WO2019203209A1 - 中継装置、データ中継方法及びプログラム - Google Patents

中継装置、データ中継方法及びプログラム Download PDF

Info

Publication number
WO2019203209A1
WO2019203209A1 PCT/JP2019/016247 JP2019016247W WO2019203209A1 WO 2019203209 A1 WO2019203209 A1 WO 2019203209A1 JP 2019016247 W JP2019016247 W JP 2019016247W WO 2019203209 A1 WO2019203209 A1 WO 2019203209A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
transmission destination
transfer rate
relay
reception capability
Prior art date
Application number
PCT/JP2019/016247
Other languages
English (en)
French (fr)
Inventor
知崇 増田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2020514384A priority Critical patent/JP6954460B2/ja
Priority to US17/048,358 priority patent/US20210168219A1/en
Publication of WO2019203209A1 publication Critical patent/WO2019203209A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/50Network service management, e.g. ensuring proper service fulfilment according to agreements
    • H04L41/5003Managing SLA; Interaction between SLA and QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/563Data redirection of data network streams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/25Flow control; Congestion control with rate being modified by the source upon detecting a change of network conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/26Flow control; Congestion control using explicit feedback to the source, e.g. choke packets
    • H04L47/263Rate modification at the source after receiving feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/27Evaluation or update of window size, e.g. using information derived from acknowledged [ACK] packets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/30Flow control; Congestion control in combination with information about buffer occupancy at either end or at transit nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/40Flow control; Congestion control using split connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/104Peer-to-peer [P2P] networks
    • H04L67/1074Peer-to-peer [P2P] networks for supporting data block transmission mechanisms
    • H04L67/1078Resource delivery mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/2866Architectures; Arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/2866Architectures; Arrangements
    • H04L67/2871Implementation details of single intermediate entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/568Storing data temporarily at an intermediate stage, e.g. caching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • H04L69/163In-band adaptation of TCP data exchange; In-band control procedures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2101/00Indexing scheme associated with group H04L61/00
    • H04L2101/60Types of network addresses
    • H04L2101/618Details of network addresses
    • H04L2101/663Transport layer addresses, e.g. aspects of transmission control protocol [TCP] or user datagram protocol [UDP] ports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/19Flow control; Congestion control at layers above the network layer
    • H04L47/193Flow control; Congestion control at layers above the network layer at the transport layer, e.g. TCP related
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/19Flow control; Congestion control at layers above the network layer
    • H04L47/196Integration of transport layer protocols, e.g. TCP and UDP

