WO2019205029A1 - 一种天线及移动终端 - Google Patents

一种天线及移动终端 Download PDF

Info

Publication number
WO2019205029A1
WO2019205029A1 PCT/CN2018/084490 CN2018084490W WO2019205029A1 WO 2019205029 A1 WO2019205029 A1 WO 2019205029A1 CN 2018084490 W CN2018084490 W CN 2018084490W WO 2019205029 A1 WO2019205029 A1 WO 2019205029A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiating
unit
slot
adjacent
Prior art date
Application number
PCT/CN2018/084490
Other languages
English (en)
French (fr)
Inventor
吴鹏飞
王汉阳
李建铭
余冬
尤佳庆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/084490 priority Critical patent/WO2019205029A1/zh
Priority to CN201880092662.2A priority patent/CN112005436B/zh
Priority to EP18916685.3A priority patent/EP3761447B1/en
Priority to US17/044,174 priority patent/US11515649B2/en
Publication of WO2019205029A1 publication Critical patent/WO2019205029A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • H01Q1/523Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas between antennas of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/16Folded slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/378Combination of fed elements with parasitic elements
    • H01Q5/392Combination of fed elements with parasitic elements the parasitic elements having dual-band or multi-band characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements

Definitions

  • the present application relates to the technical field of communication, and in particular to an antenna and a mobile terminal.
  • the application of MIMO antenna technology on the terminal is more extensive and deeper, mainly in the number of antennas multiplied, and the coverage frequency band is also increasing, which is the end product, especially the metal.
  • the antenna design of the ID terminal poses a great challenge.
  • metal ID mobile phones on the market require high compactness.
  • a recent trend is to use a very high screen ratio after full-display to further compress the space of the communication antenna.
  • One solution known at present is to feed the second radiating element and add a coupling branch as a MIMO antenna unit.
  • the marker 1 is used as a feed antenna
  • the marker 2 is used as a coupling antenna.
  • the coupling antenna can be designed as an electric field coupling or a magnetic field coupling with the feeding antenna (only the electrical coupling is listed in FIG. 1), and the antenna bandwidth is increased.
  • a MIMO system as shown in FIG. 2
  • a plurality of MIMO antenna elements are arranged side by side, and the coupled antenna can improve the isolation between the MIMO units.
  • the disadvantage of this scheme is that the space requirement of the antenna is high, and the spacing between the MIMO antenna elements is required to be large.
  • the spacing between MIMO1 and MIMO2 is d1, and the spacing between MIMO2 and MIMO3. It is d2, so that the entire MIMO system occupies a large spatial distance within the mobile terminal.
  • the present application provides an antenna and a mobile terminal, which are used to reduce the space occupied by the antenna and facilitate the setting of the antenna.
  • an antenna comprising a plurality of arrayed antenna elements, wherein each antenna comprises a feed line, a first radiating element and a second radiating element; wherein the feed line and the two When the radiating elements are connected, different connection modes may be selected, and the feeding wires may be connected to the first radiating unit, or the feeding wires may be connected to the second radiating unit.
  • the antenna element array is arranged, any two adjacent antennas may be arranged.
  • the feed line of one of the antenna units is connected to the first radiating unit of the antenna unit; the feed line of the other antenna unit is connected to the second radiating unit of the antenna unit.
  • the second radiating unit is coupled to the first radiating unit and functions as a coupling antenna.
  • the first radiating element is coupled to the second radiating element and acts as a coupling antenna.
  • the first radiating unit and the second radiating unit are specifically disposed, the first radiating unit includes a first trough body disposed on the metal layer; the second radiating unit is a metal flake radiating unit, and the second radiating unit includes At least one radiant branch.
  • the first slot is coupled to at least one of the at least one radiating stub, specifically: in the second When the radiation unit includes a radiation branch, the first radiation unit is coupled to the one radiation branch; and when the second radiation unit includes two or more radiation branches, the first radiation unit At least one of the two or more radiation branches is coupled to each other.
  • the feeders in the adjacent antenna units are directly connected to the different first radiating elements and the second radiating elements. Thereby increasing the isolation between two adjacent antenna elements, and thereby reducing the space occupied by the antenna.
  • the adjacent two first antennas have different operating frequencies in any two adjacent antenna units; and in any two adjacent antenna units, The operating frequencies of the two radiant sections of the adjacent second radiating elements having the smallest spacing are different. Thereby increasing the isolation between the adjacent two antenna elements.
  • the spacing between the radiating branches operating at the same frequency in any two adjacent antenna elements is greater than a set value. Thereby increasing the isolation between the adjacent two antenna elements.
  • the number of antenna elements is an even number, and an even number of antenna elements are arranged side by side in two rows.
  • the second radiating unit may be a radiating unit of a single radiating branch, or may be a radiating unit including two or more radiating elements, but regardless of which of the above structures is used,
  • the second radiating elements may each be a radiant branch of the included radiant section that is bent at least one of the radiant branches.
  • the radiating branch is a bent radiating branch, and when the second radiating element includes two or more radiating branches, at least two of the two radiating branches
  • a radiant branch can be a curved radiant section.
  • the second radiating element When the second radiating element is specifically disposed, when the second radiating element includes two or more radiating nodes, and the operating frequencies of the two or more radiating branches are different. Therefore, different radiation branches correspond to different operating frequencies, and the bandwidth of the antenna is increased and the performance is improved.
  • the first groove of the first radiating unit is a bending groove. Therefore, the space can be reasonably utilized by the set bending groove body, which facilitates the setting of the entire antenna unit.
  • both ends of the first groove body of the first radiating unit are closed.
  • the first cavity of the first radiating unit is provided with an insulating layer.
  • the dielectric constant of the first tank can be improved by the insulating layer, and the length of the first tank can be reduced at the same operating frequency.
  • the sidewall of the first slot is grounded by a capacitor
  • the metal layer is a ground layer, and the second radiation unit is connected to the metal layer.
  • the length of the first trough can be reduced.
  • the first radiating unit further includes a second slot disposed in the metal layer and communicating with the first slot, and the second slot and the second radiating unit At least one of the radiating branches is coupled to each other.
  • the bandwidth increase performance is improved by providing a second slot body coupled to one of the radiating segments of the second radiating element.
  • a terminal comprising the antenna unit of any of the above, or the antenna array of any of the above.
  • the feeders in the adjacent antenna units are directly connected to the different first radiating elements and the second radiating elements. Thereby increasing the isolation between two adjacent antenna elements, and thereby reducing the space occupied by the antenna.
  • the first radiating unit is disposed on the middle frame
  • the second radiating element is disposed on the antenna mount.
  • the antenna unit is supported by the middle frame and the antenna bracket, thereby facilitating the setting of the antenna unit.
  • FIG. 1 is a schematic structural diagram of a MIMO antenna unit in the prior art
  • FIG. 2 is a schematic structural diagram of a MIMO system in the prior art
  • FIG. 3 is a schematic structural diagram of an antenna unit according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of another antenna unit according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another antenna unit according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another antenna unit according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another antenna unit according to an embodiment of the present disclosure.
  • FIG. 8 is a reflection coefficient curve of the antenna unit shown in FIG. 7 according to an embodiment of the present disclosure.
  • FIG. 9 is a reflection coefficient curve simulated by the antenna unit shown in FIG. 7 according to an embodiment of the present disclosure.
  • 10a to 10d are schematic diagrams showing currents of a slot antenna according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another antenna unit according to an embodiment of the present disclosure.
  • FIG. 12 is a reflection coefficient curve of the antenna unit shown in FIG. 11 according to an embodiment of the present disclosure.
  • FIG. 13 is a reflection coefficient curve simulated by the antenna unit shown in FIG. 11 according to an embodiment of the present application.
  • 14a to 14c are schematic diagrams of currents of a slot antenna according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another antenna unit according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of an antenna system according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic diagram of simulation of an antenna system according to an embodiment of the present application.
  • FIG. 18 is a schematic diagram of isolation simulation of an antenna system according to an embodiment of the present application.
  • FIG. 19 is a schematic diagram of another antenna structure according to an embodiment of the present application.
  • the antenna provided by the embodiment of the present application is applied to a mobile terminal, such as a notebook computer, a tablet computer, and a mobile phone.
  • the mobile terminal is developing toward miniaturization, so that the installation space of the antenna is getting smaller and smaller, and the antenna array in the mobile terminal includes a plurality of antenna units, which causes the interval between the antenna units to become smaller and smaller, thereby making the antenna The interference between the units is large.
  • the embodiment of the present application provides an antenna, where the antenna includes multiple antenna units arranged in an array, and the antenna unit uses a slot antenna and a line antenna to improve adjacent ones. The isolation between the antennas to improve the performance of the antenna.
  • the antenna unit provided in the embodiment of the present application is described in detail below with reference to the accompanying drawings and specific embodiments.
  • the antenna unit provided in the embodiment of the present application is described in detail.
  • the structure of the antenna provided by the embodiment of the present application is shown in FIG.
  • the antenna unit provided in the embodiment of the present application includes two parts, which are respectively a slot antenna and a line antenna, and the slot antenna and the line antenna are coupled and coupled.
  • the coupled connection is an indirect coupling that is not directly connected between the two components and is coupled by electromagnetic or electric fields. And by the characteristics of the slot antenna and the line antenna, the isolation between the adjacent two antenna elements can be improved.
  • the slot antenna includes at least one first radiating element 20, the line antenna includes at least one second radiating element 30, and only one of the slot antenna and the line antenna is fed through the feed line 40.
