WO2019205613A1 - 用于敷料的基膜及其制造方法以及包括该基膜的敷料 - Google Patents

用于敷料的基膜及其制造方法以及包括该基膜的敷料 Download PDF

Info

Publication number
WO2019205613A1
WO2019205613A1 PCT/CN2018/117245 CN2018117245W WO2019205613A1 WO 2019205613 A1 WO2019205613 A1 WO 2019205613A1 CN 2018117245 W CN2018117245 W CN 2018117245W WO 2019205613 A1 WO2019205613 A1 WO 2019205613A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber network
base film
zone
dressing
micron
Prior art date
Application number
PCT/CN2018/117245
Other languages
English (en)
French (fr)
Inventor
季春燕
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/756,256 priority Critical patent/US11793906B2/en
Publication of WO2019205613A1 publication Critical patent/WO2019205613A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/00051Accessories for dressings
    • A61F13/00063Accessories for dressings comprising medicaments or additives, e.g. odor control, PH control, debriding, antimicrobic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/01Non-adhesive bandages or dressings
    • A61F13/01008Non-adhesive bandages or dressings characterised by the material
    • A61F13/01012Non-adhesive bandages or dressings characterised by the material being made of natural material, e.g. cellulose-, protein-, collagen-based
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/01Non-adhesive bandages or dressings
    • A61F13/01021Non-adhesive bandages or dressings characterised by the structure of the dressing
    • A61F13/01029Non-adhesive bandages or dressings characterised by the structure of the dressing made of multiple layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive bandages or dressings
    • A61F13/0276Apparatus or processes for manufacturing adhesive dressings or bandages
    • A61F13/0286Apparatus or processes for manufacturing adhesive dressings or bandages manufacturing of non adhesive dressings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/44Medicaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/46Deodorants or malodour counteractants, e.g. to inhibit the formation of ammonia or bacteria
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/18Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
    • B32B3/20Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side of hollow pieces, e.g. tubes; of pieces with channels or cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/18Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of discrete sheets or panels only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/102Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
    • A61L2300/104Silver, e.g. silver sulfadiazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/02Coating on the layer surface on fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/24Organic non-macromolecular coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/08Animal fibres, e.g. hair, wool, silk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/08Animal particles, e.g. leather
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/402Coloured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/414Translucent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/422Luminescent, fluorescent, phosphorescent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • B32B2307/7145Rot proof, resistant to bacteria, mildew, mould, fungi
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/716Degradable
    • B32B2307/7163Biodegradable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/728Hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/73Hydrophobic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2535/00Medical equipment, e.g. bandage, prostheses, catheter

