WO2019205136A1 - 报文处理方法及设备 - Google Patents

报文处理方法及设备 Download PDF

Info

Publication number
WO2019205136A1
WO2019205136A1 PCT/CN2018/085087 CN2018085087W WO2019205136A1 WO 2019205136 A1 WO2019205136 A1 WO 2019205136A1 CN 2018085087 W CN2018085087 W CN 2018085087W WO 2019205136 A1 WO2019205136 A1 WO 2019205136A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
flexe
identifier
gem frame
processing
Prior art date
Application number
PCT/CN2018/085087
Other languages
English (en)
French (fr)
Inventor
林连魁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/085087 priority Critical patent/WO2019205136A1/zh
Priority to CN201880086081.8A priority patent/CN111566957B/zh
Priority to EP18916034.4A priority patent/EP3780424B1/en
Priority to CN202110780396.6A priority patent/CN113645005A/zh
Publication of WO2019205136A1 publication Critical patent/WO2019205136A1/zh
Priority to US17/082,268 priority patent/US11296813B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1658Optical Transport Network [OTN] carrying packets or ATM cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0213Groups of channels or wave bands arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0073Services, e.g. multimedia, GOS, QOS
    • H04J2203/0082Interaction of SDH with non-ATM protocols
    • H04J2203/0085Support of Ethernet
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/66Layer 2 routing, e.g. in Ethernet based MAN's
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/35Switches specially adapted for specific applications
    • H04L49/351Switches specially adapted for specific applications for local area network [LAN], e.g. Ethernet switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects

Definitions

  • the present application relates to the field of passive optical network technologies, and in particular, to a packet processing method and device.
  • a passive optical network is an optical access technology using a point-to-multipoint topology.
  • Figure 1 is a schematic diagram of the structure of a PON system.
  • the PON system includes an optical line terminal (OPTYcal).
  • ODN is a passive optical splitting device, and the ODN is divided into three parts: a passive optical splitter (Splitter), a trunk optical fiber, and a branch optical fiber.
  • the ODN divides one fiber into multiple channels, and the ONT shares the bandwidth.
  • the transmission from the OLT to the ONT direction is called downlink, and vice versa.
  • the uplink service uses time division multiple access to achieve access.
  • Each ONT can only be in the OLT.
  • the allocated time slot transmits its own uplink data, and the downlink service is sent to each ONT information data by means of time division multiplex broadcasting.
  • the ODN transmits the downlink data of the OLT to each ONT, and simultaneously transmits the uplink data of the multiple ONTs to the OLT.
  • the transmission path of the existing PON system includes an OLT, an ODN, and an ONT.
  • the OLT includes an uplink component, an exchange and forwarding component, and a PON line card.
  • the uplink component, the PON line card, and the ONT each include a network processor (Network Processor, NP). )/Traffic Management (TM) module, the TM module mainly controls the quality of service (QoS) of the service flow according to the transmission bandwidth of the network and the priority of the service flow.
  • NP is the core chip for Ethernet service processing. It mainly performs forwarding processing tasks for various Ethernet services, such as packet processing, protocol analysis, and route lookup of Ethernet service data.
  • the NP/TM module of the uplink component of the OLT completes the forwarding processing and quality of service control of the Ethernet packet
  • the NP/TM module in the PON line card completes the forwarding processing to the PON interface side and the PON.
  • the service quality control of the ingress message also requires the NP/TM module to participate in packet forwarding processing and quality of service control in the ONT.
  • the NP/TM module of each stage consumes several microseconds to several tens of microseconds for the forwarding processing and quality of service control of the Ethernet packets, for some services such as mobile travel, etc. Business, these delays are not acceptable to users. How to eliminate the delay caused by the NP/TM module's packet forwarding processing and service quality control in the PON system and realize low delay transmission is an urgent problem to be solved.
  • the present application provides a packet processing method and device, which can implement low latency transmission.
  • the application provides a packet processing method, including: the first device identifies, by using a first flexible Ethernet FlexE pad layer set in the first device, the first message received; After the first packet is a FlexE packet, the first packet is encapsulated into the first GEM frame, and the first packet is selected from the at least one identifier reserved for the FlexE service. An identifier is allocated to the first GEM frame, and the first identifier is used to indicate that the first GEM frame is a GEM frame corresponding to the FlexE packet, and the first device sends the first GEM frame carrying the first identifier.
  • the FlexE packet is first identified by the first FlexE pad layer set in the first device, and then the FlexE packet is directly slotted and then encapsulated into the first GEM frame. And selecting a first identifier from the at least one identifier reserved for the FlexE service to be allocated to the first GEM frame, and finally the first device sends the first GEM frame carrying the first identifier, thereby establishing a FlexE and PON GEM frame identifier.
  • the mapping relationship enables the FlexE packets to pass through the OLT or the ONT.
  • the packets can be forwarded without NP/TM for packet forwarding and quality of service control.
  • the NP/TM module can be eliminated in the packet transmission path. The delay caused by the forwarding processing and the quality of service control enables low-latency transmission.
  • the method further includes:
  • the first device identifies the received second message by using the first FlexE pad layer
  • the first device When the first device identifies that the second packet is not a FlexE packet, the first device performs forwarding processing or quality of service control on the second packet.
  • the first device encapsulates the second packet after the forwarding processing or the quality of service control into the second GEM frame, and selects a second identifier from the identifiers other than the at least one identifier reserved for the FlexE service.
  • the first device sends the second GEM frame carrying the second identifier.
  • the method before the first device sends the first GEM frame carrying the first identifier, the method further includes:
  • the first device allocates the target PON channel according to the bandwidth required by the first packet, and deletes the bandwidth occupied by the target PON channel in the DBA scheduling of the PON;
  • the first device sends the first GEM frame carrying the first identifier, including:
  • the first device sends the first GEM frame carrying the first identifier through the target PON channel.
  • the first identifier is a GEM identifier, or the first identifier is an identifier in a packet type PTY field of the first GEM frame.
  • the first device is an optical line terminal OLT
  • the second device is an optical network terminal ONT
  • the first FlexE pad layer is disposed in the PON line card of the OLT
  • the second FlexE pad is further disposed in the OLT.
  • the first device When the first device identifies that the first packet carries the FlexE identifier by using the first FlexE pad layer, it determines that the first packet is a FlexE packet.
  • the method further includes:
  • the first device When the first device detects that the FlexE pad frame is carried in the first packet by using the second FlexE pad layer, the first device adds a FlexE identifier to the first packet.
  • the first device is an ONT.
  • the first device detects that the first packet carries the FlexE pad frame through the first FlexE pad layer, it determines that the first packet is a FlexE packet.
  • the application provides a packet processing method, including:
  • the first device receives the first GEM frame, and the first GEM frame carries the first identifier.
  • the first device determines that the first identifier is one of the at least one identifier reserved for the flexible Ethernet FlexE service, determining that the first packet is a FlexE
  • the packet is slotted with the first packet, and the first packet after the slot mapping is sent out.
  • the first device After receiving the first GEM frame, the first device converts the first packet according to the first GEM frame, and determines that the first identifier is reserved for at least the flexible Ethernet FlexE service. If the first packet is a FlexE packet, the first packet is directly mapped to the first packet, and the first packet after the slot mapping is sent out. The first packet can be converted.
  • the NP/TM is no longer used for packet forwarding processing and quality of service control. Therefore, the delay caused by the NP/TM module's packet forwarding processing and quality of service control can be eliminated, and low latency transmission can be realized.
  • the first identifier is a GEM identifier, or the first identifier is an identifier in a packet type PTY field of the first GEM frame.
  • the first device is an optical network terminal ONT
  • the method further includes:
  • the first device receives the second GEM frame, and the second GEM frame carries the second identifier.
  • the first device converts the second packet according to the second GEM frame
  • the first device determines that the second identifier is not one of the at least one identifier reserved for the FlexE service, determining that the second packet is not a FlexE packet, and performing forwarding processing or quality of service control on the second packet;
  • the first device sends the second packet after forwarding processing or quality of service control.
  • the first device is an optical line terminal OLT
  • the method further includes:
  • the first device receives the second GEM frame, and the second GEM frame carries the second identifier.
  • the first device converts the second packet according to the second GEM frame
  • the first device determines that the second identifier is not one of the at least one identifier reserved for the FlexE service, determining that the second packet is not a FlexE packet, performing a first layer forwarding process or a quality of service control on the second packet;
  • the first device exchanges and forwards the second packet after performing the first layer forwarding processing or the quality of service control, and performs the second layer forwarding processing or the service quality control;
  • the first device sends the second packet that performs the second layer forwarding process or the quality of service control.
  • the application provides a message processing device, including:
  • a message identification module configured to identify, by using a first flexible Ethernet FlexE pad layer set in the message processing device, the received first message
  • the processing module is configured to: after the packet identification module identifies that the first packet is a FlexE packet, after performing time slot mapping on the first packet, the first packet is encapsulated into the first GEM frame, and is reserved. And selecting, by the at least one identifier of the FlexE service, a first identifier to be allocated to the first GEM frame, where the first identifier is used to indicate that the first GEM frame is a GEM frame corresponding to the FlexE packet;
  • a sending module configured to send the first GEM frame carrying the first identifier.
  • the message identification module is further configured to: identify, by using the first FlexE pad layer, the second message received;
  • the processing module is further configured to: when the packet identification module identifies that the second packet is not a FlexE packet, perform forwarding processing or quality of service control on the second packet;
  • the sending module is further configured to: send the second GEM frame carrying the second identifier.
  • the processing module is also used to:
  • the target PON channel is allocated according to the bandwidth required by the first packet, and the bandwidth occupied by the target PON channel is deleted in the dynamic bandwidth allocation DBA scheduling of the PON;
  • the sending module is specifically configured to: send the first GEM frame carrying the first identifier by using the target PON channel.
  • the first identifier is a GEM identifier, or the first identifier is an identifier in a packet type PTY field of the first GEM frame.
  • the message processing device is an optical line terminal OLT
  • the first FlexE pad layer is disposed in the PON line card of the OLT
  • the second FlexE pad layer is also disposed in the OLT
  • the message recognition module is used.
  • the first packet When the first packet carries the FlexE identifier, the first packet is determined to be a FlexE packet.
  • the processing module is also used to:
  • the FlexE identifier is added to the first packet.
  • the message processing device is an ONT
  • the message recognition module is used to:
  • the first FlexE pad layer detects that the FlexE pad frame is carried in the first packet, it is determined that the first packet is a FlexE packet.
  • the application provides a packet processing device, including:
  • a receiving module configured to receive a first GEM frame, where the first GEM frame carries the first identifier
  • a conversion module configured to convert the first packet according to the first GEM frame
  • the processing module is configured to determine that the first identifier is one of the at least one identifier that is reserved for the flexible Ethernet FlexE service, and determine that the first packet is a FlexE packet, and time slot mapping is performed on the first packet.
  • the sending module is configured to send the first packet after the time slot mapping.
  • the first identifier is a GEM identifier, or the first identifier is an identifier in a packet type PTY field of the first GEM frame.
  • the message processing device is an optical network terminal ONT,
  • the receiving module is further configured to: receive the second GEM frame, where the second GEM frame carries the second identifier;
  • the conversion module is further configured to: convert the second message according to the second GEM frame;
  • the processing module is further configured to: determine that the second identifier is not one of the at least one identifier reserved for the FlexE service, determine that the second packet is not a FlexE packet, and perform forwarding processing or quality of service control on the second packet;
  • the sending module is further configured to: send the second packet after performing forwarding processing or quality of service control.
  • the message processing device is an optical line terminal OLT
  • the receiving module is further configured to: receive the second GEM frame, where the second GEM frame carries the second identifier;
  • the conversion module is further configured to: convert the second message according to the second GEM frame;
  • the processing module is further configured to: determine that the second identifier is not one of the at least one identifier reserved for the FlexE service, determine that the second packet is not a FlexE packet, and perform first layer forwarding processing or quality of service control on the second packet ;
  • the sending module is further configured to: send the second packet that performs the second layer forwarding process or the quality of service control.
  • the application provides a message processing device, including: a memory and a processor;
  • the memory is used to store program instructions
  • the processor is configured to execute the program instructions in the memory to perform the first aspect and the message processing method in any one of the possible aspects of the first aspect or the second aspect and the second aspect, the message processing method in any possible design.
  • the application provides a readable storage medium, where an execution instruction is stored, and when at least one processor of the message processing device executes the execution instruction, the message processing device executes the first aspect and the A message processing method in any of the possible designs on the one hand or a message processing method in any of the possible aspects of the second aspect and the second aspect.
  • the application provides a program product, the program product comprising an execution instruction, the execution instruction being stored in a readable storage medium.
  • At least one processor of the message processing device may read the execution instruction from a readable storage medium, the at least one processor executing the execution instruction such that the message processing device implements the first aspect and any one of the possible aspects of the first aspect A message processing method or a message processing method in any of the possible aspects of the second aspect and the second aspect.
  • FIG. 1 is a schematic structural view of a PON system
  • FIG. 2 is a flowchart of an embodiment of a packet processing method provided by the present application.
  • FIG. 3 is a flowchart of an embodiment of a packet processing method provided by the present application.
  • FIG. 4 is a flowchart of an embodiment of a packet processing method provided by the present application.
  • FIG. 5 is a flowchart of an embodiment of a packet processing method according to the present application.
  • FIG. 6 is a schematic structural diagram of an embodiment of a PON system provided by the present application.
  • FIG. 7 is a schematic structural diagram of an embodiment of a message processing device provided by the present application.
  • FIG. 8 is a schematic structural diagram of an embodiment of a message processing device provided by the present application.
  • FIG. 9 is a schematic structural diagram of a message processing device provided by the present application.
  • the NP/TM module of each stage consumes a delay of several microseconds to several tens of microseconds for both the forwarding processing and the quality of service control of the Ethernet packet, and thus, the present application
  • a packet processing method and device are provided to eliminate the delay caused by the NP/TM module in forwarding the packet processing and quality of service control in the PON system, and implementing low delay transmission.
  • flexible Ethernet technology Flexible Ethernet technology (Flex Ethernet, Flex Eth or FlexE) is an interface technology for bearer networks to implement service isolation bearers and network fragments. Due to rapid development, it is widely accepted by various standards organizations.
  • Ethernet technology is enhanced by Ethernet lightweight, in the middle layer between Ethernet L2 (Media Access Control (MAC)) layer / L1 (Physical Layer Circuit (PHY))
  • the FlexE shim layer is added.
  • the FlexE Shim layer is based on a time division multiplexing distribution mechanism, and data of multiple Ethernet client interfaces is scheduled and distributed to a plurality of different subchannels in a time slot manner. Since the identification of FlexE messages is done before the Ethernet MAC layer, in most cases it is not necessary to do TM processing as a complete logical channel.
  • the packet can no longer enter the NP/TM for packet forwarding processing and quality of service control, that is, the delay of the NP/TM module can be eliminated in the transmission path of the packet, and the low latency transmission can be achieved. the goal of.
  • the FlexE cannot pass through the OLT to implement end-to-end low-latency transmission. That is, after the OLT receives the FlexE packet from the uplink, it still forwards it in the traditional manner. , the purpose of low latency transmission is not achieved.
  • the mapping relationship between the FlexE and the PON GEM frame is established, so that the FlexE can pass through the OLT to implement end-to-end low-latency transmission, and is also set in the ONT.
  • the FlexE Shim layer implements end-to-end low-latency transmission by establishing a mapping relationship between FlexE and PON GEM frames.
  • the technical solution of the present application is applied to a PON system, and the PON system includes an OLT, an ODN, and an ONT.
  • FIG. 2 is a flowchart of a method for processing a packet according to the present application. As shown in FIG. 2, the method in this embodiment may include:
  • the first device identifies the received first packet by using a first FlexE pad layer disposed in the first device.
  • the first device may be an OLT, and the device that receives the first GEM frame is an ONT, or the first device may be an ONT, and the device that receives the first GEM frame is an OLT.
  • the first device is an OLT
  • the first FlexE shim layer is disposed in the PON line card of the OLT
  • the second FlexE shim layer is further disposed in the OLT
  • the second FlexE shim layer is disposed in the uplink component of the OLT
  • the FlexE pad layer is disposed between the PHY in the uplink component and an Ethernet Media Access Control (ETH MAC), and the FlexE pad layer may be implemented by hardware, software, or a combination of the two. Identifies whether the message is a FlexE message.
  • S101 may be: when the first device identifies that the first packet carries the FlexE identifier by using the first FlexE pad layer, the first packet is determined to be a FlexE packet.
  • the FlexE identifier is a FlexE identifier added to the first packet when the first device detects the frame carrying the FlexE pad in the first packet by using the second FlexE pad layer.
  • the first device adds the FlexE identifier to the first packet by using the FlexE pad frame in the first packet, and the first packet carrying the FlexE identifier directly passes through the switching unit. Switching, no need to enter NP/TM for packet forwarding processing and quality of service control, in the OLT, the delay can be further reduced.
  • the S101 may be: when the first device detects that the first packet carries the FlexE pad frame through the first FlexE pad layer, the first packet is determined to be a FlexE packet.
  • the first device When the first device identifies that the first packet is a FlexE packet, the first packet is encapsulated into the first gigabit passive optical network encapsulation mode (Gigabit Passive Optical Network).
  • An encapsulation mode (GEM) frame and selecting a first identifier from the at least one identifier reserved for the FlexE service to be allocated to the first GEM frame, where the first identifier is used to indicate that the first GEM frame is a GEM frame corresponding to the FlexE packet. .
  • GEM gigabit passive optical network encapsulation mode
  • the specific multiple identifiers are reserved in the first device to the FlexE service in advance, and may be specific multiple identifiers, and any one of the multiple identifiers may be allocated to the first GEM frame;
  • the identification number segment for example, all the segments of the GEM identifier are 0-150. If the 0-50 segment is reserved in advance for the FlexE service, any one of the 0-50 identifiers may be assigned to the first GEM frame.
  • the second device may identify the identifier according to the first GEM frame.
  • the packet corresponding to the first GEM frame is a FlexE packet.
  • the first identifier may be a GEM identifier, or the first identifier may be an identifier in a Packet Type (PTY) field of the first GEM frame.
  • the identifier is carried in the PTY field to indicate that the first GEM frame is a GEM frame corresponding to the FlexE service, which is convenient for fast identification, and is subsequently subjected to other processing.
  • the first device sends the first GEM frame carrying the first identifier.
  • the first packet can be obtained by performing time slot mapping on the first packet, so that the first packet can be obtained according to the first packet.
  • the required bandwidth allocates the PON channel of the current FlexE service transmission.
  • it may also include:
  • the first device allocates the target PON channel according to the bandwidth required by the first packet, and deletes the bandwidth occupied by the target PON channel in the Dynamic Bandwidth Assignment (DBA) scheduling of the PON, and deletes the bandwidth occupied by the target PON channel.
  • DBA Dynamic Bandwidth Assignment
  • the bandwidth is used for dynamic allocation. To ensure that the bandwidth scheduling of the total PON port is accurate, ensure that the PON channel does not exceed the bandwidth limit.
  • the target PON channel After the target PON channel is allocated, it can be used while the current FlexE message is being transmitted.
  • the S103 may be: the first device sends the first GEM frame carrying the first identifier through the target PON channel.
  • the packet when it is recognized that the received packet is not a FlexE packet, the packet is processed in the same manner as the existing processing procedure, and the processing may include:
  • the first device identifies the received second message by using the first FlexE pad layer.
  • the second packet is forwarded or quality-of-service controlled by the NP/TM module.
  • the first device encapsulates the second packet that performs forwarding processing or quality of service control into the second GEM frame, and selects a second identifier from the identifiers other than the at least one identifier reserved for the FlexE service. Assigned to the second GEM frame.
  • a specific at least one identifier is reserved in advance to the FlexE service, and an identifier other than the at least one identifier reserved for the FlexE service may be used to randomly allocate the service to the non-FlexE service.
  • the first device sends the second GEM frame carrying the second identifier.
  • the second GEM frame is sent out through the ODN through the dynamically allocated PON channel.
  • the packet processing method provided in this embodiment firstly identifies the FlexE packet by using the first FlexE pad layer set in the first device, and then directly maps the FlexE packet to the first GEM frame, and then encapsulates the FlexE packet into the first GEM frame.
  • the GEM identifier is allocated to the first GEM frame according to the multiple GEM identifiers reserved for the FlexE service.
  • the first device sends the first GEM frame to the second device through the target PON channel through the ODN, thereby establishing the FlexE and PON GEM frame identifiers.
  • the mapping relationship enables the FlexE packets to pass through the OLT or the ONT.
  • the packets can be forwarded without NP/TM for packet forwarding and quality of service control.
  • the NP/TM module can be eliminated in the packet transmission path. The delay caused by the forwarding processing and the quality of service control enables low-latency transmission.
  • the embodiment shown in FIG. 2 is a process in which the received FlexE message is encapsulated into a GEM frame and transmitted through the ODN.
  • the following describes the process of transmitting the GEM frame after being converted into a FlexE message after receiving the GEM frame.
  • FIG. 3 is a flowchart of a method for processing a packet according to the present application. As shown in FIG. 3, the method in this embodiment may include:
  • the first device receives the first GEM frame, where the first GEM frame carries the first identifier.
  • the first device may be an ONT, and when the first device is an ONT, the first GEM frame is transmitted by the OLT to the ONT through the ODN; the first device may also be an OLT, and when the first device is an OLT, the first GEM frame is The ONT is transmitted to the OLT via the ODN.
  • the first device converts the first packet according to the first GEM frame.
  • the first device converts the Ethernet frame, that is, the first packet, according to the first GEM frame.
  • the first device determines that the first identifier is one of the at least one identifier that is reserved for the FlexE service, and determines that the first packet is a FlexE packet, and performs time slot mapping on the first packet.
  • the first device sends the first packet after the time slot mapping.
  • the first identifier is a GEM identifier, or the first identifier is an identifier in a packet type PTY field of the first GEM frame.
  • both the transmitting end device and the receiving end device need to reserve a specific multiple identifiers in advance, such as the identifiers of the reserved identifier number segments being 0-50, which are convenient for the receiving end device to receive during downlink transmission.