Definitions

  • the present invention is based on the priority claim of Japanese patent application: Japanese Patent Application No. 2018-078872 (filed on Apr. 17, 2018), the entire contents of which are incorporated herein by reference. Shall.
  • the present invention relates to a relay device, a data relay method, and a program.
  • Internet connections via mobile networks generally have a configuration in which a relay device is installed at the boundary between both networks to terminate TCP (Transmission Control Protocol). .
  • TCP Transmission Control Protocol
  • the packet loss base method observes packet loss, and if the loss increases, it considers that congestion has occurred and suppresses the amount of transmission, such as the CUBIC algorithm.
  • the delay-based method is a method of observing a packet delay and determining that the congestion state is reached when the delay amount is increased, thereby reducing the transmission amount. There is a method such as Westwood +.
  • Patent Documents 1 to 3 disclose configurations for changing the congestion window value and the window size.
  • Patent Document 1 discloses a base station that can improve throughput after congestion avoidance.
  • this base station includes a transmission buffer 251 that stores TCP packets transmitted from the base station to a communication terminal via a wireless line.
  • the base station also controls the congestion control unit 245 that controls the inflow amount of the TCP packet to the transmission buffer 251 based on the minimum window value among the congestion window value and the reception window value reported from the communication terminal. Is provided.
  • the base station includes a congestion window value setting unit 243 that reduces the congestion window value to a predetermined value when the TCP packet retention amount in the transmission buffer 251 exceeds a threshold value. Then, the congestion window value setting unit 243 sets the congestion window value to be larger than the predetermined value and the reception window value when the TCP packet retention amount in the transmission buffer 251 becomes less than the threshold after the congestion window value is decreased. Set to the above value.
  • Patent Document 2 discloses a communication device that can prevent a decrease in throughput.
  • the communication apparatus includes a transmission buffer 14 that accumulates transmission packets output from the packet processing unit 15 and outputs the transmission packets to the communication unit 11 under the control of the buffer control unit 16.
  • the communication apparatus also includes a buffer monitoring unit 13 that constantly monitors the free capacity of the transmission buffer 14 and outputs a monitoring result to the window size changing unit 12.
  • the communication apparatus also includes a window size changing unit 12 that changes the window size notified from another communication apparatus using the ACK packet based on the free capacity of the transmission buffer 14.
  • the communication apparatus includes a packet processing unit 15 that generates a new transmission packet with the changed window size as an upper limit and outputs the new transmission packet to the transmission buffer 14.
  • Patent Document 3 discloses a congestion control node apparatus that performs congestion control in a layer 2 switch that performs flow control.
  • JP 2016-208193 A Japanese Patent Laid-Open No. 2015-095780 JP 2009-060283 A
  • Patent Document 1 describes in paragraph 0040 that it is difficult for the transmission source to grasp the packet retention amount in the transmission buffer of the relay node. In the same paragraph, in order not to cause frequent packet loss due to buffer overflow at the relay node, it is only described that the congestion window value is gradually increased.
  • Patent Document 2 discloses a method of rewriting the window size notified from the transmission destination based on the free capacity of the transmission buffer in the communication terminal as the data packet transmission side, and the packet retention in the transmission buffer of the relay node It is the same as Patent Document 1 in that it is difficult to grasp the amount.
  • a data providing apparatus a data transmission destination apparatus that is a transmission destination of data received from the data providing apparatus, a proxy unit that respectively terminates TCP communication, and the data provision
  • a reception buffer for storing data to be transmitted to the data transmission destination device among the data received from the data transmission side device, and a reception capability for estimating the reception capability of the data transmission destination device based on the free capacity of the transmission buffer
  • a relay device includes an estimation unit and a transfer rate control unit that instructs a transfer rate to the device on the data providing side based on the reception capability of the data transmission destination device.
  • a data providing apparatus a data transmission destination apparatus that is a transmission destination of data received from the data providing apparatus, a proxy unit that respectively terminates TCP communication, and the data provision A transmission buffer that stores data to be transmitted to the data transmission destination device among data received from the data transmission side device, and transmits the data received from the data provision side device to the data transmission destination device
  • the relay device estimates the reception capability of the data transmission destination device based on the free capacity of the transmission buffer, and based on the reception capability of the data transmission destination device, to the data providing device Indicating a transfer rate, and a data relay method is provided. This method is associated with a specific machine called a relay device arranged at the boundary between the mobile network and the core network.
  • a data providing apparatus a data transmission destination apparatus that is a transmission destination of data received from the data providing apparatus, a proxy unit that respectively terminates TCP communication, and the data provision A transmission buffer that stores data to be transmitted to the data transmission destination device among data received from the data transmission side device, and transmits the data received from the data provision side device to the data transmission destination device
  • the data providing side based on the process of estimating the reception capability of the data transmission destination device based on the free capacity of the transmission buffer and the reception capability of the data transmission destination device
  • a program for executing the process of instructing the transfer rate can be recorded on a computer-readable (non-transitory) storage medium. That is, the present invention can be embodied as a computer program product.
  • the present invention it is possible to suppress degradation of facility utilization efficiency and user experience quality caused by a relay device arranged at the boundary between two networks including a mobile network.
  • connection lines between blocks such as drawings referred to in the following description include both bidirectional and unidirectional directions.
  • the unidirectional arrow schematically shows the main signal (data) flow and does not exclude bidirectionality.
  • the present invention can be realized by a relay device 12 that relays data transmitted from the data providing side device 11 to the data destination device 13 as shown in FIG. More specifically, the relay device 12 includes a proxy unit 121, a transmission buffer 122, a reception capability estimation unit 123, and a transfer rate control unit 124.
  • the proxy unit 121 terminates TCP communication between the data providing apparatus 11 and the own apparatus (relay apparatus 12), and between the own apparatus (relay apparatus 12) and the data transmission destination apparatus 13.
  • the transmission buffer 122 stores data before transmission to the data transmission destination device and data before reception of a post-transmission ACK (reception confirmation response) among the data received from the data providing device.
  • the reception capability estimation unit 123 estimates the reception capability of the data transmission destination device 13 based on the free capacity of the transmission buffer 122.
  • the transfer rate control unit 124 instructs the data providing side device 11 on the transfer rate based on the estimated reception capability of the data transmission destination device 13. This transfer rate can be instructed, for example, by specifying the window size in the TCP header of the ACK (reception confirmation response) to the data providing side device 11.
  • the present embodiment as described above, it is possible to suppress occurrence of packet loss and delay between the own device (relay device 12) and the data transmission destination device 13.
  • the reason is that a configuration is adopted in which a sign of occurrence of packet loss or delay is grasped from the free capacity of the transmission buffer, and the transfer rate is changed early.
  • FIG. 2 is a diagram showing a configuration of the first exemplary embodiment of the present invention.
  • a relay device 200 arranged at the boundary between networks 400 and 500 to which the data providing side device 100 and the terminal device 300 are connected.
  • the data providing apparatus 100 is, for example, a server or the like disposed on the Internet or a cloud service platform.
  • the terminal device 300 is a smartphone, a personal computer (PC), an IoT (Internet of Things) device, or the like that receives data from the data providing side device 100 via the networks 400 and 500.
  • PC personal computer
  • IoT Internet of Things
  • the network 400 is, for example, the Internet or a local area network.
  • the network 500 is a radio access network. Compared with the network 400, the network 500 is more likely to cause packet loss or delay due to a change in wireless quality or the like, and thus the relay device 200 is provided.
  • the relay apparatus 200 establishes a TCP connection with the data providing apparatus 100 and the terminal apparatus 300, and performs communication according to the network characteristics.
  • the relay device 200 includes a transmission control unit 210, a transmission buffer 220, and a proxy unit 230.
  • the transmission control unit 210 includes a transfer rate control unit 211, a reception capability estimation unit 212, and a transmission buffer monitoring unit 213.
  • the proxy unit 230 establishes a TCP connection with each of the data providing side device 100 and the terminal device 300, and performs communication according to each network characteristic. More specifically, the proxy unit 230 transmits data to the terminal device 300 based on the window size notified from the receiving device (here, the terminal device 300). Further, the proxy unit 230 notifies the data providing side device 100 of the window size, but the transmission control unit 210 determines the window size.
  • the transmission buffer 220 is a buffer for accumulating data addressed to the terminal device 300 received from the data providing side device 100.