Definitions

  • the present disclosure relates to a base film for a dressing and a method of manufacturing the same, and a dressing comprising the same.
  • the medical dressings currently used are mainly classified into fabric dressings and plastic (resin based) dressings.
  • Fabric dressings such as fabric-based band-aids, are not waterproof, are not tightly sealed relative to the applied body parts, and are easy to cause wound infection; while plastic dressings, such as plastic film, are not moisture-permeable and air-tight, and have been used for a long time. Easy to purify and worsen.
  • a glue layer is needed in the dressing to firmly adhere to the skin, but in a liquid environment, such as infiltration of body fluids, a large humidity of the environment, etc., the adhesive force of the glue layer is broken, and the dressing is detached. And the adhesion and tearing of the glue layer relative to the skin will cause discomfort to the user.
  • the material of the dressings is not good for the adsorption of antibacterial drugs, the antibacterial drugs are easy to fall, and it is easy to spread into the environment, which is affected by human intake and affects health. Not only is the drug wasted, but it can also cause bacterial infections and worsen the wound.
  • the medical dressings currently used generally cover or cover the wound, and the medical staff or other users cannot determine the positioning of the dressing relative to the wound when applying the dressing, so that misalignment may occur, resulting in the coated wound area.
  • the use of the dressing is inefficient.
  • the medical staff or other users need to repeatedly open the dressing and reapply in order to view and confirm the condition of the wound, which easily pulls the wound and affects its recovery.
  • Embodiments of the present disclosure provide a base film for a dressing, comprising: a first zone comprising a composite fiber network of a micron-sized fiber network and a nanofiber network; and a second zone comprising a micron-sized fiber network, wherein The composite fiber network and the micron-sized fiber network are made of a polymer material.
  • the base film is transparent or translucent.
  • the composite fiber network includes at least one of: a nanofiber dispersion distributed in the micron-sized fiber network; a network of interwoven micron fibers and nanofibers; and a micron fiber network A laminate with a nanofiber network.
  • the first zone and the second zone are made using any one or more of cellulose, a derivative of cellulose, a derivative of chitin, and chitin.
  • the first zone is located in the middle of the basement membrane and is surrounded by the second zone.
  • the composite fiber network of the first zone further comprises an antimicrobial substance.
  • the micro-scale fiber network of the first zone comprises blended textile fibers of the antimicrobial material and micron-sized fibers; or the antimicrobial material is added to the composite fiber network.
  • the antimicrobial material comprises silver nanoclusters.
  • At least one of the composite fiber network of the first zone and the micron-sized fiber network of the second zone is filled with cellulose gel particles.
  • a microfluidic channel is formed in the second zone.
  • the second zone includes a hydrophobic region, the microfluidic channel being defined by the hydrophobic region.
  • a reagent zone is formed in the second zone, the reagent zone includes a reagent for detecting body fluid, and the reagent zone is in communication with the microfluidic channel.
  • the reagents include a reagent for detecting any one or more of glucose, protein, nitrite, enzyme, tumor markers.
  • An embodiment of the present disclosure provides a dressing comprising the base film of any of the above.
  • At least one of the two opposing surfaces of the dressing is provided with a protective film.
  • Embodiments of the present disclosure provide a method of fabricating a base film for a dressing, comprising: forming a micron-sized fiber network layer; forming a micro-scale fiber network and a nano-scale fiber network in a portion of the micro-scale fiber network layer
  • the composite fiber network layer forms a first zone comprising a composite fiber network layer and a second zone outside the composite fiber network layer.
  • forming the composite fiber network layer includes at least one of: interweaving micron-sized fibers and nano-sized fibers; stacking micron-sized fiber networks and nano-scale fiber networks; and dispersing nano-sized fiber dispersions To the micron-scale fiber network.
  • dispersing the nanofiber dispersion into the micron-sized fiber network comprises applying a slurry comprising the nanofiber dispersion to the micron-sized fiber network and extrusion molding .
  • the method further comprises: preparing a silver nanocluster solution; applying the silver nanocluster solution to the composite fiber network layer; and rinsing and drying the composite fiber network layer.
  • the silver nanoclustered solution is prepared using any of the Brewster-Chevrin synthesis method, the template method, and the precursor/ligand induced etching method.
  • the silver nanocluster solution is obtained by a mixed reaction of silver nitrate and a polymer comprising polymethacrylic acid, polymethyl methacrylate, polyvinylpyrrolidone, deoxyribonucleic acid. Any one or more of them.
  • the method further includes: forming a hydrophobic photoresist layer in the microfiber network layer of the second region; patterning the photoresist to remove a portion of the photoresist, thereby removing The portion of the portion of the photoresist forms a hydrophilic microfluidic channel.
  • the method further includes adding a reagent to the second zone to form a reagent zone, the reagent zone being in communication with the microfluidic channel.
  • FIG. 1 illustrates a cross-sectional view of a dressing in accordance with an embodiment of the present disclosure
  • Figure 2 shows a plan view of the dressing shown in Figure 1;
  • FIG. 3 shows a schematic view of an internal microstructure in a first region of a dressing in accordance with an embodiment of the present disclosure
  • FIG. 4(a) shows a diagram of a process for in situ detection of a wound spill using a dressing in accordance with an embodiment of the present disclosure
  • FIG. 4(b) shows an illustration of a microfluidic channel in accordance with an embodiment of the present disclosure
  • FIG. 5 illustrates a flow chart of a method of making a base film of a dressing in accordance with an embodiment of the present disclosure
  • FIG. 6 shows an illustration of a process flow for forming a microfluidic channel on a lower surface of a second region of a base film of a dressing, in accordance with an embodiment of the present disclosure.
  • a particular device when it is described that a particular device is located between the first device and the second device, there may be intervening devices between the particular device and the first device or the second device, or there may be no intervening devices.
  • that particular device can be directly connected to the other device without intervening devices, or without intervening devices directly connected to the other devices.
  • dressing refers to various sheets applied to a physiological site, including but not limited to band-aids, films, stickers, and the like.
  • FIG. 1 illustrates a cross-sectional view of a dressing in accordance with an embodiment of the present disclosure.
  • the dressing comprises a base film 2, wherein the base film is made of a polymer material, and the fibers are alternately joined to form a network structure.
  • the dressing may include a package in addition to the base film 2 to facilitate packaging and shipping of the base film 2.
  • the dressing may be composed of a base film 2 and two upper and lower barrier protective films 1.
  • the package may also take other arrangements, such as a package or the like.
  • the package herein refers to a protective film which can be disposed at least on one surface of the base film 2.
  • the base film 1 comprises: a first zone 4 composed mainly of a microfiber fiber network and a composite fiber network of a nanofiber network; and a second zone 3 mainly composed of micrometers The composition of the fiber network.
  • the first region 4 of the base film 2 in the dressing is composed of a microfiber fiber network and a composite fiber network of a nanofiber network, and has the following advantages: large specific surface area, good surface adsorption, and favorable adsorption of antibacterial substances on the surface thereof. And sustained release; high surface porosity, good gas permeability, is conducive to wound recovery.
  • a micron-scale fiber network means that the pore size of the pores in the network is on the order of microns, and the nano-scale fiber network refers to the pore size of the pores in the network on the order of nanometers.
  • the composite fiber network in which the first region is a micron-sized fiber network and a nano-fiber network, and the second region is a micro-scale fiber network has been described as an example, the embodiment of the present disclosure is not limited thereto.
  • the second zone may also include a nanoscale fiber network.
  • the base film 1 is composed of a fiber network
  • the film composed of the fiber network needs only a little wetting to form a good contact contact with the skin, so that the dressing does not require a glue layer. Even if it is continuously infiltrated in a liquid environment, the base film 1 can be kept in a wet state, so that it can maintain good contact with the skin without falling off.
  • the base film 1 of the dressing increases the user's comfort of use, and the dressing does not have to endure the pain of tearing the skin by the glue layer, and the base film 1 of the dressing can repeatedly cover the wound, as long as the dressing is The base film 1 remains wet, and it is still able to maintain a good coating contact without affecting the coating contact due to the failure of the rubber layer.
  • the base film 1 may be coated with a wetting agent, such as glycerin, to increase the hydrophilicity of the surface of the base film 1, thereby effectively extending the application time.
  • the base film 1 can be made to have a small thickness, for example, a thickness of about 100-200 microns, thereby further increasing the breathability and the comfort of the coating.
  • the coating contact of the wet fibrous base on the skin enables the dressing to be more tightly and securely applied to the site to be coated, such as the skin.
  • the base film 2 can be constructed to be transparent or translucent.
  • the first zone 4 and the second zone 3 may use any one or more of cellulose, cellulose derivatives, chitin, and chitin derivatives as raw materials.
  • the raw materials are easily available, for example, can be extracted from natural materials, have low cost, have excellent biocompatibility and degradation properties, and the base film 1 is usually transparent or translucent, so that the user can observe the wound recovery through the dressing in real time. situation.
  • the materials of the first zone 4 and the second zone 3 are all selected from cellulose fibers, and a large amount of hydroxyl groups on the surface of the cellulose have natural hydrophilicity to facilitate bonding with wounds overflowing body fluids.
  • the composite fiber network of the first zone 4 described above may be formed in various ways, for example, by interweaving micron-sized fibers and nano-scale fibers, and stacking micron-sized fiber networks and nano-scale fiber networks, or It can be obtained by adding a nanofiber dispersion to a micron-sized fiber network.
  • the nanoscale fiber network is comprised of a nanoscale fiber dispersion distributed in a micron-scale fiber network.
  • a micron-sized fiber network can be first formed as a substrate for the first zone 4, and then the nanoparticle can be filled into the micro-scale fiber network of the first zone 4 by any one or more means such as soaking, pouring, spraying, coating, and the like.
  • the fiber dispersion is graded to form the nanofiber network.
  • the number of micro-scale pores is reduced, the pore size is reduced, and light scattering is reduced (the pore size is small enough to avoid light scattering), and the light transmittance is improved. To further improve local transparency.
  • the first zone 4 with sufficient transparency can be used as an observation window, which facilitates the user to accurately position the wound when applying the dressing, and also facilitates the user to observe the healing or inflammation of the wound at any time after applying the dressing without repeating Uncover the dressing to help restore the wound.
  • the nanofiber dispersion is filled in a liquid environment, such as by dipping the material of the first zone 4 into a slurry (eg, a suspension) of the nanofiber dispersion, which may be filled (eg, poured) in the nanometer.
  • the stage fiber dispersion is pressed against the periphery of the first zone 4 to prevent the slurry from penetrating into other areas along with the nanofiber dispersions it contains, such as the second zone 3, which is uncompressed after being dry formed.
  • the first zone 4 is the central zone of the base film 2, that is, the second zone 3 may surround the first zone 4.
  • the first zone 4 is placed near the center of the dressing so that when the first zone 4 is used as a viewing window, the wound can be more clearly and clearly observed.
  • the relative position of the second zone 3 to the first zone 4 is not limited thereto, and the relative positions of the two zones can be adjusted according to specific needs.
  • the "central" position herein is not the middle position, and the first area 4 may be located at any suitable position in the middle of the substrate 2.
