WO2019203375A1 - 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법 - Google Patents

폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법 Download PDF

Info

Publication number
WO2019203375A1
WO2019203375A1 PCT/KR2018/004595 KR2018004595W WO2019203375A1 WO 2019203375 A1 WO2019203375 A1 WO 2019203375A1 KR 2018004595 W KR2018004595 W KR 2018004595W WO 2019203375 A1 WO2019203375 A1 WO 2019203375A1
Authority
WO
WIPO (PCT)
Prior art keywords
pyrolysis
polyolefin
olefin
plastic
reactor
Prior art date
Application number
PCT/KR2018/004595
Other languages
English (en)
French (fr)
Inventor
김주식
Original Assignee
서울시립대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울시립대학교 산학협력단 filed Critical 서울시립대학교 산학협력단
Publication of WO2019203375A1 publication Critical patent/WO2019203375A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/04Thermal processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/07Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of solid raw materials consisting of synthetic polymeric materials, e.g. tyres
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/02Multi-step carbonising or coking processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0496Pyrolysing the materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • Polyolefin plastics are thermoplastic polymers most used among plastics because of their excellent physical properties and versatility compared to low prices.
  • Representative polyolefin plastics include polyethylene and polyprophylene.
  • Polyolefin plastics are representative general purpose plastics and make up most of the waste plastics currently occurring.
  • Unfortunately a considerable amount of waste plastics, due to the difficulty of waste plastics selection, are present in mixed form and their recycling is very difficult.
  • a single type of waste plastic is recycled by an advanced sorting process, but a new recycled polyolefin granule is produced by applying mechanical recycling means using an extruder.
  • this method also has its limitations because the physical properties of recycled plastics are finally reduced.
  • Patent Document 1 KR 10-0489448 B1
  • Patent Document 2 KR 10-2012-0026035 A
  • the object of the present invention is to produce olefins in high yield from polyolefin plastics.
  • the present invention is a method for producing an olefin from a polyolefin plastic to achieve the above object, the method, the first pyrolysis step of pyrolyzing the polyolefin plastic at 100 ⁇ 450 °C; It provides a method for producing an olefin from a polyolefin plastic, comprising a second pyrolysis step of pyrolyzing the first pyrolyzed polyolefin plastic at 500 ⁇ 900 °C.
  • the present invention provides a process for producing olefins from polyolefin plastics, wherein the primary pyrolysis is carried out in an auger reactor to achieve the above object.
  • the present invention provides a process for producing olefins from polyolefin plastics, wherein the secondary pyrolysis is carried out in a fluidized bed reactor to achieve the above object.
  • the polyolefin plastic provides a method for producing olefin from polyolefin plastic, comprising polyethylene plastic.
  • the present invention provides a method for producing an olefin from polyolefin plastic, in order to achieve the above object, the olefin comprises at least one of ethylene and propylene.
  • the present invention provides a method for producing olefins from polyolefin plastics, in order to achieve the above object, the olefin comprises a gaseous olefin.
  • the present invention provides a process for producing olefins from polyolefin plastics in which the yield of olefins represented by the following formula is at least 40 wt% to achieve the above object:
  • Olefin yield (%) mass of total olefins in final pyrolysis product / total mass of final pyrolysis product X 100.
  • the present invention provides a process for producing olefins from polyolefin plastics, in order to achieve the above object, the olefin comprises ethylene and propylene, the process comprising one or more of the following:
  • propylene yield is at least 7 wt%.
  • a method for producing olefins from polyolefin plastics increases the vibration state of polyolefin molecules through a preliminary pyrolysis process in an auger reactor, thereby reducing the molecular chain in the second pyrolysis step of the main pyrolysis reactor. Cutting is maximized, resulting in high yields of ethylene and propylene.
  • FIG. 1 is a block diagram of a two-stage pyrolysis apparatus for olefin production according to an aspect of the present invention.
  • FIG. 2 is a block diagram of a waste plastic processing system including a two-stage pyrolysis device for olefin production according to an aspect of the present invention.
  • a and / or B means A or B, or A and B.
  • the present invention in one aspect, a method for producing an olefin from a polyolefin plastic, the method, the first pyrolysis step of pyrolyzing the polyolefin plastic at 100 ⁇ 450 °C; And a second pyrolysis step of pyrolyzing the first pyrolyzed polyolefin plastic at 500 to 900 ° C.
  • an olefin may be produced using a two-stage pyrolysis apparatus 100 for olefin production, and two-stage pyrolysis for olefin production may be performed.
  • the apparatus may include an auger reactor 200 and a fluidized bed reactor 300.
  • the auger reactor 200 and the fluidized bed reactor 300 are connected in series with each other, the fluidized bed reactor 300 is located behind the auger reactor 200.
  • the auger reactor 200 When the plastic mixture including polyolefin plastic or polyolefin is introduced into the auger reactor 200 in the two-stage pyrolysis apparatus 100 for olefin production used to produce olefin from the polyolefin plastic of the present invention, the auger reactor 200 By primary pyrolysis, the injected polyolefin plastic or polyolefin plastic-containing plastic mixture is in a high vibration state due to elevated temperatures (ie by thermal energy supply),
  • the polyolefin plastic or the polyolefin plastic-containing plastic mixture (hereinafter referred to as a primary pyrolysis product) having such a high vibration state is naturally fed into the fluidized bed reactor 300 immediately leaving the auger reactor. Due to the high vibration state, the first pyrolysis product introduced into the fluidized bed reactor 300 has a long bond length between polyolefin plastic elements, resulting in intermolecular bond strength, which is different from conventional polyolefin plastic decomposition methods. The bond can be easily broken (see Figure 1 below).
  • the fluidized bed reactor 300 may include a discharge part (not shown) through which the generated product is discharged.
  • the two-stage pyrolysis apparatus 100 may further include a temperature control device (not shown), and the temperature control device may independently change the temperature of each of the auger reactor 200 and the fluidized bed reactor 300. It is desirable to have.
  • the temperature control device may include a temperature detector, a temperature controller, and a heater.
  • the first pyrolysis step may be performed at 100 ° C to 450 ° C.
  • the first pyrolysis may be preferably performed at 150 ° C to 400 ° C, more preferably at 200 ° C to 350 ° C, more preferably at 250 ° C to 350 ° C, more preferably at 280 ° C to 320 ° C.
  • the secondary pyrolysis step may be performed at 500 ° C to 900 ° C.
  • the secondary pyrolysis is preferably 550 ° C to 900 ° C, more preferably 550 ° C to 850 ° C, more preferably 600 ° C to 800 ° C, more preferably 650 ° C to 750 ° C, more preferably 680 ° C to At 720 ° C., it may be performed.