  • the transmission control unit 210 includes a transfer rate control unit 211, a reception capability estimation unit 212, and a transmission buffer monitoring unit 213.
  • the transmission buffer monitoring unit 213 periodically monitors the free space of the buffer, and passes the result to the reception capability estimation unit 212.
  • the reception capability estimation unit 212 estimates the reception capability of the reception-side device (here, the terminal device 300) based on the change in the free space of the buffer received from the transmission buffer monitoring unit 213.
  • the reception capability estimation unit 212 passes the estimated reception capability of the reception-side device (here, the terminal device 300) to the transfer rate control unit 211.
  • the transfer rate control unit 211 determines a window size to be notified to the data providing side device 100 based on the estimated reception capability of the reception side device (here, the terminal device 300) received from the reception capability estimation unit 212. In addition to the above, the window received by the transfer rate control unit 211 from the receiving device (here, the terminal device 300) based on the estimated receiving capability of the receiving device (here, the terminal device 300). The size may be increased or decreased.
  • FIG. 3 is a flowchart for explaining an operation performed in a predetermined cycle after the TCP connection is established in the relay device according to the first embodiment of this invention.
  • the relay device 200 acquires the free capacity of the transmission buffer 220 for the terminal device (step S001).
  • the relay apparatus 200 estimates the reception capability of the reception-side apparatus (here, the terminal apparatus 300) using the change in the free capacity of the transmission buffer 220 (step S002).
  • FIG. 4 is a diagram for explaining the free capacity of the transmission buffer 220 of the relay apparatus 200 according to the present embodiment.
  • data for the terminal device 300 received by the relay device 200 from the data providing device 100 is stored in the transmission buffer 220.
  • “Untransmitted” in FIG. 4 indicates data that has not been transmitted to the terminal device 300.
  • the relay apparatus 200 extracts data from the transmission buffer 220 and transmits it, the data transitions from an untransmitted state to an ACK wait.
  • an ACK is received from the terminal device 300, the data is deleted from the transmission buffer.
  • the free capacity of the transmission buffer 220 is determined based on the size of the transmission buffer 220, that is, the capacity storing untransmitted data (“untransmitted” in FIG. 4) and the capacity storing data waiting for ACK that has not been received after transmission (ACK). It can be obtained by excluding “waiting for ACK” in FIG. Further, as described above, the free capacity of the transmission buffer 220 changes depending on the data reception status of the opposite device.
  • FIG. 5 and FIG. 6 are diagrams for explaining a method of estimating the reception capability of the opposite device by the relay device 200.
  • FIG. The example of FIG. 5 shows a state where the free space at a certain time t is less than the previous check time (time t ⁇ 1). This indicates a situation where the data transmitted from the relay device 200 is not processed by the receiving device (here, the terminal device 300). In such a case, the relay apparatus 200 determines that the reception capability of the reception-side apparatus (here, the terminal apparatus 300) is low in comparison with the data transfer rate based on the current window size.
  • the example in FIG. 6 shows a state in which the free space at a certain time t has increased from the time of the previous check (time t ⁇ 1). This indicates a situation in which the data transmitted from the relay device 200 is sufficiently processed by the receiving device (here, the terminal device 300). In such a case, the relay apparatus 200 determines that the reception capability of the receiving apparatus (here, the terminal apparatus 300) is high in comparison with the data transfer rate based on the current window size.
  • the relay device 200 changes the transfer rate based on the estimated receiving capability of the receiving device (here, the terminal device 300), and instructs the data providing device 100 (step S003).
  • the relay device 200 Instructs transmission at a lower data transfer rate.
  • the relay device 200 instructs the data providing device 100 to Instructs transmission at a data transfer rate higher than the current rate.
  • the data transfer rate instruction in step S003 may be a method of setting a value corresponding to the data transfer rate in the window size field in the header at the time of ACK transmission to the data providing apparatus 100.
  • the relay device 200 receives 10 units of packets from the data providing side device 100 within a certain unit time.
  • the relay device 200 transmits seven units of packets to the terminal device 300 and receives five units of ACK.
  • the untransmitted data is calculated as 23 units of 20+ (10 ⁇ 7) of 10 increase 7 decrease.
  • the ACK waiting data is calculated as 12 units of 10 + ( ⁇ 5 + 7) of 7 increase 5 decrease.
  • the free space is reduced from 30 units to 25 units.
  • the relay device 200 instructs the data providing side device 100 to bring the transmission rate closer to 5 units. .
  • congestion and packet loss between the relay device 200 and the terminal device 300 can be avoided.
  • the relay device 200 receives 10 units of packets from the data providing side device 100 within a certain unit time.
  • the relay device 200 transmits 10 units of packets to the terminal device 300 and receives 15 units of ACK.
  • untransmitted data is calculated as 20 units of 10 increase and 10 decrease.
  • the ACK waiting data is calculated as 5 units of 10+ (10 ⁇ 15) which is 10 increase 15 decrease.
  • the free space has increased from 30 units to 35 units.
  • the relay apparatus 200 since the reception capability of the terminal apparatus 300 is estimated to be 15 units per unit time, the relay apparatus 200 sets the transmission rate close to 15 units in order to increase efficiency with respect to the data providing apparatus 100. Instruct to go. As a result, the overall throughput can be improved.
  • the data transfer rate between the data providing side device 100 and the relay device 200 can be changed before the retransmission between the relay device 200 and the terminal device 300 occurs. As a result, it is possible to suppress useless packet transmission (retransmission or pause frame).
  • the transfer rate on the upstream device side is changed based on the reception capability of the device on the receiving side (here, the terminal device 300), but the same effect can be obtained by changing the service level.
  • the service level includes a difference in compression level including the presence / absence of compression of service images from the data providing apparatus 100 to the terminal apparatus 300, a difference in data encoding method, and a bit rate of a moving image to be provided.
  • FIG. 9 is a diagram showing a configuration of the second exemplary embodiment of the present invention.
  • the difference in configuration from the first embodiment shown in FIG. 2 is that the transfer rate control unit 211 in the transmission control unit 210a is replaced with a service level changing unit 211a. Since other configurations are the same as those of the first embodiment, description thereof is omitted.
  • the service level changing unit 211a determines a service level for the data providing side device 100 based on the estimated receiving capability of the receiving side device (here, the terminal device 300) received from the receiving capability estimating unit 212, and the data providing side Notify the device 100 side.
  • FIG. 10 is a flowchart for explaining the operation of the relay device of the second embodiment. The difference from the operation of the relay apparatus of the first embodiment shown in FIG. 3 is that a service level instruction is given in step S103.
  • the relay device 200a determines that the reception capability of the receiving device (here, the terminal device 300) is the data transfer rate based on the current window size. In the comparison, it is determined that the state is low. For this reason, the relay apparatus 200a of this embodiment instructs the data providing apparatus 100 to lower the service level. As a result, the data transmitted from the data providing side device 100 to the terminal device 300 side becomes lighter, so that congestion and packet loss between the relay device 200 and the terminal device 300 can be avoided.
  • the relay device 200a compares the reception capability of the receiving device (here, the terminal device 300) with the data transfer rate based on the current window size. It is determined that the state is high. For this reason, the relay apparatus 200a of this embodiment instructs the data providing apparatus 100 to increase the service level. As a result, the level of service that can be received between the terminal devices 300 is improved.
  • the description has been made assuming that only the service level is changed.
  • the data transfer rate may be changed together with the change of the service level.
  • the procedure shown in the first and second embodiments described above can be realized by a program that causes a computer (9000 in FIG. 11) functioning as the relay apparatuses 200 and 200a to realize the function as the relay apparatus 200.
  • a computer is exemplified by a configuration including a CPU (Central Processing Unit) 9010, a communication interface 9020, a memory 9030, and an auxiliary storage device 9040 in FIG. That is, the CPU 9010 in FIG. 11 may execute a transmission buffer monitoring program, a reception capability estimation program, and a transfer rate control program to update each calculation parameter held in the auxiliary storage device 9040 or the like.
  • a CPU Central Processing Unit
  • each unit (processing means, function) of the relay devices 200 and 200a described in the first and second embodiments described above is performed by using the hardware mounted on the processor mounted on the relay device. It is realizable with the computer program which executes.
  • the relay apparatus When the relay apparatus indicates that the free capacity of the transmission buffer is increasing, it is preferable to instruct a transfer rate having a value larger than the current transfer rate.
  • the relay device described above can also be configured to instruct the data providing side device to change the service level based on the reception capability of the data transmission destination device.
  • the transfer rate control unit instead of the transfer rate control unit, It is also possible to adopt a configuration including a service level changing unit that instructs the data providing apparatus to change the service level based on the reception capability of the data transmission destination apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Communication Control (AREA)