  • the second zone 3 surrounds the first zone 4, but does not mean that the first zone 4 must be completely surrounded by the first zone 4, or the second zone 3 may be disposed at a partial peripheral location of the first zone 4.
  • the composite fiber network of the first zone 4 further comprises an antimicrobial substance blended with the micron-sized fibers to form a micron-sized fiber network for forming the first zone.
  • a filling type processing method that is, the micro-scale fiber network of the first zone 4 is composed of the blended textile fiber of the antibacterial substance and the micron-sized fiber; or the antibacterial substance is forming the composite fiber network. It is added later (which may be referred to as a post-processing type processing method), that is, the antibacterial substance is added to the composite fiber network.
  • the dressing obtained by the filling type processing method (especially the first zone 4) has higher antibacterial substance adhesion and longer antibacterial effect, and is especially suitable for reusable dressings, which has high cleaning resistance and is not easy to clean due to washing and disinfection, for example. Disposal and loss of antibacterial properties.
  • the post-processing type processing method combines the antibacterial substance on the surface of the fiber through the chemical bond and the hydrogen bond after the formation of the fiber network, and is generally suitable for the disposable dressing, and the cleaning performance is poor, but the processing is relatively simple and the cost is low.
  • the antimicrobial substance may include an antimicrobial drug (eg, nanoscale particles thereof), and may also include nanoscale particles having an antibacterial effect including, but not limited to, nanosilver materials, chitosan and derivatives thereof, and the like.
  • the nano silver material has excellent antibacterial properties, and has the following characteristics: broad-spectrum antibacterial, strong sterilization, strong permeability, repair and regeneration, antibacterial and long-lasting and non-resistance; chitosan and its derivatives have outstanding Antibacterial activity, good biodegradability, biocompatibility, moisture absorption and moisturization, and an environmentally friendly antibacterial agent, antibacterial to yeast, mold, Gram-positive and Gram-negative bacteria.
  • various antimicrobial materials can be incorporated into the nanofiber network of the composite fiber network using corresponding methods.
  • chitosan and its derivatives chitosan fibers can be uniformly coated by electrospinning into a nanofiber network composed of bacterial cellulose, or by oxidizing bacterial cellulose nanofiber networks ( The negatively charged as the base film utilizes the electrostatic interaction between the anionic and cationic polyelectrolytes to act on the chitosan-based cationic polymer to obtain a polyelectrolyte composite nanofiber network having antibacterial properties.
  • the nano-silver material comprises silver nanoclusters
  • the nano-silver clusters have an energy level splitting and a quantum size effect due to small size, so that they have a remarkable fluorescent effect, which not only has ordinary nano silver materials.
  • it can also fluoresce at a wavelength of 622 nm to indicate sterilization.
  • the silver nanoclusters can be adsorbed into the nano-scale fiber network by preparing the silver nano-cluster solution and soaking the film, and rinsing and drying the soaked film, and adsorbing the nano-fiber network of the silver nano-clusters A partial microscopic schematic view is shown in Fig.
  • the first region 4 develops color (for example, appears pink), and the user can judge the killing of the wound bacteria according to the change in the depth of the pink color.
  • the first region 4 of the loaded silver nanoclusters 6 can effectively inhibit colony growth, and the fluorescence intensity decreases as the bacterial concentration decreases.
  • the cellulose gel particles may also be filled in at least one of the composite fiber network of the first zone 4 of the dressing and the micron-sized fiber network of the second zone 3 to further enhance blood absorption capacity, further Keep the dressing and the wound dry and effectively prevent the problem of sticking to the wound.
  • the materials of the first zone and the second zone have moderate hydrophilicity, such as cellulose modified as a raw material with natural polysaccharide molecules, thereby avoiding excessive expansion of the dressing.
  • wound overflow can be collected in the second zone 3 for in situ detection to analyze the composition of the spill
  • the second zone 3 is composed of a micron-sized fiber network that forms micropores as a natural
  • the capillary channel can drive the overflow liquid by its own capillary action without the need to separately drive the pump, thus facilitating the collection and analysis of the overflow liquid.
  • Fig. 4(a) by pressing the first zone 4 in the pressing direction B shown, the capillary action of the micro-scale fiber network of the second zone 3 drives the overflow liquid to flow along the fluid drive direction A to the second zone. 3.
  • the reagent may be incorporated in a micron-scale fiber network of the second zone 3 in a manner that incorporates an antimicrobial-like substance into the fiber network, such that the dressing acts as a test strip,
  • the various components in the overflow liquid in the second zone 3 react with the reaction reagent to generate various labeling effects such as, but not limited to, color development, luminescence, etc., to obtain various components such as glucose, protein, nitrite,
  • the detection result of any one or more of the enzyme and the tumor marker may be incorporated in a micron-scale fiber network of the second zone 3 in a manner that incorporates an antimicrobial-like substance into the fiber network, such that the dressing acts as a test strip.
  • the various components in the overflow liquid in the second zone 3 react with the reaction reagent to generate various labeling effects such as, but not limited to, color development, luminescence, etc., to obtain various components such as glucose, protein, nitrite,
  • a microfluidic channel 7 may be formed in the second zone 3, such as on the lower surface of the second zone 3, as shown in Figure 4(b), by quantitatively setting the microfluidic channel 7.
  • the overflow liquid flowing to the second zone 3 can be flowed in accordance with the arrangement of the microfluidic channel 7, so that quantitative detection of various components of the overflow liquid is facilitated.
  • the flexible arrangement of the microfluidic channel 7 can also be utilized to achieve various conditions required for detecting the overflow liquid. For example, if multi-index detection of the overflow liquid is to be realized, a multi-branched microfluidic channel 7 can be provided. Different branches require different arrival times of the overflow (for example, different reaction times with the reagents), and the liquid level difference can be set for different branches.
  • the dressing of the second zone 3 provided with the microfluidic channel 7 can be used as a paper chip, and can be combined with optical detection means (colorimetry, fluorescence, chemiluminescence, electrochemiluminescence, surface enhanced Raman spectroscopy, etc.) ), electrochemical detection means or a combination of any one or more of these means for detection of various clinical analytes in blood and body fluids, such as glucose, protein, nitrite, enzymes, tumor markers Things, etc., provide a new analytical platform for early diagnosis and treatment and bedside testing.
  • optical detection means colorimetry, fluorescence, chemiluminescence, electrochemiluminescence, surface enhanced Raman spectroscopy, etc.
  • a reagent zone 8 may be provided in the second zone 3, the reagent zone 8 containing glucose, protein, nitrite, enzyme for the body fluid flowing through the microfluidic channel 7.
  • a reaction reagent for detecting any one or more of the tumor markers can be pre-bonded to the micron-sized fiber network of the second zone 3, and the body fluid flowing into the microfluidic channel 7 is contacted with the microfluidic channel 7 before the formation of the microfluidic channel 7 by various means such as binding of the antibacterial substance to the fiber network.
  • the reaction reagent reacts to develop color, which can be used for diagnosing diseases and is inexpensive.
  • different second zones 3 may be provided with different reaction reagent zones 8, or different reaction reagent zones 8 may be disposed in different branches of the microfluidic channels 7 in the same second zone 3.
  • the results of detection of any one or more of a variety of clinical analytes, such as glucose, protein, nitrite, enzyme, tumor markers, are obtained at one time.
  • FIG. 5 shows a flow chart of a method of manufacturing a base film 2 of a dressing according to a fourth embodiment of the present disclosure.
  • the method comprises: forming a micron-sized fiber network layer by using microfibers (step 401), and casting a portion of the micron-sized fiber network layer corresponding to the first region to comprise a nano-scale fiber dispersion Slurry and press-drying to obtain a composite fiber network layer (step 402); and segmenting the fiber network layer formed by the remaining portions of the composite fiber network layer and the micron-sized fiber network layer to obtain the base film (Ste 403).
  • This method makes it possible to manufacture the base film conveniently and in batches.
  • the method of manufacturing the base film 2 of the dressing may further comprise the steps of: preparing a silver nanocluster solution before the dividing step; and corresponding to the first region in the obtained composite fiber network layer The portion is immersed in the silver nanoclustered solution; the portion of the immersed composite fiber network layer is then rinsed and dried.
  • the silver nanoclusters 6 can be sufficiently dispersed and adsorbed into the nano-scale fiber network in a simple manner, so that the prepared base film not only has a spectral bactericidal effect, but also exhibits different fluorescent color development according to the killing condition of the bacteria. So that the user can intuitively judge the killing of the wound according to the change of the pink color.
  • the following specific process can be adopted to fully disperse and adsorb the silver nanoclusters 6 into the nanofiber network: mixing silver nitrate and polymethacrylic acid in a preferred molar ratio of 4:1 to obtain a diameter of 2 nm or less.
  • Silver nanoclustered solution the fibrous base film was immersed in a polymethyl methacrylate-coated aqueous solution of silver nanoclusters for several hours, then rinsed with deionized water and dried.
  • the silver nanoclustered solution may take various preparation methods.
  • these preparation methods include a House-Schiffrin synthesis method, a template method, and a precursor/ligand induced etching method. any type.
  • the silver nanoclustered solution can be obtained by a mixed reaction of silver nitrate and a polymer comprising polymethacrylic acid, polymethyl methacrylate, polyvinylpyrrolidone, deoxyribonucleic acid. any type.
  • the method of manufacturing the base film 2 of the dressing may further include forming a microfluidic channel 7 on the lower surface of the second region 3 of the base film 2 prior to the dividing step.
  • a microfluidic channel 7 can be formed using a curable hydrophobic material, including but not limited to waxes, photoresists, long chain alkyl silanes (eg, octadecyl trichloride) Silane), alkyl ketene dimer, etc.
  • the corresponding processes include, but are not limited to, photolithography, printing, hand-painting, and the like.
  • a hydrophobic region formed by a hydrophobic material defines a microfluidic channel.
  • Figure 6 shows an illustration of a process flow for forming a microfluidic channel 7 on the lower surface of the second zone 3 of the base film 2 of the dressing, as shown in Figure 6, in accordance with a fifth embodiment of the present disclosure.
  • the method includes the steps of: applying a hydrophobic photoresist layer on a surface of another portion of the formed fiber network layer corresponding to the second region 3 of the base film 2 (step 501); On the photoresist layer (step 502); exposing the other portion and the stack of the photoresist layer via the mask layer, such as ultraviolet degradation or the like (step 503); removing the mask layer and The photoresist layer is developed to form the microfluidic channel 7 (step 504).
  • the photoresist layer may be any one of a positive photoresist and a negative photoresist.
  • a positive photoresist is used as an example, as shown in FIG. 6, in step 503, photolithography is performed. a photochemical reaction occurs in the exposed portion of the adhesive layer; in step 504, the exposed portion of the photoresist layer is dissolved in the developer, and the unexposed portion remains in the second region of the formed fiber network layer corresponding to the base film 2.
  • the surface of another portion of 3 forms the microfluidic channel 7.
  • the portion of the photoresist layer remaining forms a hydrophobic region 31, as shown in FIG.
  • steps 503 and 504 described above are the patterning process of the photoresist layer.
  • the area where the photoresist is removed corresponds to the area where the microfluidic channel is formed.
  • the illustrated rectangular dressing is only an example, and other shaped dressings as variations thereof are intended to be included in the scope of this patent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials For Medical Uses (AREA)

