽上,相对应的在两侧的顶平滑轮之间设有向后平伸的顶动凸条,顶动凸条在向前移过顶平滑轮的轴后也顺着向下倾斜的钢绳向下过渡倾斜,在左右的后起落架的后轮外侧或在后起落架的内侧分别装有定位滑轮,相应的在飞行甲板或弹射架板上也分别设有左右平行的能压住定位滑轮的下压滑轨,当飞机被带动弹射起飞接近顶平滑轮,让接头挡体上的卡头经其控制尾臂被顶动凸条作用、松开被锁止的飞机前起落架上的牵引臂后,飞机左右后起落架上的定位滑轮也正好同时滑离上面的下压滑轨。
无人飞机的起飞弹射装置可采用电动机作为起飞驱动马达,采用能正反旋转的电动机作为起飞驱动马达后,电动机直接经带有制动的驱动轴与后滑轮相连。
本发明第一种航母飞机起飞弹射装置的整体结构最为简单,也方便加工制造,很容易达到飞机起飞的足够推动力,又可选用多种不同类型的动力装置作为飞机弹射起飞的驱动马达,非常适合用在航空母舰上弹射起飞更大重量的飞机。由于结构简单,可方便的把无弹射航空母舰改成可飞机弹射起飞的航母。本发明的第二种飞机起飞弹射实施方案是通过往复滑车来弹射飞机起飞的,往复滑车所增加的成本不算太高,也不需改变飞机的前起落架。
本发明的航母飞机起飞弹射装置中的飞机弹射驱动马达有多种类型的选择,对于大飞机,可采用燃气轮机或蒸汽轮机作为起飞驱动马达。在采用燃汽轮机作为驱动马达后,对航空母舰没有蒸汽及电力供应的要求。
第三、四种实施方式的飞机弹射装置主要用于弹射无人飞机,这种飞机弹射装置可安装在舰船或者车辆上。对于无人飞机,可采用能正反旋转的 电动机作为起飞驱动马达。
附图说明 下面结合附图对本发明的航母飞机起飞弹射装置进行详细的说明。
图1是本发明的航母飞机起飞弹射装置第一种实施方式的侧视图。
图2是图1中飞机前起落架和接头挡体的放大侧视图。
图3是图2中前起落架和接头挡体的正视图。
图4是接头挡体的放大结构剖视图。
图5是图4中接头挡体的局部结构剖视图。
图6是后滑轮采用燃气轮机作为起飞驱动马达的结构布置图。
图7①②③是采用燃气轮机作为起飞驱动马达时的飞机起飞弹射图。
图8是后滑轮采用蒸汽轮机作为起飞驱动马达的结构布置图。
图9是本发明的航母飞机起飞弹射装置第二种实施方式的侧视图。
图10是图9中往复滑车和接头挡体的放大结构图。
图11图10中往复滑车和接头挡体的正视图。
图12是往复滑车上的活塞刚进入制动水缸中的过程图。
图13往复滑车移到终止位置的过程图。
图14是本发明第三种实施方式的无人飞机起飞弹射装置侧视图。
图15是图14中无人飞机的前起落架和接头挡体的放大结构图。
图16是接头挡体的俯视图。
图17是本发明第四种实施方式的无人飞机起飞弹射装置侧视图。
图18是图17中前后起落架的正视图。
具体实施方式 图1是本发明的航母飞机起飞弹射装置的第一种实施方式侧视图,图2和图3是图1飞机前起落架等的结构放大图,图4和图5是钢绳36的两接头之间的接头挡体等结构放大图。这种飞机起飞弹射装置包括飞行甲板18、甲板下面的前后滑轮20、23和绕在前、后滑轮上的钢绳36,在前、后滑轮和钢绳上方的甲板18上形成有相应的开缝19,前、后滑轮20、23中至少有一个滑轮被起飞驱动马达25带动,另一个滑轮则被弹簧座顶紧使钢绳36被拉直。图1中是让后滑轮23被起飞驱动马达25带动的,前滑轮20安装在顶紧机构21上。本发明的航母飞机起飞弹射装置采用了把相应的钢绳绕在前、后滑轮上,并利用接头挡体45把钢绳两端接头之间连接在一起,再利用接头挡体45直接或经往复滑车带动飞机1弹射起飞的。
飞机前起落架2和其上的牵引摆臂7及接头挡体45的结构参看2和图3,钢绳36上的接头挡体45的详细结构参看图4和图5。在前、后滑轮20、23上依次形成有相应数量的由相同绳槽32排列形成的绳槽组92,绕在前、后滑轮20、23上相应绳槽32中长度相同的各钢绳36的两接头38由两接头之间的接头挡体45连在一起。钢绳36的两接头分别穿过中间接头挡体45上所对应的前、后弯孔48、49后,由紧固在钢绳接头38上的卡件把钢绳接头卡在相应的弯孔内(参看图4)。接头挡体45上的前、后弯孔48、49的上部开口端被制成扩口形状,并用下压的卡件39夹紧钢绳36的两端接头38。