Abstract

モバイル網を含む2つの網の境界に配置された中継装置に起因する設備利用効率やユーザ体感品質の低下を抑止する。中継装置は、データ提供側の装置と、前記データ提供側の装置から受信したデータの送信先となるデータ送信先の装置との、それぞれのTCP通信を終端するプロキシ部と、前記データ提供側の装置から受信したデータのうち、前記データ送信先の装置に送信するデータを格納する送信バッファと、前記送信バッファの空き容量に基づいて、データ送信先の装置の受信能力を推定する受信能力推定部と、前記データ送信先の装置の受信能力に基づいて、前記データ提供側の装置に対して、転送レートを指示する転送レート制御部と、を備える。

Description

中継装置、データ中継方法及びプログラム
 (関連出願についての記載)
 本発明は、日本国特許出願:特願2018-078872号(2018年04月17日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、中継装置、データ中継方法及びプログラムに関する。
 モバイル網を経由したインターネット接続では、網特性の違いに起因する通信品質低下を抑制するため、両網の境界に中継装置を設置してTCP(Transmission Control Protocol)を終端する構成が一般的である。この種の中継装置においては、ネットワークのスループットにあわせて、受信側で一度に受け取り可能なデータ量を送信元に伝えるウィンドウサイズ等の設定値の適切な設定を行う必要がある。このウィンドウサイズ等の設定が適切でない場合、十分に高速化できなかったり、逆にパケットロスを発生させてしまい通信速度の劣化となってしまう可能性がある。
 TCPにおける輻輳制御アルゴリズムとして、パケットロスベース方式や遅延ベース方式、これらを組み合わせたハイブリッド方式が知られている。パケットロスベース方式は、パケットのロスを観測し、ロスが増えれば輻輳が発生したと見なして送信量を抑えるものであり、CUBICアルゴリズムなどがある。また、遅延ベース方式は、パケットの遅延を観測し、遅延量が増えたら輻輳状態になったと判断して送信量を減らすものであり、Westwood+等の方式がある。
 また、特許文献1~3には、輻輳ウィンドウ値やウィンドウサイズを変更する構成が開示されている。特許文献1には、輻輳回避後のスループットを向上することができるという基地局が開示されている。同文献によると、この基地局は、基地局から無線回線を介して通信端末へ送信されるTCPパケットを蓄える送信バッファ251を備える。また、この基地局は、輻輳ウィンドウ値と、通信端末から報告された受信ウィンドウ値とのうち、最小のウィンドウ値に基づいて、送信バッファ251へのTCPパケットの流入量を制御する輻輳制御部245を備える。また、この基地局は、送信バッファ251におけるTCPパケットの滞留量が閾値以上になったときに、輻輳ウィンドウ値を所定値まで減少させる輻輳ウィンドウ値設定部243を備える。そして、輻輳ウィンドウ値設定部243は、輻輳ウィンドウ値の減少後、送信バッファ251におけるTCPパケットの滞留量が閾値未満になったときに、輻輳ウィンドウ値を、所定値より大きく、かつ、受信ウィンドウ値以上の値に設定する。
 特許文献2には、スループットの低下を防止することができるという通信装置が開示されている。同文献によると、この通信装置は、パケット処理部15から出力された送信パケットを溜めて、バッファ制御部16の制御に従って、送信パケットを通信部11に出力する送信バッファ14を備える。また、この通信装置は、送信バッファ14の空き容量を常時監視し、監視結果をウィンドウサイズ変更部12に出力するバッファ監視部13を備える。また、この通信装置は、ACKパケットを用いて他の通信装置から通知されたウィンドウサイズを、送信バッファ14の空き容量に基づいて変更するウィンドウサイズ変更部12を備える。また、この通信装置は、変更後のウィンドウサイズを上限として新規の送信パケットを生成して送信バッファ14に出力するパケット処理部15を備える。
 また、特許文献3には、フロー制御を行うレイヤ2スイッチにおける輻輳制御を行う輻輳制御ノード装置が開示されている。
特開2016-208193号公報 特開2015-095780号公報 特開2009-060283号公報
 以下の分析は、本発明によって与えられたものである。上記した中継装置におけるパケットロスに起因する再送とスループット低下により、通信事業者にとっての設備利用効率低下およびユーザにとっての体感品質低下が発生するという問題点がある。
 この点、特許文献1は、段落0040で、送信元が中継ノードの送信バッファのパケット滞留量を把握することが困難であることが記載されている。そして、同段落では、中継ノードでのバッファ溢れによるパケット損失を頻発させないために、輻輳ウィンドウ値を緩やかに増大させることが記載されるに止まっている。
 また、特許文献2は、データパケットの送信側としての通信端末における送信バッファの空き容量に基づいて送信先から通知されたウィンドウサイズを書き換える方法を開示しており、中継ノードの送信バッファのパケット滞留量を把握することが困難であるという点では特許文献1と同様である。
 本発明は、モバイル網を含む2つの網の境界に配置された中継装置に起因する設備利用効率やユーザ体感品質の低下の抑止に貢献できる中継装置、データ中継方法及びプログラムを提供することを目的とする。
 第1の視点によれば、データ提供側の装置と、前記データ提供側の装置から受信したデータの送信先となるデータ送信先の装置と、それぞれTCP通信を終端するプロキシ部と、前記データ提供側の装置から受信したデータのうち、前記データ送信先の装置に送信するデータを格納する送信バッファと、前記送信バッファの空き容量に基づいて、データ送信先の装置の受信能力を推定する受信能力推定部と、前記データ送信先の装置の受信能力に基づいて、前記データ提供側の装置に対して、転送レートを指示する転送レート制御部と、を備える中継装置が提供される。
 第2の視点によれば、データ提供側の装置と、前記データ提供側の装置から受信したデータの送信先となるデータ送信先の装置と、それぞれTCP通信を終端するプロキシ部と、前記データ提供側の装置から受信したデータのうち、前記データ送信先の装置に送信するデータを格納する送信バッファと、を備え、前記データ提供側の装置から受信したデータを前記データ送信先の装置に送信する中継装置が、前記送信バッファの空き容量に基づいて、データ送信先の装置の受信能力を推定するステップと、前記データ送信先の装置の受信能力に基づいて、前記データ提供側の装置に対して、転送レートを指示するステップと、を含むデータ中継方法が提供される。本方法は、モバイル網とコア網の境界に配置された中継装置という、特定の機械に結びつけられている。
 第3の視点によれば、データ提供側の装置と、前記データ提供側の装置から受信したデータの送信先となるデータ送信先の装置と、それぞれTCP通信を終端するプロキシ部と、前記データ提供側の装置から受信したデータのうち、前記データ送信先の装置に送信するデータを格納する送信バッファと、を備え、前記データ提供側の装置から受信したデータを前記データ送信先の装置に送信する中継装置に搭載されたコンピュータに、前記送信バッファの空き容量に基づいて、データ送信先の装置の受信能力を推定する処理と、前記データ送信先の装置の受信能力に基づいて、前記データ提供側の装置に対して、転送レートを指示する処理と、を実行させるプログラムが提供される。なお、このプログラムは、コンピュータが読み取り可能な(非トランジトリーな)記憶媒体に記録することができる。即ち、本発明は、コンピュータプログラム製品として具現することも可能である。
 本発明によれば、モバイル網を含む2つの網の境界に配置された中継装置に起因する設備利用効率やユーザ体感品質の低下を抑止することが可能となる。
本発明の一実施形態の構成を示す図である。 本発明の第1の実施形態の構成を示す図である。 本発明の第1の実施形態の中継装置の動作を説明するための流れ図である。 本発明の第1の実施形態の中継装置の送信バッファの空き容量を説明するための図である。 本発明の第1の実施形態の中継装置による対向装置の受信能力の推定方法を説明するための図である。 本発明の第1の実施形態の中継装置による対向装置の受信能力の推定方法を説明するための別の図である。 対向装置の受信能力が低下している場合の送信バッファの変化を説明するための別の図である。 対向装置の受信能力に余裕がある場合の送信バッファの変化を説明するための別の図である。 本発明の第2の実施形態の構成を示す図である。 本発明の第2の実施形態の中継装置の動作を説明するための流れ図である。 本発明の中継装置を構成するコンピュータの構成を示す図である。