  • FIG. 2 is a block diagram of a waste plastic processing system according to an embodiment of the present invention.
  • the olefin production system is a two-stage pyrolysis apparatus 100, polyolefin plastic supply system 400, pyrolysis char separation system 500, quenching system (600, 600 ') Impact separators 700, 700 ′, electrostatic precipitators 800, 800 ′ and gas circulation systems (not shown).
  • the polyolefin plastic supply system 400 may include silos 410 in which polyolefin plastics are stored, and one or more screw feeders 420 and 430 for delivering polyolefins to the auger reactor 200,
  • the silo 410 and the screw supply device 420 include a gas injection unit (not shown).
  • the screw supply device can stably supply polyolefin plastic when one or more, for example, two are connected in series.
  • the pyrolysis char separation system 500 may include one or more filters 510, 520 and may capture pyrolysis char particles having a large particle size of at least about 1 ⁇ m or from about 1 ⁇ m to about 100,000 ⁇ m.
  • the filter may be a cyclone filter and / or a ceramic filter.
  • the quenching system 600, 600 ′ includes one or more condensers 610, 620, which condenser 200 at a temperature of about 0 ° C. to about 50 ° C. and / or about 0 ° C. to about ⁇ 50 ° C. ) Or the gas product discharged from the fluidized bed reactor 300 is cooled. In this process, condensation into the liquid proceeds, and the non-condensable gas can be circulated by the gas circulation system.
  • the impact separators 700, 700 ′ are connected after the quenching systems 600, 600 ′ so that a large molecular weight, for example, a weight average molecular weight of at least about 500 g / mole or from about 500 g / mole to about 50,000 Compound gas which is g / mole can be captured efficiently.
  • a large molecular weight for example, a weight average molecular weight of at least about 500 g / mole or from about 500 g / mole to about 50,000 Compound gas which is g / mole can be captured efficiently.
  • the electrostatic precipitators 800 and 800 ' are installed after the impact separators 700 and 700' to remove aerosols in the gas.
  • Non-condensable gas may be circulated by the gas circulation system and circulated to the fluidized bed reactor 300 or the like. At this time, a compressor may be used, but is not required.
  • the olefin two-stage pyrolysis apparatus of the present invention injects some of the generated gas into the silo 410 of the waste plastic supply system 400 to help smooth supply of the waste plastic.
  • FIG. 2 shows a thermal infrared sensor (TIR) that detects a physical quantity such as temperature and pressure or a chemical quantity of a compound, an infrared sensor such as a passive infrared sensor (PIR), a motor (M), and components not described above.
  • TIR thermal infrared sensor
  • PIR passive infrared sensor
  • M motor
  • the first pyrolysis may be performed in an auger reactor, and the second pyrolysis may be performed in a fluidized bed reactor.
  • the olefin may mean an olefin monomer constituting the polyolefin plastic, that is, alkenes.
  • the olefin may comprise one or more of ethylene and propylene.
  • the olefin may comprise a gaseous olefin.
  • the polyolefin plastic may include a mixed plastic containing the polyolefin plastic.
  • the polyolefin plastic may mean a plastic including at least one of polypropylene and polyethylene.
  • the process may be a process for producing olefins from polyolefin plastics having a yield of at least 40 wt% of an olefin represented by the following formula:
  • Olefin Yield mass of total olefins in final pyrolysis products / total mass of final pyrolysis products (100% conversion).
  • the olefin includes ethylene and propylene, and the process may include one or more of the following:
  • the yield of ethylene and propylene can be calculated as the ratio of the mass of total ethylene / propylene in the final pyrolysis product to the total mass of the final pyrolysis product.
  • the injected sample was waste polyethylene, 99.9 wt% of volatile substance, and the size was 2-4 mm.
  • the two stage pyrolysis apparatus includes an auger reactor and a fluidized bed reactor.
  • the auger reactor is connected directly before the fluidized bed reactor.
  • Experiments with a two-stage pyrolysis unit were considered for chlorine removal in the auger reactor.
  • the reaction temperature of the auger reactor was 300 ° C. in the example and the fluidized bed reactor temperature was 700 ° C.
  • the experiment was started by loading the sample at a rate of about 2 g / min.
  • the total sample weight was 200 g and the run time of the experiment was about 100 minutes.
  • the pyrolysis unit was purged with nitrogen gas for 1 hour.
  • the reactor was purged and then heated to the reaction temperature determined by the electric furnace.
  • 1.2 kg of silica sand was used as fluidized bed material.
  • the speed of the fluidized bed reactor three times the minimum fluidization rate was the flow rate of each experiment.
  • the residence time of the feed material was about 10 minutes.
  • the two stage pyrolysis apparatus is the auger reactor connected before the fluidized bed reactor.
  • the example was carried out in a two stage pyrolysis apparatus.
  • a nitrogen gas stream was passed from the silo 410 through the auger reactor to the liquid product collection device.
  • Auger reactor is acid-resistant 310S tube material. Auger reactors were 23 mm in internal diameter and 650 mm long. The quench system located in the auger reactor included a condenser, which was cooled in water to 20 ° C. Impact separators and cell dust collectors were used to capture large molecular weight compounds and aerosols, and non-condensable gases were released into the flare stack without circulation.
  • the fluidized bed reactor was made of 310S tube with a height of 550 mm and an inner diameter of 70 mm.
  • the reactor had three thermocouples and the reaction temperature was defined as the average value calculated from the values measured by the thermocouple.
  • the pyrolysis cyclone, quenching system, impact separator, electrostatic precipitator, and gas circulation system were equipped after the fluidized bed reactor.
  • the cyclone was set up to capture pyrolytic shock particles larger than 10 ⁇ m.
  • the quenching system used two steel condensers, one of which was subjected to continuous cooling in water at 20 ° C. and the other at -20 ° C. in ethanol.
  • non-condensing gas was circulated to the fluidized bed reactor by compressor (N0150ATE, KNF).
  • the produced gas product was collected using a Teflon gas bag for analysis and the remaining gas was burned in a flare stack.
  • two additional thermocouples were installed in the piping line and the gas vent line. Heating bands and glass wool were used to prevent vapor condensation.
  • FIG. 2 A schematic diagram of the waste plastic pyrolysis system (plant) is shown in FIG. 2.
  • Table 1 Listed in Table 1 below is a record of the product in each reactor and its content (mass balance).
  • the auger reactor when the auger reactor was not heated, the sum of the yields of ethene (ethylene) and propylene was about 33.5 wt%. On the other hand, when the auger reactor was heated to 300 ° C, the yield sum was about 43.4 wt%, and when the first pyrolysis was performed, the yield of the olefin was about 10%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

