WO2019204960A1 - 一种基于螺旋变换的光子轨道角动量模式测量方法及系统 - Google Patents

一种基于螺旋变换的光子轨道角动量模式测量方法及系统 Download PDF

Info

Publication number
WO2019204960A1
WO2019204960A1 PCT/CN2018/084061 CN2018084061W WO2019204960A1 WO 2019204960 A1 WO2019204960 A1 WO 2019204960A1 CN 2018084061 W CN2018084061 W CN 2018084061W WO 2019204960 A1 WO2019204960 A1 WO 2019204960A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane
phase
light field
phase plate
transformation
Prior art date
Application number
PCT/CN2018/084061
Other languages
English (en)
French (fr)
Inventor
陈钰杰
闻远辉
克里姆斯⋅扬尼斯
余思远
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Priority to US16/613,804 priority Critical patent/US10962409B2/en
Priority to PCT/CN2018/084061 priority patent/WO2019204960A1/zh
Publication of WO2019204960A1 publication Critical patent/WO2019204960A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/04Mode multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/07Orbital angular momentum [OAM] multiplex systems

Definitions

  • the present invention relates to the field of spatial mode multiplexing/demultiplexing of optical communication applications, and more particularly to a photon orbit angular momentum mode measurement method and system based on spiral transformation.
  • the space-based modular multiplexing technology has once again greatly improved the communication capacity. It has become one of the important research directions in the field of communication.
  • the spatial domain's modular multiplexing is based on the fact that the optical field is spatially orthogonal to each other. Each spatial mode can be used as an independent channel for signal transmission, thereby greatly improving the transmission capacity of the communication system.
  • the OAM demultiplexer is one of the core devices in the OAM communication system. Its function is to spatially separate the different OAM modes of the coaxial transmission, so that different OAM modes and the information they carry can be processed without interference. probe.
  • several typical OAM demultiplexing methods include: (1) interference methods, such as using a pair of dove prisms to efficiently (in theory close to 100%) separate parity OAM mode, but if further separation of all different OAM modes is performed, It is necessary to cascade multiple optical components, making the whole system very complicated; (2) holography, which uses a specially designed diffraction grating in the hologram to demodulate different OAM modes into Gaussian modes at different diffraction orders, since only one The phase hologram is thus the simplest to implement, but the disadvantage is that the theoretical upper limit of the demodulation efficiency is only 1/N, where N is the number of demodulated OAM modes, that is, the demodulation efficiency decreases as the number of demodulation modes increases.
  • the spatial vortex light is coupled into the waveguide through the grating coupler, and the spiral phase is converted into a linear phase by the arrayed waveguide grating to be coupled to different output waveguides.
  • the on-chip OAM demultiplexer facilitates large-scale integration, but it is difficult to fabricate due to the complexity of the device, and the overall overall demodulation is due to the limited light-receiving area of the grating coupler. Very inefficient.
  • the OAM mode demultiplexing scheme based on optical coordinate transformation has the advantages of high demodulation efficiency (100% theoretically) and relatively easy implementation (only two phase plates are required), so it is very important at present.
  • the log polar transformation is the only optical coordinate transformation that can be used to realize OAM demultiplexing. Its principle is to transform the angular phase of the OAM mode into a horizontal linear phase, corresponding to The plane wave modes of different oblique wavefronts, in turn, can be used to separate modes by focusing on different positions on the focal plane using a convex lens.
  • the present invention proposes a new optical coordinate transformation scheme for OAM mode demultiplexing.
  • the angular phase of the OAM mode is transformed into a linear phase along a closed circular path, and the present invention performs a light field transformation along a path of a spiral and thus can be derived from the wavefront of the OAM mode. Extract more phase changes, and theoretically only limited by the size of the OAM spot, so as to overcome the adjacent mode crosstalk problem caused by the broadening of the demodulated OAM spot, and further achieve high resolution while maintaining high demodulation efficiency.
  • the rate of photon orbital angular momentum is separated and thus has greater practical potential.
  • a photon orbit angular momentum mode measurement system based on spiral transformation comprising an optical coordinate transformation module, a Fourier transform module and a light intensity detection module, wherein
  • the optical coordinate transformation module includes two phase plates having a light field phase modulation function
  • the Fourier transform module includes a convex lens, and a light field at a front focal plane and a back focal plane of the convex lens satisfies a Fourier transform relationship;
  • the light intensity detecting module is configured to acquire light intensity distribution information.
  • the phase plate is a spatial light modulating or diffractive optical element or superstructure surface or the like.
  • the phase plate is a front and back sides of a substrate, defined as an (x, y) plane and a (u, v) plane, respectively, and a substrate thickness of d;
  • the convex lens of the leaf transform module is parallel to the plane of the second phase plate (u, v), and the plane of the second phase plate (u, v) corresponds to the front focal plane of the convex lens; the plane and the convex lens of the light intensity detecting module
  • the back focal plane corresponds.
  • the light intensity detecting module is constituted by a camera, and the light intensity distribution information is acquired by taking an image.
  • the light intensity detecting module is composed of an optical fiber array, and the light intensity distribution information is obtained by coupling into different optical fibers.
  • a method for measuring photon orbital angular momentum based on spiral transformation characterized in that it comprises the following steps:
  • phase plate 2 loading a preset first phase modulation Q(x, y) on the phase plate 1 of the (x, y) plane, so that the incident vortex light field is modulated by the phase plate 1 and propagated to the (u, v) plane.
  • Phase plate 2 loading a preset first phase modulation Q(x, y) on the phase plate 1 of the (x, y) plane, so that the incident vortex light field is modulated by the phase plate 1 and propagated to the (u, v) plane.