在接头挡体45上的每对前、后弯孔48、49之间的内侧形成有其外部形状与相对应的前后段钢绳内侧半圆外形相同、凸出高度相等的中间体52,让中间体也像钢绳那样能嵌压在前、后滑轮上的半圆形绳槽内,让接头挡体45能平顺地转过前、后滑轮上的各相对应的绳槽32(参看图4图5)。同时,各滑轮上所设的较宽的沉槽35也能让前、后滑轮躲开接头挡体45上的挡座47(参看图3)。在接头挡体45上的绳槽组92以外位置形成带有顶面46的挡座47,该挡座的顶面46中心高度位置基本与钢绳36的中心线位置相对齐,在滑轮被起飞驱动马达25带动时、起飞驱动马达的动力经滑轮传递到钢绳36和接头挡体45,再由接头挡体上的挡座47直接或经往复滑车带动飞机前起落架上的牵引件助力牵引飞机滑跑起飞。
在飞机1利用接头挡体45上的挡座47被直接带动弹射起飞时,飞机前起落架的结构如图2、图3和图4所示,被带动弹射起飞的牵引件是设在飞机前起落架2上的双前轮3之间的牵引摆臂7。由于接头挡体是带动处于双前轮3中间位置的牵引摆臂7,该牵引摆臂通过轴销5装在前起落架2底部的轴座4上,牵引摆臂7向下摆动伸进甲板18上的开缝19可伸到接头挡体的挡座47前面。牵引摆臂被轴座4前侧的挡板6限制不能向前摆动,如图2中所示。或者被其上部的挡体8限制不能向前摆动,如图2中所示,但可被连在牵引摆臂7后面拉索9带动,被弹簧10作用向后上方收起到两前轮3之间。牵引摆臂7设在双前轮3中间位置后,连在接头挡体上的各钢绳36被分成了处于两侧的绳排37(参看图3),相应的接头挡体上的挡座47也处于两侧的绳排37之间,在挡座47的左右两侧还形成有挡边44,使被带动的飞机的牵引摆臂7能被顶在中间位置上。由于是利用滑轮与钢绳之间的摩擦力来带动飞机弹射起飞,为增加摩擦力,在图3 中,两侧绳排37的钢绳总数量达到了六条。如还需加大摩擦力,还可再增加钢绳的数量,或者让前、后滑轮20、23都被起飞驱动马达带动。让前、后滑轮都被起飞驱动马达带动,还可以减少绳排37的总重量。
在飞机弹射起飞时,让飞机停在起飞位置,下压前起落架2上的牵引摆臂7使其向下摆动伸进飞行甲板18上的开缝19,在控制滑轮通过钢绳36使接头挡体上的挡座47顶在飞机起落架2上的牵引摆臂7下侧后,便可带动飞机弹射起飞。
在图1所示的第一飞机弹射实施方式中,由于可通过设置多条钢绳和增大顶紧机构的作用力来增加后滑轮23和钢绳36之间的摩擦力,比如可通过100吨的顶紧力来产生带动飞机起飞的30吨摩擦力,并在起飞驱动马达的驱动作用下,很容易让这种飞机弹射装置产生飞机起飞所需的足够推动力。在这种实施方式中,除飞机前起落架2上的牵引摆臂7需改制以外,这种飞机弹射装置的整体结构最为简单,也容易加工制造,非常适合用在航空母舰上弹射起飞更大重量的飞机。
弹射飞机起飞的驱动马达有多种选择,可以采用燃汽轮机,蒸汽轮机或电动机。在图6中示出了让后滑轮23被燃汽轮机31带动的结构布置方式,图中采用了一台燃汽轮机作为弹射飞机的起飞驱动马达,为增加滑轮与钢绳之间的摩擦力,还可让前滑轮20也被燃汽轮机同步带动。在图6的燃汽轮机驱动装置的布置中,燃汽轮机31经带有若干放气阀门91的出气管路93通向驱动轴93上的动力涡轮94。在驱动轴93上设有制动盘33,驱动轴93再经离合器28带动后滑轮的传动轴24,传动轴24还被调位电机29控制,在前滑轮20后面的适当位置设有位置传感器95。
图7①②③示出了飞机被燃汽轮机带动被弹射的起飞过程,在飞机将要弹射起飞时,如图7①所示,飞机1停在预备起飞位置,放气阀门91被控制开启,制动盘33被制动器96夹紧,接头挡体被调位电机29控制已顶在处于起飞位置的飞机牵引摆臂7上,并让燃汽轮机31处于慢车运转状态。当可以起飞弹射时,如图7②所示,飞机1启动、燃汽轮机31加速运转,同时让制动器96松开制动盘33、也让出气管路93上的各放气阀门91迅速依次关闭,让燃汽轮机31的压力排气带动动力涡轮94加速旋转,通过后滑轮23带动钢绳36和其上的接头挡体45,与飞机自身的动力共同作用让飞机加速前行。当钢绳36上的接头挡体45带动飞机移过前面的位置传感器97后,如图7③所示,传感器发出的信号让控制器 98带动制动器96对制动盘33进行制动减速,同时迅速开启放气阀门91、让出气管路93中的压力燃气沿放气阀门91向外泄出,使接头挡体因减速不再推动飞机的牵引摆臂,让飞机的牵引摆臂能不被磨损的自然脱离接头挡体45,飞机也达到了离舰起飞的速度拉起升空。