  • the packet corresponding to the first GEM frame is a FlexE packet according to the identifier of the first GEM frame.
  • the first device determines that the first packet is a FlexE packet according to the first GEM frame
  • the first packet that is converted is not directly processed by the NP/TM or the CPU module, and the service quality control is directly performed.
  • the time slot mapping of the FlexE and finally transmitting the first packet after the time slot mapping to the second device.
  • the method in this embodiment may include:
  • the first device receives the second GEM frame, and the second GEM frame carries the second identifier.
  • the first device converts the second packet according to the second GEM frame.
  • the first device determines that the second identifier is not one of the at least one identifier reserved for the FlexE service, and determines that the second packet is not a FlexE packet, and performs forwarding processing or quality of service control on the second packet.
  • S204' The first device sends the second packet after performing forwarding processing or quality of service control.
  • the method in this embodiment may include:
  • the first device receives the second GEM frame, and the second GEM frame carries the second identifier.
  • the first device converts the second packet according to the second GEM frame.
  • the first device determines that the second identifier is not one of the at least one identifier reserved for the FlexE service, and determines that the second packet is not a FlexE packet, and performs the first layer forwarding processing or the service quality control on the second packet. .
  • S204" The first device exchanges and forwards the second packet after performing the first layer forwarding processing or the quality of service control, and performs the second layer forwarding processing or the service quality control.
  • the first device sends the second packet that performs the second layer forwarding process or the quality of service control.
  • the first device after receiving the first GEM frame, the first device first converts the first packet according to the first GEM frame, and then determines the first packet according to the first identifier carried in the first GEM frame.
  • the first packet is directly mapped to the first packet, and the first packet after the slot mapping is sent out.
  • the first packet can be forwarded without NP/TM. Processing and quality of service control, thus eliminating the delay caused by the NP/TM module's packet forwarding processing and quality of service control, enabling low latency transmission.
  • FIG. 4 is a flowchart of a method for processing a packet according to the present application.
  • the first device is an OLT and the peer device is an ONT.
  • the packet is transmitted from the OLT to the ONT, and the OLT is used.
  • a first FlexE shim layer is disposed in the PON line card, and a second FlexE shim layer is disposed in the upstream component of the OLT.
  • the second FlexE shim layer is disposed between the PHY and the ETH MAC in the uplink component, and a third is set in the ONT.
  • the FlexE pad layer, the third FlexE pad layer is disposed between the PHY and the ETH MAC in the ONT, and the packet is transmitted from the OLT to the ONT.
  • the method in this embodiment may include:
  • the OLT receives the first packet, and the OLT detects the first packet in the first packet by using the second FlexE pad layer, and performs time slot mapping on the first packet, and adds a FlexE to the first packet. logo.
  • the first packet may be a packet on the network side.
  • the second FlexE pad layer detects that the first packet carries the FlexE pad frame
  • the first packet is determined to be a FlexE packet.
  • the FlexE identifier is added to the packet to indicate that the first packet is a FlexE packet. Packets carrying the FlexE identity can no longer enter the NP/TM module for packet forwarding processing and quality of service control, and can be directly exchanged and exchanged to the PON line card.
  • the OLT does not detect that the first packet carries the FlexE pad frame through the second FlexE pad layer, it processes the packet according to the normal Ethernet packet, that is, enters the NP/TM module to perform packet forwarding processing and quality of service. For details, refer to the processing of S101' ⁇ S104', which will not be described here.
  • the OLT determines that the first packet is a FlexE packet.
  • the OLT encapsulates the first packet into the first GEM frame, and selects a first identifier from the at least one identifier reserved for the FlexE service to be allocated to the first GEM frame, where the first identifier is used to indicate the first GEM frame. It is the GEM frame corresponding to the FlexE packet.
  • the first identifier is a GEM identifier
  • both the OLT and the ONT reserve a plurality of GEM identifiers in advance.
  • the ONT can receive the first GEM frame according to the first GEM frame.
  • the identifier identifies that the packet corresponding to the first GEM frame is a FlexE packet.
  • the OLT allocates a target PON channel according to a bandwidth required by the first packet, and deletes a bandwidth occupied by the target PON channel in a downlink DBA scheduling of the PON.
  • the bandwidth after the bandwidth occupied by the target PON channel is deleted is used for dynamic allocation.
  • the bandwidth scheduling of the total PON port is accurate, ensure that the PON channel does not exceed the bandwidth limit.
  • the SPON allocates a target PON channel, that is, a dedicated PON channel to which the FlexE service is allocated. After the first allocation, it can continue to be used during the current FlexE packet transmission without being allocated every time.
  • the OLT sends the first GEM frame to the ONT through the ODN through the target PON channel.
  • the ONT After receiving the first GEM frame, the ONT converts the first packet according to the first GEM frame.
  • the ONT determines, by using the third FlexE pad layer, that the first identifier is one of the at least one identifier reserved for the FlexE service, determining that the first packet is a FlexE packet, and performing time slot mapping on the first packet.
  • the first packet is slotted, and the first packet after the slot mapping is sent to the user equipment.
  • the first packet is not subjected to packet forwarding processing and quality of service control by the NP/TM module, and the slot mapping is directly performed, and the first packet after the time slot is mapped by the ONT The text is sent to the user device.
  • the ONT sends the first packet to the user equipment after forwarding processing or quality of service control.
  • the packet processing method provided in this embodiment firstly sets a first FlexE pad layer and a second FlexE pad layer in the OLT, and sets a third FlexE pad layer in the ONT to perform FlexE packet identification, at the OLT. And a certain number of GEM identifiers are reserved in the ONT to the FlexE packet.
  • the GEM identifier is assigned to the GEM frame according to the reserved multiple GEM identifiers.
  • the mapping between the FlexE and the PON GEM frame identifier enables the FlexE packets to pass through the OLT and the ONT.
  • the FlexE packets can be forwarded to the NP/TM for packet forwarding and quality of service control, and can be eliminated on the packet transmission path. Due to the delay caused by the NP/TM module's packet forwarding processing and quality of service control, low latency transmission is implemented.
  • FIG. 5 is a flowchart of a method for processing a packet according to the present application.
  • the first device is an ONT and the peer device is an OLT.
  • the packet is transmitted from the ONT to the OLT, and the OLT is used.
  • a first FlexE shim layer is disposed in the PON line card, and a second FlexE shim layer is disposed in the upstream component of the OLT.
  • the second FlexE shim layer is disposed between the PHY and the ETH MAC in the uplink component, and a third is set in the ONT.
  • the FlexE pad layer, the third FlexE pad layer is disposed between the PHY and the ETH MAC in the ONT, and the packet is transmitted from the ONT to the OLT.
  • the method in this embodiment may include:
  • the ONT receives the first packet, and the ONT determines that the first packet is a FlexE packet when the first packet carries the FlexE pad frame in the first packet.
  • the first packet may be a user data packet.
  • the ONT performs time slot mapping on the first packet, and encapsulates the first packet into the first GEM frame, and selects a first identifier from the at least one identifier reserved for the FlexE service to be allocated to the first GEM frame.
  • the first identifier is used to indicate that the first GEM frame is a GEM frame corresponding to the FlexE packet.
  • the ONT If the ONT does not detect that the first packet carries the FlexE pad frame through the third FlexE pad layer, it processes the packet according to the normal Ethernet packet, that is, enters NP/TM for packet forwarding processing and quality of service control. For details, refer to the processing of S101' ⁇ S104', which will not be described here.
  • the first identifier is a GEM identifier
  • both the OLT and the ONT reserve a plurality of GEM identifiers in advance, for example, the identifiers of the identifiers are 0-50, and the OLT is convenient for uplink transmission.
  • the packet corresponding to the first GEM frame is a FlexE packet according to the identifier of the first GEM frame.
  • the ONT allocates a target PON channel according to a bandwidth required by the first packet, and deletes a bandwidth occupied by the target PON channel in an uplink DBA scheduling of the PON.
  • the bandwidth after the bandwidth occupied by the target PON channel is deleted is used for dynamic allocation.
  • the bandwidth scheduling of the total PON port is accurate, ensure that the PON channel does not exceed the bandwidth limit.
  • the SPON allocates the target PON channel, that is, the dedicated PON channel to which the FlexE service is allocated. After the first allocation, it can continue to be used during the current FlexE packet transmission without being allocated every time.
  • the ONT sends the first GEM frame to the OLT through the ODN through the target PON channel.
  • the OLT After receiving the first GEM frame, the OLT converts the first packet according to the first GEM frame.
  • the OLT determines, by using the first FlexE pad layer, that the first identifier is one of the at least one identifier reserved for the FlexE service, determining that the first packet is a FlexE packet, and performing time slot mapping on the first packet.
  • S407 Processing in the uplink component of the OLT according to the forwarding process of the FlexE packet, and sending the packet to the network side device.
  • the OLT performs first layer forwarding processing or quality of service control on the first packet. Then, the OLT exchanges and forwards the first packet after performing the first layer forwarding processing or the quality of service control, and performs the second layer forwarding processing or the service quality control. Finally, the OLT sends the first packet of the second layer forwarding processing or the quality of service control to the network side device.
  • the third FlexE pad layer is set in the ONT by setting the first FlexE pad layer and the second FlexE pad layer in the OLT, and the FlexE message is identified in the OLT and A certain number of GEM identifiers are reserved in the ONT for the FlexE packets.
  • the GEM identifiers are assigned to the GEM frames according to the reserved GEM identifiers.
  • the mapping between the PON and the PON GEM frame enables the FlexE packets to pass through the OLT and the ONT.
  • the FlexE packets can be forwarded to the NP/TM for packet forwarding and quality of service control.
  • the NP/TM module implements low latency transmission by delaying packet processing and quality of service control.
  • FIG. 6 is a schematic structural diagram of an embodiment of a PON system provided by the present application.
  • the PON system includes: an OLT, an ODN, and an ONT, where the OLT includes an uplink component.
  • the switching and forwarding component 12 and the PON line card 13 are provided with a second FlexE pad layer b in the upstream component 11, a first FlexE pad layer h in the PON line card 13, and a third FlexE pad layer in the ONT.
  • m as shown in FIG.
  • the second FlexE shim layer b is disposed between the PHY and the ETH MAC in the upstream component 11, and the first FlexE shim layer h is set to the ETH MAC and the second NP in the PON line card.
  • the third FlexE shim layer m is placed between the ETH MAC and the PHY in the ONT.
  • the uplink component 11 further includes: a first NP/TM module, an ETH MAC and PHY, and an ETH MAC and others.
  • the PON line card 13 also includes ETH MAC and others, ETH MAC and PHY and PON MAC.
  • the ONT also includes: PON MAC, third NP/TM module, ETH MAC and PHY.
  • a first FlexE spacer layer h is disposed in the upstream component 11
  • a second FlexE spacer layer b is disposed in the PON line card 13
  • a third FlexE spacer layer m is disposed in the ONT, and is established through The relationship between the FlexE and the PON GEM frame, the FlexE message can no longer enter the NP/TM module of each level to perform packet forwarding processing and quality of service control, thus eliminating the forwarding processing and service of the NP/TM module.
  • the delay caused by quality control implements low-latency transmission.
  • the first is the downlink transmission:
  • the second FlexE pad layer b in the uplink component 11 of the OLT detects that the first message carries the FlexE pad frame, and the second FlexE pad layer b performs time slot mapping on the first packet, and A message is added to the FlexE identifier, and the first packet carrying the FlexE identifier does not enter the first NP/TM module c, and is directly transmitted to the switching and forwarding component 12 through the ETH MAC and other ds.
  • the switching and forwarding unit 12 exchanges the received first message to the PON line card 13.
  • packet switching or cell switching can be performed.
  • the first FlexE pad layer h in the PON line card 13 identifies that the first packet carries the FlexE identifier
  • the first packet is determined to be a FlexE packet, and the first packet does not enter the second NP/TM module. i, go directly to PON MACj.
  • the PON MAC j encapsulates the first packet into the first GEM frame, and selects a first identifier from the at least one GEM identifier reserved for the FlexE service to be allocated to the first GEM frame.
  • the PON MAC j allocates the target PON channel according to the bandwidth required by the first packet, and deletes the bandwidth occupied by the target PON channel in the downlink DBA scheduling of the PON.
  • the PON MAC j transmits the first GEM frame from the PON line card slot 2 through the target PON channel to the ONT from the interface 3 via the ODN.
  • the PON MAC k in the ONT After receiving the first GEM frame, the PON MAC k in the ONT converts the first packet according to the first GEM frame, and the third FlexE pad is detected because the PON MAC module k can detect the GEM identifier from the first GEM frame.
  • the layer m determines that the GEM identifier of the first GEM frame is one of the at least one GEM identifier reserved for the FlexE service, it is determined that the first packet is a FlexE packet.
  • the first packet (that is, the user data packet) is input from the interface 4 to the ONT.
  • the ONT receives the first packet, and the third FlexE pad layer m in the ONT determines that the first packet is a FlexE packet when the first packet carries the FlexE pad frame.
  • the user data packet is sent to the OLT from the ONT interface 3 according to the existing normal PON processing flow.
  • the first packet does not enter the third NP/TM module, and after the ETH MAC completes the slot mapping, directly enters the PON MAC k, and the PON MAC k encapsulates the first packet into the first GEM frame, and reserves from the One of the at least one GEM identifier of the FlexE service is selected and assigned to the first GEM frame.
  • the PON MAC k in the ONT allocates the target PON channel according to the bandwidth required by the first packet, and deletes the bandwidth occupied by the target PON channel in the uplink DBA scheduling of the PON.
  • the PON MAC k sends the first GEM frame to the OLT through the ODN through the target PON channel, and specifically sends the first GEM frame from the ONT interface 3 to the OLT interface 2.
  • the PON MAC j in the PON line card 13 of the OLT converts the first packet according to the first GEM frame, and specifically, the first packet is reassembled according to the GEM interface (port) identifier and the PTY identifier of the first GEM frame.
  • the first FlexE pad layer h determines that the first identifier is one of the at least one identifier reserved for the FlexE service, and determines that the first packet is a FlexE packet, and performs time slot mapping on the first packet.
  • the first packet does not enter the second NP/TM module i process, and the ETH MAC and the PHY perform time slot mapping and then send to the switching and forwarding component 12, and the switching and forwarding component 12 will complete the first report of the time slot mapping.
  • the text is exchanged to the upstream component 11.
  • the first packet does not enter the first NP/TM module c, and is directly sent to the network side device through the ETH MAC and the PHY.
  • FIG. 7 is a schematic structural diagram of a packet processing device according to an embodiment of the present invention.
  • the packet processing device of the present embodiment may include: a packet identification module 11, a processing module 12, and a sending module 13, among them,
  • the message identification module 11 is configured to identify the received first message by using a first flexible Ethernet FlexE pad layer set in the message processing device.
  • the processing module 12 is configured to: after the packet identification module identifies that the first packet is a FlexE packet, after performing time slot mapping on the first packet, the first packet is encapsulated into the first GEM frame, and is reserved. And selecting, by the at least one identifier of the FlexE service, a first identifier to be allocated to the first GEM frame, where the first identifier is used to indicate that the first GEM frame is a GEM frame corresponding to the FlexE packet;
  • the sending module 13 is configured to send the first GEM frame carrying the first identifier.
  • the message identification module 11 is further configured to: identify, by using the first FlexE pad layer, the second message received.
  • the processing module 12 is further configured to: when the packet identification module identifies that the second packet is not a FlexE packet, perform forwarding processing or quality of service control on the second packet; and perform second processing after forwarding processing or quality of service control
  • the text is encapsulated into the second GEM frame, and a second identifier is selected from the identifiers other than the at least one identifier reserved for the FlexE service to be allocated to the second GEM frame.
  • the sending module 13 is further configured to: send the second GEM frame that carries the second identifier.
  • processing module 12 is further configured to:
  • the target PON channel is allocated according to the bandwidth required by the first packet, and the bandwidth occupied by the target PON channel is deleted in the DBA scheduling of the PON.
  • the sending module 13 is specifically configured to send the first GEM frame carrying the first identifier through the target PON channel.
  • the first identifier is a GEM identifier, or the first identifier is an identifier in a packet type PTY field of the first GEM frame.
  • the first device in the embodiment is an OLT
  • the first FlexE pad layer is disposed in the PON line card of the OLT
  • the second FlexE pad layer is further disposed in the OLT
  • the packet identification module 11 is configured to: When the first packet carries the FlexE identifier, the first packet is determined to be a FlexE packet.
  • the processing module 12 is further configured to: when the second FlexE pad layer detects that the FlexE pad frame is carried in the first packet, add a FlexE identifier to the first packet.
  • the first device in this embodiment is an ONT
  • the packet identification module 11 is configured to: when the first FlexE pad layer detects that the first packet carries the FlexE pad frame, determine the first packet. It is a FlexE message.
  • the packet processing device of this embodiment may be used to perform the technical solution of the method embodiment shown in FIG. 2, wherein the operation of the implementation of each module may be further referred to the related description of the method embodiment, and the implementation principle and the technical effect are similar. I won't go into details here.
  • the modules here can also be replaced by components or circuits.
  • FIG. 8 is a schematic structural diagram of a packet processing device according to an embodiment of the present disclosure.
  • the packet processing device of this embodiment may include: a receiving module 21, a converting module 22, a processing module 23, and a sending module. 24, of which
  • the receiving module 21 is configured to receive the first GEM frame, where the first GEM frame carries the first identifier.
  • the converting module 22 is configured to convert the first message according to the first GEM frame.
  • the processing module 23 is configured to determine, when the first identifier is one of the at least one identifier reserved for the flexible Ethernet FlexE service, determine that the first packet is a FlexE packet, and perform time slot mapping on the first packet.
  • the sending module 24 is configured to send the first packet after the time slot mapping.
  • the first identifier is a GEM identifier, or the first identifier is an identifier in a PTY field of the first GEM frame.
  • the packet processing device in this embodiment is an ONT
  • the receiving module 21 is further configured to: receive the second GEM frame, where the second GEM frame carries the second identifier.
  • the converting module 22 is further configured to: convert the second message according to the second GEM frame.
  • the processing module 23 is further configured to: when determining that the second identifier is not one of the at least one identifier reserved for the FlexE service, determine that the second packet is not a FlexE packet, and perform forwarding processing or quality of service control on the second packet.
  • the sending module 24 is further configured to: send the second packet after performing forwarding processing or quality of service control.
  • the packet processing device in this embodiment is an OLT
  • the receiving module 21 is further configured to: receive the second GEM frame, where the second GEM frame carries the second identifier.
  • the converting module 22 is further configured to: convert the second message according to the second GEM frame.
  • the processing module 23 is further configured to: when determining that the second identifier is not one of the at least one identifier reserved for the FlexE service, determine that the second packet is not a FlexE packet, and perform the first layer forwarding processing or the quality of service on the second packet. control.
  • the second packet after the first layer forwarding processing or the quality of service control is exchanged and forwarded, and the second layer forwarding processing or the quality of service control is performed.
  • the sending module 24 is further configured to: send the second packet that performs the second layer forwarding process or the quality of service control.
  • the packet processing device of this embodiment may be used to perform the technical solution of the method embodiment shown in FIG. 3.
  • the operation of the implementation of each module may be further referred to the related description of the method embodiment, and the implementation principle and the technical effect are similar. I won't go into details here.
  • the modules here can also be replaced by components or circuits.
  • FIG. 9 is a schematic structural diagram of a message processing device provided by the present application.
  • the message processing device 30 can be an OLT or an ONT.
  • the message processing device 30 can be used to implement the method of the corresponding part described in the foregoing method embodiments. For details, refer to the description in the foregoing method embodiment.
  • the message processing device 30 may include one or more processors 31, which may also be referred to as processing units, to implement certain control functions.
  • the processor 31 may be a general purpose processor or a dedicated processor or the like. For example, it can be a baseband processor, or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (eg, base stations, baseband chips, DUs, or CUs, etc.), execute software programs, and process data of software programs. .
  • the processor 31 may also store instructions 33, which may be executed by the processor, such that the message processing device 30 performs the terminal or network described in the above method embodiments. The method of the device.
  • the message processing device 30 can include circuitry that can implement the functions of transmitting or receiving or communicating in the foregoing method embodiments.
  • the message processing device 30 may include one or more memories 32 on which instructions 34 or intermediate data are stored, and the instructions 34 may be executed on the processor 31 such that the messages
  • the text processing device 30 performs the method described in the above method embodiments.
  • other related data may also be stored in the memory.
  • instructions and/or data may also be stored in processor 31.
  • the processor 31 and the memory 32 may be provided separately or integrated.
  • the message processing device 30 may further include a transceiver 35.
  • the processor 31 can be referred to as a processing unit.
  • the transceiver 35 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., for implementing a transceiving function of the communication device.
  • the present application further provides a readable storage medium.
  • the readable storage medium stores an execution instruction.
  • the message processing device executes the message in the foregoing method embodiment. Approach.
  • the application also provides a program product comprising an execution instruction stored in a readable storage medium.
  • At least one processor of the message processing device can read the execution instruction from the readable storage medium, and the at least one processor executes the execution instruction to cause the message processing device to implement the message processing method in the above method embodiment.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)