  • the slot antenna includes the first radiating unit 20 and the feeder 40, and the line antenna passes through the first radiating unit 20 and the The second radiating unit 30 is coupled to perform feeding; or when the feeding line 40 is connected to the second radiating unit 30, the feeding line 40 is directly connected to the second radiating unit 30, and the line antenna includes the second radiating unit 30 and the feeding line 40, and the slot The first radiating element 20 of the antenna is coupledly fed by the second radiating element 30.
  • the isolation between the adjacent two antenna elements is increased, and thus the difference can be reduced.
  • the spacing between the small antenna elements reduces the area occupied by the antenna and facilitates the miniaturization of the antenna.
  • the slot antenna and the line antenna can adopt different structures.
  • the structure of the slot antenna and the line antenna provided by the embodiment of the present application will be described in detail below with reference to the accompanying drawings.
  • the mobile terminal provided by the embodiment of the present application includes a middle frame and an antenna bracket, wherein the middle frame is a frame of the mobile terminal between the front case and the rear case and used to support the electrical components in the mobile terminal.
  • the slot antenna may be disposed on the metal middle frame of the mobile terminal, and the line antenna is correspondingly disposed on the antenna bracket in the mobile terminal.
  • the antenna bracket is prepared for the non-conductive material.
  • the slot antenna can also be disposed on the antenna bracket, and the line antenna is disposed on the middle frame.
  • the middle frame is prepared by using a non-conductive material
  • the antenna bracket is prepared by using a conductive metal material.
  • the schematic diagram of the antenna unit exemplified in the following embodiments is merely a simple illustration of the structure of the slot antenna and the line antenna in the antenna unit, and does not represent the actual structure when the antenna unit is disposed in the mobile terminal.
  • the slot antenna includes a first slot 21 and the wire antenna includes a radiating stub.
  • the first groove body 21 is an elongated groove, and when disposed, the first groove body 21 may be a groove body closed at both ends, or a groove having an open end may be used. body.
  • the first trough body 21 when the first trough body 21 is disposed on the metal middle frame of the mobile terminal, the first trough body 21 adopts a trough body closed at both ends, so that the side of the middle frame can be avoided.
  • the opening is formed to improve the appearance of the mobile terminal.
  • the length of the first trough body 21 is 1/2 of the wavelength corresponding to the fundamental mode, and the fundamental mode is the frequency at which the feed point is fed.
  • the first tank body 21 may also be filled with an insulating layer having a dielectric constant larger than air, and the insulating layer may be a polycarbonate and an acrylonitrile-butadiene-styrene copolymer and a mixture (dielectric constant 3.6, loss)
  • the angle is 0.01), and for the slot antenna, the higher the dielectric constant of the filled material in the same frequency band, the smaller the size of the cavity. Therefore, filling the first tank 21 with the insulating layer can effectively reduce the length of the first tank 21. And for the loss angle of the insulating layer, the smaller the loss angle of the insulating layer, the better the performance of the corresponding antenna.
  • the wire antenna includes a second radiating element 30 and a feed line 40.
  • the second radiating element 30 employs a radiating element of a single radiating branch, and the feed line 40 is connected to the second radiating element 30.
  • the second radiating element 30 is a metal sheet-shaped radiating unit, and the specific structure thereof may be a structure formed by preparing a metal piece or a metal wire.
  • the slot antenna and the line antenna are arranged in the Z direction, wherein the Z direction is a direction perpendicular to the metal plate 10 of the first slot body 21.
  • the limitation can be made according to actual conditions, and only the coupling feed between the first groove body 21 and the radiation branch can be satisfied.
  • the vertical projection of the radiation branch on the metal plate 10 partially overlaps or completely overlaps with the first groove body 21, or the vertical projection of the radiation branch on the metal plate 10 is located in the first groove body 21, and the like. It is used in the embodiments of the present application.
  • the vertical distance between the radiation branch and the first groove 21 can be adjusted according to the actual coupling effect.
  • the feed line 40 is connected to the radiation branch.
  • the feed line 40 can also be connected to the first tank body 21.
  • the slot antenna includes the first slot body 21 And a feeder 40.
  • the first slot body 21 is connected to the feed line 40
  • the side wall of the slot antenna is electrically connected to the feed line 40, and the feed position of the slot antenna is relatively free, and the feed position thereof can be centered (the first slot body 21
  • the intermediate position, as shown in point A in Fig. 4 may also be edged (the position on the first groove 21 near the end, as shown by point B in Fig. 4), or at points A and B. between.
  • the 1/2 wavelength mode can be excited.
  • the length of the first groove body 21 is relatively short; when the feed line 40 is located near one end of the first groove body 21, it can be simultaneously excited. 1/2 and double wavelength mode, but at this time, the length of the first tank 21 is longer than that of the first tank 21 fed at point B, so that the one-wavelength mode can be excited.
  • the line antenna when the antenna unit is disposed in the mobile terminal, the line antenna is disposed on the antenna bracket of a certain height, and the slot antenna is disposed on the middle frame.
  • the line antenna can also be associated with the ground structure as a coupled antenna, as shown in FIG. 5.
  • the second radiating element 30 of the line antenna is an inverted L-shaped bending structure, and is vertical. Partially connected to the ground, in the structure shown in FIG. 5, the metal plate 10 of the first radiating element 20 is grounded, and at this time, the second radiating element 30 is directly connected to the metal plate 10. As shown in FIG.
  • the load capacitor 50 when the slot antenna is used as a coupling antenna, the load capacitor 50 can also be grounded, so that the size of the slot can be reduced.
  • the slot antenna and the line antenna in the antenna unit provided by the embodiment of the present application have a greater performance improvement than the single feeder antenna or the single feed slot antenna.
  • the second radiating unit 30 may include a plurality of radiating branches, and the operating frequencies of the plurality of radiating branches are different, and are embodied in a specific setting.
  • the length of the electrical length path between the radiating branches is different.
  • the radiating branch is made of a metal piece or a metal wire
  • the length of the electrical length path can be represented by the length of the metal piece or the metal wire.
  • the first trough 21 is coupled to at least one of the radiating segments.
  • the second radiating element 30 has four radiating branches as an example for description.
  • the second radiating element 30 has four radiating branches
  • the first trough 21 is coupled to two of the radiating branches.
  • the four radiant branches are radiation branch ad, radiant branch bd, radiant branch cd and radiant branch cb.
  • the four radiation branches respectively correspond to different working frequencies. Specifically, referring to FIG.
  • the f1 resonance is generated by the 1/4 wavelength mode of the radiation branch ad, and the length of the radiation branch ad is 1/4 of the wavelength corresponding to the f1 resonance; the f2 resonance is 1/ of the radiation branch bd
  • the 4 wavelength mode is generated, and the length of the radiation branch bd is 1/4 of the wavelength corresponding to the f2 resonance; the f3 resonance is generated by the 1/2 wavelength mode of the radiation branch bc and the 1/2 wavelength mode of the first groove 21,
  • the length of the radiation branch bc is related to 1/2 of the wavelength corresponding to the f3 resonance and 1/2 of the wavelength of the fundamental mode of the first groove 21.
  • the length of the radiation branch bc is experimentally adjusted so that the radiation branch bc can operate.
  • F3 frequency; f4 resonance is generated by the 1/2 wavelength mode of the 1/4 wavelength mode of the radiation branch cd coupled to the first groove body 21, wherein the length of the radiation branch cd is 1/2 of the wavelength corresponding to the f4 resonance and the first groove
  • the 1/2 of the wavelength of the fundamental mode of the body 21 is correlated, and the length of the radiation branch cd is experimentally adjusted. 7 and 8, it can be seen that by using the plurality of radiating branches of the second radiating element 30, the operating frequency band of the entire antenna unit can be improved, thereby forming a broadband or multi-frequency antenna.
  • the simulation design frequency band is B3 (1805 ⁇ 1880MHz), B1 (2110 ⁇ 2170MHz), B41 (2496 ⁇ 2690MHz), B42. (3400 ⁇ 3600MHz) and B43 (3600 ⁇ 3800MHz), wherein the line antenna has a feeding point and a grounding point, and the coupling slot antenna is grounded through the loading capacitor 50, and the resonant frequency corresponding to the slot antenna is about 3.5 GHz.
  • the line antenna has four (which can be considered as four, but forget the signs a, b, c, d, etc. in the figure) of different lengths of radiation branches.
  • Figure 9 shows the resonance excited by the antenna unit.
  • the two lower resonances are generated by the radiation branch ab and the radiation branch bd in the line antenna to cover the B3, B1 and B41 MIMO bands.
  • the two high resonances are radiation.
  • the branch bc and the radiant section cd are coupled to the slot antenna to cover the B42 and B43 MIMO bands.
  • Fig. 10a to Fig. 10d show the current distribution under different resonances. It can be seen from the flow direction of the slot current that the above four frequency bands excite the slot antenna mode, wherein the straight line with an arrow in the figure indicates the current flow direction, i, j It represents the end point on the first tank body 21, and k is the capacitor 50 grounding point of the first tank body 21. It can be seen from Fig.
  • the design area of the antenna unit is further compressed.
  • the area of the antenna unit is further reduced by bending the slot antenna and the line antenna.
  • the first radiation unit 20 and the second radiation unit 30 are bent, for example, the first groove body 21 can be bent only, or only the radiation branch can be bent, or the first groove body can be bent at the same time. 21 and the radiation branch.
  • the first groove body 21 may be bent into an L-shaped groove body or a C-shaped groove body. In the same way, when bending the radiation branch, it can also be bent into an L shape or a C shape.
  • first groove body 21 can be set by using the edge at the corner of the middle frame.
  • the radiant section may be equivalent to a plurality of branches, as shown in Fig. 11, the radiant section of the bend may be equivalent to the radiant section ab, the radiant section ac and the radiant section bc.
  • the line antenna is a coupled antenna and has two radiating branches, the bent slot antenna feed point being offset from the intermediate position.
  • 12 is a schematic diagram of an antenna reflection coefficient curve in which an f1 resonance is generated by a 1/4 wavelength mode coupling slot antenna 1/2 wavelength mode of a radiation branch ac, and a length of a radiation branch ac is 1/4 of a wavelength corresponding to f1 resonance and The wavelength of the fundamental mode of the first trough 21 is 1/2, and the length of the radiating branch ac is experimentally adjusted so that the radiating branch bc can operate at the f1 frequency, and the f2 resonance is a 1/2 wavelength mode coupling groove of the radiating branch ab.