본 명세서에는 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법이 개시된다. 본 발명의 일 측면인 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법은, 오거 반응기에서의 예비적인 열분해 과정을 통해 폴리올레핀 분자의 진동 상태를 높여주어 주 열분해 반응기인 2 차 열분해 단계에서 분자쇄의 절단을 최대한으로 이루어, 그 결과 높은 수율로 에틸렌과 프로필렌을 생산할 수 있다.

Description

폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법
본 명세서에는 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법이 개시된다.
폴리올레핀(polyolefin) 플라스틱은 저렴한 가격에 비하여 우수한 물성과 범용성으로 플라스틱 중에서 가장 많이 사용되는 열가소성 고분자이다. 대표적인 폴리올레핀 플라스틱의 예로 폴리에틸렌(polyethylene)과 폴리프로필렌(polyprophylene)을 들 수 있다. 폴리올레핀 플라스틱은 대표적인 범용플라스틱으로 현재 발생하는 폐플라스틱의 대부분을 이룬다. 불행히도 폐플라스틱 선별의 어려움으로 인해 발생하는 폐플라스틱의 상당량이 혼합된 형태로 존재하며 이들의 재활용은 대단히 어려운 것으로 나타나고 있다. 선진국 등에서는 진보된 선별 공정에 의해 단일 종의 폐플라스틱이 재활용 되지만 이 때는 압출기(extruder)를 활용하는 기계적 재활용(mechanical recycling) 수단이 적용되어 새로운 재생 폴리올레핀 그래뉼이 생산되고 있다. 하지만 이 방법도 최종적으로는 재생 플라스틱의 물성이 저하되기 떄문에 그 한계점을 나타낼 수 밖에 없다. 요약하면 혼합물로 존재하는 폐플라스틱이나 단일 종으로 존재하는 폴리올레핀 폐플라스틱의 궁극적 재활용 방법의 대두가 무엇보다도 절실하다. 열분해(thermolysis)는 이러한 문제에 해답을 줄 수 있는 가능성을 가지고 있다. 국내에서도 열분해에 대한 연구가 많이 이루어졌지만 그 결과는 의미를 둘 수 없는 경우가 많았다. 이는 대부분의 열분해가 연료 생산을 목적으로 하였기 때문이다. 열분해로 생성된 연료의 경우 염소 성분의 문제나 왁스의 문제로 인해 그 열분해유의 활용성이 제한 된다. 특히 왁스의 생산은 왁스 제거를 위한 또 다른 공정(KR 10-0489448 B1)이 필요하게 되어 전체 공정의 경제성을 저하 시키게 된다. 또 다른 열분해의 하나의 이슈는 연속적 공정의 개발이 이루어져야 한다는 것이다. 일례로 초임계 유체를 이용한 폐가교 폴리올레핀 플라스틱계 수지의 재활용 방법이 연구(KR 10-2012-0026035 A)되었으나, 이러한 기술은 회분식 반응기를 이용한 회분식 공정을 채택하여, 연속적인 재활용 공정과 대량 생산화에는 적합하지 않고, 재활용 산물의 생산량이 적다는 문제점이 있었다.
[선행기술문헌]
(특허문헌 1) KR 10-0489448 B1
(특허문헌 2) KR 10-2012-0026035 A
일 측면에서, 본 발명의 목적은 폴리올레핀 플라스틱으로부터 효율적으로 올레핀을 생산하는 것이다.
일 측면에서, 본 발명의 목적은 폴리올레핀 플라스틱으로부터 높은 수율로 올레핀을 생산하는 것이다.
일 측면에서, 본 발명의 목적은 버려지는 폐폴리올레핀 플라스틱을 효과적으로 재활용하는 것이다.
일 측면에서, 본 발명의 목적은 폴리올레핀 폐플라스틱으로부터 연료유가 아닌 모노머인 올레핀을 연속적으로 생산하는 것이다.
일 측면에서, 본 발명은 상기 목적을 달성하기 위해, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법으로서, 상기 방법은, 폴리올레핀 플라스틱을 100~450℃에서 열분해하는 1차 열분해 단계; 상기 1차 열분해된 폴리올레핀 플라스틱을, 500~900℃에서 열분해하는 2차 열분해 단계를 포함하는, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법을 제공한다.
일 측면에서, 본 발명은 상기 목적을 달성하기 위해, 상기 1차 열분해는, 오거반응기에서 수행되는, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법을 제공한다.
일 측면에서, 본 발명은 상기 목적을 달성하기 위해, 상기 2차 열분해는, 유동층 반응기에서 수행되는, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법을 제공한다.
일 측면에서, 본 발명은 상기 목적을 달성하기 위해, 상기 폴리올레핀 플라스틱은, 폴리에틸렌 플라스틱을 포함하는, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법을 제공한다.
일 측면에서, 본 발명은 상기 목적을 달성하기 위해, 상기 올레핀은, 에틸렌 및 프로필렌 중 하나 이상을 포함하는, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법을 제공한다.
일 측면에서, 본 발명은 상기 목적을 달성하기 위해, 상기 올레핀은, 기체 상태의 올레핀을 포함하는, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법을 제공한다.