Abstract

本申请提供一种报文处理方法及设备,该方法包括:第一设备通过第一设备中设置的第一FlexE垫片层对接收到的第一报文进行识别;第一设备识别出第一报文是FlexE报文时,对第一报文进行时隙映射后,将第一报文封装进第一GEM帧中,并从预留给FlexE业务的至少一个标识中选择一个第一标识分配给第一GEM帧,第一标识用于指示第一GEM帧是FlexE报文对应的GEM帧,第一设备将携带第一标识的第一GEM帧发送出去。从而可实现低时延传输。

Description

报文处理方法及设备 技术领域
本申请涉及无源光网络技术领域,尤其涉及一种报文处理方法及设备。
背景技术
无源光网络(passive oPTYcal network,PON)是一种采用点到多点拓扑结构的光接入技术,图1为PON系统的结构示意图,如图1所示,PON系统包括光线路终端(OPTYcal Line Termination,OLT)、光分配网络(OPTYcal Distribution Network,ODN)和用户侧的光网络终端(OPTYcal Network Termination,ONT)。其中,ODN为无源分光器件,ODN分为三部分:无源光分路器(Splitter)、主干光纤和分支光纤。在PON系统中,ODN把一路光纤分成多路,ONT共享带宽,从OLT到ONT方向的传输称为下行,反之为上行,上行业务采用时分多址方式实现接入,每个ONT只能在OLT分配的时隙发送自身的上行数据,下行业务采用时分复用广播的方式发送给各ONT信息数据。ODN将OLT下行的数据传输到各个ONT,同时将多个ONT的上行数据汇总传输到OLT。
现有的PON系统的传输路径包括OLT、ODN和ONT,OLT包括上行部件、交换和转发部件和PON线卡,其中的上行部件、PON线卡和ONT中均包括网络处理器(Network Processor,NP)/流量管理(Traffic Management,TM)模块,TM模块主要根据网络的传输带宽以及业务流的优先级,对业务流进行服务质量(Quality of Service,QoS)控制。NP是进行以太网业务处理的核心芯片,主要进行各种以太网业务的转发处理任务,如以太网业务数据的包处理、协议分析、路由查找等。网络侧的以太报文进入OLT后,OLT中上行部件的NP/TM模块完成以太报文的转发处理与服务质量控制,PON线卡中的NP/TM模块完成往PON接口侧的转发处理及PON入口报文的服务质量控制,在ONT中也需要NP/TM模块参与报文的转发处理与服务质量控制。
由于在PON系统的传输路径中,每一级的NP/TM模块对以太报文的转发处理与服务质量控制均要耗费数微秒至数十微秒的时延,对于一些业务如移动前往等业务,这些时延是用户不可以接受的。如何在PON系统中消除NP/TM模块对报文的转发处理与服务质量控制带来的时延,实现低时延传输,是亟需解决的问题。
发明内容
本申请提供一种报文处理方法及设备,可实现低时延传输。
第一方面,本申请提供一种报文处理方法,包括:第一设备通过第一设备中设置的 第一灵活以太网FlexE垫片层对接收到的第一报文进行识别;第一设备识别出第一报文是FlexE报文时,对第一报文进行时隙映射后,将第一报文封装进第一GEM帧中,并从预留给FlexE业务的至少一个标识中选择一个第一标识分配给第一GEM帧,第一标识用于指示第一GEM帧是FlexE报文对应的GEM帧,第一设备将携带第一标识的第一GEM帧发送出去。
通过第一方面提供的报文处理方法,首先通过第一设备中设置的第一FlexE垫片层识别出FlexE报文,接着直接对FlexE报文进行时隙映射后封装进第一GEM帧中,并从预留给FlexE业务的至少一个标识中选择一个第一标识分配给第一GEM帧,最后第一设备将携带第一标识的第一GEM帧发送出去,从而建立了FlexE与PON GEM帧标识的映射关系,使得FlexE报文能够穿通OLT或ONT,报文可以不再进NP/TM作报文的转发处理与服务质量控制,在报文的传输路径上可以消除由于NP/TM模块对报文的转发处理与服务质量控制带来的时延,实现低时延传输。
在一种可能的设计中,方法还包括:
第一设备通过第一FlexE垫片层对接收到第二报文进行识别;
第一设备识别出第二报文不是FlexE报文时,对第二报文进行转发处理或服务质量控制;
第一设备将进行转发处理或服务质量控制后的第二报文封装进第二GEM帧中,并从除预留给FlexE业务的至少一个标识之外的标识中选择一个第二标识分配给第二GEM帧;
第一设备将携带第二标识的第二GEM帧发送出去。
在一种可能的设计中,第一设备将携带第一标识的第一GEM帧发送出去之前,方法还包括:
第一设备根据第一报文所需的带宽分配目标PON通道,并在PON的DBA调度中删除目标PON通道占用的带宽;
第一设备将携带第一标识的第一GEM帧发送出去,包括:
第一设备将携带第一标识的第一GEM帧通过目标PON通道发送出去。
在一种可能的设计中,第一标识是GEM标识,或者,第一标识是第一GEM帧的包类型PTY字段中的标识。
在一种可能的设计中,第一设备为光线路终端OLT,第二设备为光网络终端ONT,第一FlexE垫片层设置在OLT的PON线卡中,OLT中还设置有第二FlexE垫片层,
第一设备通过第一FlexE垫片层识别到第一报文携带FlexE标识时,则确定第一报文是FlexE报文。
在一种可能的设计中,方法还包括:
第一设备通过第二FlexE垫片层检测到第一报文中携带FlexE垫片帧时,对第一报文添加FlexE标识。
在一种可能的设计中,第一设备为ONT,第一设备通过第一FlexE垫片层检测到第一报文中携带FlexE垫片帧时,则确定第一报文是FlexE报文。
第二方面,本申请提供一种报文处理方法,包括:
第一设备接收第一GEM帧,第一GEM帧携带第一标识;第一设备确定第一标识 是预留给灵活以太网FlexE业务的至少一个标识中的一个时,确定第一报文是FlexE报文,对第一报文进行时隙映射,将时隙映射后的第一报文发送出去。
通过第二方面提供的报文处理方法,第一设备接收到第一GEM帧后,先根据第一GEM帧转换出第一报文,确定第一标识是预留给灵活以太网FlexE业务的至少一个标识中的一个时,确定第一报文是FlexE报文,则直接对第一报文进行时隙映射,将时隙映射后的第一报文发送出去,转换出的第一报文可以不再进NP/TM作报文的转发处理与服务质量控制,因此可以消除由于NP/TM模块对报文的转发处理与服务质量控制带来的时延,实现低时延传输。
在一种可能的设计中,第一标识是GEM标识,或者,第一标识是第一GEM帧的包类型PTY字段中的标识。
在一种可能的设计中,第一设备为光网络终端ONT,方法还包括:
第一设备接收第二GEM帧,第二GEM帧携带第二标识;
第一设备根据第二GEM帧转换出第二报文;
第一设备确定第二标识不是预留给FlexE业务的至少一个标识中的一个时,确定第二报文不是FlexE报文,对第二报文进行转发处理或服务质量控制;
第一设备将进行转发处理或服务质量控制后的第二报文发送出去。
在一种可能的设计中,第一设备为光线路终端OLT,方法还包括:
第一设备接收第二GEM帧,第二GEM帧携带第二标识;
第一设备根据第二GEM帧转换出第二报文;
第一设备确定第二标识不是预留给FlexE业务的至少一个标识中的一个时,确定第二报文不是FlexE报文,对第二报文进行第一层转发处理或服务质量控制;
第一设备对进行第一层转发处理或服务质量控制后的第二报文进行交换与转发,并进行第二层转发处理或服务质量控制;
第一设备将进行第二层转发处理或服务质量控制的第二报文发送出去。
第三方面,本申请提供一种报文处理设备,包括:
报文识别模块,用于通过报文处理设备中设置的第一灵活以太网FlexE垫片层对接收到的第一报文进行识别;
处理模块,用于在报文识别模块识别出第一报文是FlexE报文时,对第一报文进行时隙映射后,将第一报文封装进第一GEM帧中,并从预留给FlexE业务的至少一个标识中选择一个第一标识分配给第一GEM帧,第一标识用于指示第一GEM帧是FlexE报文对应的GEM帧;
发送模块,用于将携带第一标识的第一GEM帧发送出去。
在一种可能的设计中,报文识别模块还用于:通过第一FlexE垫片层对接收到第二报文进行识别;
处理模块还用于:在报文识别模块识别出第二报文不是FlexE报文时,对第二报文进行转发处理或服务质量控制;
将进行转发处理或服务质量控制后的第二报文封装进第二GEM帧中,并从除预留给FlexE业务的至少一个标识之外的标识中选择一个第二标识分配给第二GEM帧;
发送模块还用于:将携带第二标识的第二GEM帧发送出去。
在一种可能的设计中,处理模块还用于:
在发送模块将携带第一标识的第一GEM帧发送出去之前,根据第一报文所需的带宽分配目标PON通道,并在PON的动态带宽分配DBA调度中删除目标PON通道占用的带宽;
发送模块具体用于:将携带第一标识的第一GEM帧通过目标PON通道发送出去。
在一种可能的设计中,第一标识是GEM标识,或者,第一标识是第一GEM帧的包类型PTY字段中的标识。
在一种可能的设计中,报文处理设备为光线路终端OLT,第一FlexE垫片层设置在OLT的PON线卡中,OLT中还设置有第二FlexE垫片层,报文识别模块用于:
通过第一FlexE垫片层识别到第一报文携带FlexE标识时,则确定第一报文是FlexE报文。
在一种可能的设计中,处理模块还用于:
通过第二FlexE垫片层检测到第一报文中携带FlexE垫片帧时,对第一报文添加FlexE标识。
在一种可能的设计中,报文处理设备为ONT,报文识别模块用于:
通过第一FlexE垫片层检测到第一报文中携带FlexE垫片帧时,则确定第一报文是FlexE报文。
上述第三方面以及上述第三方面的各可能的设计中所提供的报文处理设备,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第四方面,本申请提供一种报文处理设备,包括:
接收模块,用于接收第一GEM帧,第一GEM帧携带第一标识;
转换模块,用于根据第一GEM帧转换出第一报文;
处理模块,用于确定第一标识是预留给灵活以太网FlexE业务的至少一个标识中的一个时,确定第一报文是FlexE报文,对第一报文进行时隙映射;
发送模块,用于将时隙映射后的第一报文发送出去。
在一种可能的设计中,第一标识是GEM标识,或者,第一标识是第一GEM帧的包类型PTY字段中的标识。
在一种可能的设计中,报文处理设备为光网络终端ONT,
接收模块还用于:接收第二GEM帧,第二GEM帧携带第二标识;
转换模块还用于:根据第二GEM帧转换出第二报文;
处理模块还用于:确定第二标识不是预留给FlexE业务的至少一个标识中的一个时,确定第二报文不是FlexE报文,对第二报文进行转发处理或服务质量控制;
发送模块还用于:将进行转发处理或服务质量控制后的第二报文发送出去。
在一种可能的设计中,报文处理设备为光线路终端OLT,
接收模块还用于:接收第二GEM帧,第二GEM帧携带第二标识;
转换模块还用于:根据第二GEM帧转换出第二报文;
处理模块还用于:确定第二标识不是预留给FlexE业务的至少一个标识中的一个时,确定第二报文不是FlexE报文,对第二报文进行第一层转发处理或服务质量控制;
对进行第一层转发处理或服务质量控制后的第二报文进行交换与转发,并进行第二层转发处理或服务质量控制;
发送模块还用于:将进行第二层转发处理或服务质量控制的第二报文发送出去。
上述第四方面以及上述第四方面的各可能的设计中所提供的报文处理设备,其有益效果可以参见上述第二方面和第二方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第五方面,本申请提供一种报文处理设备,包括:存储器和处理器;
存储器用于存储程序指令;
处理器用于调用存储器中的程序指令执行第一方面及第一方面任一种可能的设计中的报文处理方法或者第二方面及第二方面任一种可能的设计中的报文处理方法。
第六方面,本申请提供一种可读存储介质,可读存储介质中存储有执行指令,当报文处理设备的至少一个处理器执行该执行指令时,报文处理设备执行第一方面及第一方面任一种可能的设计中的报文处理方法或者第二方面及第二方面任一种可能的设计中的报文处理方法。
第七方面,本申请提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。报文处理设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得报文处理设备实施第一方面及第一方面任一种可能的设计中的报文处理方法或者第二方面及第二方面任一种可能的设计中的报文处理方法。
附图说明
图1为PON系统的结构示意图;
图2为本申请提供的一种报文处理方法实施例的流程图;
图3为本申请提供的一种报文处理方法实施例的流程图;
图4为本申请提供的一种报文处理方法实施例的流程图;
图5为本申请提供的一种报文处理方法实施例的流程图;
图6为本申请提供的一种PON系统实施例的结构示意图;
图7为本申请提供的一种报文处理设备实施例的结构示意图;
图8为本申请提供的一种报文处理设备实施例的结构示意图;
图9为本申请提供的一种报文处理设备的结构示意图。
具体实施方式
在现有的PON系统的传输路径中,每一级的NP/TM模块对以太报文的转发处理与服务质量控制均要耗费数微秒至数十微秒的时延,由此,本申请提供一种报文处理方法及设备,在PON系统中消除NP/TM模块对报文的转发处理与服务质量控制带来的时延,实现低时延传输。具体来说,灵活以太网技术(Flex Ethernet,Flex Eth或FlexE)是承载网实现业务隔离承载和网络分片的一种接口技术,由于发展迅速,被各大标准组织广泛接纳。灵活以太网技术通过对以太网轻量级增强,在以太网L2(媒体接入控 制(Media Access Control,MAC))层/L1(链路层(Physical layer circuit,PHY))之间的中间层增加FlexE垫片(Shim)层,FlexE Shim层基于时分复用分发机制,将多个以太网客户端(Client)接口的数据按照时隙方式调度并分发至多个不同的子通道。由于FlexE报文的识别在以太MAC层以前就完成,作为完整的逻辑通道在大多数情况下没有必要再作TM处理。也即报文可以不再进NP/TM作报文的转发处理与服务质量控制,也即在报文的传输路径上可以消除由于NP/TM模块带来的时延消耗,达到低时延传输的目的。但是在当前的OLT内部,由于没有建立FlexE与PON GEM帧的映射关系,FlexE不能穿通OLT,实现端到端的低时延传输;即OLT从上行接收到FlexE报文后,还是按传统的方式转发,达不到低时延传输的目的。本申请提供的报文处理方法中,通过在OLT中设置FlexE Shim层,通过建立FlexE与PON GEM帧的映射关系,使得FlexE能够穿通OLT,实现端到端的低时延传输,在ONT中也设置FlexE Shim层,通过建立FlexE与PON GEM帧的映射关系,实现端到端的低时延传输。下面结合附图详细说明本申请的技术方案。
