WO2019203083A1 - Heat sink, method for using heat sink, and air conditioning device - Google Patents
Heat sink, method for using heat sink, and air conditioning device Download PDFInfo
- Publication number
- WO2019203083A1 WO2019203083A1 PCT/JP2019/015570 JP2019015570W WO2019203083A1 WO 2019203083 A1 WO2019203083 A1 WO 2019203083A1 JP 2019015570 W JP2019015570 W JP 2019015570W WO 2019203083 A1 WO2019203083 A1 WO 2019203083A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat sink
- groove
- main body
- fin
- heat
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/20—Electric components for separate outdoor units
- F24F1/24—Cooling of electric components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
Definitions
- the present invention relates to a heat sink, a method of using the heat sink, and an air conditioner.
- Some outdoor units of an air conditioner include an inverter that drives a compressor composed of semiconductor components. Since semiconductor components generate heat when they operate, they may become hot and fail. Therefore, in order to prevent failure of the semiconductor component, a method of radiating or cooling the semiconductor component is sometimes adopted for the outdoor unit. For example, a method in which a semiconductor component is air-cooled by mounting a heat sink as a heat radiating / cooling unit on the semiconductor component and applying a wind generated by a fan to the heat sink may be employed. Moreover, a method of cooling a semiconductor component may be employed by circulating a part of the refrigerant used for heat exchange of the air conditioner through a pipe in the heat sink (for example, Patent Document 1).
- the cooling method by air cooling has a problem that a conventional outdoor unit fan has insufficient cooling capacity, and as a result, a dedicated fan is additionally provided.
- the cooling method using the refrigerant shares the refrigerant of the air conditioner with the heat sink, and thus has a problem that the cooling capacity of the air conditioner is affected.
- it has been proposed to cool semiconductor components with a heat sink combining air cooling and refrigerant cooling for example, Patent Document 2).
- Patent Document 2 By using such a heat sink, the cooling capacity of the heat sink is improved. That is, the heat sink which has a small influence on the cooling capacity of the air conditioner and can share the fan of the conventional outdoor unit can be obtained. Also, the size of the heat sink itself can be reduced.
- the heat sink described in Patent Document 1 has two metal plates overlapped and connected. And the surface which mounts the to-be-cooled components of one metal plate and the surface which joins two metal plates mutually are parallel. For this reason, when a fin is provided on the other metal plate of the heat sink described in Patent Document 1, a joint surface between one metal plate and the other metal plate between the component to be cooled and the tip of the fin. Will exist. Due to the contact thermal resistance of the joint surface, the thermal resistance from the part to be cooled to the tip of the fin is increased. As a result, heat conduction in the heat sink is hindered, resulting in a problem that the cooling capacity of the heat sink is reduced.
- the object of the present invention is to solve the above problems, to obtain a heat sink that prevents a decrease in cooling capacity and is less likely to cause uneven cooling.
- a heat sink includes a first main body having a first surface provided with a first groove, a first fin provided on one side of the first main body, and a first fin.
- a second main body having a second surface adjacent to the first surface, and a second fin provided on the surface of the second main body on the one surface side.
- the second main body is provided with a second groove on the second surface that extends in the direction in which the first groove extends and faces the first groove.
- the heat sink is provided with the refrigerant
- the first main body has a first surface
- the second main body has a second surface adjacent to the first surface.
- the first main body and the second main body impede heat conduction from the side of one surface where the first fin and the second fin are provided toward the other side opposite thereto.
- the contact thermal resistance is not increased by the joint surface. Accordingly, when the component to be cooled is arranged on the other surface side, the thermal resistance from the other surface side to the one surface side where the first fin and the second fin are provided is small. Thereby, the heat conduction from the component to be cooled to the first fin and the second fin is hardly hindered. As a result, the heat sink has a high cooling capacity.
- the first groove is provided on the first surface
- the second groove extends in the direction in which the first groove extends
- the second groove facing the first groove is provided on the second surface.
- a refrigerant pipe is provided between the first groove and the second groove.
- FIG. 1 is a perspective view of a heat sink according to Embodiment 1.
- FIG. Sectional drawing of the two partial products with which the heat sink concerning Embodiment 1 is provided Sectional drawing of the heat sink concerning Embodiment 1
- Sectional drawing of the three partial products of the modification of the heat sink concerning Embodiment 1 Sectional drawing of the modification of the heat sink which concerns on Embodiment 1.
- FIG. Sectional drawing of the heat sink concerning Embodiment 2 Sectional drawing of the heat sink concerning Embodiment 3
- the perspective view of the outdoor unit of the air conditioning apparatus which concerns on Embodiment 4.
- FIG. The perspective view of the electrical component box with which the outdoor unit of the air conditioning apparatus which concerns on Embodiment 4 is provided.
- Sectional drawing of the electrical component box with which the outdoor unit of the air conditioning apparatus which concerns on Embodiment 4 Sectional drawing of another modification of the heat sink which concerns on Embodiment 1.
- FIG. 1 is a perspective view of a heat sink 1 according to the first embodiment.
- FIG. 2 is a cross-sectional view of two partial products 2a and 2b provided in the heat sink 1 according to the first embodiment.
- FIG. 3 is a cross-sectional view of the heat sink 1 according to the first embodiment.
- FIG. 3 shows a cross section taken along the line III-III shown in FIG.
- the heat sink 1 includes partial parts 2 a and 2 b.
- the partial products 2a and 2b are manufactured by extrusion molding in which the vertical direction in FIG. For this reason, the partial products 2a and 2b have a fixed shape in a cross section perpendicular to the extrusion direction.
- FIGS. 2 and 3 illustrating the cross sections of the partial products 2a and 2b perpendicular to the extrusion direction. 4 to 7 described later also show the same cross section as FIG. 2 and FIG.
- the partial product 2a includes a main body 3a having a rectangular shape in cross section and a plurality of flat fins 4a.
- the main body 3a is formed in a rectangular shape in sectional view.
- a plurality of fins 4a are provided on one surface side of the main body 3a, that is, on the upper surface side of the main body 3a.
- a groove 5a is formed on the right side surface 9a of the main body 3a in order to arrange the cylindrical refrigerant pipe 8.
- On the right side surface 9a a connecting concave portion 6a and a connecting convex portion 7a are formed.
- the main body 3a is also referred to as a first main body
- the right side surface 9a is also referred to as a first surface.
- the groove 5a is also referred to as a first groove
- the connecting recess 6a and the connecting protrusion 7a are also simply referred to as a recess and a protrusion.
- the groove 5a is formed in a semicircular shape in sectional view. And the groove
- the connecting recess 6a is recessed from the right side surface 9a to the inside of the main body 3a.
- the cross-sectional shape is a bowl-like shape that is curved toward the front end with the front end facing the back side.
- the connecting recess 6a extends in the same direction as the groove 5a while maintaining its cross-sectional shape.
- the connection recessed part 6a is arrange
- a connecting convex portion 7a is disposed below the groove 5a.
- the connecting convex portion 7a protrudes from the right side surface 9a to the outside of the main body 3a.
- the cross-sectional shape is a rectangular shape whose longitudinal direction is directed to the outside of the main body 3a.
- the connecting convex portion 7a extends in the same direction as the groove 5a while maintaining its cross-sectional shape.
- the connecting convex portion 7a has flexibility and is elastically deformable.
- the fin 4a is formed in the shape of a rectangular plate. And the short direction is turned up. Further, the longitudinal direction is directed from the front of FIG. 2 to the back, that is, in the same direction as the groove 5a.
- the fins 4a are arranged at a constant pitch in the left-right direction.
- the fin 4a at the rightmost end is provided at a position separated from the right side surface 9a by a half pitch.
- the fin 4a is integrally formed with the main body 3a by extrusion molding.
- the fin 4a is also referred to as a first fin.
- the partial product 2a includes the main body 3a and the plurality of fins 4a.
- the partial product 2b also includes a main body 3b having a rectangular shape in sectional view and a plurality of flat fins 4b.
- the main body 3b is formed in a rectangular shape in sectional view, like the main body 3a. Its size is the same as that of the main body 3a. Moreover, the several fin 4b is provided in the upper surface side of the main body 3b similarly to the main body 3a.
- a groove 5b for arranging the refrigerant pipe 8 is formed on the left side surface 9b.
- the connection recessed part 7b and the connection convex part 6b are formed in the left side surface 9b.
- the main body 3b is also referred to as a second main body, and the left side surface 9b is also referred to as a second surface.
- the groove 5b is also referred to as a second groove
- the connecting recess 7b and the connecting protrusion 6b are also simply referred to as a recess and a protrusion.
- the groove 5b has the same configuration except that it is symmetrical to the groove 5a formed in the main body 3a.
- the left side surface 9b of the main body 3b is formed in the same shape as the right side surface 9a in order to be able to contact the right side surface 9a of the main body 3a.
- the groove 5b faces the groove 5a when the left side surface 9b of the main body 3b is aligned with the right side surface 9a of the main body 3a.
- the groove 5b is connected to the inner wall of the groove 5a to form a refrigerant pipe cavity 80 having a circular shape in cross section.
- connection recess 7b and the connection protrusion 6b are symmetrical to the connection recess 6a and the connection protrusion 7a formed in the main body 3a, but the connection recess 7b and the connection protrusion The position of the portion 6b with respect to the groove 5b is different from the connecting concave portion 6a and the connecting convex portion 7a of the body 3a.
- the connecting recess 7b is disposed below the groove 5b. And the connection recessed part 7b is provided in the same position in the up-down direction as the connection convex part 7a of the main body 3a.
- the connecting convex portion 6b is disposed on the upper side of the groove 5b. The connecting convex portion 6b is provided at the same position in the vertical direction as the connecting concave portion 6a of the main body 3a.
- the fin 4b has the same configuration as the fin 4a except that the leftmost fin 4b is disposed at a half pitch distance from the left side surface 9b of the main body 3b.
- the fin 4b is integrally formed with the main body 3b by manufacturing the part 2b by extrusion molding.
- the fin 4b is also referred to as a second fin.
- the heat sink 1 is formed by connecting the partial products 2a and 2b in the left-right direction as shown in FIG. Specifically, the right side surface 9a of the main body 3a is in contact with the left side surface 9b of the main body 3b. Further, the connecting convex portion 7a of the main body 3a is press-fitted into the connecting concave portion 7b of the main body 3b. Further, the connecting convex portion 6b of the main body 3b is press-fitted into the connecting concave portion 6a of the main body 3a.
- the connecting convex portion 7a is elastically deformed into a bowl-like shape having a curved tip in a sectional view by press-fitting. Thereby, the connecting convex portion 7a is fitted in the connecting concave portion 7b. Further, the tip is locked to the curved inner wall of the connecting recess 7b. As a result, the main body 3a is connected to the main body 3b by the connecting convex portion 7a. Further, the connecting convex portion 7a maintains the connection between the main bodies 3a and 3b even when a force for separating the main bodies 3a and 3b from each other acts.
- the connecting projection 6b is elastically deformed into a bowl-like shape having a curved tip in a sectional view by press-fitting, and as a result, is fitted into the connecting recess 6a. ing. Further, the tip is locked to the curved inner wall of the connecting recess 6a.
- the convex part 6b for connection has connected the main body 3b to the main body 3a.
- the connection convex part 6b maintains the connection of the main bodies 3a and 3b in the same manner as the connection convex part 7a.
- the fins 4a and 4b the fin 4a at the rightmost end of the part 2a is arranged at a half pitch position from the right side 9a, and the fin 4b at the leftmost end of the part 2b is half pitch from the left side 9b. Since they are arranged at positions, they are arranged in the left-right direction at a constant pitch as a whole. As a result, the fins 4a and 4b are uniformly distributed on the upper surface side of the main bodies 3a and 3b, and radiate the heat of the main bodies 3a and 3b evenly.
- the inner walls of the grooves 5a and 5b are connected to each other by connecting the partial products 2a and 2b in the left-right direction.
- the grooves 5a and 5b form a refrigerant piping cavity 80 having a circular shape in cross section.
- a refrigerant pipe 8 having a cylindrical shape that fits into the refrigerant pipe cavity 80 is passed through the refrigerant pipe cavity 80.
- the refrigerant pipe 8 is fitted in the refrigerant pipe cavity 80.
- the heat sink 1 a component to be cooled, which is not shown, is attached to the lower surface on the side opposite to the upper surface side of the main bodies 3a and 3b having the fins 4a and 4b.
- the lower surface is referred to as a cooling surface 30.
- the component to be cooled has a flat portion that can contact the cooling surface 30, and the flat portion contacts the cooling surface 30.
- the heat of the component to be cooled is transmitted from the cooling surface 30 to the inside of the main bodies 3a and 3b.
- the main bodies 3a and 3b are integrally formed by extrusion molding.
- the main bodies 3a and 3b do not have a joint surface formed by joining two members inside.
- the main bodies 3a and 3b are integrally formed with the fins 4a and 4b by extrusion molding.
- the heat transmitted to the inside of the main bodies 3a and 3b is transmitted to the fins 4a and 4b without being affected by the joining location where the parts are joined. In other words, heat is transferred to the fins 4a and 4b without being affected by the contact thermal resistance.
- the main bodies 3a and 3b and the fins 4a and 4b conduct heat with high heat conduction efficiency.
- the heat transmitted to the fins 4a and 4b is blown to the fins 4a and 4b, the heat is radiated to the air hitting the fins 4a and 4b.
- the fins 4a and 4b are uniformly arranged on the entire upper surface side of the main bodies 3a and 3b.
- the location where the fins 4a and 4b are unevenly distributed does not exist in the upper surface side of the main bodies 3a and 3b. For this reason, the air volume which passes between the fins 4a and 4b is uniform as a whole. As a result, heat is dissipated uniformly from the entire fins 4a and 4b.
- the heat transferred from the cooling surface 30 to the inside of the main bodies 3a and 3b is also transferred from the cooling surface 30 to the inner walls of the grooves 5a and 5b.
- the refrigerant pipe 8 is fitted to the inner walls of the grooves 5a and 5b.
- coolant piping 8 is contacting over the perimeter of the inner wall of groove
- the contact thermal resistance between the inner walls of the grooves 5a and 5b and the refrigerant pipe 8 is small.
- the heat transferred to the inside of the main bodies 3a and 3b is transferred to the refrigerant pipe 8 with high thermal conductivity through the inner walls of the grooves 5a and 5b. Thereby, the heat is exchanged with the refrigerant circulating in the refrigerant pipe 8 with high efficiency.
- the heat sink 1 transmits the heat of the component to be cooled to the fins 4a, 4b or the refrigerant pipe 8 with high thermal conductivity. For this reason, the heat sink 1 is easy to suppress the temperature rise of the component to be cooled. In addition, the cooling capacity is high. Furthermore, the heat sink 1 radiates heat uniformly from the entire fins 4a and 4b. For this reason, uneven cooling is unlikely to occur.
- the main body 3a has the right side surface 9a
- the main body 3b has the left side surface 9b adjacent to the right side surface 9a.