 はじめに本発明の一実施形態の概要について図面を参照して説明する。なお、この概要に付記した図面参照符号は、理解を助けるための一例として各要素に便宜上付記したものであり、本発明を図示の態様に限定することを意図するものではない。また、以降の説明で参照する図面等のブロック間の接続線は、双方向及び単方向の双方を含む。一方向矢印については、主たる信号(データ)の流れを模式的に示すものであり、双方向性を排除するものではない。
 本発明は、その一実施形態において、図1に示すように、データ提供側装置11からデータ送信先装置13に送信されるデータを中継する中継装置12にて実現できる。より具体的には、この中継装置12は、プロキシ部121と、送信バッファ122と、受信能力推定部123と、転送レート制御部124とを備える。
 プロキシ部121は、データ提供側装置11と自装置(中継装置12)間、自装置(中継装置12)とデータ送信先装置13間のそれぞれのTCP通信を終端する。
 送信バッファ122は、前記データ提供側の装置から受信したデータのうち、前記データ送信先の装置への送信前のデータ及び送信後ACK(受信確認応答)受信前のデータを格納する。
 受信能力推定部123は、前記送信バッファ122の空き容量に基づいて、データ送信先装置13の受信能力を推定する。
 そして、転送レート制御部124は、前記推定したデータ送信先装置13の受信能力に基づいて、前記データ提供側装置11に対して、転送レートを指示する。この転送レートの指示は、例えば、データ提供側装置11に対するACK(受信確認応答)のTCPヘッダ内のウィンドウサイズを指定することで指示することができる。
 以上のような本実施形態によれば、自装置(中継装置12)とデータ送信先装置13間でパケットロスや遅延の発生を抑止することが可能となる。その理由は、送信バッファの空き容量からパケットロスや遅延の発生の予兆を把握し、早めに転送レートを変更する構成を採用したことにある。
[第1の実施形態]
 続いて、本発明の第1の実施形態について図面を参照して詳細に説明する。図2は、本発明の第1の実施形態の構成を示す図である。図2を参照すると、データ提供側装置100と端末装置300とがそれぞれ接続するネットワーク400、500の境界に配置される中継装置200が示されている。
 データ提供側装置100は、例えば、インターネットやクラウドサービス基盤上に配置されたサーバ等である。
 端末装置300は、ネットワーク400、500を介して、データ提供側装置100からデータを受け取るスマートフォン、パーソナルコンピュータ(PC)、IoT(Internet of Thing)機器等である。
 ネットワーク400は、例えば、インターネットやローカルエリアネットワークである。一方、ネットワーク500は、無線アクセスネットワークである。ネットワーク500は、ネットワーク400と比較して、無線品質の変化等によりパケットロスや遅延が生じやすいため、中継装置200が配置されている。中継装置200は、データ提供側装置100と端末装置300と、それぞれTCPコネクションを張り、それぞれの網特性に応じて通信を行う。
 図2を参照すると、中継装置200は、送信制御部210と、送信バッファ220と、プロキシ部230とを備えている。
 送信制御部210は、転送レート制御部211と、受信能力推定部212と、送信バッファ監視部213とを備える。
 プロキシ部230は、データ提供側装置100と端末装置300と、それぞれTCPコネクションを張り、それぞれの網特性に応じて通信を行う。より具体的には、プロキシ部230は、受信側の装置(ここでは、端末装置300)から通知されたウィンドウサイズに基づいて端末装置300側にデータを送信する。また、プロキシ部230は、データ提供側装置100にもウィンドウサイズを通知することになるが、送信制御部210が、そのウィンドウサイズを決定する。
 送信バッファ220は、データ提供側装置100から受信した端末装置300宛てのデータを蓄積するバッファである。
 送信制御部210は、転送レート制御部211と、受信能力推定部212と、送信バッファ監視部213とを備える。
 送信バッファ監視部213は、定期的にバッファの空き容量を監視し、その結果を受信能力推定部212に渡す。
 受信能力推定部212は、送信バッファ監視部213から受け取ったバッファの空き容量の変化に基づいて受信側の装置(ここでは、端末装置300)の受信能力を推定する。受信能力推定部212は、前記推定した受信側の装置(ここでは、端末装置300)の受信能力を転送レート制御部211に渡す。
 転送レート制御部211は、受信能力推定部212から受け取った受信側の装置(ここでは、端末装置300)の推定受信能力に基づいて、データ提供側装置100に通知するウィンドウサイズを決定する。なお、上記に加えて、転送レート制御部211が、受信側の装置(ここでは、端末装置300)の推定受信能力に基づいて、受信側の装置(ここでは、端末装置300)から受け取ったウィンドウサイズを増減することとしてもよい。
 続いて、本実施形態の動作について図面を参照して詳細に説明する。図3は、本発明の第1の実施形態の中継装置においてTCPコネクション確立後に所定の周期で行われる動作を説明するための流れ図である。図3を参照すると、まず、中継装置200は、端末装置向けの送信バッファ220の空き容量を取得する(ステップS001)。
 次に、中継装置200は、送信バッファ220の空き容量の変化を用いた受信側の装置(ここでは、端末装置300)の受信能力を推定する(ステップS002)。
 ここで、送信バッファ220の空き容量は、次のように定義される。図4は、本実施形態の中継装置200の送信バッファ220の空き容量を説明するための図である。図4に示すように、中継装置200がデータ提供側装置100から受信した端末装置300向けのデータは送信バッファ220に格納される。図4の「未送信」は、端末装置300に送信していないデータを示す。その後、中継装置200が送信バッファ220からデータを取り出して送信すると、当該データは未送信状態からACK待ちに遷移する。その後、端末装置300からACKを受信すると、当該データは送信バッファから削除される。従って、送信バッファ220の空き容量は、送信バッファ220のサイズから、未送信データを格納した容量(図4の「未送信」)と、送信後ACK未受信のACK待ちのデータを格納した容量(図4の「ACK待ち」)とを除外して求めることができる。また、上述のように、送信バッファ220の空き容量は、対向装置のデータ受信状況により変化することになる。
 図5、図6は、中継装置200による対向装置の受信能力の推定方法を説明するための図である。図5の例では、ある時刻tにおける空き容量が、前回チェック時(時刻t-1)より減っている状態を示す。これは、中継装置200から送信しているデータを、受信側の装置(ここでは、端末装置300)が処理しきれていない状況を示している。このような場合、中継装置200は、受信側の装置(ここでは、端末装置300)の受信能力が現ウィンドウサイズによるデータ転送レートとの比較において低い状態にあると判定する。
 図6の例では、ある時刻tにおける空き容量が、前回チェック時(時刻t-1)より増えている状態を示す。これは、中継装置200から送信しているデータを、受信側の装置(ここでは、端末装置300)が十分に処理できている状況を示している。このような場合、中継装置200は、受信側の装置(ここでは、端末装置300)の受信能力が現ウィンドウサイズによるデータ転送レートとの比較において高い状態にあると判定する。
 次に、中継装置200は、前記推定した受信側の装置(ここでは、端末装置300)の受信能力に基づいて、転送レートを変更し、データ提供側装置100に対して指示する(ステップS003)。例えば、図5に示すように、端末装置300の受信能力が現ウィンドウサイズによるデータ転送レートとの比較において低い状態にあると判定した場合、中継装置200は、データ提供側装置100に対し、現在よりも低いデータ転送レートでの送信を指示する。
 同様に、図6に示すように、端末装置300の受信能力が現ウィンドウサイズによるデータ転送レートとの比較において高い状態にあると判定した場合、中継装置200は、データ提供側装置100に対し、現在よりも高いデータ転送レートでの送信を指示する。
 なお、上記ステップS003におけるデータ転送レートの指示は、データ提供側装置100に対するACK送信時のヘッダ内のウィンドウサイズフィールドに、前記データ転送レートに対応する値を設定する方法を採ることができる。