  • the optical paths at different positions on the (x, y) plane are not the same when propagating to corresponding positions on the (u, v) plane, and thus the light on the (u, v) plane There will be phase distortion in the field. Therefore, it is necessary to load another phase modulation P(u, v) preset on the phase plate 2 of the (u, v) plane to compensate for this phase distortion of the light field.
  • the phase distribution is transformed from the angular spiral phase exp(il ⁇ ) to the transverse linear phase exp(ilv/ ⁇ ).
  • the optical orbital angular momentum mode with different topological charges l is converted into a plane wave mode with different oblique wavefronts after the action of the above two phase plates, and the degree of inclination is proportional to l;
  • is the wavelength of the light wave
  • f is the focal length of the convex lens
  • the transformed plane wave modes with different oblique wavefronts are respectively focused to a specific lateral position on the back focal plane of the lens, and the lateral position is proportional to the number of topological charges of the photon orbital momentum of the photon to be measured, thereby realizing different photon orbitals.
  • S5 Recording the position of the light intensity distribution by the light intensity detecting module located on the back focal plane of the lens, and determining the topological charge number l of the photon orbit angular momentum mode of the light field to be measured.
  • the light field on the (x, y) plane in the S2 is decomposed along the path of the logarithmic spiral and mapped to a straight line on the (u, v) plane, and the corresponding coordinate map
  • the relationship is expressed by the following formula:
  • the spiral transformation is degenerated into a log polar transformation; the (r, ⁇ ) is the helical polar coordinate of the (x, y) plane.
  • the (r, ⁇ ) is expressed by:
  • the transformed light field can extract more phase change information from the photon orbital angular momentum mode to be measured, and the spotted spot is less broadened, which can effectively overcome the phase in the original log polar coordinate scheme.
  • Crosstalk caused by partial overlap of adjacent modes.
  • the first phase modulation Q(x, y) is expressed by:
  • k is the wave number of the incident vortex light field propagating between the phase plate 1 and the phase plate 2
  • d is the distance between the phase plate 1 and the phase plate 2.
  • the second phase modulation P(u,v) is expressed by:
  • Figure 1 is a flow chart of an embodiment.
  • FIG. 2 is a schematic diagram showing the principle and system configuration of photon orbit angular momentum mode separation by optical coordinate transformation in the embodiment.
  • Figure 3 is a schematic illustration of the integration of two phase plates into the front and back sides of the same substrate in the embodiment.
  • a photon orbit angular momentum mode measurement system based on spiral transformation is composed of an optical coordinate transformation module, a Fourier transform module and a light intensity detection module, as shown in FIG. 2 .
  • the most central optical coordinate transformation module is composed of two phase plates with phase modulation of light field (ie phase plate 1 and phase plate 2).
  • the phase plate can be a common spatial light modulator, diffractive optical element and superstructure. Surface, etc., in order to make it as simple and easy to use as possible, this embodiment integrates two phase plates required for implementing the spiral transformation onto the front and back sides of the same substrate, as shown in FIG. 3, so that the two phase plates are Precise alignment is achieved during the production process.
  • the Fourier transform module is composed of a convex lens, and the light field at the front focal plane and the back focal plane of the lens satisfies the Fourier transform relationship; and the light intensity detecting module can be composed of a camera or an optical fiber array, by taking an image or coupling Different optical fibers are used to obtain light intensity distribution information.
  • the planes of the two phase plates on the upper and lower surfaces of the substrate in the optical coordinate transformation module are respectively recorded as (x, y) and (u, v), and the distance is d, corresponding to the thickness of the substrate; and the convex lens of the Fourier transform module is Parallel to the phase plate 2, and the plane (u, v) where the phase plate 2 is located corresponds to the front focal plane of the lens, and the plane (m, n) where the light intensity detecting module is located corresponds to the back focal plane of the lens.
  • a method for measuring a photon orbit angular momentum model based on spiral transformation includes the following steps:
  • Step 1 Obtain the photon orbital angular momentum mode to be measured, and the wavefront corresponding to the vortex light field has a specific angular spiral phase exp(il ⁇ ), where l is the topological charge number and ⁇ is the azimuth angle.
  • the light field to be measured is vertically incident on the phase plate 1 in the optical coordinate transformation module, and the center of the light field is aligned with the center of the phase plate coordinates.
  • Step 2 The light field to be measured incident on the optical coordinate transformation module sequentially performs the helical coordinate transformation through the phase modulations Q(x, y) and P(u, v) of the phase plate 1 and the phase plate 2, that is,
  • k is the wave number of the incident light field propagating in the substrate
  • a, ⁇ and r 0 are the undetermined parameters of the logarithmic spiral transformation
  • r 0 represents the origin of the (u, y) plane mapped to the (u, v) plane Position information
  • represents the length of the incident vortex light field transformed by the phase plate 1 through the (x, y) plane along the straight line in the (u, v) plane
  • the (r, ⁇ ) is the helical polar coordinate of the (x, y) plane, ie
  • the intensity distribution of the incident light field is transformed from the circular distribution on the original (x, y) plane to the lateral long strip distribution on the (u, v) plane, and the phase distribution is from the angular spiral phase.
  • Exp(il ⁇ ) is transformed into a transverse linear phase exp(ilv/ ⁇ ).
  • the transverse linear phase is exp(iv/ ⁇ ), corresponding to a plane wave mode having a specific tilt angle.
  • Step 3 The transformed light field with a specific tilt wavefront exp(ilv/ ⁇ ) is incident on a convex lens (focal length f) as a Fourier transform module, which is focused on the back focal plane (m, n) Specific lateral position
  • is the wavelength of the light wave, thereby achieving a one-to-one correspondence between the different photon orbital angular momentum patterns and the spatial position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