- the joint surface joining the right side surface 9a and the left side surface 9b extends in the vertical direction.
- a groove 5a is provided on the right side surface 9a, and a groove 5b facing the groove 5a is provided on the left side surface 9b.
- coolant piping 8 is arrange
- the fins 4a and 4b can be uniformly arranged on the upper surfaces of the main bodies 3a and 3b. Thereby, in the heat sink 1, heat can be uniformly radiated by the fins 4a and 4b, and uneven cooling is less likely to occur.
- the heat sink 1 is formed of two partial products 2a and 2b, but the heat sink 1a may be formed of three or more partial products.
- FIG. 4 is a component configuration diagram of a modified example of the heat sink 1 according to the first embodiment.
- FIG. 5 is a cross-sectional view of the modification.
- the refrigerant pipe 8 is omitted for easy understanding.
- the heat sink 1a includes partial parts 2a, 2b, and 2c as shown in FIGS.
- the partial products 2a and 2b have the same configuration as the partial products 2a and 2b described in the first embodiment.
- a partial product 2c is arranged between the partial products 2a and 2b.
- the partial product 2c has a main body 3c and a plurality of fins 4c.
- the left side surface 9c of the main body 3c is provided with a connecting convex portion 6b and a connecting concave portion 7c having the same configuration as the connecting convex portion 6b and the connecting concave portion 7b.
- channel 5b which the partial goods 2b have is provided.
- the connecting convex portion 6c is press-fitted into the connecting concave portion 6a of the partial product 2a and is fitted to the connecting concave portion 6a. Further, the connecting convex portion 7a of the partial product 2a is press-fitted into the connecting concave portion 7c, and the connecting convex portion 7a is fitted into the connecting concave portion 7c. Thereby, the left side surface 9c of the partial product 2c is matched with the right side surface 9a of the partial product 2a, and the partial product 2c is connected with the partial product 2a. Furthermore, the groove 5c of the partial product 2c is opposed to the groove 5a of the partial product 2a to form a refrigerant piping cavity 80. The refrigerant pipe 8 is passed through the refrigerant pipe cavity 80.
- connection concave portion 6a of the partial product 2a On the other hand, on the right side surface 9d of the partial product 2c, as shown in FIG. 4, the connection concave portion 6a of the partial product 2a, the connection concave portion 6d having the same configuration as the connection convex portion 7a, and the connection convex portion are provided. 7d is provided. Moreover, the groove
- the connecting convex portion 6b of the partial product 2b is press-fitted into the connecting concave portion 6d, and the connecting convex portion 6b is fitted into the connecting concave portion 6d.
- the connecting convex portion 7d is press-fitted into the connecting concave portion 7b of the partial product 2b, and the connecting convex portion 7d is fitted into the connecting concave portion 7b.
- the right side surface 9d of the partial product 2c is aligned with the left side surface 9b of the partial product 2b, and the partial product 2c is connected to the partial product 2b.
- the groove 5d is opposed to the groove 5b of the partial product 2b, thereby forming a refrigerant pipe cavity 80 through which the refrigerant pipe 8 is passed.
- the heat sink 1 may be formed by connecting the three partial products 2a, 2b, and 2c.
- the refrigerant pipe 8 may be a single pipe bent into a U shape. In that case, the refrigerant pipe 8 is preferably passed through the refrigerant pipe cavity 80 formed by the grooves 5c and 5a and the refrigerant pipe cavity 80 formed by the grooves 5d and 5b. Further, heat conduction grease may be applied to the right side surface 9a of the partial product 2a, the left side surface 9c, the right side surface 9d of the partial product 2c, and the left side surface 9b of the partial product 2b in order to reduce thermal resistance.
- Embodiment 2 In the modification according to the first embodiment shown in FIG. 4 and FIG. 5, the heat sink 1a has connecting convex portions 6c, 7d and connecting concave portions 7c, 6d on the left side surface 9c and the right side surface 9d of the main body 3c.
- the provided partial product 2c is provided.
- the heat sink 1b according to the second embodiment is manufactured by combining a plurality of partial products 2d having the same configuration as the partial product 2c.
- the configuration of the heat sink 1b according to the second embodiment will be described with reference to FIG.
- FIG. 6 is a cross-sectional view of the heat sink 1b according to the second embodiment. As shown in FIG. 6, the heat sink 1b includes a plurality of pieces 2d having the same shape.
- Each partial product 2d has the same configuration as the partial product 2c described above. That is, each of the partial products 2d has a main body having the same configuration as the main body 3c of the partial product 2c and a plurality of fins having the same configuration as the fins 4c of the partial product 2c.
- the left side surface 9e of the main body of the partial product 2c is provided with a groove 5c, a connecting convex portion 6c, a connecting convex portion 6e, and a connecting concave portion 7e having the same structure as the connecting concave portion 7c. It has been.
- the right side surface 9f of the main body of the partial product 2c is provided with the groove 5d, the concave portion 6d for connection, the groove 5f having the same configuration as the convex portion 7d for connection, the concave portion 6f for connection, and the convex portion 7f for connection. It has been.
- the left side surface 9e of one partial product 2d is aligned with the right side surface 9f of another partial product 2d. Further, the connecting convex portion 6e on the left side surface 9e is press-fitted and fitted into the connecting concave portion 6f on the right side surface 9f. The connecting convex portion 7f on the right side surface 9f is press-fitted into the connecting concave portion 7e on the left side surface 9e.
- one partial product 2d of the plurality of partial products 2d is adjacent to another partial product 2d and connected to the other partial product 2d.
- this direction is referred to as an adjacent direction in this specification.
- the groove 5e on the left side surface 9e of one partial product 2d is opposed to the groove 5f on the right side surface 9f of another partial product 2d to form a refrigerant piping space 80.
- the refrigerant pipe 8 is passed through the refrigerant pipe space 80.
- the heat sink 1b according to the second embodiment is formed by connecting a plurality of pieces 2d having the same configuration. Since the heat sink 1b can be manufactured by manufacturing a plurality of parts 2d having the same configuration, it is easy to manufacture the heat sink 1b. Moreover, the manufacturing cost is low. For example, when the partial product 2d is manufactured by extrusion molding, since only one type of mold needs to be manufactured, the manufacturing cost and the management cost of the mold can be reduced and the manufacturing cost can be reduced.
- the heat sink 1b can be manufactured in accordance with the size of the component to be cooled by increasing or decreasing the number of the partial parts 2d to be connected, the manufacturing cost of the heat sink 1b is hardly increased even if the size of the component to be cooled is changed. .
- Embodiment 3 In the heat sink 1b according to Embodiment 2, the refrigerant pipe 8 is passed through all the refrigerant pipe spaces 80, but the present invention is not limited to this. In the heat sink 1c according to the third embodiment, the refrigerant pipe 8 is passed through some of the refrigerant pipe spaces 80 among the plurality of refrigerant pipe spaces 80 in accordance with the position of the component to be cooled and the amount of heat generated. .
- the structure of the heat sink 1c according to Embodiment 3 will be described with reference to FIG.
- FIG. 7 is a cross-sectional view of the heat sink 1c according to the third embodiment.
- the same reference numerals as those in FIG. 6 are omitted.
- the heat sink 1c includes a plurality of partial products 2d described in the second embodiment.
- the plurality of partial products 2d are connected by the method described in the modification of the first embodiment.
- coolant piping is formed between the adjacent partial products 2d.
- the heat sink 1c has a plurality of refrigerant piping spaces 80.
- Heat generating members 40 and 41 which are parts to be cooled, are attached to the lower surface of the heat sink 1c.
- the heat generating member 40 generates a larger amount of heat than the heat generating member 41.
- the heat generating member 40 needs to be cooled more than the heat generating member 41. Therefore, in the heat sink 1c, the refrigerant pipe 8 is passed only through the refrigerant pipe space 80 in the vicinity of the heat generating member 40 in order to further cool the heat generating member 40. That is, the refrigerant pipe 8 is passed only through the refrigerant pipe space 80 located on the heat generating member 40. On the other hand, the refrigerant pipe 8 is not passed through the refrigerant pipe space 80 located above the heat generating member 41.
- the heat generating member 40 with a large calorific value can be cooled with high efficiency. Furthermore, the heat generating member 41 having a small heat generation amount is not easily overcooled. As a result, the heat generating member 41 is difficult to condense.
- the refrigerant pipe 8 is passed through a part of the plurality of refrigerant pipe spaces 80 according to the distribution of heat generation of the parts to be cooled. For this reason, the heat sink 1c has high cooling efficiency.
- Embodiment 4 The heat sink 1 described in the first embodiment may be used for the outdoor unit 21 of the air conditioner.
- the heat sink 1 is used for the outdoor unit 21 of the air-conditioning apparatus according to Embodiment 4.
- the configuration of the outdoor unit 21 of the air-conditioning apparatus according to Embodiment 4 will be described with reference to FIGS.
- FIG. 8 is a perspective view of the outdoor unit of the air-conditioning apparatus according to Embodiment 4.
- FIG. 9 is a perspective view of the electrical component box 12 included in the outdoor unit.
- FIG. 10 is a cross-sectional view of the electrical component box 12.
- the air conditioner includes an indoor unit (not shown) and an outdoor unit 21 shown in FIG.
- the outdoor unit 21 is connected to the indoor unit through a connection pipe, and the refrigerant circulates between the outdoor unit 21 and the indoor unit through the connection pipe.
- the outdoor unit 21 is connected to the indoor unit by an electric wire wired in the connection pipe, and power is supplied from the indoor unit.
- the outdoor unit 21 is composed of three parts arranged in the order of the air blowing unit 18, the heat exchange unit 19, and the machine unit 20 from the top.
- the air blowing unit 18 is disposed on the housing 22 of the outdoor unit 21, and the heat exchange unit 19 and the machine unit 20 are accommodated inside the housing 22.
- the air blower 18 is disposed on an opening (not shown) formed on the top plate of the housing 22.
- a fan 10 that sucks air in the housing 22 is provided inside the blower 18.
- an air inlet 13 is provided at the lower part of the side surface of the casing of the outdoor unit 21. For this reason, the air blower 18 takes in air from the air inlet 13 into the housing 22 by rotating the fan 10 and sucks in the air in the housing 22, and the air that has been taken in is not shown in the housing 22. Exhaust through the opening.
- the heat exchange unit 19 includes a heat exchanger 11 (not shown) having a refrigerant pipe through which a refrigerant flows and a plurality of thin metal plates (not shown).
- the heat exchanger 11 is disposed inside the side wall of the housing 22 of the outdoor unit 21. For this reason, in the heat exchanger 11, when the fan 10 rotates and air is blown, the blown air hits, and the air and the refrigerant in the refrigerant pipe exchange heat. Here, the refrigerant transports heat between an indoor unit (not shown) that forms the refrigeration cycle and the outdoor unit 21. Further, since the air conditioner operates in a plurality of operation modes, the relationship between the temperature of the refrigerant in the refrigerant pipe and the ambient environment temperature of the outdoor unit 21 varies depending on the operation mode.
- the temperature of the refrigerant is cooler than the air around the outdoor unit 21, and the cooling mode mainly used in summer in order to cool the room. Then, the temperature of the refrigerant is warmer than the air around the outdoor unit 21. For this reason, the heat exchanger 11 absorbs heat in the heating mode and dissipates heat in the cooling mode when wind generated by the rotation of the fan 10 is applied. Thus, the heat exchanger 11 exchanges heat through an indoor unit (not shown) and the refrigerant.
- the machine unit 20 includes a compressor, an accumulator, and the like (not shown).
- the compressor is driven by an electronic component 14 having an inverter circuit 17. Since the electronic component 14 is composed of a semiconductor component, it often generates a large amount of heat, and some heat dissipation or cooling measures are required to use it safely without failure. Therefore, the mechanical unit 20 includes the electronic component 14 and the electrical component box 12 provided with the heat sink 1 described in the first embodiment.
- the mechanical unit 20 includes an electrical component box 12 formed in a rectangular parallelepiped shape.
- An opening (not shown) is formed on one surface of the electrical component box 12.
- the heat sink 1 is disposed on the surface of the electrical component box 12 where the opening is formed.
- the heat sink 1 is fixed to the electrical component box 12 with fastening members such as screws and bolts.
- the heat sink 1 is in contact with an electronic component 14 that is a component to be cooled in the electrical component box 12 through the opening.
- the heat sink 1 includes the refrigerant pipe 8 as described in the first embodiment.
- the refrigerant pipe 8 circulates through the refrigerant pipe of the heat exchanger 11 and a part of the refrigerant circulating in the outdoor unit 21 and an indoor unit (not shown) is diverted.
- the temperature of the refrigerant is lower than the temperature of the electronic component 14 that is the component to be cooled.
- the heat sink 1 since the heat sink 1 is in contact with the electronic component 14, the heat of the electronic component 14 is transmitted to the main bodies 3 a and 3 b included in the heat sink 1 and further transmitted to the refrigerant pipe 8.
- the heat transferred to the refrigerant pipe 8 is conducted from the refrigerant pipe 8 to the refrigerant. Thereby, the heat of the electronic component 14 is radiated to the refrigerant. As a result, the electronic component 14 is cooled.
- the electrical component box 12 is located below the heat exchanger 11 and is away from the air blower 18, the wind does not sufficiently flow through the heat sink 1 as it is. Therefore, in order to supply wind to the heat sink 1, the electrical component box 12 is provided with a duct 15 that accommodates the heat sink 1 therein.
- the outdoor unit 21 of the air-conditioning apparatus according to Embodiment 4 includes the heat sink 1 according to Embodiment 1 that cools the electronic component 14 that drives the compressor. Hard to overheat and hard to break down. As a result, the outdoor unit 21 can operate stably.
- the heat sink 1 according to the first embodiment is applied to the outdoor unit 21 of the air conditioner.
- the outdoor unit 21 includes the heat sink 1a according to the modification of the first embodiment and The heat sinks 1b and 1c according to Embodiment 2-3 may also be applied.
- Embodiment 1-4 the fins 4a-4c are integrally formed with the main bodies 3a-3c.
- the present invention is not limited to this.
- FIG. 11 is a cross-sectional view of another modification of the heat sink 1 according to the first embodiment.
- the partial product 2e includes a main body 3a and a plurality of fins 4d formed separately from the main body 3a.
- the main body 3a has a plurality of projecting walls 31 that are arranged on the upper surface side at equal pitches in the left-right direction and in which a depression having a rectangular shape in cross section is formed at the center.
- the lower ends of the fins 4d are fitted in the recesses of the protruding wall 31.
- the plurality of fins 4d are thermally coupled to the main body 3a.
- the fins 4a-4c may be formed separately from the main bodies 3a-3c. In this case, the fins 4a-4c only need to be thermally coupled to the main bodies 3a-3c.
- the fins 4a-4c are arranged on the upper surfaces of the heat sinks 1 and 1a-1c.
- the direction in which the fins 4a-4c are arranged is arbitrary as long as the fins 4a-4c are provided on one side of the main body 3a-3c.