当飞机的牵引摆臂离开接头挡体45后,减速了的接头挡体仍以较高的速度转过前滑轮20。因钢绳36上的接头挡体45质量并不很大,在转过前滑轮20时并不会产生很大的离心震动力。在利用制动器96对制动盘33进行制动逐渐减速条件下,让钢绳36上的接头挡体45又转过后滑轮23重新停在起始位置,准备带动下一架飞机的起飞。
除利用燃气轮机弹射飞机以外,还可采用如图8所示的蒸汽轮机27作为起飞驱动马达。在采用蒸汽轮机27作为起飞驱动马达时,从锅炉通过来的带有阀门101的蒸汽管路102通向后滑轮驱动轴93上的蒸汽涡轮103。在驱动轴93上设有制动盘33,驱动轴还被调位电机29控制,在前滑轮20后面的适当位置设有位置传感器97。
在飞机起飞弹射过程中,飞机启动加油门、同时让制动器96松开制动盘33、也开启蒸汽管路102上的阀门101,让锅炉来的蒸汽带动蒸汽涡轮103加速旋转,与飞机自身的动力共同作用让飞机加速前行。当钢绳36上的接头挡体45带动飞机移过前面的位置传感器97后,迅速关闭阀门101切断蒸汽、同时也让控制器98带动制动器96对制动盘33进行制动减速,使接头挡体因减速不再推动飞机的牵引摆臂或往复滑车,让飞机离舰起飞。
采用蒸汽轮机代替带开缝的长筒汽缸后,因蒸汽能在蒸汽轮机的叶片涡轮中多次膨胀作功,其蒸汽耗量不会多于带开缝的长筒汽缸,相对开缝长筒汽缸,蒸汽轮机更容易制造一些,通过阀门也容易控制蒸汽轮机的功率大小。用蒸汽轮机弹射飞机起飞时因需要消耗大量的蒸汽,较适合用于采用核动力的航空母舰。
上述飞机弹射的第一实施方案在结构上最为简单可靠,但需重新设计一种新的飞机前起落架上的牵引摆臂。如仍利用常规的飞机前起落架的牵引结构,也可采用如图9所示的第二种飞机弹射实施方案。在这种方案中,接头挡体45上的挡座47是通过往复滑车53带动飞机1滑跑起飞的,这种方案中飞机仍采用原来的飞机前起落架,但增加了较复杂的往复滑车。这种实施方式的结构如图9、图10和图11所示,往复滑车53上中间位置的 弹射滑块54穿过飞行甲板18上的开缝19升出飞行甲板适当高度,往复滑车53处在钢绳36和接头挡体45的上方,并通过前后侧的上、下轮55、56安装在两侧的上、下轨道57、58之间。由多条钢绳36组成了下侧的钢绳排37(参看图11)。前滑轮20位置较低,在前滑轮20后面的适当位置处设有顶平滑轮22,让绕在后滑轮23和顶平滑轮22上的钢绳36与飞行甲板18相平行。接头挡体上的挡座47处于钢绳排37的左右两侧,相应地从往复滑车53的横梁59两侧向下伸出的挡臂60下侧也与接头挡体上两侧的挡座47相对准。
在接头挡体45的前部还向两侧伸出有处于挡臂60前面的低位挡块62,在往复滑车53的前面中间位置上通过轴销65还装有带制动活塞66的顶杆68,顶杆的前部可被下压一定的角度,并可被顶杆后端的弹簧69压回到水平位置(参看图10)。相应地在飞行甲板开缝19的前侧移动终止处设有制动水缸71,该制动水缸的开口72与往复滑车53前面的制动活塞66相对准,制动水缸的缸底侧向下降低倾斜一定的角度,形成让水79留在制动水缸71内的高度差,在制动水缸的缸底设有被压力阻水阀75控制的出水口76。由于往复滑车前面的制动活塞66要能向下倾斜的插入制动水缸,因此制动活塞66的外径在上下方向上要相应的缩小,同时活塞也不能太厚。在制动水缸71的下侧还设有集水池77,该集水池的外挡水板78延伸到制动水缸的开口72之外位置处,在制动水缸71的开口内侧的缸壁上设有从循环水泵接出的向内喷水口74。当飞机开始弹射起飞时,从喷水口74喷入制动水缸中的水可让制动水缸内的水液面达到更高位置。在顶平滑轮22与制动水缸71之间的两侧下轨道58下面分别设有安装回位车80的短程轨道81。