一种基于螺旋变换的光子轨道角动量模式测量方法及系统,通过位于输入平面的相位板(1)将入射光场在输入平面沿着螺旋线的路径映射到输出平面的直线上;而位于输出平面的相位板(2)则补偿光场在上述变换过程中从输入平面传播到输出平面时所累积的相位,从而实现将输入平面处的待测光子轨道角动量模式变换成输出平面处具有特定倾斜波前的平面波模式;进而通过凸透镜将具有不同倾斜波前的平面波模式聚焦到焦平面上的不同位置,从而实现待测的光子轨道角动量模式与空间位置的一一对应和探测。有效克服了由于解调光斑展宽引起的相邻模式串扰问题,在保持高解调效率的同时进一步实现高分辨率的光子轨道角动量模式测量。

Description

一种基于螺旋变换的光子轨道角动量模式测量方法及系统 技术领域
本发明涉及光通信应用的空间模式复用/解复用领域,更具体地,涉及基于螺旋变换的光子轨道角动量模式测量方法及系统。
背景技术
随着以互联网为核心的包括移动互联网、物联网、云计算、大数据等在内的一整套信息技术的发展,信息的高速膨胀对光通信系统的信息传输容量提出了巨大的需求。鉴于目前传统的信道复用技术包括波分复用、时分复用和偏振复用等带来的通信容量提升已接近极限,基于空域的模分复用技术来实现通信容量的再一次大幅提升已成为当前通信领域的重要研究方向之一。空域的模分复用是利用光场在空间上存在相互正交的本征模式,每一个空间模式可以作为一个独立的信道进行信号传输,从而大幅度地提高通信系统的传输容量。近些年来受到人们广泛关注的模分复用方案之一则是基于携带光子轨道角动量(Orbital angular momentum,OAM)的涡旋光束,利用涡旋光束进行光通信的设想最早于2004年提出,随后基于OAM模式复用的大容量通信实验相继在自由空间光通信系统和光纤通信系统进行了演示。然而推动这一OAM通信系统走向实用化仍有赖于开发出更为集成、高效的OAM产生、复用、传输、解复用和探测技术。
OAM解复用器是OAM通信系统中的核心器件之一,其功能是对共轴传输的不同OAM模式在空间上进行分离,使得不同OAM模式及其携带的信息可以互不干扰地被处理和探测。目前几种典型的OAM解复用方法包括:(1)干涉方法,如利用一对道威棱镜可以高效(理论上接近100%)分离奇偶OAM模式,但如果要进一步分离所有不同OAM模式,则需要级联多个光学元件,使得整个系统非常复杂;(2)全息法,它是利用全息图中特殊设计的衍射光栅将不同OAM模式解调成不同衍射级上的高斯模式,由于只需要一个相位全息图因而实现上最为简单,但其缺点则是解调效率的理论上限仅为1/N,其中N为解调的OAM模式数,即解调效率随着解调模式数的增加而减小,不利于向上拓展;(3)集成光子芯片,通过光栅耦合器将空间涡旋光耦合进波导后利用阵列波导光栅将其螺旋相位转换成线性相位从而耦合到不同的输出波导,其优点是作为片上OAM解复 用器有利于大规模集成,但由于器件复杂制作难度大,并且由于光栅耦合器的受光面积有限使得最终整体解调效率非常低。
相比之下,基于光学坐标变换的OAM模式解复用方案则同时具有解调效率高(理论上100%)和实现相对容易(只需两个相位板)等优点,因而是当前非常重要且最具潜力的解复用方案之一。其中对数极坐标变换是目前为人们熟知的唯一一种可用于实现OAM解复用的光学坐标变换,它的原理是将OAM模式的角向螺旋相位变换为横向的线性相位,对应于具有不同倾斜波前的平面波模式,进而利用一个凸透镜就可以将不同模式聚焦在焦平面上的不同位置实现模式分离。然而由于这一变换方案是将光场沿着封闭的圆形路径展开,打破了角向无限循环的特点,因而解调后的OAM模式在空间上会被展宽,导致相邻模式的解调光斑之间具有显著重叠,引起模式之间的串扰。
发明内容
为解决现有对数极坐标变换方案的局限性,本发明提出了一种新的光学坐标变换方案用于OAM模式解复用。相对于现有对数极坐标变换中沿着封闭的圆形路径将OAM模式的角向相位变换为线性相位,本发明沿着螺旋线的路径进行光场变换因而可以从OAM模式的波前中提取更多的相位变化,且理论上仅受限于OAM光斑的大小,从而可以克服解调后的OAM光斑的展宽导致的相邻模式串扰问题,在保持高解调效率的同时进一步实现高分辨率的光子轨道角动量模式分离,因而具有更大的实用潜力。
为解决上述技术问题,本发明的技术方案如下:
一种基于螺旋变换的光子轨道角动量模式测量系统,包括光学坐标变换模块、傅里叶变换模块和光强探测模块,其中,
所述的光学坐标变换模块包括两个具有光场相位调制功能的相位板;
所述的傅里叶变换模块包括凸透镜,所述的凸透镜的前焦面和后焦面处的光场满足傅里叶变换的关系;