- the heat sinks 1 and 1a-1c may be used in a state where the fins 4a-4c are provided on one surface side of the main body 3a-3c and a component to be cooled is provided on the other surface side.
- the fins 4a-4c are arranged at an equal pitch, but the pitch of the fins 4a-4c is arbitrary.
- the number of fins 4a-4c is also arbitrary. In order to uniformly apply air to the entire plurality of fins 4a-4c, it is desirable that the fins 4a-4c have an equal pitch.
- the pitch of the fins 4a-4c varies depending on the position of the component to be cooled and the heat distribution. May be.
- the fins 4a-4c and the grooves 5a-5f extend in the same direction.
- the fins 4a-4c and the refrigerant pipe 8 extend in the same direction.
- the present invention is not limited to this.
- the relationship between the extending direction of the fins 4a-4c and the extending direction of the grooves 5a-5f and the refrigerant pipe 8 is arbitrary. Since the fins 4a-4c are integrally formed with the main body 3a-3c by extrusion molding, the fins 4a-4c may be extended in the extending direction of the grooves 5a-5f and the refrigerant pipe 8. However, by forming by other manufacturing methods, the fins 5a-5f and the refrigerant 4 You may extend
- each of the fins 4a-4c may be a plurality of pin members.
- the pin members may be arranged in the extending direction of the grooves 5a-5f and the refrigerant pipe 8.
- the grooves 5a-5f are semicircular in cross section, and as a result, the refrigerant pipe space 80 is circular in cross section.
- the present invention is not limited to this.
- the shape of the grooves 5a-5f is arbitrary as long as it can be passed through the refrigerant piping space 80 to be formed.
- the grooves 5a-5f may have a shape obtained by dividing the flat into two in the cross-sectional view.
- the inner walls of the grooves 5a-5f are preferably in contact with the entire circumference of the refrigerant pipe 8 in a cross section in order to facilitate heat conduction.
- the inner walls of the grooves 5a-5f are preferably thermally coupled to the refrigerant pipe 8.
- the partial products 2a-2e and the refrigerant pipe 8 are preferably thermally coupled.
- the part 2a-2e has fine irregularities due to manufacturing variations, scratches, surface roughness, etc., and the refrigerant pipe 8 also has fine irregularities to prevent point contact as much as possible.
- a heat conducting member for example, heat conduction grease
- the component 2a-2e is connected by the connecting convex portions 6b, 6c, 6e, 7a, 7d, 7f and the connecting concave portions 6a, 6d, 6f, 7b, 7c, 7e.
- Heat sinks 1 and 1a-1c are formed.
- the means for connecting the partial products 2a-2e is arbitrary.
- the partial products 2a-2e may be joined using an adhesive, a brazing material, or the like.
- the connecting projections 6b, 6c, 6e, 7a, 7d, and 7f and the connecting recesses 6a, 6d, 6f, 7b, 7c, and 7e may not be formed on the main body 3a-3c.
- the number of sets is limited. There is no. Further, the combination of the connecting convex portions 6b, 6c, 6e, 7a, 7d, 7f and the connecting concave portions 6a, 6d, 6f, 7b, 7c, 7e is not necessarily limited to the connecting convex portion 6b.
- 6c, 6e, 7a, 7d, 7f and the connecting recesses 6a, 6d, 6f, 7b, 7c, 7e are not necessarily formed, and the connecting recesses 6a, 6d, 6f, 7b, Only the projections 6b, 6c, 6e, 7a, 7d, and 7f may be formed on the other partial product 2a-2e only for 7c and 7e.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Inverter Devices (AREA)
- Other Air-Conditioning Systems (AREA)
Abstract
A heat sink (1) is provided with: a body (3a) having a first surface in which a first groove is provided; a fin (4a) provided on one surface side of the body (3a); a body (3b) which has a second surface adjacent to the first surface and has, formed in the second surface, a second groove extending in the direction in which the first groove extends and facing the first groove; a fin (4b) provided on one surface side of the body (3b); and refrigerant piping (8) provided between the first groove and the second groove.
Description
本発明は、ヒートシンク、ヒートシンクの使用方法及び空気調和装置に関する。
The present invention relates to a heat sink, a method of using the heat sink, and an air conditioner.
空気調和装置の室外機には、圧縮機を駆動するインバータが半導体部品で構成されているものがある。半導体部品は、動作すると発熱するため、高温になって故障してしまうことがある。そこで、半導体部品の故障を防ぐため、半導体部品を放熱または冷却する方法が室外機に採用されることがある。例えば、半導体部品に放熱・冷却手段であるヒートシンクを装着し、そのヒートシンクにファンで発生させた風を当てることによって、半導体部品を空冷する方法が採用されることがある。また、空気調和装置の熱交換に使用する冷媒の一部をヒートシンク内の配管に流通させることによって、半導体部品を冷却する方法が採用されることがある(例えば特許文献1)。
Some outdoor units of an air conditioner include an inverter that drives a compressor composed of semiconductor components. Since semiconductor components generate heat when they operate, they may become hot and fail. Therefore, in order to prevent failure of the semiconductor component, a method of radiating or cooling the semiconductor component is sometimes adopted for the outdoor unit. For example, a method in which a semiconductor component is air-cooled by mounting a heat sink as a heat radiating / cooling unit on the semiconductor component and applying a wind generated by a fan to the heat sink may be employed. Moreover, a method of cooling a semiconductor component may be employed by circulating a part of the refrigerant used for heat exchange of the air conditioner through a pipe in the heat sink (for example, Patent Document 1).
空冷による冷却方法は、従来の室外機のファンでは冷却能力が足りず、その結果、専用のファンをさらに設けることになるという問題がある。一方、冷媒による冷却方法は、空気調和装置の冷媒をヒートシンクと共用するため、空気調和装置の冷却能力に影響が及んでしまうという問題がある。それらの問題を解決するために、空冷と冷媒冷却を組み合わせたヒートシンクで半導体部品を冷却することが提案されている(例えば特許文献2)。このようなヒートシンクを用いることによって、ヒートシンクの冷却能力が向上する。すなわち、空気調和装置の冷却能力に対する影響が小さく、従来の室外機のファンを共用できるヒートシンクが得られる。また、ヒートシンク自体のサイズも小型化することが出来る。
The cooling method by air cooling has a problem that a conventional outdoor unit fan has insufficient cooling capacity, and as a result, a dedicated fan is additionally provided. On the other hand, the cooling method using the refrigerant shares the refrigerant of the air conditioner with the heat sink, and thus has a problem that the cooling capacity of the air conditioner is affected. In order to solve these problems, it has been proposed to cool semiconductor components with a heat sink combining air cooling and refrigerant cooling (for example, Patent Document 2). By using such a heat sink, the cooling capacity of the heat sink is improved. That is, the heat sink which has a small influence on the cooling capacity of the air conditioner and can share the fan of the conventional outdoor unit can be obtained. Also, the size of the heat sink itself can be reduced.
しかしながら、特許文献1に記載のヒートシンクは、二枚の金属プレートが重ね合わされて連結されている。そして、一方の金属プレートの被冷却部品を装着する面と、二枚の金属プレートを互いに接合する面と、が平行である。このため、特許文献1に記載のヒートシンクのもう一方の金属プレートにフィンを設けた場合、被冷却部品からフィンの先端までの間に、一方の金属プレートと他方の金属プレートとの間の接合面が存在してしまう。この接合面の接触熱抵抗により、被冷却部品からフィンの先端までの熱抵抗が大きくなってしまう。その結果、ヒートシンク内の熱伝導が阻害され、ヒートシンクの冷却能力が低下するという問題が生じてしまう。
However, the heat sink described in Patent Document 1 has two metal plates overlapped and connected. And the surface which mounts the to-be-cooled components of one metal plate and the surface which joins two metal plates mutually are parallel. For this reason, when a fin is provided on the other metal plate of the heat sink described in Patent Document 1, a joint surface between one metal plate and the other metal plate between the component to be cooled and the tip of the fin. Will exist. Due to the contact thermal resistance of the joint surface, the thermal resistance from the part to be cooled to the tip of the fin is increased. As a result, heat conduction in the heat sink is hindered, resulting in a problem that the cooling capacity of the heat sink is reduced.
また、特許文献2に記載のヒートシンクには、フィンを設置する面上に、冷媒配管を設置するスペースを設ける必要がある。そのスペースには、フィンを設置することができない。これにより、フィンを設置する面でフィンがある箇所とない箇所が混在してしまう。その結果、フィンがない箇所が原因となり、フィン間を通り抜ける風量が不均一になりやすい。これにより、冷却面が不均一に冷却される、いわゆる冷却ムラが発生するという問題がある。
In the heat sink described in Patent Document 2, it is necessary to provide a space for installing the refrigerant pipe on the surface on which the fin is installed. Fins cannot be installed in that space. Thereby, in the surface which installs a fin, the location with a fin and the location which does not exist will be mixed. As a result, the location where there are no fins is the cause, and the amount of air passing between the fins tends to be uneven. Thereby, there is a problem that so-called cooling unevenness occurs in which the cooling surface is cooled unevenly.
本発明の目的は上記課題を解決し、冷却能力の低下を防ぎ、また冷却ムラが発生しにくいヒートシンクを得ることである。
The object of the present invention is to solve the above problems, to obtain a heat sink that prevents a decrease in cooling capacity and is less likely to cause uneven cooling.
本発明に係るヒートシンクは、第1の溝が設けられた第1の面を有する第1の本体と、第1の本体の、一方の面の側に設けられた第1のフィンと、第1の面と隣接する第2の面を有する第2の本体と、第2の本体の、一方の面の側にある面の側に設けられた第2のフィンと、を備えている。第2の本体には、第2の面に、第1の溝が延伸する方向に延伸すると共に、第1の溝と対向する第2の溝が設けられている。また、ヒートシンクは、第1の溝と第2の溝の間に設けられた冷媒配管を備えている。
A heat sink according to the present invention includes a first main body having a first surface provided with a first groove, a first fin provided on one side of the first main body, and a first fin. A second main body having a second surface adjacent to the first surface, and a second fin provided on the surface of the second main body on the one surface side. The second main body is provided with a second groove on the second surface that extends in the direction in which the first groove extends and faces the first groove. Moreover, the heat sink is provided with the refrigerant | coolant piping provided between the 1st groove | channel and the 2nd groove | channel.
本発明に係るヒートシンクは、第1の本体が第1の面を有し、第2の本体が第1の面と隣接する第2の面を有する。このため、第1の本体と第2の本体には、第1のフィンと第2のフィンが設けられた一方の面の側からその反対の他方の面の側に向かって、熱伝導を阻害する接合面が存在しない。その結果、接合面によって接触熱抵抗が高まることが無い。したがって、他方の面の側に被冷却部品が配置された場合に、その他方の面の側から第1のフィンと第2のフィンが設けられた一方の面の側までの熱抵抗が小さい。これにより、被冷却部品から第1のフィンと第2のフィンへの熱伝導が阻害されにくい。その結果、ヒートシンクでは、冷却能力が高い。
In the heat sink according to the present invention, the first main body has a first surface, and the second main body has a second surface adjacent to the first surface. For this reason, the first main body and the second main body impede heat conduction from the side of one surface where the first fin and the second fin are provided toward the other side opposite thereto. There is no bonding surface to be used. As a result, the contact thermal resistance is not increased by the joint surface. Accordingly, when the component to be cooled is arranged on the other surface side, the thermal resistance from the other surface side to the one surface side where the first fin and the second fin are provided is small. Thereby, the heat conduction from the component to be cooled to the first fin and the second fin is hardly hindered. As a result, the heat sink has a high cooling capacity.
また、このヒートシンクでは、第1の面に第1の溝が設けられ、第2の面に、第1の溝が延伸する方向に延伸すると共に、第1の溝と対向する第2の溝が設けられている。そして、第1の溝と第2の溝の間に冷媒配管が設けられている。このため、第1の本体及び第2の本体の一方の面の側に冷媒配管を設置するスペースを設ける必要がない。その結果、このヒートシンクでは、第1の本体及び第2の本体の一方の面の側に、連続して第1のフィンと第2のフィンを設けることができる。これにより、第1のフィンと第2のフィンには、均一に風が当たることとなる。その結果、ヒートシンクでは、被冷却部品を他方の面の側に配置して冷却する際に、冷却ムラが発生しにくい。
In this heat sink, the first groove is provided on the first surface, the second groove extends in the direction in which the first groove extends, and the second groove facing the first groove is provided on the second surface. Is provided. A refrigerant pipe is provided between the first groove and the second groove. For this reason, it is not necessary to provide the space which installs refrigerant | coolant piping in the one surface side of a 1st main body and a 2nd main body. As a result, in this heat sink, the first fin and the second fin can be continuously provided on one surface side of the first main body and the second main body. As a result, the first fin and the second fin are uniformly blown by the wind. As a result, in the heat sink, when the component to be cooled is arranged and cooled on the other surface side, uneven cooling is less likely to occur.
実施の形態1
以下、本実施の形態に係るヒートシンク1の構成を図1-図5を用いて説明する。図1は、実施の形態1に係るヒートシンク1の斜視図である。図2は、実施の形態1に係るヒートシンク1が備える2個の部分品2a、2bの断面図である。図3は、実施の形態1に係るヒートシンク1の断面図である。なお、図3は、図1に示すIII-III断面線の断面を示している。Embodiment 1
Hereinafter, the configuration of theheat sink 1 according to the present embodiment will be described with reference to FIGS. FIG. 1 is a perspective view of a heat sink 1 according to the first embodiment. FIG. 2 is a cross-sectional view of two partial products 2a and 2b provided in the heat sink 1 according to the first embodiment. FIG. 3 is a cross-sectional view of the heat sink 1 according to the first embodiment. FIG. 3 shows a cross section taken along the line III-III shown in FIG.
以下、本実施の形態に係るヒートシンク1の構成を図1-図5を用いて説明する。図1は、実施の形態1に係るヒートシンク1の斜視図である。図2は、実施の形態1に係るヒートシンク1が備える2個の部分品2a、2bの断面図である。図3は、実施の形態1に係るヒートシンク1の断面図である。なお、図3は、図1に示すIII-III断面線の断面を示している。
Hereinafter, the configuration of the
ヒートシンク1は、図1に示すように、部分品2a、2bを備えている。部分品2a、2bは、図1の上下方向を押しだし方向とする押し出し成型により製造されている。このため、部分品2a、2bは、押し出し方向に垂直な断面で一定の形状を有する。以下、部分品2a、2bがこの垂直な断面で一定の形状であることから、部分品2a、2bの、押し出し方向に垂直な断面を図示する図2及び図3を用いて説明する。なお、後述する図4-図7も、図2及び図3と同じ断面を図示している。
As shown in FIG. 1, the heat sink 1 includes partial parts 2 a and 2 b. The partial products 2a and 2b are manufactured by extrusion molding in which the vertical direction in FIG. For this reason, the partial products 2a and 2b have a fixed shape in a cross section perpendicular to the extrusion direction. Hereinafter, since the partial products 2a and 2b have a fixed shape in the vertical cross section, description will be made with reference to FIGS. 2 and 3 illustrating the cross sections of the partial products 2a and 2b perpendicular to the extrusion direction. 4 to 7 described later also show the same cross section as FIG. 2 and FIG.