在弹射飞机过程中,当钢绳36的接头挡体上的挡座47移过顶平滑轮22降低高度脱开往复滑车53后(参看图12)、仍前移的往复滑车上的制动活塞66也移到了制动水缸的开口72处,在制动活塞前端的导轮70偏移作用下让制动活塞66进入制动水缸71,让往复滑车53被水阻作用减速直到停止靠在前面的缓冲垫73上(如图13所示位置处)。设在制动活塞66后面的若干个挡水板67可在活塞冲入制动水缸过程中,防止从制动活塞外围喷出的水飞溅得太远。
完成飞机弹射过程后,在让往复滑车53和接头挡体45准备返回到起始位置时,首先让钢绳36上的接头挡体45被控制而停在顶平滑轮22之前 位置处,然后由短程轨道81上的回位车80带动往复滑车53抽出制动水缸内的制动活塞66后移。在往复滑车上的挡臂60下侧顶在带钢绳36上的接头挡体45后,继续后移的回位车80经往复滑车53带动钢绳36上的接头挡体45向后移过顶平滑轮22后,让往复滑车53上的挡臂60下侧处于接头挡体45上的挡座47与低位挡块62之间,再由后滑轮的驱动机构带动钢绳36经低位挡块62让往复滑车53后移返回到发射起始位置。
图14给出的本发明第三种飞机起飞弹射实施方案主要是用于弹射起飞无人飞机,第三种实施方案也是采用了让钢绳36经接头挡体45上的挡座47直接带动飞机1弹射起飞的弹射方式。在这种弹射装置中,后滑轮23、顶平滑轮22和绕在其上的钢绳36从飞行甲板上的开缝19水平升出飞行甲板18适当高度。由于无人飞机重量较小,在接头挡体45上只设了两条钢绳36(参看图16),接头挡体上的挡座47处于两钢绳36之间,并且在挡座47的左右两侧形成有挡边44。被带动的飞机1具有装着双前轮的前起落架2,并让接头挡体45和两钢绳36处在飞机的双前轮3之间。为能让飞机被牵引弹射起飞,从前起落架2上向前伸出的牵引臂14的下侧处在能与接头挡体45上的挡座47相对准的位置上,以便飞机被带动弹射起飞,图14中的飞机1正停在能被接头挡体45上的挡座47推动的位置上。
在接头挡体45上只设左右两条钢绳36时,接头挡体45上的前、后弯孔被制成弯槽51的形状,当把带有卡头40的钢绳36两端接头38分别装入各自的弯槽51后,再用螺栓11把左右的压板50固定在接头挡体45的两侧。
图17中的本发明第四种实施方式是在图14方案基础上改进而来的,在这种方案中,在前起落架2的牵引臂14的前下侧形成有卡槽43,从接头挡体45的挡座47下侧形成有卡件安装座83,装在卡件安装座上的带有控制尾臂85的卡头84可卡在牵引臂的卡槽43上。相对应的在两侧的顶平滑轮22之间设有向后平伸的顶动凸条86,顶动凸条在向前移过顶平滑轮22的轴88后也顺着向下倾斜的钢绳36向下过渡倾斜。在左右的后起落架13的后轮42外侧(或在后起落架的内侧,如图18中右侧所示)分别装有定位滑轮41,相应的在飞行甲板或弹射架板89上也分别设有左右平行的能压住定位滑轮41的下压滑轨90。当飞机被带动弹射起飞接近顶平滑轮22,让接头挡体45上的卡头84经其控制尾臂85被顶动凸条86作 用、松开被锁止的飞机前起落架上的牵引臂14后,飞机左右后起落架13上的定位滑轮41也正好同时滑离上面的下压滑轨90。
在图17中,无人飞机17己按箭头92方向移到将要脱离下压滑轨90和卡头84的位置,这时无人飞机的机翼所产生的升力己较大于飞机重量,一旦离开下压滑轨和卡头的约束便会向前飞向空中。图17中的飞机起飞弹射装置可制成专门的发射架安装在舰船或者车辆上,由于无人飞机在弹射起飞过程中处于被约束状态,在舰船较大摆动或者车辆行驶状态中都可顺利发射。
在本发明的这种无人飞机起飞弹射装置中,用电动机作为飞机弹射起飞的驱动马达是较为合适的,由于要调整位置和带动飞机弹射起飞,可让后滑轮23被能正反旋转的电动机带动来作为飞机滑跑起飞的驱动马达,电动机直接经带有制动盘33的驱动轴93与后滑轮23相连(未画)。

Claims (10)