일 측면에서, 본 발명은 상기 목적을 달성하기 위해, 상기 방법은, 하기 식으로 표현되는 올레핀의 수율이 40 wt% 이상인, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법을 제공한다:
<수학식>
올레핀 수율(%)= 최종 열분해 산물 중 총 올레핀의 질량/최종 열분해 산물의 총 질량 X 100.
일 측면에서, 본 발명은 상기 목적을 달성하기 위해, 상기 올레핀은 에틸렌 및 프로필렌을 포함하고, 상기 방법은 하기 중 하나 이상을 포함하는, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법을 제공한다:
i) 에틸렌 수율이 35 wt% 이상; 및
ii) 프로필렌 수율이 7 wt% 이상.
본 발명의 일 측면인 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법은, 오거 반응기에서의 예비적인 열분해 과정을 통해 폴리올레핀 분자의 진동 상태 (vibration state)를 높여주어 주 열분해 반응기인 2 차 열분해 단계에서 분자쇄의 절단을 최대한으로 이루어, 그 결과 높은 수율로 에틸렌과 프로필렌을 생산할 수 있다.
도 1은 본 발명의 일 측면에 따른 올레핀 생산용 2단 열분해 장치의 구성도이다.
도 2는 본 발명의 일 측면에 따른 올레핀 생산용 2 단 열분해 장치를 포함하는 폐플라스틱 처리 시스템의 구성도이다.
본 연구는 서울시립대학교 산학협력단의 주관 하에 대한민국 환경부 산하 한국환경산업기술원의 환경정책 기반 공공기술 개발사업의 지원에 의하여 이루어진 것으로, 연구과제명은 플라스틱 포장재의 피드스톡 리사이클링 및 재순환된 포장재 합성원료 생산(과제고유번호:1485014128)이고, 연구기간은 2016.11.08~ 2017.07.31이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본 발명의 명세서 및 청구범위에 사용된 용어 또는 단어는 통상적이거나 사전적인 의미로 한정 해석되지 아니하며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명의 명세서 전체에 있어서, 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 발명의 명세서 전체에 있어서, "A 및/또는 B"는, A 또는 B, 또는 A 및 B를 의미한다.
이하, 첨부된 도면을 참조하여 본 발명을 구체적으로 설명하나, 본 발명이 이에 제한되는 것은 아니다.
본 발명은 일 측면에서, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법으로서, 상기 방법은, 상기 폴리올레핀 플라스틱을 100~450℃에서 열분해하는 1차 열분해 단계; 및 상기 1차 열분해된 폴리올레핀 플라스틱을, 500~900℃에서 열분해하는 2차 열분해 단계를 포함하는, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법이다.
도 1을 참조하면, 본 발명의 일 측면에 따른 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법은, 올레핀 생산용 2 단 열분해 장치 (100)를 사용하여, 올레핀을 생산할 수 있으며, 상기 올레핀 생산용 2단 열분해 장치는 오거 반응기 (200) 및 유동층 반응기 (300)를 포함할 수 있다.
상기 오거 반응기 (200)와 상기 유동층 반응기 (300)는 서로 직렬 연결되며, 오거 반응기(200) 뒤에 유동층 반응기 (300)가 위치한다.
본 발명의 폴리올레핀 플라스틱으로부터 올레핀을 생산하는데 사용되는 올레핀 생산용 2 단 열분해 장치(100) 중 오거 반응기(200) 내부로 폴리올레핀 플라스틱 또는 폴레올레핀을 포함하는 플라스틱 혼합물이 투입되면, 오거 반응기(200)에서는 1차 열분해에 의하여, 투입된 폴리올레핀 플라스틱 또는 폴리올레핀 플라스틱 함유 플라스틱 혼합물은 높아진 온도에 의해 (즉 열에너지 공급에 의해) 높은 진동 상태(vibration state)로 존재하게 된다,
이렇게 높은 진동 상태를 가진 폴리올레핀 플라스틱 또는 폴리올레핀 플라스틱 함유 플라스틱 혼합물(이하, 1차 열분해 산물이라고 함)은 오거 반응기를 떠나 바로유동층 반응기(300)로 자연스럽게 투입된다. 유동층 반응기(300)로 유입된 1차 열분해 산물은 높은 진동 상태 떄문에 폴리올레핀 플라스틱 구성 원소(element) 간의 결합 길이가 길어지게 되고 그 결과 분자간 결합력이 떨어져, 종래의 폴리올레핀 플라스틱 분해 방법과 달리, 분자쇄 결합을 깨어지기 용이한 상태가 될 수 있다(아래 그림 1 참조).
<그림 1>
Figure PCTKR2018004595-appb-I000001
상기와 같이 높아진 진동 상태 때문에 분자쇄가 더욱 짧게 끊어지는 열분해가 유동층 반응기 내에서 이루어지게 되며 그 결과 액체, 기체 상태인 탄화수소 화합물과 열분해 촤(char)등의 전형적 산물 중 짧은 탄소수를 가지는 기체의 수율이 획기적으로 늘어난다.
상기 유동층 반응기(300)는 생성된 산물이 배출되는 배출부(미도시)를 포함하는 것일 수 있다.