 ここで、図7、図8を参照して、データ転送レートの具体的な決定の例について説明する。図7に示すように、ある時刻t1の送信バッファ220に、未送信データが20単位、ACK待ちが10単位格納され、空き容量は30単位であったものとする。その後、ある単位時間内に、中継装置200が、データ提供側装置100からパケットを10単位受信している。一方、中継装置200は、端末装置300に対し、パケットを7単位送信し、また、ACKを5単位受信している。以上の結果、次の送信バッファの監視タイミング(時刻t1+1)では、未送信データは、10増7減の20+(10-7)の23単位と計算される。一方、ACK待ちデータは、7増5減の10+(-5+7)の12単位と計算される。結果として、空き容量は30単位から25単位に減少している。この場合、端末装置300の受信能力は単位時間あたり5単位であると推定されるので、中継装置200は、データ提供側装置100に対して、送信レートを5単位に近づけていくように指示する。これにより、中継装置200と端末装置300間での輻輳やパケットロスを回避することが可能となる。
 一方、図8に示すように、ある時刻t2の送信バッファ220に、未送信データが20単位、ACK待ちが10単位格納され、送信バッファ220空き容量は30単位であったものとする。その後、ある単位時間内に、中継装置200が、データ提供側装置100からパケットを10単位受信している。一方、中継装置200は、端末装置300に対し、パケットを10単位送信し、また、ACKを15単位受信している。以上の結果、次の送信バッファの監視タイミング(時刻t2+1)では、未送信データは、10増10減の20単位と計算される。一方、ACK待ちデータは、10増15減の10+(10-15)の5単位と計算される。結果として、空き容量は30単位から35単位に増大している。この場合、端末装置300の受信能力は単位時間あたり15単位であると推定されるので、中継装置200は、データ提供側装置100に対して、効率を上げるべく、送信レートを15単位に近づけていくように指示する。これにより、全体のスループットを向上させることが可能となる。
 以上のように、本実施形態によれば、中継装置200と端末装置300間の再送が発生する前にデータ提供側装置100と中継装置200間のデータ転送レートを変更することができる。これにより、無駄なパケットの送信(再送やポーズフレーム)を抑止することも可能となる。
 また、本実施形態によれば、過度のデータ転送レートの増減を避けることができるため、他の通信も加味したネットワーク全体のリソースを有効的に使用することが可能となる。また、データ転送レートの変化が緩やかとなるため、ユーザの体感的サービスレベルにも大きな影響を与えないという利点がある。
[第2の実施形態]
 上記した実施形態では、受信側の装置(ここでは、端末装置300)の受信能力に基づいて、上流装置側の転送レートを変更するものとして説明したが、サービスレベルを変更することでも同様の効果を達成することができる。ここで、サービスレベルとは、データ提供側装置100から端末装置300に対するサービスの画像の圧縮有無を含む圧縮レベルの違い、データ符号化方式の違い、提供する動画のビットレートの高低などである。
 図9は、本発明の第2の実施形態の構成を示す図である。図2に示した第1の実施形態との構成上の相違は、送信制御部210a内の転送レート制御部211がサービスレベル変更部211aに置き換わっている点である。その他の構成は第1の実施形態と同様であるので、説明を省略する。
 サービスレベル変更部211aは、受信能力推定部212から受け取った受信側の装置(ここでは、端末装置300)の推定受信能力に基づいて、データ提供側装置100にサービスレベルを決定し、データ提供側装置100側に通知する。
 図10は、第2の実施形態の中継装置の動作を説明するための流れ図である。図3に示した第1の実施形態の中継装置の動作と異なる点は、ステップS103において、サービスレベルの指示が行われる点である。
 例えば、送信バッファの状態が図5のような遷移を示す場合、時刻tにおいて、中継装置200aは、受信側の装置(ここでは、端末装置300)の受信能力が現ウィンドウサイズによるデータ転送レートとの比較において低い状態にあると判定する。このため、本実施形態の中継装置200aは、データ提供側装置100に対し、サービスレベルを下げるように指示する。これにより、データ提供側装置100から端末装置300側に送信されるデータが軽くなるため、中継装置200と端末装置300間での輻輳やパケットロスを回避することが可能となる。
 送信バッファの状態が図6のような遷移を示す場合、時刻tにおいて、中継装置200aは、受信側の装置(ここでは、端末装置300)の受信能力が現ウィンドウサイズによるデータ転送レートとの比較において高い状態にあると判定する。このため、本実施形態の中継装置200aは、データ提供側装置100に対し、サービスレベルを上げるように指示する。これにより、端末装置300間で受けることのできるサービスのレベルが向上することになる。
 なお、上記した実施形態では、サービスレベルのみを変更するものとして説明したが、サービスレベルの変更と併せて、データ転送レートの変更を行ってもよい。
 以上、本発明の実施形態を説明したが、本発明は、上記した実施形態に限定されるものではなく、本発明の基本的技術的思想を逸脱しない範囲で、更なる変形・置換・調整を加えることができる。例えば、各図面に示したネットワーク構成、各要素の構成、メッセージの表現形態は、本発明の理解を助けるための一例であり、これらの図面に示した構成に限定されるものではない。また、以下の説明において、「A及び/又はB」は、A及びBの少なくともいずれかという意味で用いる。
 また、上記した第1、第2の実施形態に示した手順は、中継装置200、200aとして機能するコンピュータ(図11の9000)に、中継装置200としての機能を実現させるプログラムにより実現可能である。このようなコンピュータは、図11のCPU(Central Processing Unit)9010、通信インタフェース9020、メモリ9030、補助記憶装置9040を備える構成に例示される。すなわち、図11のCPU9010にて、送信バッファ監視プログラム、受信能力推定プログラム、転送レート制御プログラムを実行し、その補助記憶装置9040等に保持された各計算パラメーターの更新処理を実施させればよい。
 即ち、上記した第1、第2の実施形態に示した中継装置200、200aの各部(処理手段、機能)は、中継装置に搭載されたプロセッサに、そのハードウェアを用いて、上記した各処理を実行させるコンピュータプログラムにより実現することができる。
 最後に、本発明の好ましい形態を要約する。
[第1の形態]
 (上記第1の視点による中継装置参照)
[第2の形態]
 上記した中継装置の転送レート制御部は、前記データ提供側の装置に対するウィンドウサイズの変更指示により前記転送レートを指示する形態を採ることができる。
[第3の形態]
 上記した中継装置の前記転送レート制御部は、前記データ送信先の装置の受信能力に基づいて、前記データ送信先の装置に対する転送レートを変更する形態を採ることができる。
[第4の形態]
 上記した中継装置は、前記送信バッファの空き容量が減少していることを示す場合、現在の転送レートよりも小さい値の転送レートを指示することが好ましい。
[第5の形態]
 上記した中継装置は、前記送信バッファの空き容量が増大していることを示す場合、現転送レートよりも大きい値の転送レートを指示することが好ましい。
[第6の形態]
 上記した中継装置は、前記データ送信先の装置の受信能力に基づいて、前記データ提供側の装置に対して、サービスレベルの変更を指示する構成を採ることもできる。
[第7の形態]
 上記した中継装置において、前記転送レート制御部に代えて、
 前記データ送信先の装置の受信能力に基づいて、前記データ提供側の装置に対して、サービスレベルの変更を指示するサービスレベル変更部を備える構成を採ることもできる。
[第8の形態]
 (上記第2の視点によるデータ中継方法参照)
[第9の形態]
 (上記第3の視点によるプログラム参照)
 なお、上記第8~第9の形態は、第1の形態と同様に、第2~第7の形態に展開することが可能である。
 なお、上記の特許文献の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の開示の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし選択(非選択を含む)が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。
 11、100 データ提供側装置
 12、200、200a 中継装置
 13 データ送信先装置
 121、230 プロキシ部
 122、220 送信バッファ
 123 受信能力推定部
 124 転送レート制御部
 100 データ提供側装置
 210、210a 送信制御部
 211 転送レート制御部
 211a サービスレベル変更部
 212 受信能力推定部
 213 送信バッファ監視部
 300 端末装置
 400、500 ネットワーク
 9000 コンピュータ
 9010 CPU
 9020 通信インタフェース
 9030 メモリ
 9040 補助記憶装置