  1. 一种航母飞机起飞弹射装置,包括飞行甲板(18)、甲板下面的前后滑轮(20、23)和绕在前、后滑轮上的钢绳(36),在前、后滑轮和钢绳上方的甲板(18)上形成有相应的开缝(19),前、后滑轮(20、23)中至少有一个滑轮被起飞驱动马达(25)带动,另一个滑轮则被弹簧座顶紧使钢绳(36)被拉直,其特征在于:在前、后滑轮(20、23)上依次形成有相应数量的由相同绳槽(32)排列形成的绳槽组(92),绕在前、后滑轮(20、23)上相应绳槽(32)中长度相同的各钢绳(36)的两接头(38)由两接头之间的接头挡体(45)连在一起,钢绳(36)的两接头分别穿过中间接头挡体(45)上所对应的前、后弯孔(48、49)后,由紧固在钢绳接头(38)上的卡件把钢绳接头卡在相应的弯孔内,在接头挡体(45)上的每对前、后弯孔(48、49)之间的内侧形成有其外部形状与相对应的前后段钢绳内侧半圆外形相同、凸出高度相等的中间体(52),让接头挡体(45)能平顺地转过前、后滑轮上的各相对应的绳槽(32),在接头挡体(45)上的绳槽组(92)以外位置形成带有顶面(46)的挡座(47),该挡座的顶面(46)中心高度位置基本与钢绳(36)的中心线位置相对齐,在滑轮被起飞驱动马达(25)带动时、起飞驱动马达的动力经滑轮传递到钢绳(36)和接头挡体(45),再由接头挡体上的挡座(47)直接或经往复滑车带动飞机前起落架上的牵引件助力牵引飞机滑跑起飞。
  2. 根据权利要求1所述的飞机起飞弹射装置,其特征在于:在利用接头挡体(45)上的挡座(47)直接带动飞机(1)弹射起飞时,连在接头挡体上的各钢绳(36)分成两侧的绳排(37),相应的接头挡体上的挡座(47)处于两侧的绳排(37)之间,在挡座(47)的左右两侧还形成有挡边(44),设在飞机前起落架(2)上的双前轮(3)之间的牵引件是一种牵引摆臂(7),该牵引摆臂通过轴销(5)装在前起落架(2)底部的轴座(4)上,牵引摆臂(7)向下摆动伸进甲板(18)上的开缝(19)可伸到接头挡体的挡座(47)前面,牵引摆臂被轴座(4)前侧的挡板(6)或牵引摆臂上部的挡体(8)限制不能向前摆动,但可被连在牵引摆臂(7)后面的拉索9带动被弹簧(10)作用向后上方收起到两前轮(3)之间,在飞机弹射起飞时,让飞机停在起飞位置,下压前起落架(2)上的牵引摆臂 (7)使其向下摆动伸进飞行甲板(18)上的开缝(19)后,在控制滑轮通过钢绳(36)使接头挡体上的挡座(47)顶在飞机起落架(2)上的牵引摆臂(7)下侧后,便可带动飞机弹射起飞。
  3. 根据权利要求1所述的飞机起飞弹射装置,其特征在于:接头挡体(45)上的挡座(47)通过往复滑车(53)带动飞机(1)滑跑起飞,往复滑车(53)上中间位置的弹射滑块(54)穿过飞行甲板(18)上的开缝(19)升出飞行甲板适当高度,往复滑车(53)处在钢绳(36)和接头挡体(45)的上方,并通过前后侧的上、下轮(55、56)安装在两侧的上、下轨道(57、58)之间,前后滑轮(20、23)和绕在其上的钢绳(36)处于往复滑车(53)的下侧,由多条钢绳(36)组成了相应的绳排(37),前滑轮(20)位置较低,在前滑轮(20)后面的适当位置处设有顶平滑轮(22),让绕在后滑轮(23)和顶平滑轮(22)上的钢绳(36)与飞行甲板(18)相平行,接头挡体(45)上的挡座(47)处于钢绳排(37)的左右两侧,相应地从往复滑车(53)的横梁(59)两侧向下伸出的挡臂(60)下端也与接头挡体上两侧的挡座(47)相对准,在接头挡体(45)的前部还向两侧伸出有处于挡臂(60)前面的低位挡块(62),在往复滑车(53)的前面中间位置上通过轴销(65)还装有带制动活塞(66)的顶杆(68),顶杆的前部可被下压一定的角度,并可被顶杆后端的弹簧(69)压回到水平位置,相应地在飞行甲板开缝(19)的前侧移动终止处设有制动水缸(71),该制动水缸的开口(72)与往复滑车(53)前面的制动活塞(66)相对准,制动水缸的缸底侧向下降低倾斜一定的角度,形成让水(79)留在制动水缸(71)内的高度差,在制动水缸的缸底设有被压力阻水阀(75)控制的出水口(76),在制动水缸(71)的下侧还设有集水池(77),该集水池的外挡水板(78)延伸到制动水缸的开口(72)之外位置处,在制动水缸(71)的开口内侧的缸壁上设有从循环水泵接出的向内喷水口(74),在顶平滑轮(22)与制动水缸(71)之间的两侧下轨道(58)下面分别设有安装回位车(80)的短程轨道(81),在弹射飞机过程中,当钢绳(36)的接头挡体上的挡座(47)移过顶平滑轮(22)降低高度脱开往复滑车(53)后、仍前移的往复滑车上的制动活塞(66)也移到了制动水缸的开口(72)处,在制动活塞前端的导轮(70)偏移作用下让制动活塞(66)进入制动水缸(71),让往复滑车(53)被水阻作用减速直到停止,在钢绳(36)上的接头挡体(45)被控制准备返回而停在顶平滑轮(22)之前位置处后,短程 