部分品2aは、図2に示すように、断面視矩形状の本体3aと、複数の平板状のフィン4aと、を有している。
As shown in FIG. 2, the partial product 2a includes a main body 3a having a rectangular shape in cross section and a plurality of flat fins 4a.
本体3aは、断面視矩形状に形成されている。本体3aの一方の面の側、すなわち本体3aの上面側には、複数のフィン4aが設けられている。また、本体3aの右側面9aには、円筒形状の冷媒配管8を配置するため、溝5aが形成されている。右側面9aには、連結用凹部6aと連結用凸部7aが形成されている。
なお、本明細書では、本体3aを第1の本体ともいい、右側面9aを第1の面ともいう。また、溝5aを第1の溝ともいい、連結用凹部6aと連結用凸部7aのことを単に、凹部、凸部ともいう。 Themain body 3a is formed in a rectangular shape in sectional view. A plurality of fins 4a are provided on one surface side of the main body 3a, that is, on the upper surface side of the main body 3a. Further, a groove 5a is formed on the right side surface 9a of the main body 3a in order to arrange the cylindrical refrigerant pipe 8. On the right side surface 9a, a connecting concave portion 6a and a connecting convex portion 7a are formed.
In the present specification, themain body 3a is also referred to as a first main body, and the right side surface 9a is also referred to as a first surface. The groove 5a is also referred to as a first groove, and the connecting recess 6a and the connecting protrusion 7a are also simply referred to as a recess and a protrusion.
なお、本明細書では、本体3aを第1の本体ともいい、右側面9aを第1の面ともいう。また、溝5aを第1の溝ともいい、連結用凹部6aと連結用凸部7aのことを単に、凹部、凸部ともいう。 The
In the present specification, the
溝5aは、断面視半円状に形成されている。そして、溝5aは、押し出し成形時の押し出し方向に向かって延伸している。
The groove 5a is formed in a semicircular shape in sectional view. And the groove | channel 5a is extended | stretched toward the extrusion direction at the time of extrusion molding.
これに対して、連結用凹部6aは、右側面9aから本体3aの内側に窪んでいる。その断面形状は、奥側に先端を向け、その先端に向かうほど湾曲した鉤状の形状である。連結用凹部6aは、その断面形状のまま、溝5aと同方向に延伸している。そして、連結用凹部6aは、溝5aの上側に配置されている。溝5aの下側に、連結用凸部7aが配置されている。
In contrast, the connecting recess 6a is recessed from the right side surface 9a to the inside of the main body 3a. The cross-sectional shape is a bowl-like shape that is curved toward the front end with the front end facing the back side. The connecting recess 6a extends in the same direction as the groove 5a while maintaining its cross-sectional shape. And the connection recessed part 6a is arrange | positioned above the groove | channel 5a. A connecting convex portion 7a is disposed below the groove 5a.
連結用凸部7aは、右側面9aから本体3aの外側へ突出している。その断面形状は、本体3aの外側へ長手方向を向けた矩形の形状である。連結用凸部7aは、その断面形状のまま、溝5aと同方向に延伸している。連結用凸部7aは、可撓性を有し、弾性変形可能である。
The connecting convex portion 7a protrudes from the right side surface 9a to the outside of the main body 3a. The cross-sectional shape is a rectangular shape whose longitudinal direction is directed to the outside of the main body 3a. The connecting convex portion 7a extends in the same direction as the groove 5a while maintaining its cross-sectional shape. The connecting convex portion 7a has flexibility and is elastically deformable.
フィン4aは、矩形の板の形状に形成されている。そして、短手方向を上に向けている。また、長手方向を図2の手前から奥の方向、すなわち、溝5aと同方向に向けている。そして、フィン4aは、左右方向に向かって一定のピッチで配置されている。最右端にあるフィン4aは、右側面9aから半ピッチだけ離れた位置に設けられている。
The fin 4a is formed in the shape of a rectangular plate. And the short direction is turned up. Further, the longitudinal direction is directed from the front of FIG. 2 to the back, that is, in the same direction as the groove 5a. The fins 4a are arranged at a constant pitch in the left-right direction. The fin 4a at the rightmost end is provided at a position separated from the right side surface 9a by a half pitch.
また、フィン4aは、押し出し成型によって、本体3aと一体形成されている。なお、本明細書では、フィン4aを第1のフィンともいう。
Further, the fin 4a is integrally formed with the main body 3a by extrusion molding. In the present specification, the fin 4a is also referred to as a first fin.
上述したように、部分品2aは、本体3aと複数のフィン4aを有している。部分品2bも、部分品2aと同様に、断面視矩形状の本体3bと、複数の平板状のフィン4bと、を有している。
As described above, the partial product 2a includes the main body 3a and the plurality of fins 4a. Similarly to the partial product 2a, the partial product 2b also includes a main body 3b having a rectangular shape in sectional view and a plurality of flat fins 4b.
本体3bは、本体3aと同様に、断面視矩形状に形成されている。その大きさは、本体3aと同じである。また、本体3bの上面側には、本体3aと同様に、複数のフィン4bが設けられている。一方、本体3bでは、左側面9bに、冷媒配管8を配置するための溝5bが形成されている。また、左側面9bに、連結用凹部7bと連結用凸部6bが形成されている。
なお、本明細書では、本体3bを第2の本体ともいい、左側面9bを第2の面ともいう。また、溝5bを第2の溝ともいい、連結用凹部7bと連結用凸部6bのことを単に、凹部、凸部ともいう。 Themain body 3b is formed in a rectangular shape in sectional view, like the main body 3a. Its size is the same as that of the main body 3a. Moreover, the several fin 4b is provided in the upper surface side of the main body 3b similarly to the main body 3a. On the other hand, in the main body 3b, a groove 5b for arranging the refrigerant pipe 8 is formed on the left side surface 9b. Moreover, the connection recessed part 7b and the connection convex part 6b are formed in the left side surface 9b.
In the present specification, themain body 3b is also referred to as a second main body, and the left side surface 9b is also referred to as a second surface. Further, the groove 5b is also referred to as a second groove, and the connecting recess 7b and the connecting protrusion 6b are also simply referred to as a recess and a protrusion.
なお、本明細書では、本体3bを第2の本体ともいい、左側面9bを第2の面ともいう。また、溝5bを第2の溝ともいい、連結用凹部7bと連結用凸部6bのことを単に、凹部、凸部ともいう。 The
In the present specification, the
溝5bは、本体3aに形成された溝5aと左右対称であることを除いて、同じ構成を備えている。一方、本体3bの左側面9bは、本体3aの右側面9aと当接可能にするため、右側面9aと同形状に形成されている。溝5bは、後述するように、本体3bの左側面9bが本体3aの右側面9aに合わせられたときに、溝5aと対向する。さらに、溝5bは、溝5aの内壁とつながって、断面視円形状の冷媒配管用空洞80を形成する。
The groove 5b has the same configuration except that it is symmetrical to the groove 5a formed in the main body 3a. On the other hand, the left side surface 9b of the main body 3b is formed in the same shape as the right side surface 9a in order to be able to contact the right side surface 9a of the main body 3a. As will be described later, the groove 5b faces the groove 5a when the left side surface 9b of the main body 3b is aligned with the right side surface 9a of the main body 3a. Further, the groove 5b is connected to the inner wall of the groove 5a to form a refrigerant pipe cavity 80 having a circular shape in cross section.
これに対して、連結用凹部7b、連結用凸部6bは、本体3aに形成された連結用凹部6a、連結用凸部7aと左右対称の形状を有するが、連結用凹部7b、連結用凸部6bの溝5bに対する位置は、本体3aの連結用凹部6a、連結用凸部7aと異なっている。
On the other hand, the connection recess 7b and the connection protrusion 6b are symmetrical to the connection recess 6a and the connection protrusion 7a formed in the main body 3a, but the connection recess 7b and the connection protrusion The position of the portion 6b with respect to the groove 5b is different from the connecting concave portion 6a and the connecting convex portion 7a of the body 3a.
詳細には、連結用凹部7bは、溝5bの下側に配置されている。そして、連結用凹部7bは、本体3aの連結用凸部7aと上下方向に同じ位置に設けられている。一方、連結用凸部6bは、溝5bの上側に配置されている。連結用凸部6bは、本体3aの連結用凹部6aと上下方向に同じ位置に設けられている。
Specifically, the connecting recess 7b is disposed below the groove 5b. And the connection recessed part 7b is provided in the same position in the up-down direction as the connection convex part 7a of the main body 3a. On the other hand, the connecting convex portion 6b is disposed on the upper side of the groove 5b. The connecting convex portion 6b is provided at the same position in the vertical direction as the connecting concave portion 6a of the main body 3a.
フィン4bは、最左端にあるフィン4bが本体3bの左側面9bから半ピッチの距離に配置されていることを除いて、フィン4aと同じ構成を備える。フィン4bは、部分品2bが押し出し成型で製造されることにより、本体3bと一体形成されている。
なお、本明細書では、フィン4bを第2のフィンともいう。 Thefin 4b has the same configuration as the fin 4a except that the leftmost fin 4b is disposed at a half pitch distance from the left side surface 9b of the main body 3b. The fin 4b is integrally formed with the main body 3b by manufacturing the part 2b by extrusion molding.
In the present specification, thefin 4b is also referred to as a second fin.
なお、本明細書では、フィン4bを第2のフィンともいう。 The
In the present specification, the
ヒートシンク1は、図3に示すように、部分品2aと2bが左右方向に連結することにより形成されている。詳細には、本体3aの右側面9aが本体3bの左側面9bに当接されている。また、本体3aの連結用凸部7aは、本体3bの連結用凹部7bに圧入されている。さらに、本体3bの連結用凸部6bは、本体3aの連結用凹部6aに圧入されている。
The heat sink 1 is formed by connecting the partial products 2a and 2b in the left-right direction as shown in FIG. Specifically, the right side surface 9a of the main body 3a is in contact with the left side surface 9b of the main body 3b. Further, the connecting convex portion 7a of the main body 3a is press-fitted into the connecting concave portion 7b of the main body 3b. Further, the connecting convex portion 6b of the main body 3b is press-fitted into the connecting concave portion 6a of the main body 3a.
連結用凸部7aは、圧入によって断面視で先端が湾曲した鈎状の形状に弾性変形している。これにより、連結用凸部7aは、連結用凹部7bに嵌合している。また、その先端が連結用凹部7bの湾曲した内壁に係止している。その結果、連結用凸部7aによって、本体3aが本体3bに連結されている。さらに、連結用凸部7aは、本体3a、3bを互いに離す力が作用しても、本体3a、3bの連結を維持する。
The connecting convex portion 7a is elastically deformed into a bowl-like shape having a curved tip in a sectional view by press-fitting. Thereby, the connecting convex portion 7a is fitted in the connecting concave portion 7b. Further, the tip is locked to the curved inner wall of the connecting recess 7b. As a result, the main body 3a is connected to the main body 3b by the connecting convex portion 7a. Further, the connecting convex portion 7a maintains the connection between the main bodies 3a and 3b even when a force for separating the main bodies 3a and 3b from each other acts.
また、連結用凸部6bは、本体3aの連結用凸部7aと同様に、圧入によって断面視で先端が湾曲した鈎状の形状に弾性変形し、その結果、連結用凹部6aに嵌合している。また、先端が連結用凹部6aの湾曲した内壁に係止している。これにより、連結用凸部6bは、本体3bを本体3aに連結している。さらに、連結用凸部6bは、連結用凸部7aと同様に、本体3a、3bの連結を維持する。
Similarly to the connecting projection 7a of the main body 3a, the connecting projection 6b is elastically deformed into a bowl-like shape having a curved tip in a sectional view by press-fitting, and as a result, is fitted into the connecting recess 6a. ing. Further, the tip is locked to the curved inner wall of the connecting recess 6a. Thereby, the convex part 6b for connection has connected the main body 3b to the main body 3a. Furthermore, the connection convex part 6b maintains the connection of the main bodies 3a and 3b in the same manner as the connection convex part 7a.
一方、フィン4aと4bは、部分品2aの最右端にあるフィン4aが右側面9aから半ピッチの位置に配置され、かつ部分品2bの最左端にあるフィン4bが左側面9bから半ピッチの位置に配置されているので、全体として一定のピッチで左右方向に配列している。その結果、フィン4aと4bは、本体3a、3bの上面側に均一に分布し、本体3a、3bの熱を偏り無く放熱する。
On the other hand, in the fins 4a and 4b, the fin 4a at the rightmost end of the part 2a is arranged at a half pitch position from the right side 9a, and the fin 4b at the leftmost end of the part 2b is half pitch from the left side 9b. Since they are arranged at positions, they are arranged in the left-right direction at a constant pitch as a whole. As a result, the fins 4a and 4b are uniformly distributed on the upper surface side of the main bodies 3a and 3b, and radiate the heat of the main bodies 3a and 3b evenly.
溝5aと5bの内壁は、部分品2aと2bが左右方向に連結することにより、互いにつながっている。これにより、溝5aと5bは、断面視円形状の冷媒配管用空洞80を形成している。その冷媒配管用空洞80には、冷媒配管用空洞80に嵌合する円筒の形状を有する冷媒配管8が通されている。冷媒配管用空洞80には、冷媒配管8が嵌合している。これにより、ヒートシンク1では、溝5aと5bの内壁と冷媒配管8との熱抵抗が小さい。
The inner walls of the grooves 5a and 5b are connected to each other by connecting the partial products 2a and 2b in the left-right direction. Thus, the grooves 5a and 5b form a refrigerant piping cavity 80 having a circular shape in cross section. A refrigerant pipe 8 having a cylindrical shape that fits into the refrigerant pipe cavity 80 is passed through the refrigerant pipe cavity 80. The refrigerant pipe 8 is fitted in the refrigerant pipe cavity 80. Thereby, in the heat sink 1, the thermal resistance between the inner walls of the grooves 5a and 5b and the refrigerant pipe 8 is small.
次に、ヒートシンク1の作用について説明する。ヒートシンク1では、フィン4a、4bがある本体3a、3bの上面側と反対側の、下面に、図示しない、冷却対象となる被冷却部品が取り付けられる。以下の説明では、本体3a、3bの下面に被冷却部品が取り付けられることから、下面のことを冷却面30と称するものとする。なお、図示しないが、被冷却部品は、冷却面30に接触可能な平面部を有し、その平面部が冷却面30と接触する。
Next, the operation of the heat sink 1 will be described. In the heat sink 1, a component to be cooled, which is not shown, is attached to the lower surface on the side opposite to the upper surface side of the main bodies 3a and 3b having the fins 4a and 4b. In the following description, since the component to be cooled is attached to the lower surfaces of the main bodies 3a and 3b, the lower surface is referred to as a cooling surface 30. Although not shown, the component to be cooled has a flat portion that can contact the cooling surface 30, and the flat portion contacts the cooling surface 30.