  • the 1/2 wavelength mode of the antenna is generated, and the length of the radiation branch ab is related to 1/2 of the wavelength corresponding to the f2 resonance and 1/2 of the wavelength of the fundamental mode of the first groove 21.
  • the length of the radiation branch bc is experimentally adjusted.
  • the radiation branch bc can be operated at the f2 frequency;
  • the f3 resonance is generated by the 1/4 wavelength mode coupling slot antenna of the radiation branch bc, and the length of the radiation branch bc is 1/2 of the wavelength corresponding to the f3 resonance and the first slot
  • the multiple wavelengths of the fundamental mode of the body 21 are all correlated, and the length of the radiation branch bc is experimentally adjusted so that the radiation branch bc can operate at the f3 frequency;
  • the antenna unit provided in the above Figure 11 is simulated.
  • the design frequency band of the antenna unit is B41, B42 and 5GHz Wifi MIMO.
  • the slot antenna is connected with the feeder 40, and the line antenna is coupled with the slot antenna and directly grounded, wherein the slot antenna 1/
  • the 2-wavelength resonant frequency is around 2.6 GHz, and the line antenna has three radiating branches.
  • the current flows from the n point of the slot antenna to the point l and the point n to the point m; as can be seen from Fig. 14b, at the f2 frequency, the current flows from point x to point l and x. The point flows to the m point; as can be seen from Fig. 14c, at the f3 frequency, the current flows from point 1 of the slot antenna to point n, point x to point n, and point x to point m. It can be seen from FIG. 12 and FIG. 13 that by simulating the antenna, the simulation effect is similar to the design effect, and the function of the broadband or multi-frequency antenna is realized.
  • the slot antenna further includes a The first tank body 21 of the metal layer further includes a second tank body 22 communicating with the first tank body 21, and when the second tank body 22 is disposed, the second tank body 22 and the second radiation unit 30 At least one of the radiant segments is coupled, and specifically, the coupling relationship between the second slot 22 and the radiating branch is similar to the coupling relationship between the first slot 21 and the radiating stub, and will not be described in detail herein.
  • the number of the second slots 22 may be one or two and two or more, and the first slot 21 and the second slot 22 are disposed at different operating frequencies, and When the number of the second tanks 22 is plural, the operating frequencies between the plurality of second tanks 22 are also different.
  • the above antenna unit can be applied to a multi-band MIMO antenna array.
  • the antenna array includes: the antenna unit according to any one of the above-mentioned ones arranged in an array; and one of the two adjacent antenna units is connected to the first radiating unit 20
  • the feed line 40 of the other antenna unit is connected to the second radiating element 30.
  • the number of antenna elements is an even number, and the even number of antenna elements are arranged side by side in two rows, wherein each of the adjacent antenna elements corresponds to any two adjacent first slots.
  • the operating frequencies are different; the operating frequencies of the two radiating branches having the smallest spacing among any two adjacent second radiating elements are different.
  • the figure shows a schematic diagram with four antenna elements.
  • the four antenna elements are the first antenna unit 100, the second antenna unit 200, the third antenna unit 300, and the fourth antenna unit 400, respectively.
  • the direction of the antenna array shown in FIG. 16 is the reference direction, wherein the first antenna unit 100 and the second antenna unit 200 are located in the same row, and the third antenna unit 300 and the fourth antenna unit 400 are located in the same row, and the first antenna
  • the unit 100 and the third antenna unit 300 are located in the same row, the second antenna unit 200 and the fourth antenna unit 400 are located in the same row, and the two rows of antenna units are arranged on both sides of the mobile terminal, as shown in FIG.
  • the antenna unit 100 and the third antenna unit 300 are two adjacent antennas, and the second antenna unit 200 and the fourth antenna unit 400 are two adjacent antennas.
  • the first antenna unit 100 and the second antenna unit 200 are connected to the feeder 40 for the line antenna, the slot antenna is coupled to the line antenna, and the second radiation of the first antenna unit 100 and the second antenna unit 200
  • the units 30 each include a plurality of radiating branches.
  • the slot antennas in the first antenna unit 100 and the second antenna unit 200 are grounded by the loading capacitor 50 to reduce the reduced size of the slot antenna;
  • the third antenna unit 300 and the fourth antenna unit In the 400 the slot antenna is connected to the feed line 40, the line antenna is coupled to the slot antenna, and the slot of the slot antenna in the fourth antenna unit 400 is a bent slot, thereby reducing the space occupied by the slot antenna.
  • the following manners can be used to improve the relationship between the antenna elements. Isolation.
  • the feeder is connected to the first radiating unit and the second radiating unit respectively, and the first slot in the adjacent antenna unit may be differentiated, so that the two antennas are The first trough of the unit operates at different frequencies, that is, the lengths of the electrical length paths of the two adjacent first troughs are different, such as the length of the first trough provided.
  • the first slot body of the first antenna unit 100 has a short length, and the first slot body operates at a high frequency
  • the first slot body of the third antenna unit 300 has a long length and operates at a low frequency.
  • the length of the electric length path of the first groove body may be changed by filling the insulating layer or providing a capacitance at the time of grounding, as in the third antenna unit 300.
  • the inner cavity is filled with an insulating layer, so that the length of the first groove body is reduced, so that the first groove body is similar to the length of the first groove body in the first antenna unit 100, but at this time, the first of the third antenna units 300
  • the operating frequency band of the slot body and the first slot body in the first antenna unit 100 are still different.
  • the operating frequencies of the two radiant branches with the smallest spacing among the adjacent second radiating elements are different, and in the specific setting, the distance between the two antenna elements is relatively close.
  • the length of the radiating branches is different to cover different frequency bands.
  • the radiating branch ab in the first antenna unit 100 is a long branch, and the active frequency band is near the low frequency; and the radiating branch in the third antenna unit 300 is closest to the radiating branch ab.
  • Cd is a short branch, and the frequency band in which it participates is near the high frequency.
  • the interval of the radiant branches operating at the same frequency is greater than a set value, and the set value may be based on actual conditions.
  • the need to define is to increase the spacing between the radiant sections operating at the same frequency, avoiding the coupling between the two radiant sections of the same frequency length.
  • the radiating branch ab and the radiating branch ce act in the low frequency band, but because the spacing between the two radiating branches is large, the distance can ensure the isolation and the ECC (Envelope Correlation Coefficient).
  • the closest radiator can be designed by the slot antenna and the line antenna, respectively, such as the first antenna unit 100.
  • the groove body and the radiant branch cd branch are all applied in the high frequency band, and the first groove body and the radiation branch ab of the second antenna are all applied in the low frequency band and the like.
  • the radiation characteristics (orthogonal polarization directions) of the line antenna and the slot antenna can still achieve good isolation and ECC.
  • the antenna mainly covering the B41 and B42 frequency bands is designed as a simulation object by the above method.
  • Figure 17 shows the simulation model and the reflection coefficient curves of the four antennas.
  • S55, S66, S77, and S88 represent reflection coefficients of the first antenna unit 100, the second antenna unit 200, the third antenna unit 300, and the fourth antenna unit 400, respectively, and the second antenna unit 200 adopts a feeding multi-segment antenna.
  • the coverage band includes the B3, B1, B41, and B42 MIMO bands.
  • the first antenna unit 100 is similar to the structure of the second antenna unit 200, and covers the frequency band. Including Wifi 2.4/5 GHz, B41 and B42 MIMO bands, the 5 GHz mode is only generated by the 1/4 wavelength mode of the shortest radiation branch af of the line antenna; the fourth antenna unit 400 is a slot antenna coupled with a feed-bending antenna antenna
  • the coverage band includes the B41, B42, and Wifi 5GHz MIMO bands, and the resonance mode thereof is described above;
  • the third antenna unit 300 and the fourth antenna unit 400 are similar in form, except that the slot antenna is not bent, and the coverage band includes B41 and B42. MIMO band, etc.
  • the isolation curve between the antenna elements is shown in FIG. 18, such as S56 indicating the transmission coefficient between the second antenna unit 200 and the first antenna unit 100, and S87 indicating the antenna third antenna unit 300.
  • a transmission coefficient or the like with the fourth antenna unit 400 In the engineering world, the general transmission coefficient is less than -10dB (that is, the isolation is greater than 10dB), and the maximum transmission coefficient in Figure 18 is about -12dB (S67 has a maximum value of -8dB, but not within the design band requirements) . In the B3, B1, B41, B42 and 5GHz MIMO bands, the isolation is greater than 12dB.
  • the above embodiment only cites an antenna system using four antenna units.
  • the antenna system provided may also include any other number of antenna systems, such as two, five, six, and eight. Different numbers of antenna elements, etc. Reference may be made to Fig. 19, which shows an antenna employing six antenna elements 500.
  • the antenna unit is different in design of the adjacent antenna unit when the antenna system is formed.
  • the slot antennas including adjacent antenna elements are respectively designed as feed and coupling, and the design lengths are different; the line antennas of adjacent antenna elements are respectively designed as feed and coupling, and the length of the nearest branch is different; adjacent antenna elements act on
  • the radiators with the closest frequency band in the same frequency band are designed by line antennas and slot antennas respectively; the antennas of the line antennas (or slot antennas) acting in the same frequency band of adjacent antenna units are designed at a long distance.
  • This differentiated design still achieves better isolation and ECC when the MIMO cell is very close.
  • the antenna provided by the embodiment of the present application can reduce the spacing between adjacent antenna units, thereby reducing the space occupied by the antenna.
  • the embodiment of the present application further provides a terminal, which may be a mobile terminal, a tablet computer, a notebook, and the like, and the mobile terminal includes the antenna unit according to any one of the above, or the antenna according to any one of the above Array.
  • the mobile terminal is provided with a casing and a middle frame disposed in the casing, and an antenna bracket stacked on the middle frame; when the antenna is specifically disposed, the first radiation unit is disposed on the middle frame, and the second The radiation unit is disposed on the antenna mount.
  • the specific setting refer to the description in the antenna unit example above.
  • the feeders in the adjacent antenna units are directly connected to the different first radiating elements and the second radiating elements. Thereby increasing the isolation between two adjacent antenna elements, and thereby reducing the space occupied by the antenna.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

本申请提供了一种天线及移动终端,该天线包括多个阵列排列的天线单元,每个天线单元包括:第一辐射单元以及第二辐射单元;第一辐射单元包括设置在金属层上的第一槽体;第二辐射单元包括至少一个辐射枝节;第一辐射单元与其中至少一个辐射枝节耦合连接,且任意相邻的两个天线单元中,其中的一个天线单元的馈电线与该天线单元的第一辐射单元连接;另一个天线单元的馈电线与该天线单元的第二辐射单元连接。在上述技术方案中,相邻的天线单元中馈电线跟不同的第一辐射单元及第二辐射单元中直接连接。从而增加两个相邻的天线单元之间的隔离度,近而降低天线占用的空间。

Description

一种天线及移动终端 技术领域
本申请涉及到通信的技术领域,尤其涉及到一种天线及移动终端。
背景技术
随着第四代移动通信技术的快速发展,MIMO天线技术在终端上的应用愈加广泛和深入,主要表现在天线数量成倍增加,而且覆盖频段也越来越多,这对终端产品尤其是金属ID终端的天线设计带来了极大的挑战。目前市场上的金属ID手机要求很高的结构紧凑性,最近的一个趋势是采用full-display后极高的屏占比,进一步压缩了通信天线的空间。
目前已知的一种方案是馈电第二辐射单元并增加耦合枝节作为MIMO天线单元。如图1所示,标记1作为馈电天线,标记2作为耦合天线,其中耦合天线可以与馈电天线设计为电场耦合或者磁场耦合(图1中仅仅列举了电耦合的方式),增加天线带宽,同时在形成MIMO系统时(如图2),多个MIMO天线单元并排设置,并且耦合天线可以改善MIMO单元之间的隔离度。但是这种方案的缺点是,天线的空间要求较高,MIMO天线单元之间的间距要求较大,如图2中所示,MIMO1与MIMO2之间的间距为d1,MIMO2与MIMO3之间的间距为d2,从而使得整个MIMO系统占用移动终端内较大的空间距离。
发明内容
本申请提供了一种天线及移动终端,用利于减少天线占用的空间,便于天线的设置。
第一方面,提供了一种天线,该天线单元包括多个阵列排列的天线单元,其中,每个天线包括馈电线、第一辐射单元以及第二辐射单元;其中,所述馈电线与两个辐射单元连接时,可以选择不同的连接方式,既可以采用馈电线与第一辐射单元连接,也可以采用馈电线与第二辐射单元连接,在天线单元阵列排列时,任意相邻的两个天线单元中,其中的一个天线单元的馈电线与该天线单元的第一辐射单元连接;另一个天线单元的馈电线与该天线单元的第二辐射单元连接。且在馈电线与第一辐射单元连接时,第二辐射单元与第一辐射单元耦合连接并作为一个耦合天线。在馈电线与第二辐射单元连接时,第一辐射单元与第二辐射单元耦合连接并作为一个耦合天线。在具体设置第一辐射单元及第二辐射单元时,第一辐射单元包括设置在金属层上的第一槽体;第二辐射单元为金属片状的辐射单元,且所述第二辐射单元包括至少一个辐射枝节。并且无论在馈电线与第一辐射单元及第二辐射单元中任一辐射单元连接时,述第一槽体与至少一个辐射枝节中的至少一个辐射枝节耦合连接,具体为:在所述第二辐射单元包括一个辐射枝节时,所述第一辐射单元与所述一个辐射枝节耦合连接;在所述第二辐射单元包括两个及两个以上的辐射枝节时,所述第一辐射单元与所述两个及两个以上的辐射枝节中的至少一个辐射枝节耦合连接。
在上述技术方案中,相邻的天线单元中馈电线跟不同的第一辐射单元及第二辐射单元中直接连接。从而增加两个相邻的天线单元之间的隔离度,近而降低天线占用的空间。
为了更进一步的提高相邻天线之间的隔离度,任意相邻的两个天线单元中,相邻的两个第一槽体对应的工作频率不同;且任意相邻的两个天线单元中,相邻的第二辐射单元中间距最小的两个辐射枝节的工作频率不同。从而增大相邻的两个天线单元之间的隔离度。
为了更进一步的提高相邻天线之间的隔离度,任意相邻的两个天线单元中,工作在相同频率的辐射枝节之间的间距大于设定值。从而增大相邻的两个天线单元之间的隔离度。
在一个具体的实施方案中,所述天线单元的个数为偶数个,且偶数个的天线单元并排排列成两排设置。
在具体设置第二辐射单元时,该第二辐射单元可以为单辐射枝节的辐射单元,也可以为包含两个及两个以上的辐射单元的辐射单元,但是无论采用上述哪种结构,在一个具体的实施方案中,第二辐射单元均可以为包含的辐射枝节中至少一个辐射枝节为折弯的辐射枝节。具体的,在第二辐射单元为单辐射枝节时,该辐射枝节为折弯的辐射枝节,在第二辐射单元包含两个及两个以上的辐射枝节时,两个及两个辐射枝节中至少一个辐射枝节可为折弯的辐射枝节。
在具体设置第二辐射单元时,在所述第二辐射单元包括两个及两个以上的辐射枝节时,且所述两个及两个以上的辐射枝节的工作频率不同。从而使不同辐射枝节对应不同的工作频率,实现了天线的带宽增加以及性能提升。
在具体设置第一辐射单元时,所述第一辐射单元的第一槽体为一个折弯槽。从而通过设置的折弯槽体可以合理的利用空间,方便整个天线单元的设置。
在具体设置第一辐射单元时,所述第一辐射单元的第一槽体两端闭合。
在具体设置第一辐射单元时,所述第一辐射单元的第一槽体内设置有绝缘层。通过该绝缘层可以改善第一槽体的介电常数,在相同工作频率下,可以降低第一槽体的长度。
在具体设置第一辐射单元时,在所述第二辐射单元与所述馈电线连接时,所述第一槽体的侧壁通过电容接地;
在所述第一辐射单与所述馈电线连接时,所述金属层为接地层,且所述第二辐射单元与所述金属层连接。在相同工作频率下,可以降低第一槽体的长度。
为了提高天线的带宽,所述第一辐射单元还包括设置在所述金属层且与所述第一槽体连通的第二槽体,且所述第二槽体与所述第二辐射单元的至少一个辐射枝节耦合连接。通过设置第二槽体与第二辐射单元的一个辐射枝节耦合,从而实现带宽增加性能提升。
第二方面,提供了一种终端,该移动终端包括上述任一项所述的天线单元或上述任一项所述的天线阵列。
在上述技术方案中,相邻的天线单元中馈电线跟不同的第一辐射单元及第二辐射单元中直接连接。从而增加两个相邻的天线单元之间的隔离度,近而降低天线占用的空间。
在一个具体的实施方案中,还包括壳体以及设置在所述壳体内的中框,以及与所述中框层叠设置的天线支架;其中,所述第一辐射单元设置在所述中框上,所述第二辐射单元设置在所述天线支架上。通过中框及天线支架支撑天线单元,从而方便天线单元的设置。
附图说明
图1为现有技术中的MIMO天线单元的结构示意图;
图2为现有技术中的MIMO系统的结构示意图;
图3为本申请实施例提供的天线单元的结构示意图;
图4为本申请实施例提供的另一种天线单元的结构示意图;
图5为本申请实施例提供的另一种天线单元的结构示意图;
图6为本申请实施例提供的另一种天线单元的结构示意图;
图7为本申请实施例提供的另一种天线单元的结构示意图;
图8为本申请实施例提供的图7所示的天线单元的反射系数曲线;
图9为本申请实施例提供的图7所示的天线单元仿真的反射系数曲线;
图10a~图10d为本申请实施例提供的槽天线的电流示意图;
图11为本申请实施例提供的另一种天线单元的结构示意图;
图12为本申请实施例提供的图11所示的天线单元的的反射系数曲线;
图13为本申请实施例提供的图11所示的天线单元仿真的反射系数曲线;
图14a~图14c为本申请实施例提供的槽天线的电流示意图;
图15为本申请实施例提供的另一种天线单元的结构示意图;
图16为本申请实施例提供的天线系统的结构示意图;
图17为本申请实施例提供的天线系统的仿真示意图;
图18为本申请实施例提供的天线系统的隔离度仿真示意图;
图19为本申请实施例提供的另一种天线结构的示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
为了方便描述,首先说明本申请实施例提供的天线应用的场景,本申请实施例提供的天线应用于移动终端,如笔记本电脑、平板电脑以及手机等常见的移动终端。而现在的移动终端向着小型化发展,使得天线的设置空间越来越小,而移动终端中的天线阵列包含多个天线单元,这就造成天线单元之间的间隔越来越小,从而使得天线单元之间的干扰较大,为了改善天线的性能,本申请实施例提供了一种天线,该天线包括多个阵列排列的天线单元,并且天线单元采用了槽天线以及线天线来改善相邻的天线之间的隔离度,以提升天线的性能。下面结合附图以及具体的实施例来对本申请实施例提供的天线单元进行详细的描述。
为了方便理解本申请实施例提供的天线,首先详细介绍一下本申请实施例提供的天线单元,如图3所示,图3中示出了本申请实施例提供的天线的结构。在图3所示 的结构中,本申请实施例提供的天线单元包括两部分,分别为槽天线及以及线天线,并且槽天线及线天线之间耦合连接,应当理解的是本申请实施例中的耦合连接为间接耦合,该间接耦合为两个部件之间不直接连接,通过电磁或电场进行耦合。并且通过槽天线及线天线的特性,可改善相邻的两个天线单元之间的隔离度。在具体设置时,该槽天线至少包括一个第一辐射单元20,线天线至少包括一个第二辐射单元30,且槽天线及线天线中仅一个天线通过馈电线40进行馈电。如馈电线40与第一辐射单元20连接时,馈电线40直接与第一辐射单元20连接,该槽天线包括第一辐射单元20及馈电线40,且线天线通过第一辐射单元20与第二辐射单元30耦合进行馈电;或者该馈电线40与第二辐射单元30连接时,馈电线40直接与第二辐射单元30连接,线天线包括该第二辐射单元30及馈电线40,槽天线的第一辐射单元20通过第二辐射单元30耦合馈电。在具体使用时,相邻的天线单元中,通过将相邻的天线单元中的馈电线40跟不同的辐射单元进行连接,从而增加相邻的两个天线单元之间的隔离度,进而可以减小天线单元之间的间距,从而降低天线占用的面积,便于天线小型化发展。
在具体设置槽天线以及线天线时,槽天线及线天线均可以采用不同的结构。下面结合附图对本申请实施例提供的槽天线及线天线的结构进行详细的说明。
首先需要说明的是,本申请实施例提供的移动终端包括中框以及天线支架,其中,中框为移动终端中介于前壳和后壳之间并用于支撑移动终端内的电气件的框体,。在该天线单元设置在移动终端上时,槽天线可以设置在移动终端的金属中框上,线天线对应设置在了移动终端内的天线支架上,此时,该天线支架为不导电材质制备而成的。当然,还可以采用槽天线设置在天线支架上,线天线设置在中框上,此时,中框为不导电材质制备而成,而天线支架为导电的金属材质制备而成。下面实施例列举的天线单元的示意图仅仅为体现天线单元中的槽天线及线天线的结构的简易示意,并不代表天线单元设置在移动终端内时的实际结构。
参考图3,在图3中所示的结构中,槽天线包括一个第一槽体21,线天线包括一个辐射枝节。在图3所示的结构中,该第一槽体21为一个长条形的槽,并且在设置时,该第一槽体21可以为两端封闭的槽体,也可以采用一端开口的槽体。在图3所示的结构中,当第一槽体21设置在移动终端的金属中框上时,该第一槽体21采用两端封闭的槽体,从而可以避免在中框的侧边上形成开口,改善了移动终端的外观。对于第一槽体21的长度来说,在图3所示的结构中,第一槽体21的长度为基模对应的波长的1/2,该基模为馈电点馈电出来的频率最低的一个模式。此外,该第一槽体21内还可以填充介电常数大于空气的绝缘层,该绝缘层可以为聚碳酸酯和丙烯腈-丁二烯-苯乙烯共聚物和混合物(介电常数3.6,损耗角0.01),而对于槽天线来说,在同频段,填充的物质介电常数越高,槽体的尺寸会越小。因此,在第一槽体21内填充上绝缘层可以有效的降低第一槽体21的长度。并且对于绝缘层的损耗角,绝缘层的损耗角越小,对应天线的性能越好。
继续参考图3,其中的线天线包括第二辐射单元30及馈电线40,如图3所示,该第二辐射单元30采用单辐射枝节的辐射单元,馈电线40与第二辐射单元30连接。在具体设置第二辐射单元30时,该第二辐射单元30为一个金属片状的辐射单元,其具体结构可以为金属片或金属线制备形成的结构。并且在具体设置线天线与槽天线时,该槽天线与线天线在沿Z方向排列,其中,Z方向为垂直于第一槽体21的金属板10 的方向。在具体设置第一槽体21以及辐射枝节时,可以根据实际的情况进行限定,只需能够满足第一槽体21与辐射枝节之间能够实现耦合馈电即可。如辐射枝节在金属板10上的垂直投影与第一槽体21之间部分重叠或者完全重叠,或者辐射枝节在金属板10上的垂直投影位于第一槽体21内等不同的设置方式均可以应用在本申请的实施例中。此外,对于辐射枝节与第一槽体21之间的垂直距离,可以根据实际的耦合效果进行调整。
在图3中所示的结构中,馈电线40与辐射枝节进行连接,当然,也可以采用馈电线40与第一槽体21进行连接,如图4所示,槽天线包括第一槽体21以及馈电线40。在第一槽体21与馈电线40连接时,槽天线的侧壁与馈电线40之间导电连接,并且槽天线的馈电位置比较自由,其馈电位置可以居中(第一槽体21的中间位置,如图4中所示的A点),也可以置边(第一槽体21上靠近端部的位置,如图4中所示的B点),或者在A点和B点之间。在馈电线40采用居中设置时,可以激励出1/2波长模式,此时,第一槽体21的长度比较短;在馈电线40位于第一槽体21的一端附近时,能同时激励出1/2和一倍波长模式,但此时,第一槽体21相比与采用在B点进行馈电的第一槽体21的长度较长,以便于能够激励出一倍波长模式。
无论采用图3和图4哪种设置方式,在天线单元设置在移动终端内时,线天线设置在一定高度的天线支架上,槽天线设置在中框上。作为一种简化设计,线天线作为耦合天线时还可以与地结构共体,如图5所示,此时,线天线的第二辐射单元30为一个倒置的L形折弯结构,并且竖直部分与地连接,在图5所示的结构中,设置第一辐射单元20的金属板10为地,此时,第二辐射单元30直接与金属板10连接。如图6所示,槽天线作为耦合天线时,还可以加载电容50接地,从而可以缩小槽的尺寸。相同环境下,采用本申请实施例提供的天线单元中的槽天线及线天线,相比单独馈电线天线或者单独馈电槽天线,性能有较大改善。
此外,为了提高天线的适应性,在具体设置第二辐射单元30时,该第二辐射单元30可以包括多个辐射枝节,并且多个辐射枝节的工作频率不同,在具体设置时,体现为多个辐射枝节之间的电长度路径长度不同,在辐射枝节为金属片或金属线制备而成时,电长度路径长度可以通过金属片或金属线的长度不同来体现。在与第一槽体21耦合时,该第一槽体21至少与其中的一个辐射枝节耦合。下面以第二辐射单元30具有四个辐射枝节为例进行说明。参考图7,在图7中示出了第二辐射单元30具有四个辐射枝节的结构,并且第一槽体21与其中的两个辐射枝节耦合。其中,四个辐射枝节分别为辐射枝节ad,辐射枝节bd,辐射枝节cd以及辐射枝节cb。并且在具体设置四个辐射枝节时,四个辐射枝节分别对应不同的工作频率。具体的,一并参考图8,其中f1谐振是辐射枝节ad的1/4波长模式产生,且辐射枝节ad的长度为f1谐振对应的波长的1/4;f2谐振是辐射枝节bd的1/4波长模式产生,且辐射枝节bd的长度为f2谐振对应的波长的1/4;f3谐振是辐射枝节bc的1/2波长模式和第一槽体21的1/2波长模式产生,此时,辐射枝节bc的长度与f3谐振对应的波长的1/2以及第一槽体21的基模的波长的1/2均相关,通过实验调整辐射枝节bc的长度,使得辐射枝节bc能够工作在f3频率;f4谐振是辐射枝节cd的1/4波长模式耦合第一槽体21的1/2波长模式产生,其中,辐射枝节cd的长度与f4谐振对应的波长的1/2以及第一槽体21的基模的波长的1/2均相关,通过实验调整辐射枝节cd的长度。通过图7及图8,可以 看出,通过设置的第二辐射单元30采用多个辐射枝节,可以提高整个天线单元的工作频段,从而形成宽频或者多频天线。
为了方便理解本申请实施例提供的天线单元,下面以图7所示的结构进行仿真,该仿真设计频段为B3(1805~1880MHz)、B1(2110~2170MHz)、B41(2496~2690MHz)、B42(3400~3600MHz)及B43(3600~3800MHz),其中,线天线具有一个馈电点和一个接地点,耦合槽天线通过加载电容50接地,槽天线对应的谐振频率在3.5GHz左右。线天线具有四个(可认为是四个,但是图中忘记标志a,b,c,d等)不同长度的辐射枝节。图9显示了天线单元激励出的谐振,偏低的两个谐振是线天线中的辐射枝节ab及辐射枝节bd产生,用以覆盖B3、B1以及B41 MIMO频段,偏高的两个谐振是辐射枝节bc和辐射枝节cd和槽天线耦合产生,用以覆盖B42及B43 MIMO频段。图10a~图10d显示了不同谐振下的电流分布,通过槽电流的流向可以看出上述四个频段均激励出了槽天线模式,其中,图中带箭头的直线表示电流的流向,i、j表示第一槽体21上的端点,k为第一槽体21电容50接地点。由图10a可以看出,在f1频率下,电流由槽天线的i点流向j点;由图10b可以看出,在f2频率下,电流由j点流向i点;由图10c可以看出,在f3频率下,电流由槽天线的i点流向k点,以及j点流向k点;由图10d可以看出,在f4频率下,电流由槽天线的i点流向k点,以及j点流向k点。由图8及图9可以看出,通过对天线的仿真,仿真效果与设计的效果相近似,实现了宽频或者多频天线的功能。
在采用多个天线单元构成天线阵列时,天线单元的设计面积会进一步受到压缩。在本申请实施例中,如图11所示,通过将槽天线和线天线弯折,将天线单元的面积进一步减小。在具体设置时,采用将第一辐射单元20及第二辐射单元30折弯的方式设置,如可以仅折弯第一槽体21,或者仅折弯辐射枝节,或者同时折弯第一槽体21及辐射枝节。在具体折弯第一槽体21时,可以将第一槽体21折弯成L形的槽体,或者C形的槽体。同理,在折弯辐射枝节时,也可以折弯成L形或者C形。但应当理解的是,无论采用上述哪种折弯方式,第一槽体21与辐射枝节之间应能够实现耦合。如图11所示,图11中示出了一种具体的第一槽体21及辐射枝节折弯的方式,在图11中所示的第一槽体21采用L形的折弯,而辐射枝节采用C形的折弯,在采用此种折弯方式时,可以有效的改善整个天线单元占用的空间面积,同时,在具体设置天线单元时,当第一槽体21位于中框的边沿时,可以很好的利用中框拐角处的边沿来设置第一槽体21。应当理解的是,在辐射枝节进行折弯时,其可以等效于多个枝节,如图11中所示,折弯的辐射枝节可以等效成辐射枝节ab,辐射枝节ac及辐射枝节bc。
在一个具体的实施例中,如图11所示,线天线是耦合天线,并且具有两个辐射枝节,弯折的槽天线馈电点偏离中间位置。图12是天线反射系数曲线的示意图,其中f1谐振是辐射枝节ac的1/4波长模式耦合槽天线1/2波长模式产生,且辐射枝节ac的长度与f1谐振对应的波长的1/4以及第一槽体21的基模的波长的1/2均相关,通过实验调整辐射枝节ac的长度,使得辐射枝节bc能够工作在f1频率,f2谐振是辐射枝节ab的1/2波长模式耦合槽天线1/2波长模式产生,辐射枝节ab的长度与f2谐振对应的波长的1/2以及第一槽体21的基模的波长的1/2均相关,通过实验调整辐射枝节bc的长度,使得辐射枝节bc能够工作在f2频率;f3谐振是辐射枝节bc的1/4波长模式耦合槽天线一倍波长模式产生,辐射枝节bc的长度与f3谐振对应的波长的1/2以及第一槽 体21的基模的一倍波长均相关,通过实验调整辐射枝节bc的长度,使得辐射枝节bc能够工作在f3频率;。
对上图11提供的天线单元进行仿真,该天线单元的设计频段为B41、B42及5GHzWifi MIMO,槽天线与馈电线40连接,线天线与槽天线耦合并直接接地,其中,槽天线的1/2波长谐振频率在2.6GHz左右,线天线具有三个辐射枝节。如图13显示的三个谐振点的电流和电场分布,其中最低谐振是辐射枝节ac的1/4波长模式耦合槽天线1/2波长模式产生,可以覆盖B41 MIMO频段;中间谐振是辐射枝节ab的1/2波长模式耦合槽天线1/2波长模式产生,可以覆盖B42 MIMO频段;最高谐振是线辐射枝节bc的1/4波长模式耦合槽天线一倍波长模式产生,可以覆盖5GHz MIMO频段。图14a~图14c显示了不同谐振下的电流分布,其中,图中带箭头的直线表示电流的流向,l、m表示第一槽体21上的端点,n、x为第一槽体21的中间某一点。由图14a可以看出,在f1频率下,电流由槽天线的n点流向l点及n点流向m点;由图14b可以看出,在f2频率下,电流由点x流向l点及x点流向m点;由图14c可以看出,在f3频率下,电流由槽天线的l点流向n点,x点流向n点,x点流向m点。由图12及图13可以看出,通过对天线的仿真,仿真效果与设计的效果相近似,实现了宽频或者多频天线的功能。
在扩展天线的性能时,除了上述中采用上述中增加第二辐射单元30的辐射枝节外,还以通过改善第一辐射单元20的结构,如图15所示,该槽天线还包括设置在所述金属层的第一槽体21外,还包括与第一槽体21连通的第二槽体22,并且在设置第二槽体22时,第二槽体22与所述第二辐射单元30的至少一个辐射枝节耦合连接,具体的,第二槽体22与辐射枝节之间的耦合关系与第一槽体21与辐射枝节的耦合关系相近似,在此不再详细描述。在具体设置第二槽体22时,该第二槽体22的个数可以为一个或者两个及两个以上,且设置的第一槽体21及第二槽体22的工作频率不同,并且在第二槽体22的个数为多个时,多个第二槽体22之间的工作频率也不同。
上述天线单元,可应用在多频段MIMO天线阵列中。具体的,该天线阵列包括:阵列排列的上述任一项所述的天线单元;并且任意相邻的两个天线单元中,其中的一个天线单元的馈电线40与所述第一辐射单元20连接,另一天线单元的馈电线40与所述第二辐射单元30连接。在一个具体的实施方案中,天线单元的个数为偶数个,偶数个的天线单元并排排列成两排设置,其中,每一排天线单元中,任意相邻的两个第一槽体对应的工作频率不同;任意相邻的两个第二辐射单元中间距最小的两个辐射枝节的工作频率不同。如图16所示,图显示了具有四个天线单元的示意图。四个天线单元分别为第一天线单元100、第二天线单元200、第三天线单元300及第四天线单元400。以图16所示的天线阵列的放置方向为参考方向,其中,第一天线单元100及第二天线单元200位于同一行,第三天线单元300及第四天线单元400位于同一行,第一天线单元100及第三天线单元300位于同一排,第二天线单元200及第四天线单元400位于同一排,并且两排天线单元分列在移动终端的两侧,如图16中所示,第一天线单元100及第三天线单元300为相邻的两个天线,第二天线单元200及第四天线单元400为两个相邻的天线。在具体设置时,第一天线单元100与第二天线单元200为线天线与馈电线40连接,槽天线与线天线耦合的方式,且第一天线单元100、第二天线单元200的第二辐射单元30均包含多个辐射枝节,此外,第一天线单元100及第二天线单 元200中的槽天线通过加载电容50接地来缩小槽天线的缩小的尺寸;第三天线单元300及第四天线单元400中采用槽天线与馈电线40连接,线天线与槽天线耦合的方式,且第四天线单元400中的槽天线的槽体为折弯的槽体,从而减少槽天线占用的空间面积。由线天线和槽天线的工作特性,此时可以获得很好的隔离度及线天线和槽天线辐射特性(极化方向正交),从而相比与现有技术中的天线,可以减少占用的空间面积。
针对本申请实施例提供的如图16所示的天线,为了提高相邻的两个天线单元的隔离度,对于相邻的两个天线单元,可以通过采用以下的方式来改善天线单元之间的隔离度。
如图16所示,除了上述将馈电线与第一辐射单元及第二辐射单元分别进行连接外,还可以采用:相邻的天线单元中的第一槽体存在差异化设计,使得两个天线单元的第一槽体工作在不同的频率,即使得两个相邻的第一槽体的电长度路径长度不同,如采用设置的第一槽体的长度不同。在图16中所示,第一天线单元100的第一槽体长度较短,且第一槽体工作在高频,第三天线单元300的第一槽体的长度较长,且工作在低频,此外,除了上述通过改变第一槽体的长度相同外,还可以通过填充绝缘层或者在接地时设置电容来改变第一槽体的电长度路径长度,如在第三天线单元300中的第一槽体内填充绝缘层,从而减少第一槽体的长度,使得该第一槽体与第一天线单元100中的第一槽体长度近似,但此时,第三天线单元300中的第一槽体的与第一天线单元100中的第一槽体的工作频段仍不相同。
还可以采用相邻的线天线之间的设计存在差异化,如相邻的第二辐射单元中间距最小的两个辐射枝节的工作频率不同,在具体设置时,两个天线单元中距离较近的辐射枝节长度不相同,用以覆盖不同的频段,如第一天线单元100中的辐射枝节ab是长枝节,作用频段在低频附近;第三天线单元300中与辐射枝节ab距离最近的辐射枝节cd是短枝节,它参与作用的频段在高频附近。通过采用该方式,使得相邻的辐射枝节工作在不同的频段,从而提高两个天线单元之间的隔离度。
还可以采用对于相邻的两个天线单元中辐射枝节工作在同一频段的辐射枝节来说,在设置时,使工作在相同频率的辐射枝节的间隔大于设定值,该设定值可以根据实际的需要进行限定,以增大工作在相同频率的辐射枝节之间的间隔,避免两个工作在相同频率长度辐射枝节之间出现耦合。如辐射枝节ab、以及辐射枝节ce均作用在低频频段,但是由于两个辐射枝节之间的间距较大,因此,其距离可保证隔离度和ECC(Envelope Correlation Coefficient,包络相关系数)良好。
此外,对于相邻的两个天线单元来说,对于工作在同频段的辐射单元,还可以采用距离最近的辐射体是分别由槽天线和线天线设计的,如第一天线单元100的第一槽体、辐射枝节cd枝节均作用在高频频段,而第二天线的第一槽体、辐射枝节ab均作用在低频频段等等。由线天线和槽天线的辐射特性(极化方向正交)此时仍可以获得很好的隔离度及ECC。
为了方便理解,下面通过仿真进行说明,以上述方法设计了主要涵盖B41与B42频段的天线为仿真对象。图17显示了仿真模型以及四个天线的反射系数曲线。其中,S55,S66,S77,S88分别表示第一天线单元100、第二天线单元200、第三天线单元300及第四天线单元400的反射系数,第二天线单元200采用馈电多枝节线天线耦合槽天线的形式,覆盖频段包括B3、B1、B41以及B42 MIMO频段,具体的可参考上 述示例中关于多辐射枝节的描述;第一天线单元100类似于第二天线单元200的结构,覆盖频段包括Wifi 2.4/5GHz、B41以及B42 MIMO频段,其5GHz模式只通过线天线中最短的辐射枝节af的1/4波长模式产生;第四天线单元400采用馈电弯折的槽天线耦合线天线的形式,覆盖频段包括B41、B42以及Wifi 5GHz MIMO频段,其谐振模式在上文描述;第三天线单元300和第四天线单元400形式类似,只是其槽天线没有弯折,覆盖频段包括B41、B42 MIMO频段等。需要注意的是,在第一天线单元100和第三天线单元300之间,天线之间的最小距离仅有4mm,第二天线单元200和第四天线单元400之间距离亦然。一并参考图18,在图18中显示了各天线单元之间的隔离度曲线,如S56表示第二天线单元200与第一天线单元100之间的传输系数,S87表示天线第三天线单元300与第四天线单元400之间的传输系数等。在工程界,一般传输系数小于-10dB(即隔离度大于10dB)可满足要求,而图18中最大传输系数为-12dB左右(S67有一个最大值在-8dB,但不位于设计频段要求内)。实现了在B3、B1、B41、B42以及5GHz MIMO频段内,其隔离度均大于12dB。
当然上述实施例仅仅列举了采用四个天线单元的天线系统,在本申请实施例中,提供的天线系统还可以包括其他任意个数的天线系统,如两个、五个、六个、八个天线单元等不同个数。可参考图19,图19中示出了采用六个天线单元500的天线。
通过上述描述可以看出,本申请实施例中,天线单元在组成天线系统时,相邻天线单元的差异化设计。包含相邻天线单元的槽天线分别作为馈电和耦合设计,而且设计长度不同;相邻天线单元的线天线分别作为馈电和耦合设计,而且距离最近的枝节长度不同;相邻天线单元作用在同一频段、距离最近的辐射体分别由线天线和槽天线设计;相邻天线单元作用在同一频段的线天线(或槽天线)枝节设计在距离较远的位置。这种差异化设计在MIMO单元距离很近时,仍可以获得较好的隔离度和ECC。通过上述设计使得本申请实施例提供的天线可以减少相邻的天线单元之间的间距,从而降低了天线占用的空间面积。
本申请实施例还提供了一种终端,该移动终端可以为手机、平板电脑、笔记本等常见的移动终端,该移动终端包括上述任一项所述的天线单元或上述任一项所述的天线阵列。
并且该移动终端中设置有壳体以及设置在所述壳体内的中框、与所述中框层叠设置的天线支架;在具体设置该天线时,第一辐射单元设置在中框上,第二辐射单元设置在天线支架上。具体的设置方式,可以参考上述天线单元实例中的描述。
在上述技术方案中,在上述技术方案中,相邻的天线单元中馈电线跟不同的第一辐射单元及第二辐射单元中直接连接。从而增加两个相邻的天线单元之间的隔离度,近而降低天线占用的空间。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种天线,其特征在于,包括:多个阵列排列的天线单元,每个天线单元包括:
    第一辐射单元以及第二辐射单元;其中,所述第一辐射单元包括设置在金属层上的第一槽体;所述第二辐射单元为金属片状的辐射单元,且所述第二辐射单元包括至少一个辐射枝节;且所述第一槽体与所述至少一个辐射枝节耦合连接;
    每个天线单元还包括馈电线,且任意相邻的两个天线单元中,其中的一个天线单元的馈电线与该天线单元的第一辐射单元连接;另一个天线单元的馈电线与该天线单元的第二辐射单元连接。
  2. 根据权利要求1所述的天线,其特征在于,任意相邻的两个天线单元中,相邻的两个第一槽体对应的工作频率不同;且任意相邻的两个天线单元中,相邻的第二辐射单元中间距最小的两个辐射枝节的工作频率不同。
  3. 根据权利要求2所述的天线,其特征在于,任意相邻的两个天线单元中,工作在相同频率的辐射枝节之间的间距大于设定值。
  4. 根据权利要求2或3所述的天线,其特征在于,所述天线单元的个数为偶数个,且偶数个的天线单元并排排列成两排设置。
  5. 根据权利要求1~4任一项所述的天线,其特征在于,所述第二辐射单元的辐射枝节中至少一个辐射枝节为折弯的辐射枝节。
  6. 根据权利要求1~5任一项所述的天线,其特征在于,在所述第二辐射单元包括两个及两个以上的辐射枝节时,所述两个及两个以上的辐射枝节的工作频率不同。
  7. 根据权利要求1~6所述的天线,其特征在于,所述第一辐射单元的第一槽体为一个折弯槽。
  8. 根据权利要求1~7任一项所述的天线,其特征在于,所述第一辐射单元的第一槽体两端闭合。
  9. 根据权利要求1~8任一项所述的天线,其特征在于,所述第一辐射单元的第一槽体内设置有绝缘层。
  10. 根据权利要求1~9任一项所述的天线,其特征在于,在所述第二辐射单元与所述馈电线连接时,所述第一槽体的侧壁通过电容接地;
    在所述第一辐射单与所述馈电线连接时,所述金属层为接地层,且所述第二辐射单元与所述金属层连接。
  11. 根据权利要求1~10任一项所述的天线,其特征在于,所述第一辐射单元还包括设置在所述金属层且与所述第一槽体连通的第二槽体,且所述第二槽体与所述第二辐射单元的辐射枝节中的至少一个辐射枝节耦合连接。
  12. 一种移动终端,其特征在于,包括如权利要求1~11任一项所述的天线。
  13. 根据权利要求12所述的移动终端,其特征在于,还包括壳体以及设置在所述壳体内的中框,以及与所述中框层叠设置的天线支架;其中,所述第一辐射单元设置在所述中框上,所述第二辐射单元设置在所述天线支架上。
PCT/CN2018/084490 2018-04-25 2018-04-25 一种天线及移动终端 WO2019205029A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2018/084490 WO2019205029A1 (zh) 2018-04-25 2018-04-25 一种天线及移动终端
CN201880092662.2A CN112005436B (zh) 2018-04-25 2018-04-25 一种天线及移动终端
EP18916685.3A EP3761447B1 (en) 2018-04-25 2018-04-25 Antenna and mobile terminal
US17/044,174 US11515649B2 (en) 2018-04-25 2018-04-25 Antenna and mobile terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/084490 WO2019205029A1 (zh) 2018-04-25 2018-04-25 一种天线及移动终端

Publications (1)

Publication Number Publication Date
WO2019205029A1 true WO2019205029A1 (zh) 2019-10-31

Family

ID=68293442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084490 WO2019205029A1 (zh) 2018-04-25 2018-04-25 一种天线及移动终端

Country Status (4)

Country Link
US (1) US11515649B2 (zh)
EP (1) EP3761447B1 (zh)
CN (1) CN112005436B (zh)
WO (1) WO2019205029A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122668A (zh) * 2021-11-25 2022-03-01 中国电子科技集团公司第二十九研究所 一种可配置的堆叠型天线阵验证装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10840596B2 (en) * 2018-05-22 2020-11-17 Plume Design, Inc. Tunable antenna system for Bluetooth and Wi-Fi bands with electronically-reconfigurable and mechanically-identical antennas
CN114824749B (zh) * 2021-01-22 2023-07-18 华为技术有限公司 一种电子设备
TWI765743B (zh) * 2021-06-11 2022-05-21 啓碁科技股份有限公司 天線結構
CN114400446A (zh) * 2022-01-07 2022-04-26 电子科技大学 一种小型宽带pifa天线及其设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050264455A1 (en) * 2004-05-26 2005-12-01 Nokia Corporation Actively tunable planar antenna
US20090147434A1 (en) * 2007-12-07 2009-06-11 Metamems Llc Using multiple coulomb islands to reduce voltage stress
CN103811869A (zh) * 2012-11-08 2014-05-21 中兴通讯股份有限公司 一种多输入多输出天线系统及移动终端
CN204375951U (zh) * 2015-02-16 2015-06-03 零八一电子集团有限公司 馈电耦合微带贴片天线阵列单元
CN107732433A (zh) * 2017-10-26 2018-02-23 华南理工大学 一种双工工字形槽天线

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177326A (ja) * 1999-10-08 2001-06-29 Matsushita Electric Ind Co Ltd アンテナ装置、通信システム
JP2007013643A (ja) * 2005-06-30 2007-01-18 Lenovo Singapore Pte Ltd 一体型平板多素子アンテナ及び電子機器
US7551142B1 (en) * 2007-12-13 2009-06-23 Apple Inc. Hybrid antennas with directly fed antenna slots for handheld electronic devices
CN102013567A (zh) 2010-12-01 2011-04-13 惠州Tcl移动通信有限公司 一种五频段和蓝牙的内置天线及其移动通信终端
TWI484772B (zh) * 2012-04-17 2015-05-11 Tai Saw Technology Co Ltd 多輸入多輸出天線裝置
CN103633443B (zh) * 2013-08-13 2016-05-25 北京航空航天大学 多频段小型化平面单极子天线
EP3001503B1 (en) * 2014-03-13 2017-01-25 Huawei Device Co., Ltd. Antenna and terminal
JP6466174B2 (ja) * 2015-01-06 2019-02-06 株式会社東芝 偏波共用アンテナの製造方法
US10218052B2 (en) * 2015-05-12 2019-02-26 Apple Inc. Electronic device with tunable hybrid antennas
TWI599099B (zh) 2015-07-03 2017-09-11 宏碁股份有限公司 行動裝置
CN106450752B (zh) * 2016-08-30 2020-02-18 电子科技大学 一种用于智能手机实现高隔离度的mimo天线
CN206727220U (zh) * 2017-05-26 2017-12-08 华东交通大学 一种基于微带馈电的小型化超宽带mimo天线
CN107623177B (zh) * 2017-09-11 2019-07-16 西安电子科技大学 基于四单元的宽带mimo天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050264455A1 (en) * 2004-05-26 2005-12-01 Nokia Corporation Actively tunable planar antenna
US20090147434A1 (en) * 2007-12-07 2009-06-11 Metamems Llc Using multiple coulomb islands to reduce voltage stress
CN103811869A (zh) * 2012-11-08 2014-05-21 中兴通讯股份有限公司 一种多输入多输出天线系统及移动终端
CN204375951U (zh) * 2015-02-16 2015-06-03 零八一电子集团有限公司 馈电耦合微带贴片天线阵列单元
CN107732433A (zh) * 2017-10-26 2018-02-23 华南理工大学 一种双工工字形槽天线

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122668A (zh) * 2021-11-25 2022-03-01 中国电子科技集团公司第二十九研究所 一种可配置的堆叠型天线阵验证装置
CN114122668B (zh) * 2021-11-25 2023-05-05 中国电子科技集团公司第二十九研究所 一种可配置的堆叠型天线阵验证装置

Also Published As

Publication number Publication date
CN112005436B (zh) 2023-09-12
US20210036431A1 (en) 2021-02-04
EP3761447A4 (en) 2021-03-17
EP3761447A1 (en) 2021-01-06
EP3761447B1 (en) 2022-08-31
CN112005436A (zh) 2020-11-27
US11515649B2 (en) 2022-11-29

Similar Documents

Publication Publication Date Title
WO2019205029A1 (zh) 一种天线及移动终端
US11411323B2 (en) Compact wideband dual-polarized radiating elements for base station antenna applications
CN103915678B (zh) 全向式天线
KR100895448B1 (ko) 소형화된 mimo 안테나
US9225053B2 (en) Antenna and electronic device having the same
EP1814193B1 (en) Planar antenna
Mak et al. A shorted bowtie patch antenna with a cross dipole for dual polarization
KR100980774B1 (ko) 아이솔레이션 에이드를 구비한 내장형 mimo 안테나
TWI518992B (zh) 高增益天線及無線裝置
US20080129632A1 (en) Antenna having additional ground
EP3806240A1 (en) Antenna
JP2014039245A (ja) 電磁バンドギャップ構造を有するmimoアンテナ
WO2020135171A1 (zh) 天线结构及终端
WO2021197399A1 (zh) 一种天线及终端
CN105449348A (zh) 电磁偶极子天线
WO2020010941A1 (zh) 天线及通信设备
CN110890627B (zh) 双馈入回路天线结构及电子装置
JPH10209739A (ja) 逆f形アンテナ
CN109962336B (zh) 全向性的路由器板载式双频mimo天线
TW201332207A (zh) 隱藏式天線
CN107611587B (zh) 一种低剖面超宽带高增益定向天线及其制备方法
TW201304271A (zh) 天線
CN108063312B (zh) 一种移动终端宽带mimo双天线
CN112993575B (zh) 一种WiFi全向天线
CN112216961B (zh) 用于多宽带以及多极化通信的天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018916685

Country of ref document: EP

Effective date: 20200930

NENP Non-entry into the national phase

Ref country code: DE