Claims (10)

  1.  データ提供側の装置と、前記データ提供側の装置から受信したデータの送信先となるデータ送信先の装置との、それぞれのTCP通信を終端するプロキシ部と、
     前記データ提供側の装置から受信したデータのうち、前記データ送信先の装置に送信するデータを格納する送信バッファと、
     前記送信バッファの空き容量に基づいて、データ送信先の装置の受信能力を推定する受信能力推定部と、
     前記データ送信先の装置の受信能力に基づいて、前記データ提供側の装置に対して、転送レートを指示する転送レート制御部と、
     を備える中継装置。
  2.  前記転送レート制御部は、前記データ提供側の装置に対するウィンドウサイズの変更指示により前記転送レートを指示する請求項1の中継装置。
  3.  さらに、
     前記転送レート制御部は、前記データ送信先の装置の受信能力に基づいて、前記データ送信先の装置に対する転送レートを変更する請求項1又は2の中継装置。
  4.  前記送信バッファの空き容量が減少していることを示す場合、現在の転送レートよりも小さい値の転送レートを指示する請求項1から3いずれか一の中継装置。
  5.  前記送信バッファの空き容量が増大していることを示す場合、現在の転送レートよりも大きい値の転送レートを指示する請求項1から4いずれか一の中継装置。
  6.  さらに、前記データ送信先の装置の受信能力に基づいて、前記データ提供側の装置に対して、サービスレベルの変更を指示するサービスレベル変更部を備える請求項1から5いずれか一の中継装置。
  7.  前記転送レート制御部に代えて、
     前記データ送信先の装置の受信能力に基づいて、前記データ提供側の装置に対して、サービスレベルの変更を指示するサービスレベル変更部を備える請求項1から5いずれか一の中継装置。
  8.  データ提供側の装置と、前記データ提供側の装置から受信したデータの送信先となるデータ送信先の装置と、それぞれTCP通信を終端するプロキシ部と、前記データ提供側の装置から受信したデータのうち、前記データ送信先の装置に送信するデータを格納する送信バッファと、を備え、前記データ提供側の装置から受信したデータを前記データ送信先の装置に送信する中継装置が、
     前記送信バッファの空き容量に基づいて、データ送信先の装置の受信能力を推定するステップと、
     前記データ送信先の装置の受信能力に基づいて、前記データ提供側の装置に対して、転送レートを指示するステップと、
     を含むデータ中継方法。
  9.  前記中継装置は、前記データ提供側に送信するパケットのTCPヘッダ内のウィンドウサイズの変更により前記転送レートを指示する請求項8のデータ中継方法。
  10.  データ提供側の装置と、前記データ提供側の装置から受信したデータの送信先となるデータ送信先の装置と、それぞれTCP通信を終端するプロキシ部と、前記データ提供側の装置から受信したデータのうち、前記データ送信先の装置に送信するデータを格納する送信バッファと、を備え、前記データ提供側の装置から受信したデータを前記データ送信先の装置に送信する中継装置に搭載されたコンピュータに、
     前記送信バッファの空き容量に基づいて、データ送信先の装置の受信能力を推定する処理と、
     前記データ送信先の装置の受信能力に基づいて、前記データ提供側の装置に対して、転送レートを指示する処理と、
     を実行させるプログラム。
PCT/JP2019/016247 2018-04-17 2019-04-16 中継装置、データ中継方法及びプログラム WO2019203209A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020514384A JP6954460B2 (ja) 2018-04-17 2019-04-16 中継装置、データ中継方法及びプログラム
US17/048,358 US20210168219A1 (en) 2018-04-17 2019-04-16 Relay device, data relay method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-078872 2018-04-17
JP2018078872 2018-04-17