被冷却部品の熱は、冷却面30から本体3a、3bの内部に伝わる。本体3a、3bは、押し出し成型によって一体に形成されている。このため、本体3a、3bは、特許文献1に記載のヒートシンクと異なり、その内部に2つの部材が接合することにより形成された接合面が存在しない。また、本体3a、3bは、押し出し成型によってフィン4a、4bと一体に形成されている。その結果、本体3a、3bの内部に伝わった熱は、部品を接合する接合箇所による影響を受けることなく、フィン4a、4bに伝えられる。換言すると、熱は、接触熱抵抗の影響を受けることなく、フィン4a、4bに伝えられる。このように、本体3a、3b及びフィン4a、4bは、高い熱伝導効率で熱を伝える。
The heat of the component to be cooled is transmitted from the cooling surface 30 to the inside of the main bodies 3a and 3b. The main bodies 3a and 3b are integrally formed by extrusion molding. For this reason, unlike the heat sink described in Patent Document 1, the main bodies 3a and 3b do not have a joint surface formed by joining two members inside. The main bodies 3a and 3b are integrally formed with the fins 4a and 4b by extrusion molding. As a result, the heat transmitted to the inside of the main bodies 3a and 3b is transmitted to the fins 4a and 4b without being affected by the joining location where the parts are joined. In other words, heat is transferred to the fins 4a and 4b without being affected by the contact thermal resistance. Thus, the main bodies 3a and 3b and the fins 4a and 4b conduct heat with high heat conduction efficiency.
フィン4a、4bに伝えられた熱は、フィン4a、4bに送風されると、フィン4a、4bに当たる空気に放熱される。このとき、フィン4a、4bは、上述したように、本体3a、3bの上面側全体に均一に配置されている。そして、特許文献2に記載のヒートシンクと異なり、本体3a、3bの上面側に、フィン4a、4bが不均一に分布する箇所が存在しない。このため、フィン4a、4bの間を通過する風量は、全体として均一である。その結果、熱は、フィン4a、4b全体から均一に放熱される。
When the heat transmitted to the fins 4a and 4b is blown to the fins 4a and 4b, the heat is radiated to the air hitting the fins 4a and 4b. At this time, as described above, the fins 4a and 4b are uniformly arranged on the entire upper surface side of the main bodies 3a and 3b. And unlike the heat sink of patent document 2, the location where the fins 4a and 4b are unevenly distributed does not exist in the upper surface side of the main bodies 3a and 3b. For this reason, the air volume which passes between the fins 4a and 4b is uniform as a whole. As a result, heat is dissipated uniformly from the entire fins 4a and 4b.
一方、冷却面30から本体3a、3bの内部に伝わった熱は、冷却面30から溝5a、5bの内壁にも伝わる。溝5a、5bの内壁には、上述したように、冷媒配管8が嵌合している。これにより、溝5a、5bの内壁の全周にわたって冷媒配管8が接触している。その結果、溝5a、5bの内壁と冷媒配管8との接触熱抵抗が小さい。本体3a、3bの内部に伝わった熱は、溝5a、5bの内壁を介して冷媒配管8に高い熱伝導率で伝えられる。これにより、その熱は、冷媒配管8の内部を流通する冷媒と高い効率で、熱交換される。
On the other hand, the heat transferred from the cooling surface 30 to the inside of the main bodies 3a and 3b is also transferred from the cooling surface 30 to the inner walls of the grooves 5a and 5b. As described above, the refrigerant pipe 8 is fitted to the inner walls of the grooves 5a and 5b. Thereby, the refrigerant | coolant piping 8 is contacting over the perimeter of the inner wall of groove | channel 5a, 5b. As a result, the contact thermal resistance between the inner walls of the grooves 5a and 5b and the refrigerant pipe 8 is small. The heat transferred to the inside of the main bodies 3a and 3b is transferred to the refrigerant pipe 8 with high thermal conductivity through the inner walls of the grooves 5a and 5b. Thereby, the heat is exchanged with the refrigerant circulating in the refrigerant pipe 8 with high efficiency.
このように、ヒートシンク1は、被冷却部品の熱を高い熱伝導性でフィン4a、4b又は冷媒配管8に伝える。このため、ヒートシンク1は、被冷却部品の温度上昇を抑制しやすい。また、冷却能力が高い。さらに、ヒートシンク1は、フィン4a、4b全体から均一に放熱する。このため、冷却ムラが発生しにくい。
Thus, the heat sink 1 transmits the heat of the component to be cooled to the fins 4a, 4b or the refrigerant pipe 8 with high thermal conductivity. For this reason, the heat sink 1 is easy to suppress the temperature rise of the component to be cooled. In addition, the cooling capacity is high. Furthermore, the heat sink 1 radiates heat uniformly from the entire fins 4a and 4b. For this reason, uneven cooling is unlikely to occur.
以上のように、実施の形態1に係るヒートシンク1では、本体3aが右側面9aを有し、本体3bが右側面9aと隣接する左側面9bを有する。このため、右側面9aと左側面9bを接合する接合面は、上下方向に延伸する。ヒートシンク1では、フィン4a、4bが設けられた、本体3a、3bの上面側から冷却面30である下面側との間に、すなわち、熱の伝達経路に、部品間の接合部が存在しない。このため、冷却面30からフィン4a、4bへ熱伝導が阻害されにくい。その結果、ヒートシンク1の冷却能力が高い。
As described above, in the heat sink 1 according to Embodiment 1, the main body 3a has the right side surface 9a, and the main body 3b has the left side surface 9b adjacent to the right side surface 9a. For this reason, the joint surface joining the right side surface 9a and the left side surface 9b extends in the vertical direction. In the heat sink 1, there are no joints between components between the upper surface side of the main bodies 3 a and 3 b provided with the fins 4 a and 4 b and the lower surface side that is the cooling surface 30, that is, in the heat transfer path. For this reason, heat conduction from the cooling surface 30 to the fins 4a and 4b is hardly hindered. As a result, the cooling capacity of the heat sink 1 is high.
また、右側面9aには、溝5aが設けられ、左側面9bには、溝5aと対向する溝5bが設けられている。そして、溝5aと溝5bの間には、冷媒配管8が配置されている。このため、ヒートシンク1では、本体3a、3bの下面又は上面の側に、冷媒配管8を配置するためのスペースを設ける必要がない。その結果、ヒートシンク1では、本体3a、3bの上面に均一にフィン4a、4bを配列することができる。これにより、ヒートシンク1では、フィン4a、4bで均一に放熱することができ、冷却ムラが発生しにくい。
Further, a groove 5a is provided on the right side surface 9a, and a groove 5b facing the groove 5a is provided on the left side surface 9b. And the refrigerant | coolant piping 8 is arrange | positioned between the groove | channel 5a and the groove | channel 5b. For this reason, in the heat sink 1, it is not necessary to provide the space for arrange | positioning the refrigerant | coolant piping 8 in the lower surface or upper surface side of main body 3a, 3b. As a result, in the heat sink 1, the fins 4a and 4b can be uniformly arranged on the upper surfaces of the main bodies 3a and 3b. Thereby, in the heat sink 1, heat can be uniformly radiated by the fins 4a and 4b, and uneven cooling is less likely to occur.
変形例
なお、実施の形態1では、ヒートシンク1が2つの部分品2a、2bで形成されているが、ヒートシンク1aは、3つ以上の部分品で形成されていてもよい。 Modification In the first embodiment, theheat sink 1 is formed of two partial products 2a and 2b, but the heat sink 1a may be formed of three or more partial products.
なお、実施の形態1では、ヒートシンク1が2つの部分品2a、2bで形成されているが、ヒートシンク1aは、3つ以上の部分品で形成されていてもよい。 Modification In the first embodiment, the
図4は、実施の形態1に係るヒートシンク1の変形例の部品構成図である。図5は、その変形例の断面図である。なお、図4では、理解を容易にするため、冷媒配管8を省略している。
FIG. 4 is a component configuration diagram of a modified example of the heat sink 1 according to the first embodiment. FIG. 5 is a cross-sectional view of the modification. In FIG. 4, the refrigerant pipe 8 is omitted for easy understanding.
ヒートシンク1aは、図4及び図5に示すように、部分品2a、2b、2cを備えている。部分品2a、2bは、実施の形態1で説明した部分品2a、2bと同じ構成を備える。それら部分品2aと2bの間には、部分品2cが配置されている。
The heat sink 1a includes partial parts 2a, 2b, and 2c as shown in FIGS. The partial products 2a and 2b have the same configuration as the partial products 2a and 2b described in the first embodiment. A partial product 2c is arranged between the partial products 2a and 2b.
部分品2cは、図4に示すように、本体3cと、複数のフィン4cと、を有している。そして、本体3cの左側面9cには、図4に示すように、部分品2bが有する連結用凸部6b、連結用凹部7bと同じ構成の連結用凸部6c、連結用凹部7cが設けられている。また、部分品2bが有する溝5bと同じ構成の溝5cが設けられている。
As shown in FIG. 4, the partial product 2c has a main body 3c and a plurality of fins 4c. As shown in FIG. 4, the left side surface 9c of the main body 3c is provided with a connecting convex portion 6b and a connecting concave portion 7c having the same configuration as the connecting convex portion 6b and the connecting concave portion 7b. ing. Moreover, the groove | channel 5c of the same structure as the groove | channel 5b which the partial goods 2b have is provided.
連結用凸部6cは、図5に示すように、部分品2aが有する連結用凹部6aに圧入され、連結用凹部6aと嵌合している。また、連結用凹部7cには、部分品2aが有する連結用凸部7aが圧入され、連結用凹部7cに連結用凸部7aが嵌合している。これにより、部分品2cの左側面9cが、部分品2aの右側面9aに合わせられ、部分品2cが、部分品2aと連結している。さらに、部分品2cの溝5cは、部分品2aの溝5aと対向して、冷媒配管用空洞80を形成している。冷媒配管用空洞80には冷媒配管8が通されている。
As shown in FIG. 5, the connecting convex portion 6c is press-fitted into the connecting concave portion 6a of the partial product 2a and is fitted to the connecting concave portion 6a. Further, the connecting convex portion 7a of the partial product 2a is press-fitted into the connecting concave portion 7c, and the connecting convex portion 7a is fitted into the connecting concave portion 7c. Thereby, the left side surface 9c of the partial product 2c is matched with the right side surface 9a of the partial product 2a, and the partial product 2c is connected with the partial product 2a. Furthermore, the groove 5c of the partial product 2c is opposed to the groove 5a of the partial product 2a to form a refrigerant piping cavity 80. The refrigerant pipe 8 is passed through the refrigerant pipe cavity 80.
これに対して、部分品2cの右側面9dには、図4に示すように、部分品2aが有する連結用凹部6a、連結用凸部7aと同じ構成の連結用凹部6d、連結用凸部7dが設けられている。また、部分品2aが有する溝5aと同じ構成の溝5dが設けられている。
On the other hand, on the right side surface 9d of the partial product 2c, as shown in FIG. 4, the connection concave portion 6a of the partial product 2a, the connection concave portion 6d having the same configuration as the connection convex portion 7a, and the connection convex portion are provided. 7d is provided. Moreover, the groove | channel 5d of the same structure as the groove | channel 5a which the partial goods 2a have is provided.
連結用凹部6dには、図5に示すように、部分品2bが有する連結用凸部6bが圧入され、連結用凹部6dに連結用凸部6bが嵌合している。連結用凸部7dは、部分品2bが有する連結用凹部7bに圧入され、連結用凸部7dが連結用凹部7bに嵌合している。これにより、部分品2cの右側面9dが、部分品2bの左側面9bに合わせられ、部分品2cが部分品2bと連結している。さらに、溝5dは、部分品2bの溝5bと対向することにより、冷媒配管8が通された冷媒配管用空洞80を形成している。
As shown in FIG. 5, the connecting convex portion 6b of the partial product 2b is press-fitted into the connecting concave portion 6d, and the connecting convex portion 6b is fitted into the connecting concave portion 6d. The connecting convex portion 7d is press-fitted into the connecting concave portion 7b of the partial product 2b, and the connecting convex portion 7d is fitted into the connecting concave portion 7b. Accordingly, the right side surface 9d of the partial product 2c is aligned with the left side surface 9b of the partial product 2b, and the partial product 2c is connected to the partial product 2b. Further, the groove 5d is opposed to the groove 5b of the partial product 2b, thereby forming a refrigerant pipe cavity 80 through which the refrigerant pipe 8 is passed.
以上のように、ヒートシンク1は、3つの部分品2a、2b、2cが連結することにより形成されてもよい。
As described above, the heat sink 1 may be formed by connecting the three partial products 2a, 2b, and 2c.
なお、冷媒配管8は、U字型に曲げられた一本の管であってもよい。その場合、冷媒配管8は、溝5cと溝5aで形成された冷媒配管用空洞80と、溝5dと溝5bで形成された冷媒配管用空洞80とに通されるとよい。また、部分品2aの右側面9a、部分品2cの左側面9c、右側面9d、部分品2bの左側面9bには、熱抵抗を小さくするため、熱伝導グリースを塗布するとよい。
The refrigerant pipe 8 may be a single pipe bent into a U shape. In that case, the refrigerant pipe 8 is preferably passed through the refrigerant pipe cavity 80 formed by the grooves 5c and 5a and the refrigerant pipe cavity 80 formed by the grooves 5d and 5b. Further, heat conduction grease may be applied to the right side surface 9a of the partial product 2a, the left side surface 9c, the right side surface 9d of the partial product 2c, and the left side surface 9b of the partial product 2b in order to reduce thermal resistance.
実施の形態2
図4及び図5に示す、実施の形態1に係る変形例では、ヒートシンク1aが、本体3cの左側面9cと右側面9dそれぞれに、連結用凸部6c、7dと連結用凹部7c、6dが設けられた部分品2cを備えている。実施の形態2に係るヒートシンク1bでは、この部分品2cと同じ構成の部分品2dを複数個組み合わせることにより、製造されている。以下、実施の形態2に係るヒートシンク1bの構成を、図6を用いて説明する。 Embodiment 2
In the modification according to the first embodiment shown in FIG. 4 and FIG. 5, theheat sink 1a has connecting convex portions 6c, 7d and connecting concave portions 7c, 6d on the left side surface 9c and the right side surface 9d of the main body 3c. The provided partial product 2c is provided. The heat sink 1b according to the second embodiment is manufactured by combining a plurality of partial products 2d having the same configuration as the partial product 2c. Hereinafter, the configuration of the heat sink 1b according to the second embodiment will be described with reference to FIG.
図4及び図5に示す、実施の形態1に係る変形例では、ヒートシンク1aが、本体3cの左側面9cと右側面9dそれぞれに、連結用凸部6c、7dと連結用凹部7c、6dが設けられた部分品2cを備えている。実施の形態2に係るヒートシンク1bでは、この部分品2cと同じ構成の部分品2dを複数個組み合わせることにより、製造されている。以下、実施の形態2に係るヒートシンク1bの構成を、図6を用いて説明する。 Embodiment 2
In the modification according to the first embodiment shown in FIG. 4 and FIG. 5, the
図6は、実施の形態2に係るヒートシンク1bの断面図である。
図6に示すように、ヒートシンク1bは、同一形状の部分品2dを複数個備えている。 FIG. 6 is a cross-sectional view of theheat sink 1b according to the second embodiment.