상기 2 단 열분해 장치(100)는 온도 조절 장치(미도시)를 더 포함할 수 있으며, 상기 온도 조절 장치는 상기 오거 반응기(200) 및 상기 유동층 반응기(300) 각각의 온도를 독립적으로 변화시킬 수 있는 것이 바람직하다. 상기 온도 조절 장치는 온도 검출부, 온도 조절부, 및 가열부를 포함할 수 있다.
상기 1차 열분해 단계는, 100℃ 내지 450℃에서 수행될 수 있다. 상기 1차 열분해는, 바람직하게, 150℃ 내지 400℃, 더욱 바람직하게, 200℃ 내지 350℃, 더욱 바람직하게, 250℃ 내지 350℃, 더욱 바람직하게 280℃ 내지 320℃에서, 수행될 수 있다.
상기 온도 범위에서, 폴리올레핀 플라스틱인의 진동 상태를 극대화할 수 있다.
또한, 상기 2차 열분해 단계는, 500℃ 내지 900℃에서 수행될 수 있다. 상기 2차 열분해는, 바람직하게, 550℃ 내지 900℃, 더욱 바람직하게, 550℃ 내지 850℃, 더욱 바람직하게, 600℃ 내지 800℃, 더욱 바람직하게 650℃ 내지 750℃, 더욱 바람직하게 680℃ 내지 720℃에서, 수행될 수 있다.
도 2는 본 발명의 일 구현예에 따른 폐플라스틱 처리 시스템의 구성도이다.
도 2를 참조하면, 본 발명의 일 구현예에 따른 올레핀 생산 시스템은 2 단 열분해 장치(100), 폴리올레핀 플라스틱 공급 시스템 (400), 열분해 촤 분리 시스템 (500), 퀜칭 시스템(600, 600'), 임팩트 분리기(700, 700'), 전기집진기(800, 800') 및 기체 순환 시스템(미도시)을 포함한다.
상기 폴리올레핀 플라스틱 공급 시스템(400)은 폴리올레핀 플라스틱이 저장되는 사일로(silo, 410), 폴레올레핀을 상기 오거 반응기(200)로 전달하기 위한 하나 이상의 스크류 공급 장치(420, 430)를 포함할 수 있으며, 상기 사일로(410) 및 상기 스크류 공급 장치 (420)는 기체투입부(미도시)을 포함한다. 상기 스크류 공급 장치는 하나 이상, 예를 들어, 두 개를 직렬로 연결하여 사용할 경우 폴리올레핀 플라스틱의 공급을 안정적으로 수행할 수 있다.
상기 열분해 촤 분리 시스템(500)은 하나 이상의 필터(510, 520)를 포함할 수 있으며, 약 1 ㎛ 이상 또는 약 1 ㎛ 내지 약 100,000 ㎛으로 입자 크기가 큰 열분해 촤 입자를 캡쳐할 수 있다. 상기 필터는 사이클론 필터 및/또는 세라믹 필터일 수 있다.
상기 퀜칭 시스템(600, 600')은 하나 이상의 콘덴서(610, 620)를 포함하며, 상기 콘덴서는 약 0℃ 내지 약 50℃ 및/또는 약 0℃ 내지 약 -50℃의 온도로 오거 반응기(200) 또는 유동층 반응기(300)로부터 배출된 기체 산물을 냉각시킨다. 이 과정에서 액체로의 응축이 진행되고, 비응축 기체는 기체 순환 시스템에 의해 순환될 수 있다.
상기 임팩트 분리기(700, 700')는 상기 퀜칭 시스템(600, 600') 이후에 연결되어 큰 분자량의, 예를 들어, 중량평균분자량이 약 500 g/mole 이상 또는 약 500 g/mole 내지 약 50,000 g/mole인 화합물 기체를 효율적으로 캡쳐할 수 있다.
상기 전기집진기(800, 800')는 임팩트 분리기(700, 700') 후에 설치되어 기체 중의 에어로졸을 제거하는 역할을 한다.
상기 기체 순환 시스템에 의해 비응축 기체는 순환되어 유동층 반응기(300) 등으로 순환될 수 있다. 이때 컴프레셔(compressor)가 이용될 수 있으나, 필수는 아니다.
본 발명의 올레핀 2 단 열분해 장치는 생성 가스 중 일부를 폐플라스틱 공급 시스템(400)의 사일로(410)에 투입하여 폐플라스틱의 순탄한 공급을 돕는다.
도2에는 온도, 압력 등의 물리량이나 화합물의 화학량을 검지하는 TIR (thermal infrared sensor), PIR (passive infrared sensor)과 같은 적외선 센서, 모터 (M), 및 앞서 설명되지 않은 구성들이 표시되어 있으나, 이러한 적외선 센서, 모터 및 앞서 설명되지 않은 구성들은 본 발명의 일 구현예에 따른 폐타이어 처리 시스템에서 필수가 아니다. 도 2는 본 발명의 이해를 돕기 위해 예시한 것일 뿐, 본 발명이 이에 제한되는 것은 아니다.
일 측면에서, 상기 1차 열분해는, 오거 반응기에서 수행될 수 있으며, 상기 2차 열분해는 유동층 반응기에서 수행될 수 있다.
또한, 상기 올레핀은, 폴리올레핀 플라스틱을 구성하는 올레핀 모노머, 즉 알켄류(alkenes)를 의미할 수 있다.
일 측면에서, 상기 올레핀은, 에틸렌 및 프로필렌 중 하나 이상을 포함할 수 있다.
일 측면에서, 상기 올레핀은 기체 상태의 올레핀을 포함할 수 있다.
한편, 상기 폴리올레핀 플라스틱은, 폴리올레핀 플라스틱을 함유하는 혼합 플라스틱을 포함할 수 있다.
상기 폴리올레핀 플라스틱은, 폴리프로필렌 및 폴리에틸렌 중 하나 이상을 포함하는 플라스틱을 의미할 수 있다.
일 측면에서, 상기 방법은, 하기 식으로 표현되는 올레핀의 수율이 40 wt% 이상인, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법일 수 있다:
<수학식>
올레핀 수율= 최종 열분해 산물 중 총 올레핀의 질량/최종 열분해 산물의 총 질량 (100% 전환율).