轨道(81)上的回位车(80)便带动往复滑车(53)抽出制动活塞(66)后移,在往复滑车上的挡臂(60)下侧顶在带钢绳(36)上的接头挡体(45)后,继续后移的回位车(80)经往复滑车(53)带动钢绳(36)上的接头挡体(45)向后移过顶平滑轮(22)后,让往复滑车(53)上的挡臂(60)下侧处于接头挡体(45)上的挡座(47)与低位挡块(62)之间后,再由后滑轮的驱动机构带动钢绳(36)经低位挡块(62)让往复滑车(53)后移返回到发射起始位置。
  4. 根据权利要求1、2或3所述的飞机起飞弹射装置,其特征在于:接头挡体(45)上的前、后弯孔(48、49)的上部开口端被制成扩口形状,并用下压的卡件(39)夹紧钢绳(36)的两端接头(38)。
  5. 根据权利要求4所述的飞机起飞弹射装置,其特征在于:至少用一台燃汽轮机(31)作为弹射飞机的起飞驱动马达来带动前滑轮(20)或后滑轮(23),燃汽轮机(31)经带有若干放气阀门(91)的出气管路(93)通向驱动轴(93)上的动力涡轮(94),在驱动轴(93)上设有制动盘(33),驱动轴(93)再经离合器(28)带动后滑轮的传动轴(24),传动轴(24)还被调位电机(29)控制,在前滑轮(20)后面的适当位置设有位置传感器(95),在飞机停在预备起飞位置时,放气阀门(91)被控制开启,制动盘(33)被制动器(96)夹紧,接头挡体被调位电机(29)控制已顶在处于起飞位置的飞机牵引摆臂或往复滑车上,燃汽轮机(31)处于慢车运转状态中;在起飞弹射过程时,飞机启动、燃汽轮机(31)加速运转,同时让制动器(96)松开制动盘(33)、也让出气管路(93)上的各放气阀门(91)迅速依次关闭,让燃汽轮机(31)的压力排气带动动力涡轮(94)加速旋转,与飞机自身的动力共同作用让飞机加速前行,当钢绳(36)上的接头挡体(45)带动飞机移过前面的位置传感器(97)后,传感器发出的信号让控制器(98)带动制动器(96)对制动盘(33)进行制动减速,同时迅速开启放气阀门(91)、让出气管路(93)中的压力燃气沿放气阀门(91)向外泄出,使接头挡体因减速不再推动飞机的牵引摆臂或往复滑车,让飞机离舰起飞。
  6. 根据权利要求4所述的飞机起飞弹射装置,其特征在于:采用蒸汽轮机(27)作为起飞驱动马达,从锅炉通过来的带有阀门(101)的蒸汽管路(102)通向后滑轮驱动轴(93)上的蒸汽涡轮(103),在驱动轴(93)上设有制动盘(33),驱动轴还被调位电机(29)控制,在前滑轮(20) 后面的适当位置设有位置传感器(97),在起飞弹射过程时,飞机启动加油门、同时让制动器(96)松开制动盘(33)、也开启蒸汽管路(102)上的阀门(101),让锅炉来的蒸汽带动蒸汽涡轮(103)加速旋转,与飞机自身的动力共同作用让飞机加速前行,当钢绳(36)上的接头挡体(45)带动飞机移过前面的位置传感器(97)后,迅速关闭阀门(101)切断蒸汽、同时也让控制器(98)带动制动器(96)对制动盘(33)进行制动减速,使接头挡体因减速不再推动飞机的牵引摆臂或往复滑车,让飞机离舰起飞。
  7. 根据权利要求1所述的飞机起飞弹射装置,其特征在于:钢绳(36)经接头挡体(45)上的挡座(47)直接带动飞机(1)弹射起飞,后滑轮(23)、顶平滑轮(22)和绕在其上的钢绳(36)从飞行甲板上的开缝(19)水平升出飞行甲板(18)适当高度,在接头挡体(45)上设有两条钢绳(36),接头挡体上的挡座(47)处于两钢绳(36)之间,并且在挡座47的左右两侧形成有挡边44,被带动的飞机(1)具有装着双前轮(3)的前起落架(2),让接头挡体(45)和两钢绳(36)处在飞机(1)的双前轮(3)之间,从前起落架(2)上向前伸出的牵引臂(14)的下侧处在能与接头挡体(45)上的挡座(47)相对准的位置上,以便飞机被带动弹射起飞。