As shown in FIG. 6, theheat sink 1b includes a plurality of pieces 2d having the same shape.
図6に示すように、ヒートシンク1bは、同一形状の部分品2dを複数個備えている。 FIG. 6 is a cross-sectional view of the
As shown in FIG. 6, the
部分品2dそれぞれは、上述した部分品2cと同じ構成を備えている。すなわち、部分品2dそれぞれは、部分品2cの本体3cと同じ構成の本体と、部分品2cのフィン4cと同じ構成の複数のフィンと、を有している。そして、部分品2cの本体の左側面9eには、部分品2cの溝5c、連結用凸部6c、連結用凹部7cと同じ構成の溝5e、連結用凸部6e、連結用凹部7eが設けられている。また、部分品2cの本体の右側面9fには、部分品2cの溝5d、連結用凹部6d、連結用凸部7dと同じ構成の溝5f、連結用凹部6f、連結用凸部7fが設けられている。
Each partial product 2d has the same configuration as the partial product 2c described above. That is, each of the partial products 2d has a main body having the same configuration as the main body 3c of the partial product 2c and a plurality of fins having the same configuration as the fins 4c of the partial product 2c. The left side surface 9e of the main body of the partial product 2c is provided with a groove 5c, a connecting convex portion 6c, a connecting convex portion 6e, and a connecting concave portion 7e having the same structure as the connecting concave portion 7c. It has been. Further, the right side surface 9f of the main body of the partial product 2c is provided with the groove 5d, the concave portion 6d for connection, the groove 5f having the same configuration as the convex portion 7d for connection, the concave portion 6f for connection, and the convex portion 7f for connection. It has been.
複数個の部分品2dのうち、1つの部分品2dの左側面9eには、別の部分品2dの右側面9fが合わせられている。さらに、左側面9eの連結用凸部6eが、右側面9fの連結用凹部6fに圧入されて嵌合している。左側面9eの連結用凹部7eには、右側面9fの連結用凸部7fが圧入されて嵌合している。これにより、複数個の部分品2dのうちの、1つの部分品2dが別の部分品2dと隣接し、その別の部分品2dに連結している。なお、1つの部分品2dは、別の部分品2dと左右方向に隣接しているが、本明細書では、この方向のことを隣接方向という。
Among the plurality of partial products 2d, the left side surface 9e of one partial product 2d is aligned with the right side surface 9f of another partial product 2d. Further, the connecting convex portion 6e on the left side surface 9e is press-fitted and fitted into the connecting concave portion 6f on the right side surface 9f. The connecting convex portion 7f on the right side surface 9f is press-fitted into the connecting concave portion 7e on the left side surface 9e. Thus, one partial product 2d of the plurality of partial products 2d is adjacent to another partial product 2d and connected to the other partial product 2d. In addition, although one partial product 2d is adjacent to another partial product 2d in the left-right direction, this direction is referred to as an adjacent direction in this specification.
また、1つの部分品2dの左側面9eにある溝5eが、別の部分品2dの右側面9fにある溝5fと対向して、冷媒配管用空間80を形成している。その冷媒配管用空間80には冷媒配管8が通されている。
Further, the groove 5e on the left side surface 9e of one partial product 2d is opposed to the groove 5f on the right side surface 9f of another partial product 2d to form a refrigerant piping space 80. The refrigerant pipe 8 is passed through the refrigerant pipe space 80.
このような1つの部分品2dと別の部分品2dの配置が繰り返されることにより、複数個の部分品2dが連結している。その結果、ヒートシンク1bが形成されている。
The arrangement of one partial product 2d and another partial product 2d is repeated, so that a plurality of partial products 2d are connected. As a result, the heat sink 1b is formed.
以上のように、実施の形態2に係るヒートシンク1bは、同一構成の部分品2dが複数個連結されれることにより、形成されている。同一構成の部分品2dを複数個製造することにより、ヒートシンク1bを製造できるので、ヒートシンク1bの製造が容易である。また、製造コストが低い。例えば、部分品2dを押し出し成型で製造する場合、金型を1種類だけ作製すればよいので、金型の製造費用及び管理費を小さくして製造コストを小さくすることができる。
As described above, the heat sink 1b according to the second embodiment is formed by connecting a plurality of pieces 2d having the same configuration. Since the heat sink 1b can be manufactured by manufacturing a plurality of parts 2d having the same configuration, it is easy to manufacture the heat sink 1b. Moreover, the manufacturing cost is low. For example, when the partial product 2d is manufactured by extrusion molding, since only one type of mold needs to be manufactured, the manufacturing cost and the management cost of the mold can be reduced and the manufacturing cost can be reduced.
また、連結する部分品2dの個数を増減することにより、被冷却部品の大きさに合ったヒートシンク1bを製造できるので、被冷却部品の大きさが変化してもヒートシンク1bの製造コストが上がりにくい。
Further, since the heat sink 1b can be manufactured in accordance with the size of the component to be cooled by increasing or decreasing the number of the partial parts 2d to be connected, the manufacturing cost of the heat sink 1b is hardly increased even if the size of the component to be cooled is changed. .
実施の形態3
実施の形態2に係るヒートシンク1bでは、冷媒配管用空間80全てに冷媒配管8が通されているが、本発明はこれに限定されない。実施の形態3に係るヒートシンク1cでは、被冷却部品の位置、発熱量に応じて、複数の冷媒配管用空間80のうちの、一部の冷媒配管用空間80に冷媒配管8が通されている。以下、実施の形態3に係るヒートシンク1cの構成を図7を用いて説明する。 Embodiment 3
In theheat sink 1b according to Embodiment 2, the refrigerant pipe 8 is passed through all the refrigerant pipe spaces 80, but the present invention is not limited to this. In the heat sink 1c according to the third embodiment, the refrigerant pipe 8 is passed through some of the refrigerant pipe spaces 80 among the plurality of refrigerant pipe spaces 80 in accordance with the position of the component to be cooled and the amount of heat generated. . Hereinafter, the structure of the heat sink 1c according to Embodiment 3 will be described with reference to FIG.
実施の形態2に係るヒートシンク1bでは、冷媒配管用空間80全てに冷媒配管8が通されているが、本発明はこれに限定されない。実施の形態3に係るヒートシンク1cでは、被冷却部品の位置、発熱量に応じて、複数の冷媒配管用空間80のうちの、一部の冷媒配管用空間80に冷媒配管8が通されている。以下、実施の形態3に係るヒートシンク1cの構成を図7を用いて説明する。 Embodiment 3
In the
図7は、実施の形態3に係るヒートシンク1cの断面図である。なお、図7では、図6と同じ箇所の符号は省略している。
FIG. 7 is a cross-sectional view of the heat sink 1c according to the third embodiment. In FIG. 7, the same reference numerals as those in FIG. 6 are omitted.
図7に示すように、ヒートシンク1cは、実施の形態2で説明した部分品2dを複数個、備えている。そして、複数個の部分品2dは、実施の形態1の変形例で説明した方法で、連結している。これにより、隣接する部分品2dどうしの間に冷媒配管用空間80が形成されている。その結果、ヒートシンク1cは、複数の冷媒配管用空間80を有している。
As shown in FIG. 7, the heat sink 1c includes a plurality of partial products 2d described in the second embodiment. The plurality of partial products 2d are connected by the method described in the modification of the first embodiment. Thereby, the space 80 for refrigerant | coolant piping is formed between the adjacent partial products 2d. As a result, the heat sink 1c has a plurality of refrigerant piping spaces 80.
ヒートシンク1cの下面には、被冷却部品である発熱部材40、41が取り付けられている。ここで、発熱部材40は、発熱部材41よりも発熱量が大きい。このため、発熱部材40は、発熱部材41よりも冷却する必要がある。そこで、ヒートシンク1cでは、発熱部材40をより冷却するため、発熱部材40の近傍にある冷媒配管用空間80にだけ冷媒配管8が通されている。すなわち、発熱部材40の上に位置する冷媒配管用空間80にだけ冷媒配管8が通されている。一方、発熱部材41の上に位置する冷媒配管用空間80には、冷媒配管8が通されていない。これにより、ヒートシンク1cでは、発熱量の大きい発熱部材40を高い効率で冷却することができる。さらに、発熱量の小さい発熱部材41が過冷却されにくい。その結果、発熱部材41は、結露しにくい。
Heat generating members 40 and 41, which are parts to be cooled, are attached to the lower surface of the heat sink 1c. Here, the heat generating member 40 generates a larger amount of heat than the heat generating member 41. For this reason, the heat generating member 40 needs to be cooled more than the heat generating member 41. Therefore, in the heat sink 1c, the refrigerant pipe 8 is passed only through the refrigerant pipe space 80 in the vicinity of the heat generating member 40 in order to further cool the heat generating member 40. That is, the refrigerant pipe 8 is passed only through the refrigerant pipe space 80 located on the heat generating member 40. On the other hand, the refrigerant pipe 8 is not passed through the refrigerant pipe space 80 located above the heat generating member 41. Thereby, in the heat sink 1c, the heat generating member 40 with a large calorific value can be cooled with high efficiency. Furthermore, the heat generating member 41 having a small heat generation amount is not easily overcooled. As a result, the heat generating member 41 is difficult to condense.
以上のように、実施の形態3に係るヒートシンク1cでは、被冷却部品の発熱の分布に応じて、複数個の冷媒配管用空間80のうちの一部に冷媒配管8が通されている。このため、ヒートシンク1cは、冷却効率が高い。
As described above, in the heat sink 1c according to the third embodiment, the refrigerant pipe 8 is passed through a part of the plurality of refrigerant pipe spaces 80 according to the distribution of heat generation of the parts to be cooled. For this reason, the heat sink 1c has high cooling efficiency.
実施の形態4
実施の形態1で説明したヒートシンク1は、空調和装置の室外機21に用いられてもよい。実施の形態4に係る空気調和装置の室外機21には、ヒートシンク1が用いられている。以下、実施の形態4に係る空気調和装置の室外機21の構成を図8-図10を用いて説明する。 Embodiment 4
Theheat sink 1 described in the first embodiment may be used for the outdoor unit 21 of the air conditioner. The heat sink 1 is used for the outdoor unit 21 of the air-conditioning apparatus according to Embodiment 4. Hereinafter, the configuration of the outdoor unit 21 of the air-conditioning apparatus according to Embodiment 4 will be described with reference to FIGS.
実施の形態1で説明したヒートシンク1は、空調和装置の室外機21に用いられてもよい。実施の形態4に係る空気調和装置の室外機21には、ヒートシンク1が用いられている。以下、実施の形態4に係る空気調和装置の室外機21の構成を図8-図10を用いて説明する。 Embodiment 4
The
図8は、実施の形態4に係る空気調和装置の室外機の斜視図である。図9は、室外機が備える電気品箱12の斜視図である。図10は、電気品箱12の断面図である。
FIG. 8 is a perspective view of the outdoor unit of the air-conditioning apparatus according to Embodiment 4. FIG. 9 is a perspective view of the electrical component box 12 included in the outdoor unit. FIG. 10 is a cross-sectional view of the electrical component box 12.
空気調和装置は、図示しない室内機と、図8に示す室外機21と、を備える。ここで、図示しないが、室外機21は、室内機と接続用配管で接続され、その接続用配管によって室外機21と室内機との間に冷媒が流通する。また、室外機21は、接続用配管内に配線された電線によって室内機と接続され、室内機から電力が供給されている。
The air conditioner includes an indoor unit (not shown) and an outdoor unit 21 shown in FIG. Here, although not illustrated, the outdoor unit 21 is connected to the indoor unit through a connection pipe, and the refrigerant circulates between the outdoor unit 21 and the indoor unit through the connection pipe. The outdoor unit 21 is connected to the indoor unit by an electric wire wired in the connection pipe, and power is supplied from the indoor unit.
室外機21は、図8に示すように、上から、送風部18、熱交換部19、機械部20の順序で配置された3つの部分によって構成されている。送風部18は、室外機21が有する筐体22の上に配置され、熱交換部19と機械部20は、筐体22の内部に収容されている。
As shown in FIG. 8, the outdoor unit 21 is composed of three parts arranged in the order of the air blowing unit 18, the heat exchange unit 19, and the machine unit 20 from the top. The air blowing unit 18 is disposed on the housing 22 of the outdoor unit 21, and the heat exchange unit 19 and the machine unit 20 are accommodated inside the housing 22.
送風部18は、筐体22の天板に形成された、図示しない開口の上に配置されている。送風部18の内部には、筐体22内の空気を吸気するファン10が設けられている。一方、室外機21の筐体側面の下部には吸気口13が設けられている。このため、送風部18は、ファン10が回転して筐体22内の空気を吸気することにより、吸気口13から空気を筐体22内に取り込み、取り込んだ空気を筐体22の、図示しない開口から排気する。
The air blower 18 is disposed on an opening (not shown) formed on the top plate of the housing 22. A fan 10 that sucks air in the housing 22 is provided inside the blower 18. On the other hand, an air inlet 13 is provided at the lower part of the side surface of the casing of the outdoor unit 21. For this reason, the air blower 18 takes in air from the air inlet 13 into the housing 22 by rotating the fan 10 and sucks in the air in the housing 22, and the air that has been taken in is not shown in the housing 22. Exhaust through the opening.
一方、熱交換部19は、図示しない、冷媒が流通する冷媒配管と図示しない複数の薄い金属板を有する熱交換器11を備える。
On the other hand, the heat exchange unit 19 includes a heat exchanger 11 (not shown) having a refrigerant pipe through which a refrigerant flows and a plurality of thin metal plates (not shown).
熱交換器11は、室外機21が有する筐体22の側壁の内側に配置されている。このため、熱交換器11は、ファン10が回転して空気が送風されることにより、送風された空気があたり、その空気と冷媒配管内の冷媒が熱交換する。ここで、冷媒は、冷凍サイクルを形成する図示しない室内機と室外機21間の熱を輸送する。また、空気調和装置は、複数の運転モードで動作するため、冷媒配管内の冷媒の温度と室外機21の周囲環境温度の関係は、その運転モードに応じて変化する。詳細には、室内を暖めるために、主に冬に使用される暖房モードでは、冷媒の温度が室外機21の周囲の空気より冷たく、室内を冷やすために、主に夏に使用される冷房モードでは、冷媒の温度が室外機21の周囲の空気より暖かい。このため、熱交換器11は、ファン10が回転することで生じる風があたると、暖房モードで吸熱し、冷房モードで放熱する。これにより、熱交換器11は、図示しない室内機と冷媒を通じて熱の授受を行う。
The heat exchanger 11 is disposed inside the side wall of the housing 22 of the outdoor unit 21. For this reason, in the heat exchanger 11, when the fan 10 rotates and air is blown, the blown air hits, and the air and the refrigerant in the refrigerant pipe exchange heat. Here, the refrigerant transports heat between an indoor unit (not shown) that forms the refrigeration cycle and the outdoor unit 21. Further, since the air conditioner operates in a plurality of operation modes, the relationship between the temperature of the refrigerant in the refrigerant pipe and the ambient environment temperature of the outdoor unit 21 varies depending on the operation mode. Specifically, in the heating mode mainly used in winter in order to warm the room, the temperature of the refrigerant is cooler than the air around the outdoor unit 21, and the cooling mode mainly used in summer in order to cool the room. Then, the temperature of the refrigerant is warmer than the air around the outdoor unit 21. For this reason, the heat exchanger 11 absorbs heat in the heating mode and dissipates heat in the cooling mode when wind generated by the rotation of the fan 10 is applied. Thus, the heat exchanger 11 exchanges heat through an indoor unit (not shown) and the refrigerant.