구체적으로, 상기 올레핀은 에틸렌 및 프로필렌을 포함하고, 상기 방법은 하기 중 하나 이상을 포함할 수 있다:
i) 에틸렌 수율이 35 wt% 이상; 및
ii) 프로필렌 수율이 7 wt%이상.
상기 에틸렌과 프로필렌의 수율은, 최종 열분해 산물의 총 질량 대비 최종 열분해 산물 중 총 에틸렌/프로필렌의 질량의 비율로 계산할 수 있다.
또한, 상기 방법에 의하면, 에틸렌과 프로필렌 생산 시 스팀이 불필요하고, 낮은 온도에서 효과적으로 에틸렌과 프로필렌을 생산할 수 있다는 이점이 있다.
이하, 실시예 및 시험예를 들어 본 발명의 구성 및 효과를 보다 구체적으로 설명한다. 그러나 이들 실시예 및 시험예는 본 발명에 대한 이해를 돕기 위해 예시의 목적으로만 제공된 것일 뿐 본 발명의 범주 및 범위가 하기 예에 의해 제한되는 것은 아니다.
[실시예]
1. 시료의 준비
투입된 시료는 폐폴리에틸렌으로 99.9 wt%가 휘발성 물질이며 그 크기는2-4 mm 이다.
2. 실험 조건
본 실시에서, 2 단 열분해 장치는 오거 반응기 및 유동층 반응기를 포함한다. 오거 반응기는 유동층 반응기 전에 직접 연결된다. 2 단 열분해 장치를 이용한 실험은 오거 반응기에서의 염소 제거를 위해 고려되었다. 오거 반응기의 반응온도는 실시 예에서는 300 ℃이었으며 유동층 반응기 온도는 700℃ 이었다.
실험은 약 2 g/min의 속도로 시료를 투입하여 시작되었다. 총 시료 중량은 200 g이었고 실험의 운용 시간은 약 100 분이었다. 운용 전에, 열분해 장치는 질소 기체로 1 시간 동안 퍼지 되었다. 반응로는 퍼지 후, 전기로에 의해 결정된 반응온도까지 가열되었다. 규사 1.2 kg이 유동상 물질로서 사용되었다. 유동층 반응기의 속도로는, 최소 유동화 속도의 3 배가 각 실험의 유속이었다. 오거 반응기에서, 공급 재료의 체류 시간은 약 10 분이었다.
3. 열분해 장치 플랜트
도 2에 나타난 바와 같이, 2 단 열분해 장치는 오거 반응기가 유동층 반응기 전에 연결된 것이다. 실시예는 2 단 열분해 장치에서 실시되었다. 사일로(410)에서 오거 반응기를 거쳐 액체 산물 수집 장치까지 질소 기체 스트림이 통과되도록 하였다.
오거 반응기는 내산 처리된 310S 튜브 재질이다. 오거 반응기의 규모는 내경이 23 mm이고 길이가 650 mm였다. 오거 반응기에 위치한 퀜칭 시스템은 콘덴서를 포함하였으며, 상기 콘덴서는 20℃로 물 중에서 냉각되었다. 임팩트 분리기 및 전지 집진기가 큰 분자량 화합물 및 에어로졸을 캡쳐하기 위해 사용되었으며, 비응축 기체는 순환 없이 플레어 스택으로 방출되었다.
유동층 반응로는 높이 550 mm, 내경 70 mm를 갖는 310S 튜브로 만들어졌다. 상기 반응로는 3 개의 열전쌍 (thermocouple)을 갖고 반응 온도는 상기 열전쌍에 의해 측정된 값으로부터 계산된 평균값으로 규정되었다. 유동층 반응기 이후 열분해 사이클론, 퀜칭 시스템, 임팩트 분리기, 전기집진기, 및 기체 순환 시스템을 갖추었다. 상기 사이클론은 10 ㎛ 보다 큰 열분해 촤 입자를 캡쳐할 수 있도록 설치되었다. 퀜칭 시스템은 두 개의 스틸 콘덴서를 이용하였으며, 두 콘덴서 중 하나는 20℃로 물 중에서 지속적인 냉각이 수행되었고, 다른 하나는 -20℃로 에탄올 중에서 지속적인 냉각이 수행되었다. 상기 콘덴서 후에 배치된 임팩트 분리기는 큰 중량의 분자를 캡쳐하고 전기집진기는 임팩트 분리기 후에 설치되어 기체 중 에어로졸을 제거한다. 기체 순환 시스템에서는, 비응축 기체가 컴프레셔(N0150ATE, KNF)에 의해 상기 유동층 반응기로 순환되었다. 생산된 기체 산물은 분석을 위해 테프론 가스 주머니를 이용하여 수집되었고, 나머지 기체는 플레어 스택(flare stack)에서 태웠다. 전체 플랜트의 온도를 모니터링 하기 위해, 추가로 두 개의 열전쌍이 배관 라인 및 기체 벤트 라인에 설치되었다. 증기 응축을 막기 위해 가열 밴드 (heating band) 및 유리솜(glass wool)이 사용되었다. 상기 폐플라스틱 열분해 시스템(플랜트)의 개략도를 도 2에 나타내었다.
4. 열분해 산물의 분석
열분해 산물의 분석은 GC-MS 및 GC-FID 그리고 GC-TCD를 통해 실시 되었다.
5. 결과 분석
아래 표 1에 기재되어 있는 것은 각 반응기에서의 산물과 그 함량(질량 밸런스)을 기록한 것이다.
[표 1]
Figure PCTKR2018004595-appb-I000002
그 결과, 오거 반응기를 가열 하지 않았을 경우에는 에텐(에틸렌)과 프로필렌의 수율 합이 약 33.5 wt%이었다. 한편 오거 반응기를 300℃로 가열 하였을 경우에는 경우에는 수율 합이 약 43.4 wt%로, 1차 열분해를 실행한 경우, 올레핀의 수율이 약 10 % 정도 크게 향상됨을 확인할 수 있었다.
[부호의 설명]
100: 올레핀 생산용 2 단 열분해 장치
200: 오거 반응기
300: 유동층 반응기
400: 폴리올레핀 플라스틱 공급 시스템
410: 사일로 420, 430: 스크류 공급 장치
500: 열분해 차 분리 시스템 510, 520: 필터
600: 퀜칭 시스템 610, 620: 콘덴서
700: 임팩트 분리기
800: 전기집진기

Claims (8)

  1. 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법으로서,
    상기 폴리올레핀 플라스틱을 100~450℃에서 열분해하는 1차 열분해 단계; 및
    상기 1차 열분해된 폴리올레핀 플라스틱을, 500~900℃에서 열분해하는 2차 열분해 단계를 포함하는, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법.
  2. 제1항에 있어서,
    상기 1차 열분해는, 오거반응기에서 수행되는, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법.
  3. 제1항에 있어서,
    상기 2차 열분해는, 유동층 반응기에서 수행되는, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법.
  4. 제1항에 있어서,
    상기 폴리올레핀 플라스틱은, 폴리에틸렌 플라스틱을 포함하는, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법.
  5. 제1항에 있어서,
    상기 올레핀은,
    에틸렌 및 프로필렌 중 하나 이상을 포함하는, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법.
  6. 제1항에 있어서,
    상기 올레핀은, 기체 상태의 올레핀을 포함하는, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 방법은,
    하기 식으로 표현되는 올레핀의 수율이 40 wt% 이상인, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법:
    <수학식>
    올레핀 수율(%)= 최종 열분해 산물 중 총 올레핀의 질량/최종 열분해 산물의 총 질량 X 100.
  8. 제7항에 있어서,
    상기 올레핀은 에틸렌 및 프로필렌을 포함하고, 상기 방법은 하기 중 하나 이상을 포함하는, 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법:
    i) 에틸렌 수율이 35 wt% 이상; 및
    ii) 프로필렌 수율이 7 wt% 이상.
PCT/KR2018/004595 2018-04-18 2018-04-20 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법 WO2019203375A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180044800A KR101891124B1 (ko) 2018-04-18 2018-04-18 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법
KR10-2018-0044800 2018-04-18