Publications (1)

Publication Number Publication Date
WO2019203209A1 true WO2019203209A1 (ja) 2019-10-24

Family

ID=68240183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016247 WO2019203209A1 (ja) 2018-04-17 2019-04-16 中継装置、データ中継方法及びプログラム

Country Status (4)

Country Link
US (1) US20210168219A1 (ja)
JP (1) JP6954460B2 (ja)
TW (1) TWI748177B (ja)
WO (1) WO2019203209A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002077263A (ja) * 2000-09-04 2002-03-15 Matsushita Electric Ind Co Ltd 送受信方法
JP2008301309A (ja) * 2007-06-01 2008-12-11 Panasonic Corp 符号化レート制御方法、符号化レートを制御する伝送装置、プログラム記憶媒体及び集積回路
JP2011077670A (ja) * 2009-09-29 2011-04-14 Nec Personal Products Co Ltd データ通信装置、データ通信システム、データ通信方法およびプログラム
JP2011250223A (ja) * 2010-05-28 2011-12-08 Nec Corp ゲートウェイ装置およびゲートウェイ装置におけるパケットバッファ管理方法
JP2013027007A (ja) * 2011-07-26 2013-02-04 Hitachi Ltd 通信装置
JP2016208193A (ja) * 2015-04-20 2016-12-08 富士通株式会社 基地局及び通信制御方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7843843B1 (en) * 2004-03-29 2010-11-30 Packeteer, Inc. Adaptive, application-aware selection of differntiated network services

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002077263A (ja) * 2000-09-04 2002-03-15 Matsushita Electric Ind Co Ltd 送受信方法
JP2008301309A (ja) * 2007-06-01 2008-12-11 Panasonic Corp 符号化レート制御方法、符号化レートを制御する伝送装置、プログラム記憶媒体及び集積回路
JP2011077670A (ja) * 2009-09-29 2011-04-14 Nec Personal Products Co Ltd データ通信装置、データ通信システム、データ通信方法およびプログラム
JP2011250223A (ja) * 2010-05-28 2011-12-08 Nec Corp ゲートウェイ装置およびゲートウェイ装置におけるパケットバッファ管理方法
JP2013027007A (ja) * 2011-07-26 2013-02-04 Hitachi Ltd 通信装置
JP2016208193A (ja) * 2015-04-20 2016-12-08 富士通株式会社 基地局及び通信制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ITOH NOBUHIKO ET AL.: "Performance Evaluation of Proxy-based TCP in Ad Hoc Networks", IEICE TECHNICAL REPORT, vol. 107, no. 311, 2007, pages 53 - 57, ISSN: 0913-5685 *

Also Published As

Publication number Publication date
TWI748177B (zh) 2021-12-01
JPWO2019203209A1 (ja) 2021-04-22
JP6954460B2 (ja) 2021-10-27
TW201944803A (zh) 2019-11-16
US20210168219A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
AU2019248314B2 (en) Data processing method and apparatus
US8014287B2 (en) Communications apparatus
EP3026958A1 (en) Method for coordinated multi-stream transmission of data, and enb
US8730813B2 (en) Apparatus for performing packet-shaping on a packet flow
US9167473B2 (en) Communication processing method, apparatus and gateway device
WO2013029521A1 (zh) 用于数据传输的方法、分流点设备、用户终端和系统
CN108391289B (zh) 一种拥塞控制方法和基站
WO2018218957A1 (zh) 一种流量控制方法、设备及系统
WO2014069642A1 (ja) 通信装置、送信データ出力制御方法、及びそのプログラム
Wallace et al. Concurrent multipath transfer using SCTP: Modelling and congestion window management
WO2014139434A1 (en) System and method for compressing data associated with a buffer
US20170099229A1 (en) Relay device and relay method
JP2004304806A (ja) 通信システム内のフロー制御のための方法
JPWO2019244966A1 (ja) 通信装置、通信方法及びプログラム
WO2007079640A1 (fr) Procédé de contrôle de congestion pour l'interface inverse entre la station de base et le contrôleur de station de base, dispositif et station de base d'émetteur/récepteur correspondants
JP2011176693A (ja) 移動体無線通信装置、tcpフロー制御装置及びその方法
WO2019203209A1 (ja) 中継装置、データ中継方法及びプログラム
WO2023087145A1 (en) Methods and apparatuses for pdcp reordering management
WO2022165447A2 (en) Methods and apparatus for communications over data radio bearer
JP6223942B2 (ja) 無線通信環境に応じてアグリゲーション量を変更可能な無線通信装置、無線通信プログラム及び方法
CN102340508A (zh) 一种数据的传输方法和设备
JP2002112304A (ja) ハンドオーバ予測通信システム
JP7463624B2 (ja) フロー制御のための方法及び装置
JP5371112B2 (ja) 無線トラヒックの制御装置
JP6544353B2 (ja) 送信データ量制御装置、制御システム、制御方法および制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19789473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020514384

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19789473

Country of ref document: EP

Kind code of ref document: A1