機械部20は、図示しない圧縮機、アキュムレータ等を備える。そして、圧縮機は、インバータ回路17を有する電子部品14によって駆動される。電子部品14は、半導体部品によって構成されているので、多くの場合発熱量が大きく、故障なく安全に使用するためには何らかの放熱または冷却措置が必要である。そこで、機械部20は、電子部品14を収容すると共に、実施の形態1で説明したヒートシンク1が設けられた電気品箱12を備える。
The machine unit 20 includes a compressor, an accumulator, and the like (not shown). The compressor is driven by an electronic component 14 having an inverter circuit 17. Since the electronic component 14 is composed of a semiconductor component, it often generates a large amount of heat, and some heat dissipation or cooling measures are required to use it safely without failure. Therefore, the mechanical unit 20 includes the electronic component 14 and the electrical component box 12 provided with the heat sink 1 described in the first embodiment.
詳細には、機械部20は、図9及び図10に示すように、直方体状に形成された電気品箱12を備える。そして、電気品箱12の一つの面には、図示しない開口部が形成されている。電気品箱12の、開口部が形成された面には、ヒートシンク1が配置されている。
Specifically, as shown in FIGS. 9 and 10, the mechanical unit 20 includes an electrical component box 12 formed in a rectangular parallelepiped shape. An opening (not shown) is formed on one surface of the electrical component box 12. The heat sink 1 is disposed on the surface of the electrical component box 12 where the opening is formed.
ヒートシンク1は、電気品箱12にネジ、ボルトなどの締結部材で固定されている。ヒートシンク1は、開口部を介して電気品箱12内の被冷却部品である電子部品14と接触している。
The heat sink 1 is fixed to the electrical component box 12 with fastening members such as screws and bolts. The heat sink 1 is in contact with an electronic component 14 that is a component to be cooled in the electrical component box 12 through the opening.
ヒートシンク1は、図示しないが、実施の形態1で説明したように、冷媒配管8を備えている。実施の形態4では、その冷媒配管8に、熱交換器11の冷媒配管を流通すると共に、室外機21と図示しない室内機を循環する冷媒の一部が分流する。通常、冷媒の温度は、被冷却部品である電子部品14の温度より低い。一方、上述したように、ヒートシンク1が電子部品14と接触しているので、電子部品14の熱は、ヒートシンク1が備える本体3a、3bに伝えられ、さらに、冷媒配管8に伝えられる。冷媒配管8に分流された冷媒が循環すると、冷媒配管8に伝わった熱は、冷媒配管8から冷媒に伝導する。これにより、電子部品14の熱が冷媒に放熱させる。その結果、電子部品14が冷却される。
Although not shown, the heat sink 1 includes the refrigerant pipe 8 as described in the first embodiment. In the fourth embodiment, the refrigerant pipe 8 circulates through the refrigerant pipe of the heat exchanger 11 and a part of the refrigerant circulating in the outdoor unit 21 and an indoor unit (not shown) is diverted. Usually, the temperature of the refrigerant is lower than the temperature of the electronic component 14 that is the component to be cooled. On the other hand, as described above, since the heat sink 1 is in contact with the electronic component 14, the heat of the electronic component 14 is transmitted to the main bodies 3 a and 3 b included in the heat sink 1 and further transmitted to the refrigerant pipe 8. When the refrigerant divided into the refrigerant pipe 8 circulates, the heat transferred to the refrigerant pipe 8 is conducted from the refrigerant pipe 8 to the refrigerant. Thereby, the heat of the electronic component 14 is radiated to the refrigerant. As a result, the electronic component 14 is cooled.
なお、電気品箱12は熱交換器11より下方にあり、送風部18から離れているため、そのままではヒートシンク1に充分に風が流れない。そこで、電気品箱12には、ヒートシンク1に風を供給するため、内部にヒートシンク1を収容するダクト15が設けられている。
In addition, since the electrical component box 12 is located below the heat exchanger 11 and is away from the air blower 18, the wind does not sufficiently flow through the heat sink 1 as it is. Therefore, in order to supply wind to the heat sink 1, the electrical component box 12 is provided with a duct 15 that accommodates the heat sink 1 therein.
以上のように、実施の形態4に係る空気調和装置の室外機21は、圧縮機を駆動する電子部品14を冷却する、実施の形態1に係るヒートシンク1を備えているので、電子部品14が過熱しにくく、故障しにくい。その結果、室外機21は、安定して動作することができる。
As described above, the outdoor unit 21 of the air-conditioning apparatus according to Embodiment 4 includes the heat sink 1 according to Embodiment 1 that cools the electronic component 14 that drives the compressor. Hard to overheat and hard to break down. As a result, the outdoor unit 21 can operate stably.
なお、実施の形態4では、空気調和装置の室外機21に、実施の形態1に係るヒートシンク1を適用しているが、室外機21には、実施の形態1の変形例に係るヒートシンク1a及び実施の形態2-3に係るヒートシンク1b、1cも適用してもよい。
In the fourth embodiment, the heat sink 1 according to the first embodiment is applied to the outdoor unit 21 of the air conditioner. However, the outdoor unit 21 includes the heat sink 1a according to the modification of the first embodiment and The heat sinks 1b and 1c according to Embodiment 2-3 may also be applied.
以上、本発明の実施の形態を説明したが、本発明は上記の実施の形態に限定されるものではない。例えば、実施の形態1-4では、フィン4a-4cが本体3a-3cと一体形成されている。しかし本発明はこれに限定されない。
As mentioned above, although embodiment of this invention was described, this invention is not limited to said embodiment. For example, in Embodiment 1-4, the fins 4a-4c are integrally formed with the main bodies 3a-3c. However, the present invention is not limited to this.
図11は、実施の形態1に係るヒートシンク1の別の変形例の断面図である。
図11に示すように、部分品2eは、本体3aと、本体3aと別体に形成された複数のフィン4dと、を備えている。本体3aは、上面側に左右方向に等ピッチに配置され、中央に断面視矩形状の窪みが形成された複数の突出壁31を有する。フィン4dそれぞれの下端は、突出壁31の窪みに嵌め込まれている。これにより、複数のフィン4dは、本体3aと熱的に結合している。 FIG. 11 is a cross-sectional view of another modification of theheat sink 1 according to the first embodiment.
As shown in FIG. 11, thepartial product 2e includes a main body 3a and a plurality of fins 4d formed separately from the main body 3a. The main body 3a has a plurality of projecting walls 31 that are arranged on the upper surface side at equal pitches in the left-right direction and in which a depression having a rectangular shape in cross section is formed at the center. The lower ends of the fins 4d are fitted in the recesses of the protruding wall 31. Thus, the plurality of fins 4d are thermally coupled to the main body 3a.
図11に示すように、部分品2eは、本体3aと、本体3aと別体に形成された複数のフィン4dと、を備えている。本体3aは、上面側に左右方向に等ピッチに配置され、中央に断面視矩形状の窪みが形成された複数の突出壁31を有する。フィン4dそれぞれの下端は、突出壁31の窪みに嵌め込まれている。これにより、複数のフィン4dは、本体3aと熱的に結合している。 FIG. 11 is a cross-sectional view of another modification of the
As shown in FIG. 11, the
このように、フィン4a-4cは、本体3a-3cと別体に形成されてもよい。この場合、フィン4a-4cは、本体3a-3cと熱的に結合していればよい。
Thus, the fins 4a-4c may be formed separately from the main bodies 3a-3c. In this case, the fins 4a-4c only need to be thermally coupled to the main bodies 3a-3c.
実施の形態1-3では、フィン4a-4cがヒートシンク1及び1a-1cの上面側に配置されている。しかし、本発明は、これに限定されない。フィン4a-4cが配置される方向は、フィン4a-4cが本体3a-3cの一方の面の側に設けられている限りにおいて、任意である。ヒートシンク1及び1a-1cは、フィン4a-4cが本体3a-3cの一方の面の側に設けられ、他方の面の側に被冷却部品が設けられた状態で、使用されていればよい。
In Embodiment 1-3, the fins 4a-4c are arranged on the upper surfaces of the heat sinks 1 and 1a-1c. However, the present invention is not limited to this. The direction in which the fins 4a-4c are arranged is arbitrary as long as the fins 4a-4c are provided on one side of the main body 3a-3c. The heat sinks 1 and 1a-1c may be used in a state where the fins 4a-4c are provided on one surface side of the main body 3a-3c and a component to be cooled is provided on the other surface side.
実施の形態1-3では、フィン4a-4cが等ピッチで配列しているが、フィン4a-4cのピッチは任意である。また、フィン4a-4cの個数も任意である。複数のフィン4a-4c全体に均一に空気を当てるには、フィン4a-4cが等ピッチであることが望ましいが、被冷却部品の位置、発熱分布に応じてフィン4a-4cのピッチが変化してもよい。
In Embodiment 1-3, the fins 4a-4c are arranged at an equal pitch, but the pitch of the fins 4a-4c is arbitrary. The number of fins 4a-4c is also arbitrary. In order to uniformly apply air to the entire plurality of fins 4a-4c, it is desirable that the fins 4a-4c have an equal pitch. However, the pitch of the fins 4a-4c varies depending on the position of the component to be cooled and the heat distribution. May be.
実施の形態1-3では、フィン4a-4cと溝5a-5fが同じ方向に延伸している。換言すると、フィン4a-4cと冷媒配管8が同じ方向に延伸している。しかし、本発明はこれに限定されない。フィン4a-4cの延伸方向と溝5a-5f及び冷媒配管8の延伸方向との関係は任意である。フィン4a-4cは、押し出し成型で本体3a-3cと一体形成するため、溝5a-5f及び冷媒配管8の延伸方向に延伸するとよいが、他製法により形成することで、溝5a-5f及び冷媒配管8の延伸方向と異なる方向に延伸してもよい。
In Embodiment 1-3, the fins 4a-4c and the grooves 5a-5f extend in the same direction. In other words, the fins 4a-4c and the refrigerant pipe 8 extend in the same direction. However, the present invention is not limited to this. The relationship between the extending direction of the fins 4a-4c and the extending direction of the grooves 5a-5f and the refrigerant pipe 8 is arbitrary. Since the fins 4a-4c are integrally formed with the main body 3a-3c by extrusion molding, the fins 4a-4c may be extended in the extending direction of the grooves 5a-5f and the refrigerant pipe 8. However, by forming by other manufacturing methods, the fins 5a-5f and the refrigerant 4 You may extend | stretch in the direction different from the extending | stretching direction of the piping 8. As shown in FIG.
実施の形態1-3では、フィン4a-4cが平板状である。しかし、本発明はこれに限定されない。フィン4a-4cは、上述したように、本体3a-3cの一方の面の側に設けられていればよく、その限りにおいて、その形状は任意である。例えば、フィン4a-4cそれぞれは、複数のピン部材であってもよい。この場合、ピン部材は、溝5a-5f及び冷媒配管8の延伸方向に配列するとよい。
In Embodiment 1-3, the fins 4a-4c are flat. However, the present invention is not limited to this. As described above, the fins 4a-4c only have to be provided on one surface side of the main body 3a-3c, and as long as the fins 4a-4c are provided, the shape thereof is arbitrary. For example, each of the fins 4a-4c may be a plurality of pin members. In this case, the pin members may be arranged in the extending direction of the grooves 5a-5f and the refrigerant pipe 8.
実施の形態1-3では、円筒状の冷媒配管8を通すため、溝5a-5fが断面視半円形状であり、その結果、冷媒配管用空間80は、断面視円形状である。しかし、本発明はこれに限定されない。溝5a-5fは、形成する冷媒配管用空間80に通すことが可能である限り、その形状は任意である。例えば、冷媒配管8が断面視扁平の扁平管である場合、溝5a-5fは、断面視で扁平を2分割した形状であればよい。溝5a-5fの内壁は、熱伝導しやすくするため、横断面で冷媒配管8の全周と接触するとよい。換言すると、溝5a-5fの内壁は、冷媒配管8と熱的に結合しているとよい。
In Embodiment 1-3, since the cylindrical refrigerant pipe 8 is passed, the grooves 5a-5f are semicircular in cross section, and as a result, the refrigerant pipe space 80 is circular in cross section. However, the present invention is not limited to this. The shape of the grooves 5a-5f is arbitrary as long as it can be passed through the refrigerant piping space 80 to be formed. For example, when the refrigerant pipe 8 is a flat tube having a flat cross-sectional view, the grooves 5a-5f may have a shape obtained by dividing the flat into two in the cross-sectional view. The inner walls of the grooves 5a-5f are preferably in contact with the entire circumference of the refrigerant pipe 8 in a cross section in order to facilitate heat conduction. In other words, the inner walls of the grooves 5a-5f are preferably thermally coupled to the refrigerant pipe 8.
また、溝5a-5fの内壁が冷媒配管8と熱的に結合する結果、部分品2a-2eと冷媒配管8は熱的に結合しているとよい。部分品2a-2eには、製造上のばらつき、傷、表面粗さ等により微細な凹凸が存在し、冷媒配管8にも、同様に微細な凹凸が存在するので、点接触を可能な限り防ぐため、
結合部に熱伝導部材、例えば、熱伝導グリースを使用して結合部の熱抵抗を下げるとよい。 Further, as a result of the inner walls of thegrooves 5a-5f being thermally coupled to the refrigerant pipe 8, the partial products 2a-2e and the refrigerant pipe 8 are preferably thermally coupled. The part 2a-2e has fine irregularities due to manufacturing variations, scratches, surface roughness, etc., and the refrigerant pipe 8 also has fine irregularities to prevent point contact as much as possible. For,
It is preferable to reduce the thermal resistance of the coupling portion by using a heat conducting member, for example, heat conduction grease, at the coupling portion.
結合部に熱伝導部材、例えば、熱伝導グリースを使用して結合部の熱抵抗を下げるとよい。 Further, as a result of the inner walls of the
It is preferable to reduce the thermal resistance of the coupling portion by using a heat conducting member, for example, heat conduction grease, at the coupling portion.