Abstract

一种用于敷料的基膜及其制造方法以及包括该基膜的敷料。用于敷料的基膜(2),包括:第一区(4),包括微米级纤维网络及纳米级纤维网络的复合纤维网络;以及第二区(3),包括微米级纤维网络,其中所述复合纤维网络和所述微米级纤维网络由高分子材料制成。这种敷料无需胶层就能与皮肤紧密贴合,在液体环境下保持良好的贴合性,具有良好的透气性,从而加快伤口愈合并防止细菌感染,还能够提供观察窗口和对伤口溢出液的原位检测,并且成本低廉,使用环保。

Description

用于敷料的基膜及其制造方法以及包括该基膜的敷料
本申请要求于2018年4月26日递交的中国专利申请第201810386416.X号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及用于敷料的基膜及其制造方法以及包括该基膜的敷料。
背景技术
目前所采用的医学敷料主要可分为织物材质的敷料和塑料(基于树脂)的敷料。织物材质的敷料,例如织物材质的创可贴,不防水,相对于涂敷的人体部位密封不严,易使伤口感染;而塑料敷料,例如塑料贴膜,则不透湿不透气,使用时间长了伤口容易化脓恶化。
通常敷料中需要设置胶层,以便牢固贴合到皮肤上,但是在液体环境,例如体液的浸润,环境的湿度较大,等等,均会破坏胶层的粘合力,导致敷料的脱落,并且胶层相对于皮肤的粘贴和撕拉,都会给使用者带来不适。
目前虽然试图在医学敷料中引入了一些抗菌药物,但敷料的材质对于抗菌药物的吸附性并不好,抗菌药物容易掉落,也容易扩散到环境中,被人体摄入影响健康,这种方式不但浪费药物,还有可能导致细菌群发感染,使伤口恶化。
此外,目前所采用的医学敷料通常遮盖或包覆伤口,医护人员或其他使用者在涂敷敷料时无法确定敷料相对于伤口的定位,从而会出现对不准,导致该被涂覆的伤口区域未被充分涂覆而敷料却施加到无需涂覆的正常周边组织的情况,导致敷料的使用效率较低。进一步地,由于伤口被包裹住,无法方便地查看伤口愈合情况,医护人员或其他使用者为了查看并确认伤口的状况,需要反复打开敷料并重新涂敷,这容易拉扯伤口从而影响其恢复。
发明内容
本公开的实施例提供一种用于敷料的基膜,包括:第一区,包括微米级纤维网络及纳米级纤维网络的复合纤维网络;以及第二区,包括微米级纤维网络,其中所述复合纤维网络和所述微米级纤维网络由高分子材料制成。
在一些示例中,所述基膜是透明或半透明的。
在一些示例中,所述复合纤维网络包括如下结构至少之一:纳米级纤维分散体分布于所述微米级纤维网络中;微米级纤维和纳米级纤维交织而成的网络;以及微米级纤维网络与纳米级纤维网络的叠层。
在一些示例中,所述第一区和所述第二区采用纤维素、纤维素的衍生物、甲壳素、甲壳素的衍生物中的任何一种或多种制成。
在一些示例中,所述第一区位于所述基膜的中部,并被所述第二区围绕。
在一些示例中,所述第一区的复合纤维网络中还包含抗菌物质。
在一些示例中,所述第一区的微米级纤维网络包括所述抗菌物质与微米级纤维的共混纺织纤维;或者所述抗菌物质添加在所述复合纤维网络中。
在一些示例中,所述抗菌物质包括银纳米团簇。
在一些示例中,所述第一区的复合纤维网络和第二区的微米级纤维网络的至少之一内填充有纤维素凝胶颗粒。
在一些示例中,所述第二区中形成有微流体通道。
在一些示例中,所述第二区包括疏水区域,所述微流体通道由所述疏水区域限定。
在一些示例中,所述第二区中形成有反应试剂区,所述反应试剂区包括检测体液的反应试剂,且所述反应试剂区与所述微流体通道连通。
在一些示例中,所述反应试剂包括用于检测葡萄糖、蛋白质、亚硝酸盐、酶、肿瘤标志物中的任何一种或多种的反应试剂。
本公开的实施例提供一种敷料,包括上述任一项所述的基膜。
在一些示例中,所述敷料的两个相对的表面至少之一上设置有保护膜。
本公开的实施例提供一种制造用于敷料的基膜的方法,包括:形成微米级纤维网络层;在所述微米级纤维网络层中的部分区域形成微米级纤维网络和纳米级纤维网络的复合纤维网络层,从而形成包括复合纤维网络层的第一区以及所述复合纤维网络层之外的第二区。
在一些示例中,形成所述复合纤维网络层包括以下步骤至少之一:将微 米级纤维和纳米级纤维交织;将微米级纤维网络和纳米级纤维网络叠置;以及将纳米级纤维分散体分散到所述微米级纤维网络中。
在一些示例中,将所述纳米级纤维分散体分散到所述微米级纤维网络中包括:将包含所述纳米级纤维分散体的浆料施加到所述微米级纤维网络上,并压干成型。
在一些示例中,所述方法还包括:制备银纳米团簇溶液;将所述银纳米团簇溶液施加于所述复合纤维网络层;以及对所述复合纤维网络层进行冲洗并干燥。
在一些示例中,所述银纳米团簇溶液利用布鲁斯特-谢夫林合成方法、模板法、前驱体/配体诱导刻蚀法中的任何一种来制备。
在一些示例中,所述银纳米团簇溶液利用硝酸银和聚合物的水溶液混合反应来得到,所述聚合物包括聚甲基丙烯酸、聚甲基丙烯酸甲酯、聚乙烯吡咯烷酮、脱氧核糖核酸中的任何一种或多种。
在一些示例中,所述方法还包括:在所述第二区的微米纤维网络层中形成施加疏水的光刻胶层;对所述光刻胶图案化以去除部分光刻胶,从而在去除所述部分光刻胶的区域形成亲水的微流体通道。
在一些示例中,所述方法还包括:在所述第二区添加反应试剂以形成反应试剂区,所述反应试剂区与所述微流体通道连通。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1示出根据本公开的实施例的敷料的剖视图;
图2示出图1所示的敷料的俯视图;
图3示出根据本公开的实施例的敷料的第一区中的内部微观结构的示意图;
图4(a)示出根据本公开的实施例的利用敷料对伤口溢出液进行原位检测的过程的图示;
图4(b)示出根据本公开的实施例的微流体通道的图示;
图5示出根据本公开的实施例的制造敷料的基膜的方法的流程图;
图6示出根据本公开的实施例的在敷料的基膜的第二区的下表面上形成微流体通道的工艺流程的图示。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定器件位于第一器件和第二器件之间时,在该特定器件与第一器件或第二器件之间可以存在居间器件,也可以不存在居间器件。当描述到特定器件连接其它器件时,该特定器件可以与所述其它器件直接连接而不具有居间器件,也可以不与所述其它器件直接连接而具有居间器件。本公开中所使用的术语“敷料”表示涂敷于生理部位的各种片材,其具体形式包括但不限于创可贴、贴膜、贴纸等。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
图1示出根据本公开的实施例的敷料的剖视图。该敷料包括基膜2,其中基膜由高分子材料制成,由纤维交错搭接而成网络结构。在一些实施例中, 敷料除了基膜2以外,还可以包括封装件,以便利对基膜2的封装和运输。作为示例,如图1所示,该敷料可由基膜2和上下两层隔离保护膜1组成。封装件也可以采取其他布置,例如包装袋等。例如,这里的封装件是指保护膜,其可以至少设置在基膜2的一个表面上。
如图1和图2所示,所述基膜1包括:第一区4,其主要由微米级纤维网络及纳米级纤维网络的复合纤维网络构成;以及第二区3,其主要由微米级纤维网络构成。这种敷料中基膜2的第一区4由微米级纤维网络及纳米级纤维网络的复合纤维网络构成,具有如下优点:比表面积大,表面吸附性好,有利于抗菌物质在其表面的吸附和缓释;表面孔隙率高,透气性好,有利于伤口的恢复。
例如,微米级纤维网络是指网络内孔隙的孔径在微米量级,纳米级纤维网络是指网络内孔隙的孔径在纳米量级。
虽然在以上实施例中以第一区为微米级纤维网络和纳米级纤维网络的复合纤维网络、第二区为微米级纤维网络为例进行了描述,但本公开的实施例不限于此。第二区也可以包括纳米级纤维网络。
鉴于基膜1由纤维网络构成,而纤维网络构成的薄膜只需稍加润湿即可和皮肤形成良好的覆形接触,因此敷料无需胶层。即便持续浸润在液体环境中,基膜1能够保持润湿状态,从而能够保持和皮肤的良好覆形接触而不脱落。通过摆脱对胶层的依赖,敷料的基膜1增加了使用者的使用舒适度,揭开敷料不必忍受胶层撕拉皮肤的痛楚,并且敷料的基膜1可反复覆回伤口,只要敷料的基膜1保持润湿,就依然能够保持良好的覆形接触,不会因为胶层的失效而影响覆形接触。在一些实施例中,基膜1可涂布有润湿剂,比如甘油,来增加基膜1表面的亲水性,从而有效延长贴服时间。
在一些实施例中,所述基膜1可以制作成较小的厚度,例如大约100-200微米的厚度,从而进一步增加了透气性和涂敷的舒适感,此种轻薄的基膜1配合润湿纤维基对皮肤的覆形接触作用,能够使得敷料更紧密牢固地贴合到待涂敷部位,例如皮肤。
在一些实施例中,所述基膜2可以被构造为是透明或半透明的。
在一些实施例中,所述第一区4和所述第二区3可使用纤维素、纤维素的衍生物、甲壳素、甲壳素的衍生物中的任何一种或多种作为原材料,这些 原材料容易获得,例如可以从天然材料提取得到,成本低廉,具有优异的生物相容性和降解性能,并且制成的基膜1通常是透明或半透明的,便于用户透过敷料实时观察伤口恢复状况。在一些实施例中,第一区4和第二区3的材料都选用纤维素纤维,纤维素表面大量的羟基具有天然的亲水性,便于与溢出体液的伤口的贴合。上述第一区4的复合纤维网络可以采用各种方式来形成,例如,可以利用微米级纤维和纳米级纤维交织而成,可以将微米级纤维网络与纳米级纤维网络叠置而成,或者也可以通过向微米级纤维网络中添加纳米级纤维分散体来得到。
在一些实施例中,所述纳米级纤维网络由微米级纤维网络中分布的纳米级纤维分散体构成。例如,可以首先形成微米级纤维网络作为第一区4的基材,然后向第一区4的微米级纤维网络内利用浸泡、浇筑、喷涂、涂敷等任何一种或多种手段来填充纳米级纤维分散体,来形成所述纳米级纤维网络。如此,通过利用纳米级纤维分散体填充微米级孔隙,减少微米级孔隙的数量,减小孔隙尺寸,从而减少了光的散射(孔隙尺寸若足够小甚至可以避免光散射),提高了透光率,进一步提高局部透明度。具有充分透明度的第一区4可用作观察窗口,便利使用者在涂敷敷料时相对于伤口进行准确定位,也便于使用者在涂敷敷料后随时观察伤口的愈合或者发炎情况,而无需反复揭开敷料,从而有助于伤口的恢复。在一些实施例中,纳米级纤维分散体在液态环境下被填充,例如将第一区4的材料浸入纳米级纤维分散体的浆料(例如悬浮液)中,可以在填充(例如浇筑)纳米级纤维分散体时压紧第一区4周边,防止浆料连同其包含的纳米级纤维分散体渗入其他区域,例如第二区3,待压干成型后撤销压紧。
如图2所示,作为示例,所述第一区4是所述基膜2的中央区,也就是,所述第二区3可以包围所述第一区4。鉴于通常围绕伤口来涂敷敷料,也就是伤口通常位于敷料中央的位置,将第一区4设置在敷料中央附近,使得当第一区4用作观察窗口时,能够更全面清楚地观察到伤口的状况。但是第二区3与第一区4的相对位置并不限于此,根据具体需求可以调整两者的相对位置。需要注意的是,这里的“中央”位置并不是正中间的位置,第一区4可以位于基板2的中部任意合适的位置。另外,第二区3围绕第一区4,但并不表示第一区4必须完全包围在第一区4的四周,还可以是第二区3设置 在第一区4的部分周边位置。
在一些实施例中,所述第一区4的复合纤维网络中还包含抗菌物质,所述抗菌物质与微米级纤维共混纺织成纤维用于形成所述第一区的微米级纤维网络(可称为填充型加工方法),也就是,所述第一区4的微米级纤维网络由所述抗菌物质与微米级纤维的共混纺织纤维构成;或者所述抗菌物质在形成所述复合纤维网络后添加到其中(可称为后加工型加工方法),也就是,所述抗菌物质添加在所述复合纤维网络中。填充型加工方法得到的敷料(尤其第一区4)抗菌物质粘附性更高,抗菌效果更持久,尤其适用于可反复使用的敷料,耐清洁性能较高,不易因为例如洗涤和消毒的清洁处理而失去抗菌性。后加工型加工方法在纤维网络形成后将抗菌物质通过化合键和氢键结合在纤维表面,一般适用于一次性的敷料,耐清洁性能较差,但加工比较简单,成本较低。
所述抗菌物质可包括抗菌药物(例如其纳米级颗粒),也可以包括具有抗菌效用的纳米级微粒,包括但不限于纳米银材料、壳聚糖及其衍生物等等。其中,纳米银材料具有优良的抗菌性,其具有如下特点:广谱抗菌、强效杀菌、渗透性强、修复再生、抗菌持久且无耐药性;壳聚糖及其衍生物则具有突出的抗菌活性、良好的生物降解性、生物相容性、以及吸湿保湿性,并且是一种环境友好型抗菌剂,对酵母菌、霉菌、革兰氏阳性和革兰氏阴性细菌都有抗菌性。通过采用纳米银材料、壳聚糖及其衍生物中的任何一种或多种作为复合纤维网络中的抗菌物质,能够实现相应有益的抗菌效果。
在一些实施例中,可以针对各种抗菌物质采用相应的方法将其结合到复合纤维网络的纳米级纤维网络中。例如,对于壳聚糖及其衍生物而言,可以通过静电纺丝法将壳聚糖纤维均匀覆盖到细菌纤维素构成的纳米级纤维网络中,也可以通过以氧化细菌纤维素纳米纤维网络(带负电荷)为基膜,利用阴阳离子聚电解质之间的静电作用,作用于壳聚糖类阳离子聚合物,得到具有抗菌性能的聚电解质复合纳米级纤维网络。
在一些实施例中,所述纳米银材料包括银纳米团簇,纳米银团簇由于尺寸小而产生的能级分裂、量子尺寸效应,使其具有明显的荧光效应,其不仅具有普通纳米银材料的杀菌效用,还可以在622nm波长处发出荧光来指示杀菌情况。可以通过制备银纳米团簇溶液并用其浸泡膜片并对浸泡后的膜片进 行冲洗和干燥来将银纳米团簇吸附到纳米级纤维网络中,吸附有银纳米团簇的纳米级纤维网络的局部的微观示意图如图3所示,其中,银纳米团簇6散布并吸附于所述第一区4中的纳米级纤维网络的纤维链5上。由于纤维基膜较大的比表面积,因此能够用氢键吸附足够多的银纳米团簇6。通过在纤维链5上掺杂该粒子,第一区4显色(例如呈现粉色),使用者可根据其粉色的深浅变化来判断伤口细菌杀灭情况。负载银纳米团簇6的第一区4能够有效抑制菌落生长,随着细菌浓度的降低,荧光强度降低。
在一些实施例中,还可在敷料的所述第一区4的复合纤维网络和第二区3的微米级纤维网络的至少一个内填充纤维素凝胶颗粒,以进一步提高血液吸收能力,进一步保持敷料与伤口间的干爽,有效防止与伤口粘结的问题。
在一些实施例中,所述第一区和所述第二区的材料具有适度的亲水性,例如可用天然多糖分子修饰作为原材料的纤维素,从而避免敷料的过度膨胀。
在一些实施例中,可以在第二区3收集伤口溢出液进行原位检测,对溢出液的成分进行分析,第二区3由微米级纤维网络构成,该微米级纤维网络形成微米孔隙作为天然的毛细通道,可以通过自身毛细作用来驱动溢出液而无需另设驱动泵,从而便利溢出液的收集和分析。如图4(a)所示,通过在所示的按压方向B上按压第一区4,第二区3的微米级纤维网络自身的毛细作用驱动溢出液沿着流体驱动方向A流向第二区3。在一些实施例中,可以在第二区3的微米级纤维网络中,利用类似抗菌物质结合到纤维网络的各种方式,结合有所述反应试剂,如此敷料起到试纸的作用,通过使得流到第二区3中的溢出液中的各种成分与反应试剂反应,生成各种标识效果,例如但不限于显色、发光等,来得到各种成分,例如葡萄糖、蛋白质、亚硝酸盐、酶、肿瘤标志物中的任何一种或多种的检测结果。
在一些实施例中,可以在第二区3中,例如在第二区3的下表面上,形成有微流体通道7,如图4(b)所示,通过对微流体通道7的定量设置,流向第二区3的溢出液可以按照微流体通道7的布置进行流动,如此便于实现对溢出液的各种成分的定量检测。此外,也可以利用微流体通道7的灵活布置,实现对溢出液的检测所需的各种条件,例如,如果要实现对溢出液的多指标检测,可以设置多分支的微流体通道7,当不同分支需要溢出液的不同到达时间(例如与反应试剂的不同反应时间),可以对不同分支设置液面差。
如此,第二区3设置有微流体通道7的敷料可以用作纸芯片,可结合光学检测手段(比色法、荧光法、化学发光法、电致化学发光法、表面增强拉曼光谱法等)、电化学检测手段或者这些手段中任意一种或多种的联用等检测技术,应用于血液、体液中多种临床分析物的检测,如葡萄糖、蛋白质、亚硝酸盐、酶、肿瘤标志物等,为早期诊断治疗和床旁检测提供全新的分析平台。
在一些实施例中,可以在第二区3中设有反应试剂区8,所述反应试剂区8含有用于对所述微流体通道7中流过的体液进行葡萄糖、蛋白质、亚硝酸盐、酶、肿瘤标志物中的任何一种或多种进行检测的反应试剂。所述反应试剂可以利用类似抗菌物质结合到纤维网络的各种方式,在形成微流体通道7之前,预先结合到第二区3的微米级纤维网络中,流入微流体通道7的体液与接触到的反应试剂反应显色,可用于诊断疾病且成本低廉。在一些实施例中,不同的第二区3可以设置不同的反应试剂区8,或者,在同个第二区3中也可以在微流体通道7的不同支路上设置不同的反应试剂区8,以一次得到多种临床分析物,例如葡萄糖、蛋白质、亚硝酸盐、酶、肿瘤标志物中的任何一种或多种的检测结果。
图5示出根据本公开的第四实施例的制造敷料的基膜2的方法的流程图。如图5所示,该方法包括:利用微米纤维形成微米级纤维网络层(步骤401),对所形成的微米级纤维网络层中对应于所述第一区的一部分浇注包含纳米级纤维分散体的浆料,并压干成型以得到复合纤维网络层(步骤402);以及对复合纤维网络层和微米级纤维网络层的剩余部分所构成的纤维网络层进行分割,以得到所述基膜(步骤403)。该方法能够方便且批量地制造基膜。
在一些实施例中,所述敷料的基膜2的制造方法还可以在分割步骤之前包括如下步骤:制备银纳米团簇溶液;将所得到的复合纤维网络层中对应于所述第一区的所述一部分浸泡于所述银纳米团簇溶液中;然后对浸泡后的所述复合纤维网络层的所述一部分进行冲洗并干燥。由此,能够以简单的方式将银纳米团簇6充分散布并吸附到纳米级纤维网络中,从而所制造的基膜不仅具有光谱杀菌作用,还可以根据细菌杀灭情况呈现不同的荧光显色,以便于使用者可根据其粉色的深浅变化来直观地判断伤口细菌杀灭情况。作为示例,可采取如下的具体过程来将银纳米团簇6充分散布并吸附到纳米级纤维 网络中:将硝酸银和聚甲基丙烯酸以4:1的优选摩尔比混合反应,得到直径2nm以下的银纳米团簇溶液;将纤维基膜浸泡于聚甲基丙烯酸包裹的银纳米团簇水溶液中数小时,然后用去离子水冲洗并压干。
所述银纳米团簇溶液可以采取各种制备方法,在一些实施例中,这些制备方法包括布鲁斯特-谢夫林(Brust-Schiffrin)合成方法、模板法、前驱体/配体诱导刻蚀法中的任何一种。作为示例,所述银纳米团簇溶液可以利用硝酸银和聚合物的水溶液混合反应来得到,所述聚合物包括聚甲基丙烯酸、聚甲基丙烯酸甲酯、聚乙烯吡咯烷酮、脱氧核糖核酸中的任何一种。
在一些实施例中,所述敷料的基膜2的制造方法在分割步骤之前,还可以包括在所述基膜2的第二区3的下表面上形成微流体通道7。在一些实施例中,可以采用能够固化的疏水性材料来形成微流体通道7,所述疏水性材料包括但不限于蜡、光刻胶、长碳链烷基硅烷(例如十八烷基三氯硅烷)、烷基烯酮二聚体等,相应的工艺包括但不限于光刻、打印、手绘等等。例如,疏水性材料形成的疏水区域限定微流体通道。
图6示出根据本公开的第五实施例的在敷料的基膜2的第二区3的下表面上形成微流体通道7的工艺流程的图示,如图6所示,所述工艺流程包括如下步骤:在所构成的纤维网络层中对应于所述基膜2的第二区3的另一部分的表面上施加疏水的光刻胶层(步骤501);将掩膜层叠置在所述光刻胶层上(步骤502);经由所述掩膜层对所述另一部分和光刻胶层的叠层进行曝光,例如紫外光降解等(步骤503);去除所述掩膜层并对所述光刻胶层进行显影,从而形成所述微流体通道7(步骤504)。光刻胶层可采用正性光刻胶和负性光刻胶中的任何一种,图6的工艺流程中采用正性光刻胶作为示例,如图6所示,在步骤503,光刻胶层的曝光部分发生光化学反应;在步骤504中,光刻胶层的曝光部分溶于显影液,未曝光部分则保留在所构成的纤维网络层中对应于所述基膜2的第二区3的另一部分的表面上,从而形成所述微流体通道7。例如,光刻胶层保留的部分则形成疏水区域31,如图6所示。例如,上述的步骤503和504为光刻胶层的图案化过程。例如,光刻胶被去除的区域对应于形成微流体通道的区域。
在本公开中,图示的矩形敷料仅作为示例,其他异形敷料作为其变型例,均应纳入本专利保护范围。
此外,尽管已经在本文中描述了示例性实施例,其范围包括任何和所有基于本公开的具有等同元件、修改、省略、组合(例如,各种实施例交叉的方案)、改编或改变的实施例。权利要求书中的元件将被基于权利要求中采用的语言宽泛地解释,并不限于在本说明书中或本申请的实施期间所描述的示例,其示例将被解释为非排他性的。因此,本说明书和示例旨在仅被认为是示例,真正的范围和精神由以下权利要求以及其等同物的全部范围所指示。
以上描述旨在是说明性的而不是限制性的。例如,上述示例(或其一个或更多方案)可以彼此组合使用。例如本领域普通技术人员在阅读上述描述时可以使用其它实施例。另外,在上述具体实施方式中,各种特征可以被分组在一起以简单化本公开。这不应解释为一种不要求保护的公开的特征对于任一权利要求是必要的意图。相反,本发明的主题可以少于特定的公开的实施例的全部特征。从而,以下权利要求书作为示例或实施例在此并入具体实施方式中,其中每个权利要求独立地作为单独的实施例,并且考虑这些实施例可以以各种组合或排列彼此组合。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (23)

  1. 一种用于敷料的基膜,包括:
    第一区,包括微米级纤维网络及纳米级纤维网络的复合纤维网络;以及
    第二区,包括微米级纤维网络,
    其中所述复合纤维网络和所述微米级纤维网络由高分子材料制成。
  2. 根据权利要求1所述的基膜,其中,所述基膜是透明或半透明的。
  3. 根据权利要求1或2所述的基膜,其中,所述复合纤维网络包括如下结构至少之一:
    纳米级纤维分散体分布于所述微米级纤维网络中;
    微米级纤维和纳米级纤维交织而成的网络;以及
    微米级纤维网络与纳米级纤维网络的叠层。
  4. 根据权利要求1-3中任何一项所述的基膜,其中,所述第一区和所述第二区采用纤维素、纤维素的衍生物、甲壳素、甲壳素的衍生物中的任何一种或多种制成。
  5. 根据权利要求1-4中任何一项所述的基膜,其中,所述第一区位于所述基膜的中部,并被所述第二区围绕。
  6. 根据权利要求1-5中任何一项所述的基膜,其中,所述第一区的复合纤维网络中还包含抗菌物质。
  7. 根据权利要求6所述的基膜,其中,所述第一区的微米级纤维网络包括所述抗菌物质与微米级纤维的共混纺织纤维;或者所述抗菌物质添加在所述复合纤维网络中。
  8. 根据权利要求6或7所述的基膜,其中,所述抗菌物质包括银纳米团簇。
  9. 根据权利要求1-8中任一项所述的基膜,其中,所述第一区的复合纤维网络和第二区的微米级纤维网络的至少之一内填充有纤维素凝胶颗粒。
  10. 根据权利要求1-9中任一项所述的基膜,其中,所述第二区中形成有微流体通道。
  11. 根据权利要求10所述的基膜,其中,所述第二区包括疏水区域,所述微流体通道由所述疏水区域限定。
  12. 根据权利要求10或11所述的基膜,其中,所述第二区包括反应试剂区,所述反应试剂区包括检测体液的反应试剂,且所述反应试剂区与所述微流体通道连通。
  13. 根据权利要求12所述的基膜,其中,所述反应试剂包括用于检测葡萄糖、蛋白质、亚硝酸盐、酶、肿瘤标志物中的任何一种或多种的反应试剂。
  14. 一种敷料,包括权利要求1-13中任一项所述的基膜。
  15. 根据权利要求14所述的敷料,其中,所述敷料的两个相对的表面至少之一上设置有保护膜。
  16. 一种制造用于敷料的基膜的方法,包括:
    形成微米级纤维网络层;
    在所述微米级纤维网络层中的部分区域形成微米级纤维网络和纳米级纤维网络的复合纤维网络层,从而形成包括复合纤维网络层的第一区以及所述复合纤维网络层之外的第二区。
  17. 根据权利要求16所述的制造用于敷料的基膜的方法,其中,形成所述复合纤维网络层包括以下步骤至少之一:
    将微米级纤维和纳米级纤维交织;
    将微米级纤维网络和纳米级纤维网络叠置;以及
    将纳米级纤维分散体分散到所述微米级纤维网络中。
  18. 根据权利要求17所述的制造用于敷料的基膜的方法,其中,将所述纳米级纤维分散体分散到所述微米级纤维网络中包括:
    将包含所述纳米级纤维分散体的浆料施加到所述微米级纤维网络上,并压干成型。
  19. 根据权利要求16-18中任一项所述的制造用于敷料的基膜的方法,还包括:
    制备银纳米团簇溶液;
    将所述银纳米团簇溶液施加于所述复合纤维网络层;以及
    对所述复合纤维网络层进行冲洗并干燥。
  20. 根据权利要求19所述的制造用于敷料的基膜的方法,其中,所述银纳米团簇溶液利用布鲁斯特-谢夫林合成方法、模板法、前驱体/配体诱导刻蚀法中的任何一种来制备。
  21. 根据权利要求19或20所述的制造用于敷料的基膜的方法,其中,所述银纳米团簇溶液利用硝酸银和聚合物的水溶液混合反应来得到,所述聚合物包括聚甲基丙烯酸、聚甲基丙烯酸甲酯、聚乙烯吡咯烷酮、脱氧核糖核酸中的任何一种或多种。
  22. 根据权利要求16-21中任一项所述的制造用于敷料的基膜的方法,还包括:
    在所述第二区的微米纤维网络层中形成施加疏水的光刻胶层;
    对所述光刻胶图案化以去除部分光刻胶,从而在去除所述部分光刻胶的区域形成亲水的微流体通道。
  23. 根据权利要求22所述的制造用于敷料的基膜的方法,还包括:
    在所述第二区添加反应试剂以形成反应试剂区,所述反应试剂区与所述微流体通道连通。
PCT/CN2018/117245 2018-04-26 2018-11-23 用于敷料的基膜及其制造方法以及包括该基膜的敷料 WO2019205613A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/756,256 US11793906B2 (en) 2018-04-26 2018-11-23 Base film for dressing and manufacturing method therefor, and dressing comprising the base film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810386416.XA CN108578752A (zh) 2018-04-26 2018-04-26 一种敷料及其基膜的制造方法
CN201810386416.X 2018-04-26

Publications (1)

Publication Number Publication Date
WO2019205613A1 true WO2019205613A1 (zh) 2019-10-31

Family

ID=63610259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117245 WO2019205613A1 (zh) 2018-04-26 2018-11-23 用于敷料的基膜及其制造方法以及包括该基膜的敷料

Country Status (3)

Country Link
US (1) US11793906B2 (zh)
CN (1) CN108578752A (zh)
WO (1) WO2019205613A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108578752A (zh) * 2018-04-26 2018-09-28 京东方科技集团股份有限公司 一种敷料及其基膜的制造方法
JP7045442B2 (ja) * 2019-12-23 2022-03-31 花王株式会社 ナノファイバシート並びにその使用方法及びその製造方法
CN112853612A (zh) * 2021-02-08 2021-05-28 苏州爱可思医疗科技有限公司 一种水溶性纳米纤维复合非织造医美材料及其制备方法
CN113679874B (zh) * 2021-09-03 2022-07-22 明基材料有限公司 多段释放敷料
CN113980630B (zh) * 2021-11-08 2023-08-18 张一平 基于甲硅烷基改性聚合物的工业创可贴的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110076205A (ko) * 2009-12-29 2011-07-06 주식회사 효성 상처용 드레싱재의 지지필름
CN102711850A (zh) * 2010-01-14 2012-10-03 于尔戈实验室 包含适于胶凝或溶解的纳米纤维或微米纤维的网的新型敷料
CN103088630A (zh) * 2011-10-28 2013-05-08 中国科学院化学研究所 一种用于促进伤口愈合的纳米纤维薄膜的制备方法
CN105073077A (zh) * 2013-02-12 2015-11-18 电化学氧概念公司 用于伤口治疗的敷料
CN105497969A (zh) * 2014-09-26 2016-04-20 理大产学研基地(深圳)有限公司 一种多层复合膜敷料及其制备方法
CN205322859U (zh) * 2015-12-14 2016-06-22 华南理工大学 一种可水分散遗弃的医用敷料
CN108578752A (zh) * 2018-04-26 2018-09-28 京东方科技集团股份有限公司 一种敷料及其基膜的制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7311752B2 (en) * 2005-09-12 2007-12-25 Argonide Corporation Electrostatic air filter
CA2674876A1 (en) * 2007-01-10 2008-07-17 Polyremedy, Inc. Wound dressing with controllable permeability
EP2152196A1 (en) 2007-05-01 2010-02-17 The Brigham and Women's Hospital, Inc. Wound healing device
CN102631699A (zh) * 2011-02-11 2012-08-15 佛山市优特医疗科技有限公司 含有纳米金属的抗菌性纤维类敷料及其制备方法
CN102908651B (zh) * 2012-10-30 2014-04-02 威高集团有限公司 一种具有微纳复合结构的氧化再生纤维素类止血材料的制备方法
CN104588645B (zh) * 2015-02-04 2016-08-24 山西大学 一种具有抗菌活性的银纳米团簇合物及其制备方法
BR112018070248B1 (pt) * 2016-03-30 2023-03-28 Synovo Gmbh Curativo para detecção de infecções microbianas em feridas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110076205A (ko) * 2009-12-29 2011-07-06 주식회사 효성 상처용 드레싱재의 지지필름
CN102711850A (zh) * 2010-01-14 2012-10-03 于尔戈实验室 包含适于胶凝或溶解的纳米纤维或微米纤维的网的新型敷料
CN103088630A (zh) * 2011-10-28 2013-05-08 中国科学院化学研究所 一种用于促进伤口愈合的纳米纤维薄膜的制备方法
CN105073077A (zh) * 2013-02-12 2015-11-18 电化学氧概念公司 用于伤口治疗的敷料
CN105497969A (zh) * 2014-09-26 2016-04-20 理大产学研基地(深圳)有限公司 一种多层复合膜敷料及其制备方法
CN205322859U (zh) * 2015-12-14 2016-06-22 华南理工大学 一种可水分散遗弃的医用敷料
CN108578752A (zh) * 2018-04-26 2018-09-28 京东方科技集团股份有限公司 一种敷料及其基膜的制造方法

Also Published As

Publication number Publication date
CN108578752A (zh) 2018-09-28
US11793906B2 (en) 2023-10-24
US20210187154A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
WO2019205613A1 (zh) 用于敷料的基膜及其制造方法以及包括该基膜的敷料
Li et al. Superhydrophobic hemostatic nanofiber composites for fast clotting and minimal adhesion
Zhang et al. In situ assembly of well-dispersed Ag nanoparticles throughout electrospun alginate nanofibers for monitoring human breath—Smart fabrics
JP5563817B2 (ja) ナノファイバシートの付着方法
JP5295943B2 (ja) ナノファイバシート
DE69733311T2 (de) Wundpflaster mit leckagefreier dichtung
CN107106722A (zh) 伤口敷料装置
JP2011507562A5 (zh)
JP5452212B2 (ja) 多層ナノファイバシート
WO2008027152A2 (en) Hemostatic fibrous media
CN109688993B (zh) 临时疏水基质材料处理、材料、试剂盒和方法
Chen et al. Nanoarchitectonics for electrospun membranes with asymmetric wettability
RU2578458C2 (ru) Медицинская многослойная повязка с многофункциональными наномембранами и изделия на ее основе
CN105727771B (zh) 一种类肝素改性的聚乙烯醇水凝胶薄层纳米复合血液透析膜及其制备方法
Luo et al. Superhydrophobic Biological Fluid‐Repellent Surfaces: Mechanisms and Applications
Krysiak et al. Stretchable skin hydrating PVB patches with controlled pores' size and shape for deliberate evening primrose oil spreading, transport and release
Zhang et al. Laser ablated Janus hydrogel composite membrane for draining excessive blood and biofluid around wounds
CN1775301A (zh) 核孔膜复合型医用敷料
CN2863046Y (zh) 核孔膜复合型创伤敷料
EP3717626A1 (fr) Dispositifs medicaux non-implantables integrant un dispositif de detection et/ou d'identification d'infections microbiologiques
WO2015018349A1 (zh) 一种复合结构的止血贴片及其制备方法
CN109498271B (zh) 一种定向吸液防粘连纱布及其制造方法
Kaur et al. Nanotechnological advancement in artificial intelligence for wound care
KR20200099648A (ko) 체액포집 및 청정점착이 가능한 하이브리드 미세 흡착구조의 건식 점착 패치 및 이의 제작 방법
CN214018128U (zh) 一种医用卫生巾及安全裤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916788

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18916788

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.05.2021)