本申请的技术方案应用于PON系统中,PON系统包括OLT、ODN和ONT。
图2为本申请提供的一种报文处理方法实施例的流程图,如图2所示,本实施例的方法可以包括:
S101、第一设备通过第一设备中设置的第一FlexE垫片层对接收到的第一报文进行识别。
本实施例中,第一设备可以为OLT、接收第一GEM帧的设备为ONT,或者,第一设备可以为ONT、接收第一GEM帧的设备为OLT。若第一设备为OLT,则第一FlexE垫片层设置在OLT的PON线卡中,OLT中还设置有第二FlexE垫片层,第二FlexE垫片层设置在OLT的上行部件中,第二FlexE垫片层设置在上行部件中的PHY与以太网媒体控制层(Ethernet Media Access Control,ETH MAC)之间,所述FlexE垫片层可以是硬件、或软件或两者的结合组合来实现识别报文是否是FlexE报文。S101可以为:第一设备通过第一FlexE垫片层识别到第一报文携带FlexE标识时,则确定第一报文是FlexE报文。该FlexE标识是第一设备通过第二FlexE垫片层检测到第一报文中携带FlexE垫片帧时,对第一报文添加的FlexE标识。可选的,第一设备通过第二FlexE垫片层检测到第一报文中携带FlexE垫片帧时,对第一报文添加FlexE标识,则携带FlexE标识的第一报文直接经交换单元交换,不需要进NP/TM作报文的转发处理与服务质量控制,在OLT中,可进一步降低时延。
若第一设备为ONT,S101可以为:第一设备通过第一FlexE垫片层检测到第一报文中携带FlexE垫片帧时,则确定第一报文是FlexE报文。
S102、第一设备识别出第一报文是FlexE报文时,对第一报文进行时隙映射后,将第一报文封装进第一吉比特无源光网络封装模式(Gigabit Passive Optical Network encapsulation mode,GEM)帧中,并从预留给FlexE业务的至少一个标识中选择一个第一标识分配给第一GEM帧,第一标识用于指示第一GEM帧是FlexE报文对应的GEM帧。
具体地,在第一设备中提前预留特定的多个标识给FlexE业务,可以是具体的多个标识,则可从这多个标识中任选一个标识分配给第一GEM帧;还可以是标识号段, 例如GEM标识的所有号段为0-150,提前预留0-50号段给FlexE业务,则可从0-50中任选一个标识分配给第一GEM帧。需要说明的是,第一设备和第二设备均要提前预留特定的多个标识,在下行传输时,便于第二设备接收到第一GEM帧时,可根据第一GEM帧的标识识别出第一GEM帧对应的报文是FlexE报文。
可选的,第一标识可以是GEM标识,或者,第一标识可以是第一GEM帧的包类型(Packet Type,PTY)字段中的标识。在PTY字段中携带标识来指示第一GEM帧为FlexE业务对应的GEM帧,便于快速识别,后续对其进行其他处理。
S103、第一设备将携带第一标识的第一GEM帧发送出去。
具体地,第一设备在识别出第一报文是FlexE报文时,在对第一报文进行时隙映射时就可以获取第一报文所需的带宽,因此可根据第一报文所需的带宽分配当前FlexE业务传输的PON通道,可选的,在S103之前,还可以包括:
第一设备根据第一报文所需的带宽分配目标PON通道,并在PON的动态带宽分配(Dynamic Bandwidth Assignment,DBA)调度中删除目标PON通道占用的带宽,删除了目标PON通道占用的带宽后的带宽用于动态分配。以保证总的PON端口的带宽调度是准确的,确保PON通道不会超带宽极限。
在分配了目标PON通道后,可以在当前的FlexE报文传输时继续使用。
相应的,S103具体可以为:第一设备将携带第一标识的第一GEM帧通过目标PON通道发送出去。
在本实施例中,当识别出接收到的报文不是FlexE报文时,对报文进行与现有处理流程相同的处理,处理过程可以包括:
S101’、第一设备通过第一FlexE垫片层对接收到第二报文进行识别。
S102’、第一设备识别出第二报文不是FlexE报文时,对第二报文进行转发处理或服务质量控制。
具体地,即就是对第二报文通过NP/TM模块进行转发处理或服务质量控制。
S103’、第一设备将进行转发处理或服务质量控制后的第二报文封装进第二GEM帧中,并从除预留给FlexE业务的至少一个标识之外的标识中选择一个第二标识分配给第二GEM帧。
具体地,在第一设备中提前预留特定的至少一个标识给FlexE业务,除预留给FlexE业务的至少一个标识之外的标识,可以用来随机分配给非FlexE业务的业务。
S104’、第一设备将携带第二标识的第二GEM帧发送出去。
具体可以是将第二GEM帧通过动态分配的PON通道经ODN发送出去。
本实施例提供的报文处理方法,首先通过第一设备中设置的第一FlexE垫片层识别出FlexE报文,接着直接对FlexE报文进行时隙映射后封装进第一GEM帧中,并根据预留给FlexE业务的多个GEM标识为第一GEM帧分配GEM标识,最后第一设备将第一GEM帧通过目标PON通道经ODN发送给第二设备,从而建立了FlexE与PON GEM帧标识的映射关系,使得FlexE报文能够穿通OLT或ONT,报文可以不再进NP/TM作报文的转发处理与服务质量控制,在报文的传输路径上可以消除由于NP/TM模块对报文的转发处理与服务质量控制带来的时延,实现低时延传输。
图2所示实施例为接收到的FlexE报文被封装进GEM帧后经ODN传输的过程, 下面结合图3说明接收到GEM帧后,转换为FlexE报文后传输的过程。
图3为本申请提供的一种报文处理方法实施例的流程图,如图3所示,本实施例的方法可以包括:
S201、第一设备接收第一GEM帧,第一GEM帧携带第一标识。
具体地,第一设备可以是ONT,第一设备是ONT时,第一GEM帧是OLT经ODN传输给ONT的;第一设备也可以是OLT,第一设备是OLT时,第一GEM帧是ONT经ODN传输给OLT的。
S202、第一设备根据第一GEM帧转换出第一报文。
具体地,第一设备根据第一GEM帧转换出以太帧,即第一报文。
S203、第一设备确定第一标识是预留给FlexE业务的至少一个标识中的一个时,确定第一报文是FlexE报文,对第一报文进行时隙映射。
S204、第一设备将时隙映射后的第一报文发送出去。
可选的,第一标识是GEM标识,或者,第一标识是第一GEM帧的包类型PTY字段中的标识。
与上述实施例所描述相同,发送端设备与接收端设备均要提前预留特定的多个标识,如均预留标识号段为0-50的标识,在下行传输时,便于接收端设备接收到第一GEM帧时,可根据第一GEM帧的标识识别出第一GEM帧对应的报文是FlexE报文。
具体地,第一设备据第一GEM帧确定第一报文是FlexE报文时,转换出的第一报文不经过NP/TM或者CPU模块作报文的转发处理与服务质量控制,直接进行FlexE的时隙映射,最后将时隙映射后的第一报文发送给第二设备。
第一报文不是FlexE报文时,对于第一设备的不同,有以下两种情况:
当第一设备为ONT时,本实施例的方法可以包括:
S201’、第一设备接收第二GEM帧,第二GEM帧携带第二标识。
S202’、第一设备根据第二GEM帧转换出第二报文。
S203’、第一设备确定第二标识不是预留给FlexE业务的至少一个标识中的一个时,确定第二报文不是FlexE报文,对第二报文进行转发处理或服务质量控制。
S204’、第一设备将进行转发处理或服务质量控制后的第二报文发送出去。
当第一设备为OLT时,本实施例的方法可以包括:
S201”、第一设备接收第二GEM帧,第二GEM帧携带第二标识。
S202”、第一设备根据第二GEM帧转换出第二报文。
S203”、第一设备确定第二标识不是预留给FlexE业务的至少一个标识中的一个时,确定第二报文不是FlexE报文,对第二报文进行第一层转发处理或服务质量控制。
S204”、第一设备对进行第一层转发处理或服务质量控制后的第二报文进行交换与转发,并进行第二层转发处理或服务质量控制。
S205”、第一设备将进行第二层转发处理或服务质量控制的第二报文发送出去。
本实施例提供的报文处理方法,第一设备接收到第一GEM帧后,先根据第一GEM帧转换出第一报文,接着根据第一GEM帧携带的第一标识确定第一报文是FlexE报文时,则直接对第一报文进行时隙映射,将时隙映射后的第一报文发送出去,转换出的第一报文可以不再进NP/TM作报文的转发处理与服务质量控制,因此可以消除由于 NP/TM模块对报文的转发处理与服务质量控制带来的时延,实现低时延传输。
下面采用两个具体的实施例,对图2和图3所示方法实施例的技术方案进行详细说明。
图4为本申请提供的一种报文处理方法实施例的流程图,本实施例以第一设备为OLT、对侧设备为ONT为例进行说明,报文从OLT下行传输至ONT,OLT的PON线卡中设置第一FlexE垫片层,OLT的上行部件中设置第二FlexE垫片层,第二FlexE垫片层设置在上行部件中的PHY与ETH MAC之间,ONT中设置一第三FlexE垫片层,第三FlexE垫片层设置在ONT中的PHY与ETH MAC之间,报文从OLT下行传输至ONT,如图4所示,本实施例的方法可以包括:
S301、OLT接收到第一报文,OLT通过第二FlexE垫片层检测到第一报文中携带FlexE垫片帧时,对第一报文进行时隙映射,并对第一报文添加FlexE标识。
具体地,第一报文可以为网络侧的报文,第二FlexE垫片层检测到第一报文中携带FlexE垫片帧时,则可确定第一报文是FlexE报文,对第一报文添加FlexE标识以指示此第一报文为FlexE报文。携带FlexE标识的报文可以不再进入NP/TM模块进行报文的转发处理与服务质量控制,直接进行交换,交换到PON线卡。
若OLT通过第二FlexE垫片层未检测到第一报文中携带FlexE垫片帧时,则按照正常的以太报文进行处理,即要进入NP/TM模块作报文的转发处理与服务质量控制,详见S101’~S104’的处理过程,此处不再赘述。
S302、OLT对第一报文直接进行交换。
S303、OLT通过第一FlexE垫片层识别到第一报文携带FlexE标识时,则确定第一报文是FlexE报文。
S304、OLT将第一报文封装进第一GEM帧中,并从预留给FlexE业务的至少一个标识中选择一个第一标识分配给第一GEM帧,第一标识用于指示第一GEM帧是FlexE报文对应的GEM帧。
具体地,以第一标识为GEM标识为例,OLT和ONT均要提前预留特定的多个GEM标识,在下行传输时,便于ONT接收到第一GEM帧时,可根据第一GEM帧的标识识别出第一GEM帧对应的报文是FlexE报文。
S305、OLT根据第一报文所需的带宽分配目标PON通道,并在PON的下行DBA调度中删除目标PON通道占用的带宽。
具体地,删除了目标PON通道占用的带宽后的带宽用于动态分配。以保证总的PON端口的带宽调度是准确的,确保PON通道不会超带宽极限。
S305中分配目标PON通道,也即分配FlexE业务的专属PON通道,可以是首次分配后,在当前的FlexE报文传输时继续使用,不用每次都分配。
S306、OLT将第一GEM帧通过目标PON通道经ODN发送给ONT。
S307、ONT接收到第一GEM帧后,根据第一GEM帧转换出第一报文。
S308、ONT通过第三FlexE垫片层确定第一标识是预留给FlexE业务的至少一个标识中的一个时,确定第一报文是FlexE报文,对第一报文进行时隙映射,对第一报文进行时隙映射,将时隙映射后的第一报文发送给用户设备。
若确定第一报文是FlexE报文,则第一报文不经过NP/TM模块进行报文的转发处理与服务质量控制,直接进行时隙映射,由ONT将时隙映射后的第一报文发送给用户 设备。
若确定第一报文不是FlexE报文,则ONT对第一报文进行转发处理或服务质量控制后,发送给用户设备。
本实施例提供的报文处理方法,首先通过在OLT中设置第一FlexE垫片层和第二FlexE垫片层,在ONT中设置第三FlexE垫片层,进行FlexE报文的识别,在OLT和ONT中均预留特定的多个GEM标识给FlexE报文,在下行传输时,将FlexE报文封装进GEM帧时根据预留的多个GEM标识为该GEM帧分配GEM标识,从而建立了FlexE与PON GEM帧标识的映射关系,使得FlexE报文能够穿通OLT和ONT,FlexE报文可以不再进NP/TM作报文的转发处理与服务质量控制,在报文的传输路径上可以消除由于NP/TM模块对报文的转发处理与服务质量控制带来的时延,实现低时延传输。
图5为本申请提供的一种报文处理方法实施例的流程图,本实施例以第一设备为ONT、对侧设备为OLT为例进行说明,报文从ONT上行传输至OLT,OLT的PON线卡中设置第一FlexE垫片层,OLT的上行部件中设置第二FlexE垫片层,第二FlexE垫片层设置在上行部件中的PHY与ETH MAC之间,ONT中设置一第三FlexE垫片层,第三FlexE垫片层设置在ONT中的PHY与ETH MAC之间,报文从ONT上行传输至OLT,如图5所示,本实施例的方法可以包括:
S401、ONT接收到第一报文,ONT通过第三FlexE垫片层检测到第一报文中携带FlexE垫片帧时,确定第一报文是FlexE报文。
具体地,第一报文可以为用户数据报文。
S402、ONT对第一报文进行时隙映射,将第一报文封装进第一GEM帧中,并从预留给FlexE业务的至少一个标识中选择一个第一标识分配给第一GEM帧,第一标识用于指示第一GEM帧是FlexE报文对应的GEM帧。
若ONT通过第三FlexE垫片层未检测到第一报文中携带FlexE垫片帧时,则按照正常的以太报文进行处理,即要进入NP/TM作报文的转发处理与服务质量控制,详见S101’~S104’的处理过程,此处不再赘述。
具体地,以第一标识为GEM标识为例,OLT和ONT均要提前预留特定的多个GEM标识,如均预留标识号段为0-50的标识,在上行传输时,便于OLT接收到第一GEM帧时,可根据第一GEM帧的标识识别出第一GEM帧对应的报文是FlexE报文。
S403、ONT根据第一报文所需的带宽分配目标PON通道,并在PON的上行DBA调度中删除目标PON通道占用的带宽。
具体地,删除了目标PON通道占用的带宽后的带宽用于动态分配。以保证总的PON端口的带宽调度是准确的,确保PON通道不会超带宽极限。
S403中分配目标PON通道,也即分配FlexE业务的专属PON通道,可以是首次分配后,在当前的FlexE报文传输时继续使用,不用每次都分配。
S404、ONT将第一GEM帧通过目标PON通道经ODN发送给OLT。
S405、OLT接收到第一GEM帧后,根据第一GEM帧转换出第一报文。
S406、OLT通过第一FlexE垫片层确定第一标识是预留给FlexE业务的至少一个标识中的一个时,确定第一报文是FlexE报文,对第一报文进行时隙映射。
S407、在OLT的上行部件中按照FlexE报文的转发流程处理,发送到网络侧设备。
若确定第一报文不是FlexE报文时,则OLT对第一报文进行第一层转发处理或服务质量控制。接着OLT对进行第一层转发处理或服务质量控制后的第一报文进行交换与转发,并进行第二层转发处理或服务质量控制。最后OLT将进行第二层转发处理或服务质量控制的第一报文发送给网络侧设备。
本实施例提供的报文处理方法,通过在OLT中设置第一FlexE垫片层和第二FlexE垫片层,在ONT中设置第三FlexE垫片层,进行FlexE报文的识别,在OLT和ONT中均预留特定的多个GEM标识给FlexE报文,在上行传输时,将FlexE报文封装进GEM帧时根据预留的多个GEM标识为该GEM帧分配GEM标识,从而建立了FlexE与PON GEM帧标识的映射关系,使得FlexE报文能够穿通OLT和ONT,FlexE报文可以不再进NP/TM作报文的转发处理与服务质量控制,在报文的传输路径上可以消除由于NP/TM模块对报文的转发处理与服务质量控制带来的时延,实现低时延传输。
本申请还提供一种PON系统,图6为本申请提供的一种PON系统实施例的结构示意图,如图6所示,PON系统包括:OLT、ODN和ONT,其中,OLT包括上行部件11、交换与转发部件12和PON线卡13,上行部件11中设置有第二FlexE垫片层b,PON线卡13中设置有第一FlexE垫片层h,ONT中设置有第三FlexE垫片层m,如图6中所示,第二FlexE垫片层b设置在上行部件11中的PHY与ETH MAC之间,第一FlexE垫片层h设置在PON线卡中的ETH MAC与第二NP/TM模块i之间,第三FlexE垫片层m设置在ONT中的ETH MAC与PHY之间。
其中,上行部件11中还包括:第一NP/TM模块、ETH MAC及PHY和ETH MAC及其它。
PON线卡13还包括ETH MAC及其它、ETH MAC及PHY和PON MAC。
ONT还包括:PON MAC、第三NP/TM模块、ETH MAC及PHY。
本实施例中,通过上行部件11中设置有第一FlexE垫片层h,PON线卡13中设置有第二FlexE垫片层b,ONT中设置有第三FlexE垫片层m,并通过建立FlexE与PON GEM帧的映射关系,FlexE报文可以不再进入每一级的NP/TM模块进行报文的转发处理与服务质量控制,因此可以消除NP/TM模块对报文的转发处理与服务质量控制带来的时延,实现低时延传输,下面结合上行传输和下行传输详细说明报文的传输过程,具体过程如下:
首先是下行传输:
S501、在下行传输时,即从OLT到ONT方向的传输,从网络侧发送来的第一报文从端口1进入OLT。
S502、OLT的上行部件11中的第二FlexE垫片层b检测到第一报文中携带FlexE垫片帧时,第二FlexE垫片层b对第一报文进行时隙映射,并对第一报文添加FlexE标识,携带FlexE标识的第一报文不进入第一NP/TM模块c,直接通过ETH MAC及其它d传到交换与转发部件12。
S503、交换与转发部件12将接收到的第一报文交换到PON线卡13。
具体地,可以进行包交换或信元交换。
S504、PON线卡13中的第一FlexE垫片层h识别到第一报文中携带FlexE标识时,则确定第一报文是FlexE报文,第一报文不进入第二NP/TM模块i,直接转到PON  MACj。
S505、在PON MAC j中,PON MAC j将第一报文封装进第一GEM帧中,并从预留给FlexE业务的至少一个GEM标识中选择一个第一标识分配给第一GEM帧。
S506、PON MAC j根据第一报文所需的带宽分配目标PON通道,并在PON的下行DBA调度中删除目标PON通道占用的带宽。PON MAC j将第一GEM帧从PON线卡口2通过目标PON通道经ODN从接口3发送给ONT。
S507、ONT中的PON MAC k接收到第一GEM帧后,根据第一GEM帧转换出第一报文,由于PON MAC模块k从第一GEM帧中可检测到GEM标识,第三FlexE垫片层m确定第一GEM帧的GEM标识是预留给FlexE业务的至少一个GEM标识中的一个时,则确定第一报文是FlexE报文。
S508、确定第一报文是FlexE报文,则转换出的第一报文不进入第三NP/TM模块l,第三FlexE垫片层m对第一报文进行时隙映射,最后经接口4将完成时隙映射后的第一报文发送给用户设备。
其次,在上行传输时:
S601、在上行传输时,即从ONT到OLT方向的传输,第一报文(即用户数据报文)从接口4输入到ONT。
S602、ONT接收到第一报文,ONT中的第三FlexE垫片层m检测到第一报文中携带FlexE垫片帧时,确定第一报文是FlexE报文。
若没有检测到FlexE垫片帧,则用户数据报文按照现有正常的PON处理流程,并从ONT接口3上发送至OLT。
S603、第一报文不进入第三NP/TM模块l,在ETH MAC完成时隙映射后直接进入PON MAC k,PON MAC k将第一报文封装进第一GEM帧中,并从预留给FlexE业务的至少一个GEM标识中选择一个第一标识分配给第一GEM帧。
S604、ONT中的PON MAC k根据第一报文所需的带宽分配目标PON通道,并在PON的上行DBA调度中删除目标PON通道占用的带宽。
S605、PON MAC k将第一GEM帧通过目标PON通道经ODN发送给OLT,具体将第一GEM帧从ONT接口3送到OLT接口2。
S606、OLT的PON线卡13中的PON MAC j根据第一GEM帧转换出第一报文,具体可以是根据第一GEM帧的GEM接口(port)标识和PTY标识重组得到第一报文,第一FlexE垫片层h确定第一标识是预留给FlexE业务的至少一个标识中的一个时,确定第一报文是FlexE报文,对第一报文进行时隙映射。
具体地,第一报文不进入第二NP/TM模块i处理,由ETH MAC及PHY进行时隙映射后发送至交换与转发部件12,交换与转发部件12将完成时隙映射的第一报文交换到上行部件11。
S607、在上行部件11中,第一报文不进入第一NP/TM模块c,直接通过ETH MAC及PHY发送到网络侧设备。
图7为本申请提供的一种报文处理设备实施例的结构示意图,如图7所示,本实施例的报文处理设备可以包括:报文识别模块11、处理模块12和发送模块13,其中,
报文识别模块11用于通过报文处理设备中设置的第一灵活以太网FlexE垫片层对 接收到的第一报文进行识别;
处理模块12用于在报文识别模块识别出第一报文是FlexE报文时,对第一报文进行时隙映射后,将第一报文封装进第一GEM帧中,并从预留给FlexE业务的至少一个标识中选择一个第一标识分配给第一GEM帧,第一标识用于指示第一GEM帧是FlexE报文对应的GEM帧;
发送模块13用于将携带第一标识的第一GEM帧发送出去。
可选的,报文识别模块11还用于:通过第一FlexE垫片层对接收到第二报文进行识别。
处理模块12还用于:在报文识别模块识别出第二报文不是FlexE报文时,对第二报文进行转发处理或服务质量控制;将进行转发处理或服务质量控制后的第二报文封装进第二GEM帧中,并从除预留给FlexE业务的至少一个标识之外的标识中选择一个第二标识分配给第二GEM帧。
发送模块13还用于:将携带第二标识的第二GEM帧发送出去。
可选的,处理模块12还用于:
在发送模块13将携带第一标识的第一GEM帧发送出去之前,根据第一报文所需的带宽分配目标PON通道,并在PON的DBA调度中删除目标PON通道占用的带宽。
发送模块13具体用于:将携带第一标识的第一GEM帧通过目标PON通道发送出去。
可选的,第一标识是GEM标识,或者,第一标识是第一GEM帧的包类型PTY字段中的标识。
可选的,本实施例中的第一设备为OLT,第一FlexE垫片层设置在OLT的PON线卡中,OLT中还设置有第二FlexE垫片层,报文识别模块11用于:通过第一FlexE垫片层识别到第一报文携带FlexE标识时,则确定第一报文是FlexE报文。
可选的,处理模块12还用于:通过第二FlexE垫片层检测到第一报文中携带FlexE垫片帧时,对第一报文添加FlexE标识。
可选的,本实施例中的第一设备为ONT,报文识别模块11用于:通过第一FlexE垫片层检测到第一报文中携带FlexE垫片帧时,则确定第一报文是FlexE报文。
本实施例的报文处理设备,可以用于执行图2所示方法实施例的技术方案,其中各个模块的实现的操作可以进一步参考方法实施例的相关描述,其实现原理和技术效果类似,此处不再赘述。此处的模块也可以替换为部件或者电路。
图8为本申请提供的一种报文处理设备实施例的结构示意图,如图8所示,本实施例的报文处理设备可以包括:接收模块21、转换模块22、处理模块23和发送模块24,其中,
接收模块21用于接收第一GEM帧,第一GEM帧携带第一标识。
转换模块22用于根据第一GEM帧转换出第一报文。
处理模块23用于确定第一标识是预留给灵活以太网FlexE业务的至少一个标识中的一个时,确定第一报文是FlexE报文,对第一报文进行时隙映射。
发送模块24用于将时隙映射后的第一报文发送出去。
可选的,第一标识是GEM标识,或者,第一标识是第一GEM帧的PTY字段中 的标识。
可选的,本实施例中的报文处理设备为ONT,接收模块21还用于:接收第二GEM帧,第二GEM帧携带第二标识。
转换模块22还用于:根据第二GEM帧转换出第二报文。
处理模块23还用于:确定第二标识不是预留给FlexE业务的至少一个标识中的一个时,确定第二报文不是FlexE报文,对第二报文进行转发处理或服务质量控制。
发送模块24还用于:将进行转发处理或服务质量控制后的第二报文发送出去。
可选的,本实施例中的报文处理设备为OLT,接收模块21还用于:接收第二GEM帧,第二GEM帧携带第二标识。
转换模块22还用于:根据第二GEM帧转换出第二报文。
处理模块23还用于:确定第二标识不是预留给FlexE业务的至少一个标识中的一个时,确定第二报文不是FlexE报文,对第二报文进行第一层转发处理或服务质量控制。
对进行第一层转发处理或服务质量控制后的第二报文进行交换与转发,并进行第二层转发处理或服务质量控制。
发送模块24还用于:将进行第二层转发处理或服务质量控制的第二报文发送出去。
本实施例的报文处理设备,可以用于执行图3所示方法实施例的技术方案,其中各个模块的实现的操作可以进一步参考方法实施例的相关描述,其实现原理和技术效果类似,此处不再赘述。此处的模块也可以替换为部件或者电路。
图9为本申请提供的一种报文处理设备的结构示意图。所述报文处理设备30可以是OLT或ONT。报文处理设备30可用于实现上述方法实施例中描述的对应部分的方法,具体参见上述方法实施例中的说明。
所述报文处理设备30可以包括一个或多个处理器31,所述处理器31也可以称为处理单元,可以实现一定的控制功能。所述处理器31可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,DU,或CU等)进行控制,执行软件程序,处理软件程序的数据。
在一种可能的设计中,处理器31也可以存有指令33,所述指令可以被所述处理器运行,使得所述报文处理设备30执行上述方法实施例中描述的对应于终端或者网络设备的方法。
在又一种可能的设计中,报文处理设备30可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选地,所述报文处理设备30中可以包括一个或多个存储器32,其上存有指令34或者中间数据,所述指令34可在所述处理器31上被运行,使得所述报文处理设备30执行上述方法实施例中描述的方法。可选地,所述存储器中还可以存储有其他相关数据。可选地,处理器31中也可以存储指令和/或数据。所述处理器31和存储器32可以单独设置,也可以集成在一起。
可选地,所述报文处理设备30还可以包括收发器35。所述处理器31可以称为处理单元。所述收发器35可以称为收发单元、收发机、收发电路、或者收发器等,用于 实现通信装置的收发功能。
本申请还提供一种可读存储介质,可读存储介质中存储有执行指令,当报文处理设备的至少一个处理器执行该执行指令时,报文处理设备执行上述方法实施例中的报文处理方法。
本申请还提供一种程序产品,该程序产品包括执行指令,该执行指令存储在可读存储介质中。报文处理设备的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得报文处理设备实施上述方法实施例中的报文处理方法。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于设备实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本领域普通技术人员可以理解:在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。

Claims (22)

  1. 一种报文处理方法,其特征在于,所述方法包括:
    第一设备通过所述第一设备中设置的第一灵活以太网FlexE垫片层对接收到的第一报文进行识别;
    所述第一设备识别出所述第一报文是FlexE报文时,对所述第一报文进行时隙映射后,将所述第一报文封装进第一吉比特无源光网络封装模式GEM帧中,并从预留给FlexE业务的至少一个标识中选择一个第一标识分配给所述第一GEM帧,所述第一标识用于指示所述第一GEM帧是FlexE报文对应的GEM帧;
    所述第一设备将携带所述第一标识的所述第一GEM帧发送出去。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一设备通过所述第一FlexE垫片层对接收到第二报文进行识别;
    所述第一设备识别出所述第二报文不是FlexE报文时,对所述第二报文进行转发处理或服务质量控制;
    所述第一设备将进行转发处理或服务质量控制后的第二报文封装进第二GEM帧中,并从除预留给FlexE业务的至少一个标识之外的标识中选择一个第二标识分配给所述第二GEM帧;
    所述第一设备将携带所述第二标识的所述第二GEM帧发送出去。
  3. 根据权利要求1所述的方法,其特征在于,所述第一设备将携带所述第一标识的所述第一GEM帧发送出去之前,所述方法还包括:
    所述第一设备根据所述第一报文所需的带宽分配目标PON通道,并在PON的动态带宽分配DBA调度中删除所述目标PON通道占用的带宽;
    所述第一设备将携带所述第一标识的所述第一GEM帧发送出去,包括:
    所述第一设备将携带所述第一标识的所述第一GEM帧通过所述目标PON通道发送出去。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一标识是GEM标识,或者,所述第一标识是所述第一GEM帧的包类型PTY字段中的标识。
  5. 根据权利要求4所述的方法,其特征在于,所述第一设备为光线路终端OLT,所述第一FlexE垫片层设置在所述OLT的PON线卡中,所述OLT中还设置有第二FlexE垫片层,所述第一设备通过所述第一FlexE垫片层识别到所述第一报文携带FlexE标识时,则确定所述第一报文是FlexE报文。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一设备通过所述第二FlexE垫片层检测到所述第一报文中携带FlexE垫片帧时,对所述第一报文添加所述FlexE标识。
  7. 根据权利要求4所述的方法,其特征在于,所述第一设备为ONT,所述第一设备通过所述第一FlexE垫片层检测到所述第一报文中携带FlexE垫片帧时,则确定所述第一报文是FlexE报文。
  8. 一种报文处理方法,其特征在于,包括:
    第一设备接收第一吉比特无源光网络封装模式GEM帧,所述第一GEM帧携带第 一标识;
    所述第一设备根据所述第一GEM帧转换出第一报文;
    所述第一设备确定所述第一标识是预留给灵活以太网FlexE业务的至少一个标识中的一个时,确定所述第一报文是FlexE报文,对所述第一报文进行时隙映射;
    所述第一设备将时隙映射后的第一报文发送出去。
  9. 根据权利要求8所述的方法,其特征在于,所述第一标识是GEM标识,或者,所述第一标识是所述第一GEM帧的包类型PTY字段中的标识。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一设备为光网络终端ONT,所述方法还包括:
    所述第一设备接收第二GEM帧,所述第二GEM帧携带第二标识;
    所述第一设备根据所述第二GEM帧转换出第二报文;
    所述第一设备确定所述第二标识不是预留给FlexE业务的至少一个标识中的一个时,确定所述第二报文不是FlexE报文,对所述第二报文进行转发处理或服务质量控制;
    所述第一设备将进行转发处理或服务质量控制后的第二报文发送出去。
  11. 根据权利要求8或9所述的方法,其特征在于,所述第一设备为光线路终端OLT,所述方法还包括:
    所述第一设备接收第二GEM帧,所述第二GEM帧携带第二标识;
    所述第一设备根据所述第二GEM帧转换出第二报文;
    所述第一设备确定所述第二标识不是预留给FlexE业务的至少一个标识中的一个时,确定所述第二报文不是FlexE报文,对所述第二报文进行第一层转发处理或服务质量控制;
    所述第一设备对进行第一层转发处理或服务质量控制后的第二报文进行交换与转发,并进行第二层转发处理或服务质量控制;
    所述第一设备将进行第二层转发处理或服务质量控制的第二报文发送出去。
  12. 一种报文处理设备,其特征在于,包括:
    报文识别模块,用于通过所述报文处理设备中设置的第一灵活以太网FlexE垫片层对接收到的第一报文进行识别;
    处理模块,用于在所述报文识别模块识别出所述第一报文是FlexE报文时,对所述第一报文进行时隙映射后,将所述第一报文封装进第一吉比特无源光网络封装模式GEM帧中,并从预留给FlexE业务的至少一个标识中选择一个第一标识分配给所述第一GEM帧,所述第一标识用于指示所述第一GEM帧是FlexE报文对应的GEM帧;
    发送模块,用于将携带所述第一标识的所述第一GEM帧发送出去。
  13. 根据权利要求12所述的设备,其特征在于:
    所述报文识别模块还用于:通过所述第一FlexE垫片层对接收到第二报文进行识别;
    所述处理模块还用于:在所述报文识别模块识别出所述第二报文不是FlexE报文时,对所述第二报文进行转发处理或服务质量控制;
    将进行转发处理或服务质量控制后的第二报文封装进第二GEM帧中,并从除预 留给FlexE业务的至少一个标识之外的标识中选择一个第二标识分配给所述第二GEM帧;
    所述发送模块还用于:将携带所述第二标识的所述第二GEM帧发送出去。
  14. 根据权利要求12所述的设备,其特征在于,所述处理模块还用于:
    在所述发送模块将携带所述第一标识的所述第一GEM帧发送出去之前,根据所述第一报文所需的带宽分配目标PON通道,并在PON的动态带宽分配DBA调度中删除所述目标PON通道占用的带宽;
    所述发送模块具体用于:将携带所述第一标识的所述第一GEM帧通过所述目标PON通道发送出去。
  15. 根据权利要求12-14任一项所述的设备,其特征在于,所述第一标识是GEM标识,或者,所述第一标识是所述第一GEM帧的包类型PTY字段中的标识。
  16. 根据权利要求15所述的设备,其特征在于,所述报文处理设备为光线路终端OLT,所述第一FlexE垫片层设置在所述OLT的PON线卡中,所述OLT中还设置有第二FlexE垫片层,所述报文识别模块用于:
    通过所述第一FlexE垫片层识别到所述第一报文携带FlexE标识时,则确定所述第一报文是FlexE报文。
  17. 根据权利要求16所述的设备,其特征在于,所述处理模块还用于:
    通过所述第二FlexE垫片层检测到所述第一报文中携带FlexE垫片帧时,对所述第一报文添加所述FlexE标识。
  18. 根据权利要求15所述的设备,其特征在于,所述报文处理设备为ONT,所述报文识别模块用于:
    通过所述第一FlexE垫片层检测到所述第一报文中携带FlexE垫片帧时,则确定所述第一报文是FlexE报文。
  19. 一种报文处理设备,其特征在于,包括:
    接收模块,用于接收第一吉比特无源光网络封装模式GEM帧,所述第一GEM帧携带第一标识;
    转换模块,用于根据所述第一GEM帧转换出第一报文;
    处理模块,用于确定所述第一标识是预留给灵活以太网FlexE业务的至少一个标识中的一个时,确定所述第一报文是FlexE报文,对所述第一报文进行时隙映射;
    发送模块,用于将时隙映射后的第一报文发送出去。
  20. 根据权利要求19所述的设备,其特征在于,所述第一标识是GEM标识,或者,所述第一标识是所述第一GEM帧的包类型PTY字段中的标识。
  21. 根据权利要求19或20所述的设备,其特征在于,所述报文处理设备为光网络终端ONT,
    所述接收模块还用于:接收第二GEM帧,所述第二GEM帧携带第二标识;
    所述转换模块还用于:根据所述第二GEM帧转换出第二报文;
    所述处理模块还用于:确定所述第二标识不是预留给FlexE业务的至少一个标识中的一个时,确定所述第二报文不是FlexE报文,对所述第二报文进行转发处理或服务质量控制;
    所述发送模块还用于:将进行转发处理或服务质量控制后的第二报文发送出去。
  22. 根据权利要求19或20项所述的设备,其特征在于,所述报文处理设备为光线路终端OLT,
    所述接收模块还用于:接收第二GEM帧,所述第二GEM帧携带第二标识;
    所述转换模块还用于:根据所述第二GEM帧转换出第二报文;
    所述处理模块还用于:确定所述第二标识不是预留给FlexE业务的至少一个标识中的一个时,确定所述第二报文不是FlexE报文,对所述第二报文进行第一层转发处理或服务质量控制;
    对进行第一层转发处理或服务质量控制后的第二报文进行交换与转发,并进行第二层转发处理或服务质量控制;
    所述发送模块还用于:将进行第二层转发处理或服务质量控制的第二报文发送出去。
PCT/CN2018/085087 2018-04-28 2018-04-28 报文处理方法及设备 WO2019205136A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2018/085087 WO2019205136A1 (zh) 2018-04-28 2018-04-28 报文处理方法及设备
CN201880086081.8A CN111566957B (zh) 2018-04-28 2018-04-28 报文处理方法及设备
EP18916034.4A EP3780424B1 (en) 2018-04-28 2018-04-28 Message processing method and device
CN202110780396.6A CN113645005A (zh) 2018-04-28 2018-04-28 报文处理方法及设备
US17/082,268 US11296813B2 (en) 2018-04-28 2020-10-28 Packet processing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/085087 WO2019205136A1 (zh) 2018-04-28 2018-04-28 报文处理方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/082,268 Continuation US11296813B2 (en) 2018-04-28 2020-10-28 Packet processing method and device

Publications (1)

Publication Number Publication Date
WO2019205136A1 true WO2019205136A1 (zh) 2019-10-31

Family

ID=68294712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085087 WO2019205136A1 (zh) 2018-04-28 2018-04-28 报文处理方法及设备

Country Status (4)

Country Link
US (1) US11296813B2 (zh)
EP (1) EP3780424B1 (zh)
CN (2) CN113645005A (zh)
WO (1) WO2019205136A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113645005A (zh) * 2018-04-28 2021-11-12 华为技术有限公司 报文处理方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101102158A (zh) * 2006-08-16 2008-01-09 华为技术有限公司 在无源光网络中传输同步数字体系业务的方法及装置
US20160119075A1 (en) * 2014-10-24 2016-04-28 Ciena Corporation Flexible ethernet and multi link gearbox mapping procedure to optical transport network
CN106411454A (zh) * 2015-07-30 2017-02-15 华为技术有限公司 用于数据传输的方法、发送机和接收机
CN107438028A (zh) * 2016-05-25 2017-12-05 华为技术有限公司 一种客户业务处理的方法和设备

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002077210A (ja) * 2000-08-25 2002-03-15 Fujitsu Denso Ltd Pon伝送システム、atm−pon伝送システム、光ネットワーク装置、及び光回線終端装置
US7535930B2 (en) * 2003-04-10 2009-05-19 Samsung Electronics Co., Ltd. GEM frame structure showing payload type of frame and method for processing data thereof
JP3936721B2 (ja) * 2005-07-29 2007-06-27 株式会社日立コミュニケーションテクノロジー 光アクセスシステム、光加入者装置及び光集線装置
KR100800688B1 (ko) * 2005-12-26 2008-02-01 삼성전자주식회사 파장분할다중방식 수동형 광네트워크 시스템의 광송신기제어 장치 및 그 방법
JP4333737B2 (ja) * 2006-12-26 2009-09-16 沖電気工業株式会社 ギガビット受動型光加入者ネットワークで用いられる信号処理装置及び信号処理方法
CN101257347B (zh) * 2007-02-28 2011-07-13 株式会社日立制作所 带宽分配设备及方法
CN101378388B (zh) * 2007-08-28 2012-10-03 华为技术有限公司 一种无源光网络数据传输的方法、系统和设备
US7860121B2 (en) * 2007-10-31 2010-12-28 Cortina Systems, Inc. Forwarding loop prevention apparatus and methods
US8126335B2 (en) * 2008-06-08 2012-02-28 Pmc-Sierra Israel Ltd. Methods and apparatus for next generation access passive optical networks
CN101656660A (zh) * 2008-08-19 2010-02-24 华为技术有限公司 Pon中承载mpls报文的方法、装置、系统
CN102480652B (zh) * 2010-11-29 2014-09-10 中兴通讯股份有限公司 映射业务流的方法和ont
WO2013173665A1 (en) * 2012-05-16 2013-11-21 Huawei Technologies Co., Ltd. Dynamic bandwidth assignment in hybrid access network with passive optical network and another medium
CN103636164A (zh) * 2012-05-28 2014-03-12 华为技术有限公司 光网络终端管理控制接口报文传递方法、系统及相应的设备
US9301029B2 (en) * 2012-11-05 2016-03-29 Broadcom Corporation Data rate control in an optical line terminal
US9231722B2 (en) * 2013-01-28 2016-01-05 Broadcom Corporation Multi-port channelized optical line terminal
EP2999167B1 (en) * 2013-06-09 2018-05-09 Huawei Technologies Co., Ltd. Method and device for virtualization passive optical network and passive optical network virtualization system
ES2667806T3 (es) * 2013-12-16 2018-05-14 Huawei Technologies Co., Ltd. Método, dispositivo y sistema de transmisión de datos
CN106303763A (zh) * 2015-05-22 2017-01-04 中兴通讯股份有限公司 一种异常pon终端的检测方法及装置
EP3393136B1 (en) * 2015-06-30 2022-06-29 Ciena Corporation Flexible ethernet node and method for oam
US9800361B2 (en) * 2015-06-30 2017-10-24 Ciena Corporation Flexible ethernet switching systems and methods
US10177871B2 (en) * 2015-07-10 2019-01-08 Futurewei Technologies, Inc. High data rate extension with bonding
CN106612203A (zh) * 2015-10-27 2017-05-03 中兴通讯股份有限公司 一种处理灵活以太网客户端数据流的方法及装置
US10461864B2 (en) * 2016-04-14 2019-10-29 Calix, Inc. Channel bonding techniques in a network
US10505655B2 (en) * 2016-07-07 2019-12-10 Infinera Corp. FlexE GMPLS signaling extensions
CN107888345B (zh) * 2016-09-29 2022-02-18 中兴通讯股份有限公司 一种信息传输的方法和设备
CN108322367B (zh) * 2017-01-16 2022-01-14 中兴通讯股份有限公司 一种业务传递的方法、设备和系统
CN106911426B (zh) * 2017-02-16 2020-07-28 华为技术有限公司 一种灵活以太网中传输数据的方法及设备
EP3729735B1 (en) * 2017-12-22 2022-07-06 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for configuring a flex ethernet node
EP3729734B1 (en) * 2017-12-22 2022-05-18 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus for configuring a flex ethernet node
CN113645005A (zh) * 2018-04-28 2021-11-12 华为技术有限公司 报文处理方法及设备
US10749623B2 (en) * 2018-12-21 2020-08-18 Adtran, Inc. Fault-tolerant distributed passive optical network bonding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101102158A (zh) * 2006-08-16 2008-01-09 华为技术有限公司 在无源光网络中传输同步数字体系业务的方法及装置
US20160119075A1 (en) * 2014-10-24 2016-04-28 Ciena Corporation Flexible ethernet and multi link gearbox mapping procedure to optical transport network
CN106411454A (zh) * 2015-07-30 2017-02-15 华为技术有限公司 用于数据传输的方法、发送机和接收机
CN107438028A (zh) * 2016-05-25 2017-12-05 华为技术有限公司 一种客户业务处理的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3780424A4 *

Also Published As

Publication number Publication date
CN113645005A (zh) 2021-11-12
EP3780424B1 (en) 2024-02-14
US20210044374A1 (en) 2021-02-11
US11296813B2 (en) 2022-04-05
CN111566957B (zh) 2021-07-09
EP3780424A1 (en) 2021-02-17
EP3780424A4 (en) 2021-04-28
CN111566957A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
TWI455501B (zh) 用以延伸乙太網路被動光學網路(epon)中之媒體存取控制(mac)控制訊息的設備
US8553708B2 (en) Bandwith allocation method and routing device
TWI478534B (zh) 用於對雙層網路中的上行傳輸時間進行調度的頭端節點、分支節點及其方法
US20140376916A1 (en) Method and Apparatus of Delivering Upstream Data in Ethernet Passive Optical Network Over Coaxial Network
JP7300064B2 (ja) データ伝送方法及び装置、ゲートウェイ、チップ、並びに記憶媒体
US11824963B2 (en) Packet processing method and device
CN109728968B (zh) 获得目标传输路径的方法、相关设备及系统
WO2019205136A1 (zh) 报文处理方法及设备
KR100884168B1 (ko) 미디어 접근 제어 프로토콜 운용 방법 및 이를 이용한이더넷 광망 시스템
JP6404788B2 (ja) 端局装置、帯域割当方法及びプログラム
CN110166382B (zh) 一种报文转发方法及装置
JP5876954B1 (ja) 端局装置及び端局装置の受信方法
JP2017041700A (ja) 端局装置及び帯域割当方法
WO2024078104A1 (zh) 一种通信系统以及相关设备
WO2023005378A1 (zh) 一种级联ont的处理方法、装置和系统
EP3609141B1 (en) An ethernet bonding processor and corresponding ethernet frame receiver
KR20040014013A (ko) 이더넷 수동형광가입자망에서의 오에이엠 방법
CN117793582A (zh) 带宽分配方法、装置、电子设备及计算机可读存储介质
CN117014743A (zh) 一种光接入设备、光接入的方法和系统
CN117857951A (zh) 一种通信系统以及相关设备
CN112087678A (zh) 带宽的分配、带宽的检查方法及装置
CN113037645A (zh) 业务传输方法及装置、计算机可读的存储介质、电子装置
JP2018107521A (ja) 光伝送装置、光集線ネットワークシステム及びデータ送信指示方法
JP2012147076A (ja) 通信システム、光回線端末装置および情報処理方法
KR20130142453A (ko) 다중 인터페이스 단말의 배터리 절약 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018916034

Country of ref document: EP

Effective date: 20201106