  8. 根据权利要求7所述的飞机起飞弹射装置,其特征在于:在接头挡体(45)上只设左右两条钢绳(36)时,接头挡体(45)上的前、后弯孔被制成弯槽(51)的形状,当把带有卡头(40)的钢绳(36)两端接头(38)分别装入各自的弯槽(51)后,用螺栓(11)把压板(50)固定在接头挡体(45)的两侧。
  9. 根据权利要求7或8所述的飞机起飞弹射装置,其特征在于:从前起落架(2)的牵引臂(14)的前下侧形成有卡槽(43),从接头挡体(45)的挡座(47)下侧形成有卡件安装座(83),装在卡件安装座上的带有控制尾臂(85)的卡头(84)可卡在牵引臂的卡槽(43)上,相对应的在两侧的顶平滑轮(22)之间设有向后平伸的顶动凸条(86),顶动凸条在向前移过顶平滑轮(22)的轴(88)后也顺着向下倾斜的钢绳(36)向下过渡倾斜,在左右的后起落架(13)的后轮(42)外侧或在后起落架的内侧分别装有定位滑轮(41),相应的在飞行甲板或弹射架板(89)上也分别设有左右平行的能压住定位滑轮(41)的下压滑轨(90),当飞机被带动弹射起飞接近顶平滑轮(22),让接头挡体(45)上的卡头(84)经其控 制尾臂(85)被顶动凸条(86)作用、松开被锁止的飞机前起落架上的牵引臂(14)后,飞机左右后起落架(13)上的定位滑轮(41)也正好同时滑离上面的下压滑轨(90)。
  10. 根据权利要求9所述的飞机起飞弹射装置,其特征在于:采用能正反旋转的电动机(26)作为起飞驱动马达,电动机(26)直接经带有制动盘(33)的驱动轴(93)与后滑轮(23)相连。
PCT/CN2019/000068 2018-04-23 2019-04-16 航母飞机起飞弹射装置 WO2019205726A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810364113.8 2018-04-23
CN201810364113.8A CN110386261A (zh) 2018-04-23 2018-04-23 航母飞机起飞弹射装置

Publications (1)

Publication Number Publication Date
WO2019205726A1 true WO2019205726A1 (zh) 2019-10-31

Family

ID=68284194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/000068 WO2019205726A1 (zh) 2018-04-23 2019-04-16 航母飞机起飞弹射装置

Country Status (2)

Country Link
CN (1) CN110386261A (zh)
WO (1) WO2019205726A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113148218A (zh) * 2021-03-31 2021-07-23 潍坊新力蒙水产技术有限公司 一种下行式集合外动力轨道电子浮射航空装置
CN113018881B (zh) * 2021-04-25 2022-04-29 航天创客(北京)科技有限公司 一种航天科普模型自适应弹射装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1456120A1 (de) * 1964-05-06 1968-12-19 Bliss E W Co Katapultiervorrichtung fuer Flugzeuge
US3446461A (en) * 1966-10-28 1969-05-27 Bliss Co Aircraft launching system
CN201712793U (zh) * 2009-11-05 2011-01-19 洪超飞 一种新型飞机弹射器
CN101954974A (zh) * 2009-07-13 2011-01-26 栾远刚 连发飞机弹射器
CN201784808U (zh) * 2010-06-22 2011-04-06 吕铁燕 一种舰载机起飞弹射器