所述的光强探测模块用于获取光强分布信息。
在一种优选的方案中,所述的相位板是空间光调制或者衍射光学元件或者超构表面等。
在一种优选的方案中,所述的相位板是一个基片的正反两面,分别定义为(x,y)平面和(u,v)平面,基片厚度为d;所述的傅里叶变换模块的凸透镜与第二 块相位板(u,v)平面相互平行,第二块相位板(u,v)平面与凸透镜的前焦面相对应;所述的光强探测模块所在平面与凸透镜的后焦面相对应。
在一种优选的方案中,光强探测模块由相机构成,通过拍摄图像获取光强分布信息。
在一种优选的方案中,光强探测模块由光纤阵列构成,通过耦合进不同光纤获取光强分布信息。
一种基于螺旋变换的光子轨道角动量模式测量方法,其特征在于,包括以下步骤:
S1:将携带光子轨道角动量的待测的入射涡旋光场垂直入射至(x,y)平面的相位板1,且待测光场的中心与相位板的中心对准,其中入射涡旋光场的波前为角向螺旋相位分布为exp(ilθ);所述的l为拓扑电荷数;所述的θ为方位角;所述的i是虚数单位;
S2:在(x,y)平面的相位板1上加载预先设定的第一相位调制Q(x,y),使入射涡旋光场经过相位板1调制后传播到(u,v)平面的相位板2;
本步骤的相位调制Q(x,y)使得光强分布从原来(x,y)平面上的环形分布变换为长条形分布,这是通过将(x,y)平面上的光场沿着螺旋线的路径分解并映射到(u,v)平面上的直线(u=const),即光学螺旋变换来实现的
S3:在(u,v)平面的相位板2上加载预先设定的第二相位调制P(u,v),使得入射涡旋光场的相位分布从角向螺旋相位exp(ilθ)变换为横向线性相位exp(ilv/β);所述的β为尺度缩放因子;
在上述映射过程中,(x,y)平面上不同位置处的光场在传播到(u,v)平面上的相应位置时的光程并不相同,因而(u,v)平面上的光场会存在相位畸变。因此需要在(u,v)平面的相位板2上加载预先设定的另一相位调制P(u,v),对光场的这一相位畸变进行补偿。经过相位补偿后相位分布上从角向螺旋相位exp(ilθ)变换为横向线性相位exp(ilv/β)。由此,具有不同拓扑电荷l的光学轨道角动量模式在经过上述两个相位板作用后转换为具有不同倾斜波前的平面波模式,并且倾斜程度正比于l;
S4:将通过第二相位调制P(u,v)后的入射涡旋光场通过凸透镜,由于变换后的横向线性相位,使得入射涡旋光场被聚焦到凸透镜后焦面上的横向位置m,所述的凸透镜的前焦面和后焦面的光场满足傅里叶变换的关系;所述的m通过下式 进行表达:
Figure PCTCN2018084061-appb-000001
式中,所述的λ是光波的波长,所述的f是凸透镜的焦距;
本步骤将变换后的具有不同倾斜波前的平面波模式分别聚焦到透镜后焦面上的特定横向位置,实现了横向位置与待测光子轨道角动量拓扑电荷数l成正比,从而实现不同光子轨道角动量模式与空间位置的一一对应;
S5:通过位于透镜后焦面上光强探测模块,记录光强分布位置,确定待测光场的光子轨道角动量模式的拓扑电荷数l。
在一种优选的方案中,所述的S2中的(x,y)平面上的光场沿着对数螺旋线的路径分解并映射到(u,v)平面上的直线,相应的坐标映射关系通过下式进行表达:
Figure PCTCN2018084061-appb-000002
式中,所述的a、β和r 0为对数螺旋变换的相关参数,即r 0表示映射到(u,v)平面的原点对应(x,y)平面的位置信息;β表示经过(x,y)平面的相位板1变换后的入射涡旋光场在(u,v)平面沿着直线分布的长度;a表示对数螺旋线的变化快慢程度,当a=0时,表示对数螺旋变换退化为对数极坐标变换;所述的(r,θ)是(x,y)平面的螺旋极坐标。
在一种优选的方案中,所述的(r,θ)通过下式进行表达:
Figure PCTCN2018084061-appb-000003
式中,所述的
Figure PCTCN2018084061-appb-000004
表示取整数部分,θ的取值范围是(-∞,+∞)。
本优选方案中,变换后的光场可以从待测光子轨道角动量模式中提取更多的相位变化信息,经过聚焦后的光斑展宽程度更小,可以有效克服原有对数极坐标方案中相邻模式部分重叠引起的串扰问题。
在一种优选的方案中,所述的第一相位调制Q(x,y)通过下式进行表达:
Figure PCTCN2018084061-appb-000005
式中,所述的k为入射涡旋光场在相位板1与相位板2之间的传播的波数,所述的d为相位板1与相位板2之间的距离。
在一种优选的方案中,所述的第二相位调制P(u,v)通过下式进行表达:
Figure PCTCN2018084061-appb-000006