実施の形態1-3では、部分品2a-2eが、連結用凸部6b、6c、6e、7a、7d、7fと連結用凹部6a、6d、6f、7b、7c、7eによって連結することで、ヒートシンク1及び1a-1cを形成している。しかし、本発明はこれに限定されない。部分品2a-2eを連結させる手段は任意である。例えば、ヒートシンク1及び1a-1cでは、部分品2a-2eを接着剤、ロウ材等を用いて接合してもよい。その場合、連結用凸部6b、6c、6e、7a、7d、7fと連結用凹部6a、6d、6f、7b、7c、7eは、本体3a-3cに形成されていなくてもよい。
In Embodiment 1-3, the component 2a-2e is connected by the connecting convex portions 6b, 6c, 6e, 7a, 7d, 7f and the connecting concave portions 6a, 6d, 6f, 7b, 7c, 7e. Heat sinks 1 and 1a-1c are formed. However, the present invention is not limited to this. The means for connecting the partial products 2a-2e is arbitrary. For example, in the heat sinks 1 and 1a-1c, the partial products 2a-2e may be joined using an adhesive, a brazing material, or the like. In that case, the connecting projections 6b, 6c, 6e, 7a, 7d, and 7f and the connecting recesses 6a, 6d, 6f, 7b, 7c, and 7e may not be formed on the main body 3a-3c.
なお、部分品2a-2eが、連結用凸部6b、6c、6e、7a、7d、7fと連結用凹部6a、6d、6f、7b、7c、7eによって連結する場合、それらの組数に制限はない。また、連結用凸部6b、6c、6e、7a、7d、7fと連結用凹部6a、6d、6f、7b、7c、7eの組合せは、必ずしも両方の部分品2a-2eに連結用凸部6b、6c、6e、7a、7d、7fと連結用凹部6a、6d、6f、7b、7c、7eの両方を形成する必要はなく、一方の部分品に連結用凹部6a、6d、6f、7b、7c、7eのみ、もう一方の部分品2a-2eに連結用凸部6b、6c、6e、7a、7d、7fのみを形成してもよい。
When the part 2a-2e is connected by the connecting projections 6b, 6c, 6e, 7a, 7d, 7f and the connecting recesses 6a, 6d, 6f, 7b, 7c, 7e, the number of sets is limited. There is no. Further, the combination of the connecting convex portions 6b, 6c, 6e, 7a, 7d, 7f and the connecting concave portions 6a, 6d, 6f, 7b, 7c, 7e is not necessarily limited to the connecting convex portion 6b. 6c, 6e, 7a, 7d, 7f and the connecting recesses 6a, 6d, 6f, 7b, 7c, 7e are not necessarily formed, and the connecting recesses 6a, 6d, 6f, 7b, Only the projections 6b, 6c, 6e, 7a, 7d, and 7f may be formed on the other partial product 2a-2e only for 7c and 7e.
本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. Further, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
本出願は、2018年4月16日に出願された、日本国特許出願特願2018-78070号に基づく。本明細書中に日本国特許出願特願2018-78070号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
This application is based on Japanese Patent Application No. 2018-78070 filed on April 16, 2018. The specification, claims, and entire drawings of Japanese Patent Application No. 2018-78070 are incorporated herein by reference.
1,1a,1b,1c ヒートシンク、2a,2b,2c,2d,2e 部分品、3a,3b,3c 本体、4a,4b,4c,4d フィン、5a,5b,5c,5d,5e,5f 溝、6a,6d,6f,7b,7c,7e 連結用凹部、6b,6c,6e,7a,7d,7f 連結用凸部、8 冷媒配管、9a,9d,9f 右側面、9b,9c,9e 左側面、10 ファン、11 熱交換器、12 電気品箱、13 吸気口、14 電子部品、15 ダクト、17 インバータ回路、18 送風部、19 熱交換部、20 機械部、21 室外機、22 筐体、30 冷却面、31 突出壁、40,41 発熱部材、80 冷媒配管用空間。
1, 1a, 1b, 1c heat sink, 2a, 2b, 2c, 2d, 2e partial product, 3a, 3b, 3c main body, 4a, 4b, 4c, 4d fin, 5a, 5b, 5c, 5d, 5e, 5f groove, 6a, 6d, 6f, 7b, 7c, 7e Connection recess, 6b, 6c, 6e, 7a, 7d, 7f Connection projection, 8 Refrigerant piping, 9a, 9d, 9f Right side, 9b, 9c, 9e Left side 10, fan, 11 heat exchanger, 12 electrical box, 13 air inlet, 14 electronic parts, 15 duct, 17 inverter circuit, 18 air blower, 19 heat exchanger, 20 machine, 21 outdoor unit, 22 housing, 30 cooling surfaces, 31 protruding walls, 40, 41 heating members, 80 refrigerant piping space.
Claims (9)
- 第1の溝が設けられた第1の面を有する第1の本体と、
前記第1の本体の、一方の面の側に設けられた第1のフィンと、
前記第1の面と隣接する第2の面を有し、前記第2の面に、前記第1の溝が延伸する方向に延伸すると共に、前記第1の溝と対向する第2の溝が設けられた第2の本体と、
前記第2の本体の、前記一方の面の側にある面の側に設けられた第2のフィンと、
前記第1の溝と前記第2の溝の間に設けられた冷媒配管と、を備えた、
ヒートシンク。 A first body having a first surface provided with a first groove;
A first fin provided on one side of the first body;
A second surface adjacent to the first surface, the second surface extending in a direction in which the first groove extends, and a second groove facing the first groove; A second body provided;
A second fin provided on a surface side of the second main body on the one surface side;
A refrigerant pipe provided between the first groove and the second groove,
heatsink. - 前記第1の本体は、前記第1の面に凹部を有し、
前記第2の本体は、前記第2の面の、前記凹部と隣り合う位置に凸部を有し、
前記凸部は、前記凹部に嵌合して前記第1の本体を前記第2の本体に連結している、
請求項1に記載のヒートシンク。 The first body has a recess in the first surface;
The second main body has a convex portion at a position adjacent to the concave portion of the second surface,
The convex portion is engaged with the concave portion to connect the first main body to the second main body.
The heat sink according to claim 1. - 前記凸部は、可撓性を有し、弾性変形をすることにより、前記凹部に嵌合している、
請求項2に記載のヒートシンク。 The convex part has flexibility and is fitted into the concave part by elastic deformation.
The heat sink according to claim 2. - 前記第1の本体は、前記第1のフィンと一体的に形成され、
前記第2の本体は、前記第2のフィンと一体的に形成されている、
請求項1から3のいずれか1項に記載のヒートシンク。 The first body is integrally formed with the first fin;
The second body is formed integrally with the second fin;
The heat sink according to any one of claims 1 to 3. - 前記第1の本体は、前記第1のフィンの端部と熱的に結合し、
前記第2の本体は、前記第2のフィンの端部と熱的に結合している、
請求項1から3のいずれか1項に記載のヒートシンク。 The first body is thermally coupled to an end of the first fin;
The second body is thermally coupled to an end of the second fin;
The heat sink according to any one of claims 1 to 3. - 本体と、該本体の一方の面の側に設けられたフィンと、を備え、前記本体が、第1の面に設けられた第1の溝、前記第1の面と対向する第2の面に設けられ、前記第1の溝が延伸する方向に延伸すると共に前記第1の溝と対向する位置に配置された第2の溝、前記第1の面に設けられた凸部と凹部のいずれか一方及び、前記第2の面に設けられた前記凸部と前記凹部のいずれか他方を有する部分品を複数個備え、
複数個の前記部分品のうちのいずれか一つは、
前記第1の面が、別の前記部分品の前記第2の面と隣接し、かつ前記凸部と前記凹部のいずれか一方が、前記別の前記部分品の、前記凸部と前記凹部のいずれか他方と嵌合することにより、前記別の前記部分品に連結し、
複数個の前記部分品は、
前記第1の面と前記第2の面が隣接して、前記第1の溝と前記第2の溝が隣接方向に連続することにより形成された冷媒配管を配置するための空間を複数個、有する、
ヒートシンク。 A main body and a fin provided on one surface side of the main body, wherein the main body has a first groove provided on the first surface, and a second surface facing the first surface. Any one of a second groove disposed in a position extending in the direction in which the first groove extends and facing the first groove, and a convex portion and a concave portion provided on the first surface. A plurality of partial parts having either one of the convex portion and the concave portion provided on the second surface,
Any one of the plurality of parts is
The first surface is adjacent to the second surface of another partial product, and either the convex portion or the concave portion is formed between the convex portion and the concave portion of the other partial product. By fitting with one of the other, it is connected to the other part,
A plurality of the parts are
A plurality of spaces for arranging refrigerant pipes formed by the first surface and the second surface being adjacent to each other, and the first groove and the second groove being continuous in the adjacent direction; Have
heatsink. - 複数個の、前記冷媒配管を配置するための空間のうち、少なくとも1つには、前記冷媒配管が配置されている、
請求項6に記載のヒートシンク。 Among the plurality of spaces for arranging the refrigerant pipe, at least one of the refrigerant pipes is arranged.
The heat sink according to claim 6. - 請求項7に記載のヒートシンクの使用方法であって、
前記複数個の、前記冷媒配管を配置するための空間のうち、前記冷媒配管が配置された空間を、前記冷媒配管が配置されていない空間よりも、冷却対象である発熱部材の発熱量が大きい箇所の近傍に配置する、ヒートシンクの使用方法。 A method of using the heat sink according to claim 7,
Of the plurality of spaces for arranging the refrigerant pipes, the heat generation amount of the heat generating member to be cooled is larger in the space in which the refrigerant pipe is arranged than in the space in which the refrigerant pipe is not arranged. How to use a heat sink that is placed near the location. - 請求項1から7のいずれか1項に記載のヒートシンク、前記ヒートシンクに空気を送風するファン、及び前記ヒートシンクによって冷却される電子部品を有する室外機と、
室内機と、
前記室外機と前記室内機とを接続する接続用配管と、
を備えた空気調和装置。 An outdoor unit comprising the heat sink according to any one of claims 1 to 7, a fan for blowing air to the heat sink, and an electronic component cooled by the heat sink;
Indoor unit,
A pipe for connecting the outdoor unit and the indoor unit;
Air conditioner with
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-078070 | 2018-04-16 | ||
JP2018078070A JP2021105454A (en) | 2018-04-16 | 2018-04-16 | Heat sink and air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019203083A1 true WO2019203083A1 (en) | 2019-10-24 |
Family
ID=68239519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/015570 WO2019203083A1 (en) | 2018-04-16 | 2019-04-10 | Heat sink, method for using heat sink, and air conditioning device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021105454A (en) |
WO (1) | WO2019203083A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110645640A (en) * | 2019-10-25 | 2020-01-03 | 珠海格力电器股份有限公司 | Electric appliance box and outdoor unit with high heat dissipation efficiency |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5430640A (en) * | 1977-08-12 | 1979-03-07 | Hitachi Ltd | Air cooling heat pump type air conditioner |
JPH05187724A (en) * | 1992-01-07 | 1993-07-27 | Mitsubishi Electric Corp | Electric component box cooling device for air conditioner |
JP2006046694A (en) * | 2004-07-30 | 2006-02-16 | Daikin Ind Ltd | Refrigerating device |
JP2008076008A (en) * | 2006-09-25 | 2008-04-03 | Hitachi Appliances Inc | Air conditioner |
JP2010040996A (en) * | 2008-08-08 | 2010-02-18 | Furukawa Electric Co Ltd:The | Heat sink |
JP2010153443A (en) * | 2008-12-24 | 2010-07-08 | Fujitsu Ltd | Cooling device, cooling-device manufacturing method, and electronic apparatus |
JP2018031549A (en) * | 2016-08-25 | 2018-03-01 | 株式会社丸三電機 | Heat radiator |
WO2019053791A1 (en) * | 2017-09-12 | 2019-03-21 | 住友精密工業株式会社 | Heat sink |
-
2018
- 2018-04-16 JP JP2018078070A patent/JP2021105454A/en active Pending
-
2019
- 2019-04-10 WO PCT/JP2019/015570 patent/WO2019203083A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5430640A (en) * | 1977-08-12 | 1979-03-07 | Hitachi Ltd | Air cooling heat pump type air conditioner |
JPH05187724A (en) * | 1992-01-07 | 1993-07-27 | Mitsubishi Electric Corp | Electric component box cooling device for air conditioner |
JP2006046694A (en) * | 2004-07-30 | 2006-02-16 | Daikin Ind Ltd | Refrigerating device |
JP2008076008A (en) * | 2006-09-25 | 2008-04-03 | Hitachi Appliances Inc | Air conditioner |
JP2010040996A (en) * | 2008-08-08 | 2010-02-18 | Furukawa Electric Co Ltd:The | Heat sink |
JP2010153443A (en) * | 2008-12-24 | 2010-07-08 | Fujitsu Ltd | Cooling device, cooling-device manufacturing method, and electronic apparatus |
JP2018031549A (en) * | 2016-08-25 | 2018-03-01 | 株式会社丸三電機 | Heat radiator |
WO2019053791A1 (en) * | 2017-09-12 | 2019-03-21 | 住友精密工業株式会社 | Heat sink |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110645640A (en) * | 2019-10-25 | 2020-01-03 | 珠海格力电器股份有限公司 | Electric appliance box and outdoor unit with high heat dissipation efficiency |
Also Published As
Publication number | Publication date |
---|---|
JP2021105454A (en) | 2021-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6138093B2 (en) | Server cooling system and cooling method thereof | |
JP2020197375A (en) | Outdoor unit of air conditioner, and air conditioner | |
WO2019203083A1 (en) | Heat sink, method for using heat sink, and air conditioning device | |
CN112180658B (en) | Projection equipment and projection system | |
CN112213906B (en) | Projection equipment and projection system | |
KR101401868B1 (en) | Cooling apparatus for electronic device | |
JP6484930B2 (en) | Refrigeration equipment | |
US20050045313A1 (en) | Heat sink | |
JP6394386B2 (en) | Refrigeration equipment | |
JP7407507B2 (en) | Electrical component cooling equipment, chilling units with it, and outdoor units of air conditioners | |
KR20150000679A (en) | A hot-air blower for radiator | |
JP2014036050A (en) | Heat radiator and heat radiation system | |
KR20080070398A (en) | Outdoor unit of air conditioner | |
JP3085207U (en) | Indirect thermoelectric cooling device | |
CN215833751U (en) | Heat dissipation box and multimedia projector comprising same | |
JP2018031549A (en) | Heat radiator | |
US20060236717A1 (en) | Heat disspiating system and device | |
CN112130644A (en) | Optical module heat dissipation equipment and server | |
CN105466100B (en) | Heat-exchanger rig and semiconductor freezer with the heat-exchanger rig | |
CN218915170U (en) | Heat radiation system and air conditioner | |
JP6972416B1 (en) | Air conditioner and heat dissipation fins | |
CN219328973U (en) | Heat radiation structure and projector | |
WO2023136123A1 (en) | Outdoor unit of air conditioner, and air conditioner | |
CN216667841U (en) | Heat radiation structure and air conditioner outdoor unit | |
CN111594462B (en) | Radiator and central processing unit with same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19787969 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19787969 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |