WO2019205182A1 - 一种海底浅层天然气水合物固态流化绿色开采装置及方法 - Google Patents

一种海底浅层天然气水合物固态流化绿色开采装置及方法 Download PDF

Info

Publication number
WO2019205182A1
WO2019205182A1 PCT/CN2018/085796 CN2018085796W WO2019205182A1 WO 2019205182 A1 WO2019205182 A1 WO 2019205182A1 CN 2018085796 W CN2018085796 W CN 2018085796W WO 2019205182 A1 WO2019205182 A1 WO 2019205182A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hydrate
drilling
double
coiled tubing
Prior art date
Application number
PCT/CN2018/085796
Other languages
English (en)
French (fr)
Inventor
唐洋
王国荣
周守为
刘清友
钟林
李旺
李清平
付强
何玉发
王川
王雷振
Original Assignee
西南石油大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南石油大学 filed Critical 西南石油大学
Priority to US16/601,562 priority Critical patent/US10822927B2/en
Publication of WO2019205182A1 publication Critical patent/WO2019205182A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/01Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells specially adapted for obtaining from underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/18Pipes provided with plural fluid passages
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0099Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/29Obtaining a slurry of minerals, e.g. by using nozzles
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/38Arrangements for separating materials produced by the well in the well
    • E21B43/385Arrangements for separating materials produced by the well in the well by reinjecting the separated materials into an earth formation in the same well
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/043Directional drilling for underwater installations
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/12Underwater drilling
    • E21B7/128Underwater drilling from floating support with independent underwater anchored guide base

Definitions

  • the invention relates to the technical field of natural gas hydrate exploitation, in particular to a submarine shallow gas hydrate solid state fluidized green mining device and method.
  • the main forms of natural gas hydrates are sandstone type, sandstone fracture type, fine grain fracture type and dispersion type, of which fine-grained fracture type and dispersed hydrate account for the majority, but this type of hydrate is buried shallow.
  • the cementation is poor, and it is easy to cause geological and environmental disasters during the mining process.
  • Japan and China have successively carried out marine gas hydrate test mining research.
  • the main test mining methods used are heat injection method and pressure reduction method. These mining methods are based on traditional oil and gas exploitation ideas, so even It is applied to natural gas hydrate reservoirs with high saturation and stable caprock. It can only achieve short-term test mining of natural gas hydrates, and can not achieve long-term continuous mining, and may cause potential environmental geological disasters.
  • the “solid-state fluidization” mining method is a new mining idea for submarine natural gas hydrates.
  • the core idea is to directly use machinery or extract natural gas hydrate ore bodies without changing the seabed temperature and pressure, through closed pipelines.
  • the broken natural gas hydrate solid particles are pumped to the sea surface by mixing with sea water.
  • solid-state fluidized mining methods can be divided into surface solid state fluidization and shallow solid state fluidization.
  • the surface solid state fluidized mining method utilizes a subsea mining mechanism to extract a hydrate ore body on a broken seabed surface during a submarine movement.
  • shallow hydrate solid-state fluidized mining is to use traditional oil and gas horizontal drilling technology, and on this basis, use water jet or mechanical agitation to break the hydrate and expand the wellbore to achieve shallow hydrate.
  • shallow hydrate solid-state fluidized mining is still in the conceptual design stage, and does not form a systematic, complete and feasible process and equipment.
  • the object of the present invention is to overcome the shortcomings of the prior art, and provide a horizontal well drilling and excavation of a multi-azimuth azimuth angle of a hydrate layer by a single wellhead, thereby improving drilling efficiency and single well production; and in-situ separation of hydrate slurry , and sediment backfilling and natural settlement, reducing the risk of collapse risk in the goaf; the subsea wellhead device can be recycled and reused, which better guarantees the hydrate hydrate green mining of the shallow bottom gas hydrate lead-eye back stream mining device and
  • the method effectively solves the technical technical problems existing in the solid-state fluidized mining of shallow hydrates on the seabed.
  • a submarine shallow gas hydrate solid state fluidized green mining device which comprises a sea surface support system, a pipeline transportation system and a subsea drilling and production system, the sea surface support system including floating in sea water a hydrated drilling and mining vessel, a hydrate storage tank disposed on the hydrate drilling and mining vessel, a high pressure pumping unit and a double-layer coiled tubing storage mechanism;
  • the pipeline transportation system comprises a double-layer coiled tubing, a recyclable duct installed in the silt cap layer, a naked-eye pack diverting steering device installed outside the recyclable duct, and the double-layer coiled tubing is disposed in the recyclable duct, and the double layer is continuous
  • the first end of the oil pipe is fixed on the double-layer coiled tubing storage mechanism, the outer passage of the double-layer coiled tubing is connected with the hydrate storage tank, and the inner passage of the double-layer coiled tubing is connected with the outlet end of the high-pressure pump unit, and the double-layer coiled tubing
  • the end of the connection is connected to a subsea drilling system located in the hydrate layer;
  • the subsea drilling system comprises a sequentially connected hydrate slurry separator, a first three-layer tube, a double-layer inner and outer liquid exchange joint, and a second three-layer tube, and the hydrate slurry separator has a double layer continuous
  • the outer channel of the tubing communicates with the outer channel of the first three-layer tube, and the hydrate slurry separator also connects the inner channel of the double-layer coiled tubing with the inner channel of the first three-layer tube, the double tube
  • the inner and outer fluid exchange joints communicate the outer passage of the first three-layer tube with the inner passage of the second three-layer tube, and the inner and outer liquid exchange joints of the double-layer tube also have the inner passage of the first three-layer tube and the second
  • the outer layer passage of the three-layer tube is connected, and the spray head is arranged on the end of the second three-layer tube and in the inner layer passage, the spray head is connected with the second three-layer tube, and the pressure head sliding sleeve is arranged
  • a single screw pump is fixed in the inner passage of the first three-layer pipe, and a hydraulic motor is fixed in the inner passage of the second three-layer pipe, and one end of the output shaft of the hydraulic motor and the input shaft of the single screw pump
  • a coupling is connected between the inner and outer fluid exchange joints of the double-layer pipe, and the other end of the output shaft of the hydraulic motor is fixedly connected with the spray head;
  • the outer part of the subsea drilling and production system is provided with a mud backfill casing and a sediment backfill sleeve.
  • the head end portion of the tube is connected to the sand discharge port of the hydrate slurry separator, and the end of the sediment backfill casing is provided with a sediment backfill passage, and the sediment is backfilled on the cylinder surface and is opened along the circumference thereof
  • a plurality of injection holes communicating with the spray head, and a return port connecting the outer passage of the second three-layer pipe is further disposed on the cylinder surface of the sediment backfill casing.
  • a derrick is also disposed on the hydrate drilling and mining vessel.
  • a double-layer coiled tubing injection head is disposed on the derrick.
  • the method for solid-state fluidized green mining of a submarine shallow gas hydrate comprising the following steps:
  • the drilling process specifically includes the following steps:
  • the output shaft drives the input shaft of the single-screw pump to rotate through the coupling, and at the same time drives the spray head to rotate, and the spray head drives the hydrated drill bit to rotate. Movement, the hydrate bit drills into the hydrate layer, thus achieving the drilling of the cap layer under high pressure seawater injection and hydrate bit drilling;
  • release conduit the double-layer coiled tubing and the recyclable duct are released, and the double-layer coiled tubing continues to drill;
  • the double-layer coiled tubing adjusts the drilling angle by the slanting tool during the hydrate layer drilling process.
  • the recyclable duct can be rotated around the naked eye to block the steering wheel to assist the double
  • the effect of the layered coiled tubing drilling is to increase the inclination angle of the drilling process to ensure the effective drilling length in the horizontal direction in the shallow hydrate layer;
  • the mining process specifically includes the following steps:
  • Si open differential pressure sliding sleeve: increase the pressure of the high pressure pumping pump into the seawater, so that the pressure of the seawater entering the injection head is greater than the pressure of the seawater entering the drilling channel, and the differential pressure sliding sleeve moves to the right.
  • the sliding sleeve blocks the drilling channel, and the injection hole is no longer blocked by the differential pressure sliding sleeve;
  • Sk, back-drag double-layer coiled tubing the double-layer coiled tubing is pulled back at a certain speed to achieve axial crushing of the hydrate layer, and the high-speed water jetted by the jetting head gradually expands the well along the opposite direction of the drilling during the dragging process. eye;
  • the hydrate-sludge mixed slurry passes through the return port, the outer channel of the second-section three-layer pipe, the inner and outer liquid exchange joints of the double-layer pipe, and the first three-layer pipe
  • the inner channel enters the hydrate slurry separator, and the hydrate slurry separator separates the hydrate-sludge slurry, and the separated hydrate is discharged into the hydrate storage tank through the inner channel of the double-layer coiled tubing.
  • the separated sediment is discharged into the sediment backfill casing through the discharge port, and finally the sediment is discharged into the mined area through the sediment backfill channel;
  • the invention has the following advantages: (1) The device realizes horizontal drilling, multi-azimuth drilling and mining of the shallow bottom hydrate layer in a single wellhead and single-column tubular column, thereby improving drilling efficiency and single well. Yield. (2) After the single-screw pump is driven by the hydraulic motor, the hydrate-sludge mixed slurry passes through the return port, the outer channel of the second-section three-layer pipe, the inner and outer liquid exchange joints of the double-layer pipe, and the first three-layer The inner channel of the tube enters the hydrate slurry separator, and the hydrate slurry separator separates the hydrate-sludge mixed slurry, and the separated hydrate is discharged into the hydrate storage through the inner channel of the double-layer coiled tubing.
  • the separated sediment is discharged into the silt backfill casing through the discharge port, and finally the sediment is discharged into the mined area through the sediment backfill channel to realize hydrate in situ separation, sediment backfilling and natural settlement.
  • the steps of device recovery are: using the underwater robot to re-suspend the recyclable duct to the double-layer coiled tubing; the open-hole packer diverting the unsealing release duct; lifting the retrievable duct and the double-layer coiled tubing to the hydrate drilling Onboard; moving the hydrated drilling and mining ship to the next point for hydrate drilling, so the subsea wellhead device of the device can be recycled and recycled, which reduces the equipment investment cost and better guarantees the green mining of hydrate.
  • FIG. 1 is a schematic structural view of a drilling process of the present invention
  • FIG. 2 is a schematic structural view of a back-drag process of the present invention
  • Figure 3 is a schematic diagram of device recovery
  • Figure 4 is a schematic diagram of multi-directional drilling
  • Figure 5 is a partial enlarged view of the portion I of Figure 1;
  • Figure 6 is a partial enlarged view of the portion II of Figure 2;
  • Figure 7 is a partial enlarged view of the portion III of Figure 6;
  • a submarine shallow gas hydrate solid-state fluidized green mining device includes a sea surface support system, a pipeline transportation system, and a subsea drilling and production system, and the sea surface support system includes hydration floating on seawater.
  • the pipeline conveying system comprises a double-layer coiled tubing 5, a recyclable duct 8 installed in the silt cap layer 6, a naked-eye blocking diverter 7 installed outside the recyclable duct 8, and a double-layer coiled tubing 5 disposed at the recyclable
  • the first end of the double-layer coiled tubing 5 is fixed to the double-layer coiled tubing storage mechanism 4, and the outer passage of the double-layer coiled tubing 5 is connected to the hydrate storage tank 2, and the inner passage of the double-layer coiled tubing 5 is
  • the outlet end of the high pressure pump set 3 is connected, and the end of the double layer coiled tubing 5 is connected to a subsea drilling system located within the hydrate layer 26.
  • the subsea drilling system comprises a sequentially connected hydrate slurry separator 9, a first three-layer tube 10, a double-layer inner and outer liquid exchange joint 11 and a second three-layer tube 12, a hydrate slurry separator 9 communicating the outer passage of the double-layer coiled tubing 5 with the outer passage of the first three-layer tube 10, the hydrate slurry separator 9 also connecting the inner passage of the double-layer coiled tubing 5 with the first three-layer tube
  • the inner layer passages of 10 are connected, and the inner and outer fluid exchange joints 11 of the double tubes communicate the outer passages of the first three-layer tube 10 with the inner passages of the second three-layer tube 12, and the inner and outer liquid exchange joints 11 of the double-layer tube are also
  • the inner channel of the first three-layer tube 10 is communicated with the outer layer channel of the second three-layer tube 12, and the ejection head 13 is disposed on the end of the second three-layer tube 12 and located in the inner layer channel, the ejection head 13 is connected with
  • a single screw pump 17 is fixed in the inner passage of the first three-layer pipe 10, and a hydraulic motor 18 is fixed in the inner passage of the second three-layer pipe 12, and one end of the output shaft of the hydraulic motor 18 is single
  • a coupling 19 penetrating the inner and outer fluid exchange joints 11 of the double-layer tube is connected between the input shafts of the screw pump 17, and the other end of the output shaft of the hydraulic motor 18 is fixedly coupled to the spray head 13;
  • the outer casing of the subsea drilling system is sleeved
  • the sediment backfill casing 20, the head end portion of the sediment backfill casing 20 is connected to the discharge port of the hydrate slurry separator 9, and the end of the sediment backfill casing 20 is provided with a sediment backfill passage 21, the mud
  • a plurality of injection holes 22 communicating with the spray head 13 are disposed on the cylinder surface of the sand backfill casing 20 and along the circumferential direction thereof, and the outer surface of the second three-layer pipe 12 is also provided on the
  • a derrick 24 is also disposed on the hydrate drilling and mining vessel 1.
  • the derrick 24 is provided with a double-layer coiled tubing injection head 25.
  • the method for solid-state fluidized green mining of a submarine shallow gas hydrate comprising the following steps:
  • the drilling process specifically includes the following steps:
  • the naked eye blocking steering gear 7 is fixed in the drilling of step Sc, and the recyclable duct 8 is installed in the naked eye blocking steering gear 7;
  • release conduit the double-layer coiled tubing 5 and the recoverable conduit 8 are released, and the double-layer coiled tubing 5 continues to drill;
  • the double-layer coiled tubing 5 adjusts the drilling angle by the slanting tool during the drilling process of the hydrate layer 26, and the retractable duct 8 is sealed around the open hole with the boring tool 26 in the drilling direction. 7 rotation to assist the effect of the double-layered coiled tubing 5 drilling, that is, increasing the inclination angle of the drilling process to ensure the effective drilling length in the horizontal direction in the shallow hydrate layer;
  • the mining process specifically includes the following steps:
  • the hollow circle represents seawater
  • the solid circle represents sediment
  • the hydrate slurry separator 9 separates the hydrate-sludge mixed slurry, and the separated hydrate is discharged into the hydrate through the inner channel of the double-layer coiled tubing 5.
  • the flow direction of the hydrate in the storage tank 2 is as shown by the half-empty half-solid arrow in Fig. 6, and the flow direction of the hydrate-sludge mixed slurry is as shown by the solid arrow flow direction in Fig. 6, and the separated sediment is discharged through the discharge port.
  • the sediment backfill casing 20 the final sediment is discharged into the mined area through the sediment backfill channel 21, and the flow direction of the sediment is as shown by the double solid arrow in Fig. 6, realizing the in situ separation of the hydrate and the backfilling of the sediment. Natural settlement reduces the risk of collapse in the goaf and effectively solves it.
  • the device and the method realize the horizontal drilling and mining of the multi-azimuth of the hydrate layer in the single wellhead, and increase Large hydrate layer mining area, improved drilling efficiency and single well production.
  • the upper recyclable duct 8 and the double-layer coiled tubing 5 are connected to the hydrate drilling and mining vessel 1;

Abstract

一种海底浅层天然气水合物固态流化绿色开采装置及方法,开采装置包括海面支持系统、管道输送系统和海底钻采系统,海面支持系统包括浮于海水上的水合物钻采船(1);管道输送系统包括双层连续油管(5)、可回收导管(8);海底钻采系统包括水合物浆体分离器(9)、单螺杆泵(17)、水合物钻头(15)、喷射头(13),喷射头(13)内设置有压差滑套(14)。

Description

一种海底浅层天然气水合物固态流化绿色开采装置及方法 技术领域
本发明涉及天然气水合物开采技术领域,特别是一种海底浅层天然气水合物固态流化绿色开采装置及方法。
背景技术
在深水海底,天然气水合物主要的存在形式有砂岩型,砂岩裂隙型、细粒裂隙型和分散型,其中细粒裂隙型和分散型水合物占绝大多数,但该类型的水合物埋深浅,胶结性差,开采过程中极易引发地质和环境灾害。近年来,日本和中国相继开展了海洋天然气水合物试采研究,其所主要采用的试采方法为注热法、降压法等,而这些开采方法均是基于传统油气开采思路,因此,即便是应用于饱和度高、盖层稳定的天然气水合物藏,其仅能实现天然气水合物的短期试采,无法实现长期持续性开采,且可能引起潜在环境地质灾害的危险。
“固态流化”开采方法是一种针对海底天然气水合物的全新开采思路,其核心思想是在不改变海底温度和压力的情况下,直接利用机械或采掘天然气水合物矿体,通过密闭管道将破碎后的天然气水合物固体颗粒与海水混合泵送至海面。针对不同埋深的水合物资源,固态流化开采方法可分为表层固态流化和浅层固态流化两种。表层固态流化开采方法以海底采矿机构在海底运动过程中采掘破碎海底表面的水合物矿体。然而针对拥有数十米乃至一二百米覆盖层的浅层水合物资源,海底采矿机构需要将覆盖在水合物矿体上部的泥层清除,才能开采水合物矿体,如此将大大增加无用的附加工程工作量,难以保证水合物商业开采的经济性。因此,当前浅层水合物固态流化开采主要思路是借助传统油气水平钻井技术,并在此基础上利用水射流或机械搅吸等手段破碎水合物、扩大井眼,从而实现对浅层水合物矿体经济、高效采掘的目的。然而,浅层水合物固态流化开采目前仍停留在概念设计阶段,并未形成一套系统、完整、可行的工艺方法及装置,有诸多问题亟需解决,如水合物盖层和水合物层均较浅,如何实现水合物的长水平钻进;如何实现水合物、泥沙的原位分离;如何保障水合物采掘过程中的高效破碎;水合物井下原位分离后,如何实现泥沙有效回填和沉降;如何避免海底地下采空区过大引起的事故性地层坍塌;如何降低水合物开采成本、降低作业次数、提到开采效率,实现商业化开采;如何回收海底井口装置、减少废弃井口,实现绿色开采。
技术问题
本发明的目的在于克服现有技术的缺点,提供一种单井口完成水合物层多方位角方位角的水平钻进和采掘,提高了钻采效率及单井产量;水合物浆体原位分离,和泥沙回填及自然沉降,降低了采空区域坍塌风险危险;海底井口装置可回收循环使用,更好地保障了水合物绿色开采的海底浅层天然气水合物领眼回拖射流开采装置及方法,有效解决海底浅层水合物固态流化开采中存在的工艺技术难题。
技术解决方案
本发明的目的通过以下技术方案来实现:一种海底浅层天然气水合物固态流化绿色开采装置,它包括海面支持系统、管道输送系统和海底钻采系统,所述海面支持系统包括浮于海水上的水合物钻采船、设置于水合物钻采船上的水合物储罐、高压泵组和双层连续油管收纳机构;
所述管道输送系统包括双层连续油管、安装于泥沙盖层内的可回收导管、安装于可回收导管外的裸眼封隔转向器,双层连续油管设置于可回收导管内,双层连续油管的首端固定于双层连续油管收纳机构上,双层连续油管的外层通道与水合物储罐连接,双层连续油管的内层通道与高压泵组的出口端连接,双层连续油管的末端连接有位于水合物层内的海底钻采系统;
所述海底钻采系统包括顺次连接的水合物浆体分离器、第一节三层管、双层管内外液交换接头和第二节三层管,水合物浆体分离器将双层连续油管的外层通道与第一节三层管的外层通道连通,水合物浆体分离器还将双层连续油管的内层通道与第一节三层管的内层通道连通,双层管内外液交换接头将第一节三层管的外层通道与第二节三层管的内层通道连通,双层管内外液交换接头还将第一节三层管的内层通道与第二节三层管的外层通道连通,第二节三层管末端上且位于其内层通道内设置有喷射头,喷射头与第二节三层管连通,喷射头内设置有压差滑套,喷射头的末端固设有水合物钻头,水合物钻头上且沿其轴向上开设有海水喷射钻进通道,海水喷射钻进通道连通喷射头;
所述第一节三层管的内层通道中固设有单螺杆泵,第二节三层管的内层通道中固设有液压马达,液压马达输出轴的一端与单螺杆泵的输入轴之间连接有贯穿双层管内外液交换接头的联轴器,液压马达输出轴的另一端与喷射头固连;所述海底钻采系统的外部套有泥沙回填套管,泥沙回填套管的首端部与水合物浆体分离器的排沙口连接,泥沙回填套管的末端设置有泥沙回填通道,所述泥沙回填套管的柱面上且沿其周向上开设有多个连通喷射头的喷射孔,泥沙回填套管的柱面上还开设有连通第二节三层管外层通道的回料口。
所述水合物钻采船上还设置有井架。
所述井架上设置有双层连续油管注入头。
所述的装置海底浅层天然气水合物固态流化绿色开采的方法,它包括以下步骤:
、钻进过程,具体包括以下步骤:
Sa、将水合物钻采船开到水合物采集点,并将水合物钻采船锚定;
Sb、将双层连续油管和可回收导管一起下至海底;
Sc、盖层钻进:打开高压泵组,高压泵组将海水泵入双层连续油管的内层通道中,带压力的海水顺次穿过水合物浆体分离器、第一节三层管的外层通道、双层管内外液交换接头、第二节三层管的内层通道、液压马达、喷射头内腔最后从水合物钻头的钻进通道喷射出,喷射出的高压海水射向泥沙盖层,同时高压海水进入液压马达后驱动液压马达的输出轴转动,输出轴经联轴器带动单螺杆泵的输入轴转动,同时带动喷射头转动,喷射头又带动水合物钻头做旋转运动,水合物钻头向水合物层钻进,因此在高压海水喷射和水合物钻头旋转钻进下实现盖层的钻进;
Sd、将裸眼封隔转向器固设于步骤Sc所钻井中,将可回收导管安装于裸眼封隔转向器内;
Se、解脱导管:使双层连续油管与可回收导管解脱,此时双层连续油管继续钻进;
Sf、调整钻进角度:双层连续油管在水合物层钻进过程中通过造斜工具调整钻进角度,随着水合物层钻进方向,可回收导管绕裸眼封隔转向器转动以辅助双层连续油管钻进的造斜效果,即增大钻进过程的倾斜角度,保证在浅薄的水合物层中水平方向的有效钻进长度;
Sg、复位压差滑套:降低高压泵组泵入海水压力,使泵入海水的压力小于从钻进通道中所进入海水的压力,此时压差滑套处于喷射头的最内部,并且将喷射孔关闭;
Sh、驱动水合物钻头继续水平段钻进直到完成领眼:
、采掘过程,其具体包括以下步骤:
Si、开启压差滑套:增大高压泵组泵入海水压力,使进入喷射头内的海水压力大于从钻进通道中所进入海水的压力,压差滑套向右移动,此时压差滑套将钻进通道堵塞,而喷射孔不再被压差滑套堵塞;
Sj、周向破碎:通入的高压海水从喷射孔喷射出,水合物层被周向旋转破碎,并沿着周向扩大领眼,破碎后的水合物层变成水合物泥沙混合浆体;
Sk、回拖双层连续油管:使双层连续油管以一定速度回拖实现水合物层轴向破碎,在回拖过程中通过喷射头喷射出的高速水流沿着钻进的反方向逐步扩大井眼;
Sl、由于单螺杆泵被液压马达驱动,水合物泥沙混合浆体顺次经回料口、第二节三层管的外层通道、双层管内外液交换接头、第一节三层管的内层通道进入水合物浆体分离器中,水合物浆体分离器将水合物泥沙混合浆体进行分离,分离出的水合物经双层连续油管的内层通道排入水合物储罐中,而分离的泥沙则经排沙口排入泥沙回填套管中,最后泥沙经泥沙回填通道排入到已开采区;
Sm、更换方位钻领眼:回拖结束后,可回收导管根据钻进方向的调整,使可回收导管绕裸眼封隔转向器转动,再次调整倾斜角度以增大造斜率,继续按照钻进过程的后续工序完成该点位第二道领眼钻进;
Sn、回拖采掘,重复步骤Si~Sl完成第二点位的开采;
So、重复上述钻进和回拖采掘过程,完成该点位360°方位的水合物的开采;
、装置回收过程,其具体包括以下步骤:
Sp、继续回拖双层连续油管至海底泥线处;
Sq、采用水下机器人重新将可回收导管悬挂至双层连续油管;
Sr、裸眼封隔转向器解封释放导管;
St、上提可回收导管和双层连续油管到水合物钻采船上;
Su、移动水合物钻采船至下一个点位进行水合物钻采。
有益效果
本发明具有以下优点:(1)本装置实现了单井口、单趟管柱一次性完成海底浅层水合物层的水平钻进、多方位角钻进和采掘,提高了钻采效率及单井产量。(2)单螺杆泵被液压马达驱动后,水合物泥沙混合浆体顺次经回料口、第二节三层管的外层通道、双层管内外液交换接头、第一节三层管的内层通道进入水合物浆体分离器中,水合物浆体分离器将水合物泥沙混合浆体进行分离,分离出的水合物经双层连续油管的内层通道排入水合物储罐中,而分离的泥沙则经排沙口排入泥沙回填套管中,最后泥沙经泥沙回填通道排入到已开采区,实现水合物原位分离和泥沙回填及自然沉降,降低采空区域坍塌危险,从而有效解决了海底浅层水合物固态流化开采中存在的多项工艺技术难题。(3)装置回收的步骤为:采用水下机器人重新将可回收导管悬挂至双层连续油管;裸眼封隔转向器解封释放导管;上提可回收导管和双层连续油管到水合物钻采船上;移动水合物钻采船至下一个点位进行水合物钻采,因此该装置海底井口装置可回收循环使用,降低了设备资产投入成本,并更好地保障了水合物绿色开采。
附图说明
图1 为本发明钻进过程的结构示意图;
图2 为本发明回拖过程的结构示意图;
图3 为装置回收的示意图;
图4 为多方位钻进的示意图;
图5 为图1的I部局部放大视图;
图6 为图2的II部局部放大视图;
图7 为图6的III部局部放大视图;
图中,1-水合物钻采船,2-水合物储罐,3-高压泵组,4-双层连续油管收纳机构,5-双层连续油管,6-泥沙盖层,7-裸眼封隔转向器,8-可回收导管,9-水合物浆体分离器,10-第一节三层管,11-双层管内外液交换接头,12-第二节三层管,13-喷射头,14-压差滑套,15-水合物钻头,16-钻进通道,17-单螺杆泵,18-液压马达,19-联轴器,20-泥沙回填套管,21-泥沙回填通道,22-喷射孔,23-回料口,24-井架,25-双层连续油管注入头,26-水合物层,27-海水层。
本发明的实施方式
下面结合附图对本发明做进一步的描述,本发明的保护范围不局限于以下所述:
如图1~6所示,一种海底浅层天然气水合物固态流化绿色开采装置,它包括海面支持系统、管道输送系统和海底钻采系统,所述海面支持系统包括浮于海水上的水合物钻采船1、设置于水合物钻采船1上的水合物储罐2、高压泵组3和双层连续油管收纳机构4。
所述管道输送系统包括双层连续油管5、安装于泥沙盖层6内的可回收导管8、安装于可回收导管8外的裸眼封隔转向器7,双层连续油管5设置于可回收导管8内,双层连续油管5的首端固定于双层连续油管收纳机构4上,双层连续油管5的外层通道与水合物储罐2连接,双层连续油管5的内层通道与高压泵组3的出口端连接,双层连续油管5的末端连接有位于水合物层26内的海底钻采系统。
所述海底钻采系统包括顺次连接的水合物浆体分离器9、第一节三层管10、双层管内外液交换接头11和第二节三层管12,水合物浆体分离器9将双层连续油管5的外层通道与第一节三层管10的外层通道连通,水合物浆体分离器9还将双层连续油管5的内层通道与第一节三层管10的内层通道连通,双层管内外液交换接头11将第一节三层管10的外层通道与第二节三层管12的内层通道连通,双层管内外液交换接头11还将第一节三层管10的内层通道与第二节三层管12的外层通道连通,第二节三层管12末端上且位于其内层通道内设置有喷射头13,喷射头13与第二节三层管12连通,喷射头13内设置有压差滑套14,喷射头13的末端固设有水合物钻头15,水合物钻头15上且沿其轴向上开设有海水喷射钻进通道16,海水喷射钻进通道16连通喷射头13。
所述第一节三层管10的内层通道中固设有单螺杆泵17,第二节三层管12的内层通道中固设有液压马达18,液压马达18输出轴的一端与单螺杆泵17的输入轴之间连接有贯穿双层管内外液交换接头11的联轴器19,液压马达18输出轴的另一端与喷射头13固连;所述海底钻采系统的外部套有泥沙回填套管20,泥沙回填套管20的首端部与水合物浆体分离器9的排沙口连接,泥沙回填套管20的末端设置有泥沙回填通道21,所述泥沙回填套管20的柱面上且沿其周向上开设有多个连通喷射头13的喷射孔22,泥沙回填套管20的柱面上还开设有连通第二节三层管12外层通道的回料口23。
所述水合物钻采船1上还设置有井架24。所述井架24上设置有双层连续油管注入头25。所述的装置海底浅层天然气水合物固态流化绿色开采的方法,它包括以下步骤:
、钻进过程,具体包括以下步骤:
Sa、将水合物钻采船1开到水合物采集点,并将水合物钻采船1锚定;
Sb、将双层连续油管5和可回收导管8一起下至海底;
Sc、盖层钻进:打开高压泵组3,高压泵组3将海水泵入双层连续油管5的内层通道中,带压力的海水顺次穿过水合物浆体分离器9、第一节三层管10的外层通道、双层管内外液交换接头11、第二节三层管12的内层通道、液压马达18、喷射头13内腔最后从水合物钻头15的钻进通道16喷射出,高压海水流动方向如图5中空心箭头流动方向所示,喷射出的高压海水射向泥沙盖层6,同时高压海水进入液压马达18后驱动液压马达18的输出轴转动,输出轴经联轴器19带动单螺杆泵17的输入轴转动,同时带动喷射头13转动,喷射头13又带动水合物钻头15做旋转运动,水合物钻头15向水合物层钻进,因此在高压海水喷射和水合物钻头旋转钻进下实现盖层的钻进;
Sd、将裸眼封隔转向器7固设于步骤Sc所钻井中,将可回收导管8安装于裸眼封隔转向器7内;
Se、解脱导管:使双层连续油管5与可回收导管8解脱,此时双层连续油管5继续钻进;
Sf、调整钻进角度:双层连续油管5在水合物层26钻进过程中通过造斜工具调整钻进角度,随着水合物层26钻进方向,可回收导管8绕裸眼封隔转向器7转动以辅助双层连续油管5钻进的造斜效果,即增大钻进过程的倾斜角度,保证在浅薄的水合物层中水平方向的有效钻进长度;
Sg、复位压差滑套:降低高压泵组3泵入海水压力,使泵入海水的压力小于从钻进通道16中所进入海水的压力,此时压差滑套14处于喷射头13的最内部,并且将喷射孔22关闭;
Sh、驱动水合物钻头15继续水平段钻进直到完成领眼:
、采掘过程,其具体包括以下步骤:
Si、开启压差滑套:增大高压泵组3泵入海水压力,使进入喷射头13内的海水压力大于从钻进通道16中所进入海水的压力,压差滑套14向右移动,此时压差滑套14将钻进通道16堵塞,而喷射孔22不再被压差滑套14堵塞;
Sj、周向破碎:通入的高压海水从喷射孔22喷射出,水合物层26被喷射出的高压海水周向旋转破碎,海水的流动方向如图6中空心箭头流动方向,并沿着周向扩大领眼,破碎后的水合物层变成水合物泥沙混合浆体;
Sk、回拖双层连续油管:使双层连续油管5以一定速度回拖实现水合物层轴向破碎,在回拖过程中通过喷射头13喷射出的高速水流沿着钻进的反方向逐步扩大井眼;
Sl、由于单螺杆泵17被液压马达18驱动,水合物泥沙混合浆体顺次经回料口23、第二节三层管12的外层通道、双层管内外液交换接头11、第一节三层管10的内层通道进入水合物浆体分离器9中,水合物泥沙混合浆体进入回料口23的过程如图7中虚线箭头所示,图7中实心三角形表示水合物,空心圆表示海水,实心圆表示泥沙,水合物浆体分离器9将水合物泥沙混合浆体进行分离,分离出的水合物经双层连续油管5的内层通道排入水合物储罐2中水合物的流动方向如图6中半空半实箭头所示,水合物泥沙混合浆的流动方向如图6中实心箭头流动方向,而分离的泥沙则经排沙口排入泥沙回填套管20中,最后泥沙经泥沙回填通道21排入到已开采区,泥沙的流动方向如图6中双实心箭头所示,实现水合物原位分离和泥沙回填及自然沉降,降低了采空区域坍塌危险,有效解决了海底浅层水合物固态流化开采中存在的工艺技术难题;
Sm、更换方位钻领眼:回拖结束后,可回收导管8根据钻进方向的调整,使可回收导管8绕裸眼封隔转向器7转动,再次调整倾斜角度以增大造斜率,继续按照钻进过程的后续工序完成该点位第二道领眼钻进;
Sn、回拖采掘,重复步骤Si~Sl完成第二点位的开采;
So、重复上述钻进和回拖采掘过程,完成该点位360°方位的水合物的开采,因此,该装置及方法实现了单井口完成水合物层多方位角的水平钻进和采掘,增大了水合物层开采面积,提高了钻采效率及单井产量。
、装置回收过程,其具体包括以下步骤:
Sp、继续回拖双层连续油管5至海底泥线处;
Sq、采用水下机器人重新将可回收导管8悬挂至双层连续油管5;
Sr、裸眼封隔转向器7解封释放导管;
St、上提可回收导管8和双层连续油管5到水合物钻采船1上;
Su、移动水合物钻采船1至下一个点位进行水合物钻采,因此海底井口装置可回收循环使用,降低了设备资产投入成本,并更好地保障了水合物绿色开采。

Claims (4)

  1. 一种海底浅层天然气水合物固态流化绿色开采装置,其特征在于:它包括海面支持系统、管道输送系统和海底钻采系统,所述海面支持系统包括浮于海水上的水合物钻采船(1)、设置于水合物钻采船(1)上的水合物储罐(2)、高压泵组(3)和双层连续油管收纳机构(4);
    所述管道输送系统包括双层连续油管(5)、安装于泥沙盖层(6)内的可回收导管(8)、安装于可回收导管(8)外的裸眼封隔转向器(7),双层连续油管(5)设置于可回收导管(8)内,双层连续油管(5)的首端固定于双层连续油管收纳机构(4)上,双层连续油管(5)的外层通道与水合物储罐(2)连接,双层连续油管(5)的内层通道与高压泵组(3)的出口端连接,双层连续油管(5)的末端连接有位于水合物层(26)内的海底钻采系统;
    所述海底钻采系统包括顺次连接的水合物浆体分离器(9)、第一节三层管(10)、双层管内外液交换接头(11)和第二节三层管(12),水合物浆体分离器(9)将双层连续油管(5)的外层通道与第一节三层管(10)的外层通道连通,水合物浆体分离器(9)还将双层连续油管(5)的内层通道与第一节三层管(10)的内层通道连通,双层管内外液交换接头(11)将第一节三层管(10)的外层通道与第二节三层管(12)的内层通道连通,双层管内外液交换接头(11)还将第一节三层管(10)的内层通道与第二节三层管(12)的外层通道连通,第二节三层管(12)末端上且位于其内层通道内设置有喷射头(13),喷射头(13)与第二节三层管(12)连通,喷射头(13)内设置有压差滑套(14),喷射头(13)的末端固设有水合物钻头(15),水合物钻头(15)上且沿其轴向上开设有海水喷射钻进通道(16),海水喷射钻进通道(16)连通喷射头(13);
    所述第一节三层管(10)的内层通道中固设有单螺杆泵(17),第二节三层管(12)的内层通道中固设有液压马达(18),液压马达(18)输出轴的一端与单螺杆泵(17)的输入轴之间连接有贯穿双层管内外液交换接头(11)的联轴器(19),液压马达(18)输出轴的另一端与喷射头(13)固连;所述海底钻采系统的外部套有泥沙回填套管(20),泥沙回填套管(20)的首端部与水合物浆体分离器(9)的排沙口连接,泥沙回填套管(20)的末端设置有泥沙回填通道(21),所述泥沙回填套管(20)的柱面上且沿其周向上开设有多个连通喷射头(13)的喷射孔(22),泥沙回填套管(20)的柱面上还开设有连通第二节三层管(12)外层通道的回料口(23)。
  2. 根据权利要求1所述的一种海底浅层天然气水合物固态流化绿色开采装置,其特征在于:所述水合物钻采船(1)上还设置有井架(24)。
  3. 根据权利要求2所述的一种海底浅层天然气水合物固态流化绿色开采装置,其特征在于:所述井架(24)上设置有双层连续油管注入头(25)。
  4. 根据权利要求1~3中任意一项所述的装置海底浅层天然气水合物固态流化绿色开采的方法,其特征在于:它包括以下步骤:
    SI 、钻进过程,具体包括以下步骤:
    Sa、将水合物钻采船(1)开到水合物采集点,并将水合物钻采船(1)锚定;
    Sb、将双层连续油管(5)和可回收导管(8)一起下至海底;
    Sc、盖层钻进:打开高压泵组(3),高压泵组(3)将海水泵入双层连续油管(5)的内层通道中,带压力的海水顺次穿过水合物浆体分离器(9)、第一节三层管(10)的外层通道、双层管内外液交换接头(11)、第二节三层管(12)的内层通道、液压马达(18)、喷射头(13)内腔最后从水合物钻头(15)的钻进通道(16)喷射出,喷射出的高压海水射向泥沙盖层(6),同时高压海水进入液压马达(18)后驱动液压马达(18)的输出轴转动,输出轴经联轴器(19)带动单螺杆泵(17)的输入轴转动,同时带动喷射头(13)转动,喷射头(13)又带动水合物钻头(15)做旋转运动,水合物钻头(15)向水合物层钻进,因此在高压海水喷射和水合物钻头旋转钻进下实现盖层的钻进;
    Sd、将裸眼封隔转向器(7)固设于步骤Sc所钻井中,将可回收导管(8)安装于裸眼封隔转向器(7)内;
    Se、解脱导管:使双层连续油管(5)与可回收导管(8)解脱,此时双层连续油管(5)继续钻进;
    Sf、调整钻进角度:双层连续油管(5)在水合物层(26)钻进过程中通过造斜工具调整钻进角度,随着水合物层(26)钻进方向,可回收导管(8)绕裸眼封隔转向器(7)转动以辅助双层连续油管(5)钻进的造斜效果,即增大钻进过程的倾斜角度,保证在浅薄的水合物层中水平方向的有效钻进长度;
    Sg、复位压差滑套:降低高压泵组(3)泵入海水压力,使泵入海水的压力小于从钻进通道(16)中所进入海水的压力,此时压差滑套(14)处于喷射头(13)的最内部,并且将喷射孔(22)关闭;
    Sh、驱动水合物钻头(15)继续水平段钻进直到完成领眼:
    SII 、采掘过程,其具体包括以下步骤:
    Si、开启压差滑套:增大高压泵组(3)泵入海水压力,使进入喷射头(13)内的海水压力大于从钻进通道(16)中所进入海水的压力,压差滑套(14)向右移动,此时压差滑套(14)将钻进通道(16)堵塞,而喷射孔(22)不再被压差滑套(14)堵塞;
    Sj、周向破碎:通入的高压海水从喷射孔(22)喷射出,水合物层(26)被周向旋转破碎,并沿着周向扩大领眼,破碎后的水合物层变成水合物泥沙混合浆体;
    Sk、回拖双层连续油管:使双层连续油管(5)以一定速度回拖实现水合物层轴向破碎,在回拖过程中通过喷射头(13)喷射出的高速水流沿着钻进的反方向逐步扩大井眼;
    Sl、由于单螺杆泵(17)被液压马达(18)驱动,水合物泥沙混合浆体顺次经回料口(23)、第二节三层管(12)的外层通道、双层管内外液交换接头(11)、第一节三层管(10)的内层通道进入水合物浆体分离器(9)中,水合物浆体分离器(9)将水合物泥沙混合浆体进行分离,分离出的水合物经双层连续油管(5)的内层通道进入水合物储罐(2)中,而分离的泥沙则经排沙口排入泥沙回填套管(20)中,最后泥沙经泥沙回填通道(21)排入到已开采区;
    Sm、更换方位钻领眼:回拖结束后,可回收导管(8)根据钻进方向的调整,使可回收导管(8)绕裸眼封隔转向器(7)转动,再次调整倾斜角度以增大造斜率,继续按照钻进过程的后续工序完成该点位第二道领眼钻进;
    Sn、回拖采掘,重复步骤Si~Sl完成第二点位的开采;
    So、重复上述钻进和回拖采掘过程,完成该点位360°方位的水合物的开采;
    SIII 、装置回收过程,其具体包括以下步骤:
    Sp、继续回拖双层连续油管(5)至海底泥线处;
    Sq、采用水下机器人重新将可回收导管(8)悬挂至双层连续油管(5);
    Sr、裸眼封隔转向器(7)解封释放导管;
    St、上提可回收导管(8)和双层连续油管(5)到水合物钻采船(1)上;
    Su、移动水合物钻采船(1)至下一个点位进行水合物钻采。
PCT/CN2018/085796 2018-04-24 2018-05-07 一种海底浅层天然气水合物固态流化绿色开采装置及方法 WO2019205182A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/601,562 US10822927B2 (en) 2018-04-24 2019-10-14 Device and method for solid-state fluidized mining of natural gas hydrates in shallow seabed

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810373892.8A CN108643869B (zh) 2018-04-24 2018-04-24 一种海底浅层天然气水合物固态流化绿色开采装置及方法
CN201810373892.8 2018-04-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/601,562 Continuation US10822927B2 (en) 2018-04-24 2019-10-14 Device and method for solid-state fluidized mining of natural gas hydrates in shallow seabed

Publications (1)

Publication Number Publication Date
WO2019205182A1 true WO2019205182A1 (zh) 2019-10-31

Family

ID=63747222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085796 WO2019205182A1 (zh) 2018-04-24 2018-05-07 一种海底浅层天然气水合物固态流化绿色开采装置及方法

Country Status (3)

Country Link
US (1) US10822927B2 (zh)
CN (1) CN108643869B (zh)
WO (1) WO2019205182A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113338869A (zh) * 2021-06-25 2021-09-03 长江大学 一种深水可燃冰沉降防砂开采装置
CN113356800A (zh) * 2021-06-28 2021-09-07 西南石油大学 一种海洋水合物与自由气联合开采的实验装置及方法
CN113700448A (zh) * 2021-08-24 2021-11-26 成都浩洪机械装备有限公司 一种可二次加压的钻井液快速加重混合器

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109406749A (zh) * 2018-11-13 2019-03-01 西南石油大学 一种固态流化水射流破碎与原位回收实验工具
CN109763771B (zh) * 2019-01-16 2020-11-24 西南石油大学 一种基于连续油管电驱动的双梯度钻井系统
CN109763776A (zh) * 2019-03-05 2019-05-17 西南石油大学 一种天然气水合物固态化开采双层管串二通桥式接头
CN110173241A (zh) * 2019-06-21 2019-08-27 西南石油大学 一种海洋天然气水合物新型原位分离开采方法及装置
CN111236894A (zh) * 2020-01-16 2020-06-05 西南石油大学 一种海底浅层天然气水合物开采装置
CN111188598A (zh) * 2020-01-16 2020-05-22 西南石油大学 一种海底浅层天然气水合物开采及双泵举升装置
CN111155972B (zh) * 2020-03-09 2020-09-22 青岛海洋地质研究所 一种覆盖式深海泥火山型天然气水合物开采系统及方法
CN111502602A (zh) * 2020-04-23 2020-08-07 中国海洋石油集团有限公司 一种天然气水合物气层合采管柱和方法
CN111395978B (zh) * 2020-04-29 2021-10-29 西南石油大学 一种双层管正反注入的水合物射流回收装置
CN113863859B (zh) * 2020-06-30 2024-04-05 中国石油化工股份有限公司 一种浅层天然气水合物钻井装置、开采系统及方法
CN112302626A (zh) * 2020-10-29 2021-02-02 中国华能集团有限公司 一种海底天然气水合物开采监测系统
CN112761583B (zh) 2020-12-31 2022-03-29 西南石油大学 一种井下水力举升原位防砂除砂采油采气系统及方法
CN112814590B (zh) * 2021-01-07 2022-11-25 西安石油大学 井下连续油管支撑套管的自动拆除设备及其拆除方法
CN112796665B (zh) * 2021-01-07 2022-11-25 西安石油大学 井下连续油管支撑套管的自动安装设备及其安装方法
CN112502673B (zh) 2021-02-01 2021-06-22 西南石油大学 一种天然气水合物原位采收分离回填一体化工具
CN113027338B (zh) * 2021-02-20 2023-03-24 广州海洋地质调查局 一种兼具钻井、完井和试气功能的简易小压差测试装置
CN113090244B (zh) * 2021-04-19 2022-02-15 华东理工大学 一种天然气水合物旋流自转破胶分离方法及分离装置
CN113279731B (zh) * 2021-06-04 2022-06-14 西南石油大学 一种利用天然气水合物原位分离砂的预混磨料射流工具
CN113417610A (zh) * 2021-07-30 2021-09-21 东北石油大学 一种模块化天然气水合物固态流化开采装置
CN114737929B (zh) * 2022-03-03 2022-12-23 大连理工大学 一种极地浅表层天然气水合物开采系统及应用
CN115726742B (zh) * 2022-12-20 2023-07-21 西南石油大学 一种天然气水合物-浅层气-深层气多源多方法联合开采系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076364A (en) * 1990-03-30 1991-12-31 Shell Oil Company Gas hydrate inhibition
US6148911A (en) * 1999-03-30 2000-11-21 Atlantic Richfield Company Method of treating subterranean gas hydrate formations
CN105545257A (zh) * 2016-01-11 2016-05-04 西南石油大学 一种海底浅层天然气水合物的开采方法及装备
CN107448176A (zh) * 2017-09-13 2017-12-08 西南石油大学 一种海底浅层非成岩天然气水合物机械射流联合开采方法及装置
CN107642346A (zh) * 2017-09-06 2018-01-30 西南石油大学 一种海底浅层非成岩天然气水合物领眼回拖射流开采方法及开采装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1776298A3 (ru) * 1990-08-14 1992-11-15 Valerij D Karminskij Способ разработки морских газогидратных залежей
JP2003193788A (ja) * 2001-12-27 2003-07-09 Mitsubishi Heavy Ind Ltd ガスハイドレート掘削回収方法及び掘削回収システム
JP2003193787A (ja) * 2001-12-27 2003-07-09 Mitsubishi Heavy Ind Ltd ガスハイドレート掘削回収方法及び掘削回収システム
US7066283B2 (en) * 2002-08-21 2006-06-27 Presssol Ltd. Reverse circulation directional and horizontal drilling using concentric coil tubing
US7152700B2 (en) * 2003-11-13 2006-12-26 American Augers, Inc. Dual wall drill string assembly
US9040468B2 (en) * 2007-07-25 2015-05-26 Schlumberger Technology Corporation Hydrolyzable particle compositions, treatment fluids and methods
JP2016176314A (ja) * 2015-03-23 2016-10-06 三井造船株式会社 水底掘削システムおよび水底掘削方法
CN106939780B (zh) * 2017-04-17 2019-01-18 西南石油大学 一种海底浅层非成岩天然气水合物固态流化开采装置及方法
CN107503714A (zh) 2017-10-17 2017-12-22 西南石油大学 一种并联式海底浅层天然气水合物原位分离装置
CN107575193A (zh) * 2017-10-23 2018-01-12 大庆东油睿佳石油科技有限公司 一种海上天然气水合物排式水平井开采的方法
CN109763776A (zh) 2019-03-05 2019-05-17 西南石油大学 一种天然气水合物固态化开采双层管串二通桥式接头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076364A (en) * 1990-03-30 1991-12-31 Shell Oil Company Gas hydrate inhibition
US6148911A (en) * 1999-03-30 2000-11-21 Atlantic Richfield Company Method of treating subterranean gas hydrate formations
CN105545257A (zh) * 2016-01-11 2016-05-04 西南石油大学 一种海底浅层天然气水合物的开采方法及装备
CN107642346A (zh) * 2017-09-06 2018-01-30 西南石油大学 一种海底浅层非成岩天然气水合物领眼回拖射流开采方法及开采装置
CN107448176A (zh) * 2017-09-13 2017-12-08 西南石油大学 一种海底浅层非成岩天然气水合物机械射流联合开采方法及装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113338869A (zh) * 2021-06-25 2021-09-03 长江大学 一种深水可燃冰沉降防砂开采装置
CN113338869B (zh) * 2021-06-25 2022-11-25 长江大学 一种深水可燃冰沉降防砂开采装置
CN113356800A (zh) * 2021-06-28 2021-09-07 西南石油大学 一种海洋水合物与自由气联合开采的实验装置及方法
CN113700448A (zh) * 2021-08-24 2021-11-26 成都浩洪机械装备有限公司 一种可二次加压的钻井液快速加重混合器
CN113700448B (zh) * 2021-08-24 2024-01-26 成都浩洪机械装备有限公司 一种可二次加压的钻井液快速加重混合器

Also Published As

Publication number Publication date
CN108643869A (zh) 2018-10-12
US20200040710A1 (en) 2020-02-06
US10822927B2 (en) 2020-11-03
CN108643869B (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
WO2019205182A1 (zh) 一种海底浅层天然气水合物固态流化绿色开采装置及方法
CN107642346B (zh) 一种海底浅层非成岩天然气水合物领眼回拖射流开采方法及开采装置
CN108756828B (zh) 欠平衡反循环条件下水合物固态流化开采方法及系统
CN108756829B (zh) 欠平衡正循环条件下天然气水合物固态流开采方法及系统
US4915452A (en) Hydraulic borehole mining system and method
CN104533287B (zh) 一种钻鱼刺状多级分支水平井页岩气储层钻完井和增产系统
CN109882134B (zh) 一种海域非成岩天然气水合物钻采方法
US10989036B2 (en) Drilling casing and method of performing fast drilling and completion of large-borehole multilateral well
CN108798608B (zh) 一种天然气水合物开采系统和方法
CN111535791B (zh) 碎软低渗煤层井上下联合压裂区域瓦斯高效抽采方法
CN107448176A (zh) 一种海底浅层非成岩天然气水合物机械射流联合开采方法及装置
EP2857635A1 (en) Method for fluid carriage in deep-seam coal hydraulic mining
CN108952580B (zh) 钻管可回收式磨料射流鱼骨刺井钻完井装置
CN108716361B (zh) 一种海洋天然气水合物原位动态分离回填装置
CN106499368A (zh) 一种深海海底表层天然气水合物开采方法
WO2016078627A1 (zh) 一种利用钻井机器人钻多分枝鱼骨径向微小井眼的页岩气储层钻完井和增产系统及方法
CN111188598A (zh) 一种海底浅层天然气水合物开采及双泵举升装置
CN202000941U (zh) 油井的井下套管壁开孔装置
CN111236894A (zh) 一种海底浅层天然气水合物开采装置
CN112593912B (zh) 一种煤层气水平井动力扩径卸压增透抽采方法
CN115726742B (zh) 一种天然气水合物-浅层气-深层气多源多方法联合开采系统及方法
CN109025830B (zh) 一种深水浅层天然气水合物固态流化开采钻头
JP6432916B1 (ja) メタンハイドレートの採掘方法
US11008846B2 (en) Water jet mining system and method
CN110173241A (zh) 一种海洋天然气水合物新型原位分离开采方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916224

Country of ref document: EP

Kind code of ref document: A1