与现有技术相比,本发明技术方案的有益效果是:
1.由于螺旋变换相比于对数极坐标变换可以天然地从光子轨道角动量模式中提取更多的相位变化信息从而提高相邻模式之间的隔离度,因而从原理上解决了现有对数极坐标变换方案中固有的相邻模式串扰的问题。
2.由于螺旋线的形式多样,对应存在不同的螺旋变换,可以极大地推广现有的对数极坐标变换方案并且在实际应用中也具有更大的灵活性,因而具有更大的实用潜力。
附图说明
图1为实施例的流程图。
图2为实施例中通过光学坐标变换实现光子轨道角动量模式分离的原理及其系统构成示意图。
图3为实施例中两个相位板集成到同一个基片的正反两面的示意图。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
一种基于螺旋变换的光子轨道角动量模式测量系统,由光学坐标变换模块、傅里叶变换模块和光强探测模块构成,如图2所示。其中最为核心的光学坐标变换模块是由两个具有光场相位调制功能的相位板构成(即相位板1和相位板2),相位板可以是常见的空间光调制器、衍射光学元件以及超构表面等,为了使其尽可能简单易用,本实施例把实现螺旋变换所需的两个相位板集成到同一个基片的正反两面,如图3所示,使这两个相位板在制作过程中就实现精确对准。傅里叶变换模块则是由一个凸透镜构成,透镜的前焦面和后焦面处的光场满足傅里叶变换的关系;而光强探测模块可由相机或者光纤阵列构成,通过拍摄图像或者耦合进不同光纤来获取光强分布信息。
光学坐标变换模块中位于基片上下表面的两个相位板所在平面分别记为(x,y)和(u,v),相距为d,对应基片厚度;而傅里叶变换模块的凸透镜则平行放置在相位板2后面,并且使相位板2所在平面(u,v)对应于透镜的前焦面,而光强探测模块所在平面(m,n)则对应于透镜的后焦面。
如图1所示,一种基于螺旋变换的光子轨道角动量模式测量方法,包括以下步骤:
步骤1:获取待测的光子轨道角动量模式,对应涡旋光场的波前具有特定的角向螺旋相位exp(ilθ),其中l为拓扑电荷数,θ为方位角。本实施例以l=1作为待测的光子轨道角动量模式进行说明。使该待测光场垂直入射至光学坐标变换模块中的相位板1,并且保证光场中心与相位板坐标中心对准。
步骤2:入射到光学坐标变换模块的待测光场依次经过相位板1和相位板2的相位调制Q(x,y)和P(u,v)实现螺旋坐标变换,即
Figure PCTCN2018084061-appb-000007
Figure PCTCN2018084061-appb-000008
其中k为入射光场在基片内传播的波数,a、β和r 0为对数螺旋变换的待定参数,r 0表示映射到(u,v)平面的原点对应(x,y)平面的位置信息;β表示经过(x,y)平面的相位板1变换后的入射涡旋光场在(u,v)平面沿着直线分布的长度;a表示对数螺旋线的变化快慢程度,当a=0时,表示对数螺旋变换退化为对数极坐标变换;所述的(r,θ)是(x,y)平面的螺旋极坐标,即
r=(x 2+y 2) 1/2,θ=θ 0+2mπ,
Figure PCTCN2018084061-appb-000009
其中
Figure PCTCN2018084061-appb-000010
表示取整数部分,θ的取值范围是(-∞,+∞)。
经过该模块的螺旋变换后,入射光场的强度分布从原来(x,y)平面上的环形分布变换为(u,v)平面上横向的长条形分布,相位分布则从角向螺旋相位exp(ilθ)变换为横向线性相位exp(ilv/β)。对于l=1的情况,该横向线性相位为exp(iv/β),对应于具有特定倾斜角度的平面波模式。
步骤3:经过变换后具有特定倾斜波前exp(ilv/β)的光场入射到作为傅里叶变换模块的凸透镜(焦距为f),会被聚焦到后焦面(m,n)上的特定横向位置
Figure PCTCN2018084061-appb-000011
其中λ为光波的波长,从而实现不同光子轨道角动量模式与空间位置的一一对应。对于l=1的情况,光场将被聚焦到
Figure PCTCN2018084061-appb-000012
的横向位置。
步骤4:利用位于透镜后焦面上的光强探测模块,通过其测得的光强分布位置
Figure PCTCN2018084061-appb-000013
就可以确定出待测光子轨道角动量模式的拓扑电荷数为l=1。
附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制;
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (8)