CN203211517U (zh) * 2013-02-25 2013-09-25 刘忠民 交流变频弹射起飞装置
CN103863571A (zh) * 2012-12-12 2014-06-18 中航商用航空发动机有限责任公司 飞机弹射装置和飞机弹射方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1456120A1 (de) * 1964-05-06 1968-12-19 Bliss E W Co Katapultiervorrichtung fuer Flugzeuge
US3446461A (en) * 1966-10-28 1969-05-27 Bliss Co Aircraft launching system
CN101954974A (zh) * 2009-07-13 2011-01-26 栾远刚 连发飞机弹射器
CN201712793U (zh) * 2009-11-05 2011-01-19 洪超飞 一种新型飞机弹射器
CN201784808U (zh) * 2010-06-22 2011-04-06 吕铁燕 一种舰载机起飞弹射器
CN103863571A (zh) * 2012-12-12 2014-06-18 中航商用航空发动机有限责任公司 飞机弹射装置和飞机弹射方法
CN203211517U (zh) * 2013-02-25 2013-09-25 刘忠民 交流变频弹射起飞装置

Also Published As

Publication number Publication date
CN110386261A (zh) 2019-10-29

Similar Documents

Publication Publication Date Title
US4238093A (en) Aircraft launcher
CN108557106B (zh) 一种具有储存和补给功能的无人机集群发射回收装置
WO2019205726A1 (zh) 航母飞机起飞弹射装置
CN2855904Y (zh) 航空母舰蒸汽弹射器
CN102358430B (zh) 舰载机捕捉拦阻装置
CN103434649B (zh) 无人机弹射装置减速与回程气液压控制系统
KR100954276B1 (ko) 무인 항공기용 발사 장비의 충격 흡수 장치
CN102267571A (zh) 弹簧-滑轮组式无人机弹射器
CN109896038B (zh) 无人机弹射系统
CN1032645A (zh) 超轻型飞机短距起落装置
CN107089345B (zh) 一种无人机弹射架小车脱扣机构
CN108082524B (zh) 一种无人机可控两级弹射车载控制系统和弹射方法
CN104129506B (zh) 一种舰载机弹簧弹射器
CN107323681B (zh) 一种可智能释放的无人机气液压弹射系统及控制方法
JP2020516532A (ja) テザー航空機を着陸させる方法、及び、発射及び着陸装置
CN214138961U (zh) 一种空投战车缓冲系统脱离装置
CN205418141U (zh) 一种航母弹射器的拖拽装置
CN103183133B (zh) 航母舰载机弹射器
CN110422338A (zh) 无人机气液动力弹射方法
JP2020516530A (ja) テザー航空機用の発射及び着陸装置
CN110450972A (zh) 一种有助于飞行器着陆减速或滑行平稳或起飞增力的方法及装置
CN110510139A (zh) 一种帮助飞行器安全着陆或弹射起飞的方法及装置
CN203996919U (zh) 一种舰载机弹簧弹射器
CN103129745B (zh) 舰载机全程匀加速机械牵引高速起飞方法及装置
CN111348215A (zh) 一种连续蓄力或连续释力的方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793554

Country of ref document: EP

Kind code of ref document: A1