Publications (1)

Publication Number Publication Date
WO2019203375A1 true WO2019203375A1 (ko) 2019-10-24

Family

ID=63454716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004595 WO2019203375A1 (ko) 2018-04-18 2018-04-20 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법

Country Status (2)

Country Link
KR (1) KR101891124B1 (ko)
WO (1) WO2019203375A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823021B2 (ja) * 1992-06-16 1996-03-06 東洋製罐株式会社 プラスチックの化学的再利用方法
JP2002121318A (ja) * 2000-10-17 2002-04-23 Ishikawajima Harima Heavy Ind Co Ltd 廃プラスチックのケミカルリサイクル方法及び装置
KR100868725B1 (ko) * 2007-10-05 2008-11-13 한국생산기술연구원 환경친화적 폐기물 처리 및 청정 합성가스 생산 방법
JP2012515549A (ja) * 2009-01-26 2012-07-12 キシレコ インコーポレイテッド バイオマスの加工方法
KR101744558B1 (ko) * 2015-10-06 2017-06-20 서울시립대학교 산학협력단 폐타이어 처리용 2 단 열분해 장치, 이를 이용한 폐타이어 처리 방법 및 시스템

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822126B2 (en) 2002-04-18 2004-11-23 Chevron U.S.A. Inc. Process for converting waste plastic into lubricating oils
KR101127520B1 (ko) 2011-05-13 2012-03-23 고호선 폐 플라스틱, 폐 글리세린 및 감압잔사유를 이용한 재생 연료유 제조 시스템 및 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0823021B2 (ja) * 1992-06-16 1996-03-06 東洋製罐株式会社 プラスチックの化学的再利用方法
JP2002121318A (ja) * 2000-10-17 2002-04-23 Ishikawajima Harima Heavy Ind Co Ltd 廃プラスチックのケミカルリサイクル方法及び装置
KR100868725B1 (ko) * 2007-10-05 2008-11-13 한국생산기술연구원 환경친화적 폐기물 처리 및 청정 합성가스 생산 방법
JP2012515549A (ja) * 2009-01-26 2012-07-12 キシレコ インコーポレイテッド バイオマスの加工方法
KR101744558B1 (ko) * 2015-10-06 2017-06-20 서울시립대학교 산학협력단 폐타이어 처리용 2 단 열분해 장치, 이를 이용한 폐타이어 처리 방법 및 시스템

Also Published As

Publication number Publication date
KR101891124B1 (ko) 2018-08-23

Similar Documents

Publication Publication Date Title
WO2020222423A2 (ko) 폐기물로부터 열분해 오일 생산 시스템
Kaminsky Thermal recycling of polymers
CN107185948B (zh) 一种工业废盐系统及方法
US6244198B1 (en) Method and equipment for pyrolytic treatment of organic material
EP1235886A1 (en) Flash-pyrolysis in a cyclone
JP7391088B2 (ja) プラスチック廃材を液体燃料に触媒変換する方法
PT915917E (pt) Processo para a decomposicao de um polimero no seu monomero ou monomeros
WO2019139278A1 (ko) 폐타이어 열분해를 통한 챠르의 정제 및 재생 카본블랙 제조 시스템 및 방법
WO2022119404A1 (ko) 열분해 및 극저온 응축기를 이용한 오일 회수 장치 및 이를 이용한 오일 회수 방법
EP4179019A1 (en) High-temperature pyrolysis of plastics to monomers
EP3031881A1 (en) Method of pyrolytic processing of polymer waste from the recycling of food packaging and a system for carrying out such method
US4880528A (en) Method and apparatus for hydrocarbon recovery from tar sands
WO2019203375A1 (ko) 폴리올레핀 플라스틱으로부터 올레핀을 생산하는 방법
KR102335513B1 (ko) 연속운전이 가능한 비유동식 폐플라스틱 급속 열분해 장치 및 시스템
WO2019004560A1 (ko) 폴리염화비닐을 포함하는 플라스틱 혼합물의 재활용을 위한 장치 및 이를 이용한 폴리염화비닐을 포함하는 플라스틱 혼합물의 재활용 방법
WO2020036248A1 (ko) 목재 또는 리그닌의 재활용 장치 및 이를 이용하여 목재 또는 리그닌으로부터 페놀을 생산하는 방법
WO2023075432A1 (en) Pyrolysis method of waste plastics using batch reactor
AU2012325114B2 (en) Process and apparatus for dedusting a vapor gas mixture
US20220010218A1 (en) High-temperature pyrolysis of plastics to monomers with high gas velocity
CN113234461B (zh) 一种热载体式有机固体废弃物的处理工艺以及系统
WO2016200143A1 (ko) 소각 및 가스화 공정 배가스의 플라즈마 처리 장치
US3017249A (en) Carbon black recovery
WO2018225908A1 (ko) 에틸렌 분리공정 및 분리장치
CN102585857B (zh) 一种褐煤干燥热解装置
CN206408171U (zh) 一种煤粉快速热解系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915148

Country of ref document: EP

Kind code of ref document: A1