  1. 一种基于螺旋变换的光子轨道角动量模式测量方法,其特征在于,包括以下步骤:
    S1:将携带光子轨道角动量的待测的入射涡旋光场垂直入射至(x,y)平面的相位板1,且待测光场的中心与相位板的中心对准,其中入射涡旋光场的波前为角向螺旋相位分布为exp(ilθ);所述的l为拓扑电荷数;所述的θ为方位角;所述的i是虚数单位;
    S2:在(x,y)平面的相位板1上加载预先设定的第一相位调制Q(x,y),使入射涡旋光场经过相位板1调制后传播到(u,v)平面的相位板2;
    S3:在(u,v)平面的相位板2上加载预先设定的第二相位调制P(u,v),使得入射涡旋光场的相位分布从角向螺旋相位exp(ilθ)变换为横向线性相位exp(ilv/β);所述的β为尺度缩放因子;
    S4:将通过第二相位调制P(u,v)后的入射涡旋光场通过凸透镜,由于变换后的横向线性相位,使得入射涡旋光场被聚焦到凸透镜后焦面上的横向位置m,所述的凸透镜的前焦面和后焦面的光场满足傅里叶变换的关系;所述的m通过下式进行表达:
    Figure PCTCN2018084061-appb-100001
    式中,所述的λ是光波的波长,所述的f是凸透镜的焦距;
    S5:通过位于透镜后焦面上光强探测模块,记录光强分布位置,确定待测光场的光子轨道角动量模式的拓扑电荷数l。
  2. 根据权利要求1所述的光子轨道角动量模式测量方法,其特征在于,所述的S2中的(x,y)平面上的光场沿着对数螺旋线的路径分解并映射到(u,v)平面上的直线,相应的坐标映射关系通过下式进行表达:
    Figure PCTCN2018084061-appb-100002
    式中,所述的a、β和r 0为对数螺旋变换的相关参数,即r 0表示映射到(u,v)平面的原点对应(x,y)平面的位置信息;β表示经过(x,y)平面的相位板1变换后的入射涡旋光场在(u,v)平面沿着直线分布的长度;a表示对数螺旋线的变化快 慢程度,当a=0时,表示对数螺旋变换退化为对数极坐标变换;所述的(r,θ)是(x,y)平面的螺旋极坐标。
  3. 根据权利要求2所述的光子轨道角动量模式测量方法,其特征在于,所述的(r,θ)通过下式进行表达:
    Figure PCTCN2018084061-appb-100003
    式中,所述的
    Figure PCTCN2018084061-appb-100004
    表示取整数部分,θ的取值范围是(-∞,+∞)。
  4. 根据权利要求1至3中任一权利要求所述的光子轨道角动量模式测量方法,其特征在于,所述的第一相位调制Q(x,y)通过下式进行表达:
    Figure PCTCN2018084061-appb-100005
    式中,所述的k为入射涡旋光场在相位板1与相位板2之间的传播的波数,所述的d为相位板1与相位板2之间的距离;所述的a、β和r 0为对数螺旋变换的相关参数,即r 0表示映射到(u,v)平面的原点对应(x,y)平面的位置信息;β表示经过(x,y)平面的相位板1变换后的入射涡旋光场在(u,v)平面沿着直线分布的长度;a表示对数螺旋线的变化快慢程度,当a=0时,表示对数螺旋变换退化为对数极坐标变换。
  5. 根据权利要求4所述的光子轨道角动量模式测量方法,其特征在于,所述的第二相位调制P(u,v)通过下式进行表达:
    Figure PCTCN2018084061-appb-100006
  6. 根据权利要求1至3中任一权利要求所述的光子轨道角动量模式测量方法,其特征在于,所述的第二相位调制P(u,v)通过下式进行表达:
    Figure PCTCN2018084061-appb-100007
    式中,所述的k为入射涡旋光场在相位板1与相位板2之间的传播的波数,所述的d为相位板1与相位板2之间的距离;所述的a、β和r 0为对数螺旋变换的相关参数,即r 0表示映射到(u,v)平面的原点对应(x,y)平面的位置信息;β表示经过(x,y)平面的相位板1变换后的入射涡旋光场在(u,v)平面沿着直线分布的长度;a表示对数螺旋线的变化快慢程度,当a=0时,表示对数螺旋变换退 化为对数极坐标变换。
  7. 一种基于螺旋变换的光子轨道角动量模式测量系统,其特征在于,包括光学坐标变换模块、傅里叶变换模块和光强探测模块,其中,
    所述的光学坐标变换模块包括两个具有光场相位调制功能的相位板;
    所述的傅里叶变换模块包括凸透镜,所述的凸透镜的前焦面和后焦面处的光场满足傅里叶变换的关系;
    所述的光强探测模块用于获取光强分布信息。
  8. 一种基于螺旋变换的光子轨道角动量模式测量系统,其特征在于,所述的两个相位板是一个基片的正反两面,分别定义为(x,y)平面和(u,v)平面,基片厚度为d;所述的傅里叶变换模块的凸透镜与第二块相位板(u,v)平面相互平行,第二块相位板(u,v)平面与凸透镜的前焦面相对应;所述的光强探测模块所在平面与凸透镜的后焦面相对应。
PCT/CN2018/084061 2018-04-23 2018-04-23 一种基于螺旋变换的光子轨道角动量模式测量方法及系统 WO2019204960A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/613,804 US10962409B2 (en) 2018-04-23 2018-04-23 Method and system for measuring orbital angular momentum modes of photons based on spiral transformation
PCT/CN2018/084061 WO2019204960A1 (zh) 2018-04-23 2018-04-23 一种基于螺旋变换的光子轨道角动量模式测量方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/084061 WO2019204960A1 (zh) 2018-04-23 2018-04-23 一种基于螺旋变换的光子轨道角动量模式测量方法及系统

Publications (1)

Publication Number Publication Date
WO2019204960A1 true WO2019204960A1 (zh) 2019-10-31

Family

ID=68294344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084061 WO2019204960A1 (zh) 2018-04-23 2018-04-23 一种基于螺旋变换的光子轨道角动量模式测量方法及系统

Country Status (2)

Country Link
US (1) US10962409B2 (zh)
WO (1) WO2019204960A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113572565A (zh) * 2021-07-20 2021-10-29 深圳大学 一种解复用单元及其解复用oam通道的方法
CN113566957A (zh) * 2021-06-22 2021-10-29 华东师范大学 一种自由空间中分数双模式轨道角动量光束识别方法
CN113946059A (zh) * 2021-11-09 2022-01-18 中国科学院光电技术研究所 一种基于相干孔径阵列涡旋光束产生及复用、解复用装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112508185B (zh) * 2020-10-26 2022-03-22 深圳技术大学 基于衍射深度神经网络的光学轨道角动量模式光学系统
CN112861274B (zh) * 2021-01-06 2022-09-23 河南科技大学 一种高阶自由模式光学涡旋阵列的掩模板的设计方法
CN112946605A (zh) * 2021-02-04 2021-06-11 哈尔滨工业大学 基于gs相位恢复与轨道角动量调制的光子外差探测方法
CN113378372B (zh) * 2021-06-04 2024-03-15 南京南辉智能光学感控研究院有限公司 一种太赫兹涡旋处理器的设计方法及其所得产品与应用
CN113504656B (zh) * 2021-07-08 2022-08-09 苏州大学 一种多边形部分相干涡旋光束产生系统及方法
CN113551788B (zh) * 2021-08-20 2023-08-25 清华大学 多奇点涡旋光束的探测方法、装置和密钥分发系统
CN114322851B (zh) * 2021-12-01 2023-12-08 东莞理工学院 基于轨道角动量光束的微小旋转角度测量系统
CN114235151B (zh) * 2021-12-06 2023-10-20 中山大学 一种基于非傍轴坐标变换的涡旋光模式检测方法及系统
CN114675370B (zh) * 2022-04-06 2023-08-01 哈尔滨工业大学(深圳) 测量光子轨道角动量模式的超构表面集成器件的制作方法
CN114722354B (zh) * 2022-06-10 2022-10-18 苏州大学 计算归一化轨道角动量通量密度的方法、设备及存储介质
CN115236786B (zh) * 2022-08-02 2024-02-02 西北工业大学 一种液晶相位板、制备方法及双面涡旋光束产生系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713443A (zh) * 2013-12-13 2014-04-09 中山大学 基于光束轨道角动量解调装置
CN104121996A (zh) * 2014-07-21 2014-10-29 河南科技大学 一种测量涡旋光束高阶拓扑荷的测量装置
US20160028479A1 (en) * 2014-07-23 2016-01-28 University Of Southern California Adaptive Optics Based Simultaneous Turbulence Compensation of Multiple Orbital Angular Momentum Beams
CN106289526A (zh) * 2016-07-21 2017-01-04 哈尔滨工业大学 基于波前转换法的光子轨道角动量测量系统及方法
CN106533574A (zh) * 2016-12-26 2017-03-22 华中科技大学 一种太赫兹涡旋光束轨道角动量态的解调装置和方法
US20170353241A1 (en) * 2016-06-02 2017-12-07 Irfan Muhammad Fazal Image-Processing System to Improve Modal Purity and Reduce Modal Crosstalk
CN108923880A (zh) * 2018-04-23 2018-11-30 中山大学 一种基于螺旋变换的光子轨道角动量模式测量方法及系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10154253B2 (en) * 2016-08-29 2018-12-11 Disney Enterprises, Inc. Multi-view displays using images encoded with orbital angular momentum (OAM) on a pixel or image basis

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713443A (zh) * 2013-12-13 2014-04-09 中山大学 基于光束轨道角动量解调装置
CN104121996A (zh) * 2014-07-21 2014-10-29 河南科技大学 一种测量涡旋光束高阶拓扑荷的测量装置
US20160028479A1 (en) * 2014-07-23 2016-01-28 University Of Southern California Adaptive Optics Based Simultaneous Turbulence Compensation of Multiple Orbital Angular Momentum Beams
US20170353241A1 (en) * 2016-06-02 2017-12-07 Irfan Muhammad Fazal Image-Processing System to Improve Modal Purity and Reduce Modal Crosstalk
CN106289526A (zh) * 2016-07-21 2017-01-04 哈尔滨工业大学 基于波前转换法的光子轨道角动量测量系统及方法
CN106533574A (zh) * 2016-12-26 2017-03-22 华中科技大学 一种太赫兹涡旋光束轨道角动量态的解调装置和方法
CN108923880A (zh) * 2018-04-23 2018-11-30 中山大学 一种基于螺旋变换的光子轨道角动量模式测量方法及系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113566957A (zh) * 2021-06-22 2021-10-29 华东师范大学 一种自由空间中分数双模式轨道角动量光束识别方法
CN113566957B (zh) * 2021-06-22 2023-06-23 华东师范大学 一种自由空间中分数双模式轨道角动量光束识别方法
CN113572565A (zh) * 2021-07-20 2021-10-29 深圳大学 一种解复用单元及其解复用oam通道的方法
CN113946059A (zh) * 2021-11-09 2022-01-18 中国科学院光电技术研究所 一种基于相干孔径阵列涡旋光束产生及复用、解复用装置
CN113946059B (zh) * 2021-11-09 2023-06-30 中国科学院光电技术研究所 一种基于相干孔径阵列涡旋光束产生及复用、解复用装置

Also Published As

Publication number Publication date
US20200173844A1 (en) 2020-06-04
US10962409B2 (en) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2019204960A1 (zh) 一种基于螺旋变换的光子轨道角动量模式测量方法及系统
CN108923880B (zh) 一种基于螺旋变换的光子轨道角动量模式测量方法及系统
US10365435B1 (en) Surface gratings, photonics circuit, and method for wafer-level testing thereof
CN100385275C (zh) 主动光学位相共轭方法及装置
CN111130637B (zh) 光子自旋-轨道角动量联合模式的测量方法及测量系统
CN109581584B (zh) 一种硅-铌酸锂异质集成扫描芯片及其制备方法、应用
JP2002504239A (ja) 小型のプレーナ型光学相関器
CN103308189B (zh) 一种基于双压缩符合测量的纠缠成像系统及方法
CN103234635B (zh) 弹光调制型傅里叶变换干涉成像光谱仪
CN103326780A (zh) 基于压缩感知接收机的自由空间光通信apt系统及方法
CN103713443A (zh) 基于光束轨道角动量解调装置
CN104345577B (zh) 对准装置
CN109031915A (zh) 一种获取多模光纤成像传输矩阵的方法及系统
CN102841498A (zh) 一种超快分幅成像装置
CN104730868A (zh) 大口径衍射光栅曝光装置及大口径衍射光栅的制备方法
CN103389284A (zh) 表面等离子体共振系统和其检测方法
CN108663740A (zh) 基于电介质纳米砖超材料的线偏振光起偏器及制备方法
CN103326779A (zh) 一种基于压缩感知的自由空间光通信系统及方法
CN103389285A (zh) 表面等离子体共振系统及其检测方法
CN110631994B (zh) 动量空间光学相位测量系统
CN112147789B (zh) 一种基于坐标变换的oam解复用装置及方法
CN214095898U (zh) 一种基于偏振同步相移的轻离轴翻转干涉数字全息检测装置
CN114235151B (zh) 一种基于非傍轴坐标变换的涡旋光模式检测方法及系统
Zong et al. Theoretical Attenuation Model for Indoor Fiber-Wireless-Fiber Systems Based on Fast Steering Mirrors
CN114295227B (zh) 一种测量轨道角动量光束拓扑荷值的系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18916196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18916196

Country of ref document: EP

Kind code of ref document: A1